Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Study on an Electric Drilling Rig with Hydraulic Energy Storage  

Science Conference Proceedings (OSTI)

An electric drilling rig with hydraulic energy storage is researched. This rig can recover the potential energy of the drill stem lowered and owns remarkable energy-saving effect. The mathematical model of the new rig lifting the drill stem was deduced ... Keywords: electric drilling rig, energy-recovering, energy-saving

Zhang Lujun

2010-06-01T23:59:59.000Z

2

Self propelled drilling rig starts offshore exploration  

SciTech Connect

Ocean Drilling and Exploration Co. recently commissioned its new $12 million self-propelled, semisubmersible drilling rig, Ocean Prospector, at Mitsubishi Shipyard, Japan, where the rig was built. Initial trail runs completed adjacent to the shipyard indicated that the ship has a speed of 7 kn ahead and 3 kn astern. Steering also is reported to be excellent. The rig has a minimum turning radius of approx. 2 barge lengths and shows instant response. This rig is powered by 4 Fairbanks Morse, 10-cylinder opposed piston, model 38D8-1/8 diesel engines. Each engine is rated at 1,600 hp at 720 rpm and they drive eight 1,600 kw, traction type D-C generators and two 1,000 kw A-C generators. The rated operating depth of the unit afloat is 600 ft of water. The overall length of Ocean Prospector is just over 344 ft, with the beam measuring 263-1/2 ft. During transit, when the rig will be completely deballasted, it will have a draft of approx. 20 ft. When it reaches the drilling site, ballast water will be pumped into the 18 ballast tanks until the draft is increased to 70 ft. At this point, the underside of the main deck will be 50 ft above the mean surface of the sea. Drilling operations will be conducted while the rig is at the 70 ft draft. The mooring system will consist of eight 2-3/4 in. chains, each measuring 3,300 ft in length and connected to a 15-ton anchor.

1971-05-01T23:59:59.000Z

3

Rig scarcity prompts innovative drilling solution  

Science Conference Proceedings (OSTI)

Unable to locate a shallow-water offshore rig for its program in Indonesia, British Gas International developed an innovative pad/ballasted barge configuration to utilize a land rig, which was available. Many non-typical problems were encountered and solved to establish the drilling location 600 m (2,000 ft) from the shore in Bintuni Bay in Irian Jaya, eastern Indonesia. The final hybrid configuration has sparked interesting debate as to whether the operation should be designated as onshore or offshore. The paper discusses the project overview, concept development, construction, and operations.

Lattimore, G.M.; Gott, T.; Feagin, J.

1997-11-01T23:59:59.000Z

4

NETL: News Release - DOE-Funded 'Microhole' Drilling Rig Demonstrated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Rig Demonstrated Successfully in Midcontinent New Technology Initiative Slashes Drilling Costs, Benefits Environment, Energy Security WASHINGTON, DC - A U.S. Department of...

5

Slant rigs offer big payoffs in shallow drilling  

Science Conference Proceedings (OSTI)

Slant hole drilling technology can result in considerable savings over conventionally drilled deviated holes because mud motors and deviation control with measurement while drilling tools are usually unnecessary. The benefits of using slant hole rigs for development drilling improve after the bit walk tendencies and the correct bottom hole assemblies have been determined for a particular area. This article discusses three recent drilling operations that successfully used slant drilling technology on land-based projects: drilling for heavy oil in Alberta, drilling for gas in Alberta, and drilling a river crossing for a gas pipeline in British Columbia. These examples demonstrate the flexibility of slant drilling technology.

Smith, J. (George E. Failing Co., Enid, OK (US)); Edwards, B. (Sierra Drilling Co., Calgary (CA))

1992-03-30T23:59:59.000Z

6

Pad drilling and rig mobility lead to more efficient drilling ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... Pad drilling allows producers to target a significant area of underground resources while minimizing impact on the surface.

7

Technical and economic evaluation of selected compact drill rigs for drilling 10,000 foot geothermal production wells  

DOE Green Energy (OSTI)

This report summarizes the investigation and evaluation of several {open_quotes}compact{close_quotes} drill rigs which could be used for drilling geothermal production wells. Use of these smaller rigs would save money by reducing mobilization costs, fuel consumption, crew sizes, and environmental impact. Advantages and disadvantages of currently-manufactured rigs are identified, and desirable characteristics for the {open_quotes}ideal{close_quotes} compact rig are defined. The report includes a detailed cost estimate of a specific rig, and an evaluation of the cost/benefit ratio of using this rig. Industry contacts for further information are given.

Huttrer, G.W. [Geothermal Management Company, Inc., Frisco, CO (United States)

1997-11-01T23:59:59.000Z

8

Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas  

DOE Patents (OSTI)

A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger, and out through the holes in the bottom of the auger into the potentially hazardous area.

McCormick, S.H.; Pigott, W.R.

1998-04-01T23:59:59.000Z

9

The Feasibility of Natural Gas as a Fuel Source for Modern Land-Based Drilling Rigs  

E-Print Network (OSTI)

The purpose of this study is to determine the feasibility of replacing diesel with natural gas as a fuel source for modern drilling rigs. More specifically, this thesis (1) establishes a control baseline by examining operational characteristics (response, fuel usage, and cost) of an existing diesel-powered land rig during the drilling of a well in the Haynesville Shale; (2) estimates operational characteristics of a natural gas engine under identical conditions; and (3) draws a comparison between diesel and natural gas engines, determining the advantages and disadvantages of those fuel sources in drilling applications. Results suggest that diesel engines respond to transient loads very effectively because of their inherently higher torque, especially when compared with natural gas engines of a similar power rating. Regarding fuel consumption, the engines running on diesel for this study were more efficient than on natural gas. On a per-Btu basis, the natural gas engines consumed nearly twice as much energy in drilling the same well. However, because of the low price of natural gas, the total cost of fuel to drill the well was lowered by approximately 54%, or 37,000 USD. Based on the results, it is possible to infer that the use of natural gas engines in drilling environments is feasible, and in most cases, an economical and environmental advantage. First, when compared with diesel, natural gas is a cleaner fuel with less negative impact on the environment. Second, fuel cost can be reduced by approximately half with a natural gas engine. On the other hand, natural gas as a fuel becomes less practical because of challenges associated with transporting and storing a gas. In fact, this difficulty is the main obstacle for the use of natural gas in drilling environments. In conclusion, because of its minimal drawback on operations, it is recommended that in situations where natural gas is readily available near current market prices, natural gas engines should be utilized because of the cost savings and reduced environmental impact. In all other cases, particularly where transport and storage costs encroach on the cost benefit, it may still be advantageous to continue powering rigs with diesel because of its ease of use.

Nunn, Andrew Howard

2011-12-01T23:59:59.000Z

10

ALTERNATE POWER AND ENERGY STORAGE/REUSE FOR DRILLING RIGS: REDUCED COST AND LOWER EMISSIONS PROVIDE LOWER FOOTPRINT FOR DRILLING OPERATIONS  

E-Print Network (OSTI)

Diesel engines operating the rig pose the problems of low efficiency and large amount of emissions. In addition the rig power requirements vary a lot with time and ongoing operation. Therefore it is in the best interest of operators to research on alternate drilling energy sources which can make entire drilling process economic and environmentally friendly. One of the major ways to reduce the footprint of drilling operations is to provide more efficient power sources for drilling operations. There are various sources of alternate energy storage/reuse. A quantitative comparison of physical size and economics shows that rigs powered by the electrical grid can provide lower cost operations, emit fewer emissions, are quieter, and have a smaller surface footprint than conventional diesel powered drilling. This thesis describes a study to evaluate the feasibility of adopting technology to reduce the size of the power generating equipment on drilling rigs and to provide ?peak shaving? energy through the new energy generating and energy storage devices such as flywheels. An energy audit was conducted on a new generation light weight Huisman LOC 250 rig drilling in South Texas to gather comprehensive time stamped drilling data. A study of emissions while drilling operation was also conducted during the audit. The data was analyzed using MATLAB and compared to a theoretical energy audit. The study showed that it is possible to remove peaks of rig power requirement by a flywheel kinetic energy recovery and storage (KERS) system and that linking to the electrical grid would supply sufficient power to operate the rig normally. Both the link to the grid and the KERS system would fit within a standard ISO container. A cost benefit analysis of the containerized system to transfer grid power to a rig, coupled with the KERS indicated that such a design had the potential to save more than $10,000 per week of drilling operations with significantly lower emissions, quieter operation, and smaller size well pad.

Verma, Ankit

2009-05-01T23:59:59.000Z

11

rig_specs.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

RIG SPECIFICATIONS R MOTC Rig No. 1 is a 2005 Crown (Calgary, Canada) trailer-mounted drilling rig. It incor- porates several features found desirable over numerous drilling tests...

12

34th annual reed rotary rig census  

SciTech Connect

This article reports that the number of rigs active according to the 1986 census is 1052, which represents a decline of 1573 rigs from 1985 figures. This 60 percent decrease is the largest decline of active rigs in the 34-year history of the census. The 1986 census takers found 3993 rigs are available with the capacity to drill deeper than 3000 ft. The count has thus declined by 416 rigs (9 percent) from the 1985 total of 4409. Rig availability declined for the fourth consecutive year following nine straight years of fleet expansion (1974-1982). During the past four years, 1651 rigs have been removed from the drilling fleet representing a 29 percent decline from the record high number of rigs available in 1982. The 1986 decline in the available U.S. fleet is considerably less than what many industry observers had been anticipating. A larger decrease in the rig fleet has not been realized for a number of reasons.

Hutchinson, D.L.; Pastusek, P.E.

1986-10-01T23:59:59.000Z

13

Design and Analysis of a Test Rig for Modeling the Bit/Formation Interface in Petroleum Drilling Applications  

E-Print Network (OSTI)

Equipment failure and well deviations are prevailing contributors to production delays within the petroleum industry. Particular monetary focus is given to the drilling operations of wells to overcome these deficits, in order to extract natural resources as efficiently, and as safely, as possible. The research presented here focuses on minimizing vibrations of the drill string near the bottom-hole assembly (BHA) by identifying the cause of external forcing on the drillstring in vertical and horizontal wells and measuring the effects of various factors on the stability of perturbations on the system. A test rig concept has been developed to accurately measure the interaction forces and torques between the bit, formation and fluids during drilling in order to clearly define a bit/formation interface law (BFIL) for the purpose vibrational analysis. As a secondary function, the rig will be able to measure the potential inputs to a drilling simulation code that can be used to model drillstring vibrations. All notable quantities will be measured including torque on bit (TOB), weight on bit (WOB), lateral impact loads (LIL), formation stiffness, bit specific properties, fluid damping coefficients and rate of penetration (ROP). The conceptual design has been analyzed and refined, in detail, to verify its operational integrity and range of measurement error. The operational envelope of the rig is such that a drill bit of up to 8 ½ inches in diameter can be effectively tested at desired operational parameters (WOB: 0-55,000 lbf, RPM: 60-200) with various rock formations and multiple fluid types. Future use and design possibilities are also discussed to enhance the functionality of the rig and the potential for further research in the area of oil and gas drilling and vibrational modeling.

Wilson, Joshua Kyle

2013-05-01T23:59:59.000Z

14

U. S. Energy Information Administration | Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

December 2013 December 2013 Explanatory notes Drilling Productivity Report The Drilling Productivity Report uses recent data on the total number of drilling rigs in operation along with estimates of drilling productivity and estimated changes in production from existing oil and natural gas wells to provide estimated changes in oil and natural gas production for six key fields. EIA's approach does not distinguish between oil-directed rigs and gas-directed rigs because once a well is completed it may produce both oil and gas; more than half of the wells do that. Monthly additions from one average rig Monthly additions from one average rig represent EIA's estimate of an average rig's

15

Loads on Tie-Down Systems for Floating Drilling Rigs during Hurricane Conditions  

E-Print Network (OSTI)

Tie-down systems are used to fasten drilling rigs to the deck of offshore structures during harsh environmental conditions such as hurricanes. During Hurricane Ivan (2004) and Katrina (2005), a number of offshore structures were moved and several tie-down systems were damaged. In the present study, the reaction force and connection capacity of tie-down systems for a TLP and SPAR are investigated. The environmental conditions are taken from the API Bulletin 2INT-MET which has been updated after several major storms during 2004-2005. The hydrodynamic coefficients of the TLP and SPAR are obtained using a 3D diffraction/radiation panel method. The motions of the TLP and SPAR are then simulated in the time domain by using the hull-mooring-riser coupled dynamic analysis tool CHARM3D. Based on the simulated motion and acceleration time series, the inertial and gravity loads on derrick and skid base footing are calculated. In addition to the inertial-gravity loads, wind forces exerted on the derrick are also calculated. All the external forces and resultant hull motions are simulated for 100-year, 200-year and 1000-year storms to observe the derrick structural integrity with increasing environmental intensity. Various environmental headings are also considered to find the maximum reaction forces. In the present method, the phase differences between gravity-inertia forces and wind forces are taken into consideration to obtain more realistic loads on derrick and skid base footings. This research shows that the maximum and minimum load values are appreciably higher for the SPAR. In addition, the direction of external forces is also important to determine maximum reaction forces on footings. The capacities of the clamps in slip, bolt tension, and bolt shear can be also analyzed using the resultant data to provide guidance on appropriate design values.

Bae, Yoon Hyeok

2009-05-01T23:59:59.000Z

16

Field Demonstraton of Existing Microhole Coiled Tubing Rig (MCTR) Technology  

SciTech Connect

The performance of an advanced Microhole Coiled Tubing Rig (MCTR) has been measured in the field during the drilling of 25 test wells in the Niobrara formation of Western Kansas and Eastern Colorado. The coiled tubing (CT) rig designed, built and operated by Advanced Drilling Technologies (ADT), was documented in its performance by GTI staff in the course of drilling wells ranging in depth from 500 to nearly 3,000 feet. Access to well sites in the Niobrara for documenting CT rig performance was provided by Rosewood Resources of Arlington, VA. The ADT CT rig was selected for field performance evaluation because it is one of the most advanced commercial CT rig designs that demonstrate a high degree of process integration and ease of set-up and operation. Employing an information collection protocol, data was collected from the ADT CT rig during 25 drilling events that encompassed a wide range of depths and drilling conditions in the Niobrara. Information collected included time-function data, selected parametric information indicating CT rig operational conditions, staffing levels, and field observations of the CT rig in each phase of operation, from rig up to rig down. The data obtained in this field evaluation indicates that the ADT CT rig exhibited excellent performance in the drilling and completion of more than 25 wells in the Niobrara under varied drilling depths and formation conditions. In the majority of the 25 project well drilling events, ROP values ranged between 300 and 620 feet per hour. For all but the lowest 2 wells, ROP values averaged approximately 400 feet per hour, representing an excellent drilling capability. Most wells of depths between 500 and 2,000 feet were drilled at a total functional rig time of less than 16 hours; for wells as deep at 2,500 to 3,000 feet, the total rig time for the CT unit is usually well under one day. About 40-55 percent of the functional rig time is divided evenly between drilling and casing/cementing. The balance of time is divided among the remaining four functions of rig up/rig down, logging, lay down bottomhole assembly, and pick up bottomhole assembly. Observations made during all phases of CT rig operation at each of the project well installations have verified a number of characteristics of the technology that represent advantages that can produce significant savings of 25-35 percent per well. Attributes of the CT rig performance include: (1) Excellent hole quality with hole deviation amounting to 1-2 degrees; (2) Reduced need for auxiliary equipment; (3) Efficient rig mobilization requiring only four trailers; (4) Capability of ''Zero Discharge'' operation; (5) Improved safety; and, (6) Measurement while drilling capability. In addition, commercial cost data indicates that the CT rig reduces drilling costs by 25 to 35% compared to conventional drilling technology. Widespread commercial use of the Microhole Coiled Tubing technology in the United States for onshore Lower-48 drilling has the potential of achieving substantially positive impacts in terms of savings to the industry and resource expansion. Successfully commercialized Microhole CT Rig Technology is projected to achieve cumulative savings in Lower-48 onshore drilling expenditures of approximately 6.8 billion dollars by 2025. The reduced cost of CT microhole drilling is projected to enable the development of gas resources that would not have been economic with conventional methods. Because of the reduced cost of drilling achieved with CT rig technology, it is estimated that an additional 22 Tcf of gas resource will become economic to develop. In the future, the Microhole Coiled Tubing Rig represents an important platform for the continued improvement of drilling that draws on a new generation of various technologies to achieve goals of improved drilling cost and reduced impact to the environment.

Kent Perry; Samih Batarseh; Sheriff Gowelly; Thomas Hayes

2006-05-09T23:59:59.000Z

17

Becker, K., Malone, M.J., et al., 1998 Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 174B  

E-Print Network (OSTI)

(drill-pipe measurement from rig floor, mbrf): 4457.1 Total depth (drill-pipe measurement from rig floor, mbrf): 4526.6 Distance between rig floor and sea level (m): 11.6 Water depth (drill-pipe measurement Unit II (63.5-69.5 mbsf): Aphyric basalt Principal results: Sixty-four meters of sediment and 0.58 m

18

Joint venture builds new rigs  

Science Conference Proceedings (OSTI)

Recent emphasis on increasing drilling efficiency and avoiding additional environmental damage has led Russian operator Gazprom to specify a new generation drilling rig for exploratory and development drilling in the Astrakhan gas/condensate field in southwestern Russia. The two rigs on order combine Russian and American technology and include a unique system for processing contaminated drill cuttings. The article describes the rig package and cuttings treatment system.

NONE

1995-05-01T23:59:59.000Z

19

Drill report  

SciTech Connect

North Slope drilling activity is described. As of November 14, 1984, four rigs were actively drilling in the Kuparuk River field with another two doing workovers. Only one rig was drilling in the Prudhoe Bay field, with another doing workovers and one on standby.

Not Available

1984-12-01T23:59:59.000Z

20

Drilling in the Rockies  

Science Conference Proceedings (OSTI)

Despite rugged drilling conditions and high drilling costs, rig employment and drilling operations in the Rocky Mountain region of the Overthrust Belt have increased significantly since 1979. Rate of rig employment, well depths, and number of operating companies and contractors in the area are reported. By October 1980, more than 500 active rigs were working in the region, 30% more than were working during the entirety of 1979. (3 photos)

Peacock, D.

1980-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Modular designs highlight several new rigs  

SciTech Connect

A new platform drilling rig for offshore Trinidad and two new land rigs for the former Soviet Union feature the latest in drilling and construction technology and modular components for quick rig up/rig down. The Sundowner 801 was mock-up tested in Galveston, TX, a few weeks ago in preparation for its load-out to the Dolphin field offshore Trinidad. Two other new units, UNOC 500 DE series land rigs, were recently constructed and mock-up tested in Ekaterinburg, Russia, for upcoming exploratory work for RAO Gazprom, a large natural gas producer in Russia. These rigs are unique in that they were constructed from new components made both in the US and in Russia. The paper describes all three units.

Rappold, K.

1995-12-04T23:59:59.000Z

22

Toolpusher is key to efficient rig operation  

Science Conference Proceedings (OSTI)

Toolpushers earn a higher salary, control more personnel, and are responsible for a more expensive operation than many graduate MBAs. As a result, toolpushers are key to improved rig efficiencies and reduced crew turnover. For example, by having its toolpushers in Libya implement a new managerial approach, Santa Fe Drilling Co. reduced labor turnover 30%, reduced the number of lost-time accidents 58%, and increased average rig inspection scores 6%. During the boom years of drilling, toolpushers complained often about the poor quality of roustabouts and roughnecks assigned to them. Many toolpushers held poor screening of personnel responsible, and felt justified in firing those who were slow to adapt. Few of them considered that they were directly responsible. Today's toolpusher must realize that he is responsible not only for the rig, its maintenance, and its drilling performance, but for training and development of the rig's personnel as well.

Fortney, K.

1983-09-01T23:59:59.000Z

23

Unique rig designed for northern areas  

SciTech Connect

The development of a new generation of drilling and support vessels specially designed to allow year-round drilling off the northern coast of Norway is discussed. New and better equipment is necessary so year-round operations can be done safely and without danger to the environment. To achieve that, a specially designed drilling rig, as well as support and standby vessels are being developed. A quantitative safety analysis of the rig is presently being carried out. The rig will be highly computerized. The computer software will contain programs for stability calculation, ballast recommendation, automatic trim, automatic ballast, automatic mud mix, strain/stress monitoring, dynamic stability, warehouse/maintenance and drilling data acquisition.

1984-05-01T23:59:59.000Z

24

Hoisting and Rigging  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12-i Chapter 12 Rigging Hardware CHAPTER 12 RIGGING HARDWARE This chapter provides requirements for rigging accessories used in hoisting and rigging - shackles, eyebolts, eye nuts, links, rings, swivels, wire-rope clips, turnbuckles, rigging hooks, and load-indicating devices and implements the requirements of ANSI/ASME B30.26, "Rigging Hardware" (for latest ASME standards, see http://catalog.asme.org/home.cfm?Category=CS). 12.1 GENERAL..................................................................................................................................12-1 12.1.1 Good and Bad Rigging Practices ...................................................................................12-1 12.2 RIGGING HOOKS.....................................................................................................................12-5

25

Hoisting & Rigging Fundamentals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hoisting and Rigging Hoisting and Rigging Fundamentals for Riaaers and ODerators Pendant Control - Components TR244C, Rev. 5 December 2002 TR244C Rev . 5 TABLE OF CONTENTS INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii HOISTING AND RIGGING OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 WIRE ROPE SLINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 SYNTHETIC WEBBING SLINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I O CHAINSLINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 METAL MESH SLINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SPREADER BEAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 RIGGING HARDWARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

Table 4.4 Crude Oil and Natural Gas Rotary Rigs in ...  

U.S. Energy Information Administration (EIA)

Table 4.4 Crude Oil and Natural Gas Rotary Rigs in Operation, 1949-2011 (Number of Rigs) Year: By Site : By Type: Total 1: Onshore

27

Planning and scheduling a fleet of rigs using simulation-optimization  

Science Conference Proceedings (OSTI)

Some of the most important and expensive activities in the oil field development and production phases relate to using rigs. These can be used for drilling wells, or for maintenance activities. As rigs are usually scarce compared to the number of wells ... Keywords: Planning, Rigs, Scheduling, Simulation-optimization

Hugo ViníCius Bassi; VirgíLio Jose Martins Ferreira Filho; Laura Bahiense

2012-12-01T23:59:59.000Z

28

Drill Rig Safety Topics of the Presentation  

E-Print Network (OSTI)

· Check oil level daily -engine oil & coolant -compressor air/oil tank -hydraulic tank -pump oil (water injection, mud, etc.) -pump drive gearboxes · Grease daily (must purge dirt) ­ Floating Sub ­ Rollers ­ Air · Fuel and Oil Leaks · Hose Leaks and Failures · Electrical · Smoking #12;Schramm Electrical Safety

29

Rigs Drilling Gas Wells Are At  

U.S. Energy Information Administration (EIA)

The increasing number of resulting gas well completions have been expanding production in major producing States, such as Texas. For the year 2000, ...

30

Hoisting & Rigging Lift Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Authorized Personnel (attach more sheets if necessary) Printed name Signature Date SSRL Hoisting & Rigging Lift Plan Stanford Synchrotron Radiation Laboratory May 16, 2005...

31

Portable top drive cuts horizontal drilling costs  

SciTech Connect

Economic analysis of a seven-well, long-reach horizontal drilling program into an unconsolidated, heavy-oil-bearing reservoir in Winter field near the Alberta/Saskatchewan border in Canada reveals that -- in the right application -- renting a portable top drive drilling system can reduce total drilling costs. Use of the portable top drive combined with other cost-saving measures enabled Saskoil, one of Canada`s larger independents, to drill more cheaply, on a cost-per-meter basis, in 1993 than in 1992. This was despite significant rental rates for drilling rigs and directional drilling services caused by increased demand in Western Canada. Total cost savings of 10% on wells that would otherwise cost in the (C) $500,000 range are believed realistic. Based on this year`s performance, Saskoil recommends top drive for the company`s future horizontal wells in this area. This article describes the operator`s horizontal well program, advantages of top drive in that program and how it was installed and applied. Estimated time savings for six wells, plus other ways top drive can cut costs and improve operations are discussed.

Jackson, B. [Saskoil, Regina, Saskatchewan (Canada); Yager, D. [Tesco Drilling Tech., Calgary, Alberta (Canada)

1993-11-01T23:59:59.000Z

32

Evaluation of liquid lift approach to dual gradient drilling  

E-Print Network (OSTI)

In the past, the oil and gas industry has typically used the single gradient system to drill wells offshore. With this system the bottom hole pressure was controlled by a mud column extending from the drilling rig to the bottom of the wellbore. This mud column was used to achieve the required bottom hole pressure. But, as the demand for oil and gas increased, the industry started exploring for oil and gas in deep waters. Because of the narrow margin between the pore and fracture pressures it is somewhat difficult to reach total depth with the single gradient system. This led to the invention of the dual gradient system. In the dual gradient method, heavy density fluid runs from the bottom hole to the mudline and a low density fluid from the mudline to the rig floor so as to maintain the bottom hole pressure. Several methods have been developed to achieve the dual gradient drilling principle. For this research project, we paid more attention to the liquid lift, dual gradient drilling (riser dilution method). This method of achieving dual gradient drilling was somewhat different from the others, because it does not utilize elaborate equipment and no major changes are made on the existing drilling rigs. In this thesis the technical feasibility of using the liquid lift method over the other methods of achieving dual gradient drilling was determined. A computer program was developed to simulate the wellbore hydraulics under static and dynamic conditions, injection rate and base fluid density required to dilute the riser fluid and finally, u-tubing phenomena. In this thesis we also identified some problems associated with the liquid lift method and recommendations were made on how these problems can be eliminated or reduced. Emphases were placed on the effect of u-tubing, injection rate of base fluid at the bottom of the riser and well control issues facing this system.

Okafor, Ugochukwu Nnamdi

2007-12-01T23:59:59.000Z

33

Laser Oil & Gas Well Drilling [Laser Applications Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

benefit in reducing the high costs of operating a drill rig. Today, a typical land-based oil or gas well costs around 400,000 to drill, while costs for an offshore well average...

34

Drilling Waste Management Fact Sheet: Onsite Burial (Pits, Landfills...  

NLE Websites -- All DOE Office Websites (Extended Search)

management. During most U.S. onshore drilling operations, the cuttings separated by the shale shaker are sent to a pit called the reserve pit located near the drill rig. The pit is...

35

Pad drilling and rig mobility lead to more efficient drilling ...  

U.S. Energy Information Administration (EIA)

Tools; Glossary › All Reports ... weather; gasoline; capacity; nuclear; exports; forecast; View All Tags ...

36

A rigged market  

SciTech Connect

The mobile rig market remains a unique sector of the global upstream oil and gas industry. Big oil is continuing to emerge blinking from the darkness of its recent cash-starved existence to bask in the glory of a resurgent oil price. But the rig sector is once again lagging behind the pace being set by operators as they open up their wallets for new or delayed exploration and production projects. This paper gives statistics on worldwide count and contracts.

Thomas, M.

2000-02-01T23:59:59.000Z

37

The Application Research of AC Frequency Conversion Technique in Transmission Control System of Oil Rig  

Science Conference Proceedings (OSTI)

This paper mainly introduced the basic structure and work principle of transmission agent on electric drilling rig, meanwhile the frequency control and parallel operation of motors used in the transmission agent were analyzed and designed. Using parallel ... Keywords: Rig, Transmission, Frequency control, Parallel Operation Control

Ruifan Yang; Yong Peng

2010-03-01T23:59:59.000Z

38

Hoisting and Rigging  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1090-2011 DOE-STD-1090-2011 September 2011 Superseding DOE-STD-1090-2007 August 2007 DOE STANDARD HOISTING AND RIGGING U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. INCH-POUND INTENTIONALLY BLANK DOE-STD-1090-2011 iii Introduction The U.S. Department of Energy (DOE) Hoisting and Rigging Standard is intended to be used by supervisors, line managers, safety personnel, equipment operators, riggers and other personnel responsible for the safety of hoisting and rigging operations at DOE sites. It may be used as either contract document or as a best practices guide at the site's or program office's discretion. The standard invokes applicable OSHA and national consensus standards but also delineates

39

Rig upkeep vital in the downturn  

Science Conference Proceedings (OSTI)

As operations came to a close in 1982, many oil and gas contractors were facing the door of no return - subsequent years worsened matters. Drilling and workover units were returned to the lender and left stacked on and off location. Lending institutions began to weaken and, in some cases, collapse. However, many of the contractors with time and grade in providing contract drilling or workover services have had no desires or options other than to continue to operate in a downward spiraling market, much as they had done in the 50s and 60s. Operating under these circumstances requires a lot less flare and flame, and careful rearrangement of financial obligations. Contractors with equipment overloads reduced inventories and stacked the leftovers. This article shows that stacking or immobilizing a modern drilling rig or workover unit can be achieved economically. A sound preventive maintenance schedule can put the equipment on the stand-by board-ready to work. Several articles have been written on the ''new way to stack rigs.'' Most of these are simply a sensible realistic approach to maintaining a corporation's assets until they can be returned to the work force.

Leabo, J.H.

1987-05-01T23:59:59.000Z

40

Hoisting and Rigging  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13-i CHAPTER 13 LOAD HOOKS This chapter provides safety standards for the inspection, testing, and maintenance of load hooks installed on cranes or hoists and implements the requirements of ASME B30.10, Chapter 10-1, "Hooks." See Chapter 12, "Rigging Accessories," for rigging hook requirements (for latest ASME standards, see http://catalog.asme.org/home.cfm?Category=CS). 13.1 GENERAL ...............................................................................................................................13-1 13.1.1 Marking......................................................................................................................13-1 13.1.2 Attachments ...............................................................................................................13-1

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Thermal spallation drilling  

DOE Green Energy (OSTI)

Thermal spallation drilling is an underdeveloped process with great potential for reducing the costs of drilling holes and mining shafts and tunnels in most very hard rocks. Industry has used this process to drill blast holes for emplacing explosives and to quarry granite. Some theoretical work has been performed, and many signs point to a great future for this process. The Los Alamos National Laboratory has studied the theory of the spallation process and is conducting experiments to prove out the system and to adapt it for use with a conventional rotary rig. This report describes work that has been accomplished at the Laboratory on the development of thermal spallation drilling and some work that is projected for the future on the system. 3 references, 3 figures.

Williams, R.E.

