Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Petrography Analysis At Kilauea East Rift Geothermal Area (Quane...  

Open Energy Info (EERE)

Technique Petrography Analysis Activity Date 1989 - 2000 Usefulness not indicated DOE-funding Unknown Exploration Basis The purpose of this study was to analyze deep core...

2

Ground Gravity Survey At Kilauea East Rift Geothermal Area (Broyles...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Kilauea East Rift Geothermal Area (Broyles, Et Al., 1979) Exploration...

3

Ground Gravity Survey At Kilauea East Rift Geothermal Area (Leslie...  

Open Energy Info (EERE)

Details Location Kilauea East Rift Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1998 - 1998 Usefulness useful DOE-funding Unknown Exploration...

4

Ground Gravity Survey At Kilauea East Rift Geothermal Area (FURUMOTO...  

Open Energy Info (EERE)

Details Location Kilauea East Rift Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1974 - 1974 Usefulness useful DOE-funding Unknown Exploration...

5

Isotopic Analysis- Fluid At Kilauea East Rift Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Kilauea East Rift Geothermal Area (Scholl, Et Al., 1993) Exploration...

6

Electrical Resistivity At Kilauea East Rift Geothermal Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electrical Resistivity At Kilauea East Rift Geothermal Area (KELLER, Et Al., 1977) Exploration...

7

Core Analysis At Kilauea East Rift Geothermal Area (Quane, Et Al., 2003) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric Coop, Inc Jump to:1983) |Open Energy

8

Thermal Gradient Holes At Kilauea East Rift Area (Quane, Et Al., 2000) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:theEnergyEnergy Information

9

Petrography Analysis At Kilauea East Rift Geothermal Area (Quane, Et Al.,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources2003) | Open Energy Information Petrography

10

Isotopic Analysis- Rock At Kilauea East Rift Geothermal Area (Quane, Et  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) | Open Energy(Musgrave, Et Al.,2006) |Al.,

11

Electromagnetic Soundings At Kilauea East Rift Geothermal Area...  

Open Energy Info (EERE)

of this study was to obtain a more complete model of the geologic structure and hydrology of Kilauea's east rift zone Notes Electromagnetic transient soundings were conducted...

12

Static Temperature Survey At Kilauea East Rift Geothermal Area...  

Open Energy Info (EERE)

variations were recorded in well HGP-A and the data was later used to create computer simulations of the heat flow patterns in the East Rift Zone References Albert J....

13

Groundwater Sampling At Kilauea East Rift Geothermal Area (Cox...  

Open Energy Info (EERE)

can be a useful geochemical indicator for geothermal exploration when other water chemistry techniques are ambiguous. This research was useful for locating some areas which...

14

Mauna Loa Southwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a townLoadingMastic,(Redirected fromGeothermal Area

15

Schlumberger Resistivity Soundings At Kilauea East Rift Geothermal...  

Open Energy Info (EERE)

Schlumberger Resistivity Soundings At Kilauea East Rift Geothermal Area (Kauahikaua & Klein, 1978) Exploration Activity Details Location Kilauea East Rift Geothermal Area...

16

Andean deformation and rift inversion, eastern edge of Cordillera Oriental (GuatequeMedina area), Colombia  

E-Print Network [OSTI]

), Colombia Y. Branquet, a , A. Cheilletzb , P. R. Cobboldc , P. Babyd , B. Laumoniere and G. Giulianif; Colombia; Cordillera Oriental; Guateque­Medina area hal-00076871,version1-16Nov2006 Author manuscript Oriental (CO) and adjacent Llanos foothills, which produce much of the oil in Colombia. The CO resulted

Paris-Sud XI, Université de

17

Aeromagnetic Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information Lightning Dock Area (Cunniff & Bowers,

18

Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewickiMaui Area (DOE GTP)

19

Water Sampling At Kilauea East Rift Geothermal Area (FURUMOTO, 1976) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa JumpHeber Area ExplorationOpenEnergy

20

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Basalt K Eburru Geothermal Area Eburru Geothermal Area East African Rift System Kenya Rift Basalt Fukushima Geothermal Area Fukushima Geothermal Area Northeast Honshu Arc...

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Mid-continent rift system: a frontier hydrocarbon province  

SciTech Connect (OSTI)

The Mid-continent rift system can be traced by the Mid-continent geophysical anomaly (MGA) from the surface exposure of the Keweenawan Supergroup in the Lake Superior basin southwest in the subsurface through Wisconsin, Minnesota, Iowa, Nebraska, and Kansas. Outcrop and well penetrations of the late rift Keweenawan sedimentary rocks reveal sediments reflecting a characteristic early continental rift clastic sequence, including alluvial fans, deep organic-rich basins, and prograding fluvial plains. Sedimentary basins where these early rift sediments are preserved can be located by upward continuation of the aeromagnetic profiles across the rift trend and by gravity models. Studies of analog continental rifts and aulacogens show that these gravity models should incorporate (1) a deep mafic rift pillow body to create the narrow gravity high of the MGA, and (2) anomalously thick crust to account for the more regional gravity low. Preserved accumulations of rift clastics in central rift positions can then be modeled to explain the small scale notches which are found within the narrow gravity high. Indigenous oil in Keweenawan sediments in the outcrop area and coaly partings in the subsurface penetrations of the Keweenawan clastics support the analogy between these rift sediments and the exceptionally organic-rich sediments of the East African rift. COCORP data across the rift trend in Kansas show layered deep reflectors and large structures. There is demonstrable source, reservoir, and trap potential within the Keweenawan trend, making the Mid-Continent rift system a frontier hydrocarbon province.

Lee, C.K.; Kerr, S.D. Jr.

1984-04-01T23:59:59.000Z

22

Mid-Continent rift system: a frontier hydrocarbon province  

SciTech Connect (OSTI)

The Mid-Continent rift system can be traced by the Mid-Continent geophysical anomaly (MGA) from the surface exposure of the Keweenawan Supergroup in the Lake Superior basin southwest in the subsurface through Wisconsin, Minnesota, Iowa, Nebraska, and Kansas. Outcrop and well penetrations of the late rift Keweenawan sedimentary rocks reveal sediments reflecting a characteristic early continental rift clastic sequence, including alluvial fans, deep organic-rich basins, and prograding fluvial plains. Sedimentary basins where these early rift sediments are preserved can be located by upward continuation of the aeromagnetic profiles across the rift trend and by gravity models. Studies of analog continental rifts and aulacogens show that these gravity models should incorporate (1) a deep mafic rift pillow body to create the narrow gravity high of the MGA, and (2) anomalously thick crust to account for the more regional gravity low. Preserved accumulations of rift clastics in central rift positions can then be modeled to explain the small scale notches which are found within the narrow gravity high. Indigenous oil in Keweenawan sediments in the outcrop area and coaly partings in the subsurface penetrations of the Keweenawan clastics support the analogy between these rift sediments and the exceptionally organic-rich sediments of the East African rift. COCORP data across the rift trend in Kansas show layered deep reflectors and large structures. There is demonstrable source, reservoir, and trap potential within the Keweenawan trend, making the Mid-Continent rift system a frontier hydrocarbon province.

Lee, C.K.; Kerr, S.D. Jr.

1984-04-01T23:59:59.000Z

23

Modeling-Computer Simulations At Kilauea East Rift Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Kilauea East Rift Geothermal Area (Rudman & Epp, 1983) Exploration...

24

Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank Area (Wyss, Et Al., 2001)...

25

Direct-Current Resistivity Survey At Mauna Loa Northeast Rift...  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mauna Loa...

26

E-Print Network 3.0 - african rift system Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

77 (1986) 362-372 Elsevier Science Publishers B.V., Amsterdam -Printed in The Netherlands Summary: rifting may be important in areas such as the East African Rift where...

27

The midcontinent rift system  

E-Print Network [OSTI]

FAULT EDGE OF ARCHEAt~ PAL~OZOIC MINN a2 o 200 W|S KAN MO oHIO Fiaure 3 Generalized geologic map showing major features of the prerift Precambrian basement and principal geologic units associated with the midcontinent rift system. Random "=" represent... 9. N 183 --9 B. Freda Sandstone ? N 180 1 C. Nonesuch Shale 1023 N 177 10 D. Middle Keweenawan 1110 N 183 29 E. Middle Keweenawan 1110 R 203 42 F. Logan Sills 1150 R 220 49 G. Lower Keweenawan ? N 200 10 H. Sudbury Dikes 1225 N 189 -3 I. Sibley Group...

Van Schmus, W. R.; Hinze, W. J.

1985-01-01T23:59:59.000Z

28

Sequence of rifting in Afar, MandaHararo rift, Ethiopia, 20052009: Timespace evolution and interactions  

E-Print Network [OSTI]

Sequence of rifting in Afar, MandaHararo rift, Ethiopia, 20052009: Timespace evolution intrusions in the Manda Hararo rift, Afar (Ethiopia), from September 2005 to June 2009, studied using Chabalier, and G. C. P. King (2010), Sequence of rifting in Afar, MandaHararo rift, Ethiopia, 2005

Nicolas, Chamot-Rooke

29

CASIS: A System for Concept-Aware Social Image Search Ba Quan Truong  

E-Print Network [OSTI]

CASIS: A System for Concept-Aware Social Image Search Ba Quan Truong bqtruong@ntu.edu.sg Aixin Sun axsun@ntu.edu.sg Sourav S. Bhowmick assourav@ntu.edu.sg School of Computer Engineering, Nanyang the opportunity of building effective tag-based social image retrieval systems. In contrast to content-based image

Aixin, Sun

30

Welding: insights from high-temperature analogue experiments Steven L. Quane, J.K. Russell*  

E-Print Network [OSTI]

Welding: insights from high-temperature analogue experiments Steven L. Quane, J.K. Russell* Igneous of pyroclastic deposits during welding is incompletely understood and is based on a surprisingly small number roles of emplacement temperature, load and glass transition temperature in welding of pyroclastic

Russell, Kelly

31

Rheology of welding: inversion of field constraints James K. Russell*, Steven L. Quane  

E-Print Network [OSTI]

Rheology of welding: inversion of field constraints James K. Russell*, Steven L. Quane Igneous the mechanisms and rheological behaviour of pyroclastic deposits during welding and compaction are poorly are constrained by physical property distributions in welded ignimbrite. Physical properties of samples from a 20

Russell, Kelly

32

Origin of Low Thermal Conductivity in Nuclear Fuels Quan Yin and Sergey Y. Savrasov  

E-Print Network [OSTI]

, the thermal conductivity of UO2 is very low, and the search for alternative materials continuesOrigin of Low Thermal Conductivity in Nuclear Fuels Quan Yin and Sergey Y. Savrasov Department in a very low thermal conductivity of modern nuclear fuels. Consider semiconducting UO2 which is a main

Savrasov, Sergej Y.

33

Inversion tectonics during continental rifting: The Turkana Cenozoic rifted zone, northern Kenya  

E-Print Network [OSTI]

Inversion tectonics during continental rifting: The Turkana Cenozoic rifted zone, northern Kenya B of inverted deformation within Miocene-Recent basins of the Turkana rift (northern Kenya) in the eastern: The Turkana Cenozoic rifted zone, northern Kenya, Tectonics, 24, TC2002, doi:10.1029/2004TC001637. 1

Brest, Université de

34

Structural style of the Turkana Rift, Kenya  

SciTech Connect (OSTI)

Multifold seismic reflection and geologic mapping in part of the eastern branch of the East African Rift system of northern Kenya reveal a major rift structure containing at least 3 km of Neogene sediment fill beneath Lake Turkana. This includes a series of half-graben basins, with centrally located quaternary volcanic centers, which are linked end-to-end by structural accommodation zones. Whereas the geometry of rifting is similar to that of the nonvolcanic western branch of the East African Rift system, the Turkana half-grabens are much smaller and may reflect extension of a thinner lithosphere or development of more closely spaced fracture patterns during rift evolution, or both.

Dunkelman, T.J.; Karson, J.A.; Rosendahl, B.R.

1988-03-01T23:59:59.000Z

35

Tony Quan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler Tina ButlerToday in Energy Today

36

Evidence for cenozoic rifting in Thailand from gravity modeling  

E-Print Network [OSTI]

, the continental rift prc&pagated northward along a pre-existin ' zone of weakness in central 'Ihailand. I. PREVIOUS WORK Although geophysical exploration of Thailand and tlie Gulf of Thailaud was performccl priinarily for hydrocarbon and geothermal energy...). Most of these data have been collected froin ivater ivclls. oil wells, and mineral prospecting sites. Heat flow values exceeding 105 mH'/ni ' have been reported in the Fang oil field, San Hampaeng geothermal area. near Ghiang Mai in northern...

Ohnstad, Tiffany A.

2012-06-07T23:59:59.000Z

37

active rift taupo: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

deepest basin in the Baikal rift system ten Brink, Uri S. 24 Assessing the extent of carbonate deposition in early rift settings Environmental Sciences and Ecology Websites...

38

Can Data Center Become Water Self-Sufficient? Kishwar Ahmed, Mohammad A. Islam, Shaolei Ren, Gang Quan  

E-Print Network [OSTI]

utilities to supply cooling wa- ter. Nonetheless, various factors, e.g., unpredictable rain falls Quan Florida International University Abstract To curtail data centers' huge cooling power consump- tion and water demand (for cooling), air-side economizer has been increasingly adopted to cool down

Ren, Shaolei

39

KH?O ST M?I QUAN H? GI?A ?? TH?M V ?NG SU?T V?A ...  

E-Print Network [OSTI]

Trong hai th?p nin v?a qua, cc ph??ng php s? lin quan ??n s? t??ng tc gi?a ... In the last two decades, there has been strong emphasis on numerical...

