National Library of Energy BETA

Sample records for ring manufacturing scale-up

  1. Manufacturing Innovation and Scale-up | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Market » Manufacturing Innovation and Scale-up Manufacturing Innovation and Scale-up The SunShot Initiative funds cutting-edge research and development that will help the solar industry to reach specific manufacturing-related cost goals and supports cost-cutting advances in the solar supply chain, across system components, and in manufacturing processes. SunShot works to de-risk both near and long-term innovations in the private sector as well as manufacturing-oriented consortia.

  2. Manufacturing and Scale Up Challenges: Cell Components, Membranes, & Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    M Confidential. 1 28 April 2014 . All Rights Reserved. © 3M Electrolytic Hydrogen Production Workshop DOE Fuel Cell Technologies Office hosted by: NREL, Golden, Colorado Feb. 27th and 28th, 2014. "Manufacturing and Scale Up Challenges: Cell Components, Membranes, & Catalysts". by Krzysztof A. Lewinski, 3M 3M Confidential. 2 28 April 2014 . All Rights Reserved. © 3M Greatest Challenges and Opportunities:  PEM electrolyzer market at an early stage;  Market development gaining

  3. Experience Scaling Up Manufacturing of Emerging Photovoltaic Technologies

    SciTech Connect (OSTI)

    Braun, G. W.; Skinner, D. E.

    2007-01-01

    This report examines two important generic photovoltaic technologies at particularly revealing stages of development, i.e., the stages between R&D and stable commercial production and profitable sales. Based on two historical cases, it attempts to shed light on the difference between: (1) costs and schedules validated by actual manufacturing and market experience, and (2) estimated costs and schedules that rely on technology forecasts and engineering estimates. The amorphous Silicon case also identifies some of the costs that are incurred in meeting specific market requirements, while the Cadmium Telluride case identifies many of the operational challenges involved in transferring R&D results to production. The transition between R&D and commercial success takes a great deal of time and money for emerging energy conversion technologies in general. The experience reported here can be instructive to those managing comparable efforts, and to their investors. It can also be instructive to R&D managers responsible for positioning such new technologies for commercial success.

  4. Scale-up of Lithium Aluminate Pellet Manufacturing with a Flowable Powder

    SciTech Connect (OSTI)

    Hollenberg, Glenn W.; Bagaasen, Larry M.; Kurosky, Randal P.; Tonn, D.; Carty, W.

    2004-01-01

    Thin-walled, high-density lithium aluminate pellets are challenging to manufacture for nuclear reactor applications. The key to scale-up of production was the development of flowable, high density, lithium aluminate powder that permitted (1) automated isostatic pressing, (2) low compaction during pressing, (3) low shrinkage during firing, (4) elimination of chlorine-containing fumed alumina and (5) near-net shape forming. A triple spray drying process was developed that included: (I) a unique-feedstock blend cycle, (II) a post-calcination grinding cycle, and (III) a high-pH final cycle with high solids loading slurry that was spray dried into flowable high-density spheres with large, uniform diameters. Today, pellet manufacturing at a rate of more than 400,000 per year is possible.

  5. Scaling Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scaling Up Scaling Up Many scientists appreciate Python's power for prototyping and developing scientific computing and data-intensive applications. However, creating parallel Python applications that scale well in modern high-performance computing environments can be challenging for a variety of reasons. Approaches to parallel processing in Python at NERSC are described on this page. Here we outline various approaches to scaling parallel Python applications at NERSC so that users may select the

  6. Megawatt Electrolysis Scale Up

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MW Electrolysis Scale Up E Anderson DOE Electrolytic Hydrogen Production Workshop 27-28 February 2014 27 28 February 2014 National Renewable Energy Laboratory Golden, CO (tm) ® Proton, Proton OnSite, Proton Energy Systems, the Proton design, StableFlow, StableFlow Hydrogen Control System and design, HOGEN, and FuelGen are trademarks or registered trademarks of Proton Energy Systems, Inc. Any other brands and/or names used herein are the property of their respective owners. Motivation - MW

  7. Scaling Up Nascent Photovoltaics AT Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scaling Up Nascent Photovoltaics AT Home Scaling Up Nascent Photovoltaics AT Home Three awardees are helping the nation reclaim its competitive edge in solar manufacturing through SUNPATH, which stands for Scaling Up Nascent PV AT Home. This program strengthens the domestic manufacturing industry by supporting the initial ramp up to high-volume production. The targeted SUNPATH funding enables innovative, high-tech companies to accelerate cost reductions and commercialization of solar

  8. Synthesis, scale-up, and characterization of

    Office of Scientific and Technical Information (OSTI)

    2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) (Conference) | SciTech Connect Synthesis, scale-up, and characterization of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) Citation Details In-Document Search Title: Synthesis, scale-up, and characterization of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is

  9. Process Development and Scale up of Advanced Electrolyte Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale up of Advanced Electrolyte Materials Process Development and Scale up of Advanced Electrolyte Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies ...

  10. Scaling up Renewable Energy in Developing Countries: finance...

    Open Energy Info (EERE)

    Scaling up Renewable Energy in Developing Countries: finance and investment perspectives Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Scaling up Renewable Energy in...

  11. Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis of Magnesium: Scale-Up Research and Engineering for Light-Weight Vehicles Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research and Engineering for...

  12. Innovative Solar Panel Maker Scales Up, Lowering Costs while Creating Jobs

    Office of Environmental Management (EM)

    | Department of Energy Solar Panel Maker Scales Up, Lowering Costs while Creating Jobs Innovative Solar Panel Maker Scales Up, Lowering Costs while Creating Jobs May 16, 2011 - 12:41pm Addthis The end of Abound Solar’s PV manufacturing line | Photo Courtesy of Abound Solar The end of Abound Solar's PV manufacturing line | Photo Courtesy of Abound Solar Minh Le Minh Le Deputy Director, Solar Energy Technologies Office It's one thing to call solar energy a "growth industry,"

  13. Process Development and Scale up of Advanced Electrolyte Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Scale up of Advanced Electrolyte Materials Process Development and Scale up of Advanced Electrolyte Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es168_krumdick_2012_o.pdf More Documents & Publications Process Development and Scale up of Advanced Electrolyte Materials Vehicle Technologies Office Merit Review 2014: Process Development and Scale Up of Advanced Electrolyte

  14. Materials Scale-up Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Materials Scale-up Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt076_es_krumdick_2011_p.pdf More Documents & Publications Process Development and Scale up of Advanced Electrolyte Materials Vehicle Technologies Office Merit Review 2014: Process Development and Scale Up of Advanced Electrolyte Materials Process Development and Scale up of Advanced Electrolyte

  15. Scale-Up of Magnesium Production by Fully Stabilized Zirconia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis 2012 DOE Hydrogen and Fuel Cells...

  16. Approaches and Financial Models for Scaling up Norwegian Development...

    Open Energy Info (EERE)

    Approaches and Financial Models for Scaling up Norwegian Development Assistance to Clean Energy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Approaches and Financial...

  17. EBRD-Sustainable Energy Initiative: Scaling Up Finance for Climate...

    Open Energy Info (EERE)

    Sustainable Energy Initiative: Scaling Up Finance for Climate Change Mitigation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: EBRD-Sustainable Energy Initiative:...

  18. Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen...

    Office of Scientific and Technical Information (OSTI)

    Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen Storage for Automotive Applications Citation Details In-Document Search Title: Materials Engineering and Scale ...

  19. Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

    2012-10-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

  20. Energy Department Requests Information on Understanding Scale-Up and

    Office of Environmental Management (EM)

    Operational Challenges for Integrated Biorefinery Optimization | Department of Energy Requests Information on Understanding Scale-Up and Operational Challenges for Integrated Biorefinery Optimization Energy Department Requests Information on Understanding Scale-Up and Operational Challenges for Integrated Biorefinery Optimization March 10, 2016 - 5:14pm Addthis The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy's (EERE's) Bioenergy Technologies Office (BETO)

  1. Manufacturing

    Office of Environmental Management (EM)

    Flow of Materials through Industry / Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 1 5 1.1 Supply chain and material flow analysis ....................................................................................... 1 6 2. Technology Assessment and Potential

  2. Scale-up of Algal Biofuel Production Using Waste Nutrients

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation does not contain any proprietary, confidential, or otherwise restricted information DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Scale-up of Algal Biofuel Production Using Waste Nutrients Civil and Environmental Engineering California Polytechnic State University San Luis Obispo, California MicroBio Engineering, Inc. San Luis Obispo, California Phase 1 Goal Statement * Develop the capability for 2500 gal/ac-yr of biofuel intermediates via HTL from

  3. Scale-up in Poroelastic System and Applications to Reservoirs

    SciTech Connect (OSTI)

    Berryman, J G

    2003-07-01

    A fundamental problem of heterogeneous systems is that the macroscale behavior is not necessarily well-described by equations familiar to us at the meso- or microscale. In relatively simple cases like electrical conduction and elasticity, it is hue that the equations describing macroscale behavior take the same form as those at the microscale. But in more complex systems, these simple results do not hold. Consider fluid flow in porous media where the microscale behavior is well-described by Navier-Stokes' equations for liquid in the pores while the macroscale behavior instead obeys Darcy's equation. Rigorous methods for establishing the form of such equations for macroscale behavior include multiscale homogenization methods and also the volume averaging method. In addition, it has been shown that Biot's equations of poroelasticity follow in a scale-up of the microscale equations of elasticity coupled to Navier-Stokes. Laboratory measurements have shown that Biot's equations indeed hold for simple systems but heterogeneous systems can have quite different behavior. So the question arises whether there is yet another level of scale-up needed to arrive at equations valid for the reservoir scale? And if so, do these equations take the form of Biot's equations or some other form? We will discuss these issues and show that the double-porosity equations play a special role in the scale-up to equations describing reservoir behavior, for fluid pumping, geomechanics, as well as seismic wave propagation.

  4. Scaling Up Nascent Photovoltaics AT Home | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    year in manufacturing capacity for its world-record-setting, 43.5% efficient, multi-junction cells for CPV technology. The cells will be manufactured at facilities in San Jose,...

  5. A study on a voloxidizer with an oxygen concentration controller for a scale-up DESIGN

    SciTech Connect (OSTI)

    Kim, Young-Hwan; Yoon, Ji-Sup; Park, Byung-Suk; Jung, Jae-Hoo

    2007-07-01

    For a oxidation of UO{sub 2} pellets of tens/kg in a vol-oxidizer, the existing devices take a long time, also, for their scale-up to an engineering scale, we need the optimum oxygen concentration with an maximum oxidation efficiency. In this study, we attained the optimum oxygen concentration to shorten the oxidation time of a simulation fuel using a vol-oxidizer with an oxygen concentration controller and sensor. We compared the characteristics of a galvanic sensor with a zirconium oxide (ZrO{sub 2}) one. The simulation fuel was manufactured with 14 metallic oxides, and used at a mass of 500 g HM/batch. At 500 deg. C, the galvanic and zirconium oxide sensors measured the oxidation time for the simulation fuel. Also, the oxidation time of the simulation fuel was measured according to a change of the oxygen concentration with the selected sensor, and the sample was analyzed. (authors)

  6. Self Aligned Cell: Scaling Up Manufacture of a Cost Effective Cell Architecture for Multicrystalline Silicon Photovoltaics

    SciTech Connect (OSTI)

    Gabor, A.; van Mierlo, F.

    2010-12-01

    Two areas of technology for fabrication of higher efficiency Si-wafer solar cells were addressed: (1) the formation of structured texturing that is an improvement over the industry-standard isotexture process for multicrystalline wafers. (2) the formation of fine line (<50 micron) metallization seed layers in a self-aligned manner where the fingers can be automatically and perfectly lined up to a selective emitter and where expensive silver screen printing paste can be mostly replaced by plating up the seed layers with silver or copper. The benefits are: a) Lower reflectivity , b) Decoupling the performance of the texture from the saw damage, thus allowing for better advances in sawing and a more robust wet process. 1366 Technologies developed 2 pilot machines for 1) deposition and patterning of low-cost resist layers to enable simultaneous Honeycomb front texturing and groove formation for multicrystalline Si wafers, and 2) fine-line dispensing of materials that are self aligned to the grooves.

  7. Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch PDF icon ...

  8. How ATP3 is Addressing the Challenges of Scale-up in Algae Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How ATP3 is Addressing the Challenges of Scale-up in Algae Technology R&D How ATP3 is Addressing the Challenges of Scale-up in Algae Technology R&D Breakout Session 2-A: The Future...

  9. Scale-up of Carbon/Carbon Bipolar Plates

    SciTech Connect (OSTI)

    David P. Haack

    2009-04-08

    This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the development and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.

  10. Process Development and Scale-up of Advanced Cathode Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es167_krumdick_2012_o.pdf More Documents & Publications Process Development and Scale-up of Advanced Cathode Materials Vehicle Technologies Office Merit Review 2014: Process Development and Scale-up of Advanced Cathode Materials Process Development and Scale up of Advanced Electrolyte

  11. Maldives-Program for Scaling Up Renewable Energy in Low Income...

    Open Energy Info (EERE)

    number of low income countries for energy efficiency, renewable energy and access to modern sustainable energy. The SREP stimulates economic growth through the scaled-up...

  12. Nepal-Program for Scaling Up Renewable Energy in Low Income Countries...

    Open Energy Info (EERE)

    number of low income countries for energy efficiency, renewable energy and access to modern sustainable energy. The SREP stimulates economic growth through the scaled-up...

  13. Honduras-Program for Scaling Up Renewable Energy in Low Income...

    Open Energy Info (EERE)

    number of low income countries for energy efficiency, renewable energy and access to modern sustainable energy. The SREP stimulates economic growth through the scaled-up...

  14. Kenya-Program for Scaling Up Renewable Energy in Low Income Countries...

    Open Energy Info (EERE)

    number of low income countries for energy efficiency, renewable energy and access to modern sustainable energy. The SREP stimulates economic growth through the scaled-up...

  15. Mali-Program for Scaling Up Renewable Energy in Low Income Countries...

    Open Energy Info (EERE)

    number of low income countries for energy efficiency, renewable energy and access to modern sustainable energy. The SREP stimulates economic growth through the scaled-up...

  16. China Renewable Energy Scale up Program CRESP GOC WB GEF | Open...

    Open Energy Info (EERE)

    up Program CRESP GOC WB GEF Jump to: navigation, search Name: China Renewable Energy Scale-up Program (CRESP) GOCWBGEF Place: Beijing, Beijing Municipality, China Zip: 100038...

  17. SUSTAINABLE MANUFACTURING WORKSHOP

    Broader source: Energy.gov (indexed) [DOE]

    SUSTAINABLE MANUFACTURING WORKSHOP JANUARY 6-7, 2016 University Place Hotel & Conference Center, Portland, OR Overall Workshop Purpose To gather input from stakeholders on future opportunities and technical challenges facing development and scale-up of transformative technologies, processes, and equipment for sustainable manufacturing. The Department of Energy's Advanced Manufacturing Office (AMO) also seeks individual input on performance metrics and identification of key problem sets to be

  18. SUSTAINABLE MANUFACTURING WORKSHOP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUSTAINABLE MANUFACTURING WORKSHOP JANUARY 6-7, 2016 University Place Hotel & Conference Center, Portland, OR 1 | P a g e Overall Workshop Purpose To gather input from stakeholders on future opportunities and technical challenges facing development and scale-up of transformative technologies, processes, and equipment for sustainable manufacturing. The Department of Energy's Advanced Manufacturing Office (AMO) also seeks individual input on performance metrics and identification of key

  19. Large-Scale Manufacturing of Nanoparticulate-Based Lubrication Additives

    SciTech Connect (OSTI)

    2009-06-01

    This factsheet describes a research project whose goal is to design, develop, manufacture, and scale up boron-based nanoparticulate lubrication additives.

  20. Join Us for the Clean Energy Manufacturing Initiative's Western...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... clean energy innovators to scale up innovations to manufacturing processes Foster ... The Summit is free of charge and open to the public. Register for the CEMI Western ...

  1. A Route to Scale up DNA Origami Using DNA Tiles as Folding Staples

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Route to Scale up DNA Origami Using DNA Tiles as Folding Staples Authors: Zhao, Z., Yan, H., and Liu, Y. Title: A Route to Scale up DNA Origami Using DNA Tiles as Folding Staples Source: Angewandte Chemie International Edition Year: 2010 Volume: 49 Pages: 1414-1417 ABSTRACT: A new strategy is presented to scale up DNA origami using multi-helical DNA tiles as folding staples. Atomic force microscopy images (see picture) demonstrate the two-dimensional structures formed by using this strategy.

  2. Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume Commercial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launch | Department of Energy Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch PDF icon low-cost_carbon_fibers_factsheet.pdf More Documents & Publications CX-009154: Categorical Exclusion Determination Lower Cost Carbon Fiber Precursors Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies - Advanced Conversion

  3. Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen Storage

    Office of Scientific and Technical Information (OSTI)

    for Automotive Applications (Journal Article) | SciTech Connect Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen Storage for Automotive Applications Citation Details In-Document Search Title: Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen Storage for Automotive Applications Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to

  4. Integration & Scale-Up Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-oil Technology Area Review Esther Wilcox March 23 rd , 2015 2015 DOE Bioenergy Technologies Office (BETO) Project Peer Review This presentation does not contain any proprietary, confidential, or otherwise restricted information Integration & Scale-Up WBS 2.4.1.301 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 2 Goal Statement Integrate and scale-up pyrolysis

  5. Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm035_derezinski_2012_o.pdf More Documents & Publications Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research and Engineering for Light-Weight Vehicles Vehicle Technologies

  6. Carbon Fiber Technology Facility Set To Scale Up Industry | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Carbon Fiber Technology Facility Set To Scale Up Industry Carbon Fiber Technology Facility Set To Scale Up Industry July 2, 2015 - 2:55pm Addthis The 42,000 sq. ft. Carbon Fiber Technology Facility offers a highly flexible, highly instrumented carbon fiber line for demonstrating advanced technology scalability and producing market-development volumes of prototypical carbon fibers, and serves as the last step before commercial production scale. The 42,000 sq. ft. Carbon Fiber

  7. NREL: Energy Systems Integration - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Manufacturing capabilities at NREL support the production of components for fuel cells and electrochemical cells and the development of methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their production to meet national goals. Fuel cells cleanly and efficiently convert hydrogen into electricity through an electrochemical process. Fuel cells offer promise in a wide range of

  8. TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY

    SciTech Connect (OSTI)

    Stefanko, D.; Langton, C.

    2012-01-03

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale up test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.

  9. An efficient permeability scaling-up technique applied to the discretized flow equations

    SciTech Connect (OSTI)

    Urgelli, D.; Ding, Yu

    1997-08-01

    Grid-block permeability scaling-up for numerical reservoir simulations has been discussed for a long time in the literature. It is now recognized that a full permeability tensor is needed to get an accurate reservoir description at large scale. However, two major difficulties are encountered: (1) grid-block permeability cannot be properly defined because it depends on boundary conditions; (2) discretization of flow equations with a full permeability tensor is not straightforward and little work has been done on this subject. In this paper, we propose a new method, which allows us to get around both difficulties. As the two major problems are closely related, a global approach will preserve the accuracy. So, in the proposed method, the permeability up-scaling technique is integrated in the discretized numerical scheme for flow simulation. The permeability is scaled-up via the transmissibility term, in accordance with the fluid flow calculation in the numerical scheme. A finite-volume scheme is particularly studied, and the transmissibility scaling-up technique for this scheme is presented. Some numerical examples are tested for flow simulation. This new method is compared with some published numerical schemes for full permeability tensor discretization where the full permeability tensor is scaled-up through various techniques. Comparing the results with fine grid simulations shows that the new method is more accurate and more efficient.

  10. EA-1867: Scale-up of High-Temperature Syngas Cleanup Technology, Polk County, Florida

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide cost-shared funding to RTI International (RTI) for its proposed project to demonstrate the precommercial scale-up of RTIs high-temperature syngas cleanup and carbon capture and sequestration technologies.