1985-01-01T23:59:59.000Z

42

NEPA COMPLIANCE SURVEY Project Information Project Title: Liner Drilling Date:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liner Drilling Date: Liner Drilling Date: 4-5-10 DOE Code: 71092 Cont ractor Code: 8067-766 Project Lead: Frank Ingham Project Overview Nothing out of the ordinary for drilling an existing location 1. What are the environmental impacts? NE SW Sec 21 , T39N, R78W (45-3-X-21 well) 2. What is the legal location? 3. What is the duration of the project? Approximately a week 4 . What major equipment will be used if any (work over rig, drilling rig, Drilling Rig etc.)? Will Drill out of 9 5/8 caslng with liner drillng assembly. After drilling approximately 750 to 1000 ft, will test liner hanging assembly set and retrieve multiple times. The table b elow is to be completed by the Project Lead and reviewed by the Environmental Specialis t and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey a

43

Program: Hoisting and Rigging  

E-Print Network (OSTI)

The purpose of these requirements is to ensure that hoisting and rigging (H&R) equipment is safe to operate. 2 Scope These requirements cover inspections and maintenance over the life of H&R equipment. Requirements are listed in terms of ? Types of inspection (initial, pre-use, frequent, periodic, and third party) and maintenance (preventative, operational testing, and load testing) Responsibilities (person who ensures that the inspection was performed and person performing the inspection) Documentation requirements – HRED refers to the H&R Equipment Database, which is maintained by the H&R inspector. Submit inspection and maintenance data to this inspector to stay in compliance. – CR refers to custodian records, which are maintained by the equipment custodian. Details on what to look for and how to conduct the inspection are listed in Department of Energy Standard 1090, “Hoisting and Rigging ” (DOE-STD-1090-2007).

unknown authors

2009-01-01T23:59:59.000Z

44

Hoisting & Rigging Assessment Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HOISTING & RIGGING HOISTING & RIGGING Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: To determine that hoisting and rigging operations are conducted according to "industry best standards" for increasing equipment reliability while assuring worker safety, and to verify issues being addressed in BN Hoisting assessment. Criteria: Lifts are identified and categorized appropriately for scheduled maintenance. DOE-STD-1090-2001 An integrated process ensures safety issues are identified and controls established. DOE-STD-1090-2001 Personnel operating and maintaining the hoisting equipment are trained; they understand their roles and responsibilities. DOE-STD-1090-2001 Maintenance conducts safety inspections of hoisting and rigging

45

Hoisting & Rigging Assessment Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HOISTING & RIGGING HOISTING & RIGGING Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: To determine that hoisting and rigging operations are conducted according to "industry best standards" for increasing equipment reliability while assuring worker safety, and to verify issues being addressed in BN Hoisting assessment. Criteria: Lifts are identified and categorized appropriately for scheduled maintenance. DOE-STD-1090-2001 An integrated process ensures safety issues are identified and controls established. DOE-STD-1090-2001 Personnel operating and maintaining the hoisting equipment are trained; they understand their roles and responsibilities. DOE-STD-1090-2001 Maintenance conducts safety inspections of hoisting and rigging

46

Hoisting and Rigging  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-i 1-i CHAPTER 11 WIRE ROPE AND SLINGS This chapter provides requirements for the fabrication and use of wire rope and slings used in hoisting and rigging and implements the requirements of ASME B30.9, Slings (for latest ASME standards, see http://catalog.asme.org/home.cfm?Category=CS). . 11.1 GENERAL ...............................................................................................................................11-1 11.2 WIRE ROPE ............................................................................................................................11-4 11.2.1 Wire-Rope Lays .........................................................................................................11-4 11.2.2 Wire-Rope Cores .......................................................................................................11-4

47

rig upgrades2.qxp  

NLE Websites -- All DOE Office Websites (Extended Search)

D E T I N U S O F A M E R I C A E A s the oil and gas industry continues to drill in more remote areas, at deeper depths, and in more challenging environments, the advancement of...

48

Hoisting and Rigging  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 BELOW-THE-HOOK LIFTING DEVICES 14-i This chapter provides the requirements for below-the-hook lifting devices used in hoisting and rigging, such as spreader bars, lifting yokes, and lift fixtures. This section implements the requirements of ASME B30.20, "Below-the-Hook Lifting Devices" (for latest ASME standards, see http://catalog.asme.org/home.cfm?Category=CS). NOTE: Special lifting devices for shipping containers weighing 10,000 lb or more that are used for radioactive materials are governed by ANSI N14.6 ["Standard for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4,500 kg) or More for Nuclear Materials."] 14.1 GENERAL ...............................................................................................................................14-1

49

Hoisting and Rigging (Formerly Hoisting and Rigging Manual)  

SciTech Connect

This standard is intended as a reference document to be used by supervisors, line managers, safety personnel, equipment operators, and any other personnel responsible for safety of hoisting and rigging operations at DOE sites. It quotes or paraphrases the US OSHA and ANSI requirements. It also encompasses, under one cover,hoisting and rigging requirements, codes, standards, and regulations, eliminating the need to maintain extensive (and often incomplete) libraries of hoisting and rigging standards throughout DOE. The standard occasionally goes beyond the minimum general industry standards established by OSHA and ANSI, and also delineates the more stringent requirements necessary to accomplish the complex, diversified, critical, and often hazardous hoisting and rigging work found with the DOE complex.

NONE

1995-06-01T23:59:59.000Z

50

Innovative techniques cut costs in wetlands drilling  

Science Conference Proceedings (OSTI)

This paper reports on an approach to drilling oil and gas wells in sensitive wetlands areas contributed to a savings of over $1.2 million on a three-well, $3 million drilling project in south Louisiana. ARCO Oil and Gas Co. drilled a three-well project in the Bayou Sale field with a truck-mounted workover rig and a modified solids-control system. This smaller equipment eliminated the need to build a large location in the marsh. Traditional drilling techniques require a large drillsite to accommodate all the equipment of a modern drilling complex. However, recently imposed environmental regulations substantially limit, and in some cases prohibit, the use of these conventional techniques for drilling wells in wetlands areas. Based on the potentially huge economic and operational impact on the drilling industry because of these stricter regulations, alternatives to these traditional practices are essential.

Navarro, A.R. (ARCO Oil and Gas Co., Lafayette, LA (US))

1991-10-14T23:59:59.000Z

51

Hoisting and Rigging: Inspection and Maintenance Requirements  

E-Print Network (OSTI)

Devices, Slings, and Rigging Hardware and Accessories (SLAC-I-730-0A21S-036) Hoisting and Rigging: PreHoisting and Rigging: Inspection and Maintenance Requirements URL: http://www-group.slac.stanford.edu/esh/eshmanual/references/hoisting Department: Field Safety and Building Inspection Program: Hoisting and Rigging Authority: ESH Manual, Chapter

Wechsler, Risa H.

52

Indonesian drilling maintains steady pace  

SciTech Connect

Offshore drilling activity in Indonesia increased nominally the first quarter of 1985 to an average 29 rigs. Barring any further problems with oil prices and markets, operators are expected to maintain essentially the current general level of appraisal/development work for the rest of this year. There are still a number of prospective regions to be explored in Southeast Asia. Regional developments are described for the South China Sea area, the Java Sea, South Sumatra, Kalimantan, Irian Jaya and the Malacca Strait.

Not Available

1985-05-01T23:59:59.000Z

53

Method for controlling directional drilling in response to horns detected by electromagnetic energy propagation resistivity measurements  

Science Conference Proceedings (OSTI)

For use in conjunction with an earth borehole drilling apparatus that includes: a drilling rig; a drill string operating from said drilling rig for drilling an earth borehole, said drill string including a bottom hole arrangement comprising a drill bit, a downhole resistivity measuring subsystem for measuring downhole formation resistivity near said bit by propagating electromagnetic energy into earth formations near said bit, receiving electromagnetic energy that has propagated through the formations and producing measurement signals that depend on the received signals; a method is described for directing the drilling of a well bore with respect to a geological bed boundary in said earth formations, comprising the steps of: producing from said measurement signals a recording of downhole formation resistivity as a function of borehole depth, determining the presence of a horn in said resistivity recording; and implementing a change in the drilling direction of said drill bit in response to said determination of the presence of a horn.

Luling, M.

1993-08-31T23:59:59.000Z

54

Practical applications of a drilling data center  

SciTech Connect

Tenneco Oil is using a real-time drilling-data acquisition, telemetry, data base, and applications-program system for Gulf of Mexico operations. The system provides for data acquisition in real time from commercially available logging units. The data are transmitted into a central office onshore via microwave or satellite telemetry links. Up to 352 drilling parameters are transmitted from each computerized logging unit and archived in the data base every 20 sec. Parameters can include measurement-while-drilling (MWD) data as well as mud-logging data. Applications programs utilizing these parameters are available in the central site data center (CSDC) and in locations throughout Tenneco's facilities in Lafayette, La. Access to the CSDC and its computing power is also available on the offshore rig. Backup surveillance of critical drilling parameters is provided through alarms and continuous monitoring of the parameters, thus providing for a safer operation. Rig efficiency has also been improved through analysis of the data and comparison of the data between various rig operations and rigs. Both tangible and intangible cost savings are discussed.

Graff, R.L.; Segrest, R.P.

1986-05-19T23:59:59.000Z

55

DOE-STD-1090-2004; Hoisting and Rigging (Formerly Hoisting and Rigging Manual)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9-2004 9-2004 12-i Chapter 12 Rigging Accessories CHAPTER 12 RIGGING ACCESSORIES This chapter provides requirements for rigging accessories used in hoisting and rigging - shackles, eyebolts, rings, wire-rope clips, turnbuckles, rigging hooks, and load-indicating devices. 12.1 GENERAL ...............................................................................................................................12-1 12.1.1 Inspections .................................................................................................................12-1 12.1.2 Testing .....................................................................................................................12-3 12.1.3 Good and Bad Rigging Practices ...............................................................................12-3

56

A Built for Purpose Micro-Hole Coiled Tubing Rig (MCTR)  

Science Conference Proceedings (OSTI)

This report will serve as the final report on the work performed from the contract period October 2005 thru April 2007. The project 'A Built for Purpose Microhole Coiled Tubing Rig (MCTR)' purpose was to upgrade an existing state-of-the-art Coiled Tubing Drilling Rig to a Microhole Coiled Tubing Rig (MCTR) capable of meeting the specifications and tasks of the Department of Energy. The individual tasks outlined to meet the Department of Energy's specifications are: (1) Concept and development of lubricator and tool deployment system; (2) Concept and development of process control and data acquisition; (3) Concept and development of safety and efficiency improvements; and (4) Final unit integration and testing. The end result of the MCTR upgrade has produced a unit capable of meeting the following requirements: (1) Capable of handling 1-inch through 2-3/8-inch coiled tubing (Currently dressed for 2-3/8-inch coiled tubing and capable of running up to 3-1/2-inch coiled tubing); (2) Capable of drilling and casing surface, intermediate, production and liner hole intervals; (3) Capable of drilling with coiled tubing and has all controls and installation piping for a top drive; (4) Rig is capable of running 7-5/8-inch range 2 casing; and (5) Capable of drilling 5,000 ft true vertical depth (TVD) and 6,000 ft true measured depth (TMD).

Bart Patton

2007-09-30T23:59:59.000Z

57

Geothermal Well Costs and their Sensitivities to Changes in Drilling and Completion Operations  

SciTech Connect

This paper presents a detailed analysis of the costs of drilling and completing geothermal wells. The basis for much of the analysis is a computer-simulation-based model which calculates and accrues operational costs involved in drilling and completing a well. Geothermal well costs are discussed in general, with special emphasis on variations among different geothermal areas in the United States, effects of escalation and inflation over the past few years, and comparisons of geothermal drilling costs with those for oil and gas wells. Cost differences between wells for direct use of geothermal energy and those for electric generation, are also indicated. In addition, a breakdown of total well cost into its components is presented. This provides an understanding of the relative contributions of different operations in drilling and completions. A major portion of the cost in many geothermal wells is from encountered troubles, such as lost circulation, cementing difficulties, and fishing. These trouble costs are considered through both specific examples and statistical treatment of drilling and completions problems. The sensitivities of well costs to variations in several drilling and completion parameters are presented. The mode1 makes it possible to easily vary parameters such as rates of penetration; bit lifetimes; bit rental, or rig costs; delay times; number of cement plugs; etc. are compared.

Carson, C. C.; Lin, Y.T.

1981-01-01T23:59:59.000Z

58

Rigs Drilling Gas Wells Are At - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The increasing number of resulting gas well completions have been expanding production in major producing States, such as Texas. For the year 2000, ...

59

PNNL Hoisting and Rigging Manual  

Science Conference Proceedings (OSTI)

This manual describes the safe and cost effective operation, inspection, maintenance, and repair requirements for cranes, hoists, fork trucks, slings, rigging hardware, and hoisting equipment. It is intended to be a user's guide to requirements, codes, laws, regulations, standards, and practices that apply to Pacific Northwest National Laboratory (PNNL) and its subcontractors.

Haynie, Todd O.; Fullmer, Michael W.

2008-12-29T23:59:59.000Z

60

HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING  

SciTech Connect

Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.

Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

2008-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hoisting and rigging manual: Uncontrolled document  

Science Conference Proceedings (OSTI)

This document is a draft copy of a Hoisting and Rigging Manual for the Department of Energy. The manual is divided into ten chapters. The chapter titles follow: terminology and definitions; operator training and qualification; overhead and gantry cranes; mobile cranes; forklift trucks; hoists; hooks; wire rope, slings, and rigging accessories; construction hoisting and rigging equipment requirements; references.

NONE

1991-05-01T23:59:59.000Z

62

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Census Division Total South...

63

Use power factor correction to cut SCR rig fuel bills  

SciTech Connect

When drilling with SCR-powered drilling rigs, there are specific instances on every well when the kVA capacity of the AC generators prohibits efficient engine loading. It then becomes necessary to run another engine-generator set to provide sufficient kVA to power the load, even though the kW required by the load can be furnished by existing engine(s) on line. The practice of running one more engine than can be fully loaded causes all engines on line to run at a less efficient point on the brake specific fuel consumption curve (BSFC) and therefore costs more in terms of engine hours, fuel and maintenance costs. This article presents a study of the load represented by the mud pump and drawworks along with a graphical representation that shows the effect of these loads on the engine generator system both with and without a power factor correction device.

Logan, R.T.

1983-09-01T23:59:59.000Z

64

Underbalanced drilling guidelines improve safety, efficiency  

Science Conference Proceedings (OSTI)

In underbalanced drilling, the primary means of well control, the hydrostatic head of the drilling fluid, is lost either unavoidably because of hole problems (such as abnormally high pressure or lost circulation) or intentionally because of economics or to prevent formation damage. Because of complications with underbalanced drilling, however, several rigs have been destroyed by fire. Operational guidelines are being developed in close cooperation with industry. The final guidelines will be consistent with the existing standards of well control practices in Alberta, yet applicable for underbalanced drilling operations world-wide. Until formal guidelines are completed in Alberta, operators interested in underbalanced drilling should work closely with the Energy Resources Conservation Board in preparing site-specific programs. Although underbalanced drilling is often associated with horizontal wells, the majority of underbalanced drilling operations in Alberta are conducted on vertical wells. The paper describes underbalanced drilling, blowout prevention, surface BOP equipment (stripper, annular pack off, rotating head, rotating BOP, coiled tubing), subsurface BOP, drilling fluids, nitrified drilling fluids, surface equipment, well-site supervision, well control equipment, and the surface handling of fluids.

Eresman, D. (Energy Resources Conservation Board, Calgary, Alberta (Canada))

1994-02-28T23:59:59.000Z

65

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Division Total West Mountain Pacific Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

66

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC13.7...

67

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC12.7...

68

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC11.7...

69

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total South Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

70

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(millions) Census Division Total West Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC14.7...

71

Hoisting & Rigging Lift Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Hoisting & Rigging Lift Plan Hoisting & Rigging Lift Plan Stanford Synchrotron Radiation Laboratory May 16, 2005 SSRL-HRLP-000-R0 Page 1 of 3 General Information Lift Plan Document # Plan prepared by: Describe the load or items to be lifted: Could the load, if dropped, release hazardous materials or radioactivity? No Yes (describe) Is the load irreplaceable or would it be very costly to replace if damaged? No Yes (describe) Brief description of lift activities (specify if rolling or flipping involved) Equipment Information Equipment ID: Equipment custodian: Rated capacity: Operator capacity : Personnel Protective Equipment (PPE) Steel-toed shoes Required for all personnel involved with lift activity to protect from crushing of feet/toes

72

Somebody better find some rigs  

SciTech Connect

The paper discusses the outlook for the gas and oil industries of the Middle East. Field development projects abound, as the larger exporting nations pursue ambitious policies of production expansion. However, their plans may be hampered by the growing worldwide shortage of rigs. Separate evaluations are given for Saudi Arabia, Kuwait, Neutral Zone, Abu Dhabi, Iran, Iraq, Qatar, Yemen, Syria, Dubai, Turkey, Sharjah, and briefly for Bahrain, Israel, Jordan, UAE-Ajman, and UAE-Ras al-Khaimah.

NONE

1997-08-01T23:59:59.000Z

73

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

74

Comparative analysis of core drilling and rotary drilling in volcanic terrane  

DOE Green Energy (OSTI)

Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr. (ed.)

1987-04-01T23:59:59.000Z

75

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

76

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

77

Scheduling Workover Rigs for Onshore Oil Production  

E-Print Network (OSTI)

available workover rigs, so as to minimize the production loss associated with the ... novic [5, 6, 7] is based on the exploration of a dynamic neighborhood model.

78

Drilling of a 2000-metre (6562-FT) Borehole for Geothermal Steam in Iceland  

DOE Green Energy (OSTI)

Drilling for geothermal heat has been carried out in Iceland since 1928, when hot water was obtained for district heating in Reykjavik. From that time, in particular in the sixties, extensive drilling has resulted in the annual utilization of 54 million tons of water and 2 million tons of steam. Five drilling rigs are used for geothermal drilling, with depth capacity ranging from 400 to 3,600 meters (1,312 to 11,812 feet). Drilling procedures vary extensively and depend on whether a high- or low-temperature field is being drilled, the main difference being the well-casing program and the blowout equipment used.

Ragnars, K.; Benediktsson, S.

1981-01-01T23:59:59.000Z

79

NEPA COMPLIANCE SURVEY Project Information Project Title: Casing Drilling Test  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Casing Drilling Test Casing Drilling Test Date: 5-17-201 1 DOE Code: 6730-020-72000 Contractor Code: 8067-806 Project Lead: Marl< Duletsky Project Overview 1, Brief project description ~nclude The existing 13-1-SX-23 location and entry road will be reworldrilling rig (SST anything that could impact the rig #3). The two existing wells on the location will be capped at ground level, and a new well will be drilled environment] using water based mud. The existing rat I mouse hole on the site will be backfilled. A new 6700 ft3 reserve pit [80' long by 30' wide by 4' deep allowing for 2' of freeboard] will be constructed on location. and a 12 mm 2. Legal location liner will be installed. 3. Duration of the project 4. Major equipment to be used

80

Scheduling workover rigs for onshore oil production  

Science Conference Proceedings (OSTI)

Many oil wells in Brazilian onshore fields rely on artificial lift methods. Maintenance services such as cleaning, reinstatement, stimulation and others are essential to these wells. These services are performed by workover rigs, which are available ... Keywords: Combinatorial optimization, Heuristics, Oil production, VNS, Workover rigs

Dario J. Aloise; Daniel Aloise; Caroline T. M. Rocha; Celso C. Ribeiro; José C. Ribeiro Filho; Luiz S. S. Moura

2006-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Operators wary: Stack that rig correctly  

SciTech Connect

This article points out that reasons for planned, scheduled preservation of offshore rigs and equipment are as varied as the owner's interest in them. As a result, no single plan or procedure can meet the requirements of every rig owner. Each rig and its equipment must be treated individually for a number of reasons. The most effective and economical rig preservation program is the result of both the owner and preservation contractor understanding all the objectives and the time frame involved. Numerous questions should be answered up front. How long will preservation measures be required. Is the rig to be maintained in an operational state. Will there be frequent trips to the rig. Will the unit be kept intact, or equipment removed as needed for operation of other rigs. Is the whole unit or any of its components for sale. Will insurance and certifications be affected by the preservation methods used. Perhaps most important is the time period. If the rig is to be stacked for an extended length of time, the owner will likely opt for ''cold,'' or inoperable, preservation. In this condition, engines are treated to protect cylinders, cooling systems and drive components in a static condition.

Moriniere, J.

1987-07-01T23:59:59.000Z

82

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

83

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

84

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

85

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

86

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

87

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

88

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

89

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

90

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

91

Continental drilling  

DOE Green Energy (OSTI)

The Workshop on Continental Drilling was convened to prepare a report for submission to the US Geodynamics Committee with respect to the contribution that could be made by land drilling to resolve major problems of geodynamics and consider the mechanisms by which the responsibility for scientific planning, establishment of priorities, administration, and budgeting for a land-drilling program within the framework of the aims of the Geodynamics Project would best be established. A new and extensive program to study the continental crust is outlined in this report. The Workshop focused on the following topics: processes in the continental crust (mechanism of faulting and earthquakes, hydrothermal systems and active magma chambers); state and structure of the continental crust (heat flow and thermal structure of the crust; state of ambient stress in the North American plate; extent, regional structure, and evolution of crystalline continental crust); short hole investigations; present state and needs of drilling technology; drill hole experimentation and instrumentation; suggestions for organization and operation of drilling project; and suggested level of effort and funding. Four recommendations are set down. 8 figures, 5 tables. (RWR)

Shoemaker, E.M. (ed.)

1975-01-01T23:59:59.000Z

92

Deep Drilling Basic Research: Volume 4 - System Description. Final Report, November 1988--August 1990  

DOE Green Energy (OSTI)

The first section of this Volume will discuss the ''Conventional Drilling System''. Today's complex arrangement of numerous interacting systems has slowly evolved from the very simple cable tool rigs used in the late 1800s. Improvements to the conventional drilling rig have varied in size and impact over the years, but the majority of them have been evolutionary modifications. Each individual change or improvement of this type does not have significant impact on drilling efficiency and economics. However, the change is almost certain to succeed, and over time--as the number of evolutionary changes to the system begin to add up--improvements in efficiency and economics can be seen. Some modifications, defined and described in this Volume as Advanced Modifications, have more than just an evolutionary effect on the conventional drilling system. Although the distinction is subtle, there are several examples of incorporated advancements that have had significantly more impact on drilling procedures than would a truly evolutionary improvement. An example of an advanced modification occurred in the late 1970s with the introduction of Polycrystalline Diamond Compact (PDC) drill bits. PDC bits resulted in a fundamental advancement in drilling procedures that could not have been accomplished by an evolutionary improvement in materials metallurgy, for example. The last drilling techniques discussed in this Volume are the ''Novel Drilling Systems''. The extent to which some of these systems have been developed varies from actually being tested in the field, to being no more than a theoretical concept. However, they all have one thing in common--their methods of rock destruction are fundamentally different from conventional drilling techniques. When a novel drilling system is introduced, it is a revolutionary modification of accepted drilling procedures and will completely replace current techniques. The most prominent example of a revolutionary modification in recent history was the complete displacement of cable tool rigs by rotary drilling rigs in the late 1920s.

Anderson, E.E.; Maurer, W.C.; Hood, M.; Cooper, G.; Cook, N.

1990-06-01T23:59:59.000Z

93

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

94

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

95

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

96

OCEAN DRILLING PROGRAM LEG 171B PRELIMINARY REPORT  

E-Print Network (OSTI)

at these adjacent holes. Well-developed ash zones in Core 136-842A-1H contain fresh glass as well as minerals of high-viscosity mud was pumped and circulated out. It was decided to trip the drill string and rig up

97

Drilling operations at the Nevada Test Site  

SciTech Connect

The Nevada Operations Office (NV) is responsible for supporting the nuclear test programs of the Los Alamos and Lawrence Livermore National Laboratories. This support includes the drilling of test holes for nuclear device testing a the Nevada Test Site (NTS). The purpose of this audit was to assess the effectiveness of the Department of Energy's management of test hole inventories at the NTS. Our audit disclosed that NV accumulated a large inventory of unused test holes and approved drilling additional holes for which neither laboratory (Los Alamos nor Livermore) had identified a need. The overdrilling of test holes occurred because NV did not comply with good inventory practices that would have had NV's approving official question the need for, and the timing of, the laboratories' drilling requests. Instead, NV gave perfunctory approval to the laboratories' work orders for drilling test holes, and emphasized keeping two drill rig crews busy and satisfying the laboratories' demands for dedicated drilling personnel. Although NV did not agree that overdrilling had occurred, it has cut back its drilling activities and estimated that this will save abut $7.6 million annually. NV agreed with the recommendations in the report and has taken corrective actions.

1990-05-29T23:59:59.000Z

98

DOE-STD-1090-2004; Hoisting and Rigging (Formerly Hoisting and Rigging Manual)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 CONSTRUCTION HOISTING AND RIGGING EQUIPMENT REQUIREMENTS 15-i Chapter 15 Construction Hoisting and Rigging Equipment Requirements This chapter outlines the requirements for the safe use of hoisting and rigging equipment on construction projects at DOE installations. 15.1 GENERAL ...............................................................................................................................15-1 15.2 PERSONNEL QUALIFICATIONS.........................................................................................15-2 15.2.1 Qualified Operators of Mobile Cranes.......................................................................15-2 15.2.2 Qualified Operators of Forklift Trucks ......................................................................15-3

99

Drilling optimization using drilling simulator software  

E-Print Network (OSTI)

Drilling operations management will face hurdles to reduce costs and increase performance, and to do this with less experience and organizational drilling capacity. A technology called Drilling Simulators Software has shown an extraordinary potential to improve the drilling performance and reduce risk and cost. Different approaches have been made to develop drilling-simulator software. The Virtual Experience Simulator, geological drilling logs, and reconstructed lithology are some of the most successful. The drilling simulations can run multiple scenarios quickly and then update plans with new data to improve the results. Its storage capacity for retaining field drilling experience and knowledge add value to the program. This research shows the results of using drilling simulator software called Drilling Optimization Simulator (DROPS®) in the evaluation of the Aloctono block, in the Pirital field, eastern Venezuela. This formation is characterized by very complex geology, containing faulted restructures, large dips, and hard and abrasive rocks. The drilling performance in this section has a strong impact in the profitability of the field. A number of simulations using geological drilling logs and the concept of the learning curve defined the optimum drilling parameters for the block. The result shows that DROPS® has the capability to simulate the drilling performance of the area with reasonable accuracy. Thus, it is possible to predict the drilling performance using different bits and the learning-curve concept to obtain optimum drilling parameters. All of these allow a comprehensive and effective cost and drilling optimization.

Salas Safe, Jose Gregorio

2003-05-01T23:59:59.000Z

100

Turnkey drilling  

SciTech Connect

The recent surge in the popularity of turnkey drilling has produced a number of questions about turnkey operations from both operators and contractors. The International Association of Drilling Contractors (IADC) has no approved turnkey contract (although several of the member districts have printed one), leaving the parties participating in a turnkey well unsure of their responsibilities and obligations. Additionally, operators are finding liens filed against turnkey wells they thought were paid for. The term turnkey itself is often misunderstood and applied to a variety of guaranteed well commitments. Some turnkeys require the contractor to provide everything from location preparation to final production pipe or plugs. Others allow contingencies for stuck pipe, lost circulation, kicks and bad storms.

Pierce, D.

1986-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Slimhole Drilling, Logging, and Completion Technology - An Update  

DOE Green Energy (OSTI)

Using slim holes (diameter < 15 cm) for geothermal exploration and small-scale power production can produce significant cost savings compared to conventional rotary-drilling methods. In addition, data obtained from slim holes can be used to lower the risks and costs associated with the drilling and completion of large-diameter geothermal wells. As a prime contractor to the U.S. Department of Energy (DOE), Sandia National Laboratories has worked with industry since 1992 to develop and promote drilling, testing, and logging technology for slim holes. This paper describes the current status of work done both in-house and contracted to industry. It focuses on drilling technology, case histories of slimhole drilling projects, data collection and rig instrumentation, and high-temperature logging tools.

FINGER,JOHN T.; JACOBSON,RONALD D.

1999-10-07T23:59:59.000Z

102

Drill string enclosure  

DOE Patents (OSTI)

The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

1993-03-02T23:59:59.000Z

103

Drill string enclosure  

DOE Patents (OSTI)

The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

Jorgensen, Douglas K. (Idaho Falls, ID); Kuhns, Douglass J. (Idaho Falls, ID); Wiersholm, Otto (Idaho Falls, ID); Miller, Timothy A. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

104

Mixed Stream Test Rig (MISTER) Startup Report  

DOE Green Energy (OSTI)

This report describes the work accomplished to date to design, procure, assemble, authorize, and startup the Mixed Stream Test Rig (MISTER) at the Idaho National Laboratory (INL). It describes the reasons for establishing this capability, physical configuration of the test equipment, operations methodology, initial success, and plans for completing the initial 1,000 hour test.

Charles Park

2011-02-01T23:59:59.000Z

105

DOE-STD-1090-99; DOE Standard Hoisting and Rigging (Formerly Hoisting and Rigging Manual)  

NLE Websites -- All DOE Office Websites (Extended Search)

TS TS INCH-POUND DOE-STD-1090-99 March 1999 Superseding DOE-STD-1090-96 September 1996 DOE STANDARD HOISTING AND RIGGING (Formerly Hoisting and Rigging Manual) U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE STANDARD HOISTING AND RIGGING (Formerly Hoisting and Rigging Manual) Summary of Changes as of March 1999

106

Handbook 1: Introduction to drilling mud systems  

Science Conference Proceedings (OSTI)

This is the first of the 11 handbook that make up the IADC Mud Equipment Manual. The manual is designed to provide information on all pieces of drilling rig equipment from the flow line to the mud pump section. This book focuses on drilling fluids and their properties and treatment, and thoroughly examines mud solid characteristics. Methods of controlling formation pore pressure, and cut points, as well as cuttings removal (viscosity, yield point, gel strengths, hole cleaning, etc.), are followed by a discussion of solid sizes and solid size distribution. Special features include a glossary of mud terms, a section on ''hard-to-find'' information such as gold concentration, wind forces, and AC motor current requirements, and a comprehensive index for all 11 handbooks.

Not Available

1985-01-01T23:59:59.000Z

107

ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG  

SciTech Connect

The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activity during this reporting period were the evaluation of syngas combustor concepts, the evaluation of test section concepts and the selection of the preferred rig configuration.

Scott Reome; Dan Davies

2004-04-30T23:59:59.000Z

108

Drilling through gas hydrates formations: possible problems and suggested solution  

E-Print Network (OSTI)

Gas hydrate research in the last two decades has taken various directions ranging from ways to understand the safe and economical production of this enormous resource to drilling problems. as more rigs and production platforms move into deeper waters to its environmental impact on global warming and cooling. Gas hydrates are ice-like structures of a water lattice with cavities, which contain guest gases. Gas hydrates are stable at low temperatures and high pressures. The amount of energy trapped in gas hydrates all over the world is about twice the amount found in all recoverable fossil fuels today. This research identifies the problems facing the oil and gas industry as it drills in deeper waters where gas hydrates are present and suggests solutions to some of the problems. The problems considered in this research have been approached from a drilling point of view. Hence, the parameters investigated and discussed are drilling controlled parameters. They include rate of penetration, circulation rate and drilling fluid density. The rate of penetration in offshore wells contributes largely to the final cost of the drilling process. These 3 parameters have been linked in the course of this research in order to suggest an optimum rate of penetration. The results show the rate of penetration is directly proportional to the amount of gas released when drilling through gas hydrate. As the volume of gas released increases, the problems facing the drilling rigs, drilling crew and environment is seen to increase. The results also show the extent of risk to be expected while drilling through gas hydrate formations. A chart relating the rate of penetration, circulation rate and effective mud weight was used to select the optimum drilling rate within the drilling safety window. Finally, future considerations and recommendations in order to improve the analyses presented in this work are presented. Other drilling parameters proposed for future analysis include drill bit analysis with respect to heat transfer and the impact of dissociation of gas hydrate around the wellbore and seafloor stability.