GEOPET

2005-09-30T23:59:59.000Z

40

Transient rift opening in response to multiple dike injections in the Manda Hararo rift (Afar, Ethiopia)  

E-Print Network [OSTI]

, Ethiopia) imaged by timedependent elastic inversion of interferometric synthetic aperture radar data R intrusions in the Manda HararoDabbahu rift (Afar, Ethiopia) from 2005 to 2009 show that transient in response to multiple dike injections in the Manda Hararo rift (Afar, Ethiopia) imaged by timedependent

Socquet, Anne

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geothermal Resources of Rifts- a Comparison of the Rio Grande...  

Open Energy Info (EERE)

navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Resources of Rifts- a Comparison of the Rio Grande Rift and the Salton Trough Abstract The Rio...

42

Stratigraphy and rifting history of the Mesozoic-Cenozoic Anza rift, Kenya  

SciTech Connect (OSTI)

Lithological and compositional relationships, thicknesses, and palynological data from drilling cuttings from five wells in the Anza rift, Kenya, indicate active rifting during the Late Cretaceous and Eocene-Oligocene. The earlier rifting possibly started in the Santonian-Coniacian, primarily occurred in the Campanian, and probably extended into the Maastrichtian. Anza rift sedimentation was in lacustrine, lacustrine-deltaic, fluvial, and flood-basin environments. Inferred synrift intervals in wells are shalier, thicker, more compositionally immature, and more poorly sorted than Lower Cretaceous ( )-lower Upper Cretaceous and upper Oligocene( )-Miocene interrift deposits. Synrift sandstone is mostly feldspathic or arkosic wacke. Sandstone deposited in the Anza basin during nonrift periods is mostly quartz arenite, and is coarser and has a high proportion of probable fluvial deposits relative to other facies. Volcanic debris is absent in sedimentary strata older than Pliocene-Holocene, although small Cretaceous intrusions are present in the basin. Cretaceous sandstone is cemented in places by laumontite, possibly recording Campanian extension. Early Cretaceous history of the Anza basin is poorly known because of the limited strata sampled; Jurassic units were not reached. Cretaceous rifting in the Anza basin was synchronous with rifting in Sudan and with the breakup and separation of South America and Africa; these events likely were related. Eocene-Oligocene extension in the Anza basin reflects different stresses. The transition from active rifting to passive subsidence in the Anza basin at the end of the Neogene, in turn, records a reconfigured response of east African plates to stresses and is correlated with formation of the East Africa rift.

Winn, R.D. Jr.; Steinmetz, J.C. (Marathon Oil Co., Littleton, CO (United States)); Kerekgyarto, W.L. (Marathon Oil Co., Houston, TX (United States))

1993-11-01T23:59:59.000Z

43

Structure of continental rifts: Role of older features and magmatism  

SciTech Connect (OSTI)

Recent geological and geophysical studies in several continental rifts have begun to shed light on the details of the processes which govern the structural evolution of these important exploration targets. In Kenya and Tanzania, the classic East African rift has been the object of several investigations which reveal that its location follows the boundary (suture ) between the Tanzanian craton (Archean) and Mozambiquan belt (Proterozoic), The Baikal rift also follows a similar boundary, and the Mid-continent rift of North America appears to do the same. Rifts themselves often act as zones of weakness which are reactivated by younger tectonic regimes. The classic North American example of this effect is the Eocambrian Southern Oklahoma aulacogen which was deformed to create the Anadarko basin and Wichita uplift in the late Paleozoic. The Central basin platform has a similar history although the original rift formed at [approximately]1,100Ma. Integration of geophysical data with petrologic and geochemical data from several rift zones has also provided a new picture of the nature and extent of magmatic modification of the crust. An interesting contradiction is that Phanerozoic rifts, except the Afar region, show little evidence for major magmatic modification of the crust whereas, at least in North America, many Precambrian rifts are associated with very large mafic bodies in the crust. The Kenya rift displays evidence for modification of the lower crust in a two-phase magmatic history, but upper crustal magmatic features are limited to local intrusions associated with volcanoes. In this rift, complex basement structure plays a much more important role than previously realized, and the geophysical signatures of basement structure and magmatism are easy to confuse. If this is also the case in other rifts, additional rift basins remain to be discovered.

Keller, G.R. (Univ. of Texas, El Paso, TX (United States))

1996-01-01T23:59:59.000Z

44

Structure of continental rifts: Role of older features and magmatism  

SciTech Connect (OSTI)

Recent geological and geophysical studies in several continental rifts have begun to shed light on the details of the processes which govern the structural evolution of these important exploration targets. In Kenya and Tanzania, the classic East African rift has been the object of several investigations which reveal that its location follows the boundary (suture ?) between the Tanzanian craton (Archean) and Mozambiquan belt (Proterozoic), The Baikal rift also follows a similar boundary, and the Mid-continent rift of North America appears to do the same. Rifts themselves often act as zones of weakness which are reactivated by younger tectonic regimes. The classic North American example of this effect is the Eocambrian Southern Oklahoma aulacogen which was deformed to create the Anadarko basin and Wichita uplift in the late Paleozoic. The Central basin platform has a similar history although the original rift formed at {approximately}1,100Ma. Integration of geophysical data with petrologic and geochemical data from several rift zones has also provided a new picture of the nature and extent of magmatic modification of the crust. An interesting contradiction is that Phanerozoic rifts, except the Afar region, show little evidence for major magmatic modification of the crust whereas, at least in North America, many Precambrian rifts are associated with very large mafic bodies in the crust. The Kenya rift displays evidence for modification of the lower crust in a two-phase magmatic history, but upper crustal magmatic features are limited to local intrusions associated with volcanoes. In this rift, complex basement structure plays a much more important role than previously realized, and the geophysical signatures of basement structure and magmatism are easy to confuse. If this is also the case in other rifts, additional rift basins remain to be discovered.

Keller, G.R. [Univ. of Texas, El Paso, TX (United States)

1996-12-31T23:59:59.000Z

45

Comparative Precambrian stratigraphy and structure along the Mid-Continent rift  

SciTech Connect (OSTI)

The Mid-Continent rift is a geophysically identified tectonic structure that has been traced from Kansas northeastward into the Lake Superior district. A related arm has been identified by gravity as extending from eastern Lake Superior southeastward into the lower peninsula of Michigan. This rift is of Precambrian (Keweenawan) age and began developing approximately 1.1 b.y.B.P. For most of its extent, this continental-class rift system is buried below Phanerozoic strata. Outcrops are found only in east-central Minnesota, northwestern Wisconsin, and the upper peninsula of Michigan. The most accepted tectonic model of the Mid-Continent rift is that of a central horst partly covered by clastic rocks, bounded by high-angle faulting, and flanked by basins filled with clastic rocks. This model was developed in conjunction with field studies in the southwestern Lake Superior area, and generally has been adopted for Minnesota, Iowa, Nebraska, and Kansas. A comparable model has yet to be presented for the related arm extending into southern Michigan. 6 figures.

Dickas, A.B.

1986-03-01T23:59:59.000Z

46

Behind "successful" land acquisition : a case study of the Van Quan new urban area project in Hanoi, Vietnam  

E-Print Network [OSTI]

The transition to a market economy has sparked Vietnam's unprecedented urbanization and industrialization. In order to accommodate the spiraling land demand triggered by urban and economic growth, the Vietnamese government ...

Bui, Phuong Anh, M. C. P. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

47

Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan, Et Al., 2010) Exploration...

48

Compound and Elemental Analysis At Kilauea East Rift Geothermal...  

Open Energy Info (EERE)

Rift Zone known as Puna Ridge. The samples were analyzed by electron microscope and infrared spectroscopy. Volatile studies of previous dredged samples from the Puna Ridge have...

49

Volcanic rifting at Martian grabens Daniel Me`ge,1  

E-Print Network [OSTI]

Volcanic rifting at Martian grabens Daniel Me`ge,1 Anthony C. Cook,2,3 Erwan Garel,4 Yves: Solar System Objects: Mars; 8121 Tectonophysics: Dynamics, convection currents and mantle plumes; 8010: Me`ge, D., A. C. Cook, E. Garel, Y. Lagabrielle, and M.-H. Cormier, Volcanic rifting at Martian

Mege, Daniel

50

AREA  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionofDepartmentNo.7-052 ofFocusAREA FAQ #

51

Isotopic Analysis- Rock At Kilauea East Rift Geothermal Area...  

Open Energy Info (EERE)

Technique Isotopic Analysis- Rock Activity Date 1989 - 2000 Usefulness not indicated DOE-funding Unknown Exploration Basis The purpose of this study was to analyze deep core...

52

Kilauea East Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood, Michigan: EnergyKesonaKeystone,Kiel is a city

53

Kilauea Southwest Rift And South Flank Geothermal Area | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood, Michigan: EnergyKesonaKeystone,Kiel is a

54

Kilauea Southwest Rift And South Flank Geothermal Area | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood, Michigan: EnergyKesonaKeystone,Kiel is

55

Magnetotellurics At Kilauea Southwest Rift And South Flank Area (Laney,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson, 2012)Information|

56

Compound and Elemental Analysis At Kilauea East Rift Geothermal Area  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeat Ltd2002) |Al., 1996)| Open2006)

57

Compound and Elemental Analysis At Kilauea East Rift Geothermal Area  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeat Ltd2002) |Al., 1996)|

58

Ground Electromagnetic Survey At Kilauea East Rift Geothermal Area  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county in Oklahoma.Groom Energy Solutions

59

Hualalai Northwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal|227. ItHuachuca(Redirected

60

Mauna Loa Northeast Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermal System,Wind Resources/FullSystemsJump to:

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Schlumberger Resistivity Soundings At Kilauea East Rift Geothermal Area  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVISanton GmbHSawneeSchiller BiomassSchleyTurner,

62

Magnetotellurics At Kilauea East Rift Geothermal Area (Laney, 2005) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger11.Spain: EnergyMagnetJemez Pueblo

63

Mauna Loa Northeast Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a townLoadingMastic,(Redirected from Maui(Redirected

64

Mauna Loa Southwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a townLoadingMastic,(Redirected from

65

Geothermometry At Kilauea East Rift Geothermal Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - AInformation Hot SpringsEnergy

66

Refraction Survey At Kilauea East Rift Geothermal Area (Thomas, 1986) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming:Reeves County,Ltd,Al.,1979) |

67

Aeromagnetic Survey At Hualalai Northwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:IowaResource(Nannini, 1986) JumpEnergyEnergy

68

Aeromagnetic Survey At Kilauea East Rift Geothermal Area (Thomas, 1986) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:IowaResource(Nannini, 1986) JumpEnergyEnergy1995)

69

Ground Magnetics At Kilauea East Rift Geothermal Area (FURUMOTO, 1976) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump to:Energy Information -Open Energy

70

Thermal Gradient Holes At Hualalai Northwest Rift Area (Thomas, 1986) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to:InformationTheInformationAl.,Open Energy

71

Time-Domain Electromagnetics At Kilauea East Rift Geothermal Area  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978)Tillman County, Oklahoma:Open Energy|

72

Electrical Resistivity At Kilauea East Rift Geothermal Area (KELLER, Et  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGridCounty,Portal,105.ElectricSitingAl., 1977) |

73

Electromagnetic Soundings At Kilauea East Rift Geothermal Area (KELLER, Et  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classifiedProject) | Open Energy Information(RedirectedAl.,

74

Exploratory Well At Kilauea East Rift Geothermal Area (FURUMOTO, 1976) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformationexplains a4Evendale, -EnergySonarOpen EnergyOpenOpen

75

Hualalai Northwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind FarmWould YouHoward Jump

76

Kilauea East Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone Clean Air Jump to: navigation,

77

Micro-Earthquake At Kilauea East Rift Geothermal Area (Kenedi...  

Open Energy Info (EERE)

to this study: Shear wave splitting, double difference earthquake location, and 3-D tomography. This study was beneficial in helping to improve the local velocity model, identify...

78

Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii...  

Open Energy Info (EERE)

be relatively large and well mixed, which is inconsistent with models that place this source on the margin of a radially zoned plume. Authors S. L. Quane, M. O. Garcia, H....

79

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical...  

Open Energy Info (EERE)

the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360C, in the Lakes...

80

Thermal and mechanical development of the East African Rift System  

E-Print Network [OSTI]

The deep basins, uplifted flanks, and volcanoes of the Western and Kenya rift systems have developed along the western and eastern margins of the 1300 km-wide East African plateau. Structural patterns deduced from field, ...

Ebinger, Cynthia Joan

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Remote Sensing for Biodiversity Conservation of the Albertine Rift  

E-Print Network [OSTI]

183 10 Remote Sensing for Biodiversity Conservation of the Albertine Rift in Eastern Africa Samuel of biodiversity conservation is understanding how environmental factors influence species abundance 2003). The rapidly developing field of remote sensing has been invaluable to biodiversity conservation

Wang, Y.Q. "Yeqiao"

82

The Herschel first look at protostars in the Aquila Rift  

E-Print Network [OSTI]

As part of the science demonstration phase of the Herschel mission of the Gould Belt Key Program, the Aquila Rift molecular complex has been observed. The complete ~ 3.3deg x 3.3deg imaging with SPIRE 250/350/500 micron and PACS 70/160 micron allows a deep investigation of embedded protostellar phases, probing of the dust emission from warm inner regions at 70 and 160 micron to the bulk of the cold envelopes between 250 and 500 micron. We used a systematic detection technique operating simultaneously on all Herschel bands to build a sample of protostars. Spectral energy distributions are derived to measure luminosities and envelope masses, and to place the protostars in an M_env - L_bol evolutionary diagram. The spatial distribution of protostars indicates three star-forming sites in Aquila, with W40/Sh2-64 HII region by far the richest. Most of the detected protostars are newly discovered. For a reduced area around the Serpens South cluster, we could compare the Herschel census of protostars with Spitzer res...