  11. Scale-up of Novel Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch

    SciTech Connect (OSTI)

    Spalding, Mark A

    2014-08-27

    The project started in September, 2012 with the goal of scaling up from the existing laboratory scale process for producing carbon fiber (CF) from polyolefin (PO) based precursor fiber using a Dow proprietary sulfonation-desulfonation stabilization process. The award was used to develop a process that was capable of producing market development quantities of CF from PO precursor fiber at a rate of 4 kg/h of CF. The CF would target properties that met or exceeded the Department of Energy (DOE) Vehicles Technology [1] standard; i.e., 172 GPa modulus and 1.72 GPa strength at greater than or equal to 1% strain. The Dow proprietary process was capable of meeting and exceeding these targets properties. Project DE-EE0005760 resulted from a Collaborative Research and Development Agreement (CRADA) between Dow and Oak Ridge National Laboratory (ORNL) with support from the Michigan Economic Development Corporation (MEDC) and DOE. In the first budget period, the main goal was to design a sulfonation-desulfonation market development plant capable of stabilizing PO precursor fiber at a rate of 5 kg/h using a sulfonation solution. The detailed design, location, and cost estimate were determined as scheduled in the Project Management Plan (PMP). In parallel with this DOE award project was a fundamentals and economic evaluation funded by The Dow Chemical Company (Dow). The goal of the Dow sponsored project was to finalize the mass balances, energy balances, and levelized cost to produce CF using the Dow process. A Go-No-Go decision was scheduled in June, 2013 based on the findings of the DOE sponsored scale up project and the Dow sponsored project. In June, 2013, Dow made the No-Go decision to halt and abandon the Dow proprietary sulfonation-desulfonation process for stabilizing PO precursor fibers for the manufacturing of CF. This No-Go decision was identified in the original proposal and at the start of this project, and the decision was made as scheduled. The decision was based on the high levelized economic cost of the process relative to the manufacture of CF from polyacrylonitrile (PAN) precursor fibers. The capital required to sulfonate the fibers adds a significant cost to the process due to the need for investment in a sulfuric acid recovery plant. This high additional capital over the capital for a PAN based CF plant, reduces the levelized economic cost to slightly advantaged over PAN based CF. The sulfonation-desulfonation stabilization route failed to meet the Dow’s return on investment criterion and the cost advantage target set forth for the DOE project. The DOE and Dow decided to halt spending on the project until a new PO fiber stabilization process could be identified that met the DOE physical properties standard and the levelized economic cost constraints of Dow. When the new technology was developed, then award DE-EE0005760 would be re-started with the same goals of the development of a market development plant capable of producing CF at 4 kg/h with the properties that met or exceed those set forth by the Department of Energy Vehicles Technology standard. Progress on the development of the new process has been slow and thus has delayed the scale up project. Dow’s efforts to date have not progressed to the point of demonstrating a commercially-viable process for production of low cost CF from PO precursors for Dow’s rigorous economic constraints. After extensive discussions within Dow and consultation with DOE’s Advanced Manufacturing Office (AMO) Headquarters and Golden Field Office teams, Dow has decided to proceed with the formal recommendation to terminate subject project. DOE’s AMO Headquarters and Golden Field Office teams agreed with the termination of the project.

  12. Vehicle Technologies Office Merit Review 2014: Manufacturability Study and Scale-Up for Large Format Lithium Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  13. Pore-Water Extraction Scale-Up Study for the SX Tank Farm

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Wietsma, Thomas W.; Last, George V.; Lanigan, David C.

    2013-01-15

    The phenomena related to pore-water extraction from unsaturated sediments have been previously examined with limited laboratory experiments and numerical modeling. However, key scale-up issues have not yet been addressed. Laboratory experiments and numerical modeling were conducted to specifically examine pore-water extraction for sediment conditions relevant to the vadose zone beneath the SX Tank Farm at Hanford Site in southeastern Washington State. Available SX Tank Farm data were evaluated to generate a conceptual model of the subsurface for a targeted pore-water extraction application in areas with elevated moisture and Tc-99 concentration. The hydraulic properties of the types of porous media representative of the SX Tank Farm target application were determined using sediment mixtures prepared in the laboratory based on available borehole sediment particle size data. Numerical modeling was used as an evaluation tool for scale-up of pore-water extraction for targeted field applications.

  14. Scale Up of Extended Thin Film Electrocatalyst Structures (ETFECS) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    This NREL Hydrogen and Fuel Cell Technical Highlight discusses how NREL synthesized >1 gram of platinum ETFECS (nanotubes) for use as novel fuel cell catalysts. These materials represent the cumulative yield of four individual batch syntheses (each >250 milligrams yield). By producing these materials at gram quantity, NREL has shown the viability of scale up and produced sufficient material to allow further validation of properties, as well as in-depth electrode optimization and fuel cell testing.

  15. Using Advanced Modeling to Accelerate the Scale-Up of Carbon Capture Technologies

    SciTech Connect (OSTI)

    Miller, David; Sun, Xin; Storlie, Curtis; Bhattacharyya, Debangsu

    2015-06-18

    Carbon capture and storage (CCS) is one of many approaches that are critical for significantly reducing domestic and global CO2 emissions. The U.S. Department of Energy’s Clean Coal Technology Program Plan envisions 2nd generation CO2 capture technologies ready for demonstration-scale testing around 2020 with the goal of enabling commercial deployment by 2025 [1]. Third generation technologies have a similarly aggressive timeline. A major challenge is that the development and scale-up of new technologies in the energy sector historically takes up to 15 years to move from the laboratory to pre-deployment and another 20 to 30 years for widespread industrial scale deployment. In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale up new carbon capture technologies. The CCSI Toolset (1) enables promising concepts to be more quickly identified through rapid computational screening of processes and devices, (2) reduces the time to design and troubleshoot new devices and processes by using optimization techniques to focus development on the best overall process conditions and by using detailed device-scale models to better understand and improve the internal behavior of complex equipment, and (3) provides quantitative predictions of device and process performance during scale up based on rigorously validated smaller scale simulations that take into account model and parameter uncertainty[2]. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  16. Scale-Up Maturation Plan for Digestion of Graphite Fuel Pebbles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scale-Up Maturation Plan for Digestion of Graphite Fuel Pebbles Official Use Only Pre-decisional Draft R. A. Pierce K. M. Fox June 2014 SRNL-RP-2014-00464, Revision 0 SRNL-RP-2014-00464 Revision 0 -- Official Use Only -- ii DISCLAIMER This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied: 1. warranty or assumes any legal liability

  17. Advanced modeling to accelerate the scale up of carbon capture technologies

    SciTech Connect (OSTI)

    Miller, David C.; Sun, XIN; Storlie, Curtis B.; Bhattacharyya, Debangsu

    2015-06-01

    In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale-up new carbon capture technologies. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  18. Manufacturing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D The Manufacturing R&D program in the Fuel Cell Technologies Office (FCTO) aims to improve processes and reduce the cost of manufacturing components and systems for hydrogen production and delivery, hydrogen storage, and fuel cells for transportation, stationary, and portable applications. Industry will have to overcome significant challenges to scale up production of today's hydrogen and fuel cell related components and systems, currently built using laboratory-scale fabrication

  19. Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    per unit of CF output by more than 50%; and * Creating domestic manufacturing jobs. ... additional information, please contact Steve Sikirica Technology Manager U.S. ...

  20. Scaling up the 454 Titanium Library Construction and Pooling of Barcoded Libraries

    SciTech Connect (OSTI)

    Phung, Wilson; Hack, Christopher; Shapiro, Harris; Lucas, Susan; Cheng, Jan-Fang

    2009-03-23

    We have been developing a high throughput 454 library construction process at the Joint Genome Institute to meet the needs of de novo sequencing a large number of microbial and eukaryote genomes, EST, and metagenome projects. We have been focusing efforts in three areas: (1) modifying the current process to allow the construction of 454 standard libraries on a 96-well format; (2) developing a robotic platform to perform the 454 library construction; and (3) designing molecular barcodes to allow pooling and sorting of many different samples. In the development of a high throughput process to scale up the number of libraries by adapting the process to a 96-well plate format, the key process change involves the replacement of gel electrophoresis for size selection with Solid Phase Reversible Immobilization (SPRI) beads. Although the standard deviation of the insert sizes increases, the overall quality sequence and distribution of the reads in the genome has not changed. The manual process of constructing 454 shotgun libraries on 96-well plates is a time-consuming, labor-intensive, and ergonomically hazardous process; we have been experimenting to program a BioMek robot to perform the library construction. This will not only enable library construction to be completed in a single day, but will also minimize any ergonomic risk. In addition, we have implemented a set of molecular barcodes (AKA Multiple Identifiers or MID) and a pooling process that allows us to sequence many targets simultaneously. Here we will present the testing of pooling a set of selected fosmids derived from the endomycorrhizal fungus Glomus intraradices. By combining the robotic library construction process and the use of molecular barcodes, it is now possible to sequence hundreds of fosmids that represent a minimal tiling path of this genome. Here we present the progress and the challenges of developing these scaled-up processes.

  1. Vehicle Technologies Office Merit Review 2014: Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis

    Broader source: Energy.gov [DOE]

    Presentation given by INFINIUM, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about scale-up of magnesium...

  2. Vehicle Technologies Office Merit Review 2015: Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis

    Broader source: Energy.gov [DOE]

    Presentation given by INFINIUM, Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about scale-up of magnesium...

  3. EA-1725: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    SBE, Inc. Electric Drive Vehicle Battery and Component Manufacturing Initiative Application, Power Ring Manufacturing Scale-up, Barre, Vermont

  4. EA-1725: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    SBE, Inc. Electric Drive Vehicle Battery and Component Manufacturing Initiative Application Power Ring Manufacturing Scale-up Barre, Vermont

  5. Completing Pre-Pilot Tasks To Scale Up Biomass Fractionation Pretreatment Apparatus From Batch To Continuous

    SciTech Connect (OSTI)

    Dick Wingerson

    2004-12-15

    PureVision Technology, Inc. (PureVision) was the recipient of a $200,000 Invention and Innovations (I&I) grant from the U. S. Department of Energy (DOE) to complete prepilot tasks in order to scale up its patented biomass fractionation pretreatment apparatus from batch to continuous processing. The initial goal of the I&I program, as detailed in PureVision's original application to the DOE, was to develop the design criteria to build a small continuous biomass fractionation pilot apparatus utilizing a retrofitted extruder with a novel screw configuration to create multiple reaction zones, separated by dynamic plugs within the reaction chamber that support the continuous counter-flow of liquids and solids at elevated temperature and pressure. Although the ultimate results of this 27-month I&I program exceeded the initial expectations, some of the originally planned tasks were not completed due to a modification of direction in the program. PureVision achieved its primary milestone by establishing the design criteria for a continuous process development unit (PDU). In addition, PureVision was able to complete the procurement, assembly, and initiate shake down of the PDU at Western Research Institute (WRI) in Laramie, WY during August 2003 to February 2004. During the month of March 2004, PureVision and WRI performed initial testing of the continuous PDU at WRI.

  6. Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics

    SciTech Connect (OSTI)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1991-07-01

    A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs.

  7. Manufacturing High Temperature Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing and Scale Up Challenges Joseph Hartvigsen Ceramatec, Inc. National Renewable Energy Laboratory Golden, CO February 28, 2014 Antipode Assertions * Electric power generation is not the limitation - To misquote Jay Leno "Use all you want, we'll make more" - http://atomicinsights.com/2013/02/use-all-the-electricity-you-want-well-make-more.html * High electric costs come from working the demand curve from below rather than above * "Grid Storage" is a misleading

  8. Radio-isotope production scale-up at the University of Wisconsin

    SciTech Connect (OSTI)

    Nickles, Robert Jerome

    2014-06-19

    Our intent has been to scale up our production capacity for a subset of the NSAC-I list of radioisotopes in jeopardy, so as to make a significant impact on the projected national needs for Cu-64, Zr-89, Y-86, Ga-66, Br-76, I-124 and other radioisotopes that offer promise as PET synthons. The work-flow and milestones in this project have been compressed into a single year (Aug 1, 2012- July 31, 2013). The grant budget was virtually dominated by the purchase of a pair of dual-mini-cells that have made the scale-up possible, now permitting the Curie-level processing of Cu-64 and Zr-89 with greatly reduced radiation exposure. Mile stones: 1. We doubled our production of Cu-64 and Zr-89 during the grant period, both for local use and out-bound distribution to ≈ 30 labs nationwide. This involved the dove-tailing of beam schedules of both our PETtrace and legacy RDS cyclotron. 2. Implemented improved chemical separation of Zr-89, Ga-66, Y-86 and Sc-44, with remote, semi-automated dissolution, trap-and-release separation under LabView control in the two dual-mini-cells provided by this DOE grant. A key advance was to fit the chemical stream with miniature radiation detectors to confirm the transfer operations. 3. Implemented improved shipping of radioisotopes (Cu-64, Zr-89, Tc-95m, and Ho-163) with approved DOT 7A boxes, with a much-improved FedEx shipping success compared to our previous steel drums. 4. Implemented broad range quantitative trace metal analysis, employing a new microwave plasma atomic emission spectrometer (Agilent 4200) capable of ppb sensitivity across the periodic table. This new instrument will prove essential in bringing our radiometals into FDA compliance needing CoA’s for translational research in clinical trials. 5. Expanded our capabilities in target fabrication, with the purchase of a programmable 1600 oC inert gas tube furnace for the smelting of binary alloy target materials. A similar effort makes use of our RF induction furnace, allowing small scale metallurgy with greater control. This alloy feedstock was then used to electroplate cyclotron targets with elevated melting temperatures capable of withstanding higher beam currents. 6. Finished the beam-line developments needed for the irradiation of low-melting target materials (Se and Ga) now being used for the production of Br-76, and radioactive germanium (68, 69, 71Ge). Our planned development of I-124 production has been deferred, given the wide access from commercial suppliers. The passing of these milestones has been the subject of the previous quarterly reports. These signature accomplishments were made possible by the DOE support, and have strengthened the infrastructure at the University of Wisconsin, provided the training ground for a very talented graduate research assistant (Mr. Valdovinos) and more than doubled our out-shipments of Cu-64 and Zr-89.

  9. STANFORD IN-SITU HIGH RATE YBCO PROCESS: TRANSFER TO METAL TAPES AND PROCESS SCALE UP

    SciTech Connect (OSTI)

    Malcolm R. Beasley; Robert H.Hammond

    2009-04-14

    Executive Summary The materials science understanding of high rate low cost processes for Coated Conductor will benefit the application to power utilities for low loss energy transportation and power generation as well for DOD applications. The research in this program investigated several materials processing approaches that are new and original, and are not being investigated elsewhere. This work added to the understanding of the material science of high rate PVD growth of HTSC YBCO assisted by a liquid phase. A new process discovered uses amorphous glassy precursors which can be made at high rate under flexible conditions of temperature and oxygen, and later brought to conditions of oxygen partial pressure and temperature for rapid conversion to YBCO superconductor. Good critical current densities were found, but further effort is needed to optimize the vortex pinning using known artificial inclusions. A new discovery of the physics and materials science of vortex pinning in the HTSC system using Sm in place of Y came at growth at unusually low oxygen pressure resulting in clusters of a low or non superconducting phase within the nominal high temperature phase. The driving force for this during growth is new physics, perhaps due to the low oxygen. This has the potential for high current in large magnetic fields at low cost, applicable to motors, generators and transformers. The technical demands of this project were the motivation for the development of instrumentation that could be essential to eventual process scale up. These include atomic absorption based on tunable diode lasers for remote monitoring and control of evaporation sources (developed under DARPA support), and the utility of Fourier Transform Infrared Reflectivity (FTIR) for aid in the synthesis of complex thin film materials (purchased by a DURIP-AFOSR grant).

  10. NREL: Energy Systems Integration Facility - Manufacturing and Material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagnostics Manufacturing and Material Diagnostics Manufacturing and material diagnostics help manufacturers of clean energy technologies scale up production to volumes that meet U.S. Department of Energy and industry targets. The Energy Systems Integration Facility provides an array of instrumentation and diagnostic tools that allows highly skilled researchers to perform novel experimentation that would be cost- and time-prohibitive for most institutions. Currently, manufacturing activities

  11. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST » MST Research Programs » Additive Manufacturing Additive Manufacturing A method allowing unparalleled manufacturing control, data visualization, and high-value parts repair. Through additive manufacturing, Los Alamos is developing materials for the future. Taking complex manufacturing challenges from design to fabrication. A science and engineering approach for additive manufacturing solutions. Get Expertise John Carpenter Technical Staff Member Metallurgy Email Division Leader Materials

  12. Scale-up and Technology Transfer of Protein-based Plastic Products

    SciTech Connect (OSTI)

    Grewell, David

    2008-12-08

    Over the last number of years researchers at ISU have been developing protein based plastics from soybeans, funded by Soy Works Corporation. These materials have been characterized and the processing of these materials into prototype products has been demonstrated. A wide range of net-shape forming processes, including but not limited to extrusion, injection molding and compression molding have been studied. Issues, including technology transfer, re-formulation and product consistency, have been addressed partially during this contract. Also, commercial-scale processing parameters for protein based plastic products were designed, but not yet applicable in the industry. Support in the trouble shooting processing and the manufacturing of protein based plastic products was provided by Iowa State University during the one year contract.

  13. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manufacturing and national security To realize additive manufacturing's potential as a disruptive technology for Los Alamos National Laboratory's national security missions,...

  14. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart...

  15. Sustainable Manufacturing

    Energy Savers [EERE]

    Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR DOE Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR Sustainable Manufacturing: Definitions  Numerous definitions and descriptions exist for sustainable manufacturing: * US Department of Commerce, 2009 * NACFAM, 2009 * NIST, 2010 * US-EPA, 2012 * ASME, 2011, 2013 * NSF 2013 * ISM, 2014  Sustainable manufacturing offers a new way of producing functionally superior products using innovative sustainable

  16. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect (OSTI)

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empirical approaches and are operated as?black boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains nuclear energy as a feasible option to meet the nation????

  17. Scale Up of Si/Si0.8GE0.2 and B4C/B9C Superlattices for Harvesting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Up of SiSi0.8GE0.2 and B4CB9C Superlattices for Harvesting of Waste Heat in Diesel Engines Scale Up of SiSi0.8GE0.2 and B4CB9C Superlattices for Harvesting of Waste Heat ...

  18. Means of manufacturing annular arrays

    DOE Patents [OSTI]

    Day, R.A.

    1985-10-10

    A method is described for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90/sup 0/. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings hold the transducer together until it can be mounted on a lens.

  19. Vehicle Technologies Office Merit Review 2015: Scale-Up of Low-Cost Encapsulation Technologies for High Capacity and High Voltage Electrode Powders

    Broader source: Energy.gov [DOE]

    Presentation given by Pneumaticoat Technologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about scale-up of low...

  20. Sustainable Manufacturing

    Energy Savers [EERE]

    Principal Investigator (Presenter): Dr. Troy D. Marusich , CTO Washington, D.C. May 6-7, 2014 Third Wave Systems Inc. U.S. DOE Advanced Manufacturing Office Peer Review Meeting This presentation does not contain any proprietary, confidential, or otherwise restricted information. o Project Objective  What are you trying to do?  Develop and demonstrate a new manufacturing-informed design paradigm to dramatically improve manufacturing productivity, quality, and costs of machined components

  1. Manufacturing Glossary

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing...

  2. Clean Energy Manufacturing Federal Resource Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Federal Resource Guide Clean Energy Manufacturing Federal Resource Guide Find federal resources to help you design, scale up, and commercialize your technology with this guide. Technology Feasibility Evaluate your idea U.S. Department of Energy priorities R&D funding Business creation and development Licensing technologies Strategic partnerships Technology Prototyping Materials characterization Modeling and tools Intellectual property protection Product testing and

  3. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  4. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    SciTech Connect (OSTI)

    Chang, Y.C.; Mani, V.; Mohanty, K.K.

    1997-08-01

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  5. Demonstrate Scale-up Procedure for Glass Composite Material (GCM) for Incorporation of Iodine Loaded AgZ.

    SciTech Connect (OSTI)

    Nenoff, Tina M.; Garino, Terry J.; Croes, Kenneth James; Rodriguez, Mark A.

    2015-07-01

    Two large size Glass Composite Material (GCM) waste forms containing AgI-MOR were fabricated. One contained methyl iodide-loaded AgI-MOR that was received from Idaho National Laboratory (INL, Test 5, Beds 1 3) and the other contained iodine vapor loaded AgIMOR that was received from Oak Ridge National Laboratory (ORNL, SHB 2/9/15 ). The composition for each GCM was 20 wt% AgI-MOR and 80 wt% Ferro EG2922 low sintering temperature glass along with enough added silver flake to prevent any I2 loss during the firing process. The silver flake amounts were 1.2 wt% for the GCM with the INL AgI-MOR and 3 wt% for the GCM contained the ORNL AgI-MOR. The GCMs, nominally 100 g, were first uniaxially pressed to 6.35 cm (2.5 inch) diameter disks then cold isostatically pressed, before firing in air to 550C for 1hr. They were cooled slowly (1C/min) from the firing temperature to avoid any cracking due to temperature gradients. The final GCMs were ~5 cm in diameter (~2 inches) and non-porous with densities of ~4.2 g/cm. X-ray diffraction indicated that they consisted of the amorphous glass phase with small amounts of mordenite and AgI. Furthermore, the presence of the AgI was confirmed by X-ray fluorescence. Methodology for the scaled up production of GCMs to 6 inch diameter or larger is also presented.

  6. NREL: Innovation Impact - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy...

  7. Scale Up of Si/Si0.8GE0.2 and B4C/B9C Superlattices for Harvesting of Waste

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat in Diesel Engines | Department of Energy Scale Up of Si/Si0.8GE0.2 and B4C/B9C Superlattices for Harvesting of Waste Heat in Diesel Engines Scale Up of Si/Si0.8GE0.2 and B4C/B9C Superlattices for Harvesting of Waste Heat in Diesel Engines 2003 DEER Conference Presentation: Pacific Northwest National Laboratory PDF icon 2003_deer_martin.pdf More Documents & Publications Quantum Well Thermoelectrics and Waste Heat Recovery Multilayer Thin-Film Thermoelectric Materials for Vehicle

  8. Asymmetric dipolar ring

    DOE Patents [OSTI]

    Prosandeev, Sergey A. (Fayetteville, AR); Ponomareva, Inna V. (Tampa, FL); Kornev, Igor A. (Ill-de-France, FR); Bellaiche, Laurent M. (Fayetteville, AR)

    2010-11-16

    A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.