Amodu, Afolabi Ayoola

2008-08-01T23:59:59.000Z

109

DOE-STD-1090-2007; Hoisting and Rigging Standard (Formerly Hoisting and Rigging Manual)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 CONSTRUCTION HOISTING AND RIGGING EQUIPMENT REQUIREMENTS 15-i This chapter outlines the requirements for the safe use of hoisting and rigging equipment on construction projects at DOE installations. 15.1 GENERAL ...............................................................................................................................15-1 15.2 PERSONNEL QUALIFICATIONS.........................................................................................15-2 15.2.1 Qualified Operators of Mobile Cranes.......................................................................15-2 15.2.2 Qualified Operators of Forklift Trucks ......................................................................15-3 15.2.3 Qualified Riggers .......................................................................................................15-4

110

DOE-STD-1090-2004; Hoisting and Rigging (Formerly Hoisting and Rigging Manual)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 LOAD HOOKS 13-i Chapter 13 Load Hooks This chapter provides safety standards for the inspection, testing, and maintenance of load hooks installed on cranes or hoists and implements the requirements of ASME B30.10, Chapter 10-1, "Hooks." See Chapter 12, "Rigging Accessories," for rigging hook requirements. 13.1 GENERAL ...............................................................................................................................13-1 13.1.1 Marking......................................................................................................................13-1 13.1.2 Attachments ...............................................................................................................13-1

111

Investigation of the feasibility of deep microborehole drilling  

Science Conference Proceedings (OSTI)

Recent advances in sensor technology, microelectronics, and telemetry technology make it feasible to produce miniature wellbore logging tools and instrumentation. Microboreholes are proposed for subterranean telemetry installations, exploration, reservoir definition, and reservoir monitoring this assumes that very small diameter bores can be produced for significantly lower cost using very small rigs. A microborehole production concept based on small diameter hydraulic or pneumatic powered mechanical drilling, assemblies deployed on coiled tubing is introduced. The concept is evaluated using, basic mechanics and hydraulics, published theories on rock drilling, and commercial simulations. Small commercial drill bits and hydraulic motors were selected for laboratory scale demonstrations. The feasibility of drilling deep, directional, one to two-inch diameter microboreholes has not been challenged by the results to date. Shallow field testing of prototype systems is needed to continue the feasibility investigation.

Dreesen, D.S. [Los Alamos National Lab., NM (United States); Cohen, J.H. [Maurer Engineering, Inc., Houston, TX (United States)

1997-01-01T23:59:59.000Z

112

Hoisting and Rigging: Pre-use Inspection Criteria for Below-the-Hook Lifting Devices, Slings, and Rigging  

E-Print Network (OSTI)

, and Rigging Hardware and Accessories URL: http://www-group.slac.stanford.edu/esh/eshmanual/references/hoistingHoisting and Rigging: Pre-use Inspection Criteria for Below-the-Hook Lifting Devices, Slings Department: Field Safety and Building Inspection Program: Hoisting and Rigging Authority: ESH Manual, Chapter

Wechsler, Risa H.

113

Optimizing drilling performance using a selected drilling fluid  

DOE Patents (OSTI)

To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)

2011-04-19T23:59:59.000Z

114

Advanced Mud System for Microhole Coiled Tubing Drilling  

Science Conference Proceedings (OSTI)

An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

Kenneth Oglesby

2008-12-01T23:59:59.000Z

115

Field Testing of Environmentally Friendly Drilling System  

SciTech Connect

The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

David Burnett

2009-05-31T23:59:59.000Z

116

Advanced Drilling through Diagnostics-White-Drilling  

DOE Green Energy (OSTI)

A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional drilling costs; and downhole weight-on-bit and drilling torque for diagnosing drill bit performance. In general, any measurement that could shed light on the downhole environment would give us a better understanding of the drilling process and reduce drilling costs.

FINGER,JOHN T.; GLOWKA,DAVID ANTHONY; LIVESAY,BILLY JOE; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.

1999-10-07T23:59:59.000Z

117

Drill string enclosure  

DOE Patents (OSTI)

This invention is comprised of a drill string enclosure which consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

1992-12-31T23:59:59.000Z

118

Geothermal drilling technology update  

DOE Green Energy (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

119

Drilling for energy resources  

DOE Green Energy (OSTI)

Drilling is integral to the exploration, development, and production of most energy resources. Oil and natural gas, which are dependent on drilling technology, together account for about 77% of the energy sources consumed in the US. Thus, the limitations of current drilling technology also restrict the rate at which new energy supplies can be found, extracted, and brought to the marketplace. The purpose of the study reported was to examine current drilling technology, suggest areas where additional research and development (R and D) might significantly increase drilling rates and capabilities, and suggest a strategy for improving drilling technology. An overview is provided of the US drilling industry. The drilling equipment and techniques now used for finding and recovering oil, natural gas, coal, shale oil, nuclear fuels, and geothermal energy are described. Although by no means exhaustive, these descriptions provide the background necessary to adequately understand the problems inherent in attempts to increase instantaneous and overall drilling rates.

Not Available

1976-01-01T23:59:59.000Z

120

Navigation drilling technology progresses  

SciTech Connect

This article reports that navigation drilling - an approach that combines advanced drill bit, downhole motor, measurement-while-drilling, and well planning technology into an integrated, steerable drilling system - has reduced drilling time for operating companies worldwide. A major operating advantage of navigation drilling is the ability to drill both straight and directional intervals with a single assembly. In conventional directional drilling, a bent sub and downhole motor (or a bent housing motor) are used to initiate kick-offs and make course corrections. The bent sub is made-up above the motor, tilting the motor's axis 1 to 3 degrees compared to the axis of the drill string. The assembly toolface can be aligned in the desired direction with a single-shot, a steering tool or an MWD system.

Bayne, R.

1986-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Properly designed underbalanced drilling fluids can limit formation damage  

Science Conference Proceedings (OSTI)

Drilling fluids for underbalanced operations require careful design and testing to ensure they do not damage sensitive formations. In addition to hole cleaning and lubrication functions, these fluids may be needed as kill fluids during emergencies. PanCanadian Petroleum Ltd. used a systematic approach in developing and field testing a nondamaging drilling fluid. It was for use in underbalanced operations in the Glauconitic sandstone in the Westerose gas field in Alberta. A lab study was initiated to develop and test a non-damaging water-based drilling fluid for the horizontal well pilot project. The need to develop an inexpensive, nondamaging drilling fluid was previously identified during underbalanced drilling operations in the Weyburn field in southeastern Saskatchewan. A non-damaging fluid is required for hole cleaning, for lubrication of the mud motor, and for use as a kill fluid during emergencies. In addition, a nondamaging fluid is required when drilling with a conventional rig because pressure surges during connections and trips may result in the well being exposed to short periods of near balanced or overbalanced conditions. Without the protection of a filter cake, the drilling fluid will leak off into the formation, causing damage. The amount of damage is related to the rate of leak off and depth of invasion, which are directly proportional to the permeability to the fluid.

Churcher, P.L.; Yurkiw, F.J. [PanCanadian Petroleum Ltd., Calgary, Alberta (Canada); Bietz, R.F.; Bennion, D.B. [Hycal Energy Research Ltd., Calgary, Alberta (Canada)

1996-04-29T23:59:59.000Z

122

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

123

Well drilling apparatus and method  

DOE Patents (OSTI)

Well drilling rates may be increased by impelling projectiles to fracture rock formations and drilling with rock drill bits through the projectile fractured rock.

Alvis, Robert L. (Albuquerque, NM); Newsom, Melvin M. (Albuquerque, NM)

1977-01-01T23:59:59.000Z

124

Surveillance Guide - CPS 8.1 Hoisting and Rigging  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HOISTING AND RIGGING HOISTING AND RIGGING 1.0 Objective The objective of this surveillance is to examine hoisting and rigging operations to ensure that safe equipment and work practices are being used. The surveillance includes verification that hoisting and rigging work is performed in accordance with DOE requirements and best practices. 2.0 References 2.1 DOE O 440.1A, Worker Protection Management For Doe Federal And Contractor Employees 2.2 DOE-RL-92-36, Hanford Site Hoisting and Rigging Manual NOTE The DOE Hoisting and Rigging Manual should be used as the primary reference for this surveillance. 1 3.0 Requirements Implemented This surveillance is conducted to implement the RL Functions, Responsibilities, and Authorities Manual (FRAM) item No. 2504. 4.0 Surveillance Activities

125

MHK Technologies/Ocean Energy Rig | Open Energy Information  

Open Energy Info (EERE)

Rig Rig < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Energy Rig.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Energy Rig is a hybrid concept harnessing tidal stream with increased velocity from venturi system wave and wind power The rig also uses solar panels to power computers and warning lights Other unique features include a water ballasting system with automatic self levelling and wave ramps to maximize FreeFlow 69 s new wave power device It is envisaged that the Ocean Energy Rig would be assembled and maintained in dry docks and would be towed out into position before being semi submerged and anchored for operation Power output of the production model would be at least 10MW

126

Drill string gas data  

DOE Green Energy (OSTI)

Data and supporting documentation were compiled and analyzed for 26 cases of gas grab samples taken during waste-tank core sampling activities between September 1, 1995 and December 31, 1997. These cases were tested against specific criteria to reduce uncertainties associated with in-tank sampling location and conditions. Of the 26 possible cases, 16 qualified as drill-string grab samples most likely to represent recently released waste gases. The data from these 16 ``confirmed`` cases were adjusted to remove non-waste gas contributions from core-sampling activities (argon or nitrogen purge), the atmospheric background, and laboratory sampler preparation (helium). The procedure for subtracting atmospheric, laboratory, and argon purge gases was unambiguous. No reliable method for determining the exact amount of nitrogen purge gas was established. Thus, the final set of ``Adjusted`` drill string gas data for the 6 nitrogen-purged cases had a greater degree of uncertainty than the final results for the 10 argon-purged cases. Including the appropriate amounts of uncertainty, this final set of data was added to the set of high-quality results from the Retained Gas Sampler (RGS), and good agreement was found for the N{sub 2}, H{sub 2}, and N{sub 2}O mole fractions sampled from common tanks. These results indicate that under favorable sampling conditions, Drill-String (DS) grab samples can provide reasonably accurate information about the dominant species of released gas. One conclusion from this set of total gas data is that the distribution of the H{sub 2} mole fractions is bimodal in shape, with an upper bound of 78%.

Siciliano, E.R.

1998-05-12T23:59:59.000Z

127

DRILLED HYDROTHERMAL ENERGY Drilling for seawater  

E-Print Network (OSTI)

technologies to obtain thermal energy (and other benefits) from a large body of water #12;Microgrid Customer ENERGY : Underground Technologies #12;#12;Microgrid Customer Facilities Drilled Hydrothermal Energy Plant;#12;Microgrid Customer Facilities Drilled Hydrothermal Energy Plant Cooling Power Biofuel / H2 Fresh Water

128

Optimization Online - Scheduling Workover Rigs for Onshore Oil ...  

E-Print Network (OSTI)

Oct 12, 2003 ... Scheduling Workover Rigs for Onshore Oil Production. Dario Aloise (dario ***at** * dimap.ufrn.br) Daniel Aloise (aloise ***at*** inf.puc-rio.br)

129

Drilling Fluid Corrosion  

Science Conference Proceedings (OSTI)

Table 8   Drilling fluid corrosion control troubleshooting chart...Table 8 Drilling fluid corrosion control troubleshooting chart Corrosion cause Primary source Identification Major corrosion forms Remedies Oxygen Atmosphere, mud conditioning, equipment, oxidizing

130

Hydromechanical drilling device  

DOE Patents (OSTI)

A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

Summers, David A. (Rolla, MO)

1978-01-01T23:59:59.000Z

131

HydroPulse Drilling  

Science Conference Proceedings (OSTI)

Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

J.J. Kolle

2004-04-01T23:59:59.000Z

132

Advanced Seismic While Drilling System  

SciTech Connect

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30T23:59:59.000Z

133

EIA Corrects Errors in Its Drilling Activity Estimates Series  

U.S. Energy Information Administration (EIA)

gas and oil wells relative to total wells, improved greatly as early as 1986 as seen in the revised drilling statistics. The prior well data series did

134

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

135

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

136

Challenges of deep drilling  

SciTech Connect

Deep drilling poses major problems when high temperatures, high pressures, and acid gases are encountered. A combination of these items usually requires extensive planning, exotic materials, long drilling times, and heavy expenditures. Only 2 wells have been drilled below 30,000 ft in the US, the deeper a 31,441-ft hole in 1974. The deepest well in the world is reported to be in the Soviet Union, recently drilled below 34,895 ft, with a target depth of 15,000 m (49,212 ft). A review of current deep drilling technology and its capabilities is given.

Chadwick, C.E.

1981-07-01T23:59:59.000Z

137

Design and construction of rigs for studying surface condensation and creating anodized metal oxide surfaces  

E-Print Network (OSTI)

This thesis details the design and construction of a rig for studying surface condensation and a rig for creating anodized metal oxides (AMOs). The condensation rig characterizes condensation for different surfaces; this ...

Sun, Wei-Yang

2011-01-01T23:59:59.000Z

138

C:\Documents and Settings\jhr\My Documents\C_drive\RIGS\users 2013\rigs_usersApril2013.vp  

Gasoline and Diesel Fuel Update (EIA)

23 23 Reserves Information Gathering System (RIGS) User's Guide Version 2013 For Report Year 2012 Energy Information Administration U.S. Department of Energy April 2013 Form EIA-23 Reserves Information Gathering System (RIGS) User's Guide April 2013 EIA-23 Reserves Information Gathering System (RIGS) User's Guide Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Hardware / Software Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Installing the RIGS Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Installation Error Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Using the EIA-23 Reserves Information Gathering System (RIGS) System . . . . . . . . . . . . . . . . . 4 Initial Data Import from Last Year's RIGS Submission File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 The RIGS Main Menu Screen.

139

Advanced Hot Section Materials and Coatings Test Rig  

SciTech Connect

The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activities during this reporting period were the continuation of test section detail design and developing specifications for auxiliary systems and facilities.

Dan Davies

2004-10-30T23:59:59.000Z

140

Development of a portable grain mass flow sensor test rig  

Science Conference Proceedings (OSTI)

A portable grain mass flow sensor test rig was built to measure the accuracy of a mass flow sensor with dual use in the field as well as in the lab. Concurrently, a synchronization method was developed that employs GPS timing data to synchronize the ... Keywords: Mass flow sensor, Test rig, Yield monitor accuracy, Yield monitor error

M. Loghavi; R. Ehsani; R. Reeder

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CRAD, Hoisting & Rigging Assessment Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hoisting & Rigging Assessment Plan Hoisting & Rigging Assessment Plan CRAD, Hoisting & Rigging Assessment Plan Performance Objective: To determine that hoisting and rigging operations are conducted according to "industry best standards" for increasing equipment reliability while assuring worker safety, and to verify issues being addressed in BN Hoisting assessment. Criteria: Lifts are identified and categorized appropriately for scheduled maintenance. DOE-STD-1090-2001 An integrated process ensures safety issues are identified and controls established. DOE-STD-1090-2001 Personnel operating and maintaining the hoisting equipment are trained; they understand their roles and responsibilities. DOE-STD-1090-2001 Maintenance conducts safety inspections of hoisting and rigging equipment on a scheduled basis, certifying that safe operations are in

142

Advanced Hot Section Materials and Coatings Test Rig  

DOE Green Energy (OSTI)

Phase I of the Hyperbaric Advanced Hot Section Materials & Coating Test Rig Program has been successfully completed. Florida Turbine Technologies has designed and planned the implementation of a laboratory rig capable of simulating the hot gas path conditions of coal gas fired industrial gas turbine engines. Potential uses of this rig include investigations into environmental attack of turbine materials and coatings exposed to syngas, erosion, and thermal-mechanical fatigue. The principle activities during Phase 1 of this project included providing several conceptual designs for the test section, evaluating various syngas-fueled rig combustor concepts, comparing the various test section concepts and then selecting a configuration for detail design. Conceptual definition and requirements of auxiliary systems and facilities were also prepared. Implementation planning also progressed, with schedules prepared and future project milestones defined. The results of these tasks continue to show rig feasibility, both technically and economically.

Dan Davis

2006-09-30T23:59:59.000Z

143

Advanced drilling systems study  

DOE Green Energy (OSTI)

This work was initiated as part of the National Advanced Drilling and Excavation Technologies (NADET) Program. It is being performed through joint finding from the Department of Energy Geothermal Division and the Natural Gas Technology Branch, Morgantown Energy Technology Center. Interest in advanced drilling systems is high. The Geothermal Division of the Department of Energy has initiated a multi-year effort in the development of advanced drilling systems; the National Research Council completed a study of drilling and excavation technologies last year; and the MIT Energy Laboratory recently submitted a proposal for a national initiative in advanced drilling and excavation research. The primary reasons for this interest are financial. Worldwide expenditures on oil and gas drilling approach $75 billion per year. Also, drilling and well completion account for 25% to 50% of the cost of producing electricity from geothermal energy. There is incentive to search for methods to reduce the cost of drilling. Work on ideas to improve or replace rotary drilling technology dates back at least to the 1930`s. There was a significant amount of work in this area in the 1960`s and 1970`s; and there has been some continued effort through the 1980`s. Undoubtedly there are concepts for advanced drilling systems that have yet to be studied; however, it is almost certain that new efforts to initiate work on advanced drilling systems will build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems provide the basis for the current study of advanced drilling.

Pierce, K.G. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, San Diego, CA (United States)

1995-03-01T23:59:59.000Z

144

Hoisting & Rigging ISMS Assessment Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Objective: Assess the institutional and department/division hoisting and Objective: Assess the institutional and department/division hoisting and rigging (including forklift, overhead cranes small hoists, and mobile cranes) requirements, policies, procedures, and work practices for both professional and incidental activities. Review the roles and responsibilities of line managers, support personnel and workers who are involved in these activities as well as the adequacy of compliance with institutional and/or Department/Division qualifications, training requirements, and inspection requirements. Assess the laboratory's process for understanding the causes and development of effective corrective actions for incidents/accidents. Review the roles and responsibilities of line managers, support personnel and workers who are involved in the

145

Hoisting & Rigging ISMS Assessment Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Objective: Assess the institutional and department/division hoisting and Objective: Assess the institutional and department/division hoisting and rigging (including forklift, overhead cranes small hoists, and mobile cranes) requirements, policies, procedures, and work practices for both professional and incidental activities. Review the roles and responsibilities of line managers, support personnel and workers who are involved in these activities as well as the adequacy of compliance with institutional and/or Department/Division qualifications, training requirements, and inspection requirements. Assess the laboratory's process for understanding the causes and development of effective corrective actions for incidents/accidents. Review the roles and responsibilities of line managers, support personnel and workers who are involved in the

146

DOE-STD-1090-2004; Hoisting and Rigging (Formerly Hoisting and Rigging Manual)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11-i Chapter 11 11-i Chapter 11 Wire Rope and Slings CHAPTER 11 WIRE ROPE AND SLINGS This chapter provides requirements for the fabrication and use of wire rope and slings used in hoisting and rigging. 11.1 GENERAL ...............................................................................................................................11-1 11.2 WIRE ROPE ............................................................................................................................11-4 11.2.1 Wire-Rope Lays.........................................................................................................11-4 11.2.2 Wire-Rope Cores .......................................................................................................11-4 11.2.3 Wire Rope for General Purposes

147

DOE-STD-1090-2004; Hoisting and Rigging (Formerly Hoisting and Rigging Manual)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 HOSTILE ENVIRONMENTS 5-i Chapter 5 Hostile Environments This chapter describes provisions for hoisting and rigging operations in hostile work environments. 5.1 GENERAL................................................................................................................................5-1 5.2 HOSTILE ENVIRONMENT PLAN ......................................................................................5-2 5.2.1 Marking and Posting ....................................................................................................5-2 5.2.2 Inspection and Testing .................................................................................................5-2 EXHIBIT I Hostile Environment Plan ............................................................................................5-3

148

DOE-STD-1090-2007; Hoisting and Rigging Standard (Formerly Hoisting and Rigging Manual)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 HOSTILE ENVIRONMENTS 5-i Chapter 5 Hostile Environments This chapter describes provisions for hoisting and rigging operations in hostile work environments. 5.1 GENERAL ................................................................................................................................5-1 5.2 HOSTILE ENVIRONMENT PLAN ......................................................................................5-2 5.2.1 Marking and Posting ....................................................................................................5-2 5.2.2 Inspection and Testing .................................................................................................5-2 EXHIBIT I Hostile Environment Plan ............................................................................................5-3

149

Method of deep drilling  

DOE Patents (OSTI)

Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

1984-01-01T23:59:59.000Z

150

Remote drill bit loader  

DOE Patents (OSTI)

A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. In typical remote drilling operations, whether in hot cells or water pits, drill bits have been held using a collet or end mill type holder with set screws. In either case, to load or change a drill bit required the use master-slave manipulators to position the bits and tighten the collet or set screws. This requirement eliminated many otherwise useful work areas because they were not equipped with slaves, particularly in water pits.

Dokos, J.A.

1996-12-31T23:59:59.000Z

151

Geothermal Drilling Organization  

DOE Green Energy (OSTI)

The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

Sattler, A.R.

1999-07-07T23:59:59.000Z

152

Drill Press Speed Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

operating speeds (RPM) Accessory Softwood (Pine) Hardwood (Hard Maple) Acrylic Brass Aluminum Steel Shop Notes Twist drill bits 116" - 316" 14" - 38" 716"- 58" 11...

153

Drilling motor deviation tool  

Science Conference Proceedings (OSTI)

An extension for a down hole drilling motor is described, which adapts the motor for selective configuration for straight hole drilling or directional drilling, selectively. It consists of: an elongated generally tubular body, adapted at a first end to rigidly attach to the lower end of a down hole drilling motor housing, the body having an opening extending along the general centerline of the body; fluid channel means situated in the opening to conduct drilling fluid from the motor fluid output means to a downwardly continuing drill string element; output shaft means situated in the body and extending from a second end of the body, the output shaft adapted at the extended extreme for attachment to a downwardly continuing drill string element; selector valve means situated in the body, operatively associated with drilling fluid channels in the body, responsive to drilling fluid flow to produce a first output signal in response to fluid flow manipulations having a first characteristic and to produce a second output signal in response to fluid flow manipulations having a second characteristic; and driveshaft connector means in the opening, operatively associated with the output shaft of the motor and the output shaft means to connect the two for sympathetic rotation.

Falgout, T.E.; Schoeffler, W.N.

1989-03-14T23:59:59.000Z

154

Managed Pressure Drilling Candidate Selection  

E-Print Network (OSTI)

Managed Pressure Drilling now at the pinnacle of the 'Oil Well Drilling' evolution tree, has itself been coined in 2003. It is an umbrella term for a few new drilling techniques and some preexisting drilling techniques, all of them aiming to solve several drilling problems, including non-productive time and/or drilling flat time issues. These techniques, now sub-classifications of Managed Pressure Drilling, are referred to as 'Variations' and 'Methods' of Managed Pressure Drilling. Although using Managed Pressure Drilling for drilling wells has several benefits, not all wells that seem a potential candidate for Managed Pressure Drilling, need Managed Pressure Drilling. The drilling industry has numerous simulators and software models to perform drilling hydraulics calculations and simulations. Most of them are designed for conventional well hydraulics, while some can perform Underbalanced Drilling calculations, and a select few can perform Managed Pressure Drilling calculations. Most of the few available Managed Pressure Drilling models are modified Underbalanced Drilling versions that fit Managed Pressure Drilling needs. However, none of them focus on Managed Pressure Drilling and its candidate selection alone. An 'Managed Pressure Drilling Candidate Selection Model and software' that can act as a preliminary screen to determine the utility of Managed Pressure Drilling for potential candidate wells are developed as a part of this research dissertation. The model and a flow diagram identify the key steps in candidate selection. The software performs the basic hydraulic calculations and provides useful results in the form of tables, plots and graphs that would help in making better engineering decisions. An additional Managed Pressure Drilling worldwide wells database with basic information on a few Managed Pressure Drilling projects has also been compiled that can act as a basic guide on the Managed Pressure Drilling variation and project frequencies and aid in Managed Pressure Drilling candidate selection.

Nauduri, Anantha S.

2009-05-01T23:59:59.000Z

155

Reducing the risk, complexity and cost of coiled tubing drilling  

Science Conference Proceedings (OSTI)

Drilling vertical well extensions with coiled tubing, particularly in the underbalanced state, exploits the inherent strengths of coiled tubing including: The ability to enter slim holes against a live well head; The use of small equipment that is fast to rig up and down; and The ability to trip quickly and maintain a steady pressure downhole with continuous circulation. Coiled tubing has successfully been used to deepen hundreds of wells, yet this application has only received sporadic attention. There are some very important technical considerations when drilling non-directionally with coiled tubing that must be addressed to ensure a commercially successful job. A recent vertical drilling job carried out in Western Australia illustrates the critical engineering aspects of an underbalanced, non-directional, coiled tubing drilling job. This job was completed for Arc Energy in April 1999 and produced a well that stabilized at 1.1 MMcfd, where three other wells drilled conventionally into these zones had shown only trace amounts of hydrocarbon.

Portman, L. [BJ Services, Houston, TX (United States)

1999-07-01T23:59:59.000Z

156

Computers aid drilling planning  

Science Conference Proceedings (OSTI)

This article reports that computers are rapidly becoming an indispensable tool for the drilling engineer both in town and at the wellsite. Two factors have contributed to the sudden increase in their use. The first is the need to cut drilling costs. Engineers have been forced to take a more critical look at plans and past experience. The second is the falling price (and increased portability) of hardware and software. Several major operators have demonstrated that careful planning of drilling operations based on local knowledge and data from offset wells can reduce the drilling learning curve substantially. Computers make it possible to retrieve and process offset well data rapidly and efficiently. They also offer powerful mathematical models which describe complicated aspects of drilling.

Burgess, T.

1986-11-01T23:59:59.000Z

157

Advanced drilling systems  

DOE Green Energy (OSTI)

Drilling is ubiquitous in oil, gas, geothermal, minerals, water well, and mining industries. Drilling and well completion account for 25% to 50% of the cost of producing power from geothermal energy. Reduced drilling costs will reduce the cost of electricity produced from geothermal resources. Undoubtedly, there are concepts for advanced drilling systems that have yet to be studied. However, the breadth and depth of previous efforts in this area almost guarantee that any new efforts will at least initially build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts, coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems, provide the basis for this study.

Pierce, K.G.; Finger, J.T. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, San Diego, CA (United States)

1995-12-31T23:59:59.000Z

158

Advanced drilling systems study.  

Science Conference Proceedings (OSTI)

This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

1996-05-01T23:59:59.000Z

159

EIA-23L Reserves Information Gathering System (RIGS)  

Gasoline and Diesel Fuel Update (EIA)

EIA-23L Reserves Information Gathering System (RIGS) EIA-23L Reserves Information Gathering System (RIGS) Released: April 16, 2013 Background The Form EIA-23L, "Annual Survey of Domestic Oil and Gas Reserves, " is used to collect data on reserves of crude oil, natural gas, and natural gas liquids. These data are used to develop national and regional estimates of proved reserves of domestic crude oil, natural gas, and natural gas liquids, and to facilitate national energy policy decisions. Reporting on the Form EIA-23L is mandatory. Reserves Information Gathering System The Form EIA-23L Reserves Information Gathering System (RIGS), provides respondents with an efficient and effective means for filing the form using a personal computer (PC). Hardware / Software Requirements The minimum hardware requirements needed to install and use RIGS are:

160

Hoisting & Rigging Assessment Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hoisting & Rigging Assessment Form Hoisting & Rigging Assessment Form Hoisting & Rigging Assessment Form Assess the institutional and department/division hoisting and rigging (including forklift, overhead cranes small hoists, and mobile cranes) requirements, policies, procedures, and work practices for both professional and incidental activities. Review the roles and responsibilities of line managers, support personnel and workers who are involved in these activities as well as the adequacy of compliance with institutional and/or Department/Division qualifications, training requirements, and inspection requirements. Assess the laboratory's process for understanding the causes and development of effective corrective actions for incidents/accidents. Review the roles and responsibilities of line managers, support personnel and workers who are

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Guidelines for Using Synthetic Slings for Lifting and Rigging  

Science Conference Proceedings (OSTI)

"Guidelines for Using Synthetic Slings for Lifting and Rigging" provides nuclear and fossil maintenance personnel with information on the use of synthetic slings. This information will assist personnel in the identification, protection, and inspection of synthetic slings.

2003-02-10T23:59:59.000Z

162

Drill drive mechanism  

DOE Patents (OSTI)

A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

Dressel, Michael O. (Englewood, CO)

1979-01-01T23:59:59.000Z

163

ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG  

SciTech Connect

The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program initiated this quarter, provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principle activity during this first reporting period were preparing for and conducting a project kick-off meeting, working through plans for the project implementation, and beginning the conceptual design of the test section.

Scott Reome; Dan Davies

2004-01-01T23:59:59.000Z

164

DOE-STD-1090-2004; Hoisting and Rigging (Formerly Hoisting and Rigging Manual)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

APPENDIX A PROCUREMENT GUIDELINES A-1 Appendix A Procurement Guidelines This appendix provides reference guidance in preparing purchase requisitions for hoisting and rigging materials and equipment. Nationally recognized standards and specifications are referenced for listed items. However, caution should be used prior to procurement of special items in order to verify appropriate specification or standard reference and requirements. Some specific requirements listed in this appendix are more restrictive than consensus standard requirements, but are recommended to ensure materials of adequate quality and workmanship are provided. Quality receipt inspections should be provided for all received materials in order to verify compliance of all

165

DOE-STD-1090-2007; Hoisting and Rigging Standard (Formerly Hoisting and Rigging Manual)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

APPENDIX A APPENDIX A PROCUREMENT GUIDELINES A-i Appendix A Procurement Guidelines This appendix provides reference guidance in preparing purchase requisitions for hoisting and rigging materials and equipment. Nationally recognized standards and specifications are referenced for listed items. However, caution should be used prior to procurement of special items in order to verify appropriate specification or standard reference and requirements. Some specific requirements listed in this appendix are more restrictive than consensus standard requirements, but are recommended to ensure materials of adequate quality and workmanship are provided. Quality receipt inspections should be provided for all received materials in order to verify compliance of all

166

DOE-STD-1090-2004; Hoisting and Rigging (Formerly Hoisting and Rigging Manual)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TERMINOLOGY AND DEFINITIONS 1-1 Chapter 1 Terminology and Definitions The following are specialized terms commonly used when discussing hoisting and rigging operations. Many may not be used in this standard, but are included for general information. The terms are arranged in alphabetical order. Illustrations are included for clarity. ABRASION: Surface wear. ACCELERATION STRESS: Additional stress imposed due to increasing load velocity. ALTERNATE LAY: Lay of wire rope in which the strands are alternately regular and lang lay. ANSI: American National Standards Institute. APPOINTED: Assigned specific responsibilities by the employer or the employer's representative. AREA, METALLIC: Sum of the cross- sectional areas of individual wires in a wire rope

167

DOE-STD-1090-2007; Hoisting and Rigging Standard (Formerly Hoisting and Rigging Manual)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TERMINOLOGY AND DEFINITIONS 1-1 Chapter 1 Terminology and Definitions The following are specialized terms commonly used when discussing hoisting and rigging operations. Many may not be used in this standard, but are included for general information. The terms are arranged in alphabetical order. Illustrations are included for clarity. ABRASION: Surface wear. ACCELERATION STRESS: Additional stress imposed due to increasing load velocity. ALTERNATE LAY: Lay of wire rope in which the strands are alternately regular and lang lay. ANSI: American National Standards Institute. APPOINTED: Assigned specific responsibilities by the employer or the employer's representative. AREA, METALLIC: Sum of the cross- sectional areas of individual wires in a wire rope

168

Noble Drilling DRILLING, COMPLETION AND STIMULATION PROGRAM  

E-Print Network (OSTI)

Friendly Drilling Systems" Environmental issues are a significant part of every energy industry endeavor challenges facing the energy industry but also the considerable resources of the University and industry Petroleum and other industry sponsors from the Global Petroleum Research Institute (GPRI) to identify

169

Drilling Waste Management Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

The Drilling Waste Management Information System is an online resource for technical and regulatory information on practices for managing drilling muds and cuttings, including...

170

Drilling Waste Management Technology Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

skip navigation Drilling Waste Management Information System: The information resource for better management of drilling wastes DWM Logo Search Search you are in this section...

171

Shallow horizontal drilling in unconsolidated sands offshore California  

SciTech Connect

Four shallow horizontal wells were drilled from Platform C in Dos Cuadras field offshore California to recover reserves inaccessible with conventional drilling techniques. The wells had true vertical depths (TVD's) ranging from 746 to 989 ft with total horizontal displacements from 1,613 to 3,788 ft. The wells had horizontal displacement TVD ratios up to 3.95. The targets were unconsolidated, high-permeability sands. This paper details well planning, drilling, and completion.