Bontemps, S; Konyves, V; Men'shchikov, A; Schneider, N; Maury, A; Peretto, N; Arzoumanian, D; Attard, M; Motte, F; Minier, V; Didelon, P; Saraceno, P; Abergel, A; Baluteau, J -P; Bernard, J -Ph; Cambresy, L; Cox, P; Di Francesco, J; Di Giorgo, A M; Griffin, M; Hargrave, P; Huang, M; Kirk, J; Li, J; Martin, P; Merin, B; Molinari, S; Olofsson, G; Pezzuto, S; Prusti, T; Roussel, H; Russeil, D; Sauvage, M; Sibthorpe, B; Spinoglio, L; Testi, L; Vavrek, R; Ward-Thompson, D; White, G; Wilson, C; Woodcraft, A; Zavagno, A

2010-01-01T23:59:59.000Z

83

Intermittent upwelling of asthenosphere beneath the Gregory Rift, Kenya  

SciTech Connect (OSTI)

K-Ar dates and chemical compositions of basalts in the Gregory Rift, Kenya, demonstrate marked secular variation of lava chemistry. Two magmatic cycles characterized by incompatible element relative depletion are recognized; both occurring immediately after the peak of basaltic volcanism and coeval with both trachyte/phonolite volcanism and domal uplift of the region. These cycles may be attributed to increasing degree of partial melting of mantle source material in association with thinning of the lithosphere by thermal erosion through contact with hot upwelling asthenospheric mantle. Cyclic variation in asthenosphere upwelling may be considered an important controlling process in the evolution of the Gregory Rift.

Tatsumi, Yoshiyuki (Univ. of Tasmania (Australia) Kyoto Univ. (Japan)); Kimura, Nobukazu (Kyoto Univ. (Japan)); Itaya, Tetsumaru (Okayama Univ. of Science (Japan)); Koyaguchi, Takehiro (Kumamoto Univ. (Japan)); Suwa, Kanenori (Nagoya Univ. (Japan))

1991-06-01T23:59:59.000Z

84

Archaeology in the Kilauea East Rift Zone: Part 1, Land-use model and research design, Kapoho, Kamaili and Kilauea Geothermal Subzones, Puna District, Hawaii Island  

SciTech Connect (OSTI)

The Puna Geothermal Resource Subzones (GRS) project area encompasses approximately 22,000 acres centered on the Kilauea East Rift Zone in Puna District, Hawaii Island. The area is divided into three subzones proposed for geothermal power development -- Kilauea Middle East Rift, Kamaili and Kapoho GRS. Throughout the time of human occupation, eruptive episodes along the rift have maintained a dynamic landscape. Periodic volcanic events, for example, have changed the coastline configuration, altered patterns of agriculturally suitable sediments, and created an assortment of periodically active, periodically quiescent, volcanic hazards. Because of the active character of the rift zone, then, the area`s occupants have always been obliged to organize their use of the landscape to accommodate a dynamic mosaic of lava flow types and ages. While the specific configuration of settlements and agricultural areas necessarily changed in response to volcanic events, it is possible to anticipate general patterns in the manner in which populations used the landscape through time. This research design offers a model that predicts the spatial results of long-term land-use patterns and relates them to the character of the archaeological record of that use. In essence, the environmental/land-use model developed here predicts that highest population levels, and hence the greatest abundance and complexity of identifiable prehistoric remains, tended to cluster near the coast at places that maximized access to productive fisheries and agricultural soils. With the possible exception of a few inland settlements, the density of archaeological remains expected to decrease with distance from the coastline. The pattern is generally supported in the regions existing ethnohistoric and archaeological record.

Burtchard, G.C.; Moblo, P. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

1994-07-01T23:59:59.000Z

85

E-Print Network 3.0 - african rift valley Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Geosciences 16 SPREE revised (2) 5222011 1 Learning from failure: the SPREE Mid-Continent Rift Summary: or shallower thermal or compositional anomalies, as commonly...

86

September 2005 Manda Hararo-Dabbahu rifting event, Afar (Ethiopia): Constraints provided by geodetic data  

E-Print Network [OSTI]

September 2005 Manda Hararo-Dabbahu rifting event, Afar (Ethiopia): Constraints provided of complementary geodetic data for the 2005 rifting event of Afar (Ethiopia). Interferometric synthetic aperture, Afar (Ethiopia): Constraints provided by geodetic data, J. Geophys. Res., 114, B08404, doi:10

Nicolas, Chamot-Rooke

87

Modeling suggests that oblique extension facilitates rifting and continental break-up  

E-Print Network [OSTI]

Modeling suggests that oblique extension facilitates rifting and continental break-up Sascha Brune; accepted 5 June 2012; published 2 August 2012. [1] In many cases the initial stage of continental break-up was and is associated with oblique rifting. That includes break-up in the Southern and Equatorial Atlantic, separation

Kaus, Boris

88

Haleakala SW Rift Zone Exploration | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net JumpStrategy | OpenHackberry WindgatewaySW Rift

89

Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii...  

Open Energy Info (EERE)

Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Seismic And Gravity Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structure...

90

Archaeology in the Kilauea East Rift Zone: Part 2, A preliminary sample survey, Kapoho, Kamaili and Kilauea geothermal subzones, Puna District, Hawaii island  

SciTech Connect (OSTI)

This report describes a preliminary sample inventory and offers an initial evaluation of settlement and land-use patterns for the Geothermal Resources Subzones (GRS) area, located in Puna District on the island of Hawaii. The report is the second of a two part project dealing with archaeology of the Puna GRS area -- or more generally, the Kilauea East Rift Zone. In the first phase of the project, a long-term land-use model and inventory research design was developed for the GRS area and Puna District generally. That report is available under separate cover as Archaeology in the Kilauea East Rift Zone, Part I: Land-Use Model and Research Design. The present report gives results of a limited cultural resource survey built on research design recommendations. It offers a preliminary evaluation of modeled land-use expectations and offers recommendations for continuing research into Puna`s rich cultural heritage. The present survey was conducted under the auspices of the United States Department of Energy, and subcontracted to International Archaeological Research Institute, Inc. (IARII) by Martin Marietta Energy Systems, Inc. The purpose of the archaeological work is to contribute toward the preparation of an environmental impact statement by identifying cultural materials which could be impacted through completion of the proposed Hawaii Geothermal Project.

Sweeney, M.T.K.; Burtchard, G.C. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)] [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

1995-05-01T23:59:59.000Z

91

Compound and Elemental Analysis At Kilauea East Rift Area (Coombs, Et Al.,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeat Ltd2002) |Al., 1996)| Open2006) |

92

Core Holes At Kilauea East Rift Geothermal Area (Bargar, Et Al., 1995) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric Coop, Inc JumpTanaka, 1995) |OpenOpen

93

Dipole-Dipole Resistivity At Kilauea East Rift Geothermal Area (Kauahikaua  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie County, Virginia:1999) |

94

Direct-Current Resistivity At Hualalai Northwest Rift Area (Thomas, 1986) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie County,|Open Energy

95

Direct-Current Resistivity At Kilauea Southwest Rift And South Flank Area  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie County,|Open Energy(Thomas,

96

Direct-Current Resistivity Survey At Kilauea East Rift Geothermal Area  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie(FURUMOTO, 1976) | Open Energy

97

Direct-Current Resistivity Survey At Kilauea East Rift Geothermal Area  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie(FURUMOTO, 1976) | Open

98

Direct-Current Resistivity Survey At Kilauea East Rift Geothermal Area  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie(FURUMOTO, 1976) |

99

Direct-Current Resistivity Survey At Mauna Loa Northeast Rift Area (Thomas,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie(FURUMOTO, 1976) |2005)1986) |

100

Ground Gravity Survey At Kilauea East Rift Geothermal Area (Broyles, Et  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., 1979) | Open Energy Information

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ground Gravity Survey At Kilauea East Rift Geothermal Area (FURUMOTO, 1976)  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., 1979) | Open Energy Information|

102

Ground Gravity Survey At Kilauea East Rift Geothermal Area (Leslie, Et Al.,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., 1979) | Open Energy

103

Ground Gravity Survey At Kilauea East Rift Geothermal Area (Thomas, 1986) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., 1979) | Open EnergyOpen Energy

104

Groundwater Sampling At Kilauea East Rift Geothermal Area (Cox & Thomas,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., 1979) |Haar,ManagementClimate

105

Mise-A-La-Masse At Kilauea East Rift Geothermal Area (Kauahikaua, Et Al.,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine: EnergyMinnErgy LLCMinwindPower1980) | Open Energy

106

Modeling-Computer Simulations At Kilauea East Rift Geothermal Area (Rudman  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine:EnergyInformationDecker, 1983) | OpenOpen&

107

Micro-Earthquake At Kilauea East Rift Geothermal Area (FURUMOTO, 1976) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrel Inc JumpOpen Energy Information

108

Micro-Earthquake At Kilauea East Rift Geothermal Area (Gardner, Et Al.,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrel Inc JumpOpen Energy

109

Micro-Earthquake At Kilauea East Rift Geothermal Area (Kenedi, Et Al.,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrel Inc JumpOpen Energy2010) | Open Energy

110

Micro-Earthquake At Kilauea East Rift Geothermal Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrel Inc JumpOpen Energy2010) | Open

111

Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search Name:Open Energy

112

Self Potential At Kilauea East Rift Geothermal Area (KELLER, Et Al., 1977)  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search Name:Open Energy| Open Energy Information

113

Self Potential At Mauna Loa Southwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search Name:Open Energy| Open EnergyEnergy

114

Soil Gas Sampling At Kilauea East Rift Geothermal Area (Cox, 1980) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,PvtSouthInformationI

115

Soil Sampling At Kilauea East Rift Geothermal Area (Cox, 1981) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,PvtSouthInformationIInformation SamplingEnergy

116

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald isMelletteEnclosedInformation Hualalai

117

Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald

118

Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonaldInformation Lahaina-Kaanapali

119

Aeromagnetic Survey At Kilauea Southwest Rift And South Flank Area (Thomas,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergyAd-VentaAddisonInformationInformation1986)

120

Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan:Open EnergyInformation

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Water Sampling At Kilauea East Rift Geothermal Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County,

122

Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewicki &| OpenEnergy

123

Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas, 1986) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewicki &|

124

Reflection Survey At Kilauea East Rift Geothermal Area (Leslie, Et Al.,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming:Reeves County,Ltd, 2003) |

125

Refraction Survey At Kilauea East Rift Geothermal Area (Broyles, Et Al.,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming:Reeves County,Ltd,Al.,1979) | Open

126

Refraction Survey At Kilauea East Rift Geothermal Area (Leslie, Et Al.,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming:Reeves County,Ltd,Al.,1979) | Open2004)

127

Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has Type TermOpen EnergyEnergy2002) || Open1986)

128

Direct-Current Resistivity Survey At Mauna Loa Southwest Rift Area (Thomas,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has Type TermOpen EnergyEnergy2002)

129

Isotopic Analysis- Fluid At Kilauea East Rift Geothermal Area (Scholl, Et  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) | Open Energy Information(1990) | OpenAl.,

130

Aeromagnetic Survey At Kilauea East Rift Geothermal Area (Gardner, Et Al.,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:IowaResource(Nannini, 1986) JumpEnergyEnergy1995) |

131

Ground Magnetics At Kilauea East Rift Area (Leslie, Et Al., 2004) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump to:Energy Information -

132

Ground Magnetics At Kilauea East Rift Geothermal Area (Leslie, Et Al.,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump to:Energy Information -Open Energy2004)

133

Static Temperature Survey At Kilauea East Rift Geothermal Area (Rudman &  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland,0162112°,St.StanlyEnergy InformationEpp, 1983) | Open

134

Thermal Gradient Holes At Kilauea East Rift Geothermal Area (Thomas, 1986)  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to:InformationTheInformationAl.,Open Energy|

135

Time-Domain Electromagnetics At Hualalai Northwest Rift Area (Thomas, 1986)  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978)Tillman County, Oklahoma:Open Energy| Open

136

Time-Domain Electromagnetics At Kilauea East Rift Geothermal Area (Skokan,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978)Tillman County, Oklahoma:Open Energy|1974) |

137

Time-Domain Electromagnetics At Kilauea East Rift Geothermal Area (Thomas,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978)Tillman County, Oklahoma:Open Energy|1974)

138

Time-Domain Electromagnetics At Kilauea Southwest Rift And South Flank Area  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978)Tillman County, Oklahoma:Open

139

Time-Domain Electromagnetics At Mauna Loa Northeast Rift Area (Thomas,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978)Tillman County, Oklahoma:Open(Nordquist,

140

Field Mapping At Kilauea East Rift Geothermal Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: EnergyFeilden Clegg BradleyFerrotec68-1971)OpenEnergy

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Exhumation, rift-flank uplift, and the thermal evolution of the Rwenzori Mountains determined by combined (U-Th)/He and U-Pb thermochronometry  

E-Print Network [OSTI]

Rising over 5 km along the border of Uganda and the Democratic Republic of the Congo, the Rwenzori Mountains represent an extreme example of basement rift-flank uplift in the western branch of the East African Rift, a ...