  9. Mathematical Modeling of Hepatitis C Prevalence Reduction with Antiviral Treatment Scale-Up in Persons Who Inject Drugs in Metropolitan Chicago

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Echevarria, Desarae; Gutfraind, Alexander; Boodram, Basmattee; Major, Marian; Del Valle, Sara; Cotler, Scott J.; Dahari, Harel

    2015-08-21

    New direct-acting antivirals (DAAs) provide an opportunity to combat hepatitis C virus (HCV) infection in persons who inject drugs (PWID). Here we use a mathematical model to predict the impact of a DAA-treatment scale-up on HCV prevalence among PWID and the estimated cost in metropolitan Chicago.

  10. Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (AMO) | Department of Energy Day, Advanced Manufacturing Office (AMO) Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing Office (AMO) PDF icon imi_recogitionday_leo_june2012.pdf More Documents & Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry

  11. Recovery of aluminum oxide by the Ames lime-soda sinter process: scale-up using a rotary kiln

    SciTech Connect (OSTI)

    Murtha, M.J.; Burnet, G.; Harnby, N.

    1985-01-01

    The Ames Lime-Soda Sinter Process provides a means for recovering aluminum oxide from power plant fly ash while producing a residue that can be used in the manufacture of sulfate resistant (Type V) portland cement. The process has been fully researched and its feasibility is now being demonstrated through pilot plant scale investigation. This paper reports results of the pelletized feed preparation by agglomeration in a rotary pan granulator, continuous feed sintering in an electrically heated rotary kiln, and product recovery from the clinker by aqueous extraction, desilication of the filtrate, and precipitation of a hydrated aluminum oxide. Results from earlier bench-scale research have been found to apply consistently to the pilot plant scale work.

  12. Stirling engine piston ring

    DOE Patents [OSTI]

    Howarth, Roy B. (Clifton Park, NY)

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  13. Manufacturing Innovation Institute for Smart Manufacturing: Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensors, Controls, Platforms, and Modeling for Manufacturing | Department of Energy Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing September 23, 2015 - 2:38pm Addthis Posted Date: Sep 15, 2015 Original Closing Date for Applications: Jan 29, 2016 A mandatory Concept Paper is due

  14. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  15. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

  16. Annular array and method of manufacturing same

    DOE Patents [OSTI]

    Day, Robert A. (Livermore, CA)

    1989-01-01

    A method for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90.degree.. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings, hold the transducer together until it can be mounted on a lens.

  17. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  18. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Smart Manufacturing is a network data-driven process that combines innovative automation ... Smart Manufacturing is a network data-driven process that combines innovative automation ...

  19. ARM - Tree Rings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PastTree Rings Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Tree Rings Tree rings are formed on an annual basis. They are caused by a more rapid growth in the spring followed by slower growth the rest of the year. Using a tree ring borer you can examine these rings and glean the following

  20. Manufacturing Demonstration Facility

    Office of Environmental Management (EM)

    ORNL is managed by UT-Battelle for the US Department of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and Environmental Sciences Directorate May 6-7, 2014 Washington, DC This presentation does not include proprietary, confidential, or otherwise restricted information. Outline * Manufacturing Demonstration Facility * Impacts with Industry - Metal additive manufacturing - Polymer additive

  1. APS Storage Ring Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ring Under Maintenance Operations Messages: Operators in Charge : Dmitriy Ronzhin Floor Coordinator : Wendy VanWingeren (2-0101) Fill Pattern : Problem Information : Last DumpTrip...

  2. Scale-up of mild gasification to be a process development unit mildgas 24 ton/day PDU design report. Final report, November 1991--July 1996

    SciTech Connect (OSTI)

    1996-03-01

    From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal, IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.

  3. Recent Advances in Pt Monolayer Electrocatalysts for Oxygen Reduction Reaction: Scale-up Synthesis, Structure, and Activity of Pt Shells on Pd Cores

    SciTech Connect (OSTI)

    Sasaki, K.; Wang, J.X.; Naohara, H.; Marinkovic, N.; More, Karren Leslie; Inada, H.; Adzic, R.R.

    2010-01-01

    We have established a scale-up synthesis method to produce gram-quantities of Pt monolayer electrocatalysts. The core-shell structure of the Pt/Pd/C electrocatalyst has been verified using the HAADF-STEM Z-contrast images, STEM/EELS, and STEM/EDS line profile analysis. The atomic structure of this electrocatalyst and formation of a Pt monolayer on Pd nanoparticle surfaces were examined using in situ EXAFS. The Pt mass activity of the Pt/Pd/C electrocatalyst for ORR is considerably higher than that of commercial Pt/C electrocatalysts. The results with Pt monolayer electrocatalysts may significantly impact science of electrocatalysis and fuel-cell technology, as they have demonstrated an exceptionally effective way of using Pt that can resolve problems of other approaches, including electrocatalysts inadequate activity and high Pt content.

  4. Recent Advances in Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction: Scale-up Synthesis Structure and Activity of Pt Shells on Pd Cores

    SciTech Connect (OSTI)

    Sasaki K.; Wang J.X.; Naohara H.; Marinkovic N.; More K.; Inada H.; Adzic R.R.

    2010-03-01

    We have established a scale-up synthesis method to produce gram-quantities of Pt monolayer electrocatalysts. The core-shell structure of the Pt/Pd/C electrocatalyst has been verified using the HAADF-STEM Z-contrast images, STEM/EELS, and STEM/EDS line profile analysis. The atomic structure of this electrocatalyst and formation of a Pt monolayer on Pd nanoparticle surfaces were examined using in situ EXAFS. The Pt mass activity of the Pt/Pd/C electrocatalyst for ORR is considerably higher than that of commercial Pt/C electrocatalysts. The results with Pt monolayer electrocatalysts may significantly impact science of electrocatalysis and fuel-cell technology, as they have demonstrated an exceptionally effective way of using Pt that can resolve problems of other approaches, including electrocatalysts inadequate activity and high Pt content.

  5. HPC4Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab capabilities Manufacturing domain expertise National mission and guidance Bringing HPC to U.S. Manufacturers Energy Efficient Processes Energy Efficient Products...

  6. Manufacturing Demonstration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to develop broad dissemination of additive manufacturing Industry Collaborations * ... 5 DOE-AMO 2015 Peer Review Understanding Additive Manufacturing Mainstream applications ...

  7. Next Generation Manufacturing Processes

    Broader source: Energy.gov [DOE]

    New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high...

  8. Scale-Up Information for Gas-Phase Ammonia Treatment of Uranium in the Vadose Zone at the Hanford Site Central Plateau

    SciTech Connect (OSTI)

    Truex, Michael J.; Szecsody, James E.; Zhong, Lirong; Thomle, Jonathan N.; Johnson, Timothy C.

    2014-09-01

    Uranium is present in the vadose zone at the Hanford Central Plateau and is of concern for protection of groundwater. The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau identified gas-phase treatment and geochemical manipulation as potentially effective treatment approaches for uranium and technetium in the Hanford Central Plateau vadose zone. Based on laboratory evaluation, use of ammonia vapor was selected as the most promising uranium treatment candidate for further development and field testing. While laboratory tests have shown that ammonia treatment effectively reduces the mobility of uranium, additional information is needed to enable deployment of this technology for remediation. Of importance for field applications are aspects of the technology associated with effective distribution of ammonia to a targeted treatment zone, understanding the fate of injected ammonia and its impact on subsurface conditions, and identifying effective monitoring approaches. In addition, information is needed to select equipment and operational parameters for a field design. As part of development efforts for the ammonia technology for remediation of vadose zone uranium contamination, field scale-up issues were identified and have been addressed through a series of laboratory and modeling efforts. This report presents a conceptual description for field application of the ammonia treatment process, engineering calculations to support treatment design, ammonia transport information, field application monitoring approaches, and a discussion of processes affecting the fate of ammonia in the subsurface. The report compiles this information from previous publications and from recent research and development activities. The intent of this report is to provide technical information about these scale-up elements to support the design and operation of a field test for the ammonia treatment technology.

  9. Advanced Manufacturing Office News

    SciTech Connect (OSTI)

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  10. Advanced Manufacturing Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Manufacturing Production Technician; Electro-Mechanical Technician; Electronics Maintenance Technician

  11. Advanced Manufacturing Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Workshop: Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Venue: The 2nd Global Congress on Microwave Energy Applications (2GCMEA) July 25, 2012 Long Beach Hilton Long Beach, CA Advanced Manufacturing Office U.S. Department of Energy Rob Ivester Acting Deputy Program Manager, Advanced Manufacturing Office Advanced Manufacturing Office Advanced Manufacturing Office Agenda Time Activity 2:00-2:30 PM Opening Session - AMO o Presentation of Industry

  12. Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Additive manufacturing, also know as 3D printing, has helped spark a creative manufacturing renaissance, allowing companies to create products in new ways while also reducing material waste, saving energy and shortening the time needed to bring products to market. Learn more about this game-changing technology. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families

  13. APS Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    next up previous Next: Main Parameters APS Storage Ring Parameters M. Borland, G. Decker, L. Emery, W. Guo, K. Harkay, V. Sajaev, C.-Y. Yao Advanced Photon Source September 8, 2010...

  14. Additive Manufacturing: Pursuing the Promise

    Broader source: Energy.gov [DOE]

    Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing.

  15. Energy Use in Manufacturing

    Reports and Publications (EIA)

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  16. Manufacturing Day 2015

    Broader source: Energy.gov [DOE]

    All over the country, manufacturing companies and other organizations are preparing to host an anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On...

  17. Manufacturing Innovation Topics Workshop

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

  18. Advanced Methods for Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientists Computational Resources and Multi- Physics Modeling & Simulation Knowledge & ... Manufacturing Methods R&D Test Bed ... loops, process development...

  19. Scale-Up of World Record 16.5% CdTe Cell Design for a 50 MWp Production Facility: September 27, 2007 - March 26, 2009

    SciTech Connect (OSTI)

    Seymour, F. H.

    2011-05-01

    This final report covers progress made on subcontract NAT-7-77015-07 by PrimeStar Solar Inc. for the 18 month period from September 27, 2007 through March 26, 2009. The project objectives were to accelerate the commercialization of the world record 16.5% efficiency cadmium telluride photovoltaic technology. This was done by developing high performance 6"x6" prototype mini-modules and by designing and commissioning a pilot line for manufacturing of commercial sized 60cmx120cm modules. This subcontract aligns with the SAI program by accelerating the development of high efficiency low cost CdTe solar PV module manufacturing. This will contribute to the goal of PV grid parity by 2015. Progress with the deliverables and milestones in this subcontract constitutes progress towards the KPP and milestone objectives for the SAI program.

  20. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing 1 Technology Assessment 2 1. Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1 Introduction to Additive Manufacturing ....................................................................................... 2 5 1.2 Additive Manufacturing Processes ............................................................................................... 2 6 1.3 Benefits of Additive

  1. Unidirectional ring lasers

    DOE Patents [OSTI]

    Hohimer, J.P.; Craft, D.C.

    1994-09-20

    Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity is disclosed. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction. 21 figs.

  2. Ring laser scatterometer

    DOE Patents [OSTI]

    Ackermann, Mark; Diels, Jean-Claude

    2005-06-28

    A scatterometer utilizes the dead zone resulting from lockup caused by scatter from a sample located in the optical path of a ring laser at a location where counter-rotating pulses cross. The frequency of one pulse relative to the other is varied across the lockup dead zone.

  3. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible)...

  4. Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013.

  5. Large-area, triple-junction a-Si alloy production scale-up. Semiannual subcontract report, 17 March 1994--18 September 1994

    SciTech Connect (OSTI)

    Oswald, R.; Morris, J. [Solarex Corp., Newtown, PA (United States). Thin Film Div.

    1995-09-01

    This report describes work performed under a 3-y subcontract to advance Solarex`s photovoltaic manufacturing technologies, reduce its a-Si:H module production costs, increase module performance, and expand the Solarex commercial production capacity. During this period, Solarex focused on improving deposition of the front contact, investigating alternate feedstocks for the front contact, maximizing throughput and area utilization for all laser scribes, optimizing a-Si:H deposition equipment to achieve uniform deposition over large areas, optimizing the triple-junction module fabrication process, evaluating the materials to deposit the rear contact, and optimizing the combination of isolation scribe and encapsulant to pass the wet high potential test.

  6. Storage Ring | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Electron Storage Ring The 7-GeV electrons are injected into the 1104-m-circumference storage ring, a circle of more than 1,000 electromagnets and associated equipment, located...

  7. Patrick Ring | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Patrick Ring About Us Patrick Ring Team Leader, Benefits Continuity Team Patrick Ring has more than 31 years of federal service between the U.S. Department of Energy (DOE), U.S. Department of Defense, and the Pension Benefit Guaranty Corporation. His experience has provided him extensive knowledge and experience in dealing with contractor retirement benefit programs. Mr. Ring joined the Office of Legacy Management (LM) in October 2005 as a contractor industrial relations specialist/actuary and a

  8. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Ring Parameters Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible) Beam current (all operation is in top-off with ΔI/I ≤ 0.3%) 500 mA in multibunch mode 2 x 17.5 mA in two-bunch mode Filling pattern (multibunch mode) 256-320 bunches; possibility of one or two 5- to 6-mA "camshaft" bunches in filling gaps Bunch spacing: multibunch mode 2 ns Bunch

  9. Roll to Roll Manufacturing

    SciTech Connect (OSTI)

    Daniel, Claus

    2015-06-09

    ORNL researchers are developing roll to roll technologies for manufacturing, automotive, and clean energy applications in collaboration with industry partners such as Eastman Kodak.

  10. Additive Manufacturing: Going Mainstream

    Broader source: Energy.gov [DOE]

    Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

  11. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  12. Wind Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state.

  13. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Munich, November 2013. Available at 761 http:www.rolandberger.commediapdfRolandBergerAdditiveManufacturing20131129. 762 pdf. 763 46. Industrial Tools, Dies, and Molds - ...

  14. Large-area, triple-junction a-Si alloy production scale-up. Semiannual subcontract report, 17 March 1994--18 September 1994

    SciTech Connect (OSTI)

    Oswald, R.; Morris, J. [Solarex Corp., Newtown, PA (United States). Thin Film Div.

    1995-03-01

    This report describes work performed under a 3-year subcontract to advance Solarex`s photovoltaic (PV) manufacturing technologies, reduce its hydrogenated amorphous silicon (a-Si:H) module production costs, increase module performance, and expand the Solarex commercial production capacity. During the period covered by this report, Solarex focused on (1) improving deposition of the front contact, (2) investigating alternate feed stocks for the front contact, (3) maximizing throughput and area utilization for all laser scribes, (4) optimizing a-Si:H deposition equipment to achieve uniform deposition over large areas, (5) optimizing the triple-junction module fabrication process, (6) evaluating the materials to deposit the rear contact, and (7) optimizing the combination of isolation scribe and encapsulant to pass the wet high-potential test.

  15. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EEREs clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  16. Manufacturing Innovation in the DOE

    Office of Environmental Management (EM)

    Manufacturing Innovation in the DOE January 13, 2014 Mark Johnson Director Advanced Manufacturing Office manufacturing.energy.gov Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 What is Advanced Manufacturing? A family of activities that: * Depend on the use and coordination of information, automation, computation, software, sensing, and networking; and/or * Make use of cutting edge materials and emerging capabilities. Advanced Manufacturing involves both: * New ways to

  17. Advanced Vehicles Manufacturing Projects | Department of Energy

    Energy Savers [EERE]

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  18. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative PDF icon b13_wayman_1-a.pdf More Documents & Publications Amped Up! Volume 1, No.2 NREL/DOE EERE QC/Metrology

  19. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Workshop Manufacturing Demonstration Facilities Workshop, March 12, 2012 Report to the President on Capturing Domestic Competitive Advantage in Advanced Manufacturing...

  20. Innovative Manufacturing Initiative Project Selections

    Broader source: Energy.gov [DOE]

    The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

  1. NREL: Innovation Impact - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Buildings Use 40% of U.S. Energy Close Americans spend $400 billion annually to power homes and commercial buildings. An estimated $80 billion could be saved through energy efficiency. Close NREL's net-zero-energy Research Support Facility employs cutting-edge energy efficiency

  2. Split ring containment attachment device

    DOE Patents [OSTI]

    Sammel, Alfred G. (Pittsburgh, PA)

    1996-01-01

    A containment attachment device 10 for operatively connecting a glovebag 200 to plastic sheeting 100 covering hazardous material. The device 10 includes an inner split ring member 20 connected on one end 22 to a middle ring member 30 wherein the free end 21 of the split ring member 20 is inserted through a slit 101 in the plastic sheeting 100 to captively engage a generally circular portion of the plastic sheeting 100. A collar potion 41 having an outer ring portion 42 is provided with fastening means 51 for securing the device 10 together wherein the glovebag 200 is operatively connected to the collar portion 41.

  3. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible) Beam current (all operation is in top-off with ΔI/I ≤ 0.3%) 500 mA in multibunch mode 2 x 17.5 mA in two-bunch mode Filling pattern (multibunch mode) 256-320 bunches; possibility of one or two 5- to 6-mA "camshaft" bunches in filling gaps Bunch spacing: multibunch mode 2 ns Bunch spacing: two-bunch mode 328

  4. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible) Beam current (all operation is in top-off with ΔI/I ≤ 0.3%) 500 mA in multibunch mode 2 x 17.5 mA in two-bunch mode Filling pattern (multibunch mode) 256-320 bunches; possibility of one or two 5- to 6-mA "camshaft" bunches in filling gaps Bunch spacing: multibunch mode 2 ns Bunch spacing: two-bunch mode 328

  5. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible) Beam current (all operation is in top-off with ΔI/I ≤ 0.3%) 500 mA in multibunch mode 2 x 17.5 mA in two-bunch mode Filling pattern (multibunch mode) 256-320 bunches; possibility of one or two 5- to 6-mA "camshaft" bunches in filling gaps Bunch spacing: multibunch mode 2 ns Bunch spacing: two-bunch mode 328

  6. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible) Beam current (all operation is in top-off with ΔI/I ≤ 0.3%) 500 mA in multibunch mode 2 x 17.5 mA in two-bunch mode Filling pattern (multibunch mode) 256-320 bunches; possibility of one or two 5- to 6-mA "camshaft" bunches in filling gaps Bunch spacing: multibunch mode 2 ns Bunch spacing: two-bunch mode 328

  7. Transformational Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery...

  8. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption...

  9. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  10. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the ...

  11. Advanced Manufacture of Reflectors

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  12. Ion Rings for Magnetic Fusion

    SciTech Connect (OSTI)

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a reactor-scale FRC, and the FIREX program was intended to test the ideas behind this approach. We will describe in this report the technological development path and advances in physics understanding that allowed FIREX to reach a regime in which ion rings were reproducibly created with up to about half the current necessary to produce field reversal. Unfortunately, the experiments were limited to this level by a fundamental, unanticipated aspect of the physics of strong ion rings in plasma. The FIREX ring is a strongly anisotropic, current-carrying population of ions moving faster than the Alfven speed in the background plasma. The rapidly changing ring current excites very large-amplitude Alfven waves in the plasma, and these waves strongly affect the ring, causing rapid energy loss in a way that is not compatible with the success of the ring trapping scenario around which FIREX was designed. The result was that FIREX rings were always very short-lived. We will discuss the implication of these results for possible future use of large-orbit ions in FRCs. In short, it appears that a certain range of the parameters characterizing the ring Alfven mach number and distribution function must be avoided to allow the existence of a long-lived energetic ion component in an FRC. This report will explain why FIREX experimental results cannot be directly scaled to quantitatively predict this range for a particular FRC configuration. This will require accurate, three-dimensional simulations. FIREX results do constitute a very good dataset for validating such a code, and simulations already carried out during this program provide a guide to the important physics involved.

  13. Drug development and manufacturing

    DOE Patents [OSTI]

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  14. Advanced Materials Manufacturing and Innovative Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...) - Challenges: * Manufacturing Methodology MUST be Able to Deliver Required ... Research Opportunities & Challenges Advanced Materials Manufacturing & Innovative ...

  15. Power Ring LLC | Open Energy Information

    Open Energy Info (EERE)

    Power Ring LLC Place: Goleta, California Zip: 93117 Product: Power Ring is a power storage technology developer working on technology developed by parent firm LaunchPoint...

  16. Storage Ring Synchrotron Radiation Sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    srlogot.gif (19784 bytes) As of March 1, 2005 this WEB page is no longer updated. For future information about light sources go to Hyperlinks in the "RING (INST. )" column will...

  17. Ring resonant cavities for spectroscopy

    DOE Patents [OSTI]

    Zare, R.N.; Martin, J.; Paldus, B.A.; Xie, J.

    1999-06-15

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS). 6 figs.