Payne, J.D.; Bunyak, M.J. (Unocal Corp., Los Angeles, CA (United States)); Huston, C.W. (Smith International Inc., Tyler, TX (United States))

1993-12-01T23:59:59.000Z

172

Geothermal wells: a forecast of drilling activity  

DOE Green Energy (OSTI)

Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

Brown, G.L.; Mansure, A.J.; Miewald, J.N.

1981-07-01T23:59:59.000Z

173

Drilling Waste Management Fact Sheet: Drilling Practices That Minimize  

NLE Websites -- All DOE Office Websites (Extended Search)

Drilling Practices Drilling Practices Fact Sheet - Drilling Practices That Minimize Generation of Drilling Wastes How Are Wells Typically Drilled? The conventional process of drilling oil and gas wells uses a rotary drill bit that is lubricated by drilling fluids or muds. As the drill bit grinds downward through the rock layers, it generates large amounts of ground-up rock known as drill cuttings. This section of the Drilling Waste Management Information System website discusses several alternative drilling practices that result in a lower volume of waste being generated. Oil and gas wells are constructed with multiple layers of pipe known as casing. Traditional wells are not drilled from top to bottom at the same diameter but rather in a series of progressively smaller-diameter intervals. The top interval is drilled starting at the surface and has the largest diameter hole. Drill bits are available in many sizes to drill different diameter holes. The hole diameter can be 20" or larger for the uppermost sections of the well, followed by different combinations of progressively smaller diameters. Some of the common hole diameters are: 17.5", 14.75", 12.25", 8.5", 7.875", and 6.5".

174

Drill pipe protector development  

DOE Green Energy (OSTI)

The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.

Thomerson, C.; Kenne, R. [Regal International Corp., Corsicanna, TX (United States); Wemple, R.P. [Sandia National Lab., Albuquerque, NM (United States)] [ed.] [and others

1996-03-01T23:59:59.000Z

175

Subsurface drill string  

DOE Patents (OSTI)

A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

Casper, William L. (Rigby, ID); Clark, Don T. (Idaho Falls, ID); Grover, Blair K. (Idaho Falls, ID); Mathewson, Rodney O. (Idaho Falls, ID); Seymour, Craig A. (Idaho Falls, ID)

2008-10-07T23:59:59.000Z

176

Update on slimhole drilling  

DOE Green Energy (OSTI)

Sandia National Laboratories manages the US Department of Energy program for slimhole drilling. The principal objective of this program is to expand proven geothermal reserves through increased exploration made possible by lower-cost slimhole drilling. For this to be a valid exploration method, however, it is necessary to demonstrate that slimholes yield enough data to evaluate a geothermal reservoir, and that is the focus of Sandia`s current research.

Finger, J.T.

1996-01-01T23:59:59.000Z

177

Coiled tubing drilling (CTD) moves to commercial viability  

Science Conference Proceedings (OSTI)

Shell Western E and P, Inc. (SWEPI) California Drilling Operations was interested in coiled tubing (CT) for drilling slimhole steam injectors. A four-well pilot project at South Belridge field, Kern County, Calif., was targeted for immediate CT use. Well programs included completion, a goal not previously attempted on wells drilled from surface with CT. This paper reviews the primary project focus which was to develop slimhole steam injectors and improve injection profiles in lower Tulare formation E and G sands. Feasibility of drilling wells with CT and having CT crews run and cement completion tubulars in place was an issue to be determined. Conventional tubing installation is usually outside the scope of CT operations, so it was not known if this would be technically or economically feasible. Another goal was to refine personnel expertise to further develop CTD services as a successful business line. Other items targeted for investigation were: deviation control; lost circulation solutions; WOB optimization to obtain maximum ROP; potential steam blowout intervals; and high temperature. Finally, economic feasibility of using CTD as a rotary rig alternative for specific applications like slimhole wells on sites where surface location is limited was to be determined.

Romagno, R. (Shell Western E and P, Inc., Bakersfield, CA (United States)); Walker, R. (Schlumberger Dowell, Bakersfield, CA (United States))

1994-12-01T23:59:59.000Z

178

Laser Oil and Gas Well Drilling Demonstration Videos  

DOE Data Explorer (OSTI)

ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

179

Drilling Operations Plan for the Magma Energy Exploratory Well  

DOE Green Energy (OSTI)

This paper is a summary of the proposed drilling plan for the first phase (to 2500 feet depth) of the Magma Energy Exploratory Well. The drilling program comprises four phases, spaced approximately one year apart, which culminate in a large-diameter well to a total depth near 20,000 feet. Included here are descriptions of the well design, predictions of potential drilling problems, a list of restrictions imposed by regulatory agencies, an outline of Sandia's management structure, and an explanation of how the magma energy technology will benefit from this drilling.

Finger, John T.; Livesay, Bill J.; Ash, Don

1989-03-21T23:59:59.000Z

180

Structural Insights into RNA Recognition by RIG-I  

Science Conference Proceedings (OSTI)

Intracellular RIG-I-like receptors (RLRs, including RIG-I, MDA-5, and LGP2) recognize viral RNAs as pathogen-associated molecular patterns (PAMPs) and initiate an antiviral immune response. To understand the molecular basis of this process, we determined the crystal structure of RIG-I in complex with double-stranded RNA (dsRNA). The dsRNA is sheathed within a network of protein domains that include a conserved 'helicase' domain (regions HEL1 and HEL2), a specialized insertion domain (HEL2i), and a C-terminal regulatory domain (CTD). A V-shaped pincer connects HEL2 and the CTD by gripping an {alpha}-helical shaft that extends from HEL1. In this way, the pincer coordinates functions of all the domains and couples RNA binding with ATP hydrolysis. RIG-I falls within the Dicer-RIG-I clade of the superfamily 2 helicases, and this structure reveals complex interplay between motor domains, accessory mechanical domains, and RNA that has implications for understanding the nanomechanical function of this protein family and other ATPases more broadly.

Luo, Dahai; Ding, Steve C.; Vela, Adriana; Kohlway, Andrew; Lindenbach, Brett D.; Pyle, Anna Marie (Yale)

2011-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

TerraTek, A Schlumberger Company

2008-12-31T23:59:59.000Z

182

DOE-STD-1090-2004; Hoisting and Rigging (Formerly Hoisting and Rigging Manual)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 BELOW-THE-HOOK LIFTING DEVICES 14-i Chapter 14 Below-the-Hook Lifting Devices This chapter provides the requirements for below-the-hook lifting devices used in hoisting and rigging, such as spreader bars, lifting yokes, and lift fixtures. This section implements the requirements of ASME B30.20, "Below-the-Hook Lifting Devices." NOTE: Special lifting devices for shipping containers weighing 10,000 lb or more that are used for radioactive materials may be governed by ANSI N14.6 ["Standard for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4,500 kg) or More for Nuclear Materials."] 14.1 GENERAL ...............................................................................................................................14-1

183

Natural Gas for the Long Haul (Big Rigs Go Green)  

NLE Websites -- All DOE Office Websites (Extended Search)

the Long Haul (Big Rigs Go Green) the Long Haul (Big Rigs Go Green) JOHN DAVIS: No one has been hit harder by rising fuel prices than America's long-haul commercial truckers. A big rig can easily burn 20,000 gallons of fuel a year, and with diesel prices projected to keep rising, this not only pinches the trucker's bottom line, but that extra cost is passed on to American consumers. Meanwhile, natural gas prices have remained stable and are forecast to stay that way for years to come. Up to now, demand for natural gas as a transportation fuel has been mostly for compressed natural gas used by light and medium-duty vehicles. City buses, refuse haulers, utilities, and

184

New surface equipment for underbalanced drilling  

Science Conference Proceedings (OSTI)

Perhaps the single most exciting development in the area of new drilling technology in this decade is underbalanced drilling (UBD). This category includes both jointed pipe and coiled tubing applications. Each has advantages and disadvantages in UBD operations. Regardless of the method selected for a particular UBD application, equipment similarities exist. The surface control and production equipment must be correctly sized and designed for the overall total UBD engineering solution. This article describes the various types, applications and purposes of special surface equipment needed in underbalanced operations. This is the second in a series of articles on UBD technology and its rapid development is this field.

Cuthbertson, R.L.; Vozniak, J.; Kinder, J.

1997-03-01T23:59:59.000Z

185

Drilling technology/GDO  

DOE Green Energy (OSTI)

The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

Kelsey, J.R.

1985-01-01T23:59:59.000Z

186

EIA Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Drilling Productivity Report Drilling Productivity Report For Center on Global Energy Policy, Columbia University October 29, 2013 | New York, NY By Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources Adam Sieminski, EIA Drilling Productivity Report October 29, 2013 2 0 5 10 15 20 25 30 35 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 2000 2002 2004 2006 2008 2010 2012 Eagle Ford (TX) Bakken (MT & ND) Granite Wash (OK & TX) Bonespring (TX Permian) Wolfcamp (TX Permian) Spraberry (TX Permian) Niobrara-Codell (CO) Woodford (OK)

187

Proper planning improves flow drilling  

Science Conference Proceedings (OSTI)

Underbalanced operations reduce formation damage, especially in horizontal wells where zones are exposed to mud for longer time periods. Benefits, risks, well control concerns, equipment and issues associated with these operations are addressed in this paper. Flow drilling raises many concerns, but little has been published on horizontal well control and flow drilling operations. This article covers planning considerations for flow drilling, but does not address horizontal ''overbalanced'' drilling because considerations and equipment are the same as in vertical overbalanced drilling and many references address that subject. The difference in well control between vertical and horizontal overbalanced drilling is fluid influx behavior and how that behavior affects kill operations.

Collins, G.J. (Marathon Oil Co., Houston, TX (United States))

1994-10-01T23:59:59.000Z

188

Mechanical drill string jar  

SciTech Connect

An improved mechanical drill string jar is described that allows uninhibited telescoping movement to the normal drilling condition. The drill string jar consists of: (a) an elongated, generally cylindrical, body usable as a drill string element; (b) axial motion resistance means situated in the annular opening; (c) bias means operatively associated with at least one element of the splined pair to rotate the pair out of alignment when the splined pair is rotationally disengaged; (d) opposed cooperating surfaces on at least two of the spline teeth situated such that forced axial relative motion of the splined pair will produce opposed radial forces on the teeth; (e) means intrinsic to at least one element of the splined pair to permit resisted radial displacement of the spline teeth when forced axial relative motion occurs, to permit one element to move axially through the other; (f) cam surfaces on at least one of the teeth situated to force rotational alignment of the splined pair when telescoping movement is from a jarring condition toward the normal drilling condition; (g) relative rotation resistance means situated in the annular opening, structurally engaged with the pair of telescoping members such that relative rotation therebetween will be resisted; (h) striker and anvil means situated in the annular opening, operatively associated with the telescoping pair of elements, such that axial relative movement therebetween will be solidly stopped at the axial extreme condition; (i) a flow-through fluid channel means extending between the means to attach to the continuing drill string; and (j) seal means situated in the annular opening, operatively associated with the telescoping pair of members, to provide fluid tightness therebetween.

Buck, D.A.

1987-08-25T23:59:59.000Z

189

Critique of Drilling Research  

SciTech Connect

For a number of years the Department of Energy has been funding research to reduce the cost of drilling geothermal wells. Generally that research has been effective and helped to make geothermal energy economically attractive to developers. With the increased competition for the electrical market, geothermal energy needs every advantage it can acquire to allow it to continue as a viable force in the marketplace. In drilling related research, there is essentially continuous dialogue between industry and the national laboratories. Therefore, the projects presented in the Program Review are focused on subjects that were previously recommended or approved by industry.

Hamblin, Jerry

1992-03-24T23:59:59.000Z

190

Deepwater drilling riser system  

Science Conference Proceedings (OSTI)

The principal focus of this paper is to discuss and summarize, from the manufacturer's perspective, the primary milestones in the development of the marine riser system used to drill in record water depths off the U.S. east coast. This riser system is unique in that it used advanced designs, material technology, and quality control to enable safe operation in water depths beyond the capability of conventional drilling riser systems. Experience and research have led to design improvements that are now being incorporated in new riser systems that have the potential of expanding the frontiers to increasingly deeper water.

Chastain, T.; Stone, D.

1986-08-01T23:59:59.000Z

191

Inventory management of steel plates at an oil rig construction company  

E-Print Network (OSTI)

Keppel Fels produces make-to-order oil exploration rigs for the global market. Each rig requires close to 6000 metric tons of steel in the course of its production. Optimal management of this steel is very critical in this ...

Tan, Chien Yung

2006-01-01T23:59:59.000Z

192

Evaluation of using cyclocranes to support drilling & production of oil & gas in wetland areas. Sixth quarterly technical progress report, incorporating milestone schedule/status, October 1993--December 1993  

Science Conference Proceedings (OSTI)

This report is a progress report on a planned program falling under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. During this period, task 5, subscale tests, and task 7, environmental impacts, were completed. Work was continued on task 10, technology transfer, and the preparation of the final report as part of task 11.

Eggington, W.J.

1994-04-01T23:59:59.000Z

193

Drilling costs drop 7% in 1985  

SciTech Connect

Drilling costs dropped about 7% last year. This decline cancels a slight increase in 1984. Total costs to drill now run about 59% of the 1981 highs. Comparable figures for the previous 2 years are 63 and 61%. Deeper wells showed the biggest drops. Shallow well costs fell about 6%. Energy Information Administration (EIA) indexes drilling costs on a 1976 base year. Costs for shallow wells (5,000 ft or less) show an index about 138. Deeper wells have an index around 149. Cost declines were the greatest in West and North Texas and the Rockies, of 11%. The Northeast and Western areas showed greater than average declines, 9% or so. The High Plains, New Mexico, and Midcontinent areas recorded near the average 7% decline. Costs in South Louisiana, the Southeast, and Ark-La-Tex 2%. West Central Texas costs were off only 1%. The Southeast was essentially unchanged. Indexes by area show generally that drilling costs have declined since 1983. The summary here comes from EIA's ''Indexes and Estimates of Domestic Well Drilling Costs 1984 and 1985''. That report covers oil, gas, and dry hole costs, cost components, and overall costs.

Anderson, T.; Funk, V.

1986-03-24T23:59:59.000Z

194

Case history: Underbalance drilling the midway and Navarro formations successfully in Hallettsville, TX  

Science Conference Proceedings (OSTI)

Underbalanced drilling proves to be a sound and economical procedure with an average of $500 M being saved per well. An average reduction of 19 days to total depth has also been experienced with this method of drilling. The major advantages of drilling underbalanced are lower cost, reduced drilling days, and reduced trouble time (i.e., differential sticking and hole drag due to thick mud cake across shallow depleted Wilcox sands).

Louison, R.F.; Andrews, J.P.; Reese, R.T.

1984-09-01T23:59:59.000Z

195

Diesel Rig Mechanical Peaking System Based on Flywheel Storage Technolgy  

Science Conference Proceedings (OSTI)

Flywheel energy storage technology is an emerging energy storage technology, there is a great development in recent years promising energy storage technology, with a large energy storage, high power, no pollution, use of broad, simple maintenance, enabling ... Keywords: Flywheel energy storage technology, mechanical peaking, diesel rig, peak motor

Shuguang Liu, Jia Wang

2012-07-01T23:59:59.000Z

196

Mixed Stream Test Rig Winter FY-2011 Report  

SciTech Connect

This report describes the data and analysis of the initial testing campaign of the Mixed Stream Test Rig (MISTER) at Idaho National Laboratory (INL). It describes the test specimen selection, physical configuration of the test equipment, operations methodology, and data and analysis of specimens exposed in two environments designed to represent those expected for high temperature steam electrolysis (HTSE).

Chalres Park; Tedd Lister; Kevin DeWall

2011-04-01T23:59:59.000Z

197

Combination drilling and skiving tool  

DOE Patents (OSTI)

A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

Stone, William J. (Kansas City, MO)

1989-01-01T23:59:59.000Z

198

Foam drilling simulator  

E-Print Network (OSTI)

Although the use of compressible drilling fluids is experiencing growth, the flow behavior and stability properties of drilling foams are more complicated than those of conventional fluids. In contrast with conventional mud, the physical properties of foam change along the wellbore. Foam physical and thermal properties are strongly affected by pressure and temperature. Many problems associated with field applications still exist, and a precise characterization of the rheological properties of these complex systems needs to be performed. The accurate determination of the foam properties in circulating wells helps to achieve better estimation of foam rheology and pressure. A computer code is developed to process the data and closely simulate the pressure during drilling a well. The model also offers a detailed discussion of many aspects of foam drilling operations and enables the user to generate many comparative graphs and tables. The effects of some important parameters such as: back-pressure, rate of penetration, cuttings concentration, cuttings size, and formation water influx on pressure, injection rate, and velocity are presented in tabular and graphical form. A discretized heat transfer model is formulated with an energy balance on a control volume in the flowing fluid. The finite difference model (FDM) is used to write the governing heat transfer equations in discretized form. A detailed discussion on the determination of heat transfer coefficients and the solution approach is presented. Additional research is required to analyze the foam heat transfer coefficient and thermal conductivity.

Paknejad, Amir Saman

2005-12-01T23:59:59.000Z

199

Phase 1 drilling operations at the Magma Energy Exploratory Well (LVF 51-20)  

DOE Green Energy (OSTI)

This report describes the Phase 1 drilling operations for the Magma Energy Exploratory Well near Mammoth Lakes, California. An important part of the Department of Energy's Magma Energy Program, this well is designed to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degree}C, whichever comes first. There will be four drilling phases, at least a year apart, with scientific investigations in the borehole between the drilling intervals. Phase 1 of this project resulted in a 20 inch cased hole to 2558 feet, with 185 feet of coring beyond that. This document comprises a narrative of the daily activities, copies of the daily mud and lithologic reports, time breakdowns of rig activities, inventories of lost circulation materials, temperature logs of the cored hole, and a strip chart mud log. 2 figs.

Finger, J.T.; Jacobson, R.D.

1990-12-01T23:59:59.000Z

200

IADC mud equipment manual. Handbook 1: Introduction to Drilling Mud Systems  

SciTech Connect

This is the first of the 11 handbooks that make up the IADC Mud Equipment Manual. The manual is designed to provide information on all pieces of drilling rig equipment from the flow line to the mud pump section. Hanbook 1: Introduction to Drilling Mud Systems focuses on drilling fluids and their properties and treatment, and thoroughly examines mud solid characteristics. Methods of controlling formation pore pressure, and cut points, as well as cuttings removal (viscosity, yield point, gel strengths, hole cleaning, etc.), are followed by a discussion of solid sizes and solid size distribution. Special features include a glossary of mud terms, a section on ''hard-to-find'' information such as gold concentration, wind forces, and AC motor current requirements, and a comprehensive index for all 11 handbooks.

Not Available

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Potential impacts of artificial intelligence expert systems on geothermal well drilling costs:  

DOE Green Energy (OSTI)

The Geothermal research Program of the US Department of Energy (DOE) has as one of its goals to reduce the cost of drilling geothermal wells by 25 percent. To attain this goal, DOE continuously evaluates new technologies to determine their potential in contributing to the Program. One such technology is artifical intelligence (AI), a branch of computer science that, in recent years, has begun to impact the marketplace in a number of fields. Expert systems techniques can (and in some cases, already have) been applied to develop computer-based ''advisors'' to assist drilling personnel in areas such as designing mud systems, casing plans, and cement programs, optimizing drill bit selection and bottom hole asssembly (BHA) design, and alleviating lost circulation, stuck pipe, fishing, and cement problems. Intelligent machines with sensor and/or robotic directly linked to AI systems, have potential applications in areas of bit control, rig hydraulics, pipe handling, and pipe inspection. Using a well costing spreadsheet, the potential savings that could be attributed to each of these systems was calculated for three base cases: a dry steam well at The Geysers, a medium-depth Imerial Valley well, and a deep Imperial Valley well. Based on the average potential savings to be realized, expert systems for handling lost circulations problems and for BHA design are the most likely to produce significant results. Automated bit control and rig hydraulics also exhibit high potential savings, but these savings are extremely sensitive to the assumptions of improved drilling efficiency and the cost of these sytems at the rig. 50 refs., 19 figs., 17 tabs.

Satrape, J.V.

1987-11-24T23:59:59.000Z

202

Development and Manufacture of Cost-Effective Composite Drill Pipe  

SciTech Connect

Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force fields up to 74 kilohertz (KHz), a removable section of copper wire can be placed inside the composite pipe to short the tool joints electrically allowing electromagnetic signals inside the collar to induce and measure the same within the rock formation. By embedding a pair of wires in the composite section and using standard drill pipe box and pin ends equipped with a specially developed direct contact joint electrical interface, power can be supplied to measurement-while-drilling (MWD) and logging-while-drilling (LWD) bottom hole assemblies. Instantaneous high-speed data communications between near drill bit and the surface are obtainable utilizing this 'smart' drilling technology. The composite drill pipe developed by ACPT has been field tested successfully in several wells nationally and internationally. These tests were primarily for short radius and ultra short radius directional drilling. The CDP in most cases performed flawlessly with little or no appreciable wear. ACPT is currently marketing a complete line of composite drill collars, subs, isolators, casing, and drill pipe to meet the drilling industry's needs and tailored to replace metal for specific application requirements.

James C. Leslie

2008-12-31T23:59:59.000Z

203

Measurement-While-Drilling (MWD) development for air drilling  

Science Conference Proceedings (OSTI)

When downhole contact between the BHA and formation was optimum, as it was during rotation, high signal levels were experienced. Survey data acquired at the connections, when the BHA was totally at rest, is excellent. GEC intends modifying the system to optimize operations consistent with these disparate factors. A Mean-Time-To-Failure (MTTF) of 89.9 hours appears reasonable from the data. It is not possible to infer an MTBF figure from this test. It is quite obvious, however, that the system reliability performance has been significantly improved since FT {number_sign}5 was performed almost two years earlier. Based on the above results, GEC concludes that it is certainly feasible to attain 100 hours MTBF, for the Model 27, in any and all situations, and hence to provide a reliable MWD for air-drilling.

Harrison, W.A.; Rubin, L.A.

1993-12-31T23:59:59.000Z

204

Geothermal gradient drilling, north-central Cascades of Oregon, 1979  

DOE Green Energy (OSTI)

A geothermal gradient drilling program was conducted on the western flank of the north-central Cascade Mountains in Oregon. Six wells were drilled during this program, although in effect seven were drilled, as two wells were drilled at site 3, the second well, however, actually going to a lesser depth than the first. Three of the wells (3, 4, and 5) were drilled in areas which topographically are subject to strong throughflows of ground water. None of these wells reached the regional water table, and all showed essentially isothermal geothermal gradients. The single well which was started essentially at the water table (well 6) shows a linear temperature rise with depth essentially from the top of the well bore. Well No. 2 shows an isothermal gradient down to the level of the regional water table and then shows a linear gradient of about 70/sup 0/C/km from the regional water table to total depth.

Youngquist, W.

1980-01-01T23:59:59.000Z

205

Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploration Drilling Details Activities (0) Areas (0) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling‎ Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole

206

Development Drilling | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Development Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Development Drilling Details Activities (1) Areas (1) Regions (0) NEPA(9) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

207

Cost effectiveness of sonic drilling  

SciTech Connect

Sonic drilling (combination of mechanical vibrations and rotary power) is an innovative environmental technology being developed in cooperation with DOE`s Arid-Site Volatile Organic Compounds Integrated Demonstration at Hanford and the Mixed Waste Landfill Integrated Demonstration at Sandia. This report studies the cost effectiveness of sonic drilling compared with cable-tool and mud rotary drilling. Benefit of sonic drilling is its ability to drill in all types of formations without introducing a circulating medium, thus producing little secondary waste at hazardous sites. Progress has been made in addressing the early problems of failures and downtime.

Masten, D.; Booth, S.R.

1996-03-01T23:59:59.000Z

208

Horizontal drilling method and apparatus  

Science Conference Proceedings (OSTI)

This patent describes an apparatus for drilling a highly deviated well into a petroleum formation the apparatus comprising a drill pipe extending from a surface location to a down-hole drilling assembly through a curved wellbore. It comprises a down-hole motor attached to a bit at a first end, the down-hole motor having a bent housing; a bent sub in the down-hole drilling assembly located above the motor; and a pony collar located between the motor and the bent sub, the pony collar having sufficient mass to substantially hold the motor against a wellbore wall during drilling operations.

Rehm, W.A.; Trunk, T.D.; Baseflug, T.D.; Cromwell, S.L.; Hickman, G.A.; Nickel, R.D.; Lyons, M.S.

1991-08-27T23:59:59.000Z

209

An evaluation of subsea pump technologies that can be used to achieve dual gradient drilling  

E-Print Network (OSTI)

Dual Gradient Drilling is an exciting technology which promises to solve the current technical hurdles and economic risks of Deepwater Drilling. Several techniques for Dual Gradient Drilling have been proposed to the industry. One such method involves installing a subsea booster pump at the seafloor with the aim of returning the drilling fluid back to the rig. The pump will manage annular pressures in the wellbore as circulation rates and mud weights vary and will permit early detection of wellbore influxes. Any such pump chosen to achieve this objective will be subjected to very high differential pressures and will be faced with the onerous task of lifting very abrasive and viscous mud slurries from the sea floor back to the drilling rig. This distance in deep water may be well within the range of about 4, 000 – 12,000 feet depending on the operating water depth of the rig. Several pump technologies available to the industry were examined. Piston pumps are very efficient and can withstand the high differential pressures encountered in the Mudlift Drilling System. However, their drawbacks are their large size and weight and high initial capital cost and maintenance costs. Centrifugal pumps on the other hand are relatively smaller than piston and diaphragm pumps and are generally less expensive. Disc pumps, with their non-impingement design are able to handle solids and fluids with a high gas volume fraction but, like centrifugal pumps, are generally less efficient than reciprocating pumps. Diaphragm pumps are capable of maintaining a constant rate regardless of pressure fluctuations. They can handle very abrasive solids with limited wear on the pump. They also excel at handling very viscous fluids and they can be modified to handle up to 95% gas volume fraction. Like piston pumps, they have very high efficiencies. The potential of each of these pump technologies to meet the requirements for the Mudlift Drilling System was examined in this thesis. The benefits and drawbacks of each of these pump technologies were highlighted and modifications to meet the demands of the mudlift system evaluated.

Oluwadairo, Tolulope

2007-12-01T23:59:59.000Z

210

Department of Energy Supercomputer Helps Design More Efficient Big Rigs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Supercomputer Helps Design More Efficient Big Department of Energy Supercomputer Helps Design More Efficient Big Rigs Department of Energy Supercomputer Helps Design More Efficient Big Rigs February 8, 2011 - 12:00am Addthis Washington, DC - BMI Corporation, a company in South Carolina, in partnership with the Department of Energy's Oak Ridge National Laboratory (ORNL) has successfully developed a technology that will make semi trucks more fuel efficient with the potential to save millions of gallons of fuel. Utilizing the nation's most powerful computer, BMI Corp designed a SmartTruck UnderTray System, a set of integrated aerodynamic fairings that improve the aerodynamics of 18-wheeler (Class 8) long-haul trucks. If all 1.3 million Class 8 trucks in the U.S. were configured with these components, companies could achieve annual savings of 1.5 billion gallons

211

Drill bit assembly for releasably retaining a drill bit cutter  

DOE Patents (OSTI)

A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

Glowka, David A. (Austin, TX); Raymond, David W. (Edgewood, NM)

2002-01-01T23:59:59.000Z

212

Feasibility of Supercritical Carbon Dioxide as a Drilling Fluid for Deep Underbalanced Drilling Operations.  

E-Print Network (OSTI)

??Feasibility of drilling with supercritical carbon dioxide to serve the needs of deep underbalanced drilling operations has been analyzed. A case study involving underbalanced drilling… (more)

Gupta, Anamika

2006-01-01T23:59:59.000Z

213

Drilling and general petroleum engineering  

Science Conference Proceedings (OSTI)

Forty-nine papers are included in the Drilling and General Petroleum Engineering Volume of the SPE Annual Conference and Exhibition proceedings. The conference was held in New Orleans, Louisiana, September 25-28, 1994. The papers cover such topics as: extended reach well drilling, development of marginal satellite fields, slim hole drilling, pressure loss predictions, models for cuttings transport, ester-based drilling fluid systems, borehole stability, cementing, operations, bit failures, roller core bits, well tracking techniques, nitrogen drilling systems, plug failures, drill bit and drillstring dynamics, slim hole vibrations, reserve estimates, enhanced recovery methods, waste disposal, and engineering salary trends. A separate abstract and indexing was prepared for each paper for inclusion in the Energy Science and Technology Database.

Not Available

1994-01-01T23:59:59.000Z

214

High speed drilling research advances  

Science Conference Proceedings (OSTI)

This article reports that the Amoco Production Company's Tulsa Research Center is developing a High Speed Drilling System (HSDS) to improve drilling economics for both exploration and development wells. The system is targeted for areas where historically the drilling rate is less than 25 ft/hr over a large section of hole. Designed as a five-year development program, work began on the system in late 1984. A major service company is participating in the project. The objective of the HSDS project is to improve drilling efficiency by developing improvements in the basic mechanical drilling system. The HSDS approach to improved drilling economics is via the traditional routes of increasing penetration rate (ROP) and bit life, increasing hole stability and reducing trouble time.

Warren, T.M.; Canson, B.E.

1987-03-01T23:59:59.000Z

215

Apparatus in a drill string  

DOE Patents (OSTI)

An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable spirally welded metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube.

Hall, David R. (Provo, UT); Dahlgren, Scott (Alpine, UT); Hall, Jr., Tracy H. (Provo, UT); Fox, Joe (Lehi, UT); Pixton, David S. (Provo, UT)

2007-07-17T23:59:59.000Z

216

An innovative drilling system  

Science Conference Proceedings (OSTI)

The principal project objectives were the following: To demonstrate the capability of the Ultrashort Radius Radial System to drill and complete multiple horizontal radials in a heavy oil formation which had a production history of thermal operations. To study the effects that horizontal radials have on steam placement at specific elevations and on reducing gravity override. To demonstrate that horizontal radials could be utilized for cyclic production, i.e. for purposes of oil production as well as for steam injection. Each of these objectives was successfully achieved in the project. Early production results indicate that radials positively influenced cyclic performance. This report documents those results. 15 refs., 29 figs., 1 tab.

Nees, J.; Dickinson, E.; Dickinson, W.; Dykstra, H.

1991-05-01T23:59:59.000Z

217

Crude Oil and Natural Gas Drilling Activity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Rotary rigs in operation ...

218

Crude Oil and Natural Gas Drilling Activity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Rotary rigs in ...

219

Drilling Systems | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Drilling Systems Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Drilling Systems 2 Geothermal ARRA Funded Projects for Drilling Systems Geothermal Lab Call Projects for Drilling Systems Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

220

Managing pressure during underbalanced drilling.  

E-Print Network (OSTI)

?? AbstractUnderbalanced drilling has received more and more attention in recent years. The reason for that may be because many oil fields, especially on the… (more)

Råen, Jostein

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Method for drilling directional wells  

Science Conference Proceedings (OSTI)

A method is described of locating a substantially horizontal bed of interest in a formation and maintaining a drill string therein during the drilling operation, said drill string including a measurement-while-drilling (MWD) electromagnetic propagation resistivity sensor, comprising the steps of: drilling a substantially vertical offset well in a formation having at least one selected substantially horizontal bed therein; measuring resistivity in the formation at the offset well to provide a first resistivity log as a function of depth; modeling the substantially horizontal bed to provide a modeled resistivity log indicative of the resistivity taken along the substantially horizontal bed, said modeling being based on said first resistivity log; drilling a directional well in said formation near said offset well, a portion of said directional well being disposed in said substantially horizontal bed; measuring resistivity in said directional well using the MWD electromagnetic propagation resistivity sensor to provide a second log of resistivity taken substantially horizontally; comparing said second log to said modeled log to determine the location of said directional well; and adjusting the directional drilling operation so as to maintain said drill string within said substantially horizontal bed during the drilling of said directional well in response to said comparing step.