MacPhee, Daniel

2006-01-01T23:59:59.000Z

142

Sediment infill within rift basins: Facies distribution and effects of deformation: Examples from the Kenya and Tanganyika Rifts, East Africa  

SciTech Connect (OSTI)

Oil is known from lacustrine basins of the east African rift. The geology of such basins is complex and different depending on location in the eastern and western branches. The western branch has little volcanism, leading to long-lived basins, such as Lake Tanganyika, whereas a large quantity of volcanics results in the eastern branch characterized by ephemeral basins, as the Baringo-Bogoria basin in Kenya. The Baringo-Bogoria basin is a north-south half graben formed in the middle Pleistocene and presently occupied by the hypersaline Lake Bogoria and the freshwater Lake Baringo. Lake Bogoria is fed by hot springs and ephemeral streams controlled by grid faults bounding the basin to the west. The sedimentary fill is formed by cycles of organic oozes having a good petroleum potential and evaporites. On the other hand, and as a consequence of the grid faults, Lake Baringo is fed by permanent streams bringing into the basin large quantities of terrigenous sediments. Lake Tanganyika is a meromictic lake 1470 m deep and 700 km long, of middle Miocene age. It is subdivided into seven asymmetric half grabens separated by transverse ridges. The sedimentary fill is thick and formed by organic oozes having a very good petroleum potential. In contrast to Bogoria, the lateral distribution of organic matter is characterized by considerable heterogeneity due to the existence of structural blocks or to redepositional processes.

Tiercelin, J.J.; Lezzar, K.E. (Universite de Bretagne Occidentale, Brest (France)); Richert, J.P. (Elf Aquitaine, Pau (France))

1994-07-01T23:59:59.000Z

143

Mesozoic rift basins in western desert of Egypt, their southern extension and impact on future exploration  

SciTech Connect (OSTI)

Rift basins are a primary target of exploration in east, central, and west Africa. These intracratonic rift basins range in age from the Triassic to the Neogene and are filled with lagoonal-lacustrine sand-shale sequences. Several rift basins may be present in the Western Desert of Egypt. In the northeastern African platform, the Mesozoic Tethyan strand lines were previously interpreted to have limited southern extension onto the continent. This concept, based upon a relatively limited amount of subsurface data, has directed and focused the exploration for oil and gas to the northernmost 120 km of the Western Desert of Egypt. Recent well and geophysical data indicate a southerly extension of mesozoic rift basins several hundred kilometers inland from the Mediterranean Sea. Shushan/Faghur and Abu Gharadig/Bahrein basins may represent subparallel Mesozoic basins, trending northeast-southwest. Marine Oxfordian-Kimmeridgian sediments were recently reported from wells drilled approximately 500 km south of the present-day Mediterranean shoreline. The link of these basins with the Sirte basin to the southwest in Libya is not well understood. Exploration is needed to evaluate the hydrocarbon potential of such basins.

Taha, M.A. (Conoco, Cairo (Egypt))

1988-08-01T23:59:59.000Z

144

6Seismic stratigraphy and subsidence history of the United Arab Emirates (UAE) rifted margin  

E-Print Network [OSTI]

6Seismic stratigraphy and subsidence history of the United Arab Emirates (UAE) rifted margin and into the oil window in response of formation of a foreland basin (Ali and Watts 2009). Foreland basins develop by lithospheric flexure in front of migrating thrust and fold loads (e.g., Price 1971; Beaumont 1981

Watts, A. B. "Tony"

145

3D Graph Visualization with the Oculus Rift Virtual Graph Reality  

E-Print Network [OSTI]

3D Graph Visualization with the Oculus Rift Virtual Graph Reality Farshad Barahimi, Stephen Wismath regarding three- dimensional (3D) representations of graphs. However, the actual usefulness of such 3D reality environment such as a CAVE, or · printed as a physical model with a 3D printer. Early studies

Wismath, Stephen

146

Geometry and scaling relations of a population of very small rift-related normal faults  

E-Print Network [OSTI]

normal faults within the Solite Quarry of the Dan River rift basin range in length from a few millimetres AND SCALING RELATIONS The small normal faults are present in quarries of the Virginia Solite Corporation outcrops and quarried boulders (Fig. 2). The fault traces are typically straight, although the fault tips

147

Evolution of oceanic margins : rifting in the Gulf of California and sediment diapirism and mantle hydration during subduction  

E-Print Network [OSTI]

This thesis investigates three processes that control the evolution of oceanic margins. Chapter 2 presents seismic images of a ~2-km-thick evaporite body in Guaymas Basin, central Gulf of California. In rifts, evaporites ...

Miller, Nathaniel Clark

2013-01-01T23:59:59.000Z

148

Direct-Current Resistivity Survey At Mauna Loa Southwest Rift...  

Open Energy Info (EERE)

not indicated DOE-funding Unknown Notes Field surveys in the South Point area were limited to a series of Schlumberger soundings and a self-potential traverse across the...

149

Geology of the Western Part of Los Alamos National Laboratory (TA-3 to TA-16), Rio Grande Rift, New Mexico  

SciTech Connect (OSTI)

We present data that elucidate the stratigraphy, geomorphology, and structure in the western part of Los Alamos National Laboratory between Technical Areas 3 and 16 (TA-3 and TA-16). Data include those gathered by geologic mapping of surficial, post-Bandelier Tuff strata, conventional and high-precision geologic mapping and geochemical analysis of cooling units within the Bandelier Tuff, logging of boreholes and a gas pipeline trench, and structural analysis using profiles, cross sections, structure contour maps, and stereographic projections. This work contributes to an improved understanding of the paleoseismic and geomorphic history of the area, which will aid in future seismic hazard evaluations and other investigations. The study area lies at the base of the main, 120-m (400-ft) high escarpment formed by the Pajarito fault, an active fault of the Rio Grande rift that bounds Los Alamos National Laboratory on the west. Subsidiary fracturing, faulting, and folding associated with the Pajarito fault zone extends at least 1,500 m (5,000 ft) to the east of the main Pajarito fault escarpment. Stratigraphic units in the study area include upper units of the Tshirege Member of the early Pleistocene Bandelier Tuff, early Pleistocene alluvial fan deposits that predate incision of canyons on this part of the Pajarito Plateau, and younger Pleistocene and Holocene alluvium and colluvium that postdate drainage incision. We discriminate four sets of structures in the area between TA-3 and TA-16: (a) north-striking faults and folds that mark the main zone of deformation, including a graben in the central part of the study area; (b) north-northwest-striking fractures and rare faults that bound the eastern side of the principal zone of deformation and may be the surface expression of deep-seated faulting; (c) rare northeast-striking structures near the northern limit of the area associated with the southern end of the Rendija Canyon fault; and (d) several small east-west-striking faults. We consider all structures to be Quaternary in that they postdate the Tshirege Member (1.22 million years old) of the Bandelier Tuff. Older mesa-top alluvial deposits (Qoal), which may have a large age range but are probably in part about 1.13 million years old, are clearly faulted or deformed by many structures. At two localities, younger alluvial units (Qfo and Qfi) appear to be truncated by faults, but field relations are obscure, and we cannot confirm the presence of fault contacts. The youngest known faulting in the study area occurred in Holocene time on a down-to-the-west fault, recently trenched at the site of a new LANL Emergency Operations Center (Reneau et al. 2002).

C.J.Lewis; A.Lavine; S.L.Reneau; J.N.Gardner; R.Channell; C.W.Criswell

2002-12-01T23:59:59.000Z

150

Evaluation of geothermal potential of Rio Grande rift and Basin and Range province, New Mexico. Final technical report, January 1, 1977-May 31, 1978  

SciTech Connect (OSTI)

A study was made of the geological, geochemical and geophysical characteristics of potential geothermal areas in the Rio Grande rift and Basin and Range province of New Mexico. Both regional and site-specific information is presented. Data was collected by: (1) reconnaissance and detailed geologic mapping, emphasizing Neogene stratigraphy and structure; (2) petrologic studies of Neogene igneous rocks; (3) radiometric age-dating; (4) geochemical surveying, including regional and site-specific water chemistry, stable isotopic analyses of thermal waters, whole-rock and mineral isotopic studies, and whole-rock chemical analyses; and (5) detailed geophysical surveys, using electrical, gravity and magnetic techniques, with electrical resistivity playing a major role. Regional geochemical water studies were conducted for the whole state. Integrated site-specific studies included the Animas Valley, Las Cruces area (Radium Springs and Las Alturas Estates), Truth or Consequences region, the Albuquerque basin, the San Ysidro area, and the Abiquiu-Ojo Caliente region. The Animas Valley and Las Cruces areas have the most significant geothermal potential of the areas studied. The Truth or Consequences and Albuquerque areas need further study. The San Ysidro and Abiquiu-Ojo Caliente regions have less significant geothermal potential. 78 figs., 16 tabs.

Callender, J.F.

1985-04-01T23:59:59.000Z

151

Assessing the extent of carbonate deposition in early rift settings  

E-Print Network [OSTI]

different lake levels can be compared to evaluate how changes in size, shape, and lake configuration might that they could produce carbonate deposits of po- tential economic interest. Three of the areas--Great Salt Lake sedimentology, petroleum geology, and marine geology. He received his Ph.D. from the Vrije Universiteit

Purkis, Sam

152

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. B9, PAGES 21,727-21,744,SEPTEMBER 10, 2000 Dynamics of intracontinental extensionin the north Baikal rift  

E-Print Network [OSTI]

.Amongthefactorsthatcontributetotheinitiationand evolution of intracontinental rift zones, far-field stressin the lithosphere(horizontal traction), heat supply by mantle plumes or asthenosphericupwellings (basal traction), inherited zones of weaknessin

Dverchre, Jacques

153

Frequency-Domain Electromagnetics Survey At Kilauea East Rift Geothermal  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpediaFredonia,Iowa BioProcessArea (FURUMOTO, 1976)

154

Response to comments on an article entitled A geochemical survey of spring water from the main Ethiopian rift valley, southern Ethiopia  

E-Print Network [OSTI]

Ethiopian rift valley, southern Ethiopia: implications for well-head protection by McKenzie et al water from the main Ethiopian rift valley, southern Ethiopia: implications for well-head protection" (Mc in southern Ethiopia may be used to address issues related to well-head protection. Kebede and Travi criticize

McKenzie, Jeffrey M.

155

Rifting of the Izu-Bonin arc in the Quaternary and Mid-Oligocene  

SciTech Connect (OSTI)

Eruption of middle Eocene-lower Oligocene boninites and island arc tholeiites created the 200 km wide Izu-Bonin arc massif following the initiation of subduction {approximately}50 Ma. Mid-Oligocene rifting formed a 40-70 km wide forearc basin between the Eocene outer-arc high and the Eo-Oligocene arc (now the frontal arc high), with maximum extension at the latitudes of the Bonin Ridge and Trough. The Oligocene forearc basin was rapidly (100-300 m/m.y.) filled with turbidite and debris flow deposits produced by concurrent volcanism and erosion of the surrounding highs. Contemporaneous stretching in the backarc region produced dominantly east-dipping, NNE-trending, normal faults and culminated in backarc spreading in the Shikoku basin (25-15 Ma), isolating the Palau-Kyushu remnant arc. The forearc and remnant arc sediments record a dearth of volcanogenic input between 23 and 17 Ma; evidence that an arc volcanic minimum accompanied backarc spreading. The middle Miocene to Recent volcanic front formed 0(S)-50(N) km west of the Oligocene arc and has loaded and flexed the forearc. Further west, chains of submarine volcanoes erupted along the extension of Shikoku basin fracture zones. Basaltic sills were emplaced in the forearc. Explosive volcanism from rhyolitic calderas has increased dramatically since the late Pliocene, especially in the last 0.2 Ma. Since {approximately}2 Ma the arc has been stretched again, producing rapidly subsiding (300-2,250 m/m.y.) graben, immediately west of the volcanic front, which are segmented along strike by oblique transfer zones. The Sumisu Rift is partially filled with (<1.5 Ma) volcaniclastic turbidites and hemipelagic sediments and is intruded by backarc basin basalts. About 1 km of syn-rift uplift of the arc margin footwall has produced an unconformity, beneath surficial pumice, that extends back to pumiceous sediments >2.35 Ma.

Taylor, B. (Univ. of Hawaii, Honolulu (USA))

1990-06-01T23:59:59.000Z

156

Opaline cherts associated with sublacustrine hydrothermal springs at Lake Bogoria, Kenya Rift valley  

SciTech Connect (OSTI)

An unusual group of cherts found at saline, alkaline Lake Bogoria in the Kenya Rift differs from the Magadi-type cherts commonly associated with saline, alkaline lakes. The cherts are opaline, rich in diatoms, and formed from a siliceous, probably gelatinous, precursor that precipitated around submerged alkaline hot springs during a Holocene phase of high lake level. Silica precipitation resulted from rapid drop in the temperature of the spring waters and, possibly, pH. Lithification began before subaerial exposure. Ancient analogous cherts are likely to be localized deposits along fault lines.

Renaut, R.W.; Owen, R.B.

1988-08-01T23:59:59.000Z

157

Crustal rifting and subsidence of Sirte basin, Libya: a mature hydrocarbon Province  

SciTech Connect (OSTI)

The complex rifting and subsidence history of the Sirte basin serves as an instructive case study of the tectonic evolution of an intercratonic extensional basin. The Sirte basin formed by collapse of the Sirte arch in the mid-Cretaceous. Marine sediments accumulated following initial crustal arching and rifting as the basin was flooded from the north. Upper Cretaceous strata lie unconformably on igneous and metamorphic rocks of the Precambrian basement complex, Cambrian-Ordovician Gargaf Group, or the pre-Cretaceous continental Nubian Sandstone. The most rapid subsidence and accumulation of basinal strata occurred in the early Cenozoic; however, the basin has been relatively stable since the Oligocene. The basin is floored by a northwest-southeast-trending mosaic of narrow horsts and grabens, an important structural characteristic that distinguishes it from the adjacent intracratonic Kufra, Murzuk, and Ghadames basins. The details of basin subsidence, sediment accumulation rates, and facies variations have been reconstructed for the northern Sirte basin from a suite of approximately 100 well logs and numerous seismic lines. Subsidence-rate maps for short time intervals from the mid-Cretaceous through the Eocene show a continual shifting of the loci of maximum and minimum subsidence. The nonsteady character of basin subsidence may reflect a periodicity of movement on the major basement-rooted growth faults bounding the underlying horsts and grabens.