  18. Ring resonant cavities for spectroscopy

    DOE Patents [OSTI]

    Zare, Richard N. (Stanford, CA); Martin, Juergen (Jena-Wogau, DE); Paldus, Barbara A. (Stanford, CA); Xie, Jinchun (Sunnyvale, CA)

    1999-01-01

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS).

  19. Collar nut and thrust ring

    DOE Patents [OSTI]

    Lowery, Guy B. (Aiken, SC)

    1991-01-01

    A collar nut comprises a hollow cylinder having fine interior threads at one end for threadably engaging a pump mechanical seal assembly and an inwardly depending flange at the other end. The flange has an enlarged portion with a groove for receiving an O-ring for sealing against the intrusion of pumpage from the exterior. The enlarged portion engages a thrust ring about the pump shaft for crushing a hard O-ring, such as a graphite O-ring. The hard O-ring seals the interior of the mechanical seal assembly and pump housing against the loss of lubricants or leakage of pumpage. The fine threads of the hollow cylinder provide the mechanical advantage for crushing the hard O-ring evenly and easily with a hand tool from the side of the collar nut rather than by tightening a plurality of bolts from the end and streamlines the exterior surface of the mechanical seal. The collar nut avoids the spatial requirements of bolt heads at the end of a seal and associated bolt head turbulence.

  20. Revitalize American Manufacturing Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revitalize American Manufacturing Act - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  1. HPC4Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Deborah May, Lawrence Livermore National Laboratory U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 LLNL-PRES-792637 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC This presentation does not contain any proprietary, confidential, or otherwise restricted information. * Energy intensive processes and

  2. Contribution to Nanotechnology Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shares Nano 50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning three institutions, including Los Alamos National Laboratory, has discovered a more efficient way of fusing charge-carrying electrical contacts to tiny "nanowires" of silicon to create the nanotechnology at the heart of potential future advances in modern electronics, sensing, and energy collection. Nanotech

  3. National Electrical Manufacturers Association

    Office of Environmental Management (EM)

    July 24, 2014 VIA EMAIL TO: Regulatory.Review@hq.doe.gov Steven Croley, General Counsel Office of the General Counsel U.S. Department of Energy 1000 Independence Avenue SW., Washington, DC 20585 NEMA Comments on DOE Reducing Regulatory Burden RFI 79 Fed.Reg. 28518 (July 3, 2014) Dear Mr. Croley, The National Electrical Manufacturers Association (NEMA) thanks you for the opportunity to provide comments on the Department of Energy's efforts to make its regulatory program more effective and less

  4. Manufactured Homes Tool

    Energy Science and Technology Software Center (OSTI)

    2005-03-09

    The MH Tool software is designed to evaluate existing and new manufactured homes for structural adequacy in high winds. Users define design elements of a manufactured home and then select the hazard(s) for analysis. MH Tool then calculates and reports structural analysis results for the specified design and hazard Method of Solution: Design engineers input information (geometries, materials, etc.) describing the structure of a manufactured home, from which the software automatically creates a mathematical model.more » Windows, doors, and interior walls can be added to the initial design. HUD Code loads (wind, snow loads, interior live loads, etc.) are automatically applied. A finite element analysis is automatically performed using a third party solver to find forces and stresses throughout the structure. The designer may then employ components of strength (and cost) most appropriate for the loads that must be carried at each location, and then re-run the analysis for verification. If forces and stresses are still within tolerable limits (such as the HUD requirements), construction costs would be reduced without sacrificing quality.« less

  5. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  6. Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  7. Double acting stirling engine piston ring

    DOE Patents [OSTI]

    Howarth, Roy B. (Clifton Park, NY)

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  8. Advanced Materials Manufacturing (AMM) Session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eric Miller Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Fuel Cells Technology Office (FTCO) DOE and DoD Multi-topic Workshop Advanced Materials Manufacturing (AMM) Session Fort Worth, TX October 9, 2014 Advanced Materials Manufacturing (AMM) Institute Stakeholders Workshop Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 WELCOME & THANK YOU! from your friendly support staff: Eric Miller, David Forrest, Fred Crowson, Jessica Savell...

  9. Concentric ring flywheel without expansion separators

    DOE Patents [OSTI]

    Kuklo, Thomas C. (Oakdale, CA)

    1999-01-01

    A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion.

  10. Concentric ring flywheel without expansion separators

    DOE Patents [OSTI]

    Kuklo, T.C.

    1999-08-24

    A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion. 3 figs.

  11. Out of bounds additive manufacturing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holshouser, Chris; Newell, Clint; Palas, Sid; Love, Lonnie J.; Kunc, Vlastimil; Lind, Randall F.; Lloyd, Peter D.; Rowe, John C.; Blue, Craig A.; Duty, Chad E.; et al

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  12. Out of Bounds Additive Manufacturing

    SciTech Connect (OSTI)

    Holshouser, Chris [Lockheed Martin Corporation; Newell, Clint [Lockheed Martin Corporation; Palas, Sid [Lockheed Martin Corporation; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Rowe, John C [ORNL; Blue, Craig A [ORNL; Duty, Chad E [ORNL; Peter, William H [ORNL; Dehoff, Ryan R [ORNL

    2013-01-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing (AM) system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  13. MECS 2006 - All Manufacturing | Department of Energy

    Office of Environmental Management (EM)

    All Manufacturing MECS 2006 - All Manufacturing Manufacturing Energy and Carbon Footprint - Sector: All Manufacturing (NAICS 31-33) with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon All Manufacturing (NAICS 31-33) More Documents & Publications All Manufacturing (2010 MECS) MECS 2006 - Alumina and Aluminum MECS 2006 - Cement

  14. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy...

  15. Additive Manufacturing: Pursuing the Promise | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing. Additive Manufacturing: Pursuing the Promise More Documents...

  16. FHP Manufacturing Company Geothermal | Open Energy Information

    Open Energy Info (EERE)

    FHP Manufacturing Company Geothermal Jump to: navigation, search Name: FHP Manufacturing Company: Geothermal Place: Florida Sector: Geothermal energy Product: FHP Manufacturing...

  17. Teksun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name: Teksun PV Manufacturing Inc Address: 401 Congress Ave Place: Austin, Texas Zip:...

  18. Secure Manufacturing | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure Manufacturing Secure Manufacturing The depth and breadth of Y-12's manufacturing capabilities and expertise enable Y-12 to address current and emerging national security...

  19. MANUFACTURED TO AIIM STANOAROS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    .,+++_ _+++ +..++,+ + ++++_. _+ ,++p + +% ++ + +_++ +_,/x+'_ MANUFACTURED TO AIIM STANOAROS _ ..+ ++ BY APPLIED IMAGE, INC, _+ + .DK3E/NV/11482..139 DOE/NV/11..4_L2-139 National Emission Standards forHazardousAir Pollutant_ Submittal 993 Stuart B_.Black June 1994 Work Pe_ Under Contract No, DE-AC08-94NV11432 PreparedbY: Reynolds Electrical & EnglneerlngCo., Inc, Post Office Bo_(98521 Los Vegas. Nevada 89193-8521 MA,TER II_OT/lOg DFTItI,_ DOCUMENT f$ UNLIMITED TABLE OF CONTENTS List of

  20. Springback Prediction on Slit-Ring Test

    SciTech Connect (OSTI)

    Chen Xiaoming; Shi, Ming F.; Ren Feng; Xia, Z. Cedric

    2005-08-05

    Advanced high strength steels (AHSS) are increasingly being used in the automotive industry to reduce vehicle weight while improving vehicle crash performance. One of the concerns in manufacturing is springback control after stamping. Although computer simulation technologies have been successfully applied to predict stamping formability, they still face major challenges in springback prediction, particularly for AHSS. Springback analysis is very complicated and involves large deformation problems in the forming stage and mechanical multiplying effect during the elastic recovery after releasing a part from the die. Therefore, the predictions are very sensitive to the simulation parameters used. It is very critical in springback simulation to choose an appropriate material model, element formulation and contact algorithm. In this study, a springback benchmark test, the slit ring cup, is used in the springback simulation with commercially available finite element analysis (FEA) software, LS-DYNA. The sensitivity of seven simulation variables on springback predictions was investigated, and a set of parameters with stable simulation results was identified. Final simulations using the selected set of parameters were conducted on six different materials including two AHSS steels, two conventional high strength steels, one mild steel and an aluminum alloy. The simulation results are compared with experimental measurements for all six materials and a favorable result is achieved. Simulation errors as compared against test results falls within 10%.

  1. Conical O-ring seal

    DOE Patents [OSTI]

    Chalfant, Jr., Gordon G. (North Augusta, SC)

    1984-01-01

    A shipping container for radioactive or other hazardous materials which has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.

  2. Oak Ridge Centers for Manufacturing Technology - The Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...

  3. Oak Ridge Centers for Manufacturing Technology ? The Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...

  4. Cavity-locked ring down spectroscopy

    DOE Patents [OSTI]

    Zare, Richard N. (Stanford, CA); Paldus, Barbara A. (Stanford, CA); Harb, Charles C. (Palo Alto, CA); Spence, Thomas (Union City, CA)

    2000-01-01

    Distinct locking and sampling light beams are used in a cavity ring-down spectroscopy (CRDS) system to perform multiple ring-down measurements while the laser and ring-down cavity are continuously locked. The sampling and locking light beams have different frequencies, to ensure that the sampling and locking light are decoupled within the cavity. Preferably, the ring-down cavity is ring-shaped, the sampling light is s-polarized, and the locking light is p-polarized. Transmitted sampling light is used for ring-down measurements, while reflected locking light is used for locking in a Pound-Drever scheme.

  5. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel...

  6. Semiconductor Manufacturing International Corp SMIC | Open Energy...

    Open Energy Info (EERE)

    Manufacturing International Corp SMIC Jump to: navigation, search Name: Semiconductor Manufacturing International Corp (SMIC) Place: Shanghai, Shanghai Municipality, China Zip:...

  7. Performance, Market and Manufacturing Constraints relevant to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices Performance, Market and Manufacturing Constraints relevant to the...

  8. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational...

  9. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session Summary More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Multimaterial Joining Workshop Manufacturing Innovation ...

  10. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - ...

  11. ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing of Surfaces with Nanoscale and Microscale Features ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale and Microscale Features PDF icon...

  12. Nakagawa Electric Machinery Manufacturer | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Nakagawa Electric Machinery Manufacturer Place: Saku, Nagano, Japan Product: A company engages in electrical equipment manufacture. Coordinates:...

  13. Manufacturing consumption of energy 1994

    SciTech Connect (OSTI)

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  14. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. Clean Energy Manufacturing Initiative: http://www1.eere.energy.gov/energymanufacturing

  15. Smart Manufacturing Institute Industry Day Workshop Proceedings |

    Office of Environmental Management (EM)

    Department of Energy Workshops » Smart Manufacturing Institute Industry Day Workshop Proceedings Smart Manufacturing Institute Industry Day Workshop Proceedings Workshop Proceedings PDF icon Smart Manufacturing Industry Day: Workshop Proceedings PDF icon Final Agenda PDF icon NNMI Industry Day: Smart Manufacturing AMO Overview, Mark Johnson, Director, DOE Advanced Manufacturing Office PDF icon Smart Manufacturing Innovation Institute: Overview, Goals and Activities, Isaac Chan, Program

  16. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  17. Revolutionizing Manufacturing | Department of Energy

    Energy Savers [EERE]

    Revolutionizing Manufacturing Revolutionizing Manufacturing Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was selected for a 2012 R&D 100 award. | Photo courtesy of Oak Ridge National Laboratory. Partnering with Industry 2 of 4 Partnering with Industry The Energy

  18. Advanced Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers

  19. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

  20. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified...

  1. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Sustainable Nanomaterials Workshop Nanocomposite Materials for Lithium-Ion Batteries Advanced Manufacturing Office, U.S. Department of Energy...

  2. High Pressure Hydrogen Tank Manufacturing

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  3. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by ensuring critical feedback from the production phase to invention and discovery. Additive manufacturing is just one of several technologies advanced by the Energy...

  4. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information AdministrationManufacturing Consumption of Energy 1994 SIC Residual...

  5. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    the CM, the ASM contains two components. The first component is the mail portion, a probability sample of manufacturing establishments selected from the list of establishments...

  6. Manufacturing Demonstration Facility Workshop Videos

    Broader source: Energy.gov [DOE]

    Session recordings from the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois, on March 12, 2012, and simultaneously broadcast as a webinar.

  7. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THE OPPORTUNITY OF CLEAN ENERGY MANUFACTURING By 2030, the global market for new energy ... and Counterintelligence, National Nuclear Security Administration, Fossil Energy, ...

  8. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    around strategic priorities to increase U.S. clean energy manufacturing competitiveness. ... energy technologies toward commercial production. www.cyclotronroad.org Small Business ...

  9. Manufacturing Spotlight: Boosting American Competitiveness

    Broader source: Energy.gov [DOE]

    Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

  10. Ring Energy sro | Open Energy Information

    Open Energy Info (EERE)

    Ring Energy sro Jump to: navigation, search Name: Ring Energy sro Place: Most, Czech Republic Zip: 434 01 Product: Czech developer operating a 2.1MW PV plant in the Czech Republic....

  11. Optical fiber having wave-guiding rings

    DOE Patents [OSTI]

    Messerly, Michael J. (Danville, CA); Dawson, Jay W. (Livermore, CA); Beach, Raymond J. (Livermore, CA); Barty, Christopher P. J. (Hayward, CA)

    2011-03-15

    A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.

  12. RingCentral Mailboxes | Department of Energy

    Energy Savers [EERE]

    Mailboxes RingCentral Mailboxes This is a list of each Departmental element's mailbox(es) used for RingCentral during a COOP event. Office spreadsheet icon RingCentral Mailboxes Responsible Contacts Bruce Murray HR Policy Advisor E-mail bruce.murray@hq.doe.gov Phone 202-586-3372 More Documents & Publications RingCentral User Guide Audit Report: IG-0845 Audit Report: OAS-L-15-01

  13. Used Fuel Disposition Campaign Phase I Ring Compression Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase I Ring Compression Testing of High Burnup Cladding Used Fuel Disposition Campaign Phase I Ring Compression Testing of High Burnup Cladding The purpose of ring compression...

  14. Reflex ring laser amplifier system

    DOE Patents [OSTI]

    Summers, M.A.

    1983-08-31

    The invention is a method and apparatus for providing a reflex ring laser system for amplifying an input laser pulse. The invention is particularly useful in laser fusion experiments where efficient production of high-energy and high power laser pulses is required. The invention comprises a large aperture laser amplifier in an unstable ring resonator which includes a combination spatial filter and beam expander having a magnification greater than unity. An input pulse is injected into the resonator, e.g., through an aperture in an input mirror. The injected pulse passes through the amplifier and spatial filter/expander components on each pass around the ring. The unstable resonator is designed to permit only a predetermined number of passes before the amplified pulse exits the resonator. On the first pass through the amplifier, the beam fills only a small central region of the gain medium. On each successive pass, the beam has been expanded to fill the next concentric non-overlapping region of the gain medium.

  15. Solar Manufacturing Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects SOLAR MANUFACTURING 1 PROJECT in 1 LOCATION 1,000 MW GENERATION CAPACITY 1,927,000 MWh PROJECTED ANNUAL GENERATION * 1,100,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 * Calculated using the project's and NREL Technology specific capacity factors. For cases in which NREL's capacity factors

  16. The President's Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The President's Manufacturing Initiative The President's Manufacturing Initiative Presentation prepared by Dale Hall for the Roadmap Workshop on Manufacturing R&D for the Hydrogen Economy. PDF icon mfg_wkshp_hall.pdf More Documents & Publications The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office Roadmap on Manufacturing R&D for the Hydrogen Economy Manufacturing R&D for the Hydrogen Economy Roadmap Workshop

  17. Clean Energy Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative Leadership Perspectives: The Opportunity for Clean Energy Manufacturing Leadership Perspectives: The Opportunity for Clean Energy Manufacturing There is a tremendous opportunity for the United States to manufacture clean energy and energy efficiency products. Watch this video to learn more about industry and DOE leaders' vision for a clean energy manufacturing future. Read more Energy 101: Clean Energy Manufacturing Energy 101: Clean Energy Manufacturing

  18. Wavelength-tunable optical ring resonators

    DOE Patents [OSTI]

    Watts, Michael R. (Albuquerque, NM); Trotter, Douglas C. (Albuquerque, NM); Young, Ralph W. (Albuquerque, NM); Nielson, Gregory N. (Albuquerque, NM)

    2011-07-19

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  19. Wavelength-tunable optical ring resonators

    DOE Patents [OSTI]

    Watts, Michael R. (Albuquerque, NM); Trotter, Douglas C. (Albuquerque, NM); Young, Ralph W. (Albuquerque, NM); Nielson, Gregory N. (Albuquerque, NM)

    2009-11-10

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  20. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square a unique capability. The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test and alignment of trough or dish reflectors. Ten full size (2.5 m2) cylindrically curved reflectors, molded in 950 seconds and measured with the laser test facility, show shape repeatability to 0.5 mrad rms. These replicas met the Phase I Go/No-Go targets for speed (1000 sec), accuracy (< 5 mrad) and reproducibility (< 2 mrad). Our research and tests show that the hoped-for improvements in mirror reflectivity achievable with titania antisoil coatings are not very effective in dry climates and are therefore unlikely to be economically worthwhile, and that glass with iron in the Fe+3 state to achieve very low absorption cannot be made economically by the float process.

  1. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. PDF icon Advanced Technology Vehicles Manufacturing Incentive Program More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter

  2. Manufacturing's Wake-Up Call

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing's Wake-Up Call Prepared by: Booz & Company and Tauber Institute for Global Operations, University of Michigan features operations & manufacturing 30 A new study shows how the decisions made today by goods producers and policymakers will shape U.S. competitiveness tomorrow. by Arvind Kaushal, Thomas Mayor, and Patricia Riedl A debate over the future of U.S. manufacturing is offshoring and neglect, and that it might never return to its role as the linchpin of the U.S.

  3. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Manufacturing at GE Global Research Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Laser Manufacturing at GE Global Research Learn how laser sintering, an additive laser manufacturing process practiced at GE Global Research, makes parts from metal powder. You Might Also Like Munich_interior_V 10 Years ON: From

  4. Scale-Up of Palladium Powder Production Process for Use in the Tritium Facility at Westinghouse, Savannah River, SC/Summary of FY99-FY01 Results for the Preparation of Palladium Using the Sandia/LANL Process

    SciTech Connect (OSTI)

    David P. Baldwin; Daniel S. Zamzow; R. Dennis Vigil; Jesse T. Pikturna

    2001-08-24

    Palladium used at Savannah River (SR) for process tritium storage is currently obtained from a commercial source. In order to understand the processes involved in preparing this material, SR is supporting investigations into the chemical reactions used to synthesize this material. The material specifications are shown in Table 1. An improved understanding of the chemical processes should help to guarantee a continued reliable source of Pd in the future. As part of this evaluation, a work-for-others contract between Westinghouse Savannah River Company and Ames Laboratory (AL) was initiated. During FY98, the process for producing Pd powder developed in 1986 by Dan Grove of Mound Applied Technologies, USDOE (the Mound muddy water process) was studied to understand the processing conditions that lead to changes in morphology in the final product. During FY99 and FY00, the process for producing Pd powder that has been used previously at Sandia and Los Alamos National Laboratories (the Sandia/LANL process) was studied to understand the processing conditions that lead to changes in the morphology of the final Pd product. During FY01, scale-up of the process to batch sizes greater than 600 grams of Pd using a 20-gallon Pfaudler reactor was conducted by the Iowa State University (ISU) Chemical Engineering Department. This report summarizes the results of FY99-FY01 Pd processing work done at AL and ISU using the Sandia/LANL process. In the Sandia/LANL process, Pd is dissolved in a mixture of nitric and hydrochloric acids. A number of chemical processing steps are performed to yield an intermediate species, diamminedichloropalladium (Pd(NH{sub 3}){sub 2}Cl{sub 2}, or DADC-Pd), which is isolated. In the final step of the process, the Pd(NH{sub 3}){sub 2}Cl{sub 2} intermediate is subsequently redissolved, and Pd is precipitated by the addition of a reducing agent (RA) mixture of formic acid and sodium formate. It is at this point that the morphology of the Pd product is determined. During FY99 and FY00, a study of how the characteristics of the Pd are affected by changes in processing conditions including the RA/Pd molar ratio, Pd concentration, mole fraction of formic acid (mf-FA) in the RA solution, reaction temperature, and mixing was performed. These parameters all had significant effects on the resulting values of the tap density (TD), BET surface area (SA), and Microtrac particle size (PS) distribution for the Pd samples. These effects were statistically modeled and fit in order to determine ranges of predicted experimental conditions that resulted in material that meets the requirements for the Pd powder to be used at SR. Although not statistically modeled, the method and rate of addition of the RA and the method and duration of stirring were shown to be significant factors affecting the product morphology. Instead of producing an additional statistical fit and due to the likely changes anticipated during scale-up of this processing procedure, these latter conditions were incorporated into a reproducible practical method of synthesis. Palladium powder that met the SR specifications for TD, BET SA, and Microtrac PS was reliably produced at batch sizes ranging from 25-100 grams. In FY01, scale-up of the Sandia/LANL process was investigated by the ISU Chemical Engineering Department for the production of 600-gram batches of Pd. Palladium that meets the SR specifications for TD, BET SA, and Microtrac PS has been produced using the Pfaudler reactor, and additional processing batches will be done during the remainder of FY01 to investigate the range of conditions that can be used to produce Pd powder within specifications. Palladium product samples were analyzed at AL and SR to determine TD and at SR to determine BET SA, Microtrac PS distribution, and Pd nodule size and morphology by scanning electron microscopy (SEM).