Wu, Jianwu; Wisler, M.M.

1993-07-27T23:59:59.000Z

222

Underbalanced drilling solves difficult drilling problems and enhances production  

Science Conference Proceedings (OSTI)

An alternate approach to drilling, completing and working over new and existing wells has dramatically improved the efficiency of these operations. This method is called underbalanced drilling (UBD). Improvements in both the equipment and technique during the past 5 years have made this process economical and necessary to solve many difficult drilling problems. Additionally, by reducing drilling or workover damage, dramatic improvements in oil and gas production rates and ultimate reserves are realized, resulting in extra profits for today`s operators. This article will detail the advantages of UBD and give specific examples of its applications, A series of related articles will follow, including: new UBD equipment, land and off-shore case histories, coiled tubing drilling, underbalanced workovers, software technology and subsea applications to examine the reality and future of this technology.

Cuthbertson, R.L.; Vozniak, J.

1997-02-01T23:59:59.000Z

223

Electric drill-string telemetry  

Science Conference Proceedings (OSTI)

We design a numerical algorithm for simulation of low-frequency electric-signal transmission through a drill string. This is represented by a transmission line with varying geometrical and electromagnetic properties versus depth, depending on the characteristics ... Keywords: drill string, low frequency, simulation, transmission line, voltage

José M. Carcione; Flavio Poletto

2003-04-01T23:59:59.000Z

224

Design, Construction, and Preliminary Validation of the Turbine Reacting Flow Rig.  

E-Print Network (OSTI)

??This thesis presents the design, construction and partial operation of the Turbine Reacting Flow Rig (TuRFR), which is a high temperature turbine vane test facility… (more)

Cramer, Klaron Nathanael

2009-01-01T23:59:59.000Z

225

Rig count in Utica Shale doubles from year ago - Today in ...  

U.S. Energy Information Administration (EIA)

The number of active oil and natural gas rigs in the Appalachian Basin's Utica Shale formation for the last week of October 2012 (ending October 26) ...

226

CPS 8.1 Hoisting and Rigging, 2/25/2000  

Energy.gov (U.S. Department of Energy (DOE))

The objective of this surveillance is to examine hoisting and rigging operations to ensure that safe equipment and work practices are being used.  The surveillance includes verification that...

227

,,,,,"Rig: TOI Discoverer Enterprise"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Well: OCS-G 32306 002 ST00BP00",,,,"Flow Data" Well: OCS-G 32306 002 ST00BP00",,,,"Flow Data" ,,,,,"Field: Mississippi Canyon 252" ,,,,,"Rig: TOI Discoverer Enterprise" ,,,,,"Choke Manifold",,,,"Rates",,,,,,,,,"Ratio" "Date","Time","Choke A","Choke B","BSW","WHPres","WHTemp","WHDCP","WHDCTemp","Gas Rate","Gas Cum","Uncorrected ","Uncorrected ","Water Rate","Water Cum","Uncorrected ","Uncorrected ","Cumulative Oil ","GOR1","Comments" ,,,,,,,,,,,"Oil Rate","Oil Cum ",,,"Liquid Rate","Liquid Cum","from Cargo "

228

Drilling Methods | Open Energy Information  

Open Energy Info (EERE)

Drilling Methods Drilling Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Methods Details Activities (0) Areas (0) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Exploration Sub Group: None Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Drilling Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques CA-170-02-15 EA Mammoth Pacific Long Valley Caldera Geothermal Area BLM BLM Central California District Office BLM Bishop Field Office BLM Geothermal/Exploration Drilling Methods

229

Hydraulic Pulse Drilling  

NLE Websites -- All DOE Office Websites (Extended Search)

REV DATE DESCRIPTION ORIGINATOR REVIEWED DATE REV DATE DESCRIPTION ORIGINATOR REVIEWED DATE 0 4/13/2004 Final Report Author: J. Kolle Hunter/Theimer 4/13/2004 Document No.: TR- 053 HydroPulse(tm) Drilling Final Report Prepared by J.J. Kolle April 2004 U.S. Department of Energy Cooperative Development Agreement No. DE-FC26-FT34367 Tempress Technologies, Inc. 18858 - 72 ND Ave S. Kent, WA 98032 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

230

OCEAN DRILLING PROGRAM LEG 179 PRELIMINARY REPORT  

E-Print Network (OSTI)

using a section of drill-in casing connected to a free-fall reentry cone. This hole was drilled to 95

231

Development and evaluation of a meter for measuring return line fluid flow rates during drilling  

DOE Green Energy (OSTI)

The most costly problem routinely encountered in geothermal drilling is lost circulation, which occurs when drilling fluid is lost to the formation rather than circulating back to the surface. The successful and economical treatment of lost circulation requires the accurate measurement of drilling fluid flow rate both into and out of the well. This report documents the development of a meter for measuring drilling fluid outflow rates in the return line of a drilling rig. The meter employs a rolling counterbalanced float that rides on the surface of the fluid in the return line. The angle of the float pivot arm is sensed with a pendulum potentiometer, and the height of the float is calculated from this measurement. The float height is closely related to the fluid height and, therefore, the flow rate in the line. The prototype rolling float meter was extensively tested under laboratory conditions in the Wellbore Hydraulics Flow Facility; results from these tests were used in the design of the field prototype rolling float meter. The field prototype meter was tested under actual drilling conditions in August and September 1991 at the Long Valley Exploratory Well near Mammoth Lakes, Ca. In addition, the performance of several other commercially available inflow and outflow meters was evaluated in the field. The tested inflow meters included conventional pump stroke counters, rotary pump speed counters, magnetic flowmeters, and an ultrasonic Doppler flowmeter. On the return flow line, a standard paddlemeter, an acoustic level meter, and the prototype rolling float meter were evaluated for measuring drilling fluid outflow rates.

Loeppke, G.E.; Schafer, D.M.; Glowka, D.A.; Scott, D.D.; Wernig, M.D. (Sandia National Labs., Albuquerque, NM (United States)); Wright, E.K. (Ktech Corp., Albuquerque, NM (United States))

1992-06-01T23:59:59.000Z

232

Establishing nuclear facility drill programs  

SciTech Connect

The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

NONE

1996-03-01T23:59:59.000Z

233

Drainhole drilling projects under way  

Science Conference Proceedings (OSTI)

This paper reports that many operators are taking advantage of continued developments in drainhole drilling technology to increase productivity in certain fields. Previously untapped prospects are under renewed scrutiny to determine if drainhole and horizontal drilling can make them more attractive. Producing properties are being reevaluated as well. Drainhole drilling typically involves reentering an existing well and cutting through the casing to drill a relatively short length of horizontal wellbore. Although separating drainhole and horizonal or extended-reach drilling is somewhat of a gray area, one difference is that a drainhole well turns to the horizontal much quicker. The radius of turn to 90/sup 0/ can be as little as 30 to 50 ft. Additionally, the length of horizontal kick in a drainhole well is typically in the 300- to 500-ft range compared to 1000 ft or more in extended-reach drilling. A final separating characteristic is that drainhole drilling can be associated with several horizontal lengths of wellbore coming off a single vertical hole.

Burton, B.

1987-07-01T23:59:59.000Z

234

Acoustical properties of drill strings  

DOE Green Energy (OSTI)

The recovery of petrochemical and geothermal resources requires extensive drilling of wells to increasingly greater depths. Real-time collection and telemetry of data about the drilling process while it occurs thousands of feet below the surface is an effective way of improving the efficiency of drilling operations. Unfortunately, due to hostile down-hole environments, telemetry of this data is an extremely difficult problem. Currently, commercial systems transmit data to the surface by producing pressure pulses within the portion of the drilling mud enclosed in the hollow steel drill string. Transmission rates are between two and four data bits per second. Any system capable of raising data rates without increasing the complexity of the drilling process will have significant economic impact. One alternative system is based upon acoustical carrier waves generated within the drill string itself. If developed, this method would accommodate data rates up to 100 bits per second. Unfortunately, the drill string is a periodic structure of pipe and threaded tool joints, the transmission characteristics are very complex and exhibit a banded and dispersive structure. Over the past forty years, attempts to field systems based upon this transmission method have resulted in little success. This paper examines this acoustical transmission problem in great detail. The basic principles of acoustic wave propagation in the periodic structure of the drill string are examined through theory, laboratory experiment, and field test. The results indicate the existence of frequency bands which are virtually free of attenuation and suitable for data transmission at high bit rates. 9 refs., 38 figs., 2 tabs.

Drumheller, D.S.

1988-08-01T23:59:59.000Z

235

Drilling Waste Management Fact Sheet: Slurry Injection of Drilling Wastes  

NLE Websites -- All DOE Office Websites (Extended Search)

Slurry Injection Slurry Injection Fact Sheet - Slurry Injection of Drilling Wastes Underground Injection of Drilling Wastes Several different approaches are used for injecting drilling wastes into underground formations for permanent disposal. Salt caverns are described in a separate fact sheet. This fact sheet focuses on slurry injection technology, which involves grinding or processing solids into small particles, mixing them with water or some other liquid to make a slurry, and injecting the slurry into an underground formation at pressures high enough to fracture the rock. The process referred to here as slurry injection has been given other designations by different authors, including slurry fracture injection (this descriptive term is copyrighted by a company that provides slurry injection services), fracture slurry injection, drilled cuttings injection, cuttings reinjection, and grind and inject.

236

Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(20) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

237

Underbalanced drilling in remedial operations  

Science Conference Proceedings (OSTI)

Operators are finding additional applications for underbalanced drilling (UBD) technology that deliver benefits besides faster, more trouble-free drilling and improved well productivity. Underbalanced workovers, completions and re-drills are being performed with impressive results. This article will describe some of the jobs and applications, and detail the special surface equipment being used to make this a success. This is the fifth in a series of articles on UBD technology and its rapid development in this field. The paper discusses deep gas wells in the Texas Panhandle, gas and condensate wells near Mobile, Alabama, and the Austin Chalk wells in Texas and Louisiana.

Cuthbertson, R.L.; Vozniak, J.

1997-06-01T23:59:59.000Z

238

A Testing and Controlling System for the Combustion Test Rig of Gas Turbine Combustor  

Science Conference Proceedings (OSTI)

In this paper, a testing and controlling system is designed for the test rig of gas turbine combustor by using VXi bus and PLC technology. The system is composed of two subsystems: the data acquisition subsystem and the control subsystem. The data acquisition ... Keywords: combustion test rig, VXi bus, PLC control, Modbus agreement, data acquisition

Nihui Xie; Hua Song; Hongzhuan Qiu

2011-10-01T23:59:59.000Z

239

Affine crystal structure on rigged configurations of type $D_{n}^{(1)}$  

Science Conference Proceedings (OSTI)

Extending the work in Schilling (Int. Math. Res. Not. 2006:97376, 2006), we introduce the affine crystal action on rigged configurations which is isomorphic to the Kirillov---Reshetikhin crystal B r,s of type Keywords: Crystal bases, Quantum algebras, Rigged configurations

Masato Okado; Reiho Sakamoto; Anne Schilling

2013-05-01T23:59:59.000Z

240

Probabilistic structure matching for visual SLAM with a multi-camera rig  

Science Conference Proceedings (OSTI)

We propose to use a multi-camera rig for simultaneous localization and mapping (SLAM), providing flexibility in sensor placement on mobile robot platforms while exploiting the stronger localization constraints provided by omni-directional sensors. In ... Keywords: Localization, Mapping, Mobile robot, Multi-camera rig, Omni-directional, SFM

Michael Kaess; Frank Dellaert

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Drilling and Completion of the Urach III HDR Test Well  

DOE Green Energy (OSTI)

The hot dry rock (HDR) test well, urach III, was drilled and completed in 1979. The borehole is located in Southwest Germany in the geothermal anomaly of Urach. The purpose of project Urach was to study drilling and completion problems of HDR wells and to provide a test site for a HDR research program. The Urach III borehole was drilled to a total depth of 3,334 meters (10,939 feet), penetrating 1,700 meters (5,578 feet) into the granitic basement. Extensive coring was required to provide samples for geophysical and geochemical studies. Positive displacement downhole motors were used for coring and normal drilling operations. It was found that these motors in combination with the proper bits gave better results than conventional rotary drilling. Loss of circulation was encountered not only in sedimentary rocks but also in the granite. After drilling and completion of the borehole, a number of hydraulic fracturing experiments were performed in the open hole as well as in the cased section of Urach III. A circulation loop was established by using the single-borehole concept. It is not yet clear whether new fractures have actually been generated or preexisting joints and fissures have been reactivated. Evaluation of the results of this first step is almost completed and the planning of Phase II of the Urach project is under way.

Meier, U.; Ernst, P. L.

1981-01-01T23:59:59.000Z

242

Infill drilling enhances waterflood recovery  

Science Conference Proceedings (OSTI)

Two sets of west Texas carbonate reservoir and waterflood data were studied to evaluate the impact of infill drilling on waterflood recovery. Results show that infill drilling enhanced the current and projected waterflood recovery from most of the reservoirs. The estimated ultimate and incremental infill-drilling waterflood recovery was correlated with well spacing and other reservoir and process parameters. Results of the correlation indicate that reducing well spacing from 40 to 20 acres (16 to 8 ha) per well would increase the oil recovery by 8 to 9% of the original oil in place (OOIP). Because of the limited data base and regressional nature of the correlation models, the infill-drilling recovery estimate must be used with caution.

Wu, C.H.; Jardon, M. (Texas A and M Univ., College Station, TX (USA)); Laughlin, B.A. (Union Pacific Research Co. (US))

1989-10-01T23:59:59.000Z

243

Geothermal drill pipe corrosion test plan  

DOE Green Energy (OSTI)

Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

Caskey, B.C.; Copass, K.S.

1980-12-01T23:59:59.000Z

244

OCEAN DRILLING PROGRAM LEG 158 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

for the Ocean Drilling Program Deutsche Forschungsgemeinschaft (Federal Republic of Germany) Institut Français

245

OCEAN DRILLING PROGRAM LEG 160 PRELIMINARY REPORT  

E-Print Network (OSTI)

/Canada/Chinese Taipei/Korea Consortium for Ocean Drilling Deutsche Forschungsgemeinschaft (Federal Republic of Germany

246

OCEAN DRILLING PROGRAM LEG 160 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

/Canada/Chinese Taipei/Korea Consortium for Ocean Drilling Deutsche Forschungsgemeinschaft (Federal Republic of Germany

247

PAO lubricant inhibits bit balling, speeds drilling  

Science Conference Proceedings (OSTI)

For drilling operations, a new polyalphaolefin (PAO) lubricant improves penetration rates by reducing bit balling tendencies in water-based mud. The additive also reduces drillstring drag. This enables the effective transmission of weight to the bit and thereby increases drilling efficiency in such applications as directional and horizontal drilling. The paper describes drilling advances, bit balling, laboratory testing, and test analysis.

Mensa-Wilmot, G. [GeoDiamond, Houston, TX (United States); Garrett, R.L. [Garrett Fluid Technology, The Woodlands, TX (United States); Stokes, R.S. [Coastal Superior Solutions Inc., Lafayette, LA (United States)

1997-04-21T23:59:59.000Z

248

Chemical damage due to drilling operations  

DOE Green Energy (OSTI)

The drilling of geothermal wells can result in near wellbore damage of both the injection wells and production wells if proper precautions are not taken. Very little specific information on the chemical causes for drilling damage that can directly be applied to the drilling of a geothermal well in a given situation is available in the literature. As part of the present work, the sparse literature references related to the chemical aspects of drilling damage are reviewed. The various sources of chemically induced drilling damages that are related to drilling operations are summarized. Various means of minimizing these chemical damages during and after the drilling of a geothermal well are suggested also.

Vetter, O.J.; Kandarpa, V.

1982-07-14T23:59:59.000Z

249

Managed pressure drilling techniques and tools  

E-Print Network (OSTI)

The economics of drilling offshore wells is important as we drill more wells in deeper water. Drilling-related problems, including stuck pipe, lost circulation, and excessive mud cost, show the need for better drilling technology. If we can solve these problems, the economics of drilling the wells will improve, thus enabling the industry to drill wells that were previously uneconomical. Managed pressure drilling (MPD) is a new technology that enables a driller to more precisely control annular pressures in the wellbore to prevent these drillingrelated problems. This paper traces the history of MPD, showing how different techniques can reduce drilling problems. MPD improves the economics of drilling wells by reducing drilling problems. Further economic studies are necessary to determine exactly how much cost savings MPD can provide in certain situation. Furter research is also necessary on the various MPD techniques to increase their effectiveness.

Martin, Matthew Daniel

2003-05-01T23:59:59.000Z

250

Rotary steerable motor system for underground drilling  

Science Conference Proceedings (OSTI)

A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

2010-07-27T23:59:59.000Z

251

Downhole Temperature Prediction for Drilling Geothermal Wells  

DOE Green Energy (OSTI)

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

Mitchell, R. F.

1981-01-01T23:59:59.000Z

252

Newberry Exploratory Slimhole: Drilling And Testing  

E-Print Network (OSTI)

During July-November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5360' exploratory slimhole (3.895" diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia's program to evaluate slimholes as a geothermal exploration tool. During and after drilling we performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well's data set includes: over 4000' of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for ...

John Finger Ronald; Ronald D. Jacobson; Charles E. Hickox

1997-01-01T23:59:59.000Z

253

Evaluation of using cyclocranes to support drilling and production of oil and gas in wetland areas. Fourth quarterly technical progress report, Second quarter, 1993  

SciTech Connect

The planned program falls under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. The cyclocraft is a proven hybrid aircraft that utilizes aerostatic and aerodynamic lift. This type of aircraft has considerable payload capacity, VTOL capability, high controllability, low operating cost, low downwash and high safety. The benefits of using a cyclocraft to transport drill rigs and materials over environmentally-sensitive surfaces would be significant. The cyclocraft has considerable cost and operational advantages over the helicopter. The major activity during the second quarter of 1993 was focussed on completion of Task 4, Preliminary Design. The selected design has been designated H.1 Cyclocraft by MRC. Also during the report period, Task 6, Ground Support, was completed and a report containing the results was submitted to DOE. This task addressed the complete H.1 Cyclocraft system, i.e. it included the need personnel, facilities and equipment to support cyclocraft operations in wetland areas.

Eggington, W.J.

1993-09-01T23:59:59.000Z

254

Evaluation of using cyclocranes to support drilling and production of oil and gas in wetland areas. Third quarterly technical progress report, First quarter, 1993  

Science Conference Proceedings (OSTI)

The planned program falls under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. The cyclocraft is a proven hybrid aircraft that utilizes aerostatic and aerodynamic lift. This type of aircraft has considerable payload capacity, VTOL capability, high controllability, low operating cost, low downwash and high safety. The benefits of using a cyclocraft to transport drill rigs and materials over environmentally-sensitive surfaces would be significant. The cyclocraft has considerable cost and operational advantages over the helicopter. The major activity during the report period was focussed on Task 4, Preliminary Design. The selected design has been designated H.1 Cyclocraft by MRC. The preliminary design work was based on the results of the three preceding tasks. A report was initiated that contains descriptions of the H.1 Cyclocraft and its subsystems; options available for the final aircraft design process; performance, geometry, weights and power data; logistics and considerations relating to cyclocraft operations in wetlands.

Eggington, W.J.

1993-06-01T23:59:59.000Z

255

Evaluation of using cyclocranes to support drilling and production of oil and gas in wetland areas. Fifth quarterly technical progress report, Third quarter, 1993  

Science Conference Proceedings (OSTI)

The planned program falls under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. The cyclocraft is a proven hybrid aircraft that utilizes aerostatic and aerodynamic lift. This type of aircraft has considerable payload capacity, VTOL capability, high controllability, low operating cost, low downwash and high safety. The benefits of using a cyclocraft to transport drill rigs and materials over environmentally-sensitive surfaces would be significant. The cyclocraft has considerable cost and operational advantages over the helicopter. In 1992, Task 1, Environmental Considerations, and Task 2, Transport Requirements, were completed. In the first two quarters of 1993, Task 3, Parametric Analysis, Task 4, Preliminary Design, and Task 6, Ground Support, were completed. Individual reports containing results obtained from each of these tasks were submitted to DOE. In addition, through June 30, 1993, a Subscale Test Plan was prepared under Task 5, Subscale Tests, and work was initiated on Task 7, Environmental Impacts, Task 8, Development Plan, Task 9, Operating Costs, and Task 10, Technology Transfer.

Eggington, W.J.

1993-12-31T23:59:59.000Z

256

Smaller Footprint Drilling System for  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-03NT15401 Final Report Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling Submitted by: TerraTek, A Schlumberger Company 1935 Fremont Drive Salt Lake City, UT 84104 Prepared for: United States Department of Energy National Energy Technology Laboratory 2 February 2010 Office of Fossil Energy Feasibility of Ultra-High Speed Diamond Drilling DE-FC26-03NT15401 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

257

RECIPIENT:Potter Drilling Inc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potter Drilling Inc Potter Drilling Inc u.s. DEPARTUEN T OF ENERG¥ EERE PROJECT MANAGEMENT CENT ER NEPA DEIERl\IINATION PROJECr TITLE: Development of a Hydrothermal Spallation Drilling System for EGS Page 1 0[2 STATE: CA Funding Opportunity Announ<:ement Number Procurement Instrument Number NEPA Control Number CID Number OE·PS36-09G099016 OE· EE0002746 ~FO . 10 - [r,,~ G02746 Based on my review of the information concerning the proposed action, as NEPA ComplianC:f Offkrr (authorized under DOE Order 451.IA), I have made the following determination: ex. EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited 10, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

258

Near-Term Developments in Geothermal Drilling  

DOE Green Energy (OSTI)

The DOE Hard Rock Penetration program is developing technology to reduce the costs of drilling geothermal wells. Current projects include: R & D in lost circulation control, high temperature instrumentation, underground imaging with a borehole radar insulated drill pipe development for high temperature formations, and new technology for data transmission through drill pipe that can potentially greatly improve data rates for measurement while drilling systems. In addition to this work, projects of the Geothermal Drilling Organization are managed. During 1988, GDO projects include developments in five areas: high temperature acoustic televiewer, pneumatic turbine, urethane foam for lost circulation control, geothermal drill pipe protectors, an improved rotary head seals.

Dunn, James C.

1989-03-21T23:59:59.000Z

259

Assembly for directional drilling of boreholes  

Science Conference Proceedings (OSTI)

This patent describes a drilling assembly for directional drilling of boreholes in subsurface formations. The assembly comprising a downhole drilling motor. The motor having an output shaft which is suitable to drive a rotary drill bit and a motor housing which is suitable to be arranged at the lower end of a drill string; stabilizing means for stabilizing the assembly; means in the assembly for permanently tilting the central axis of the output shaft with respect to the longitudinal axis of the drill string in the borehole. It is characterized in that the stabilizing means include a lower-most stabilizer which is secured to and rotates with the output shaft.

Steiginga, A.; Worrall, R.N.

1989-11-14T23:59:59.000Z

260

HOISTING & RIGGING Assessment Plan--NNSA/Nevada Site Office Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HOISTING & RIGGING Assessment Plan--NNSA/Nevada Site Office HOISTING & RIGGING Assessment Plan--NNSA/Nevada Site Office Facility Representative Division HOISTING & RIGGING Assessment Plan--NNSA/Nevada Site Office Facility Representative Division : To determine that hoisting and rigging operations are conducted according to "industry best standards" for increasing equipment reliability while assuring worker safety, and to verify issues being addressed in BN Hoisting assessment. Criteria: Lifts are identified and categorized appropriately for scheduled maintenance. DOE-STD-1090-2001 An integrated process ensures safety issues are identified and controls established. DOE-STD-1090-2001 Personnel operating and maintaining the hoisting equipment are trained; they understand their roles and responsibilities. DOE-STD-1090-2001

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities  

E-Print Network (OSTI)

Cytoplasmic viral RNAs with 5? triphosphates (5?ppp) are detected by the RNA helicase RIG-I, initiating downstream signaling and alpha/beta interferon (IFN-?/?) expression that establish an antiviral state. We demonstrate ...

Urzi, Dina

262

Calibration and performance of a selective catalytic reduction (SCR) bench rig for NOx? emissions control  

E-Print Network (OSTI)

A laboratory test rig was designed and built to easily test SCR (Selective Catalytic Reduction) technology. Equipped with three 6 kW heaters, connections for liquid N2 and an assortment of test gases, and a connection with ...

Castro Galnares, Sebastián (Castro Galnares Wright Paz)

2008-01-01T23:59:59.000Z

263

U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation ...  

U.S. Energy Information Administration (EIA)

U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1973: 99: 89: 90: 79: 72 ...

264

U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation ...  

U.S. Energy Information Administration (EIA)

U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

265

U.S. Crude Oil and Natural Gas Active Well Service Rigs in ...  

U.S. Energy Information Administration (EIA)

U.S. Crude Oil and Natural Gas Active Well Service Rigs in operation (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9;

266

U.S. Crude Oil and Natural Gas Rotary Rigs in Operation (Number of ...  

U.S. Energy Information Administration (EIA)

U.S. Crude Oil and Natural Gas Rotary Rigs in Operation (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1973: 1,219: 1,126: 1,049: 993 ...

267

Definition: Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search Dictionary.png Drilling Techniques There are a variety of drilling techniques which can be used to sink a borehole into the ground. Each has its advantages and disadvantages, in terms of the depth to which it can drill, the type of sample returned, the costs involved and penetration rates achieved. There are two basic types of drills: drills which produce rock chips, and drills which produce core samples.[1] View on Wikipedia Wikipedia Definition Well drilling is the process of drilling a hole in the ground for the extraction of a natural resource such as ground water, brine, natural gas, or petroleum, for the injection of a fluid from surface to a subsurface reservoir or for subsurface formations evaluation or monitoring.

268

Acoustic data transmission through a drill string  

DOE Patents (OSTI)

Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

Drumheller, D.S.

1988-04-21T23:59:59.000Z

269

Underbalanced drilling: Praises and perils  

Science Conference Proceedings (OSTI)

Underbalanced drilling (UBD) has been used with increasing frequency to minimize problems associated with invasive formation damage, which often greatly reduce the productivity of oil and gas reservoirs, particularly in openhole horizontal well applications. UBD, when properly designed and executed, minimizes or eliminates problems associated with the invasion of particulate matter into the formation as well as a multitude of other problems such as adverse clay reactions, phase trapping, precipitation, and emulsification, which can be caused by the invasion of incompatible mud filtrates in an overbalanced condition. In many UBD operations, additional benefits are seen because of a reduction in drilling time, greater rates of penetration, increased bit life, a rapid indication of productive reservoir zones, and the potential for dynamic flow testing while drilling. Potential downsides and damage mechanisms associated with UBD will be discussed. These include the following: (1) Increased cost and safety concerns; (2) Difficulty in maintaining a continuously underbalanced condition; (3) Spontaneous inhibition and countercurrent inhibition effects; (4) Glazing, mashing, and mechanically induced wellbore damage; (5) Macroporosity gravity-induced invasion; (6) Difficulty of application in zones of extreme pressure and permeability; and (7) Political/career risk associated with championing a new and potentially risky technology. The authors discuss reservoir parameters required to design an effective underbalanced or overbalanced drilling program, laboratory screening procedures to ascertain the effectiveness of UBD in a specific application and review the types of reservoirs that often present good applications for UBD technology.

Bennion, D.B.; Thomas, F.B.; Bietz, R.F.; Bennion, D.W. [Hycal Energy Research Labs., Ltd., Calgary, Alberta (Canada)

1998-12-01T23:59:59.000Z

270

Well descriptions for geothermal drilling  

DOE Green Energy (OSTI)

Generic well models have been constructed for eight major geothermal resource areas. The models define representative times and costs associated with the individual operations that can be expected during drilling and completion of geothermal wells. They were made for and have been used to evaluate the impacts of potential new technologies. Their nature, their construction, and their validation are discussed.

Carson, C.C.; Livesay, B.J.

1981-01-01T23:59:59.000Z

271

OCEAN DRILLING PROGRAM LEG 106 PRELIMINARY REPORT  

E-Print Network (OSTI)

by the following agencies: Australia/Canada/Chinese Taipei/Korea Consortium for the Ocean Drilling Program Deutsche

272

OCEAN DRILLING PROGRAM LEG 201 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

by the following agencies: Australia/Canada/Chinese Taipei/Korea Consortium for the Ocean Drilling Program Deutsche

273

Downhole drilling network using burst modulation techniques  

DOE Patents (OSTI)

A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

Hall; David R. (Provo, UT), Fox; Joe (Spanish Fork, UT)

2007-04-03T23:59:59.000Z

274

Graphene Compositions And Drilling Fluids Derived Therefrom ...  

Drilling fluids comprising graphenes and nanoplatelet additives and methods for production thereof are disclosed. Graphene includes graphite oxide, graphene oxide ...

275

Drilling Waste Management Technology Identification Module  

NLE Websites -- All DOE Office Websites (Extended Search)

you are in this section Technology Identification you are in this section Technology Identification Home » Technology Identification Drilling Waste Management Technology Identification Module The Technology Identification Module is an interactive tool for identifying appropriate drilling waste management strategies for a given well location and circumstances. The Technology Identification Module follows the philosophy of a waste management hierarchy. Waste management options with the lowest environmental impacts are encouraged ahead of those with more significant environmental impacts. The Technology Identification Module helps identify waste management options, but users should also consider their own site-specific costs and waste volumes. How it Works Users will be asked to answer a series of questions about the location of the well site, physical features of the site that may allow or inhibit the use of various options, whether the regulatory agency with jurisdiction allows or prohibits particular options, and whether cost or the user's company policy would preclude any options. Nearly all questions are set up for only "yes" or "no" responses. Depending on how the initial questions are answered, users will face from 15 to 35 total questions. Some of these can be answered immediately, while others may require some additional investigation of other portions of this web site or external information. Suitable options will be identified as users complete the questions, and users will be able to print out a summary of suitable options when the process is completed.

276

Structural basis of RNA recognition and activation by innate immune receptor RIG-I  

Science Conference Proceedings (OSTI)

Retinoic-acid-inducible gene-I (RIG-I; also known as DDX58) is a cytoplasmic pathogen recognition receptor that recognizes pathogen-associated molecular pattern (PAMP) motifs to differentiate between viral and cellular RNAs. RIG-I is activated by blunt-ended double-stranded (ds)RNA with or without a 5'-triphosphate (ppp), by single-stranded RNA marked by a 5'-ppp and by polyuridine sequences. Upon binding to such PAMP motifs, RIG-I initiates a signalling cascade that induces innate immune defences and inflammatory cytokines to establish an antiviral state. The RIG-I pathway is highly regulated and aberrant signalling leads to apoptosis, altered cell differentiation, inflammation, autoimmune diseases and cancer. The helicase and repressor domains (RD) of RIG-I recognize dsRNA and 5'-ppp RNA to activate the two amino-terminal caspase recruitment domains (CARDs) for signalling. Here, to understand the synergy between the helicase and the RD for RNA binding, and the contribution of ATP hydrolysis to RIG-I activation, we determined the structure of human RIG-I helicase-RD in complex with dsRNA and an ATP analogue. The helicase-RD organizes into a ring around dsRNA, capping one end, while contacting both strands using previously uncharacterized motifs to recognize dsRNA. Small-angle X-ray scattering, limited proteolysis and differential scanning fluorimetry indicate that RIG-I is in an extended and flexible conformation that compacts upon binding RNA. These results provide a detailed view of the role of helicase in dsRNA recognition, the synergy between the RD and the helicase for RNA binding and the organization of full-length RIG-I bound to dsRNA, and provide evidence of a conformational change upon RNA binding. The RIG-I helicase-RD structure is consistent with dsRNA translocation without unwinding and cooperative binding to RNA. The structure yields unprecedented insight into innate immunity and has a broader impact on other areas of biology, including RNA interference and DNA repair, which utilize homologous helicase domains within DICER and FANCM.