Gumati, Y.; Schamel, S.; Nairn, A.E.M.

1985-02-01T23:59:59.000Z

158

sRecovery Act: Geologic Characterization of the South Georgia Rift Basin for Source Proximal CO2 Storage  

SciTech Connect (OSTI)

This study focuses on evaluating the feasibility and suitability of using the Jurassic/Triassic (J/TR) sediments of the South Georgia Rift basin (SGR) for CO2 storage in southern South Carolina and southern Georgia The SGR basin in South Carolina (SC), prior to this project, was one of the least understood rift basin along the east coast of the U.S. In the SC part of the basin there was only one well (Norris Lightsey #1) the penetrated into J/TR. Because of the scarcity of data, a scaled approach used to evaluate the feasibility of storing CO2 in the SGR basin. In the SGR basin, 240 km (~149 mi) of 2-D seismic and 2.6 km2 3-D (1 mi2) seismic data was collected, process, and interpreted in SC. In southern Georgia 81.3 km (~50.5 mi) consisting of two 2-D seismic lines were acquired, process, and interpreted. Seismic analysis revealed that the SGR basin in SC has had a very complex structural history resulting the J/TR section being highly faulted. The seismic data is southern Georgia suggest SGR basin has not gone through a complex structural history as the study area in SC. The project drilled one characterization borehole (Rizer # 1) in SC. The Rizer #1 was drilled but due to geologic problems, the project team was only able to drill to 1890 meters (6200 feet) instead of the proposed final depth 2744 meters (9002 feet). The drilling goals outlined in the original scope of work were not met. The project was only able to obtain 18 meters (59 feet) of conventional core and 106 rotary sidewall cores. All the conventional core and sidewall cores were in sandstone. We were unable to core any potential igneous caprock. Petrographic analysis of the conventional core and sidewall cores determined that the average porosity of the sedimentary material was 3.4% and the average permeability was 0.065 millidarcy. Compaction and diagenetic studies of the samples determined there would not be any porosity or permeability at depth in SC. In Georgia there appears to be porosity in the J/TR section based on neutron log porosity values. The only zones in Rizer #1 that appear to be porous were fractured diabase units where saline formation water was flowing into the borehole. Two geocellular models were created for the SC and GA study area. Flow simulation modeling was performed on the SC data set. The injection simulation used the newly acquired basin data as well as the Petrel 3-D geologic model that included geologic structure. Due to the new basin findings as a result of the newly acquired data, during phase two of the modeling the diabase unit was used as reservoir and the sandstone units were used as caprock. Conclusion are: 1) the SGR basin is composed of numerous sub-basins, 2) this study only looked at portions of two sub-basins, 3) in SC, 30 million tonnes of CO2 can be injected into the diabase units if the fracture network is continuous through the units, 4) due to the severity of the faulting there is no way of assuring the injected CO2 will not migrate upward into the overlying Coastal Plain aquifers, 5) in Georgia there appears to porous zones in the J/TR sandstones, 6) as in SC there is faulting in the sub-basin and the seismic suggest the faulting extends upward into the Coastal Plain making that area not suitable for CO2 sequestration, 7) the complex faulting observed at both study areas appear to be associated with transfer fault zones (Heffner 2013), if sub-basins in the Georgia portion of the SGR basin can be located that are far away from the transfer fault zones there is a strong possibility of sequestering CO2 in these areas, and 9) the SGR basin covers area in three states and this project only studied two small areas so there is enormous potential for CO2 sequestration in other portions the basin and further research needs to be done to find these areas.

Waddell, Michael

2014-09-30T23:59:59.000Z

159

Discover the beauty of Taiwan...... 2-day Trip to National Scenic Area of Huadong Eastern Coast & Rift Valley  

E-Print Network [OSTI]

of Taidong begins with the journey... Day 1 07:00~ Departure from National Army Guest House/Chung Cheng hotel .... 15:30~17:30 Guanshan Water Ecological Park & Bikeway Guanshan Water Park is mainly divided into three. It is a place integrated with environment and ecological education, bringing water close to the visitors

Wong, Ngai-Ching

160

Ultrastructural study of Rift Valley fever virus in the mouse model  

SciTech Connect (OSTI)

Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV-host interactions and further characterize the mouse model of RVF.

Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E. [United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD (United States)] [United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD (United States); Smith, Darci R., E-mail: darci.smith1@us.army.mil [United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD (United States)

2012-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Pore water chemistry of an alkaline rift valley lake: Lake Turkana, Kenya  

SciTech Connect (OSTI)

Lake Turkana is the largest closed basin lake in the African rift system. It has evolved through the past 5000 years to become a moderately alkaline lake. Previous mass balance argument suggest that sulfate is removed from the lake by sulfate reduction in the sediments, and that the lake is accumulating in chloride, sodium, and alkalinity. Studies of pore water from 12 meter cores collected in November 1984 show that sulfate is reduced in the sediment column with a net production of alkalinity. Some sodium is lost from the lake and diffuses into the sediment to maintain charge balance. At several meters depth, organic matter is destroyed by methanogenic bacteria, as shown by the high delta /sup 13/C values for dissolved inorganic carbon. Magnesium and calcium molar ratios change with depth; chloride, sodium, and alkalinity also change with depth.

Cerling, T.E.; Johnson, T.C.; Halfman, J.D.; Lister, G.

1985-01-01T23:59:59.000Z

162

Isotopic evidence for neogene hominid paleoenvironments in the Kenya Rift Valley  

SciTech Connect (OSTI)

Bipedality, the definitive characteristic of the earliest hominids, has been regarded as an adaptive response to a transition from forested to more-open habitats in East Africa sometime between 12 million and 5 million years ago. Analyses of the stable carbon isotopic composition ([delta][sup 13]C) of paleosol carbonate and organic matter from the Tugen Hills succession in Kenya indicate that a heterogeneous environment with a mix of C3 and C4 plants has persisted for the last 15.5 million years. Open grasslands at no time dominated this portion of the rift valley. The observed [delta][sup 13]C values offer no evidence for a shift from more-closed C3 environments to C4 grasslands habitats. If hominids evolved in East Africa during the Late Miocene, they did so in an ecologically diverse setting.

Kingston, J.D.; Hill, A. (Yale Univ., New Haven, CT (United States)); Marino, B.D. (Harvard Univ., Cambridge, MA (United States))

1994-05-13T23:59:59.000Z

163

The origin of hydrothermal and other gases in the Kenya Rift Valley  

SciTech Connect (OSTI)

The Kenya Rift Valley (KRV) is part of a major continental rift system from which much outgassing is presently occurring. Previous research on gases in the KRV has tended to concentrate on their geothermal implications; the present paper is an attempt to broaden the interpretation by consideration of new data including helium and carbon isotope analyses from a wide cross-section of sites. In order to do this, gases have been divided into categories dependent on origin. N{sub 2} and noble gases are for the most part atmospherically derived, although their relative concentrations may be altered from ASW ratios by various physical processes. Reduced carbon (CH{sub 4} and homologues) appears to be exclusively derived from the shallow crust, with thermogenic {delta}{sup 13}C values averaging -25{per_thousand} PDB for CH{sub 4}. H{sub 2} is likely also to be crustally formed. CO{sub 2}, generally a dominant constituent, has a narrow {delta}{sup 13}C range averaging -3.7{per_thousand} PDB, and is likely to be derived with little modification from the upper mantle. Consideration of the ratio C/{sup 3}He supports this view in most cases. Sulphur probably also originates there. Ratios of {sup 3}He/{sup 4}He reach a MORB-like maximum of 8.0 R/R{sub A} and provide the best indication of an upper mantle source of gases beneath the KRV. A correlation between {sup 3}He/{sup 4}He and the hydrocarbon parameter log (C{sub 1}/{Sigma}C{sub 2-4}) appears to be primarily temperature related. The highest {sup 3}He/{sup 4}He ratios in spring waters are associated with basalts, perhaps because of the leaching of basalt glasses. There may be a structural control on {sup 3}He/{sup 4}He ratios in the KRV as a whole.

Darling, W.G. [British Geological Survey, Wallingford (United Kingdom)] [British Geological Survey, Wallingford (United Kingdom); Griesshaber, E. [Max-Planck Institut fuer Chemie, Mainz (Germany)] [Max-Planck Institut fuer Chemie, Mainz (Germany); Andrews, J.N. [Univ. of Reading (United Kingdom)] [and others] [Univ. of Reading (United Kingdom); and others

1995-06-01T23:59:59.000Z

164

Thermochronometric analysis of the North Lunggar Rift: Implications for the timing of extension initiation and structural style of deformation in southern Tibet  

E-Print Network [OSTI]

Hager for use of the HeMP software. v TABLE OF CONTENTS PAGE TITLE PAGE i ABSTRACT iii ACKNOWLEDGMENTS v TABLE OF CONTENTS vi LIST OF FIGURES AND TABLES x CHAPTER 1: Introduction 14... for Himalayan-Tibetan deformation 120 FIGURE 4. End member models for the development of the North Lunggar Rift 122 x FIGURE 5. Location and age of samples analyzed from the North Lunggar Rift 124 FIGURE 6. Age-elevation relationship (AER...

Sundell, Kurt E.

2011-01-01T23:59:59.000Z

165

Timing and Tectonic implications of basin inversion in the Nam Con Son Basin and adjacent areas, southern South China Sea  

E-Print Network [OSTI]

The Nam Con Son (NCS) Basin, located offshore of SE Vietnam, is one of several Tertiary rift basins that formed during initial Eocene(?)-Oligocene rifting. Following cessation of rifting at the end of Oligocene time, these basins were subjected...

Olson, Christopher Charles

2001-01-01T23:59:59.000Z

166

Origin of platy calcite crystals in hot-spring deposits in the Kenya Rift Valley  

SciTech Connect (OSTI)

Platy calcite crystals, which have their c axis parallel to their shortest length axis, are common components of travertine deposits found around some hot springs in the Kenya Rift Valley. They are composite crystals formed of numerous paper-thin subcrystals. Individual plates allowed to grow without obstruction develop a hexagonal motif. The Kenyan crystals typically form in hot (>75 C) waters that have a low Ca content (<10 mg/l), a high CO{sub 2} content, and a high rate of CO{sub 2} degassing. At Chemurkeu, aggregates of numerous small platy crystals collectively form lattice crystals that superficially resemble ray crystals. The walls of the lattice crystals are formed of large platy crystals that have their long and intermediate length axes aligned parallel to the plane of the long axis of the lattice crystal. Internally, the lattice crystals are formed of small platy calcite crystals arranged in a boxlike pattern that creates the appearance of a lattice when viewed in thin section. Lattice crystals are highly porous, with each pore being enclosed by platy crystals. At Lorusio, travertines are mainly formed of pseudodentrites that are constructed by numerous small platy crystals attached to a main stem which is a large platy crystal that commonly curves along its long axis. The pseudodentrites are the main construction blocks in ledges and lilypads that form in the vent pool and spring outflow channels, where the water is too hot for microbes other than hyperthermophiles. The platy calcite crystals in the Kenyan travertines are morphologically similar to platy calcite crystals that form as scale in pipes in the geothermal fields of New Zealand and hydrothermal angel wing calcite from the La Fe mine in Mexico. Comparison of the Kenyan and New Zealand crystals indicates that platy calcite crystals form from waters with a low Ca{sup 2+} content and a high CO{sub 3}/Ca ratio due to rapid rates of CO{sub 2} degassing.

Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renault, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences

1998-09-01T23:59:59.000Z

167

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearch Areas Our Vision National User Facilities

168

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearch Areas Our Vision National User

169

Southeast Idaho Area Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

170

Site Monitoring Area Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

171

Wildlife Management Areas (Minnesota)  

Broader source: Energy.gov [DOE]

Certain areas of the State are designated as wildlife protection areas and refuges; new construction and development is restricted in these areas.

172

Integrated tectonic and quantitative thermochronometric investigation of the Xainza rift, Tibet  

E-Print Network [OSTI]

(XRF) spectrometry and trace element concentrations obtained from standard solution ICPMS. Together with isotopic analysis, possible source areas for magmatic rocks in the central Lhasa terrane are discussed in a spatiotemporal framework. Comparison... rock was sent to the GeoAnalytical Lab at Washington State University (WSU) for further processing. Major elements were measured by X-ray fluorescence technique (XRF) on a ThermoARL AdvantXP+ automated sequential wavelength spectrometer and trace...

Hager, Christian

2014-08-31T23:59:59.000Z

173

Wildlife Management Areas (Florida)  

Broader source: Energy.gov [DOE]

Certain sites in Florida are designated as wildlife management areas, and construction and development is heavily restricted in these areas.

174

Single-crystal sup 40 Ar/ sup 39 Ar dating of the Olorgesailie Formation, southern Kenya rift  

SciTech Connect (OSTI)

Single-crystal laser fusion {sup 40}Ar/{sup 39}Ar analyses and several conventional bulk fusion {sup 40}K- {sup 40}Ar dates have been used to determine the age of volcaniclastic strata within the Olorgesailie Formation and of associated volcanic and sedimentary units of the southern Kenya rift. In the principal exposures along the southern edge of the Legemunge Plain, the formation spans the interval from approximately 500 to 1,000 ka. Deposition continued to the east along the Ol Keju Nyiro river where a tuff near the top of the formation has been dated at 215 ka. In these exposures, the formation is unconformably overlain by sediments dated at 49 ka. A possible source for the Olorgesailie tephra, the Ol Doinyo Nyokie volcanic complex, contains as ash flow dated at {approximately} 1 Ma, extending the known age range of this complex to encompass that of virtually the entire Olorgesailie Formation in the Legemunge Plain. These geologic examples illustrate the importance of the single-crystal {sup 40}Ar/{sup 39}Ar dating technique whereby contaminant, altered, or otherwise aberrant grains can be identified and eliminated from the determination of eruptive ages for reworked or altered pyroclastic deposits. The authors have presented a computer-modeling procedure based on an inverse-isochron analysis that promotes a more objective approach to trimming {sup 40}Ar/{sup 39}Ar isotope data sets of this type.