  5. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of...

  6. Alternative Energy Manufacturing Tax Credit

    Broader source: Energy.gov [DOE]

    The Alternative Energy Manufacturing Tax Credit is a nonrefundable tax credit for up to 100% of new state tax revenues (including state, corporate, sales, and withholding taxes) over the life of a...

  7. CFL Manufacturers: ENERGY STAR Letters

    Broader source: Energy.gov [DOE]

    DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program.

  8. Advanced Manufacturing Office Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Overview Advanced Manufacturing Office Overview PDF icon mw_rf_workshop_july2012.pdf More Documents & Publications Microwave and Radio Frequency Workshop Manufacturing Demonstration Facility Workshop Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

  9. Additive Manufacturing: Technology and Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing: Technology and Applications Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Ryan Dehoff, Ph.D. Research Scientist MDF Metal Additive Manufacturing Lead Oak Ridge National Laboratory November 12, 2014 2 Presentation name World-leading neutron science capability World's most powerful scientific computing complex Nation's largest advanced materials research program Focused resources for systems biology and environmental sustainability Nation's

  10. All Manufacturing (2010 MECS) | Department of Energy

    Energy Savers [EERE]

    All Manufacturing (2010 MECS) All Manufacturing (2010 MECS) Manufacturing Energy and Carbon Footprint for All Manufacturing Sector (NAICS 31-33) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: June 2015 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon All Manufacturing More Documents & Publications Cement (2010 MECS) Chemicals (2010 MECS) Computers, Electronics and Electrical Equipment

  11. Cooling system for three hook ring segment

    DOE Patents [OSTI]

    Campbell, Christian X.; Eng, Darryl; Lee, Ching-Pang; Patat, Harry

    2014-08-26

    A triple hook ring segment including forward, midsection and aft mounting hooks for engagement with respective hangers formed on a ring segment carrier for supporting a ring segment panel, and defining a forward high pressure chamber and an aft low pressure chamber on opposing sides of the midsection mounting hook. An isolation plate is provided on the aft side of the midsection mounting hook to form an isolation chamber between the aft low pressure chamber and the ring segment panel. High pressure air is supplied to the forward chamber and flows to the isolation chamber through crossover passages in the midsection hook. The isolation chamber provides convection cooling air to an aft portion of the ring segment panel and enables a reduction of air pressure in the aft low pressure chamber to reduce leakage flow of cooling air from the ring segment.

  12. Natural Fiber Composites: Retting, Preform Manufacture & Molding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Fiber Composites: Retting, Preform Manufacture & Molding Natural Fiber Composites: Retting, Preform Manufacture & Molding 2009 DOE Hydrogen Program and Vehicle Technologies ...

  13. Upcoming Clean Energy Manufacturing Initiative (CEMI) Southeast...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Showcase innovations in clean energy technology manufacturing and advanced manufacturing ... The Southeast Regional Summit is free of charge and open to the public. Register to attend ...

  14. Energy Intensity Indicators: Manufacturing Energy Intensity

    Broader source: Energy.gov [DOE]

    The manufacturing sector comprises 18 industry sectors, generally defined at the three-digit level of the North American Industrial Classification System (NAICS). The manufacturing energy data...

  15. Processing and Manufacturing Equipment | Open Energy Information

    Open Energy Info (EERE)

    Processing and Manufacturing Equipment Jump to: navigation, search TODO: Add description List of Processing and Manufacturing Equipment Incentives Retrieved from "http:...

  16. Technologies Enabling Agile Manufacturing (TEAM) ? an ORCMT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Enabling Agile Manufacturing (TEAM) - An ORCMT success story Technologies Enabling Agile Manufacturing (TEAM) was one of the larger programs to come from the...

  17. Bio Solutions Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Solutions Manufacturing Inc Jump to: navigation, search Name: Bio Solutions Manufacturing Inc Place: Las Vegas, Nevada Zip: 89103 Product: Waste-to-energy bioremediation developer....

  18. Chung Hsin Electric Machinery Manufacturing Corporation CHEM...

    Open Energy Info (EERE)

    Chung Hsin Electric Machinery Manufacturing Corporation CHEM Jump to: navigation, search Name: Chung Hsin Electric & Machinery Manufacturing Corporation (CHEM) Place: Taoyuan...

  19. Tag: manufacturing | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manufacturing Tag: manufacturing Displaying 1 - 8 of 8... Category: News Tool of tomorrow today Y-12 and other Nuclear Security Enterprise sites investigate industry's next...

  20. Leitner Shriram Manufacturing Ltd | Open Energy Information

    Open Energy Info (EERE)

    Manufacturing Ltd Jump to: navigation, search Name: Leitner Shriram Manufacturing Ltd Place: Chennai, Tamil Nadu, India Zip: 600095 Sector: Wind energy Product: Chennai-based JV...

  1. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office The U.S. Department of Energy (DOE) funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies....

  2. Advanced Qualification of Additive Manufacturing Materials Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Qualification of Additive Manufacturing Materials Workshop Advanced Qualification of Additive Manufacturing Materials Workshop WHEN: Jul 20, 2015 8:30 AM - Jul 21, 2015...

  3. Aurora Photovoltaics Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Manufacturing Jump to: navigation, search Name: Aurora Photovoltaics Manufacturing Place: Lawrenceville, New Jersey Zip: 8648 Sector: Solar Product: A subsidiary of...

  4. Understanding Manufacturing Energy and Carbon Footprints, October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis MECS 2006 - ...

  5. American Wind Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind...

  6. Batteries - Materials Processing and Manufacturing Breakout session

    Broader source: Energy.gov (indexed) [DOE]

    the Other Technical Areas Being Discussed * Li metal manufacturing * Variability in cell manufacturing -intrinsic reduction and aging differences in pack? * Understanding of...

  7. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon arravt002esflicker2012p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing...

  8. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon arravt002esflicker2011p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing...

  9. Autogenic Pressure Reactions for Battery Materials Manufacture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Autogenic Pressure Reactions for Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free...

  10. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D ...

  11. Clean Energy Manufacturing Initiative Southeast Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative Southeast Regional Summit Clean Energy Manufacturing Initiative Southeast Regional Summit July 9, 2015 8:30AM to 6:00PM EDT Renaissance...

  12. Manufacturing Consumption of Energy 1991--Combined Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of...

  13. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics...

  14. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop ...

  15. Clean Energy Manufacturing Initiative: Technology Research and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative: Technology Research and Development Clean Energy ... The Office of Nuclear Energy's Advanced Methods for Manufacturing subprogram accelerates ...

  16. Cincinnati Big Area Additive Manufacturing (BAAM) (Technical...

    Office of Scientific and Technical Information (OSTI)

    Cincinnati Big Area Additive Manufacturing (BAAM) Citation Details In-Document Search Title: Cincinnati Big Area Additive Manufacturing (BAAM) Oak Ridge National Laboratory (ORNL) ...

  17. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Activity between 2002 and 2010 Released: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17% from 2002 to 2010, according to data...

  18. China Shandong Penglai Electric Power Equipment Manufacturing...

    Open Energy Info (EERE)

    Penglai Electric Power Equipment Manufacturing Jump to: navigation, search Name: China Shandong Penglai Electric Power Equipment Manufacturing Place: Penglai, Shandong Province,...

  19. Energy Department Invests in Innovative Manufacturing Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Innovative Manufacturing Technologies Energy Department Invests in Innovative Manufacturing Technologies June 13, 2012 - 12:00am Addthis The Energy Department announced on June...

  20. National Network for Manufacturing Innovation: A Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network for Manufacturing Innovation: A Preliminary Design National Network for Manufacturing Innovation: A Preliminary Design The Federal investment in the National Network for...

  1. Miraial formerly Kakizaki Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Miraial (formerly Kakizaki Manufacturing) Place: Tokyo, Japan Zip: 171-0021 Product: Manufacturer of wafer handling products and other components...

  2. Wind Energy & Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy & Manufacturing Jump to: navigation, search Blades manufactured at Gamesa's factory in Ebensburg, Pennsylvania, will be delivered to wind farms across the United...

  3. Interferometric ring lasers and optical devices

    DOE Patents [OSTI]

    Hohimer, J.P.; Craft, D.C.

    1995-03-14

    Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer. 11 figs.

  4. Report of the eRHIC Ring-Ring Working Group

    SciTech Connect (OSTI)

    Aschenauer, E. C.; Berg, S.; Blaskiewicz, M.; Brennan, M.; Fedotov, A.; Fischer, W.; Litvinenko, V.; Montag, C.; Palmer, R.; Parker, B.; Peggs, S.; Ptitsyn, V.; Ranjbar, V.; Tepikian, S.; Trbojevic, D.; Willeke, F.

    2015-10-13

    This report evaluates the ring-ring option for eRHIC as a lower risk alternative to the linac-ring option. The reduced risk goes along with a reduced initial luminosity performance. However, a luminosity upgrade path is kept open. This upgrade path consists of two branches, with the ultimate upgrade being either a ring-ring or a linac-ring scheme. The linac-ring upgrade could be almost identical to the proposed linac-ring scheme, which is based on an ERL in the RHIC tunnel. This linac-ring version has been studied in great detail over the past ten years, and its significant risks are known. On the other hand, no detailed work on an ultimate performance ring-ring scenario has been performed yet, other than the development of a consistent parameter set. Pursuing the ring-ring upgrade path introduces high risks and requires significant design work that is beyond the scope of this report.

  5. Condenser for illuminating a ring field

    DOE Patents [OSTI]

    Sweatt, W.C.

    1994-11-01

    A series of segments of a parent aspheric mirror having one foci at a point source of radiation and the other foci at the radius of a ring field have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ring field camera about one of the beams and fall onto the ring field radius as a coincident image as an arc of the ring field. 5 figs.

  6. Concrete Pour in NSLS-II Ring

    ScienceCinema (OSTI)

    Bruno Semon

    2013-07-22

    The mezzanine floor of the ring building tunnel for NSLS-II was completed when the last concrete was placed in February 2011.

  7. Worldwide Energy and Manufacturing USA Inc formerly Worldwide...

    Open Energy Info (EERE)

    and Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name: Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)...

  8. Clean Energy Manufacturing Initiative Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative Events Clean Energy Manufacturing Initiative Events

  9. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOE Patents [OSTI]

    Kuklo, Thomas C. (Oakdale, CA)

    1999-01-01

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings.

  10. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOE Patents [OSTI]

    Kuklo, T.C.

    1999-07-20

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings. 2 figs.

  11. Mechanical support of a ceramic gas turbine vane ring

    DOE Patents [OSTI]

    Shi, Jun (Glastonbury, CT); Green, Kevin E. (Broad Brook, CT); Mosher, Daniel A. (Glastonbury, CT); Holowczak, John E. (South Windsor, CT); Reinhardt, Gregory E. (South Glastonbury, CT)

    2010-07-27

    An assembly for mounting a ceramic turbine vane ring onto a turbine support casing comprises a first metal clamping ring and a second metal clamping ring. The first metal clamping ring is configured to engage with a first side of a tab member of the ceramic turbine vane ring. The second metal clamping ring is configured to engage with a second side of the tab member such that the tab member is disposed between the first and second metal clamping rings.

  12. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  13. Metrology for Fuel Cell Manufacturing

    SciTech Connect (OSTI)

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  14. Manufacturing Demonstration Facilities Workshop Agenda, March 2012

    Broader source: Energy.gov [DOE]

    Agenda for the Manufacturing Demonstration Facilities Workshop on March 12, 2012 outlining objectives and times

  15. Oak Ridge Manufacturing Demonstration Facility (MDF)

    Broader source: Energy.gov [DOE]

    The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

  16. Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing- Informed Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing ADVANCED MANUFACTURING OFFICE Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing- Informed Design Improving Product and Manufacturing Process Design through a More Accurate and Widely Applicable Modeling Framework. This project aims to fll the knowledge gap between upstream design and downstream manufacturing processes by developing a manufacturing-informed design framework enabled by multi-scale, physics-based process models. This framework

  17. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > Advanced Laser Manufacturing Tools Deliver Higher Performance Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Advanced Laser Manufacturing Tools Deliver Higher Performance In a research lab looking far, far into the future, a team of scientists and engineers from GE are developing next-generation

  18. Manufacturing Energy and Carbon Footprint

    Office of Environmental Management (EM)

    All Manufacturing (NAICS 31-33) Process Energy Electricity and Steam Generation Losses Process Losses 1,416 Nonprocess Losses 19,237 4,368 Steam Distribution Losses 870 574 Nonprocess Energy 10,903 Electricity Generation Steam Generation 19,237 731 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 1,434 10,350 2,430 Generation and Transmission Losses Generation and Transmission Losses 284 4,889 11,785 8,599 5,465 14,064 7,319 1,015 4,055 64.5

  19. Bernstein instability driven by thermal ring distribution

    SciTech Connect (OSTI)

    Yoon, Peter H.; Hadi, Fazal; Qamar, Anisa

    2014-07-15

    The classic Bernstein waves may be intimately related to banded emissions detected in laboratory plasmas, terrestrial, and other planetary magnetospheres. However, the customary discussion of the Bernstein wave is based upon isotropic thermal velocity distribution function. In order to understand how such waves can be excited, one needs an emission mechanism, i.e., an instability. In non-relativistic collision-less plasmas, the only known Bernstein wave instability is that associated with a cold perpendicular velocity ring distribution function. However, cold ring distribution is highly idealized. The present Brief Communication generalizes the cold ring distribution model to include thermal spread, so that the Bernstein-ring instability is described by a more realistic electron distribution function, with which the stabilization by thermal spread associated with the ring distribution is demonstrated. The present findings imply that the excitation of Bernstein waves requires a sufficiently high perpendicular velocity gradient associated with the electron distribution function.

  20. eRHIC ring-ring design with head-on beam-beam compensation

    SciTech Connect (OSTI)

    Montag,C.; Blaskiewicz, M.; Pozdeyev, E.; Fischer, W.; MacKay, W. W.

    2009-05-04

    The luminosity of the eRHIC ring-ring design is limited by the beam-beam effect exerted on the electron beam. Recent simulation studies have shown that the beam-beam limit can be increased by means of an electron lens that compensates the beam-beam effect experienced by the electron beam. This scheme requires proper design of the electron ring, providing the correct betatron phase advance between interaction point and electron lens. We review the performance of the eRHIC ring-ring version and discuss various parameter sets, based on different cooling schemes for the proton/ion beam.

  1. Manufacturing Energy and Carbon Footprints (2006 MECS)

    Broader source: Energy.gov [DOE]

    Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

  2. Clean Energy Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and

  3. Explore Careers in Manufacturing | Department of Energy

    Office of Environmental Management (EM)

    Manufacturing Explore Careers in Manufacturing The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a

  4. Next Generation Manufacturing Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Projects » Next Generation Manufacturing Processes Next Generation Manufacturing Processes New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high-quality products at competitive cost. Four process technology areas are expected to generate large energy, carbon, and economic benefits across the manufacturing sector. Click the areas

  5. Solar Manufacturing Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Market » Solar Manufacturing Technology Solar Manufacturing Technology The SunShot Solar Manufacturing Technology (SolarMat) program funds the development of innovative manufacturing technologies that can achieve a significant market impact in one to four years. Launched in September 2013, the SolarMat program is supporting five projects working in two topic areas: photovoltaics (PV) and concentrating solar power (CSP). Both topics focus on driving down the cost of manufacturing

  6. Manufacturing Energy and Carbon Footprints Scope

    Office of Environmental Management (EM)

    Manufacturing Energy and Carbon Footprint Scope The footprint analysis looks at a large subset of U.S. manufacturing, with the objective of capturing the bulk share of energy consumption and carbon emissions. Table 1 lists the fifteen manufacturing sectors selected for analysis; a sixteenth footprint has also been prepared for the entire manufacturing sector. Manufacturing sectors are listed by their respective NAICS (North American Industry Classification System) codes. NAICS descriptions of

  7. Manufacturing Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency » Manufacturing Success Stories Manufacturing Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in developing technologies and processes for more efficient energy management systems create big opportunities for energy savings and new jobs in manufacturing. Explore EERE's manufacturing success stories below. November 17, 2015 Manufacturing Success Stories ORNL Unveils 3D-Printed Home and Vehicle with the Unique Ability to Power One

  8. Structure of a BRCA1/BARD1 Complex: a Heterodimeric RING-RING Interaction

    SciTech Connect (OSTI)

    Brzovic, Peter S.; Rajagopal, Ponni; Hoyt, David W.; King, Mary-Claire; Klevit, Rachel E.

    2001-10-01

    The N-terminal RING domain of the breast and ovarian cancer tumor suppressor BRCA1 interacts with multiple cognate proteins, including the RING protein, BARD1. Proper function of the BRCA1 RING domain is critical, as evidenced by the many cancer-predisposing mutations found within this domain. We present the solution structure of the N-terminal RING domain heterodimer of BRCA1 and BARD1. Comparison with the RAG1 RING homodimer reveals the structural diversity of complexes formed by interactions between different RING domains. The BRCA1/BARD1 structure provides a model for its ubiquitin ligase activity, illustrates how the BRCA1 RING domain can be involved in associations with multiple protein partners, and provdes a framework for understanding cancer-causing mutations at the molecular level.

  9. Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators

    SciTech Connect (OSTI)

    Shulman, Holly; Ross, Nicole

    2015-10-30

    An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, green handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.

  10. Wedding ring shaped excitation coil

    DOE Patents [OSTI]

    MacLennan, Donald A.; Tsai, Peter

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency.

  11. Heat treating of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN)

    2012-05-22

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

  12. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  13. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  14. Manufacture of Alumina-Forming Austenitic Steel Alloys by Conventional Casting and Hot-Working Methods

    SciTech Connect (OSTI)

    Brady, M.P.; Yamamoto, Y.; Magee, J.H.

    2009-03-10

    Oak Ridge National Laboratory (ORNL) and Carpenter Technology Corporation (CarTech) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation Program to explore the feasibility for scale up of developmental ORNL alumina-forming austenitic (AFA) stainless steels by conventional casting and rolling techniques. CarTech successfully vacuum melted 301b heats of four AFA alloy compositions in the range of Fe-(20-25)Ni-(12-14)Cr-(3-4)Al-(l-2.5)Nb wt.% base. Conventional hot/cold rolling was used to produce 0.5-inch thick plate and 0.1-inch thick sheet product. ORNL subsequently successfully rolled the 0.1-inch sheet to 4 mil thick foil. Long-term oxidation studies of the plate form material were initiated at 650, 700, and 800 C in air with 10 volume percent water vapor. Preliminary results indicated that the alloys exhibit comparable (good) oxidation resistance to ORNL laboratory scale AFA alloy arc casting previously evaluated. The sheet and foil material will be used in ongoing evaluation efforts for oxidation and creep resistance under related CRADAs with two gas turbine engine manufacturers. This work will be directed to evaluation of AFA alloys for use in gas turbine recuperators to permit higher-temperature operating conditions for improved efficiencies and reduced environmental emissions. AFA alloy properties to date have been obtained from small laboratory scale arc-castings made at ORNL. The goal of the ORNL-CarTech CRADA was to establish the viability for producing plate, sheet and foil of the AFA alloys by conventional casting and hot working approaches as a first step towards scale up and commercialization of the AFA alloys. The AFA alloy produced under this effort will then be evaluated in related CRADAs with two gas turbine engine manufacturers for gas turbine recuperator applications.

  15. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Additive Manufacturing Technology Assessment

    Office of Environmental Management (EM)

    6: Innovating Clean Energy Technologies in Advanced Manufacturing Technology Assessments Additive Manufacturing Advanced Materials Manufacturing Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials

  16. COLLIMATION OPTIMIZATION IN HIGH INTENSITY RINGS.

    SciTech Connect (OSTI)

    CATALAN-LASHERAS,N.

    2001-06-18

    In high intensity proton rings, collimation is needed in order to maintain reasonable levels of residual activation and allow hands-on maintenance. Small acceptance to emittance ratio and restrained longitudinal space become important restrictions when dealing with low energy rings. The constraints and specifications when designing a collimation system for this type of machine will be reviewed. The SNS accumulator ring will serve as an examples long which we will illustrate the optimization path. Experimental studies of collimation with 1.3 GeV proton beams are currently under way in the U-70 machine in Protvino. The first results will be presented.

  17. Adjustable expandable cryogenic piston and ring

    DOE Patents [OSTI]

    Mazur, Peter O. (Aurora, IL); Pallaver, Carl B. (Woodridge, IL)

    1980-01-01

    The operation of a reciprocating expansion engine for cryogenic refrigeration is improved by changing the pistons and rings so that the piston can be operated from outside the engine to vary the groove in which the piston ring is located. This causes the ring, which is of a flexible material, to be squeezed so that its contact with the wall is subject to external control. This control may be made manually or it may be made automatically in response to instruments that sense the amount of blow-by of the cryogenic fluid and adjust for an optimum blow-by.