Jiang, Fuguo; Ramanathan, Anand; Miller, Matthew T.; Tang, Guo-Qing; Gale, Jr., Michael; Patel, Smita S.; Marcotrigiano, Joseph (Rutgers); (RWJ-Med); (UW-MED)

2012-05-29T23:59:59.000Z

277

Microhole Drilling Tractor Technology Development  

SciTech Connect

In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a highly efficient tool that both delivers high level of force for the pressure available and inherently increases downhole reliability because parts are less subject to contamination. The On-Off feature is essential to drilling to allow the Driller to turn off the tractor and pull back while circulating in cleanout runs that keep the hole clean of drilling debris. The gripping elements have wide contact surfaces to the formation to allow high loads without damage to the formation. As part of the development materials evaluations were conducted to verify compatibility with anticipated drilling and well bore fluids. Experiments demonstrated that the materials of the tractor are essentially undamaged by exposure to typical drilling fluids used for horizontal coiled tubing drilling. The design for the MDT was completed, qualified vendors identified, parts procured, received, inspected, and a prototype was assembled. As part of the assembly process, WWT prepared Manufacturing instructions (MI) that detail the assembly process and identify quality assurance inspection points. Subsequent to assembly, functional tests were performed. Functional tests consisted of placing the MDT on jack stands, connecting a high pressure source to the tractor, and verifying On-Off functions, walking motion, and operation over a range of pressures. Next, the Shop Demonstration Test was performed. An existing WWT test fixture was modified to accommodate operation of the 3.38 inch diameter MDT. The fixture simulated the tension applied to a tractor while walking (pulling) inside 4.0 inch diameter pipe. The MDT demonstrated: (1) On-off function, (2) Pulling forces proportional to available differential pressure up to 4000 lbs, (3) Walking speeds to 1100 ft/hour. A field Demonstration of the MDT was arranged with a major oil company operating in Alaska. A demonstration well with a Measured Depth of approximately 15,000 ft was selected; however because of problems with the well drilling was stopped before the planned MDT usage. Alternatively, functional and operational tests were run with the MDT insi

Western Well Tool

2007-07-09T23:59:59.000Z

278

Alaska drilling/production  

SciTech Connect

The icy waters of the Beaufort Sea continue to hold the focus for Alaska's offshore wildcatters. A federal Outer Continental Shelf sale that drew high bids totalling more than $2 billion set the stage for this exploration of a huge structure that conceivably could yield another megagiant like Prudhoe Bay. Elsewhere in Beaufort waters, 2 groups of companies unveiled a preliminary design proposal for the first commercial development of an oil field in U.S. Arctic waters. At Prudhoe Bay, an operator announced the North Slope's first tertiary enhanced oil recovery project even as work continued for a massive waterflood of the giant field's principal producing horizon. At Kuparuk River, drillers continued to develop a reservoir that is expected to ultimately yield more than one billion barrels of oil. Alaska's present production of ca 1.7 million bpd puts the state in a solid second place in the ranks of oil-producing states, runnerup only to Texas with an output of 2.5 million bpd.

Rintoul, B.

1983-01-01T23:59:59.000Z

279

Directional drilling and equipment for hot granite wells  

DOE Green Energy (OSTI)

The following drilling equipment and experience gained in drilling to date are discussed: positive displacement motors, turbodrills, motor performance experience, rotary-build and rotary-hold results, steering devices and surveying tools, shock absorbers, drilling and fishing jars, drilling bits, control of drill string drag, and control of drill string degradation. (MHR)

Williams, R.E.; Neudecker, J.W.; Rowley, J.C.; Brittenham, T.L.

1981-01-01T23:59:59.000Z

280

High-temperature directional drilling turbodrill  

DOE Green Energy (OSTI)

The development of a high-temperature turbodrill for directional drilling of geothermal wells in hard formations is summarized. The turbodrill may be used for straight-hole drilling but was especially designed for directional drilling. The turbodrill was tested on a dynamometer stand, evaluated in laboratory drilling into ambient temperature granite blocks, and used in the field to directionally drill a 12-1/4-in.-diam geothermal well in hot 200/sup 0/C (400/sup 0/F) granite at depths to 10,5000 ft.

Neudecker, J.W.; Rowley, J.C.

1982-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Downhole mud properties complicate drilling hydraulics  

Science Conference Proceedings (OSTI)

This paper explains that wellsite parameters such as penetration rate, hole cleaning, hole erosion and overall wellbore stability are directly related to the hydraulic conditions occurring while drilling. Drilling hydraulics, in turn, are largely a function of the drilling mud's properties, primarily viscosity and density. Accurate pressure loss calculations are necessary to maximize bit horse-power and penetration rates. Also, annular pressure loss measurements are important to record equivalent circulating densities, particularly when drilling near balanced formation pressures or when approaching formation fracture pressures. Determination of the laminar, transitional or turbulent flow regimes will help ensure the mud will remove drill cuttings from the wellbore and minimize hole erosion.

Leyendecker, E.A.; Bruton, J.R.

1986-10-01T23:59:59.000Z

282

Underbalanced drilling with air offers many pluses  

Science Conference Proceedings (OSTI)

A pressure overbalance during conventional drilling can cause significant fluid filtrate invasion and lost circulation. Fluid invasion into the formation can lead to formation damage, high mud costs, a need for expensive completions, and well productivity impairment. Because underbalanced drilling creates a natural tendency for fluid and gas to flow from the formation to the borehole, successful underbalanced drilling depends upon the appropriate selection of circulating fluid. The use of a compressible fluid in the circulating system, referred to as air drilling, lowers the downhole pressure, allowing drilling into and beyond these sensitive formations. The paper discusses the equipment needed; well control; downhole air requirements; air drilling techniques using dry air, air-mist, stable foam, stiff foam, and aerated-fluid; downhole fires; directional air drilling; and well completions.

Shale, L. [Baker Hughes Inteq, Houston, TX (United States)

1995-06-26T23:59:59.000Z

283

Conformable apparatus in a drill string  

DOE Patents (OSTI)

An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube. The metal tube may be adapted to stretch as the drill pipes stretch.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2007-08-28T23:59:59.000Z

284

Chemical Speciation of Chromium in Drilling Muds  

Science Conference Proceedings (OSTI)

Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility.

Taguchi, Takeyoshi [X-ray Research Laboratory, RIGAKU Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666 (Japan); Yoshii, Mitsuru [Mud Technical Center, Telnite Co., Ltd., 1-2-14 Ohama, Sakata-shi, Yamagata 998-0064 (Japan); Shinoda, Kohzo [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577 (Japan)

2007-02-02T23:59:59.000Z

285

:- : DRILLING URANIUM BILLETS ON A  

Office of Legacy Management (LM)

'Xxy";^ ...... ' '. .- -- Metals, Ceramics, and Materials. : . - ,.. ; - . _ : , , ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' LEBLOND-CARLSTEDT RAPID BORER 4 r . _.i'- ' ...... ' -'".. :-'' ,' :... : , '.- ' ;BY R.' J. ' ANSEN .AEC RESEARCH AND DEVELOPMENT REPORT PERSONAL PROPERTY OF J. F. Schlltz .:- DECLASSIFIED - PER AUTHORITY OF (DAlE) (NhTI L (DATE)UE) FEED MATERIALS PRODUCTION CENTER NATIONAL LFE A COMPANY OF OHIO 26 1 3967 3035406 NLCO - 886 Metals, Ceramics and Materials (TID-4500, 22nd Ed.) DRILLING URANIUM BILLETS ON A LEBLOND-CARLSTEDT RAPID BORER By R. J. Jansen* TECHNICAL DIVISION NATIONAL LEAD COMPANY OF OHIO Date of Issuance: September 13, 1963 Approved By: Approved By: Technical Director Head, Metallurgical Department *Mr. Jansen is presently

286

Filter for a drill string  

DOE Patents (OSTI)

A filter for a drill string comprises a perforated receptacle having an open end and a perforated end and first and second mounting surfaces are adjacent the open end. A transmission element is disposed within each of the first and second mounting surfaces. A capacitor may modify electrical characteristics of an LC circuit that comprises the transmission elements. The respective transmission elements are in communication with each other and with a transmission network integrated into the drill string. The transmission elements may be inductive couplers, direct electrical contacts, or optical couplers. In some embodiments of the present invention, the filter comprises an electronic component. The electronic component may be selected from the group consisting of a sensor, a router, a power source, a clock source, a repeater, and an amplifier.

Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Briscoe, Michael (Lehi, UT); McPherson, James (Sandy, UT)

2007-12-04T23:59:59.000Z

287

Conoco's new approach to drill site construction in difficult, remote, swamp and jungle terrain Irian Jaya, Indonesia  

SciTech Connect

In October 1982, Conoco Irian Jaya as operator: and partners: Pertamina, Inpex Bintuni Limited, and Moeco Irian Jaya Company, mobilized construction equipment from Singapore to the KBS ''A'' contract area in Irian Jaya, Indonesia for the purpose of constructing a base camp and drill three exploratory sites. What made this construction effort different from others previously used in Irian Jaya; was that it incorporated several new and unique features, namely: a turnkey approach to construction; that is Conoco providing complete set of specifications and conditions with contractor assuming risks for a lump sum payment; special equipment designed by contractor for Irian Jaya operations; an incentive to co pensate or penalize contractor for helicopter hours flown below or above a predetermined number; structural steel pile platform designs for two swamp locations (Ayot and Aum), as opposed to the more conventional corduroy timber log-plank arrangement; and drilling rig pads designed for specific heli-rig with limited extra space. All work was successfully completed within the time frame stipulated in the contract, that is five months from the time the contractor was notified to begin mobilization of equipment, materials and personnel.

Roodriguez, F.H.

1984-02-01T23:59:59.000Z

288

Rigged Hilbert space formalism as an extended mathematical formalism for quantum systems. II. Transformation theory in nonrelativistic quantum mechanics  

Science Conference Proceedings (OSTI)

Results of a previous paper are used to obtain a rigorous mathematical formulation of the transformation theory of nonrelativistic quantum mechanics within the framework of rigged Hilbert spaces.

O. Melsheimer

1974-01-01T23:59:59.000Z

289

First CSDP (Continental Scientific Drilling Program)/thermal regimes core hole project at Valles Caldera, New Mexico (VC-1): Drilling report  

DOE Green Energy (OSTI)

This report is a review and summary of the core drilling operations of the first Valles Caldera research borehole (VC-1) under the Thermal Regimes element of the Continental Scientific Drilling Program (CSDP). The project is a portion of a broader program that seeks to answer fundamental scientific questions about magma, rock/water interactions, and volcanology through shallow (<1-km) core holes at Long Valley, California; Salton Sea, California; and the Valles Caldera, New Mexico. The report emphasizes coring operations with reference to the stratigraphy of the core hole, core quality description, core rig specifications, and performance. It is intended to guide future research on the core and in the borehole, as well as have applications to other areas and scientific problems in the Valles Caldera. The primary objectives of this Valles Caldera coring effort were (1) to study the hydrogeochemistry of a subsurface geothermal outflow zone of the caldera near the source of convective upflow, (2) to obtain structural and stratigraphic information from intracaldera rock formations in the southern ring-fracture zone, and (3) to obtain continuous core samples through the youngest volcanic unit in Valles Caldera, the Banco Bonito rhyolite (approximately 0.1 Ma). All objectives were met. The high percentage of core recovery and the excellent quality of the samples are especially notable. New field sample (core) handling and documentation procedures were successfully utilized. The procedures were designed to provide consistent field handling of the samples and logs obtained through the national CSDP.

Rowley, J.; Hawkins, W.; Gardner, J. (comps.)

1987-02-01T23:59:59.000Z

290

Reservoir screening criteria for underbalanced drilling  

Science Conference Proceedings (OSTI)

Properly designed and executed underbalanced drilling operations can eliminate or significantly reduce formation damage, mud or drill solids invasion, lost circulation, fluid entrainment and trapping effects, and potential adverse reactions of drilling fluids with the reservoir matrix or in-situ reservoir fluids. The key to selecting appropriate reservoir candidates is achieving a balance of technical, safety and economic factors. Not every reservoir is an ideal candidate for an underbalanced drilling operation and in some cases distinct disadvantages may exist in trying to execute an underbalanced drilling operation in comparison to a simpler more conventional overbalanced application. Extensive field experience has played an important role in determining the following key criteria and design considerations that should be examined when evaluating a well. Screening criteria are also provided to help operators ascertain if a given formation is, in fact, a viable underbalanced drilling candidate.

Bennion, D.B. [Hycal Energy Research Labs. Ltd., Calgary, Alberta (Canada)

1997-02-01T23:59:59.000Z

291

Diffusion bonding of Stratapax for drill bits  

DOE Green Energy (OSTI)

A process has been developed for the diffusion bonding of General Electric's Stratapax drill blanks to support studs for cutter assemblies in drill bits. The diffusion bonding process is described and bond strength test data are provided for a variety of materials. The extensive process details, provided in the Appendices, should be sufficient to enable others to successfully build diffusion-bonded drill bit cutter assemblies.

Middleton, J.N.; Finger, J.T.

1983-01-01T23:59:59.000Z

292

Test rig and particulate deposit and cleaning evaluation processes using the same  

DOE Patents (OSTI)

A rig and test program for determining the amount, if any, of contamination that will collect in the passages of a fluid flow system, such as a power plant fluid delivery system to equipment assemblies or sub-assemblies, and for establishing methods and processes for removing contamination therefrom. In the presently proposed embodiment, the rig and test programs are adapted in particular to utilize a high-pressure, high-volume water flush to remove contamination from substantially the entire fluid delivery system, both the quantity of contamination and as disposed or deposited within the system.

Schroder, Mark Stewart (Hendersonville, NC); Woodmansee, Donald Ernest (Schenectady, NY); Beadie, Douglas Frank (Greer, SC)

2002-01-01T23:59:59.000Z

293

OCEAN DRILLING PROGRAM LEG 103 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

OCEAN DRILLING PROGRAM LEG 103 SCIENTIFIC PROSPECTUS GALICIA BANK Gilbert Boillot Edward L of Energy, Mines and Resources (Canada) Deutsche Forschungsgemeinschaft (Federal Republic of Germany

294

Quantifying Edge Defects in Drilled FRP Composites  

E-Print Network (OSTI)

Drilling of Aramid and Carbon Fiber Polymer Composites”,the Exit Defects in Carbon Fiber-Reinforced Plastic Plateswith a High Modulus CFRP (Carbon- Fiber Reinforced Polymer)

Vijayaraghavan, Athulan; Dornfeld, David; Dharan, C. K. Hari

2006-01-01T23:59:59.000Z

295

Specific energy for pulsed laser rock drilling  

Science Conference Proceedings (OSTI)

Application of advanced high power laser technology to oil and gas well drilling has been attracting significant research interests recently among research institutes

Z. Xu; C. B. Reed; G. Konercki; R. A. Parker; B. C. Gahan; S. Batarseh; R. M. Graves; H. Figueroa; N. Skinner

2003-01-01T23:59:59.000Z

296

Crude Oil and Natural Gas Drilling Activity  

U.S. Energy Information Administration (EIA)

Crude Oil and Natural Gas Drilling Activity Period: Download Series History: Definitions, Sources & Notes: Data Series: Jun-13 Jul-13 Aug-13 ...

297

Strong growth projected for underbalanced drilling  

Science Conference Proceedings (OSTI)

The use of underbalanced drilling technology should grow steadily during the next decade. The projected growth is primarily driven by increased concern about formation damage, the potential for higher penetration rates, and the ability to reduce lost circulation in depleted reservoirs. The Department of Energy`s Morgantown Energy Technology Center manages a portfolio of drilling-related research, development, and demonstration (RD and D) projects designed to reduce costs and improve efficiencies. The Department of Energy sponsored Maurer Engineering Inc. (MEI) to develop a user-friendly foam drilling model that can accurately predict pressure drops, cuttings lifting velocities, foam quality, and other foam drilling variables. A second objective of the project was to develop a light-weight drilling fluid that would allow underbalanced drilling in low-pressure reservoirs without the limitations commonly associated with existing light-weight fluids. Maurer performed a study to gauge the potential for light-weight drilling fluids and the extent of underbalanced drilling activity in the US. Data from many industry sources, including recent publications on the potential for air drilling, were evaluated and incorporated into this study. This paper discusses the findings from this survey.

Duda, J.R. [Dept. of Energy, Morgantown, WV (United States); Medley, G.H. Jr.; Deskins, W.G. [Maurer Engineering Inc., Houston, TX (United States)

1996-09-23T23:59:59.000Z

298

Category:Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Category Edit History Facebook icon Twitter icon Category:Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the...

299

Vale exploratory slimhole: Drilling and testing  

SciTech Connect

During April-May, 1995, Sandia National Laboratories, in cooperation with Trans-Pacific Geothermal Corporation, drilled a 5825{prime} exploratory slimhole (3.85 in. diameter) in the Vale Known Geothermal Resource Area (KGRA) near Vale, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During drilling we performed several temperature logs, and after drilling was complete we performed injection tests, bailing from a zone isolated by a packer, and repeated temperature logs. In addition to these measurements, the well`s data set includes: 2714{prime} of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid records; numerous temperature logs; pressure shut-in data from injection tests; and comparative data from other wells drilled in the Vale KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

1996-06-01T23:59:59.000Z

300

Driltac (Drilling Time and Cost Evaluation)  

Science Conference Proceedings (OSTI)

The users manual for the drill tech model for estimating the costs of geothermal wells. The report indicates lots of technical and cost detail. [DJE-2005

None

1986-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alloy Development for Measurement While Drilling Tools  

Science Conference Proceedings (OSTI)

Abstract Scope, For oil and gas drilling applications, one of the giant technical ... of Type 2507 Duplex Stainless Steel in Synthetic Seawater and Hydraulic Fluids.

302

Loaded Transducer Fpr Downhole Drilling Component  

DOE Patents (OSTI)

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

Hall, David R. (Provo, UT); Hall, H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2005-07-05T23:59:59.000Z

303

Slim-hole Measurement While Drilling (MWD) system for underbalanced drilling  

Science Conference Proceedings (OSTI)

The objective of this program is to make commercially available, wireless Measurement-while-drilling tools to reliably operate in air, air-mist, air-foam, and other unbalanced drilling environments during oil and gas directional drilling operations in conjunction with down-hole motors or other assemblies. Progress is described.

Harrison, W.H.; Harrison, J.D.; Rubin, L.A.

1995-08-01T23:59:59.000Z

304

NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena  

SciTech Connect

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore, the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

Lyons, K.D.; Honeygan, S.; Moroz, T

2007-06-01T23:59:59.000Z

305

NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena  

SciTech Connect

The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to the identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

Lyons, K.D.; Honeygan, S.; Moroz, T.H.

2008-12-01T23:59:59.000Z

306

Coiled tubing drilling with supercritical carbon dioxide  

DOE Patents (OSTI)

A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

Kolle , Jack J. (Seattle, WA)

2002-01-01T23:59:59.000Z

307

An integrated approach to characterize reservoir connectivity to improve waterflood infill drilling recovery  

E-Print Network (OSTI)

Infill drilling can significantly improve reservoir interwell connectivity in heterogeneous reservoirs, thereby enhances the waterflood recovery. This study defines and investigates the Hydraulic Interwell Connectivity (HIC) concept to characterize and estimate the reservoir connectivity, quantitatively. This approach is an integrated study of reservoir characterization, geostatistics, production performance and reservoir engineering. In this study HIC is quantitatively defined as the ratio of observed fluid flow rate to a maximum possible (ideal) flow rate between any combination of any two wells in the producing unit. The spatial distribution of HIC can be determined for different layers or total net pay of the reservoir. Geostatistics is used to evaluate the horizontal and vertical variation of HIC in the reservoir. The spatial variation of HIC can be used to describe the degree of communication between injectors and producers. This spatial distribution of HIC can also serve as a guide for selecting infill well locations. A West Texas producing unit, JL Johnson "AB", with average reservoir permeability of 0.90 md, is used as an example to illustrate the application of this approach. The waterflood infill drilling recovery is improved by incorporating the HIC in simulation study. It is a practical approach which facilitates and eases the implementation of targeted infill drilling. This approach makes targeted infill drilling more economical over pattern infill drilling by eliminating the drilling of poor injectors and producers. It is found to be a useful concept and procedure to design, implement and optimize infill drilling programs.

Malik, Zaheer Ahmad

1993-01-01T23:59:59.000Z

308

Laser Drilling - Drilling with the Power of Light  

Science Conference Proceedings (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and side tracking applications. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report has been prepared in two parts and each part may be treated as a stand-alone document. Part 1 (High Energy Laser Drilling) includes the general description of the concept and focuses on results from experiments under the ambient lab conditions. Part 2 (High Energy Laser Perforation and Completion Techniques) discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

2007-02-28T23:59:59.000Z

309

Laser Drilling - Drilling with the Power of Light  

Science Conference Proceedings (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser compares with other lasers used in past experimental work, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. Variables investigated include laser power, beam intensity, external purging of cut materials, sample orientation, beam duration, beam shape, and beam frequency. The investigation also studied the thermal effects on the two sample rock types and their methods of destruction: spallation for sandstone, and thermal dissociation for limestone. Optimal operating conditions were identified for each rock type and condition. As a result of this experimental work, the HPFL has demonstrated a better capability of cutting and drilling limestone and sandstone when compared with other military and industrial lasers previously tested. Consideration should be given to the HPFL as the leading candidate for near term remote high power laser applications for well construction and completion.

Brian C. Gahan; Samih Batarseh

2004-09-28T23:59:59.000Z

310

Typical fault mode determination for rotor test rig based on correlation dimension and Kolmogorov entropy  

Science Conference Proceedings (OSTI)

This paper experimentally investigates the vibration faults of rotor, such as the unbalance, the loosening and the friction, using the rotor test rig. According to the theory of fractal and chaos, the vibration signal series are reconstructed. By the ... Keywords: Kolmogorov entropy, correlation dimension, fractal and chaos, vibration fault

Fengling Zhang; Yanting Ai; Fei Liu

2009-08-01T23:59:59.000Z

311

Multi-gradient drilling method and system  

DOE Patents (OSTI)

A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

Maurer, William C. (Houston, TX); Medley, Jr., George H. (Spring, TX); McDonald, William J. (Houston, TX)

2003-01-01T23:59:59.000Z

312

Electro jet drilling using hybrid NNGA approach  

Science Conference Proceedings (OSTI)

This paper presents a hybrid neural network and genetic algorithm (NNGA) approach for the multi-response optimization of the electro jet drilling (EJD) process. The approach first uses a neural network model to predict the response parameters of the ... Keywords: Electro jet drilling, Electrochemical machining, Genetic algorithm, Multi-response, Neural network, Optimization

Mohan Sen; H. S. Shan

2007-02-01T23:59:59.000Z

313

OCEAN DRILLING PROGRAM LEG 153 PRELIMINARY REPORT  

E-Print Network (OSTI)

Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA by the Ocean Drilling Program, Texas A&M University, as an account of work performed under the international of the National Science Foundation, the participating agencies, Joint Oceanographic Institutions, Inc., Texas A&M

314

OCEAN DRILLING PROGRAM LEG 138 PRELIMINARY REPORT  

E-Print Network (OSTI)

Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA, Texas A&M University, as an account of work performed under the international Ocean Drilling Program Foundation, the participating agencies, Joint Oceanographic Institutions, Inc., Texas A&M University

315

Balanced pressure techniques applied to geothermal drilling  

DOE Green Energy (OSTI)

The objective of the study is to evaluate balanced pressure drilling techniques for use in combating lost circulation in geothermal drilling. Drilling techniques evaluated are: aerated drilling mud, parasite tubing, concentric drill pipe, jet sub, and low density fluids. Based on the present state of the art of balanced pressure drilling techniques, drilling with aerated water has the best overall balance of performance, risk, availability, and cost. Aerated water with a 19:1 free air/water ratio reduce maximum pressure unbalance between wellbore and formation pressures from 1000 psi to 50 psi. This pressure unbalance is within acceptable operating limits; however, air pockets could form and cause pressure surges in the mud system due to high percent of air. Low density fluids used with parasite tubing has the greatest potential for combating lost circulation in geothermal drilling, when performance only is considered. The top portion of the hole would be aerated through the parasite tube at a 10:1 free air/mud ratio and the low density mud could be designed so that its pressure gradient exactly matches the formation pore pressure gradient. The main problem with this system at present is the high cost of ceramic beads needed to produce low density muds.

Dareing, D.W.

1981-08-01T23:59:59.000Z

316

Interpretation of drill cuttings from geothermal wells  

DOE Green Energy (OSTI)

Problems in interpreting drill cuttings, as opposed to drill cores, and methods to solve these problems are outlined. The following are covered: identification of lithology; recognition of faults and fractures; interpretation of hydrothermal alteration; geochemistry; sample collection; sample preparple examination; and sample storage. (MHR)

Hulen, J.B.; Sibbett, B.S.

1981-06-01T23:59:59.000Z

317

Scientific drilling technologies for hostile environments  

DOE Green Energy (OSTI)

This paper briefly reviews the current United States Department of Energy Continental Scientific Drilling Program for Thermal Regimes and the related technologies being developed for geothermal drilling. Plans for penetrating into a molten magma body at temperatures from 800 to 1000{degree}C are also reviewed. 7 refs., 3 figs., 1 tab.

Traeger, R.K.

1988-01-01T23:59:59.000Z

318

Status Report A Review of Slimhole Drilling  

DOE Green Energy (OSTI)

This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

Zhu, Tao; Carroll, Herbert B.

1994-09-01T23:59:59.000Z

319

Rock bits equipped with extended nozzles lower drilling cost in the Middle East region  

Science Conference Proceedings (OSTI)

An analysis of three-cone rock bit runs using extended jet nozzles (EN) in the Middle East Region is presented. These runs were made from 1982 to 1984 in several Middle East countries. They represent wells drilled onshore and offshore, vertical and deviated, using oil and water based mud systems. The improvements in performance gained by enhanced hole cleaning with extended nozzles are well documented. This feature has been widely used in the South East Asia - Far East region and in certain areas of the continental U.S.A. and Alaska since the mid - 1970's. The result of the EN runs in the Middle East correlate well with results in the proven areas elsewhere in the world. Penetration rate increases over regular jet bits of 7-80% have been recorded. The high daily rig costs characteristic of Mideast drilling operations make it fairly easy to show a cost per foot decrease with only slight increases in performance. The increased bit cost due to the EN feature is found to be virtually negligible.

Selby, B.A.; Sauvageot, W.A.

1985-03-01T23:59:59.000Z

320

Alpine Geothermal Drilling | Open Energy Information  

Open Energy Info (EERE)

Geothermal Drilling Geothermal Drilling Jump to: navigation, search Logo: Alpine Geothermal Drilling Name Alpine Geothermal Drilling Address PO Box 141 Place Kittredge, Colorado Zip 80457 Sector Geothermal energy Product Geothermal drilling solutions, subsidiary of Rocky Mountain GeoExploration Inc Website http://www.alpinegeothermal.co Coordinates 39.64888°, -105.2984842° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.64888,"lon":-105.2984842,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Salt Wells Geothermal Exploratory Drilling Program EA  

Open Energy Info (EERE)

Salt Wells Geothermal Exploratory Drilling Program EA Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Abstract No abstract available. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/14/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Citation Bureau of Land Management. Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) [Internet]. 09/14/2009. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management,

322

Definition: Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search Dictionary.png Exploration Drilling Exploratory drilling is the Initial phase of drilling for the purpose of determining the physical properties and boundaries of a reservoir. View on Wikipedia Wikipedia Definition Geothermal Exploration is the exploration of the subsurface in search of viable active geothermal regions with the goal of building a geothermal power plant, where hot fluids drive turbines to create electricity. Exploration methods include a broad range of disciplines including geology, geophysics, geochemistry and engineering. Geothermal regions with adequate heat flow to fuel power plants are found in rift zones, subduction zones and mantle plumes. Hot spots are characterized by four geothermal elements. An active region will have: Heat Source - Shallow

323

Geothermal drilling and completion technology development  

SciTech Connect

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the U.S. Department of Energy has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs by 25% by 1982 and by 50% by 1986. Sandia Laboratories has been selected to manage this technology development program, and this paper presents an overview of the program. Program justification which relates well cost to busbar energy cost and to DGE power-on-line goals is presented. Technological deficiencies in current rotary drilling techniques for geothermal wells are discussed. A program for correcting these deficiencies is described.

Varnado, S.G.; Stoller, H.M.

1978-01-01T23:59:59.000Z

324

DOE Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selects Projects Aimed at Reducing Drilling Risks in Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater DOE Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater November 22, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy's Office of Fossil Energy (FE) has selected six new natural gas and oil research projects aimed at reducing risks and enhancing the environmental performance of drilling in ultra-deepwater settings. The projects have been selected for negotiation leading to awards totaling $9.6 million, and will add to the research portfolio for FE's Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program. Research needs addressed by the projects include the prevention of uncontrolled oil flow through new and better ways to cement well casing,

325

Alaska Oil and Gas Conservation Commission: February 2011 Drilling...  

Open Energy Info (EERE)

Oil and Gas Conservation Commission: February 2011 Drilling & Permit Records This dataset contains oil and gas drilling and permit records for February 2011. State oil and gas...

326

Geotechnical Drilling in New-Zealand | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geotechnical Drilling in New-Zealand Citation SonicSampDrill. Geotechnical...

327

Water Wells and Drilled or Mined Shafts (Texas) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Wells and Drilled or Mined Shafts (Texas) Water Wells and Drilled or Mined Shafts (Texas) Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial...

328

State-of-the-art of drilling thrusters  

DOE Green Energy (OSTI)

Several different concepts for applying force or thrust to drill bits are identified. Recommendations for further studies of drilling thrusters are made.

Dareing, D.W.

1980-01-01T23:59:59.000Z

329

Oil and Gas Exploration, Drilling, Transportation, and Production...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) Eligibility...

330

Google.org-Backed Potter Drilling Blazing Geothermal Trail |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Google.org-Backed Potter Drilling Blazing Geothermal Trail Google.org-Backed Potter Drilling Blazing Geothermal Trail September 22, 2010...

331

NNSA Small Business Week Day 2: United Drilling, Inc. | National...  

National Nuclear Security Administration (NNSA)

business based in Roswell, N.M. United Drilling drills oil, gas, water, geothermal, and environmental wells throughout the southwestern U.S. The small business has...

332

NETL: News Release - DOE-Industry Breakthrough Turns Drilling...  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2002 DOE-Industry Breakthrough Turns Drilling System Into Lightning Fast Computer Network Energy Department Cites Remarkable Advance In 'Smart' Oil, Gas Drilling SAN ANTONIO,...

333

Improved Bottomhole Pressure Control for Underbalanced Drilling Operations.  

E-Print Network (OSTI)

??Maintaining underbalanced conditions from the beginning to the end of the drilling process is necessary to guarantee the success of jointed-pipe underbalanced drilling (UBD) operations… (more)

Perez-Tellez, Carlos

2003-01-01T23:59:59.000Z

334

national total  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... World Total ww NA--Table Posted: December 8, ...

335

Counter-Rotating Tandem Motor Drilling System  

SciTech Connect

Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

Kent Perry

2009-04-30T23:59:59.000Z

336

Development and testing of underbalanced drilling products  

Science Conference Proceedings (OSTI)

The first objective of this project is to develop a user-friendly, PC, foam drilling computer model, FOAM, which will accurately predict frictional pressure drops, cuttings lifting velocity, foam quality, and other drilling variables. The model will allow operating and service companies to accurately predict pressures and flow rates required at the surface and downhole to efficiently drill oil and gas wells with foam systems. The second objective of this project is to develop a lightweight drilling fluid that utilizes hollow glass spheres to reduce the density of the fluid and allow drilling underbalanced in low-pressure reservoirs. Since the resulting fluid will be incompressible, hydraulics calculations are greatly simplified, and expensive air compressors and booster pumps are eliminated. This lightweight fluid will also eliminate corrosion and downhole fire problems encountered with aerated fluids. Many tight-gas reservoirs in the US are attractive targets for underbalanced drilling because they are located in hard-rock country where tight, low-permeability formations compound the effect of formation damage encountered with conventional drilling fluids.