Deino, A. (Geochronology Center of the Inst. of Human Origins, Berkeley, CA (United States)); Potts, R. (Smithsonian Institution, Washington, DC (United States))

1990-06-10T23:59:59.000Z

175

Magnetotellurics At Rio Grande Rift Region (Aiken & Ander, 1981) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson,Mcgee Mountain AreaEnergy

176

Compound and Elemental Analysis At Kilauea Southwest Rift And South Flank  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation, search Name:CXD)2010)2008)|Zealand|Area

177

Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley BiofuelsEnergyInformationArea

178

Quasi-Dense Reconstruction from Image Maxime LHUILLIER Long QUAN  

E-Print Network [OSTI]

Science Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR Abstract. This paper proposes a quasi-dense reconstruction from un- calibrated sequence. The main innovation calibration or position information. Unfortunately, most modeling and visualization applications need dense

Quan, Long

179

Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors  

SciTech Connect (OSTI)

Rift Valley fever virus (RVFV), a member of the Phlebovirus genus in the Bunyaviridae family, is transmitted by mosquitoes and infects both humans and domestic animals, particularly cattle and sheep. Since primary RVFV strains must be handled in BSL-3+ or BSL-4 facilities, a RVFV cell-cell fusion assay will facilitate the investigation of RVFV glycoprotein function under BSL-2 conditions. As for other members of the Bunyaviridae family, RVFV glycoproteins are targeted to the Golgi, where the virus buds, and are not efficiently delivered to the cell surface. However, overexpression of RVFV glycoproteins using an alphavirus replicon vector resulted in the expression of the glycoproteins on the surface of multiple cell types. Brief treatment of RVFV glycoprotein expressing cells with mildly acidic media (pH 6.2 and below) resulted in rapid and efficient syncytia formation, which we quantified by {beta}-galactosidase {alpha}-complementation. Fusion was observed with several cell types, suggesting that the receptor(s) for RVFV is widely expressed or that this acid-dependent virus does not require a specific receptor to mediate cell-cell fusion. Fusion occurred over a broad temperature range, as expected for a virus with both mosquito and mammalian hosts. In contrast to cell fusion mediated by the VSV-G glycoprotein, RVFV glycoprotein-dependent cell fusion could be prevented by treating target cells with trypsin, indicating that one or more proteins (or protein-associated carbohydrate) on the host cell surface are needed to support membrane fusion. The cell-cell fusion assay reported here will make it possible to study the membrane fusion activity of RVFV glycoproteins in a high-throughput format and to screen small molecule inhibitors for the ability to block virus-specific membrane fusion.

Filone, Claire Marie [Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States); Heise, Mark [Departments of Genetics and Microbiology and Immunology, The Carolina Vaccine Institute, University of North Carolina, Chapel Hill, NC 27599 (United States); Doms, Robert W. [Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States)]. E-mail: doms@mail.med.upenn.edu; Bertolotti-Ciarlet, Andrea [Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States)]. E-mail: aciarlet@mail.med.upenn.edu

2006-12-20T23:59:59.000Z

180

Rb-Sr and Sm-Nd isotopic study of the Glen Mountains layered complex: initiation of rifting within the southern Oklahoma aulacogen  

SciTech Connect (OSTI)

Rb-Sr and Sm-Nd isotopic data for rocks and minerals of the Glen Mountains layered complex (GMLC), a midcontinent mafic layered intrusion in the Wichita Mountains of southwestern Oklahoma, constrain the time of initiation of rifting within the southern Oklahoma aulacogen and provide information on the chemistry of the early Paleozoic mantle. Four whole-rock samples define a Rb-Sr isochron corresponding to a maximum crystallization age of 577 +/- 165 Ma and an initial Sr isotopic composition of 0.70359 +/- 2. A three-point Sm-Nd mineral-whole-rock (internal) isochron for an anorthositic gabbro provides a crystallization age of 528 +/- 29 Ma. These data suggest that the GMLC was emplaced into the southern Oklahoma aulacogen during the initial phase of rifting along the southern margin of the North American craton in the early Paleozoic. This Sm-Nd internal isochron age is within analytical uncertainty of U-Pb zircon ages for granites and rhyolites from the Wichita Mountains; therefore, mafic and felsic magmatism may have been contemporaneous within the rift during the early stages of development. Hybrid rocks and composite dikes in the Wichita Mountains provide field evidence for contemporaneous mafic and felsic magmas. Initial Sr and Nd isotopic data suggest that magmas parental to the GMLC were derived from a depleted mantle source. However, Nd isotopic data for the GMLC plot distinctly below data for the depleted mantle source cited by DePaolo and thus suggest that the parental magmas of the GMLC were either contaminated by Proterozoic crust of the southern midcontinent or were derived from a heterogenous mantle source region that had variable initial Nd isotopic compositions.

Lambert, D.D.; Unruh, D.M.; Gilbert, M.C.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hydrologically Sensitive Areas: Variable Source Area Hydrology  

E-Print Network [OSTI]

Hydrologically Sensitive Areas: Variable Source Area Hydrology Implications for Water Quality Risk hydrology was developed and applied to the New York City (NYC) water supply watersheds. According and are therefore hydrologically sensitive with respect to their potential to transport contaminants to perennial

Walter, M.Todd

182

AREA COORDINATOR RESIDENTIAL EDUCATION  

E-Print Network [OSTI]

AREA COORDINATOR RESIDENTIAL EDUCATION VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE The Office of Housing and Residential Education at Vanderbilt University is seeking applicants for an Area Coordinator. The Area Coordinator is responsible for assisting in the management and operation of a residential area

Bordenstein, Seth

183

RECONNAISSANCE ASSESSMENT OF CO2 SEQUESTRATION POTENTIAL IN THE TRIASSIC AGE RIFT BASIN TREND OF SOUTH CAROLINA, GEORGIA, AND NORTHERN FLORIDA  

SciTech Connect (OSTI)

A reconnaissance assessment of the carbon dioxide (CO{sub 2}) sequestration potential within the Triassic age rift trend sediments of South Carolina, Georgia and the northern Florida Rift trend was performed for the Office of Fossil Energy, National Energy Technology Laboratory (NETL). This rift trend also extends into eastern Alabama, and has been termed the South Georgia Rift by previous authors, but is termed the South Carolina, Georgia, northern Florida, and eastern Alabama Rift (SGFAR) trend in this report to better describe the extent of the trend. The objectives of the study were to: (1) integrate all pertinent geologic information (literature reviews, drilling logs, seismic data, etc.) to create an understanding of the structural aspects of the basin trend (basin trend location and configuration, and the thickness of the sedimentary rock fill), (2) estimate the rough CO{sub 2} storage capacity (using conservative inputs), and (3) assess the general viability of the basins as sites of large-scale CO{sub 2} sequestration (determine if additional studies are appropriate). The CO{sub 2} estimates for the trend include South Carolina, Georgia, and northern Florida only. The study determined that the basins within the SGFAR trend have sufficient sedimentary fill to have a large potential storage capacity for CO{sub 2}. The deeper basins appear to have sedimentary fill of over 15,000 feet. Much of this fill is likely to be alluvial and fluvial sedimentary rock with higher porosity and permeability. This report estimates an order of magnitude potential capacity of approximately 137 billion metric tons for supercritical CO{sub 2}. The pore space within the basins represent hundreds of years of potential storage for supercritical CO{sub 2} and CO{sub 2} stored in aqueous form. There are many sources of CO{sub 2} within the region that could use the trend for geologic storage. Thirty one coal fired power plants are located within 100 miles of the deepest portions of these basins. There are also several cement and ammonia plants near the basins. Sixteen coal fired power plants are present on or adjacent to the basins which could support a low pipeline transportation cost. The current geological information is not sufficient to quantify specific storage reservoirs, seals, or traps. There is insufficient hydrogeologic information to quantify the saline nature of the water present within all of the basins. Water data in the Dunbarton Basin of the Savannah River Site indicates dissolved solids concentrations of greater than 10,000 parts per million (not potential drinking water). Additional reservoir characterization is needed to take advantage of the SGFAR trend for anthropogenic CO{sub 2} storage. The authors of this report believe it would be appropriate to study the reservoir potential in the deeper basins that are in close proximity to the current larger coal fired power plants (Albany-Arabi, Camilla-Ocilla, Alamo-Ehrhardt, and Jedburg basin).

Blount, G.; Millings, M.

2011-08-01T23:59:59.000Z

184

METROPOLITAN STATISTICAL AREA  

E-Print Network [OSTI]

METROPOLITAN STATISTICAL AREA OUTLOOK MORGANTOWN COLLEGE OF BUSINESS AND ECONOMICS Bureau to be repeated over the next five years. The Morgantown Metropolitan Statistical Area (MSA) had an average annual

Mohaghegh, Shahab

185

Wetland Preservation Areas (Minnesota)  

Broader source: Energy.gov [DOE]

A wetland owner can apply to the host county for designation of a wetland preservation area. Once designated, the area remains designated until the owner initiates expiration, except where a state...

186

Wildlife Management Areas (Maryland)  

Broader source: Energy.gov [DOE]

Wildlife Management Areas exist in the State of Maryland as wildlife sanctuaries, and vehicles, tree removal, and construction are severely restricted in these areas. Some of these species are also...

187

Protected Areas Stacy Philpott  

E-Print Network [OSTI]

Convention of Biological Diversity, 1992 #12;IUCN Protected Area Management Categories Ia. Strict Nature. Protected Landscape/ Seascape VI. Managed Resource Protected Area #12;Ia. Strict Nature Preserves and Ib. Wilderness Areas Natural preservation Research No No #12;II. National Parks Ecosystem protection

Gottgens, Hans

188

AREA 5 RWMS CLOSURE  

National Nuclear Security Administration (NNSA)

TRU material in the trench because there is no groundwater pathway under foreseeable climate conditions. The Area 5 RWMS probabilistic PA model can be modified and used to...

189

Groundwater Management Areas (Texas)  

Broader source: Energy.gov [DOE]

This legislation authorizes the Texas Commission on Environmental Quality and the Texas Water Development Board to establish Groundwater Management Areas to provide for the conservation,...

190

Decontamination & decommissioning focus area  

SciTech Connect (OSTI)

In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

NONE

1996-08-01T23:59:59.000Z

191

Geographic Area Month  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels by PAD District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Sales to End Users Sales for...

192

300 Area Disturbance Report  

SciTech Connect (OSTI)

The objective of this study was to define areas of previous disturbance in the 300 Area of the U.S. Department of Energy (DOE) Hanford Site to eliminate these areas from the cultural resource review process, reduce cultural resource monitoring costs, and allow cultural resource specialists to focus on areas where subsurface disturbance is minimal or nonexistent. Research into available sources suggests that impacts from excavations have been significant wherever the following construction activities have occurred: building basements and pits, waste ponds, burial grounds, trenches, installation of subsurface pipelines, power poles, water hydrants, and well construction. Beyond the areas just mentioned, substrates in the' 300 Area consist of a complex, multidimen- sional mosaic composed of undisturbed stratigraphy, backfill, and disturbed sediments; Four Geographic Information System (GIS) maps were created to display known areas of disturbance in the 300 Area. These maps contain information gleaned from a variety of sources, but the primary sources include the Hanford GIS database system, engineer drawings, and historic maps. In addition to these maps, several assumptions can be made about areas of disturbance in the 300 Area as a result of this study: o o Buried pipelines are not always located where they are mapped. As a result, cultural resource monitors or specialists should not depend on maps depicting subsurface pipelines for accurate locations of previous disturbance. Temporary roads built in the early 1940s were placed on layers of sand and gravel 8 to 12 in. thick. Given this information, it is likely that substrates beneath these early roads are only minimally disturbed. Building foundations ranged from concrete slabs no more than 6 to 8 in. thick to deeply excavated pits and basements. Buildings constructed with slab foundations are more numerous than may be expected, and minimally disturbed substrates may be expected in these locations. Historic black and white photographs provide a partial record of some excavations, including trenches, building basements, and material lay-down yards. Estimates of excavation depth and width can be made, but these estimates are not accurate enough to pinpoint the exact location where the disturbedhmdisturbed interface is located (e.g., camera angles were such that depths and/or widths of excavations could not be accurately determined or estimated). In spite of these limitations, these photographs provide essential information. Aerial and historic low-level photographs have captured what appears to be backfill throughout much of the eastern portion of the 300 Area-near the Columbia River shoreline. This layer of fill has likely afforded some protection for the natural landscape buried beneath the fill. This assumption fits nicely with the intermittent and inadvertent discoveries of hearths and stone tools documented through the years in this part of the 300 Area. Conversely, leveling of sand dunes appears to be substantial in the northwestern portion of the 300 Area during the early stages of development. o Project files and engineer drawings do not contain information on any impromptu but necessary adjustments made on the ground during project implementation-after the design phase. Further, many projects are planned and mapped but never implemented-this information is also not often placed in project files. Specific recommendations for a 300 Area cultural resource monitoring strategy are contained in the final section of this document. In general, it is recommended that monitoring continue for all projects located within 400 m of the Columbia River. The 400-m zone is culturally sensitive and likely retains some of the most intact buried substrates in the 300 Area.