  18. Wind turbine ring/shroud drive system

    DOE Patents [OSTI]

    Blakemore, Ralph W.

    2005-10-04

    A wind turbine capable of driving multiple electric generators having a ring or shroud structure for reducing blade root bending moments, hub loads, blade fastener loads and pitch bearing loads. The shroud may further incorporate a ring gear for driving an electric generator. In one embodiment, the electric generator may be cantilevered from the nacelle such that the gear on the generator drive shaft is contacted by the ring gear of the shroud. The shroud also provides protection for the gearing and aids in preventing gear lubricant contamination.

  19. Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Gruber, P., P. Medina, G. Keoleian, S. Kesler, M. Everson, and T. Wallington. 2011. ... Nike, Inc., Beaverton, OR. 668 http:msi.apparelcoalition.org. 669 NRC. 2007. ...

  20. Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Manufacturing Office (AMO) manufacturing.energy.gov 3 Morning Agenda 9:00am - 9:05am Welcome Mark Johnson Director, Advanced Manufacturing Office 9:05am - 9:20am Clean Energy Manufacturing Initiative David Danielson Assistant Secretary Energy Efficiency and Renewable Energy 9:20am - 9:50am Advanced Manufacturing Office Overview and Review of RFI Results Mark Johnson Director, Advanced Manufacturing Office 9:50am - 10:30am Panel Discussion: DOE Perspectives Mark Shuart, Advanced

  1. Updates to the International Linear Collider Damping Rings Baseline...

    Office of Scientific and Technical Information (OSTI)

    Updates to the International Linear Collider Damping Rings Baseline Design Citation Details In-Document Search Title: Updates to the International Linear Collider Damping Rings...

  2. From Protein Structure to Function: Ring Cycle for Dilating and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Protein Structure to Function: Ring Cycle for Dilating and Constricting the Nuclear Pore From Protein Structure to Function: Ring Cycle for Dilating and Constricting the...

  3. Single-Particle Dynamics in Electron Storage Rings with Extremely...

    Office of Scientific and Technical Information (OSTI)

    Electron storage rings are widely used for high luminosity colliders, damping rings in ... To further increase the luminosity of colliders or the brightness of synchrotron light ...

  4. Online optimization of storage ring nonlinear beam dynamics ...

    Office of Scientific and Technical Information (OSTI)

    Online optimization of storage ring nonlinear beam dynamics Citation Details In-Document Search Title: Online optimization of storage ring nonlinear beam dynamics Authors: Huang,...

  5. An ultimate storage ring lattice with vertical emittance generated...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: An ultimate storage ring lattice with vertical emittance generated by damping wigglers Citation Details In-Document Search Title: An ultimate storage ring lattice...

  6. Online optimization of storage ring nonlinear beam dynamics ...

    Office of Scientific and Technical Information (OSTI)

    Online optimization of storage ring nonlinear beam dynamics Citation Details In-Document Search Title: Online optimization of storage ring nonlinear beam dynamics You are...

  7. Advanced Manufacturing Office and Potential Technologies for Clean Energy Manufacturing Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Energy Efficiency and Renewable Energy eere.energy.gov Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov Advanced Manufacturing Office and Potential Technologies for Clean Energy Manufacturing Innovation October 8, 2014 DOE/DOD Planning Workshop- Fort Worth, TX 2 1. Background on DOE and Manufacturing 2. Technical Assistance 3. R & D Projects 4. Manufacturing R & D Facilities 5. Workshop Meta-Questions and Ground Rules Status Quo: Products invented here,

  8. Low thermal expansion seal ring support

    DOE Patents [OSTI]

    Dewis, David W. (San Diego, CA); Glezer, Boris (Del Mar, CA)

    2000-01-01

    Today, the trend is to increase the temperature of operation of gas turbine engines. To cool the components with compressor discharge air, robs air which could otherwise be used for combustion and creates a less efficient gas turbine engine. The present low thermal expansion sealing ring support system reduces the quantity of cooling air required while maintaining life and longevity of the components. Additionally, the low thermal expansion sealing ring reduces the clearance "C","C'" demanded between the interface between the sealing surface and the tip of the plurality of turbine blades. The sealing ring is supported by a plurality of support members in a manner in which the sealing ring and the plurality of support members independently expand and contract relative to each other and to other gas turbine engine components.

  9. Proton storage ring: man/machine interface

    SciTech Connect (OSTI)

    Lander, R.F.; Clout, P.N.

    1985-01-01

    The human interface of the Proton Storage Ring Control System at Los Alamos is described in some detail, together with the software environment in which operator interaction programs are written. Some examples of operator interaction programs are given.

  10. enhance US composites manufacturing competitiveness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enhance US composites manufacturing competitiveness - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  11. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect (OSTI)

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  12. Manufacturing Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspective Manufacturing Perspective Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011. PDF icon compressed_hydrogen2011_5_nelson.pdf More Documents & Publications BCA Perspective on Fuel Cell APUs Energy Storage Systems 2006 Peer Review - Day 1 morning presentations 2015 SSL R&D WORKSHOP PRESENTATIONS - DAY 3

  13. Energy Efficient Thermoplastic Composite Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Boeing Research & Technology (Marc Matsen) U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  The objective of the project is to establish an effective and affordable method to lay- up and consolidate/join large thermoplastic composite aerospace structure with cycle times measured in minutes rather than hours.  Composite

  14. Electric Drive Component Manufacturing Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Component Manufacturing Facilities Jon Lutz - Presenter Luke Bokas - Principal Investigator Organization: UQM Technologies, Inc. Email: jlutz@uqm.com Phone: (303) 682-4900 Project ID: ARRAVT026 Project Duration: FY09 to FY15 DOE Vehicle Technologies Program Advanced Power Electronics and Electric Motors R&D FY13 Kickoff Meeting May 2013 Annual Merit Review This presentation does not contain any proprietary or confidential information DOE APEEM FY13 Kickoff Meeting 2 The

  15. Clean Energy Manufacturing Incentive Grant Program

    Broader source: Energy.gov [DOE]

    "Clean energy manufacturer" is defined as a biofuel producer, a manufacturer of renewable energy or nuclear equipment/products, or "products used for energy conservation, storage, or grid efficie...

  16. FACT SHEET: 48C MANUFACTURING TAX CREDITS

    Broader source: Energy.gov [DOE]

    The Advanced Energy Manufacturing Tax Credit Program is helping build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment.On February 7,...

  17. Goodman Manufacturing: Order (2012-CE-1509)

    Broader source: Energy.gov [DOE]

    DOE ordered Goodman Manufacturing Company L.P. to pay an $8,000 civil penalty after finding Goodman Manufacturing had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

  18. Energy & Manufacturing Workforce Training Topics List - Version...

    Office of Environmental Management (EM)

    & Manufacturing Workforce Training Topics List - Version 1.7 (02.11.14) Energy & Manufacturing Workforce Training Topics List - Version 1.7 (02.11.14) View this searchable list of...

  19. Imperial Manufacturing: Order (2013-CE-5322)

    Broader source: Energy.gov [DOE]

    DOE ordered Imperial Manufacturing, Inc. to pay a $8,000 civil penalty after finding Imperial Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  20. USA Manufacturing: Order (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  1. AMO Hosted Workshop on Composite Manufacturing

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Advanced Manufacturing Office will host a workshop on Fiber Reinforced Polymer Composite Manufacturing on January 13, 2014 at the Hilton Crystal City in Arlington, VA.

  2. Advanced Methods for Manufacturing Newslettter- Issue 3

    Broader source: Energy.gov [DOE]

    The Advanced Methods for Manufacturing newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, welding innovations and imaging techniques for design reconstruction currently funded by the Department of Energy's Office of Nuclear Energy.

  3. Artisan Manufacturing: Order (2010-CW-0712)

    Broader source: Energy.gov [DOE]

    DOE ordered Artisan Manufacturing Company, Inc., to pay a $5,000 civil penalty after finding Artisan Manufacturing had failed to certify that certain models of faucets comply with the applicable water conservation standard.

  4. Refrigerator Manufacturers: Order (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  5. National Manufacturing Day | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On October 2, the U.S. Department of Commerce's fourth annual Manufacturing Day will...

  6. Summit Manufacturing: Case Closure (2010-SE-0303)

    Broader source: Energy.gov [DOE]

    DOE closed this case against Summit Manufacturing, Inc. without civil penalty after Summit Manufacturing provided information that the non-compliant products were not sold in the United States.

  7. Goodman Manufacturing: Proposed Penalty (2011-SE-4301)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Goodman Manufacturing manufactured and distributed noncompliant basic model CPC180* commercial package air conditioners in the U.S.

  8. Manufacturing Demonstration Facilities Workshop, March 12, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office New materials and manufacturing methods can change the landscape of energy solutions In 1884, the price of aluminum was 1oz and the price of gold was 20oz. ...

  9. QTR Webinar: Chapter 8- Industry and Manufacturing

    Broader source: Energy.gov [DOE]

    The DOE EERE Advanced Manufacturing Office hosted a QTR webinar to obtain input from Leaders in Academia, Industry, and Government on Chapter 8, Industry and Manufacturing, and the associated Technology Assessments.

  10. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office The U.S. Department of Energy (DOE) funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. DOE has supported the development of more than 250 energy-saving industrial technologies that have been commercialized since 1976. DOE is also working to create a network of Manufacturing Innovation Institutes, each of which will create collaborative communities to target a unique technology in advanced manufacturing.

  11. 2014 Manufacturing Energy and Carbon Footprints: Scope

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scope The energy and carbon footprint analysis examines fifteen individual manufacturing sectors that together consume 95% of U.S. manufacturing primary energy consumption and account for 94% of U.S. manufacturing combustion greenhouse gas (GHG) emissions. Manufacturing sectors are defined by their respective NAICS (North American Industry Classification System) codes. i Individual sectors were selected for analysis based on their relative energy intensities, contribution to the U.S. economy,

  12. Manufacturing Demonstration Facilities Workshop Agenda, March 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facilities Workshop Marriott Springhill Suites O'Hare - Chicago, IL March 12, 2012 Objectives  Introduce the manufacturing community to the U.S. DOE Advanced Manufacturing Office (AMO) program vision and its goals.  Explain the proposed mechanics of the Manufacturing Demonstration Facility (MDF) concept and the objectives of this particular anticipated effort.  Encourage discussion among potential organizations that have the relevant expertise, facilities and

  13. Clean Energy Manufacturing Analysis Center Webinar

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy offers a webinar to address clean energy manufacturing on April 5. Register today!

  14. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners...

  15. Advanced Manufacturing Initiative Improves Turbine Blade Productivity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. The Advanced Manufacturing Initiative (AMI) at DOE's Sandia National Laboratories is working with industry to improve manufacturing processes and create U.S. jobs by improving labor productivity in wind turbine blade

  16. Clean Energy Manufacturing Innovation Institute for Composite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement Webinar Slides Fiber Reinforced Polymer Composite Manufacturing Workshop

  17. Innovative Manufacturing Initiatives Recognition Day Agenda

    Broader source: Energy.gov [DOE]

    Agenda for Innovative Manufacturing Initiatives Recognition Day held in Washington, D.C. on June 20, 2012

  18. American Energy and Manufacturing Competitiveness Summit Introduction |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy American Energy and Manufacturing Competitiveness Summit Introduction American Energy and Manufacturing Competitiveness Summit Introduction Addthis Description Introduction video for the American Energy and Manufacturing Competitiveness Summit. Text Version Below is the text version for the American Energy and Manufacturing Competetitiveness Summit Introduction video. The video opens with an aerial city view as the sun rises, then cuts to time lapse photos of a highway

  19. Manufacturing Demonstration Facilities Workshop, March 12, 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Demonstration Facilities Workshop, March 12, 2012 Manufacturing Demonstration Facilities Workshop, March 12, 2012 PDF icon mdf_workshop_presentation_march2012.pdf More Documents & Publications Manufacturing Demonstration Facility Workshop Microwave and Radio Frequency Workshop Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

  20. Industrial & Manufacturing Processes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial & Manufacturing Processes Developing technologies, processes for optimal manufacturing As the world increasingly demands technological goods, companies are strained to optimize their manufacturing processes and manage waste and materials recycling. As part of Argonne's mission to contribute to a sustainable world, our scientists are creating next-generation catalysts, processes, coatings and technologies that will advance industrial development and output without compromising

  1. Clean Energy Manufacturing Initiative Midwest Regional Summit:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Breakout Session Summary | Department of Energy Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary June 21, 2013 PDF icon Lightweighting Breakout Session Summary More Documents & Publications Fiber Reinforced Polymer

  2. MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen

    Office of Environmental Management (EM)

    MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge)

  3. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI has recently commercialized.

  4. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  5. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOE Patents [OSTI]

    Yu, David U. L. (1912 MacArthur St., Rancho Palos Verdes, CA 90732)

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  6. 1991 Manufacturing Consumption of Energy 1991 Executive Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Summary The Manufacturing Consumption of Energy 1991 report presents statistics about the energy consumption of the manufacturing sector, based on the 1991 Manufacturing Energy...

  7. Webtrends Archives by Fiscal Year - Advanced Manufacturing Office...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Manufacturing Office, Webtrends archives by fiscal year. Microsoft Office document icon Advanced Manufacturing FY09 Microsoft Office document icon Advanced Manufacturing ...

  8. Notice of Intent (NOI): Clean Energy Manufacturing Innovation...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing" (DE-FOA-0001263). This is a Notice of...

  9. Manufacturing method of photonic crystal

    DOE Patents [OSTI]

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  10. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  11. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1993-01-01

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  12. 2014 Manufacturing Energy Consumption Survey

    Gasoline and Diesel Fuel Update (EIA)

    U S C E N S U S B U R E A U 2014 Manufacturing Energy Consumption Survey Sponsored by the Energy Information Administration U.S. Department of Energy Administered and Compiled by the Bureau of the Census U.S. Department of Commerce Form EIA-846 (mm-dd-yy) OMB Approval No. xxxx-xxxx Expires: mm/dd/yyyy Report Electronically: www.census.gov/ econhelp/mecs Username: Password: Reporting electronically allows you to save your work as you go through the form and could save you time If you need

  13. Method for manufacturing magnetohydrodynamic electrodes

    DOE Patents [OSTI]

    Killpatrick, D.H.; Thresh, H.R.

    1980-06-24

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

  14. Gasket and snap ring installation tool

    DOE Patents [OSTI]

    Southerland, Jr., James M.; Barringer, Jr., Curtis N.

    1994-01-01

    A tool for installing a gasket and a snap ring including a shaft, a first plate attached to the forward end of the shaft, a second plate slidably carried by the shaft, a spring disposed about the shaft between the first and second plates, and a sleeve that is free to slide over the shaft and engage the second plate. The first plate has a loading surface with a loading groove for receiving a snap ring and a shoulder for holding a gasket. A plurality of openings are formed through the first plate, communicating with the loading groove and approximately equally spaced about the groove. A plurality of rods are attached to the second plate, each rod slidable in one of the openings. In use, the loaded tool is inserted into a hollow pipe or pipe fitting having an internal flange and an internal seating groove, such that the gasket is positioned against the flange and the ring is in the approximate plane of the seating groove. The sleeve is pushed against the second plate, sliding the second plate towards the first plate, compressing the spring and sliding the rods forwards in the openings. The rods engage the snap ring and urge the ring from the loading groove into the seating groove.

  15. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture

    Office of Scientific and Technical Information (OSTI)

    of Customized Electric Vehicles (Technical Report) | SciTech Connect Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles Citation Details In-Document Search Title: Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local

  16. Electrofriction method of manufacturing squirrel cage rotors

    DOE Patents [OSTI]

    Hsu, John S.

    2005-04-12

    A method of making a squirrel cage rotor of copper material for use in AC or DC motors, includes forming a core with longitudinal slots, inserting bars of conductive material in the slots, with ends extending out of opposite ends of the core, and joining the end rings to the bars, wherein the conductive material of either the end rings or the bars is copper. Various methods of joining the end rings to the bars are disclosed including electrofriction welding, current pulse welding and brazing, transient liquid phase joining and casting. Pressure is also applied to the end rings to improve contact and reduce areas of small or uneven contact between the bar ends and the end rings. Rotors made with such methods are also disclosed.

  17. A new storage-ring light source

    SciTech Connect (OSTI)

    Chao, Alex

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  18. Understanding Manufacturing Energy and Carbon Footprints, October 2012

    Broader source: Energy.gov (indexed) [DOE]

    Understanding Manufacturing Energy and Carbon Footprints The Manufacturing Energy and Carbon Footprints map energy use and carbon emissions from energy supply to end use. Footprints are published for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. These sectors are described in more detail in the document Manufacturing Energy and Carbon Footprint Scope. Manufacturing Energy and Carbon Footprint Sectors: All Manufacturing

  19. Manufacturing Energy and Carbon Footprint Definitions and Assumptions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Understanding Manufacturing Energy and Carbon Footprints, October 2012 2010 Manufacturing Energy and Carbon Footprints:...

  20. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Processing and Manufacturing Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Breakout session...

  1. President Obama Announces New Public-Private Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department's manufacturing innovation institute for next generation power electronics. ... to lead a manufacturing innovation institute for next generation power electronics. ...

  2. Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on

    Energy Savers [EERE]

    Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing | Department of Energy Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing December 11, 2014 - 11:30am Addthis The purpose of

  3. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  4. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  5. USCAR LEP ESST Advanced Manufacturing

    SciTech Connect (OSTI)

    Lazarus, L.J.

    2000-09-25

    The objective of this task was to provide processing information data summaries on powder metallurgy (PM) alloys that meet the partner requirements for the production of low mass, highly accurate, near-net-shape powertrain components. This required modification to existing ISO machinability test procedures and development of a new drilling test procedure. These summaries could then be presented in a web page format. When combined with information generated from the USCAR CRADA this would allow chemical, metallurgical, and machining data on PM alloys to be available to all engineering and manufacturing personnel that have access to in-house networks. The web page format also allows for the additions of other wrought materials, making this a valuable tool to the technical staffs.

  6. Method for manufacturing magnetohydrodynamic electrodes

    DOE Patents [OSTI]

    Killpatrick, Don H. (Orland Park, IL); Thresh, Henry R. (Palos Heights, IL)

    1982-01-01

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.

  7. Transport from the Recycler Ring to the Antiproton Source Beamlines

    SciTech Connect (OSTI)

    Xiao, M.; /Fermilab

    2012-05-14

    In the post-NOvA era, the protons are directly transported from the Booster ring to the Recycler ring rather than the Main Injector. For Mu2e and g-2 project, the Debuncher ring will be modified into a Delivery ring to deliver the protons to both Mu2e and g-2 experiments. Therefore, it requires the transport of protons from the Recycler Ring to the Delivery ring. A new transfer line from the Recycler ring to the P1 beamline will be constructed to transport proton beam from the Recycler Ring to existing Antiproton Source beamlines. This new beamline provides a way to deliver 8 GeV kinetic energy protons from the Booster to the Delivery ring, via the Recycler, using existing beam transport lines, and without the need for new civil construction. This paper presents the Conceptual Design of this new beamline.