Maurer, W.; Medley, G. Jr.

1995-07-01T23:59:59.000Z

337

Steamboat Hills exploratory slimhole: Drilling and testing  

DOE Green Energy (OSTI)

During July-September, 1993, Sandia National Laboratories, in cooperation with Far West Capital, drilled a 4000 feet exploratory slimhole (3.9 inch diameter) in the Steamboat Hills geothermal field near Reno, Nevada. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed four series of production and injection tests while taking downhole (pressure-temperature-spinner) and surface (wellhead pressure and temperature, flow rate) data. In addition to these measurements, the well`s data set includes: continuous core (with detailed log); borehole televiewer images of the wellbore`s upper 500 feet; daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; numerous temperature logs; and comparative data from production and injection wells in the same field. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

Finger, J.T.; Jacobson, F.D.; Hickox, C.E.; Eaton, R.R.

1994-10-01T23:59:59.000Z

338

Formation damage in underbalanced drilling operations  

E-Print Network (OSTI)

Formation damage has long been recognized as a potential source of reduced productivity and injectivity in both horizontal and vertical wells. From the moment that the pay zone is being drilled until the well is put on production, a formation is exposed to a series of fluids and operations that can reduce its productive capacity. Any process that causes a loss in the productivity of an oil-, gas-, or water-saturated formation has a damaging effect on the reservoir. These damage mechanisms predominantly fall into three major classifications: mechanical, chemical, and biological. Underbalanced drilling operations involve drilling a portion of the wellbore at fluid pressures less than that of the target formation. This technology has been used to prevent or minimize problems associated with invasive formation damage, which often greatly reduces the productivity of oil and gas reservoirs, mainly in openhole horizontal-well applications. Underbalanced drilling is not a solution for all formation-damage problems. Damage caused by poorly designed and/or executed underbalanced drilling programs can equal or exceed that which may occur with a well-designed conventional overbalanced drilling program. Four techniques are currently available to achieve underbalanced conditions while drilling. These include using lightweight drilling fluids, injecting gas down the drillpipe, injecting gas into a parasite string, and using foam. This study provides an analysis of a number of potential damage mechanisms present when drilling underbalanced. It describes each one and its influence on the productivity of a well. Additionally it presents a general description of the different techniques that can be applied to carry out successful, cost-effective UBD operations, and discusses how these techniques may be used to reduce or eliminate formation damage.

Reyes Serpa, Carlos Alberto

2003-01-01T23:59:59.000Z

339

Development and Testing of Insulated Drill Pipe  

DOE Green Energy (OSTI)

This project has comprised design, analysis, laboratory testing, and field testing of insulated drill pipe (IDP). This paper will briefly describe the earlier work, but will focus on results from the recently-completed field test in a geothermal well. Field test results are consistent with earlier analyses and laboratory tests, all of which support the conclusion that insulated drill pipe can have a very significant effect on circulating fluid temperatures. This will enable the use of downhole motors and steering tools in hot wells, and will reduce corrosion, deterioration of drilling fluids, and heat-induced failures in other downhole components.

Champness, T.; Finger, J.; Jacobson, R.

1999-07-07T23:59:59.000Z

340

DEVELOPMENT OF NEW DRILLING FLUIDS  

SciTech Connect

The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

David B. Burnett

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Test report for core drilling ignitability testing  

DOE Green Energy (OSTI)

Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing.

Witwer, K.S.

1996-08-08T23:59:59.000Z

342

Investigation of percussion drills for geothermal applications  

DOE Green Energy (OSTI)

A series of tests was conducted to provide data for an economic evaluation of percussion drilling in geothermal reservoirs. Penetration rate, operation on aqueous foam, and high temperature vulnerabilities of downhole percussion tools are described.

Finger, J.T.

1981-01-01T23:59:59.000Z

343

Offshore Drilling Safety and Response Technologies | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production increases are anticipated to come from onshore enhanced oil recovery projects, shale oil plays, and deepwater drilling in the Gulf of Mexico. They also project that U.S....

344

OCEAN DRILLING PROGRAM LEG 170 PRELIMINARY REPORT  

E-Print Network (OSTI)

/Canada/Chinese Taipei/Korea Consortium for Ocean Drilling Deutsche Forschungsgemeinschaft (Federal Republic of Germany Cypionka Microbiologist Institut für Chemie und Biologie Des Meeres (ICBM) Carl von Ossietzky Universität

345

OCEAN DRILLING PROGRAM LEG 197 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

by the following agencies: Australia/Canada/Chinese Taipei/Korea Consortium for Ocean Drilling Deutsche.edu Marcel Regelous Petrologist Abteilung Geochemie Max-Planck-Institüt für Chemie Johannes J-Becherweg 27

346

OCEAN DRILLING PROGRAM LEG 176 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

/Canada/Chinese Taipei/Korea Consortium for Ocean Drilling Deutsche Forschungsgemeinschaft (Federal Republic of Germany Geochemist Institut für Chemie und Biologie des Meeres (ICBM) Carl von Ossietzky Universität Oldenburg

347

Underbalanced drilling benefits now available offshore  

Science Conference Proceedings (OSTI)

Offshore underbalanced drilling (UBD) is a reality. Applications in older, partially depleted fields and new fields are being considered. However, low productivity reservoirs and fields with sub normal pressures causing drilling problems are currently the main targets for offshore UBD. With proper planning and the correct technique, both jointed pipe and coiled tubing UBD drilling operations have been carried out offshore with success. The main concerns for offshore UBD have been altered drilling practices and surface production system operation. These issues have been examined and equipment has been designed and tested to address them. Environmental, safety and health issues are paramount and have been studied carefully. Detailed well planning, engineering, and flow modeling have proven critical for successful offshore UBD operations. Examples are given from oil and gas fields.

Vozniak, J.P.; Cuthbertson, B.; Nessa, D.O.

1997-05-01T23:59:59.000Z

348

Field results document underbalanced drilling success  

Science Conference Proceedings (OSTI)

Many different techniques are used to maintain underbalanced conditions at the toolface. Whether the operator is trying to avoid drilling problems or prevent formation damage, the key to a safe, successful operation is a reliable method of sealing around the tubulars at the surface for continuous well control. Globally, underbalanced drilling (UBD) is emerging as an important technology to improve production and solve drilling problems with success in many applications with different reservoirs. Improvements in initial flow rates using UBD are being supported by longer term production. UBD techniques and processes are improving through experience and implementation. UBD is becoming a more economical means to optimize reservoir management than conventional overbalanced operations. UBD operations are proving to be safer than conventional overbalanced drilling.

Vozniak, J.; Cuthbertson, R.L.

1997-04-01T23:59:59.000Z

349

April 25, 1997: Yucca Mountain exploratory drilling  

Energy.gov (U.S. Department of Energy (DOE))

April 25, 1997Workers complete drilling of the five-mile long, horseshoe-shaped exploratory tunnel through Yucca Mountain at the proposed high-level nuclear waste repository in Nevada.

350

Challenges of deep drilling. Part 2  

SciTech Connect

This installment delineates current deep drilling technology limitations and discusses needed advances for the future. Problem areas are identified as material and seal problems in wellhead equipment, new fluid carriers for well stimulation, quality control/inspection/testing for equipment and performance flaws, arctic environment conditions, and experienced personnel. The main factors of operating environment that challenge advanced deep drilling are identified as temperature extremes, pressure extremes, acid gases, and deep-water presence.

Chadwick, C.E.

1981-08-01T23:59:59.000Z

351

Designing BHAs for better drilling jar performance  

SciTech Connect

Jars are a major component in drill string design, but considerations for proper placement often are neglected. The main purpose of running drilling jars is to provide an immediate jarring action when pipe becomes stuck. This report considers some of the mechanics of pipe sticking and why it must be considered in jar placement. It also focuses on their placement in the bottomhole assembly and the advantages of certain types of jars.

Schmid, J.T.

1982-10-01T23:59:59.000Z

352

OCEAN DRILLING PROGRAM LEG 155 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

OCEAN DRILLING PROGRAM LEG 155 SCIENTIFIC PROSPECTUS AMAZON DEEP-SEA FAN Dr. Roger D. Flood Co of Canada P.O. Box 1006 Dartmouth, Nova Scotia Canada B2Y4A2 Dr. Adam Klaus Staff Scientist, Leg l55 Ocean and handling. D I S C L A I M E R This publication was prepared by the Ocean Drilling Program, Texas A

353

Ocean Drilling Program Texas A&M University  

E-Print Network (OSTI)

/small diameter drill collars/connections capable of surviving rotation above the seafloor without lateral support

354

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

355

Evaluation of using cyclocranes to support drilling and production of oil and gas in Wetland Areas. Fourth quarterly report, [October--December 1992  

Science Conference Proceedings (OSTI)

The planned program falls under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. During the.reporting period, a report that contained the results of each of the five subtasks that comprise Task 1, Environmental Considerations, was prepared and submitted to DOE. The subtasks were an overview of oil and gas activities in wetlands; a review of present wetland access practices; identification of past environmental impacts experienced; definition of marsh habitat considerations and discussion of forested wetland considerations. In Task 2, Transport Requirements, a report on the acquisition of data on the transport requirements to support oil and gas drilling and production operations in Wetland Areas was prepared and submitted to DOE. Task 3, Parametric Analysis, was completed during the reporting period. The analysis showed that a cyclocraft, having a payload capacity of 45 tons, was the most economic and would be able to transport all of the required equipment and materials. The final report on the parametric analysis was to be submitted in January, 1993.

Eggington, W.J.

1992-12-31T23:59:59.000Z

356

Impedance matched joined drill pipe for improved acoustic transmission  

DOE Patents (OSTI)

An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

Moss, William C. (San Mateo, CA)

2000-01-01T23:59:59.000Z

357

Laser Drilling - Drilling with the Power of Light  

Science Conference Proceedings (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation prototype tool. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

Brian C. Gahan; Samih Batarseh

2005-09-28T23:59:59.000Z

358

Use of Downhole Motors in Geothermal Drilling in the Philippines  

SciTech Connect

This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

Pyle, D. E.

1981-01-01T23:59:59.000Z

359

Deep drilling technology for hot crystalline rock  

SciTech Connect

The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

Rowley, J.C.

1984-01-01T23:59:59.000Z

360

Method and apparatus of assessing down-hole drilling conditions  

DOE Patents (OSTI)

A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

2007-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Directional Drilling Systems | Open Energy Information  

Open Energy Info (EERE)

Directional Drilling Systems Directional Drilling Systems Jump to: navigation, search Geothermal ARRA Funded Projects for Directional Drilling Systems Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":14,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

362

Method for laser drilling subterranean earth formations  

DOE Patents (OSTI)

Laser drilling of subterranean earth formations is efficiently accomplished by directing a collimated laser beam into a bore hole in registry with the earth formation and transversely directing the laser beam into the earth formation with a suitable reflector. In accordance with the present invention, the bore hole is highly pressurized with a gas so that as the laser beam penetrates the earth formation the high pressure gas forces the fluids resulting from the drilling operation into fissures and pores surrounding the laser-drilled bore so as to inhibit deleterious occlusion of the laser beam. Also, the laser beam may be dynamically programmed with some time dependent wave form, e.g., pulsed, to thermally shock the earth formation for forming or enlarging fluid-receiving fissures in the bore.

Shuck, Lowell Z. (Morgantown, WV)

1976-08-31T23:59:59.000Z

363

Data transmission element for downhole drilling components  

DOE Patents (OSTI)

A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2006-01-31T23:59:59.000Z

364

Drilling in 2000 taps technology explosion  

Science Conference Proceedings (OSTI)

While major oil and gas companies all but ended research and development programs, the burden for technological advancement fell to service companies. And service companies allotted their R and D investment to activities whose return they could fairly predict. But even as cost-cutting measured devastated engineering staffs, a profit-growth strategy was forming that understood that profit could be enhanced by not just cutting the per barrel cost to producers but by producing more barrels per investment dollar. In other words, get more oil and gas from the same well through applied drilling and production technology. In the drilling industry all things technical revolve around six areas of expertise: bits, rotation systems, tripping systems, control systems, information systems and direction drilling systems. The paper discusses these six technologies.

NONE

1996-09-01T23:59:59.000Z

365

Public Support for Oil and Gas Drilling in California's Forests and Parks  

E-Print Network (OSTI)

kmichaud@umail.ucsb.edu Abstract: Offshore oil drilling hasto attitudes toward offshore oil drilling. This implies thats Forests and Parks 1 Offshore oil drilling has been a

Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

2004-01-01T23:59:59.000Z

366

Independent Statistics & Analysis Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Independent Statistics & Analysis Independent Statistics & Analysis Drilling Productivity Report The six regions analyzed in this report accounted for nearly 90% of domestic oil production growth and virtually all domestic natural gas production growth during 2011-12. December 2013 For key tight oil and shale gas regions U.S. Energy Information Administration Contents Year-over-year summary 2 Bakken 3 Eagle Ford 4 Haynesville 5 Marcellus 6 Niobrara 7 Permian 8 Explanatory notes 9 Sources 10 Bakken Marcellus Niobrara Haynesville Eagle Ford Permian U. S. Energy Information Administration | Drilling Productivity Report 0 400 800 1,200 1,600 2,000 Bakken Eagle Ford Haynesville

367

JOINT-INDUSTRY PARTNERSHIP TO DEVELOP A HOLLOW SPHERE DUAL-GRADIENT DRILLING SYSTEM  

Science Conference Proceedings (OSTI)

Maurer Technology Inc. (MTI) formed a joint-industry partnership to fund the development of a hollow sphere dual-gradient drilling (DGD) system. Phase I consisted of collecting, compiling, analyzing, and distributing information and data regarding a new DGD system for use by the oil and gas industry. Near the end of Phase I, DOE provided funding to the project that was used to conduct a series of critical follow-on tests investigating sphere separation in weighted waterbase and oilbase muds. Drilling costs in deep water are high because seawater pressure on the ocean floor creates a situation where many strings of casing are required due to the relatively close spacing between fracture and pore pressure curves. Approximately $100 million have been spent during the past five years on DGD systems that place pumps on the seafloor to reduce these drilling problems by reducing the annulus fluid pressure at the bottom of the riser. BP estimates that a DGD system can save $9 million per well in the Thunderhorse Field and Conoco estimates it can save $5 to $15 million per well in its deepwater operations. Unfortunately, previous DGD development projects have been unsuccessful due to the high costs ($20 to $50 million) and reliability problems with seafloor pump systems. MTI has been developing a simple DGD system concept that would pump hollow glass spheres into the bottom of the riser to reduce density of the mud in the riser. This eliminates the requirement for seafloor pumps and replaces them with low cost mud pumps, shale shakers, and other oilfield equipment that can be operated on the rig by conventional crews. A $1.8 million Phase I joint-industry project funded by five service companies and three operators showed that hollow spheres could be pumped well, but difficulties were encountered in separating the spheres from a polymer mud supplied by Halliburton due to the high viscosity of this mud at the low shear rates encountered on oilfield shale shaker screens. As a result, an excessive amount of this polymer mud flowed across the screen with the beads instead of through the screen. At the completion of the Phase I project, it was concluded that the hollow sphere system would not work effectively with the polymer mud tested. ExxonMobil and Shell engineers proposed that additional sphere separation tests needed to be conducted with weighted oilfield waterbase and oilbase muds to determine if the DGD system would work with these muds. The DOE agreed to provide a $200,000 grant for these tests. The DOE-funded tests, described in this report, showed that the spheres could be pumped with conventional oilfield centrifugal and triplex mud pumps and separated effectively from both oilfield waterbase and oilbase muds using conventional oilfield shale shakers and hydrocyclones. As a result of the success of these DOE tests, this DGD system is ready for full-scale field testing, first on land wells and later in the offshore environment. Maurer Technology Inc. is currently proposing a Phase II project to oil companies to further develop this DGD concept. This project would be funded by four to eight operators. If Phase II tests are successful, Noble plans to commercialize this system with a service company partner that will market and operate the DGD system on Noble's and other drilling contractors' rigs.

William C. Maurer; Colin Ruan; Greg Deskins

2003-05-01T23:59:59.000Z

368

Use of fan rig data for the understanding and prediction of fan broadband noise and noise changes due to a variable area nozzle.  

E-Print Network (OSTI)

??This thesis presents the results of the research component of this EngD, entitled Use of fan rig data for the understanding and prediction of fan… (more)

Deane, Eugene Pio

2009-01-01T23:59:59.000Z

369

Passenger vehicle tire rolling resistance can be predicted from a flat-belt test rig  

Science Conference Proceedings (OSTI)

The rolling resistance of fifteen different types of tire was determined on-road by coastdown tests, using several vehicles variously fitted with 14 and 15 inch wheels. Corrections for tire pressure, and for external temperature, were deduced by data regression. The rolling resistance of the same tires was measured on a flat-belt tire test machine, and correction for tire pressure was determined in a like manner. In this paper, the results, in terms of the characteristic rolling resistance, are compared between rig and road. The various test procedures are discussed.

Ivens, J.

1989-01-01T23:59:59.000Z

370

Underbalanced coiled-tubing-drilled horizontal well in the North Sea  

Science Conference Proceedings (OSTI)

Maersk Olie and Gas A/S (Maersk Oil) has drilled a 3,309-ft-long near-horizontal drainhole with coiled tubing to a total measured depth (MD) of 11,000 ft in the Danish sector of the North Sea. The well was completed in may 1994 as a 3{1/2}-in. openhole producer in the Gorm field chalk reservoir. Part of the well was drilled at underbalanced conditions, and oil production rates of up to 1,100 STB/D were reached during drilling. Conventional well-test equipment was used for handling returns. A nearby process facilities platform supplied lift gas and received the produced hydrocarbons during the drilling phase. Worth noting are the penetration of several chert layers, the fairly long reach, and the application of geosteering. Indications were that the well productivity was significantly improved compared with that of a conventionally drilled well, but problems were experienced with borehole stability in a fractured region.

Wodka, P.; Tirsgaard, H.; Damgaard, A.P. [Maersk Oil, Copenhagen (Denmark); Adamsen, C.J. [Maersk Oil, Esbjerg (Denmark)

1996-05-01T23:59:59.000Z

371

Drilling fluid effects on crop growth and iron and zinc availability  

Science Conference Proceedings (OSTI)

Waste drilling fluids are often land-farmed following completion of an oil or gas well in Colorado. This material usually contains production water, bentonitic clays, formation cuttings, barite, Na compounds, and synthetic organic polymers. The authors investigated the effects of 5 to 60 dry g drilling fluid kg{sup {minus}1} soil on the growth and trace metal concentration of sorghum-sudangrass (Sorghum bicolor L. Moench DeKalb ST-6-S sudanense) in the greenhouse. A nonlinear regression exponential-rise model fit the increased plant total dry matter yield response to increasing drilling fluid rates. Increased plant tissue Fe concentration and uptake indicated that increased plant-available Fe was primarily responsible for the yield response, but increased Zn availability was also suspected. Results from a second greenhouse study confirmed that drilling fluid can also correct Zn deficiency in corn (Zea mays L.). Soil SAR (sodium adsorption ratio) was higher with increasing drilling fluid, but was still sorghum-sudangrass and provided evidence that land application is an acceptable method of disposal.

Bauder, T.A.; Barbarick, K.A.; Ayers, P.D.; Chapman, P.L. [Colorado State Univ., Fort Collins, CO (United States); Shanahan, J.F. [Agricultural Research Service, Lincoln, NE (United States)

1999-05-01T23:59:59.000Z

372

Development and Application of Insulated Drill Pipe for High Temperature, High Pressure Drilling  

Science Conference Proceedings (OSTI)

This project aimed to extend the insulated drill pipe (IDP) technology already demonstrated for geothermal drilling to HTHP drilling in deep gas reservoirs where temperatures are high enough to pose a threat to downhole equipment such as motors and electronics. The major components of the project were: a preliminary design; a market survey to assess industry needs and performance criteria; mechanical testing to verify strength and durability of IDP; and development of an inspection plan that would quantify the ability of various inspection techniques to detect flaws in assembled IDP. This report is a detailed description of those activities.

Tom Champness; Tony Worthen; John Finger

2008-12-31T23:59:59.000Z

373

Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)  

Science Conference Proceedings (OSTI)

This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

2000-02-01T23:59:59.000Z

374

A Proposal for an Advanced Drilling System with Real-Time Diagnostics (Diagnostics-While-Drilling)  

DOE Green Energy (OSTI)

In this paper, we summarize the rationale for an advanced system called Diagnostics-While-Drilling (DWD) and describe its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. We outline a Program Plan for DOE, university, and industry to cooperate in the development of DWD technology.

Finger, J.T.; Mansure, A.J.; Prairie, M.R.

1999-07-12T23:59:59.000Z

375

Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.  

DOE Green Energy (OSTI)

Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

Goranson, Colin

2005-03-01T23:59:59.000Z

376

Oil and Gas Well Drilling | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Well Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Oil and Gas Well Drilling Author Jeff Tester Published NA, 2011 DOI Not...

377

Materials to Support High Pressure, High Temperature (HPHT) Drilling  

Science Conference Proceedings (OSTI)

... HPHT drilling and the drill pipe materials currently available on the market. ... Computational Phase Studies in the (La,Sr)(Ga,Mg)O3-d System for IT-SOFC ...

378

Monitoring downhole pressures and flow rates critical for underbalanced drilling  

Science Conference Proceedings (OSTI)

True underbalanced drilling, and not just flow drilling, requires thorough engineering and monitoring of downhole pressures and flow rates to ensure the formations are drilled without formation damage. Underbalanced drilling involves intentionally manipulating the bottom hole circulating pressure so that it is less than static reservoir pressure. This underbalanced pressure condition allows reservoir fluids to enter the well bore while drilling continues, preventing fluid loss and many causes of formation damage. Applied correctly, this technology can address problems of formation damage, lost circulation, and poor penetration rates. Another important benefit of drilling underbalanced is the ability to investigate the reservoir in real time. The paper discusses the reasons for under balanced drilling, creating underbalance, well site engineering, fluids handling, rotating flow divertor injection gas, survey techniques, data acquisition, operations, maintaining under-balance, routine drilling, rate of penetration, misconceptions, and economics.

Butler, S.D.; Rashid, A.U.; Teichrob, R.R. [Flow Drilling Engineering Ltd., Calgary, Alberta (Canada)

1996-09-16T23:59:59.000Z

379

Coiled tubing drilling requires economic and technical analyses  

Science Conference Proceedings (OSTI)

Field experience has proven that coiled tubing drilling is a technical and economic option on some wells; however, coiled tubing drilling is not the solution to every drilling prospect or production-enhancement job. To determine if coiled tubing drilling is viable, the geographic, technical, and economic aspects of each project must be considered in detail. Generally, with some limitations, coiled tubing drilling is feasible primarily when jointed pipe cannot be used effectively. Also, coiled tubing drilling may be more appropriate because of some special well site requirements, such as environmental regulations requiring less surface disturbance. The paper discusses technical considerations which need to be considered, economic feasibility, limitations of well types (new shallow wells, conventional reentry, through-tubing reentry, and underbalanced drilling), and outlook for further growth in the coiled tubing drilling industry.

Gary, S.C. (Schlumberger Dowell, Sugar Land, TX (United States))

1995-02-20T23:59:59.000Z

380

Analyzing the dynamic behavior of downhole equipment during drilling  

DOE Green Energy (OSTI)

Advanced geothermal drilling systems will require a bottom hole assembly (BHA) which utilizes sophisticated electronic and mechanical equipment to accomplish faster, more trouble free, smarter drilling. The bit-drill string/formation interaction during drilling imposes complex, intermittent dynamic loading on the downhole equipment. A finite element computer code, GEODYN, is being developed to allow analysis of the structural response of the downhole equipment during drilling and to simulate the drilling phenomena (i.e. penetration, direction, etc.). Phase 1 GEODYN, completed early in 1984, provides the capability to model the dynamic response of a polycrystalline diamond compact (PDC) bit interacting with a non-homogeneous formation. Succeeding development phases will allow inclusion of stabilizers and, eventually, the entire drill string in addition to facilitating drill ahead simulation.

Baird, J.A.; Caskey, B.C.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

OCEAN DRILLING PROGRAM LEG 119 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

Program, Texas A&M University, as an account of work performed under the international Ocean Drilling sheet, including the 3000-m-high subglacial Gamburtsev Mountains. The glacier follows the line ice drainage basin is believed to be long-lived because of this structural control, and Prydz Bay

382

OCEAN DRILLING PROGRAM LEG 182 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

rain has built a mound over geologic time of almost pure calcareous and siliceous sediments stretching of this northward plate motion: (1) the thickest part of the equatorial mound of biogenic sediment is displaced drilling and coring of the central Pacific equatorial mound of sediments (e.g., DSDP Legs 5, 8, 9, and 16

383

OCEAN DRILLING PROGRAM LEG 169 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

rain has built a mound over geologic time of almost pure calcareous and siliceous sediments stretching of this northward plate motion: (1) the thickest part of the equatorial mound of biogenic sediment is displaced drilling and coring of the central Pacific equatorial mound of sediments (e.g., DSDP Legs 5, 8, 9, and 16

384

OCEAN DRILLING PROGRAM LEG 101 PRELIMINARY REPORT  

E-Print Network (OSTI)

Rickenbacker Causeway Miami, FL 33139 Amanda A. Palmer Staff Science Representative, Leg 101 Ocean Drilling Schlager (Rosenstiel School of Marine and Atmospheric Sciences, Miami, Florida) Co-Chief Scientist Paul of Marine and Atmospheric Sciences, Miami, Florida) Gregor Eberli (Geologisches Institute, ETH

385

Drilling and operating geothermal wells in California  

SciTech Connect

The following procedural points for geothermal well drilling and operation are presented: geothermal operators, definitions, geothermal unit, agent, notice of intention, fees, report on proposed operations, bonds, well name and number, well and property sale on transfer, well records, and other agencies. (MHR)

1979-01-01T23:59:59.000Z

386

OCEAN DRILLING PROGRAM LEG 176 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

-Canada-Chinese Taipei-Korea Consortium for Ocean Drilling Deutsche Forschungsgemeinschaft (Federal Republic of Germany 68588-0340, U.S.A.; E-mail: nlg@unlinfo.unl.edu) Andreas Lückge, Organic Geochemist (Institut für Chemie

387

SHIPBOARD SCIENTISTS1 OCEAN DRILLING PROGRAM  

E-Print Network (OSTI)

Personnel 17 1. Laboratory Officer 17 2. Technicians 17 3. Computer System Manager 17 4. Curatorial. Logging Depth Measurements 34 D. Coring and Drilling Equipment and Usage 34 1. Rotary Coring (RCB) System 34 2. Advanced Piston Coring (APC) System 36 3. Extended Core Barrel (XCB) 37 4. Motor-Driven Core

388

Forecast of geothermal-drilling activity  

DOE Green Energy (OSTI)

The number of geothermal wells that will be drilled to support electric power production in the United States through 2000 A.D. are forecasted. Results of the forecast are presented by 5-year periods for the five most significant geothermal resources.

Mansure, A.J.; Brown, G.L.

1982-07-01T23:59:59.000Z

389

Impedance-matched drilling telemetry system  

DOE Patents (OSTI)

A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

Normann, Randy A. (Edgewood, NM); Mansure, Arthur J. (Albuquerque, NM)

2008-04-22T23:59:59.000Z

390

Horizontal drilling boosts Pennsylvania’s natural gas production ...  

U.S. Energy Information Administration (EIA)

Between 2009 and 2011, Pennsylvania's natural gas production more than quadrupled due to expanded horizontal drilling combined with hydraulic fracturing.

391

Laser Drilling with Gated High Power Fiber Lasers  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2010. Symposium, Laser Applications in Materials Processing. Presentation Title, Laser Drilling ...

392

Drilling for Geothermal Resources Rules - Idaho | Open Energy...  

Open Energy Info (EERE)

Geothermal Resources Rules - Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Drilling for Geothermal Resources Rules - Idaho Details...

393

Systems study of drilling for installation of geothermal heat pumps  

DOE Green Energy (OSTI)

Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the spread-sheet.

Finger, J.T.; Sullivan, W.N.; Jacobson, R.D.; Pierce, K.G.

1997-09-01T23:59:59.000Z

394

Systems Study Of Drilling For Installation Of Geothermal Heat Pumps  

E-Print Network (OSTI)

Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the...

John Finger William; William N. Sullivan; Ronald D. Jacobson; Kenneth G. Pierce

1997-01-01T23:59:59.000Z

395

Liability issues surrounding oil drilling mud sumps  

Science Conference Proceedings (OSTI)

This presentation examines liability issues surrounding oil drilling mud sumps and discusses them in relation to two recent cases that arose in Ventura County, California. Following a brief history of regulatory interest in oil drilling mud and its common hazardous substances, various cause of action arising from oil drilling mud deposits are enumerated, followed by defenses to these causes of action. Section 8002 (m) of the Resource Conservation and Recovery Act is mentioned, as are constituents of oil and gas waste not inherent in petroleum and therefore not exempt from regulation under the petroleum exclusion in the Comprehensive Environmental Response, Compensation and Recovery Act. Key legal words such as hazardous substance, release, public and private nuisance, trespass, responsible parties, joint and several liability, negligence, and strict liability are explained. The effects on liability of knowledge of the deposits, duty to restore land to its original condition, consent to the deposit of oil drilling mud, and noncompliance and compliance with permit conditions are analyzed. The state-of-the-art defense and research to establish this defense are mentioned. The newly created cause of action for fear of increased risk of cancer is discussed. Issues on transfer of property where oil drilling mud has been deposited are explored, such as knowledge of prior owners being imputed to later owners, claims of fraudulent concealment, and as is' clauses. The effects on the oil and gas industry of the California Court of Appeals for the Second District rulings in Dolan v. Humacid-MacLeod and Stevens v. McQueen are speculated.

Dillon, J.J.

1994-04-01T23:59:59.000Z

396

Advanced coal-fueled industrial cogeneration gas turbine system: Hot End Simulation Rig  

DOE Green Energy (OSTI)

This Hot End Simulation Rig (HESR) was an integral part of the overall Solar/METC program chartered to prove the technical, economic, an environmental feasibility of a coal-fueled gas turbine, for cogeneration applications. The program was to culminate in a test of a Solar Centaur Type H engine system operated on coal slurry fuel throughput the engine design operating range. This particular activity was designed to verify the performance of the Centaur Type H engine hot section materials in a coal-fired environment varying the amounts of alkali, ash, and sulfur in the coal to assess the material corrosion. Success in the program was dependent upon the satisfactory resolution of several key issues. Included was the control of hot end corrosion and erosion, necessary to ensure adequate operating life. The Hot End Simulation Rig addressed this important issue by exposing currently used hot section turbine alloys, alternate alloys, and commercially available advanced protective coating systems to a representative coal-fueled environment at turbine inlet temperatures typical of Solar`s Centaur Type H. Turbine hot end components which would experience material degradation include the transition duct from the combustor outlet to the turbine inlet, the shroud, nozzles, and blades. A ceramic candle filter vessel was included in the system as the particulate removal device for the HESR. In addition to turbine material testing, the candle material was exposed and evaluated. Long-term testing was intended to sufficiently characterize the performance of these materials for the turbine.

Galica, M.A.