LL Hale; MK Wright; NA Cadoret

1999-01-07T23:59:59.000Z

193

Geologic evidence for the prolongation of active normal faults of the Mona Rift into northwestern Puerto Rico  

E-Print Network [OSTI]

(eastern Hispaniola) from a subducting area (northwestern Puerto Rico). Near the city of Aguadilla Hispaniola. #12;2 INTRODUCTION Plate Boundary Zone The island of Puerto Rico is located within a ~250-km and eastern Hispaniola are underthrust in the north by North American lithosphere and in the south

Boyer, Edmond

194

OLED area illumination source  

DOE Patents [OSTI]

The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

Foust, Donald Franklin (Scotia, NY); Duggal, Anil Raj (Niskayuna, NY); Shiang, Joseph John (Niskayuna, NY); Nealon, William Francis (Gloversville, NY); Bortscheller, Jacob Charles (Clifton Park, NY)

2008-03-25T23:59:59.000Z

195

MEASUREMENT OF BUILDING AREAS MEASUREMENT OF BUILDING AREAS  

E-Print Network [OSTI]

) Common Use Areas All floored areas in the building for circulation and standard facilities provided and the like. These are extracts of NWPC standard method of measurement of building areas with an addition fromSection S ANNEXURE 4 MEASUREMENT OF BUILDING AREAS MEASUREMENT OF BUILDING AREAS 1. GROSS BUILDING

Wang, Yan

196

Subsurface contaminants focus area  

SciTech Connect (OSTI)

The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

NONE

1996-08-01T23:59:59.000Z

197

MSL ENTERANCE REFERENCE AREA  

E-Print Network [OSTI]

MSL ENTERANCE LOBBY ELEV STAIRS SSL-019 REFERENCE AREA SSL-021 GROUP STUDY SSL-018 STUDY ROOM SSL-029 SSL-020 COPY ROOM SSL-022 GROUP STUDY SSL-026 STACKS SSL-023 GROUP STUDY SSL-024 GROUP STUDY SSL TBL-014 TBL-014A STAIRS SSL-007 GIS/ WORKROOM SSL-011 SSL-008 SSL-009 SSL-010 SSL-014 SSL-017 STAIRS

Aalberts, Daniel P.

198

Plutonium focus area  

SciTech Connect (OSTI)

To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

NONE

1996-08-01T23:59:59.000Z

199

DOE Designates Southwest Area and Mid-Atlantic Area National...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Interest Electric Transmission Corridors DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 - 11:12am Addthis...

200

Scientific and Natural Areas (Minnesota)  

Broader source: Energy.gov [DOE]

Certain scientific and natural areas are established throughout the state for the purpose of preservation and protection. Construction and new development is prohibited in these areas.

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Large area bulk superconductors  

DOE Patents [OSTI]

A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

Miller, Dean J. (Darien, IL); Field, Michael B. (Jersey City, NJ)

2002-01-01T23:59:59.000Z

202

Western Area Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun Deng Associate ResearchWestern Area Power

203

700 Area - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, Next2025Steps to MakingImportance of700 Area

204

CEES - Focus Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium: Celebrating the Past - VisualizingFocus Areas

205

100 Area - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrincetonOPT Optics MetrologyDepartment of00 Area

206

T-1 Training Area  

SciTech Connect (OSTI)

Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

None

2014-11-07T23:59:59.000Z

207

T-1 Training Area  

ScienceCinema (OSTI)

Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

None

2015-01-09T23:59:59.000Z

208

Surface Water Management Areas (Virginia)  

Broader source: Energy.gov [DOE]

This legislation establishes surface water management areas, geographically defined surface water areas in which the State Water Control Board has deemed the levels or supply of surface water to be...

209

Communication in Home Area Networks  

E-Print Network [OSTI]

used in area like smart buildings, street light controls andbuilding. This section focuses on HAN design to address two smart

Wang, Yubo

2012-01-01T23:59:59.000Z

210

Fire Hazards Analysis for the 200 Area Interim Storage Area  

SciTech Connect (OSTI)

This documents the Fire Hazards Analysis (FHA) for the 200 Area Interim Storage Area. The Interim Storage Cask, Rad-Vault, and NAC-1 Cask are analyzed for fire hazards and the 200 Area Interim Storage Area is assessed according to HNF-PRO-350 and the objectives of DOE Order 5480 7A. This FHA addresses the potential fire hazards associated with the Interim Storage Area (ISA) facility in accordance with the requirements of DOE Order 5480 7A. It is intended to assess the risk from fire to ensure there are no undue fire hazards to site personnel and the public and to ensure property damage potential from fire is within acceptable limits. This FHA will be in the form of a graded approach commensurate with the complexity of the structure or area and the associated fire hazards.

JOHNSON, D.M.

2000-01-06T23:59:59.000Z

211

Rift Zone | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue RidgeUniversity ofGeothermal FacilityRenewableRifle,Zone

212

Northwest Area Foundation Horizons Program  

E-Print Network [OSTI]

Northwest Area Foundation Horizons Program Final Evaluation Report ­ Executive Summary Diane L by the Northwest Area Foundation in partnership with two national organizations and delivered by a number to remember that Horizons was not designed to reduce poverty, but instead to contribute to the Foundations

Amin, S. Massoud

213

Unscaled Scaled (% / km) Geographic Area /  

E-Print Network [OSTI]

226 Unscaled Scaled (% / km) Geographic Area / Assessment Unit DI Prod. N(eq) Sum Total Cumu subbasin, Washington. Geographic Area / Assessment Unit IntegratedPriorityRestoration Category Habitat% (unscaled results) of the combined protection benefit for summer steelhead within the Methow basin, and 51

214

tight environment high radiation area  

E-Print Network [OSTI]

#12;Irradiation Studies of Optical Components - II CERN, week of Oct. 24, 2005 1.4 GeV proton beam 4 x· tight environment · high radiation area · non-serviceable area · passive components · optics only, no active electronics · transmit image through flexible fiber bundle Optical Diagnostics 01-13-2006 1 #12

McDonald, Kirk

215

Hanford 200 Areas Development Plan  

SciTech Connect (OSTI)

The purpose of the Hanford 200 Areas Development Plan (Development Plan) is to guide the physical development of the 200 Areas (which refers to the 200 East Area, 200 West Area, and 200 Area Corridor, located between the 200 East and 200 West Areas) in accordance with US Department of Energy (DOE) Order 4320.lB (DOE 1991a) by performing the following: Establishing a land-use plan and setting land-use categories that meet the needs of existing and proposed activities. Coordinating existing, 5-year, and long-range development plans and guiding growth in accordance with those plans. Establishing development guidelines to encourage cost-effective development and minimize conflicts between adjacent activities. Identifying site development issues that need further analysis. Integrating program plans with development plans to ensure a logical progression of development. Coordinate DOE plans with other agencies [(i.e., Washington State Department of Ecology (Ecology) and US Environmental Protection Agency (EPA)]. Being a support document to the Hanford Site Development Plan (DOE-RL 1990a) (parent document) and providing technical site information relative to the 200 Areas.

Rinne, C.A.; Daly, K.S.

1993-08-01T23:59:59.000Z

216

Research Areas | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

High Energy Density Laboratory Plasmas Research Areas Research Areas High Energy Density Laboratory Plasmas (HEDLP) Research Areas During open solicitations proposals are sought...

217

Progress Update: M Area Closure  

ScienceCinema (OSTI)

A progress update of the Recovery Act at work at the Savannah River Site. The celebration of the first area cleanup completion with the help of the Recovery Act.

Cody, Tom

2012-06-14T23:59:59.000Z

218

Wellhead Protection Area Act (Nebraska)  

Broader source: Energy.gov [DOE]

This section regulates activities which can occur on or below the land surface of the area surrounding a wellhead. The purpose of these regulations is to limit well contamination and preserve...

219

Controlling Bats in Urban Areas  

E-Print Network [OSTI]

to avoid obstacles and capture insects. Bats also emit audible sounds that may be used for communi- cation. L-1913 4-08 Controlling BATS Damage In urban areas, bats may become a nuisance becauseoftheirsqueaking,scratchingandcrawl- inginattics...

Texas Wildlife Services

2008-04-15T23:59:59.000Z

220

Protected Water Area System (Iowa)  

Broader source: Energy.gov [DOE]

The Natural Resource Commission maintains a state plan for the design and establishment of a protected water area system and those adjacent lands needed to protect the integrity of that system. A...

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The Program Area Committee Chairperson.  

E-Print Network [OSTI]

worksheets and others. Prepared by Mary G. Marshall and Burl B. RichardsQ Extension program development specialists, The Texas A&M University System. THE PROGRAM AREA COMMITTEE CHAIRPERSON You Hold an Important Position! Whenever people gather...

Marshall, Mary; Richardson, Burl B.

1986-01-01T23:59:59.000Z

222

Security Area Vouching and Piggybacking  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes requirements for the Department of Energy (DOE) Security Area practice of "vouching" or "piggybacking" access by personnel. DOE N 251.40, dated 5-3-01, extends this directive until 12-31-01.

2000-06-05T23:59:59.000Z

223

Focus Area Tax Credits (Maryland)  

Broader source: Energy.gov [DOE]

Focus Area Tax Credits for businesses in Baltimore City or Prince Georges County enterprise zones include: (1) Ten-year, 80% credit against local real property taxes on a portion of real property...

224

Transforming Parks and Protected Areas  

E-Print Network [OSTI]

Transforming Parks and Protected Areas Policy and governance in a changing world Edited by Kevin S from the British Library Library of Congress Cataloging In Publication Data Transforming parks

Bolch, Tobias

225

Cuttings Analysis At International Geothermal Area, Philippines...  

Open Energy Info (EERE)

Cuttings Analysis At International Geothermal Area, Philippines (Laney, 2005) Exploration Activity Details Location International Geothermal Area Philippines Exploration Technique...

226

Biological Inventory Colorado Canyons National Conservation Area  

E-Print Network [OSTI]

Biological Inventory of the Colorado Canyons National Conservation Area Prepared by: Joe Stevens .............................. 12 Identify Targeted Inventory Areas

227

100 Areas CERCLA ecological investigations  

SciTech Connect (OSTI)

This document reports the results of the field terrestrial ecological investigations conducted by Westinghouse Hanford Company during fiscal years 1991 and 1992 at operable units 100-FR-3, 100-HR-3, 100-NR-2, 100-KR-4, and 100-BC-5. The tasks reported here are part of the Remedial Investigations conducted in support of the Comprehensive Environmental Response, compensation, and Liability Act of 1980 studies for the 100 Areas. These ecological investigations provide (1) a description of the flora and fauna associated with the 100 Areas operable units, emphasizing potential pathways for contaminants and species that have been given special status under existing state and/or federal laws, and (2) an evaluation of existing concentrations of heavy metals and radionuclides in biota associated with the 100 Areas operable units.

Landeen, D.S.; Sackschewsky, M.R.; Weiss, S.

1993-09-01T23:59:59.000Z

228

Plutonium focus area: Technology summary  

SciTech Connect (OSTI)

To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this approach, EM developed a management structure and principles that led to creation of specific focus areas. These organizations were designed to focus scientific and technical talent throughout DOE and the national scientific community on major environmental restoration and waste management problems facing DOE. The focus area approach provides the framework for inter-site cooperation and leveraging of resources on common problems. After the original establishment of five major focus areas within the Office of Technology Development (EM-50), the Nuclear Materials Stabilization Task Group (NMSTG, EM-66) followed EM-50`s structure and chartered the Plutonium Focus Area (PFA). NMSTG`s charter to the PFA, described in detail later in this book, plays a major role in meeting the EM-66 commitments to the Defense Nuclear Facilities Safety Board (DNFSB). The PFA is a new program for FY96 and as such, the primary focus of revision 0 of this Technology Summary is an introduction to the Focus Area; its history, development, and management structure, including summaries of selected technologies being developed. Revision 1 to the Plutonium Focus Area Technology Summary is slated to include details on all technologies being developed, and is currently planned for release in August 1996. The following report outlines the scope and mission of the Office of Environmental Management, EM-60, and EM-66 organizations as related to the PFA organizational structure.

NONE

1996-03-01T23:59:59.000Z

229

Sandia National Laboratories: quan-tifying and simulating solar-plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetimepower-to-gasproduce andPublications 2013

230

EA-1177: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to salvage and demolish the 200 West Area, 200 East Area, and 300 Area steam plants and their associated steam distribution piping...

231

Variable area light reflecting assembly  

DOE Patents [OSTI]

Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

Howard, Thomas C. (Raleigh, NC)

1986-01-01T23:59:59.000Z

232

Variable area light reflecting assembly  

DOE Patents [OSTI]

Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

Howard, T.C.

1986-12-23T23:59:59.000Z

233

Montana Natural Areas Act of 1974 (Montana)  

Broader source: Energy.gov [DOE]

The Montana Natural Areas Act of 1974 provides for the designation and establishment of a system of natural areas in order to preserve the natural ecosystems of these areas. Designated natural...

234

Innovation investment area: Technology summary  

SciTech Connect (OSTI)

The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

Not Available

1994-03-01T23:59:59.000Z

235

Aquifer Protection Area Land Use Regulations (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations describe allowable activities within aquifer protection areas, the procedure by which such areas are delineated, and relevant permit requirements. The regulations also describe...

236

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

237

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

238

Chickasaw National Recreational Area, Chickasaw, Oklahoma | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chickasaw National Recreational Area, Chickasaw, Oklahoma Chickasaw National Recreational Area, Chickasaw, Oklahoma Photo of Comfort Station at the Chickasaw National Recreation...

239

RHIC | New Areas of Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115, 2001 MediaBrookhavenBlackA New Area of

240

History of 100-B Area  

SciTech Connect (OSTI)

The initial three production reactors and their support facilities were designated as the 100-B, 100-D, and 100-F areas. In subsequent years, six additional plutonium-producing reactors were constructed and operated at the Hanford Site. Among them was one dual-purpose reactor (100-N) designed to supply steam for the production of electricity as a by-product. Figure 1 pinpoints the location of each of the nine Hanford Site reactors along the Columbia River. This report documents a brief description of the 105-B reactor, support facilities, and significant events that are considered to be of historical interest. 21 figs.