  8. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect (OSTI)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  9. PRESENTATION: BRIEFING ON CLEAN ENERGY MANUFACTURING | Department of Energy

    Energy Savers [EERE]

    PRESENTATION: BRIEFING ON CLEAN ENERGY MANUFACTURING PRESENTATION: BRIEFING ON CLEAN ENERGY MANUFACTURING A briefing to the Secretary's Energy Advisory Board on the clean energy manufacturing delivered by David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy. PDF icon Briefing on Clean Energy Manufacturing More Documents & Publications National Network for Manufacturing Innovation: A Preliminary Design National Network for Manufacturing Innovation: A Preliminary

  10. Manufacturing Demonstration Facility Workshop | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    March 12, 2012 The Manufacturing Demonstration Facility Workshop (held in Chicago, IL, on March 12, 2012, and simultaneously broadcast as a webinar) invited stakeholders to discuss key foundational aspects of planning a series of Manufacturing Demonstration Facilities (MDFs). MDFs will create a collaborative, shared infrastructure around targeted technical areas that will develop, use, and promote energy efficient, rapid, flexible manufacturing technologies. Work at the MDFs will target specific

  11. Revitalizing American Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revitalizing American Manufacturing Revitalizing American Manufacturing September 13, 2010 - 5:30pm Addthis A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer

  12. Project Profile: Improved Large Aperture Collector Manufacturing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Improved Large Aperture Collector Manufacturing Project Profile: Improved Large Aperture Collector Manufacturing Abengoa logo Abengoa Solar, under the Solar Manufacturing Technology (SolarMat) program, will be investigating the use of an automotive-style high-rate fabrication and automated assembly techniques to achieve a substantial reduction in the deployment cost of their new SpaceTube advanced large aperture parabolic trough collector. Approach Abengoa is developing

  13. Manufacturing Barriers to High Temperature PEM Commercialization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon Manufacturing Barriers to High Temperature PEM Commercialization More Documents & Publications PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status Update MCFC and PAFC R&D Workshop Summary Report 2012 Pathways to

  14. National Electrical Manufacturers Association Comment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Comment National Electrical Manufacturers Association Comment The National Electrical Manufacturers Association (NEMA) appreciates the opportunity to provide the attached comments on the Request for Information to Reduce Regulatory Burden as announced in the U.S. Federal Register Vol. 80, No. 127, beginning on page 38019. PDF icon Regulatory Burden RFI NEMA Comments regarding small motor regulations 17July2015 v5_1 More Documents & Publications National Electrical Manufacturers

  15. Agenda Advanced Methods for Manufacturing Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda Advanced Methods for Manufacturing Workshop September 29, 2015 Lockheed Martin 2021 Crystal Drive Arlington, Virginia 8:30 Safety, Security and Housekeeping Dr. Scott Anderson 8:45 - 10:45 2012 Projects, 30 minutes with questions Lockheed Martin - Direct manufacturing of Nuclear Power components EPRI - Innovative Manufacturing Process for Nuclear power Plant Components Purdue - Modular Connection Technologies for SC Walls INL - Monitoring and Control of Hybrid Laser-GMAW Process 10:45 -

  16. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Advanced Qualification of Additive Manufacturing Materials (AM) Workshop Our goal is to define opportunities and research gaps within additive manufacturing (AM) and to engage the broader scientific/engineering community to discuss future research directions. thumbnail of thumbnail of Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for Materials Science

  17. Clean Energy Manufacturing Initiative | Department of Energy

    Energy Savers [EERE]

    Clean Energy Manufacturing Initiative Energy Materials Network Energy Materials Network The Energy Materials Network (EMN) is an enduring national lab-led initiative that aims to dramatically decrease the time-to-market for advanced materials innovations critical to many clean energy technologies. Read more Leadership Perspectives: The Opportunity for Clean Energy Manufacturing Leadership Perspectives: The Opportunity for Clean Energy Manufacturing There is a tremendous opportunity for the

  18. Advanced Blade Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blade Manufacturing Advanced Blade Manufacturing While the blades of a turbine may be one of the most recognizable features of any wind installation, they also represent one of the largest physical challenges in the manufacturing process. Turbine blades can reach up to 75 meters (250 feet) in length, and will continue to increase in size as the demand for renewable energy grows and as wind turbines are deployed offshore. Because of their size and aerodynamic complexity, wind turbine blades are

  19. Advanced Drivetrain Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drivetrain Manufacturing Advanced Drivetrain Manufacturing The U.S. Department of Energy (DOE) supports advanced manufacturing techniques that are leading to the "next-generation" of more reliable, affordable, and efficient wind turbine drivetrains. As turbines continue to increase in size, each and every component must also be scaled to meet the demands for renewable energy. What is the Drivetrain? The drivetrain of a wind turbine is composed of the gearbox and the generator, the

  20. Advanced Methods for Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methods for Manufacturing Advanced Methods for Manufacturing The overall purpose of the AMM subprogram is to accelerate innovations that reduce the cost and schedule of constructing new nuclear plants and make fabrication of nuclear power plant components faster, cheaper, and more reliable. Based on past industry work and new stakeholder input, this effort will focus on opportunities that provide simplified, standardized, and labor-saving outcomes for manufacturing, fabrication, assembly, and

  1. Articles about Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Articles about Manufacturing RSS Below are stories about manufacturing featured by the U.S. Department of Energy (DOE) Wind Program. September 17, 2015 Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures In the past, the wind energy industry has been relatively conservative in terms of data sharing, especially with the general public, which has inhibited the research community's efforts to identify and mitigate the premature failures of wind turbine

  2. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation

    Office of Environmental Management (EM)

    Institute | Department of Energy Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a

  3. Fiber Reinforced Polymer Composite Manufacturing Workshop

    Office of Environmental Management (EM)

    Fiber Reinforced Polymer Composite Manufacturing Workshop January 13, 2014 Participant Provided Discussion Starter Presentations Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the

  4. New Sensor Network Technology Increases Manufacturing Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sensor Network Technology Increases Manufacturing Efficiency New Sensor Network Technology Increases Manufacturing Efficiency April 11, 2013 - 12:00am Addthis EERE supported Eaton Corporation in the development and successful deployment of an electric motor overload and monitoring solid-state relay. Eaton's relay, called Motor Insight(tm), can reduce installation and infrastructure costs for manufacturers by up to 84% compared with conventionally wired systems. Motor

  5. Solar Manufacturing Technology 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Technology 2 Solar Manufacturing Technology 2 The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization processes, to innovative module packaging and processing. The CSP award demonstrates manufacturability of an innovative CSP reflective-trough receiver. The first round of the SolarMat program was launched in September 2013 supporting five projects. The second round, announced on October 22, 2014, funds nine photovoltaics

  6. Driving Economic Growth: Advanced Technology Vehicles Manufacturing |

    Office of Environmental Management (EM)

    Department of Energy Driving Economic Growth: Advanced Technology Vehicles Manufacturing Driving Economic Growth: Advanced Technology Vehicles Manufacturing With $8 billion in loans and commitments to projects that have supported the production of more than 4 million fuel-efficient cars and more than 35,000 direct jobs across eight states, the Advanced Technology Vehicles Manufacturing (ATVM) loan program has played a key role in helping the American auto industry propel the resurgence of

  7. Clean Energy Manufacturing Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports Clean Energy Manufacturing Reports The Clean Energy Manufacturing Initiative develops competitiveness analysis and strategies that inform R&D investments and other efforts needed to address key barriers to growing U.S. clean energy manufacturing competitiveness. This unprecedented competitiveness analysis evaluates the costs of producing clean energy products in the U.S. compared to competitor nations to understand factory location decisions and identify key drivers to U.S. clean

  8. Clean Energy Manufacturing Resources - Technology Feasibility | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource

  9. Ring cavity for a Raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  10. Ring cavity for a Raman capillary waveguide amplifir

    DOE Patents [OSTI]

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  11. Ring cavity for a Raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, N.A.

    1983-07-19

    Disclosed is a regenerative ring amplifier and regenerative ring oscillator which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO[sub 2] laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplifier Stokes signal is synchronous with the mode-locked spikes of the incoming CO[sub 2] laser pump signal. 6 figs.

  12. Ring cavity for a raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A. (Santa Fe, NM)

    1983-07-19

    A regenerative ring amplifier and regenerative ring oscillator which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO.sub.2 laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplifier Stokes signal is synchronous with the mode-locked spikes of the incoming CO.sub.2 laser pump signal.

  13. EI Summary of All Manufacturing SIC

    U.S. Energy Information Administration (EIA) Indexed Site

    try... Energy Consumption Use of Energy Electricity Manufacturing Floorspace Prices Energy Storage Energy and Operating Ratios Energy-Management Activities Technology...

  14. Manufacturing Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Advanced Manufacturing Office; John Dennis, Mayor of West Lafayette; Mitch Daniels, President of Purdue University; R. Byron Pipes, John Leighton Bray Distinguished...

  15. Building Blocks for the Future of Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMmachine-500x333 Prabhjot's technical background focused on manufacturing technology. In ... The transducers use a dense array of elements, each converting electrical signals into ...

  16. Advanced Manufacturing Office | Department of Energy

    Energy Savers [EERE]

    Advanced Manufacturing Office ISO 50001SEP Pilot Program - Applications Due 182016 ISO 50001SEP Pilot Program - Applications Due 182016 The U.S. DOE invites applications for...

  17. Clean Energy Manufacturing Innovation Institute for Composites...

    Broader source: Energy.gov (indexed) [DOE]

    Date: 06192014 Full applications are due. Funding Organization: The Advanced Manufacturing Office of the Office of Energy Efficiency and Renewable Energy Funding Number:...

  18. Fiber Reinforced Polymer Composite Manufacturing Workshop | Department...

    Broader source: Energy.gov (indexed) [DOE]

    A workshop on Fiber Reinforced Polymer (FRP) Composite Manufacturing (held January 13, 2014, in Arlington, VA) brought together stakeholders from industry and academia to discuss...

  19. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis An error occurred. Try...

  20. Welcome and Advanced Manufacturing Partnership (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  1. Advanced Manufacturing Office At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Computing for Manufacturing R&D assists U.S. industry with their most ... Innovation that includes more than 100 industry, SME, and academic partners and members. ...

  2. 2010 Manufacturing Energy and Carbon Footprints: Definitions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Carbon Footprints (MECS 2010) More Documents & Publications U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis MECS 2006 - Computer, ...

  3. 2014 Manufacturing Energy and Carbon Footprints: Definitions...

    Broader source: Energy.gov (indexed) [DOE]

    Definitions and Assumptions A number of key terms are used to interpret the manufacturing energy and carbon footprints. The terms associated with the energy footprint analysis are ...

  4. Solid State Lighting LED Manufacturing Roundtable Summary

    SciTech Connect (OSTI)

    none,

    2010-03-31

    Summary of a meeting of LED experts to develop proposed priority tasks for the Manufacturing R&D initiative, including task descriptions, discussion points, recommendations, and presentation highlights.

  5. Manufacturing Ecosystems and Keystone Technologies (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  6. Manufacturing Energy and Carbon Footprint References

    Broader source: Energy.gov (indexed) [DOE]

    References AMO (Advanced Manufacturing Office), EERE (Energy Efficiency and Renewable Energy). 2012. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators. ...

  7. 2014 American Energy & Manufacturing Competitiveness Summit in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summit. Image: John Harrington, Council on Competitiveness 6 of 10 Local Motors CEO Jay Rogers demonstrates the 3D-printed car during the American Energy & Manufacturing...

  8. Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uses SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify ...

  9. Breaking Barriers in Polymer Additive Manufacturing (Conference...

    Office of Scientific and Technical Information (OSTI)

    barriers, it is possible for polymer AM to penetrate new manufacturing markets. ... Resource Relation: Conference: SAMPE, Baltimore, MD, USA, 20150518, 20150521 Research Org: ...

  10. Microstructural Properties of Gamma Titanium Aluminide Manufactured...

    Office of Scientific and Technical Information (OSTI)

    COMPOUNDS In recent years, Electron Beam Melting (EBM) has matured as a technology for additive manufacturing of dense metal parts. The parts are built by additive consolidation...

  11. Bandwidth Study U.S. Chemical Manufacturing

    Broader source: Energy.gov [DOE]

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study...

  12. Energy-Related Carbon Emissions in Manufacturing

    Reports and Publications (EIA)

    2000-01-01

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  13. Derived Annual Estimates of Manufacturing Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    > Derived Annual Estimates - Executive Summary Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988 Figure showing Derived Estimates Executive Summary This...

  14. Low Energy Ion Implantationin Semiconductor Manufacturing | U...

    Office of Science (SC) Website

    Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science ...

  15. Manufacturing Process for OLED Integrated Substrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Market Impact: * PPG is working with OLED lighting manufacturers for evaluation of early stage products. 11 Project Integration: * PPG Glass Business and Development Center (GBDC) ...

  16. Advanced Manufacturing Office Small Business Innovation Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office Small Business Innovation Research Small Business Technology ... in thermal and degradation resistance, high-performance, and lower-cost for energy systems. ...

  17. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  18. National Electrical Manufacturers Association (NEMA) Response...

    Energy Savers [EERE]

    icon National Electrical Manufacturers Association (NEMA) More Documents & Publications City Utilities of Springfield Missouri Comments on Smart Grid RFI: Addressing Policy and...

  19. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  20. Clean Energy Manufacturing Initiative: Increasing American Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The SunShot Initiative's efforts to improve manufacturing of solar energy systems; The Wind Program's work on taller wind energy towers; and The Vehicle Technologies Office's ...

  1. LightManufacturing | Open Energy Information

    Open Energy Info (EERE)

    greenhouse gas emissions resulting from rotational molding. 6 Unlike concentrated solar power firms which focus on utility-scale electric production 7 , LightManufacturing...

  2. NNMI Industry Day: Smart Manufacturing AMO Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 | Energy Efficiency and Renewable Energy eere.energy.gov Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov NNMI Industry Day: Smart Manufacturing AMO Overview February 25, 2015 Atlanta, GA Status Quo: Products invented here, and made elsewhere 2 Significance of U.S. Manufacturing 12% of U.S. GDP, 12 million U.S. jobs, 60% of U.S. Exports U.S. Trade Balance of Advanced Technology Swung to historic deficit, lost 1/3 rd of workforce 3 Clean Energy: Nexus of

  3. Clean Energy Manufacturing Initiative: Technology Research and...

    Energy Savers [EERE]

    manufacturers take advantage of this lower-priced fuel by modernizing the nations natural gas transmission and distribution systems and improving natural gas system efficiency....

  4. Battery Manufacturing Processes Improved by Johnson Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Johnson Controls Project Improving battery manufacturing processes can help make plug-in electric vehicles more affordable and convenient. This will help meet the government's EV...

  5. Partnering for Clean Energy Manufacturing Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Libby Wayman Director, Clean Energy Manufacturing Initiative Partnering for Clean Energy ... Increase U.S. competitiveness in the production of clean energy products 2. Increase ...

  6. Industrial Assessment Centers Small Manufacturers Reduce Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOEEE-1278 Industrial Assessment Centers Small Manufacturers Reduce Energy & Increase Productivity Since 1976, the Industrial Assessment Centers (IACs), administered by the US...

  7. American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

  8. 2015 American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    The 2015 American Energy & Manufacturing Competitiveness (AEMC) Summit is a gathering of preeminent leaders from industry, academia, labor, the national laboratories, government and media to:

  9. Fuel Cell Technologies Office American Energy and Manufacturing Competitiveness Parternship: Fuel Cell Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2/19/2013 eere.energy.gov Fuel Cell Technologies Office American Energy & Manufacturing Competitiveness Partnership http://www.aemcsummit.compete.org/ Fuel Cell Manufacturing Dr. Sunita Satyapal Director, Fuel Cell Technologies Office Dr. Nancy Garland Technology Development Manager, Manufacturing R&D, Fuel Cell Technologies Office 2 | Fuel Cell Technologies Program Source: US DOE 12/19/2013 eere.energy.gov The Future of Fuel Cell Manufacturing Panel Session * Federal program: DOE Fuel

  10. Increasing U.S. Manufacturing Competitiveness The Clean Energy Manufacturing Initia-

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increasing U.S. Manufacturing Competitiveness The Clean Energy Manufacturing Initia- tive (CEMI) is a U.S. Department of Energy (DOE)-wide commitment to innovation and breaking down market barriers in order to enhance U.S. manufacturing competitiveness while advancing the nation's energy goals. As a part of this initiative, DOE is committing resources across technol- ogy areas to catalyze clean energy manufacturing research and development (R&D), as well as to catalyze greater energy

  11. Ring Cycle for Dilating and Constricting the Nuclear Pore

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ring Cycle for Dilating and Constricting the Nuclear Pore Ring Cycle for Dilating and Constricting the Nuclear Pore Print Thursday, 13 June 2013 09:30 Pictured is an illustration...

  12. Future Synchrotron Light Sources Based on Ultimate Storage Rings...

    Office of Scientific and Technical Information (OSTI)

    Title: Future Synchrotron Light Sources Based on Ultimate Storage Rings The main purpose of this talk is to describe how far one might push the state of the art in storage ring ...

  13. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Monday, 28 November 2011 14:52 Movement is fundamental to life. It...

  14. Space Charge and Equilibrium Emittances in Damping Rings

    SciTech Connect (OSTI)

    Venturini, Marco; Oide, Katsunobu; Wolski, Andy

    2006-06-21

    We present a model of dynamics to account for the possible impact of space charge on the equilibrium emittances in storage rings and apply the model to study the current design of the International Linear Collider (ILC) damping rings.

  15. Photonic crystal scintillators and methods of manufacture

    DOE Patents [OSTI]

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  16. Clean Energy Manufacturing Analysis Center (CEMAC)

    SciTech Connect (OSTI)

    2015-12-01

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  17. Smart Manufacturing Institute Industry Day Workshop

    Broader source: Energy.gov [DOE]

    AMO hosted an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute on Smart Manufacturing. The workshop was held on February 25, 2015 at the Georgia Tech Hotel & Conference Center in Atlanta, GA.

  18. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 | Department of Energy Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 PDF icon nanomanufacturing_portfolio.pdf More Documents & Publications Sustainable

  19. Innovative Manufacturing Initiative Recognition Day - Final Participant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Listing | Department of Energy Day - Final Participant Listing Innovative Manufacturing Initiative Recognition Day - Final Participant Listing PDF icon imi_recogitionday_participants.pdf More Documents & Publications Innovative Manufacturing Initiative Recognition Day 2015 AMO Peer Review Agenda CX-100154 Categorical Exclusion Determination

  20. Advanced Manufacturing Office Update, July 2015

    Broader source: Energy.gov [DOE]

    Institute for Advanced Composites Manufacturing Innovation Launched The Institute for Advanced Composites Manufacturing Innovation (IACMI) was officially launched last week with the signature of a Cooperative Agreement with the not-for-profit organization established by the University of Tennessee Research Foundation. IACMI, The Composites Institute hosted an initial meeting with Consortium Members in mid-June in Knoxville, Tennessee.

  1. Plumbing Manufacturer's Institute Ex Parte Communication Regarding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Showerheads | Department of Energy Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Letter to Department of Energy - August 31, 2010 Memorandum Regarding DOE's Draft Interpretive Rule - August 31, 2010 Declaration of Charles Wodrich in Support of Supplemental Comments- August 30, 2010 Supplemental Comments

  2. Duracold Refrigeration Manufacturing: Order (2013-CE-5342)

    Broader source: Energy.gov [DOE]

    DOE ordered Duracold Refrigeration Manufacturing Company, LLC to pay a $8,000 civil penalty after finding Duracold Refrigeration Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  3. Clean Energy Manufacturing Resources - Technology Maturation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the

  4. Storage ring development at the National Synchrotron Light Source

    SciTech Connect (OSTI)

    Krinsky, S.; Bittner, J.; Fauchet, A.M.; Johnson, E.D.; Keane, J.; Murphy, J.; Nawrocky, R.J.; Rogers, J.; Singh, O.V.; Yu, L.H.

    1991-09-01

    This report contains papers on the following topics: Transverse Beam Profile Monitor; Bunch Length Measurements in the VUV Storage Ring; Photoelectric Effect Photon Beam Position Monitors; RF Receivers for Processing Electron Beam Pick-up Electrode Signals; Real-Time Global Orbit Feedback Systems; Local Orbit Feedback; Active Interlock System for High Power Insertion Devices in the X-ray Ring; Bunch Lengthening Cavity for the VUV Ring; SXLS Storage Ring Design.

  5. Gas insulated transmission line having tapered particle trapping ring

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA)

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor, insulating supports and an insulating gas. A particle-trapping ring is secured to each insulating support, and it is comprised of a central portion and two tapered end portions. The ends of the particle trapping ring have a smaller diameter than the central portion of the ring, so as to enable the use of the particle trapping ring in a curved transmission line.

  6. Manufacturing Innovation Multi-Topic Workshop

    Broader source: Energy.gov [DOE]

    DOE’s Advanced Manufacturing Office (AMO) and the Office of Secretary of Defense Manufacturing Technology Program (OSD ManTech) held a joint workshop October 8 and 9, 2014 in Fort Worth, TX. This workshop identified mid-Technology Readiness Level (TRL) research and development (R&D) needs, market and supply chain challenges, and shared facility needs for advanced manufacturing. The workshop complemented a recently released AMO Request for Information (RFI) and a recently amended OSD ManTech RFI. AMO and OSD ManTech sought to know more about the challenges associated with advanced manufacturing technology that potentially could be overcome by pre-competitive collaboration as part of a Manufacturing Innovation Institute.