1994-02-01T23:59:59.000Z

397

An Intelligent System for Petroleum Well Drilling Cutting Analysis  

Science Conference Proceedings (OSTI)

Cutting analysis is a important and crucial task task to detect and prevent problems during the petroleum well drilling process. Several studies have been developed for drilling inspection, but none of them takes care about analysing the generated cutting ... Keywords: Cutting analysis, petroleum well drilling monitoring, optimum-path forest

Aparecido N. Marana; Giovani Chiachia; Ivan R. Guilherme; João P. Papa

2009-09-01T23:59:59.000Z

398

Surface control bent sub for directional drilling of petroleum wells  

DOE Patents (OSTI)

Directional drilling apparatus for incorporation in a drill string, wherein a lower apparatus section is angularly deviated from vertical by cam action and wherein rotational displacement of the angularly deviated apparatus section is overcome by additional cam action, the apparatus being operated by successive increases and decreases of internal drill string pressure.

Russell, Larry R. (6025 Edgemoor, Suite C, Houston, TX 77081)

1986-01-01T23:59:59.000Z

399

Suggested drilling research tasks for the Federal Government  

DOE Green Energy (OSTI)

A brief summary discussion of drilling, drilling research and the role of the government in drilling research is presented. Specific research and development areas recommended for federal consideration are listed. The technical nature of the identified tasks is emphasized. The Appendices present the factual basis for the discussion and recommendations. Numerous references are noted in the Appendices.

Carson, C.C.

1984-04-01T23:59:59.000Z

400

Screening criteria help select formations for underbalanced drilling  

Science Conference Proceedings (OSTI)

Certain laboratory screening procedures can help determine the effectiveness of underbalanced drilling in a specific application. These screening criteria can help in analyzing the types of reservoirs which present good applications for underbalanced drilling technology. This paper discusses the types of information that should be obtained for any reservoir prior to designing the underbalanced drilling program for optimum performance.

Bennion, D.B. [Hycal Energy Research Labs. Ltd., Calgary, Alberta (Canada)

1996-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Finite element analysis of the electro jet drilling process  

Science Conference Proceedings (OSTI)

The electro jet drilling (EJD) process is gaining prominence in the machining of micro and macro holes in difficult-to-machine materials used in aerospace, electronics and computers, medical, and automobile industries. As the trend towards miniaturization ... Keywords: electro jet drilling, electrochemical drilling, finite element method, radial overcut

M. Sen; H. S. Shan

2007-01-01T23:59:59.000Z

402

Progress Toward an Advanced Geothermal Deep-Drilling System  

DOE Green Energy (OSTI)

A previously developed concept for an advanced geothermal drilling system (AGDS) has been extended toward a feasibility design stage. Hardware projects for two percussion, air and hydraulic, hammer drills are underway. Two drill string options and an unique nitrogen supply system are described.

Rowley, J.; Saito, S.; Long, R.

1995-01-01T23:59:59.000Z

403

An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration  

Science Conference Proceedings (OSTI)

A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

TerraTek

2007-06-30T23:59:59.000Z

404

State-of-the-art in coalbed methane drilling fluids  

SciTech Connect

The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

2008-09-15T23:59:59.000Z

405

U. S. Energy Information Administration | Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1,600 1,600 2007 2008 2009 2010 2011 2012 2013 2014 Oil production thousand barrels/day Permian 0 10 20 30 Dec 1,335 Mbbl/d Production from new wells Legacy production change Net change Jan 1,335 Mbbl/d thousand barrels/day Permian +37 -36 +1 Indicated change in oil production (Jan vs. Dec) 0 20 40 60 80 Dec 5,046 MMcf/d Production from new wells Legacy production change Net change Jan 5,046 MMcf/d Indicated change in natural gas production (Jan vs. Dec) million cubic feet/day Permian +88 -88 +0 0 100 200 300 400 500 600 0 100 200 300 400 500 600 2007 2008 2009 2010 2011 2012 2013 2014 new-well oil production per rig rig count New-well oil production per rig barrels/day Permian Rig count rigs (40) (35) (30) (25) (20) (15) (10) (5) 0 2007 2008 2009 2010 2011 2012 2013 2014 Legacy oil production change thousand barrels/day

406

U. S. Energy Information Administration | Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

barrels/day barrels/day 0 400 800 1,200 1,600 2,000 2007 2008 2009 2010 2011 2012 2013 2014 Oil production thousand barrels/day Haynesville 0.0 0.5 1.0 1.5 2.0 Dec 54 Mbbl/d Production from new wells Legacy production change Net change Jan 54 Mbbl/d thousand barrels/day Haynesville +2 -2 +0 Indicated change in oil production (Jan vs. Dec) -150 -50 50 150 250 350 Dec 6,492 MMcf/d Production from new wells Legacy production change Net change Jan 6,361 MMcf/d Indicated change in natural gas production (Jan vs. Dec) million cubic feet/day Haynesville +239 -370 -131 0 50 100 150 200 250 300 0 200 400 600 800 1,000 2007 2008 2009 2010 2011 2012 2013 2014 new-well oil production per rig rig count New-well oil production per rig barrels/day Haynesville Rig count rigs (3) (2) (1) 0 2007 2008 2009 2010 2011 2012 2013 2014 Legacy oil production change

407

U. S. Energy Information Administration | Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Bakken Bakken 0 50 100 Dec 1,000 Mbbl/d Production from new wells Legacy production change Net change Jan 1,025 Mbbl/d thousand barrels/day Bakken +88 -63 +25 Indicated change in oil production (Jan vs. Dec) 0 50 100 Dec 1,092 MMcf/d Production from new wells Legacy production change Net change Jan 1,119 MMcf/d Indicated change in natural gas production (Jan vs. Dec) million cubic feet/day Bakken +83 -55 +28 0 50 100 150 200 250 0 100 200 300 400 500 600 2007 2008 2009 2010 2011 2012 2013 2014 new-well oil production per rig rig count New-well oil production per rig barrels/day Bakken Rig count rigs (70) (60) (50) (40) (30) (20) (10) 0 2007 2008 2009 2010 2011 2012 2013 2014 Legacy oil production change thousand barrels/day Bakken (60) (50) (40) (30) (20) (10) 0 2007 2008 2009 2010 2011 2012 2013 2014 Legacy gas production change

408

U. S. Energy Information Administration | Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Marcellus Marcellus 0 400 800 1,200 1,600 2,000 2007 2008 2009 2010 2011 2012 2013 2014 Oil production thousand barrels/day Marcellus 0.0 1.0 2.0 3.0 4.0 Dec 39 Mbbl/d Production from new wells Legacy production change Net change Jan 41 Mbbl/d thousand barrels/day Marcellus +4 -2 +2 Indicated change in oil production (Jan vs. Dec) 0 200 400 600 Dec 13,303 MMcf/d Production from new wells Legacy production change Net change Jan 13,721 MMcf/d Indicated change in natural gas production (Jan vs. Dec) million cubic feet/day Marcellus +612 -193 +419 0 20 40 60 80 100 120 140 160 0 200 400 600 800 1,000 2007 2008 2009 2010 2011 2012 2013 2014 new-well oil production per rig rig count New-well oil production per rig barrels/day Marcellus Rig count rigs (3) (2) (1) 0 2007 2008 2009 2010 2011 2012 2013 2014 Legacy oil production change

409

Specific features in building hardware-software complexes operating in real-time: An example of test rig used in periodic tests of reducers  

Science Conference Proceedings (OSTI)

Test rig for periodic tests of reducers is involved as an example to discuss specific features in building automatic test systems (ATS); the test rig is designed at ZAO NPP MIKS Engineering. A certain approach to ATS design based on adaptation of universal ...

A. A. Urakov; M. A. Rylov; D. S. Shutov; P. G. Dorofeev

2011-05-01T23:59:59.000Z

410

High pressure drilling system triples ROPS, stymies bit wear  

Science Conference Proceedings (OSTI)

Recent West Texas field tests of an experiental high-pressure drilling system have nearly tripled typical penetration rates in hard dolomite while putting virtually no visible wear on the bits, even those designed for much softer formations. With this drilling system, developed by FlowDril Corp. of Kent, Wash., and their joint-venture partner Grace Drilling Co., clarified drilling fluids (minimum solids) are pressurized to nearly 30,000 psi and directed to the bottom of the hole through a special nozzle attached to the drill bit. The action of this high pressure stream augments the bit's job, resulting in higher ROPs and decreased bit wear.

Killalea, M.

1989-03-01T23:59:59.000Z

411

Drilling and blasting techniques and costs for strip mines in Appalachia  

SciTech Connect

On-site investigations of blasting techniques were conducted at twenty surface coal mining operations in the steep slopes of Appalachia. The mine sites represented a range of mountain mining methods and annual coal production levels; all sites used similar techniques and equipment for the removal of fragmented waste rock. Hole loading characteristics and constraints limiting blast designs were observed at each mine site. This report summarizes technical blasting data and geological conditions which require special design considerations. Three mine sites were selected for future research in fragmentation efficiency. Detailed economic data on drilling and blasting were gathered from the three research sites and are reported herein. A great deal of fragmentation difficulties stem from tough, unpredictable geology with specific bedding characteristics and local zones of defined structural weaknesses such as jointing and vertical seams. Exceptionally hard bedrock, existing as a caprock or as the basal layer above the coal seam, persists as the cause of oversize rock breakage or, in the latter case, damage to the coal unless special precautions are taken. Federal blasting regulations strictly control the amount of explosives used as well as throw of the fragmented rock. This requires that blasting modifications be employed. The nature and extent of blast modifications were observed to be related to terrain and demographic conditions around the mine site. Drilling and blasting costs reported for the three mine sites averaged $0.21 per cubic yard of material blasted. Drilling costs varied widely, as drilling time was indicative of geologies and often, drilling costs remained the greatest percentage of total blasting and drilling costs.

Aimone, C.T.

1980-06-01T23:59:59.000Z

412

GRR/Section 5 - Drilling Overview | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 5 - Drilling Overview GRR/Section 5 - Drilling Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5 - Drilling Overview 05DrillingPermittingOverview.pdf Click to View Fullscreen Contact Agencies BLM Regulations & Policies 30 USC § 1001 Triggers None specified On top of acquiring the correct drilling permits a developer needs to consider issues such as land and mineral ownership and right of way access. 05DrillingPermittingOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 5.1 - Review Potential Construction Permits In addition to drilling permits, the developer may require other

413

GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING  

DOE Green Energy (OSTI)

Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

Walsh, S C; Lomov, I; Roberts, J J

2012-01-19T23:59:59.000Z

414

Integrating surface systems with downhole data improves underbalanced drilling  

Science Conference Proceedings (OSTI)

An integrated approach of using special downhole sensors and transmission capabilities in conjunction with a surface drilling optimization system has improved the management and understanding of the underbalanced drilling environment within a closed loop system. Improving the underbalanced drilling operation and obtaining quality data in real time can help eliminate damage to the formation and increase ultimate production. Recent advances in drilling technology have made it possible to drill horizontal wells underbalanced more safely and effectively. This technology has greatly reduced the potential for skin damage to the bore hole. Experience from western Canadian underbalanced horizontal drilling clearly demonstrates that a well bore`s initial productive potential is very accurately predicted from its productive behavior during drilling operations.

Comeau, L. [Sperry-Sun Drilling Services, Calgary, Alberta (Canada)

1997-03-03T23:59:59.000Z

415

Horizontal flow drilling requires focus on well control  

Science Conference Proceedings (OSTI)

Horizontal wells drilled underbalanced or while flowing must have surface equipment and a blow-out preventer stack specially designed for circulating operations. Functional well control methods for drilling horizontal wells have been developed in specific regions worldwide. Special safety equipment and procedures, however, are still required in most horizontal development applications. The challenge for horizontal drilling development and underbalanced drilling is to overcome the obstacles of government regulation, reduce pollution dangers, and improve personnel and equipment safety. Well control techniques tailored to the demands of each field can help overcome these challenges. Several well control elements must be addressed carefully on each horizontal well: drilling fluid requirements, well control procedures and equipment, and surface equipment and special considerations for handling hydrocarbons produced while drilling. The paper discusses each of these elements for underbalanced horizontal drilling.

Tangedahl, M.J. (RBOP Oil Tools International Inc., Houston, TX (United States))

1994-06-13T23:59:59.000Z

416

How borehole ballooning alters drilling responses  

Science Conference Proceedings (OSTI)

From field observations of drilling and hole instability problems over a 30-year period, a new and more complete understanding of plastic well-bore behavior - under certain pressure imbalance conditions - is being developed and verified with detailed well histories. Rock mechanics theory, thus far primarily concerned with plastic behavior and borehole collapse on the underbalanced side, is in at least partial agreement with these observations. This article further elaborates on the pressure-responsive plastic behavior of shales under tremendous downhole stresses, particularly in the overbalanced, ballooning mode. The primary subject matter of the article is divided into the following areas: Stable operating margin; Plastic behavior region; Wellbore wall yields; Brittle sloughings; Loss of mud; Gain of mud; Shut-in pressure; Reflex gas; Charged RFT's; Preexisting balloon; Drilling rate.

Gill, J.A.

1989-03-13T23:59:59.000Z

417

Middle East: Output expansions boost drilling  

SciTech Connect

Iraqi exports may return to the market in limited fashion, but none of the region`s producers seems particularly concerned. They believe that global oil demand is rising fast enough to justify their additions to productive capacity. The paper discusses exploration, drilling and development, and production in Saudi Arabia, Kuwait, the Neutral Zone, Abu Dhabi, Dubai, Oman, Iran, Iraq, Yemen, Qatar, Syria, Turkey, and Sharjah. The paper also briefly mentions activities in Bahrain, Israel, Jordan, and Ras al Khaimah.

NONE

1996-08-01T23:59:59.000Z

418

Horizontal drilling in shallow, geologically complex reservoirs  

Science Conference Proceedings (OSTI)

The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

Venable, S.D.

1992-01-01T23:59:59.000Z

419

Horizontal drilling in shallow, geologically complex reservoirs  

Science Conference Proceedings (OSTI)

The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

Venable, S.D.

1992-10-01T23:59:59.000Z

420

Microhole Wireless Steering While Drilling System  

SciTech Connect

A background to Coiled Tubing Bottom Hole Assemblies (CT-BHA) is given, and the development of a bi-directional communications and power module (BCPM)component is described. The successful operation of this component in both the laboratory and field environment is described. The primary conclusion of this development is that the BCPM component operates as anticipated within the CT-BHA, and significantly extends the possibility of drilling with coiled tubing in the microhole environment.

John Macpherson; Thomas Gregg

2007-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Research drilling in young silicic volcanoes  

DOE Green Energy (OSTI)

Magmatic activity, and particularly silicic magmatic activity, is the fundamental process by which continental crust forms and evolves. The transport of magma from deep crustal reservoirs to the surface is a neglected but important aspect of magmatic phenomena. It encompasses problems of eruptive behavior, hydrothermal circulation, and ore deposition, and must be understood in order to properly interpret deeper processes. Drilling provides a means for determining the relationship of shallow intrusive processes to eruption processes at young volcanoes where eruptions are best understood. Drilling also provides a means for directly observing the processes of heat and mass transfer by which recently emplaced intrusions approach equilibrium with their new environment. Drilling in the Inyo Chain, a 600-year-old chain of volcanic vents in California, has shown the close relationship of silicic eruption to shallow dike emplacement, the control of eruptive style by shallow porous-flow degassing, the origin of obsidian by welding, the development of igneous zonation by viscosity segregation, and the character and size of conduits in relation to well-understood magmatic and phreatic eruptions. 36 refs., 9 figs.

Eichelberger, J.C.

1989-06-30T23:59:59.000Z

422

Evaluation of commercially available geothermal drilling fluids  

DOE Green Energy (OSTI)

A review of geothermal drilling in the United States has revealed that serious problems are being encountered with corrosion and degradation of drilling fluids in high temperature wells. The best high temperature drilling fluids that could be formulated from commercially available materials were obtained from the five largest mud companies. These included samples of 9 and 18 lb/gal water muds and 18 lb/gal oil muds. Over 4,000 tests were conducted on these muds to evaluate their performance at high temperature. This included testing at temperatures to 550/sup 0/F and pressures to 15,000 psi. These tests revealed that most of the water muds had high viscosity, high filtration rates and poor corrosivity characteristics at temperatures above 350/sup 0/F. Although the oil muds performed better than water muds at high temperatures, some problems were encountered with viscosity at temperatures above 450/sup 0/F and with filtration at temperatures above 500/sup 0/F. Generally the corrosivity characteristics of the oil muds were much better than those of the water muds. Overall, oil muds have better temperature stability than water muds but their use is often limited because of problems with surface pollution, contamination of water zones and reservoir damage. Biodegradable oil mud systems would overcome some of these limitations.

Remont, L.J.; Rehm, W.A.; McDonald, W.J.; Maurer, W.C.

1976-11-01T23:59:59.000Z

423

Borehole measurements while drilling: systems and activities  

DOE Green Energy (OSTI)

Attention is focused on all potential methods of drilling safer and cheaper. Real time data from the bit offers the greatest potential for meeting these needs. As a result, numerous companies are actively competing to develop this oil field service capability and to capture a world wide market. Two basic categories of service are sought. The first, and highest priority, is drilling safety and efficiency; the second is real-time logging, or formation evaluation. This study addresses the types of systems being studied, describes company activity and projects underway, estimates the practical potential for success and considers the commercial market for successful systems. The need for research data on bit hydraulics and drill string dynamics, special deep, hot or sour gas situations and other relatively unusual requirements may become exceptions to the general conclusions that are drawn. Historical and present activity are documented through presenting the results of extensive literature and patent researches. A breakdown is presented of activity by company along with names and addresses for further contact.

McDonald, W.J.

1977-06-01T23:59:59.000Z

424

Development of a Hydrothermal Spallation Drilling System for EGS Geothermal  

Open Energy Info (EERE)

Hydrothermal Spallation Drilling System for EGS Geothermal Hydrothermal Spallation Drilling System for EGS Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of a Hydrothermal Spallation Drilling System for EGS Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Drilling Systems Project Description Potter Drilling has recently demonstrated hydrothermal spallation drilling in the laboratory. Hydrothermal spallation drilling creates boreholes using a focused jet of superheated water, separating individual grains ("spalls") from the rock surface without contact between the rock and the drill head. This process virtually eliminates the need for tripping. Previous tests of flame-jet spallation achieved ROP of 50 ft/hr and higher in hard rock with minimal wear on the drilling assembly, but operating this technology in an air-filled borehole created challenges related to cuttings transport and borehole stability. The Potter Drilling system uses a water based jet technology in a fluid-filled borehole and as a result has the potential to achieve similarly high ROP that is uncompromised by stability or cuttings transport issues.

425

Development and Manufacture of Cost Effective Composite Drill Pipe  

SciTech Connect

This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2004 through September 30, 2005 and contains the following discussions: (1) Qualification Testing; (2) Prototype Development and Testing of ''Smart Design'' Configuration; (3) Field Test Demonstration; and (4) Commercial order for SR-CDP from Torch International. The objective of this contract is to develop and demonstrate ''cost effective'' Composite Drill Pipe. It is projected that this drill pipe will weigh less than half of its steel counter part. The resultant weight reduction will provide enabling technology that will increase the lateral distance that can be reached from an offshore drilling platform and the depth of water in which drilling and production operations can be carried out. Further, composite drill pipe has the capability to carry real time signal and power transmission within the pipe walls. CDP can also accommodate much shorter drilling radius than is possible with metal drill pipe. As secondary benefits, the lighter weight drill pipe can increase the storage capability of floating off shore drilling platforms and provide substantial operational cost savings.

James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Steve Loya

2006-02-20T23:59:59.000Z

426

Workshop on magma/hydrothermal drilling and instrumentation  

DOE Green Energy (OSTI)

The discussions, conclusions, and recommendations of the Magma/Hydrothermal Drilling and Instrumentation Workshop, Albuquerque, NM, May 31--June 2, 1978 are summarized. Three working groups were organized as follows: Drilling Location and Environment, Drilling and Completion Technology, and Logging and Instrumentation Technology. The first group discussed potential drilling sites and the environment that could be expected in drilling to magma depth at each site. Sites suggested for early detailed evaluation as candidate drilling sites were The Geysers-Clear Lake, CA, Kilauea, HI, Long Valley-Mono Craters, CA, and Yellowstone, WY. Magma at these sites is expected to range from 3 to 10 km deep with temperatures of 800 to 1100{sup 0}C. Detailed discussions of the characteristics of each site are given. In addition, a list of geophysical measurements desired for the hole is presented. The Drilling and Completion Group discussed limitations on current rotary drilling technology as a function of depth and temperature. The group concluded that present drilling systems can be routinely used to temperatures of 200{sup 0}C and depths to 10 km; drilling to 350{sup 0}C can be accomplished with modifications of present techniques, drilling at temperatures from 350{sup 0}C to 1100{sup 0}C will require the development of new drilling techniques. A summary of the limiting factors in drilling systems is presented, and recommendations for a program directed at correcting these limitations is described. The third group discussed requirements for instrumentation and established priorities for the development of the required instruments. Of highest priority for development were high resolution temperature tools, sampling techniques (core, formation fluids), chemical probes, and communications techniques. A description of instrumentation requirements for the postulated hole is given, and the tasks necessary to develop the required devices are delineated.

Varnado, S.G.; Colp, J.L. (eds.)

1978-07-01T23:59:59.000Z

427

NETL: News Release - New Projects to Investigate Smart Drilling Options  

NLE Websites -- All DOE Office Websites (Extended Search)

February 20, 2004 February 20, 2004 New Projects to Investigate "Smart Drilling" Options Promise Lower Cost, More Reliable Gas Drilling Two additional projects have been selected under a Department of Energy solicitation designed to advance performance when drilling for natural gas. The projects are a key component of the Department's gas exploration and production research program, and support the President's National Energy Policy, which calls for boosting domestic production of natural gas to ensure an adequate future supply at reasonable prices. With shallow and conventional natural gas resources in the United States being depleted, drillers must reach for gas miles below the earth's surface, where temperatures run up to 450 EF and pressures are hundreds of times greater than atmospheric pressure. "Smart drilling" options can increase productivity, improve drilling safety, and lower costs when drilling for these hard-to-reach deep gas supplies.

428

Review of the Drilling R and D Program at Sandia  

DOE Green Energy (OSTI)

Drilling projects conducted for the Division of Geothermal Energy (DGE) and the Office of Energy Research (OER), both of the Department of Energy (DOE), are described. The DGE Well Technology Program includes drilling, well completion, and high temperature logging instrumentation R and D for geothermal applications. Accomplishments to date include successful laboratory testing of the continuous chain drill and development of temperature, pressure, and flow sondes capable of operation at 275/sup 0/C. Efforts are also under way to develop high-temperature, high-performance bits, high-temperature drilling fluids, and high-temperature downhole motors. Bearings, seals, and lubricants for use in high-temperature bits and motors are also being developed and tested. Recent results are presented. An OER drilling experiment into a lava lake at Kilauea Iki, Hawaii, is being conducted. Materials and techniques for drilling into an active magma/hydrothermal system are in a preliminary phase of study.

Stoller, H.M.

1978-01-01T23:59:59.000Z

429

Total Ore Processing Integration and Management  

SciTech Connect

This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 January through 31 March of 2006. (1) Work in Progress: Minntac Mine--Graphical analysis of drill monitor data moved from two-dimensional horizontal patterns to vertical variations in measured and calculated parameters. The rock quality index and the two dimensionless ({pi}) indices developed by Kewen Yin of the University of Minnesota are used by Minntac Mine to design their blasts, but the drill monitor data from any given pattern is obviously not available for the design of that shot. Therefore, the blast results--which are difficult to quantify in a short time--must be back-analyzed for comparison with the drill monitor data to be useful for subsequent blast designs. {pi}{sub 1} indicates the performance of the drill, while {pi}{sub 2} is a measure of the rock resistance to drilling. As would be expected, since a drill tends to perform better in rock that offers little resistance, {pi}{sub 1} and {pi}{sub 2} are strongly inversely correlated; the relationship is a power function rather than simply linear. Low values of each Pi index tend to be quantized, indicating that these two parameters may be most useful above certain minimum magnitudes. (2) Work in Progress: Hibtac Mine--Statistical examination of a data set from Hibtac Mine (Table 1) shows that incorporating information on the size distribution of material feeding from the crusher to the autogenous mills improves the predictive capability of the model somewhat (43% vs. 44% correlation coefficient), but a more important component is production data from preceding days (26% vs. 44% correlation coefficient), determined using exponentially weighted moving average predictive variables. This lag effect likely reflects the long and varied residence times of the different size fragments in the grinding mills. The rock sizes are also correlated with the geologic layers from which they originate. Additional predictive parameters include electric power drawn by the crusher and the inverse of the average grind index of the ore being milled.

Leslie Gertsch

2006-05-15T23:59:59.000Z

430

Underbalanced drilling in the Piceance basin. Final report, June 1997  

Science Conference Proceedings (OSTI)

Underbalanced drilling technology is established and fairly well understood in some areas in the U.S. such as Appalachia. The primary objective of this cooperative project in the Piceance Basin was to use underbalanced drilling technologies to reduce rates of penetration such that significant cost reductions could occur. Fluids evaluated included air/mist, stiff foams and aerated muds. Underbalanced drilling was successful particularly in the surface hole; however, heaving shales in the Wasatch section were problematic.

Lewis, C.A.; Graham, R.L.

1997-06-01T23:59:59.000Z

431

Qualification of a computer program for drill string dynamics  

DOE Green Energy (OSTI)

A four point plan for the qualification of the GEODYN drill string dynamics computer program is described. The qualification plan investigates both modal response and transient response of a short drill string subjected to simulated cutting loads applied through a polycrystalline diamond compact (PDC) bit. The experimentally based qualification shows that the analytical techniques included in Phase 1 GEODYN correctly simulate the dynamic response of the bit-drill string system. 6 refs., 8 figs.

Stone, C.M.; Carne, T.G.; Caskey, B.C.

1985-01-01T23:59:59.000Z

432

Guided Horizontal Drilling: A Primer for Electric Utilities  

Science Conference Proceedings (OSTI)

This document is intended to be an introduction to guided horizontal drilling, also termed horizontal directional drilling (HDD), as an alternative construction method to open trenching for the installation of underground power cables, pipes, ducts, or conduits. It is written for an audience that includes electric power engineers, designers, operations and procurement personnel. The document introduces guided horizontal drilling technology, the equipment, and several critical aspects of operating the equ...

1997-02-18T23:59:59.000Z

433

Development of drilling foams for geothermal applications  

DOE Green Energy (OSTI)

The use of foam drilling fluids in geothermal applications is addressed. A description of foams - what they are, how they are used, their properties, equipment required to use them, the advantages and disadvantages of foams, etc. - is presented. Geothermal applications are discussed. Results of industry interviews presented indicate significant potential for foams, but also indicate significant technical problems to be solved to achieve this potential. Testing procedures and results of tests on representative foams provide a basis for work to develop high-temperature foams.

McDonald, W.J.; Remont, L.J.; Rehm, W.A.; Chenevert, M.E.

1980-01-01T23:59:59.000Z

434

Sound Coiled-Tubing Drilling Practices  

Science Conference Proceedings (OSTI)

This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

Williams, Thomas; Deskins, Greg (Maurer Technology Inc.); Ward, Stephen L. (Advantage Energy Services Ltd); Hightower, Mel

2001-09-30T23:59:59.000Z

435

Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results  

DOE Green Energy (OSTI)

The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

Ross, H.P.; Forsgren, C.K. (eds.)

1992-04-01T23:59:59.000Z

436

By Matthew J. Kotchen o drill or not to drill? That is the ques-  

E-Print Network (OSTI)

. But conflict re- mains about whether to allow drilling in the federal portion of ANWR. While ANWR is thought in North America. Thus, the ANWR question is typically cast in symbolic terms -- "big oil" looking to cash a simple thought ex- periment to help cut through the symbol- ism. Imagine that ANWR -- both the region

Kotchen, Matthew J.

437

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared  

Open Energy Info (EERE)

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Abstract Infrared spectroscopy is particularly good at identifying awide variety of hydrothermally altered minerals with no samplepreparation, and is especially helpful in discrimination amongclay minerals. We have performed several promising pilot studieson geothermal drill core and cuttings that suggest the efficiencyof the technique to sample continuously and provide alterationlogs similar to geophysical logs. We have successfully identifiedlayered silicates, zeolites, opal, calcite, and iron oxides and

438

Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology...  

Open Energy Info (EERE)

major contributor for electricity generation, namely: (1) reduce costs for drilling and well completion and (2) increase the volume of hot rock from which heat can be extracted....

439

Challenges in Applying Diamond Coatings to Carbide Twist Drills  

Science Conference Proceedings (OSTI)

Despite of the attractive advantage of applying diamond coating to drills, ... Investigation of a Hybrid Cutting Tool Design for Shearing Operations of Sheet Metals.

440

Recent Drilling Activities At The Earth Power Resources Tuscarora...  

Open Energy Info (EERE)

25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production...

Note: This page contains sample records for the topic "rigs drilling totaled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Safety Measures a hinder for Geothermal Drilling | Open Energy...  

Open Energy Info (EERE)

2010 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Safety Measures a hinder for Geothermal Drilling Citation Renewable Power...

442

Chesapeake Bay, Drilling for Oil or Gas Prohibited (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

Drilling for oil or gas in the waters or within 500 hundred feet from the shoreline of the Chesapeake Bay or any of its tributaries is prohibited.

443

Geothermal: Sponsored by OSTI -- Chapter 6. Drilling and Well...  

Office of Scientific and Technical Information (OSTI)

Chapter 6. Drilling and Well Construction Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced...

444

Pressure Sensor and Telemetry Methods for Measurement While Drilling...  

Open Energy Info (EERE)

MWD Tools for Directional Drilling Project Description - Phase I: Integrate and test pressure sensor system consisting of a commercial off the shelf silicon-on-sapphire...

445

Drilling often results in both oil and natural gas production ...  

U.S. Energy Information Administration (EIA)

Solar › Energy in Brief ... Btu = British thermal units. ... A future Today in Energy article will focus on how drilling efficiency relates to ...

446

Trends in Eagle Ford drilling highlight the search for oil ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... In major shale plays, drilling activity depends largely on the resource mix and relative fuel ...

447

Drilling Sideways -- A Review of Horizontal Well Technology and ...  

U.S. Energy Information Administration (EIA)

DOE/EIA-TR-0565 Distribution Category UC-950 Drilling Sideways -- A Review of Horizontal Well Technology and Its Domestic Application April 1993 Energy Information ...

448

Corrosion Resistant Metallic Materials for Ultra-deep Well Drilling ...  

Science Conference Proceedings (OSTI)

... corrosion fatigue, etc., can be a primary cause of catastrophic degradation of tubular components during ultra-deep drilling of oil and natural gas shale.

449

Corrosion Control Methods of Drilling Tools – Effectiveness and ...  

Science Conference Proceedings (OSTI)

... and high temperature, makes corrosion of drilling tools a major concern. In this paper ... Nanocrystalline and Nanotwinned Metals under Extreme Environment.

450

Technology Development and Field Trials of EGS Drilling Systems...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Technology Development and Field Trials of EGS Drilling Systems Geothermal Lab Call...

451

NETL: News Release - Drilling Operators Receive Boost from New...  

NLE Websites -- All DOE Office Websites (Extended Search)

Drilling Operators Receive Boost from New Database to Weigh Options Regarding Waste Management Interactive Website Provides Easy Access to Technological, Environmental, and...

452

High Temperature 300°C Directional Drilling System Geothermal...  

Open Energy Info (EERE)

Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Directional Drilling Systems Project Description The development plan...

453

Development of a Hydrothermal Spallation Drilling System for...  

Open Energy Info (EERE)

this technology in an air-filled borehole created challenges related to cuttings transport and borehole stability. The Potter Drilling system uses a water based jet technology...

454

Laser Drilling of a Superalloy Coated with Ceramic  

Science Conference Proceedings (OSTI)

Laser drilling has been developed in advanced aircraft industry in particular to achieve the intricate hole network of the combustion chamber because of several .