  7. PEM Stack Manufacturing: Industry Status | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stack Manufacturing: Industry Status PEM Stack Manufacturing: Industry Status Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon PEM Stack Manufacturing: Industry Status More Documents & Publications Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Low Temperature PEM Fuel Cell Manufacturing Needs A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and

  8. Low Temperature PEM Fuel Cell Manufacturing Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PEM Fuel Cell Manufacturing Needs Low Temperature PEM Fuel Cell Manufacturing Needs Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon Low Temperature PEM Fuel Cell Manufacturing Needs More Documents & Publications Manufacturing Fuel Cell Manhattan Project PEM Stack Manufacturing: Industry Status 2011 NREL/DOE Hydrogen and Fuel Cell Manufacturing R&D Workshop Report

  9. Static Sankey Diagram Full Sector Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Sector Manufacturing Static Sankey Diagram Full Sector Manufacturing The U.S. Manufacturing Sector Static Sankey diagram shows how total primary energy is used by U.S. manufacturing plants. Click on the Onsite Generation, Process Energy or Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize the manufacturing Sankey data and compare energy consumption across

  10. Fact #570: May 11, 2009 Automotive Manufacturing Employment Declining |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0: May 11, 2009 Automotive Manufacturing Employment Declining Fact #570: May 11, 2009 Automotive Manufacturing Employment Declining The number of people employed by automotive manufacturing has been decreasing since 2000. Although nearly three times as many people are employed by motor vehicle parts manufacturing as motor vehicle manufacturing, parts manufacturing has experienced a sharper decline in employment since 2000. Automotive Manufacturing Employment, 1990-2008

  11. Composite Tube Trailer Design/Manufacturing Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composite Tube Trailer Design/Manufacturing Needs Composite Tube Trailer Design/Manufacturing Needs Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon Composite Tube Trailer Design/Manufacturing Needs More Documents & Publications Tank Manufacturing, Testing, Deployment and Field Performance Fuel Tank Manufacturing, Testing, Field Performance, and Certification High Pressure Hydrogen Tank Manufacturing

  12. Understanding the 2014 Manufacturing Energy and Carbon Footprints

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Understanding the 2010 Manufacturing Energy and Carbon Footprints The Manufacturing Energy and Carbon Footprints map energy use and combustion greenhouse gas (GHG) emissions from energy supply to end use. Footprints are published for 15 manufacturing sectors (representing 95% of all manufacturing energy use and 94% of U.S. manufacturing combustion GHG emissions) and for U.S. manufacturing as a whole (NAICS 31 - 33). These sectors are described in more detail in the document 2010 Manufacturing

  13. Clean Energy Manufacturing Funding Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunities Clean Energy Manufacturing Funding Opportunities To accomplish the goals of the Clean Energy Manufacturing Initiative (CEMI), the U.S. Department of Energy (DOE) supports increased funding for manufacturing research and development across the board, specifically with the goal of growing the clean energy manufacturing industry in the United States. Examples include: Photo of carbon fiber rolls being manufactured. Solar Manufacturing Technology Solar Manufacturing Technology

  14. Manufacturing fuel-switching capability, 1988

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  15. Drum ring removal/installation tool

    DOE Patents [OSTI]

    Andrade, William Andrew (Livermore, CA)

    2006-11-14

    A handheld tool, or a pair of such tools, such as for use in removing/installing a bolt-type clamping ring on a container barrel/drum, where the clamping ring has a pair of clamping ends each with a throughbore. Each tool has an elongated handle and an elongated lever arm transversely connected to one end of the handle. The lever arm is capable of being inserted into the throughbore of a selected clamping end and leveraged with the handle to exert a first moment on the selected clamping end. Each tool also has a second lever arm, such as a socket with an open-ended slot, which is suspended alongside the first lever arm. The second lever arm is capable of engaging the selected clamping end and being leveraged with the handle to exert a second moment which is orthogonal to the first moment. In this manner, the first and second moments operate to hold the selected clamping end fixed relative to the tool so that the selected clamping end may be controlled with the handle. The pair of clamping ends may also be simultaneously and independently controlled with the use of two handles/tools so as to contort the geometry of the drum clamping ring and enable its removal/installation.

  16. Redox shuttles having an aromatic ring fused to a 1,1,4,4-tetrasubstituted cyclohexane ring

    DOE Patents [OSTI]

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2015-12-01

    An electrolyte includes an alkali metal salt; an aprotic solvent; and a redox shuttle additive including an aromatic compound having at least one aromatic ring fused with at least one non-aromatic ring, the aromatic ring having two or more oxygen or phosphorus-containing substituents.

  17. Advanced Palladium Membrane Scale-up for Hydrogen Separation

    SciTech Connect (OSTI)

    Sean Emerson; Neal Magdefrau; Ying She; Catherine Thibaud-Erkey

    2012-10-31

    The main objective of this project was to construct, test, and demonstrate a Pd-Cu metallic tubular membrane micro-channel separator capable of producing 2 lb day{sup -1} H{sub 2} at ?95% recovery when operating downstream of an actual coal gasifier. A key milestone for the project was to complete a pilot-scale gasifier test by 1 September 2011 and demonstrate the separation of 2 lb day{sup -1} H{sub 2} to verify progress toward the DOE??s goals prior to down-selection for larger-scale (??100 lb day{sup -1}) hydrogen separator development. Three different pilot-scale (??1.5 ft{sup 2}) separators were evaluated downstream of coal gasifiers during four different tests and the key project milestone was achieved in August 2011, ahead of schedule. During three of those tests, all of the separators demonstrated or exceeded the targeted separation rate of 2 lb day{sup -1} H{sub 2}. The separator design was proved to be leak tight and durable in the presence of gasifier exhaust contaminants at temperatures and pressures up to 500 °C and 500 psia. The contaminants in the coal gasifier syngas for the most part had negligible impact on separator performance, with H{sub 2} partial pressure being the greatest determinant of membrane performance. Carbon monoxide and low levels of H{sub 2}S (<39 ppmv) had no effect on H{sub 2} permeability, in agreement with laboratory experiments. However, higher levels of H{sub 2}S (>100 ppmv) were shown to significantly reduce H{sub 2} separation performance. The presence of trace metals, including mercury and arsenic, appeared to have no effect based on the experimental data. Subscale Pd-Cu coupon tests further quantified the impact of H{sub 2}S on irreversible sulfide formation in the UTRC separators. Conditions that have a thermodynamic driving force to form coke were found to reduce the performance of the separators, presumably by blockage of effective separation area with carbon deposits. However, it was demonstrated that both in situ and ex situ (laboratory) air regeneration at 450 °C could restore separator performance by burning out such deposits. Gasifier testing revealed that high molecular weight hydrocarbons have the potential to retard H2 separation. Unconverted coal tars with carbon numbers greater than 14 have a boiling point such that they can act as a reversible poison to the Pd-Cu membranes even at temperatures above 500 °C. The use of real-time, physics-based, performance models revealed the effect of these coal tars. It is believed that this project provided the first evidence for the impact of coal tars on H{sub 2} separator performance. Final down-selection of candidate alloys for non-membrane materials of construction proceeded by evaluating the alloys in both UTRC laboratory tests and testing downstream of an actual gasifier at the National Carbon Capture Center (NCCC). The overall alloy ratings were calculated by multiplying the projected cost of a 100 lb day{sup -1} H{sub 2} separator outer shell by the projected oxide scale thickness for 5 years of operation. The alloy with the lowest resulting rating parameter was stainless steel 309 (SS-309) followed by stainless steel 310 (SS-310). However, it was noted that approximately half of the alloys showed susceptibility to pitting and localized corrosion. SS-309 was one of the alloys that exhibited heavy localized attack after 2000 hours of laboratory testing. As this localized corrosion can potentially lead to accelerated end of life, it was determined that SS-310 would be the best alloy selection for this application as it does not show signs of localized pitting corrosion.

  18. Process Development and Scale up of Advanced Electrolyte Materials

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Scale-Up and Demonstration of Fly Ash Ozonation Technology

    SciTech Connect (OSTI)

    Rui Afonso; R. Hurt; I. Kulaots

    2006-03-01

    The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

  20. Materials Scale-up and Cell Performance Analysis

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  1. Scaling Up Coordinate Descent Algorithms for Large ?1 Regularization Problems

    SciTech Connect (OSTI)

    Scherrer, Chad; Halappanavar, Mahantesh; Tewari, Ambuj; Haglin, David J.

    2012-07-03

    We present a generic framework for parallel coordinate descent (CD) algorithms that has as special cases the original sequential algorithms of Cyclic CD and Stochastic CD, as well as the recent parallel Shotgun algorithm of Bradley et al. We introduce two novel parallel algorithms that are also special cases---Thread-Greedy CD and Coloring-Based CD---and give performance measurements for an OpenMP implementation of these.

  2. Process Development and Scale-up of Advanced Cathode Materials

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Manufacturing Fuel Cell Manhattan Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon Manufacturing Fuel Cell Manhattan Project More Documents & Publications Manufacturing Fuel Cell Manhattan Project 2011 NREL/DOE Hydrogen and Fuel Cell Manufacturing R&D Workshop Report Low Temperature PEM Fuel Cell Manufacturing Needs

  4. WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW PDF icon Sustainable Manufacturing Workshop Agenda.pdf PDF icon AMO Sustainable Manufacturing Workshop Overview.pdf More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop ITP Chemicals: Industrial Feedstock Flexibility Workshop Results, December 2009 Process Intensification Workshop - September 29-30, 2015 Advanced

  5. A National Strategic Plan For Advanced Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Strategic Plan For Advanced Manufacturing A National Strategic Plan For Advanced Manufacturing PDF icon nstc_feb2012.pdf More Documents & Publications Report to the President on Ensuring American Leadership in Advanced Manufacturing National Network for Manufacturing Innovation: A Preliminary Design National Network for Manufacturing Innovation: A Preliminary Design

  6. National Network for Manufacturing Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Network for Manufacturing Innovation National Network for Manufacturing Innovation Image of Energy Department's Assistant Secretary David Danielson standing at podium speaking in front of workshop participants. The National Network for Manufacturing Innovation (NNMI) is an interagency initiative made up of public/private partnerships devoted to manufacturing excellence. Under the NNMI, each institute will bring together innovative manufacturers, university engineering schools, community

  7. Manufacturing of Profiles for Lightweight Structures

    SciTech Connect (OSTI)

    Chatti, Sami; Kleiner, Matthias

    2007-04-07

    The paper shows some investigation results about the production of straight and curved lightweight profiles for lightweight structures and presents their benefits as well as their manufacturing potential for present and future lightweight construction. A strong emphasis is placed on the manufacturing of straight and bent profiles by means of sheet metal bending of innovative products, such as tailor rolled blanks and tailored tubes, and the manufacturing of straight and curved profiles by the innovative procedures curved profile extrusion and composite extrusion, developed at the Institute of Forming Technology and Lightweight Construction (IUL) of the University of Dortmund.

  8. Breaking Barriers in Polymer Additive Manufacturing

    SciTech Connect (OSTI)

    Love, Lonnie J; Duty, Chad E; Post, Brian K; Lind, Randall F; Lloyd, Peter D; Kunc, Vlastimil; Peter, William H; Blue, Craig A

    2015-01-01

    Additive Manufacturing (AM) enables the creation of complex structures directly from a computer-aided design (CAD). There are limitations that prevent the technology from realizing its full potential. AM has been criticized for being slow and expensive with limited build size. Oak Ridge National Laboratory (ORNL) has developed a large scale AM system that improves upon each of these areas by more than an order of magnitude. The Big Area Additive Manufacturing (BAAM) system directly converts low cost pellets into a large, three-dimensional part at a rate exceeding 25 kg/h. By breaking these traditional barriers, it is possible for polymer AM to penetrate new manufacturing markets.

  9. About Additive Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introducing Additive Manufacturing at GE Global Research Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Introducing Additive Manufacturing at GE Global Research Prabhjot Singh, manager of the Additive Manufacturing Lab at GE Global Research, describes the technology used in his lab. You Might Also Like DirectWrite_V

  10. Laser Additive Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revolutionizing the Age-Old Rules of Manufacturing Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Revolutionizing the Age-Old Rules of Manufacturing Learn how additive manufacturing, a 3D-printing technology, frees engineers to design the perfect jet engine. You Might Also Like IMG_0475 Innovation 24/7: We're Always

  11. Optical heterodyne detection for cavity ring-down spectroscopy

    DOE Patents [OSTI]

    Levenson, Marc D. (Saratoga, CA); Paldus, Barbara A. (Mountain View, CA); Zare, Richard N. (Stanford, CA)

    2000-07-25

    A cavity ring-down system for performing cavity ring-down spectroscopy (CRDS) using optical heterodyne detection of a ring-down wave E.sub.RD during a ring-down phase or a ring-up wave E.sub.RU during a ring up phase. The system sends a local oscillator wave E.sub.LO and a signal wave E.sub.SIGNAL to the cavity, preferably a ring resonator, and derives an interference signal from the combined local oscillator wave E.sub.LO and the ring-down wave E.sub.RD (or ring-up wave E.sub.RU). The local oscillator wave E.sub.LO has a first polarization and the ring-down wave E.sub.RD has a second polarization different from the first polarization. The system has a combining arrangement for combining or overlapping local oscillator wave E.sub.LO and the ring-down wave E.sub.RD at a photodetector, which receives the interference signal and generates a heterodyne current I.sub.H therefrom. Frequency and phase differences between the waves are adjustable.

  12. Joining mechanism with stem tension and interlocked compression ring

    DOE Patents [OSTI]

    James, Allister W.; Morrison, Jay A.

    2012-09-04

    A stem (34) extends from a second part (30) through a hole (28) in a first part (22). A groove (38) around the stem provides a non-threaded contact surface (42) for a ring element (44) around the stem. The ring element exerts an inward force against the non-threaded contact surface at an angle that creates axial tension (T) in the stem, pulling the second part against the first part. The ring element is formed of a material that shrinks relative to the stem by sintering. The ring element may include a split collet (44C) that fits partly into the groove, and a compression ring (44E) around the collet. The non-threaded contact surface and a mating distal surface (48) of the ring element may have conic geometries (64). After shrinkage, the ring element is locked onto the stem.

  13. Collective accelerator using field-reversed plasma rings

    SciTech Connect (OSTI)

    Hartman, C.W.

    1981-09-19

    This note discusses the possibility of magnetically accelerating the plasma rings. At low-to-moderate ring kinetic energy, application to heating, fueling, and efficient current drive of conventional fusion reactors appears possible. At high ring kinetic energy, applications to inertial-confinement fusion through pellet heating and to transuranic element synthesis appear possible. The rings may be considered to be a self-linking flux bundle having net helicity. From an accelerator point of view, the rings represent collective particle entities held together by magnetic forces and may be viewed as macroparticles or micropellets having large magnetic moment per unit mass. Because of the relatively long lifetime and resiliency of the rings, it appears possible to accelerate to multimegajoule kinetic energy over reasonable distances and to focus the rings to centimeter-size dimensions.

  14. Mechanical seal having a double-tier mating ring

    DOE Patents [OSTI]

    Khonsari, Michael M.; Somanchi, Anoop K.

    2005-09-13

    An apparatus and method to enhance the overall performance of mechanical seals in one of the following ways: by reducing seal face wear, by reducing the contact surface temperature, or by increasing the life span of mechanical seals. The apparatus is a mechanical seal (e.g., single mechanical seals, double mechanical seals, tandem mechanical seals, bellows, pusher mechanical seals, and all types of rotating and reciprocating machines) comprising a rotating ring and a double-tier mating ring. In a preferred embodiment, the double-tier mating ring comprises a first and a second stationary ring that together form an agitation-inducing, guided flow channel to allow for the removal of heat generated at the seal face of the mating ring by channeling a coolant entering the mating ring to a position adjacent to and in close proximity with the interior surface area of the seal face of the mating ring.

  15. Advanced Manufacturing Office Update, July 2014 | Department...

    Office of Environmental Management (EM)

    ... The winner, Michele Ano of Italy, will receive a 5,000 cash prize and see his concept built from scratch at the International Manufacturing Technology Show in September 2014. ...

  16. GE's Digital Marketplace to Revolutionize Manufacturing | GE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE's Digital Marketplace to Revolutionize Manufacturing Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new...

  17. Researching NDE, Additive Manufacturing |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in NDE and Additive Manufacturing Provides Life-Changing Experience for GE Intern Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  18. Specific Manufacturing Capability Project presented with special...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specific Manufacturing Capability Project presented with special thank-you note From left, DOE-ID's Ray Furstenau, INL's Riley Chase, SMC's Joel Duling, Army's Ltc. Evans and Mike...

  19. Artisan Manufacturing: Proposed Penalty (2010-CW-0712)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Artisan Manufacturing Company, Inc. failed to certify a variety of faucets as compliant with the applicable water conservation standards.

  20. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2.4 2.6 < 0.1 Manufacturing Energy and Carbon Footprint Sector: Transportation ... Steam Distribution Losses 1 3 23 1 3 7 6 23 16 0 3 0 275 44 132 0 1 2 Conventional Boilers ...

  1. Solid-State Lighting Manufacturing Workshop

    Broader source: Energy.gov [DOE]

    Nearly 200 lighting industry leaders, chip makers, fixture and component manufacturers, and others gathered in Fairfax, Virginia, on April 21 and 22, 2009, for the first-ever DOE Solid-State...

  2. USA Manufacturing: Proposed Penalty (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that USA Manufacturing failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

  3. Imperial Manufacturing: Proposed Penalty (2013-CE-5322)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Imperial Manufacturing, Inc. failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

  4. Renewable Energy Tax Credit for Manufacturers (Personal)

    Broader source: Energy.gov [DOE]

    SB 1484 of 2014 provides a tax credit for new renewable energy systems that produce energy for self-consumption and are used primarily for manufacturing. HB 2670 of 2015 expanded this credit to i...

  5. Energy Department Supports Manufacturing Day | Department of...

    Energy Savers [EERE]

    he is discussing technologies such as additive manufacturing, better known as 3D-printing, an energy-efficient technology with potential to change the way we think about...

  6. Renewable Energy Tax Credit for Manufacturers (Corporate)

    Broader source: Energy.gov [DOE]

    SB 1484 of 2014 provides a tax credit for new renewable energy systems that produce energy for self-consumption and are used primarily for manufacturing. HB 2670 of 2015 expanded this credit to i...

  7. Lane Electric Cooperative- Manufactured Homes Rebate Program

    Broader source: Energy.gov [DOE]

    Lane Electric Cooperative offers its customers an incentive for buying a new, permanent residence, EnergyStar manufactured home within service area. Qualifying customers may receive up to $500 if...

  8. Smart Manufacturing Institute Industry Day Workshop | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Intensification Workshop - September 29-30, 2015 WORKSHOP: HIGH VALUE ROLL TO ROLL (HV R2R) MANUFACTURING INNOVATION, DECEMBER 2-3, 2015 Fiber Reinforced Polymer Composite ...

  9. Energy Efficient Manufactured Homes Incentive Tax Credit

    Broader source: Energy.gov [DOE]

    To qualify for the nonrefundable $750 tax credit, an individual must purchase either: 1) a manufactured home that meets or exceeds the U.S. Environmental Protection Agency's and the U.S....

  10. Refrigerator Manufacturers: Proposed Penalty (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Refrigerator Manufacturers, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  11. Pend Oreille PUD- Manufactured Home Rebate Program

    Broader source: Energy.gov [DOE]

    Pend Oreille PUD offers cash incentives up to $800 to residential customers who purchase an ENERGY STAR-certified manufactured home. All program requirements must be met in order to receive rebate....

  12. Goodman Manufacturing: Noncompliance Determination (2011-SE-4301)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Goodman Manufacturing finding that model CPC180XXX3BXXXAA (CPC180*) of commercial package air conditioner does not comport with the energy conservation standards.

  13. Brighter Future for Kentucky Manufacturing Plants | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In a challenging economy, many companies are forced to lay off workers to keep doors open. ... Development to award four manufacturing companies up to 300,000 each to replace old, ...

  14. American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    The 2015 American Energy and Manufacturing Competitiveness Summit will be hosted September 15–16; this gathering of preeminent leaders from industry, academia, labor, the national laboratories, government, and media aims to increase American competitiveness in clean energy and manufacturing. Bioenergy Technologies Office Technology Manager Jay Fitzgerald will be representing the Office, and the Lawrence Berkeley National Lab will be exhibiting a special hands-on demonstration of the latest bioenergy equipment, models, and other research, development, and demonstration tools.

  15. The Capital Intensity of Photovoltaics Manufacturing

    SciTech Connect (OSTI)

    Basore, Paul

    2015-10-19

    Factory capital expenditure (capex) for photovoltaic (PV) module manufacturing strongly influences the per-unit cost of a c-Si module. This provides a significant opportunity to address the U.S. DOE SunShot module price target through capex innovation. Innovation options to reduce the capex of PV manufacturing include incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches. and financial approaches.

  16. Advanced Materials and Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials and Manufacturing Argonne researchers prepare silicon wafers for full-scale deposition testing of dielectric coatings for large area detectors. Argonne researchers prepare silicon wafers for full-scale deposition testing of dielectric coatings for large area detectors. Argonne's award-winning expertise in the creation and analysis of novel materials contributes to wide-ranging advances that improve industrial processes and manufactured products, saving energy and reducing waste. Many

  17. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics and modeling Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for Materials Science (505) 665-0045 Email Deputy Director Dr. Nathan A. Mara Institute for Materials Science (505) 667 8665 Email Institute

  18. Leading manufacturers in the Better Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    manufacturers in the Better Buildings, Better Plants Program are taking on bold commitments to improve energy efficiency across their operations. Building on President Obama's Better Buildings Initiative and the Administration's broader efforts to double energy productivity by 2030, the U.S. Department of Energy (DOE) works with manufacturers to set corporate-wide energy reduction goals, improve energy management, and track and report their progress. The industrial sector accounts for one-third

  19. Goodman Manufacturing Company Comment | Department of Energy

    Energy Savers [EERE]

    Goodman Manufacturing Company Comment Goodman Manufacturing Company Comment These comments are submitted by Goodman Global, Inc. ("Goodman") in response to the U.S. Department of Energy's (DOE) request for information (RFI) appearing in the Federal Register on July 3, 2014. PDF icon 07-18-2014 Goodman Comments on Regulatory Burden RFI.PDF More Documents & Publications 2014-06-25 Issuance: Energy Conservation Standards for Residential Furnace Fans; Final Rule ISSUANCE 2015-08-21:

  20. Advanced Battery Manufacturing Facilities and Equipment Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt002_es_flicker_2012_p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results