Wahlen, R.K.

1989-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Surrounding Area Restaurants...Hungry  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration at Young -Final»EnergySupportSurrounding Area

242

Resource Areas of Texas: Land.  

E-Print Network [OSTI]

Prairie (Coastal ~~~(l), soils are less acid and some are calcareous. Main series: lrictoria, Orelia, Clareville. ~ight, acid sands and darker, loamy to clayey soils-some $;dine and sodic-lie in a narrow band along the coast. Main aeries: Harris...). Mai series: Truce, Waurika, Brown, moderately deep 11 shallow, calcareous, clay1 a1 oils are alg common. Main series: (: 1 to alk nts; somt Bonti. ey soils >wens. over sh Bottomlands-minor areas or brown to clam gray, loam1 1 Main senes 3...

Godfrey, Curtis L.; Carter, Clarence R.; McKee, Gordon S.

1967-01-01T23:59:59.000Z

243

Carlsbad Area Office strategic plan  

SciTech Connect (OSTI)

This edition of the Carlsbad Area Office Strategic Plan captures the U.S. Department of Energy`s new focus, and supercedes the edition issued previously in 1995. This revision reflects a revised strategy designed to demonstrate compliance with environmental regulations earlier than the previous course of action; and a focus on the selected combination of scientific investigations, engineered alternatives, and waste acceptance criteria for supporting the compliance applications. An overview of operations and historical aspects of the Waste Isolation Pilot Plant near Carlsbad, New Mexico is presented.

NONE

1995-10-01T23:59:59.000Z

244

Geothermal resource evaluation of the Yuma area  

SciTech Connect (OSTI)

This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

Poluianov, E.W.; Mancini, F.P.

1985-11-29T23:59:59.000Z

245

Ashland Area Support Substation Project  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) provides wholesale electric service to the City of Ashland (the City) by transferring power over Pacific Power Light Company's (PP L) 115-kilovolt (kV) transmission lines and through PP L's Ashland and Oak Knoll Substations. The City distributes power over a 12.5-kV system which is heavily loaded during winter peak periods and which has reached the limit of its ability to serve peak loads in a reliable manner. Peak loads under normal winter conditions have exceeded the ratings of the transformers at both the Ashland and Oak Knoll Substations. In 1989, the City modified its distribution system at the request of PP L to allow transfer of three megawatts (MW's) of electric power from the overloaded Ashland Substation to the Oak Knoll Substation. In cooperation with PP L, BPA installed a temporary 6-8 megavolt-amp (MVA) 115-12.5-kV transformer for this purpose. This additional transformer, however, is only a temporary remedy. BPA needs to provide additional, reliable long-term service to the Ashland area through additional transformation in order to keep similar power failures from occurring during upcoming winters in the Ashland area. The temporary installation of another 20-MVA mobile transformer at the Ashland Substation and additional load curtailment are currently being studied to provide for sustained electrical service by the peak winter period 1992. Two overall electrical plans-of-service are described and evaluated in this report. One of them is proposed for action. Within that proposed plan-of-service are location options for the substation. Note that descriptions of actions that may be taken by the City of Ashland are based on information provided by them.

Not Available

1992-06-01T23:59:59.000Z

246

Selected growth and interaction characteristics of seafloor faults in the central Mississippi Canyon Offshore Continental Shelf (OCS) area, northern Gulf of Mexico  

E-Print Network [OSTI]

. Specifically, the characteristics of growth, interaction, and linkage of faults are of interest. Most of the Gulf has seen continuous clastic sediment deposition since the end of continental rifting in the middle Mesozoic. The Gulf is a tectonically quiescent...

Wegner, Scott Ashley

2006-08-16T23:59:59.000Z

247

Safety analysis, 200 Area, Savannah River Plant: Separations area operations  

SciTech Connect (OSTI)

The nev HB-Line, located on the fifth and sixth levels of Building 221-H, is designed to replace the aging existing HB-Line production facility. The nev HB-Line consists of three separate facilities: the Scrap Recovery Facility, the Neptunium Oxide Facility, and the Plutonium Oxide Facility. There are three separate safety analyses for the nev HB-Line, one for each of the three facilities. These are issued as supplements to the 200-Area Safety Analysis (DPSTSA-200-10). These supplements are numbered as Sup 2A, Scrap Recovery Facility, Sup 2B, Neptunium Oxide Facility, Sup 2C, Plutonium Oxide Facility. The subject of this safety analysis, the, Plutonium Oxide Facility, will convert nitrate solutions of {sup 238}Pu to plutonium oxide (PuO{sub 2}) powder. All these new facilities incorporate improvements in: (1) engineered barriers to contain contamination, (2) barriers to minimize personnel exposure to airborne contamination, (3) shielding and remote operations to decrease radiation exposure, and (4) equipment and ventilation design to provide flexibility and improved process performance.

Perkins, W.C.; Lee, R.; Allen, P.M.; Gouge, A.P.

1991-07-01T23:59:59.000Z

248

Plutonium focus area. Technology summary  

SciTech Connect (OSTI)

The Assistant Secretary for the Office of Environmental Management (EM) at the U.S. Department of Energy (DOE) chartered the Plutonium Focus Area (PFA) in October 1995. The PFA {open_quotes}...provides for peer and technical reviews of research and development in plutonium stabilization activities...{close_quotes} In addition, the PFA identifies and develops relevant research and technology. The purpose of this document is to focus attention on the requirements used to develop research and technology for stabilization, storage, and preparation for disposition of nuclear materials. The PFA Technology Summary presents the approach the PFA uses to identify, recommend, and review research. It lists research requirements, research being conducted, and gaps where research is needed. It also summarizes research performed by the PFA in the traditional research summary format. This document encourages researchers and commercial enterprises to do business with PFA by submitting research proposals or {open_quotes}white papers.{close_quotes} In addition, it suggests ways to increase the likelihood that PFA will recommend proposed research to the Nuclear Materials Stabilization Task Group (NMSTG) of DOE.

NONE

1997-09-01T23:59:59.000Z

249

Critical Areas of State Concern (Maryland)  

Broader source: Energy.gov [DOE]

This legislation designates the Chesapeake Bay, other Atlantic Coastal Bays, and their tributaries and adjacent lands as critical areas of state concern. It is state policy to protect these areas...

250

Local Area Networks - Applications to Energy Management  

E-Print Network [OSTI]

LOCAL AREA NETWORKS - APPLICATIONS TO MERCY MANAGmNT Advanced BRUCE M. BAKKEN Software bfanager Micro Syatems Corporation Milwaukee, WI ABSTRACT One of the newest advances in computer technology is the Local Area Network. Its many...

Bakken, B. M.

1984-01-01T23:59:59.000Z

251

Electricity Suppliers' Service Area Assignments (Indiana)  

Broader source: Energy.gov [DOE]

To promote efficiency and avoid waste and duplication, rural and unincorporated areas of Indiana are divided into geographic areas, to be assigned to an electricity provider that will have the sole...

252

Game Preserves and Closed Areas (Montana)  

Broader source: Energy.gov [DOE]

Game preserves and closed areas exist within the state of Montana for the protection of all the game animals and birds. Construction and development is limited in these areas. Currently, only three...

253

Optimization Online - All Areas Submissions - February 2011  

E-Print Network [OSTI]

Stochastic Optimization for Power System Configuration with Renewable Energy in Remote Areas Ludwig Kuznia, Bo Zeng, Grisselle Centeno, Zhixin Miao.

254

Considering LEDs for Street and Area Lighting  

Broader source: Energy.gov [DOE]

View Jim Brodrick's keynote video from the September 2009 IES Street and Area Lighting Conference in Philadelphia.

255

Cuttings Analysis At International Geothermal Area, Indonesia...  

Open Energy Info (EERE)

Indonesia (Laney, 2005) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Cuttings Analysis Activity Date Usefulness not indicated...

256

D-Area Preliminary Hazards Analysis  

SciTech Connect (OSTI)

A comprehensive review of hazards associated with the D-Area was performed to identify postulated event scenarios.

Blanchard, A. [Westinghouse Savannah River Company, AIKEN, SC (United States); Paik, I.R. [Westinghouse Safety Management Solutions, , ()

1998-04-01T23:59:59.000Z

257

Original article Photosynthesis, leaf area and productivity  

E-Print Network [OSTI]

Original article Photosynthesis, leaf area and productivity of 5 poplar clones during; The stem volume and biomass (stem + branches) production, net photosynthesis of mature leaves and leaf area found in volume production, woody biomass production, total leaf area and net photosynthesis. Above

Paris-Sud XI, Universit de

258

Introduction Marine protected areas (MPA's) are  

E-Print Network [OSTI]

67(1) 1 Introduction Marine protected areas (MPA's) are an important tool for managing fisheries protected area is "any area of the marine environ- ment that has been reserved by Federal, State, tribal, territorial, or local laws or regulations to provide lasting protection for part or all of the natural

259

THE 2012 KINDER HOUSTON AREA SURVEY  

E-Print Network [OSTI]

ADJUSTED. #12;WHAT IS THE BIGGEST PROBLEM IN THE HOUSTON AREA TODAY? (1982-2012) 51 47 25 1510 36 71 27 10THE 2012 KINDER HOUSTON AREA SURVEY: Perspectives on a City inTransition STEPHEN L. KLINEBERG The GHP-Kinder Institute Luncheon and Release of the Findings, 24 April 2012 #12;KINDER HOUSTON AREA

260

Local control of area-preserving maps  

E-Print Network [OSTI]

We present a method of control of chaos in area-preserving maps. This method gives an explicit expression of a control term which is added to a given area-preserving map. The resulting controlled map which is a small and suitable modification of the original map, is again area-preserving and has an invariant curve whose equation is explicitly known.

Cristel Chandre; Michel Vittot; Guido Ciraolo

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

West Central North East Area of Tucson  

E-Print Network [OSTI]

0 500 1000 1500 2000 2500 3000 West Central North East Area of Tucson #Individuals Anna Broad-billed Costa Rufous Black-chinned 0 500 1000 1500 2000 2500 3000 West Central North East Area of Tucson not be conflicting, and urban areas may actually provide valuable surrogates for degraded habitats. Our knowledge

Hall, Sharon J.

262

Preliminary results from an isotope hydrology study of the Kilauea...  

Open Energy Info (EERE)

system, partly isolating the groundwater in the area bounded by the rift zones and the Pacific Ocean. The south wesr rift zone also appears to act as a conduit for ground water...

263

The Ohio Community Reinvestment Area (Ohio)  

Broader source: Energy.gov [DOE]

The Ohio Community Reinvestment Area program is an economic development tool administered by municipal and county government that provides real property tax exemptions for property owners who...

264

Radiation-dominated area metric cosmology  

E-Print Network [OSTI]

We provide further crucial support for a refined, area metric structure of spacetime. Based on the solution of conceptual issues, such as the consistent coupling of fermions and the covariant identification of radiation fields on area metric backgrounds, we show that the radiation-dominated epoch of area metric cosmology is equivalent to that epoch in standard Einstein cosmology. This ensures, in particular, successful nucleosynthesis. This surprising result complements the previously derived prediction of a small late-time acceleration of an area metric universe.

Frederic P. Schuller; Mattias N. R. Wohlfarth

2007-06-12T23:59:59.000Z

265

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

266

White Etch Areas: Metallurgical Characterization and Atomistic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Atomistic Modeling Presented by R. Scott Hyde of Timken Company at the 2014 Wind Turbine Tribology Seminar Timken Hyde White Etch Areas ANL Presentation Oct 2014...

267

Management of Specific Flood Plain Areas (Iowa)  

Broader source: Energy.gov [DOE]

Floodplain management orders by the Iowa Department of Natural Resources as well as approved local ordinances designate an area as a regulated floodplain. These regulations establish minimum...

268

Geographic Information System At International Geothermal Area...  

Open Energy Info (EERE)

Area, Indonesia (Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal...

269

Redevelopment of Areas Needing Redevelopment Generally (Indiana)  

Broader source: Energy.gov [DOE]

Redevelopment commissions are responsible for developing plans and managing tools used to address conditions of blight (redevelopment areas) and underutilized land of economic significance ...

270

DFAS Wide-Area Workflow Issues  

Broader source: Energy.gov [DOE]

Presentation covers the DFAS wide-area workflow issues and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

271

Solar Power for Deployment in Populated Areas.  

E-Print Network [OSTI]

??The thesis presents background on solar thermal energy and addresses the structural challenges associated with the deployment of concentrating solar power fields in urban areas. (more)

Hicks, Nathan Andrew

2009-01-01T23:59:59.000Z

272

Faculty & Staff Areas of Specialization ENGINEERING  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . .8 Engineering Engagement for Student Success (ENG2 ) . . . . .9 Division of Engineering Services Services WARREN R. HULL Manager, Engineering Communication Studio MIMI LAVALLE Director of CommunicationsFaculty & Staff Areas of Specialization 2010-2011 COLLEGE OF ENGINEERING #12;Faculty & Staff Areas

Harms, Kyle E.

273

Industrial & Systems Engineering Areas of Engineering Interests  

E-Print Network [OSTI]

Industrial & Systems Engineering Areas of Engineering Interests The Department of Industrial and Systems Engineering understands our students may work as Industrial Engineers in other engineering industries, and to help prepare them for these careers, the ISE Areas of Interest was formulated. The courses

Berdichevsky, Victor

274

Pine Ridge Area Community Wildfire Protection Plan  

E-Print Network [OSTI]

Pine Ridge Area Community Wildfire Protection Plan Update 2013 West Ash Fire: Wednesday August 29 the boundary of the original plan to include all the area within the Upper Niobrara White Natural Resource, 2012 #12;Facilitated by: Nebraska Forest Service In cooperation with: Region 23 Fire Protection

Farritor, Shane

275

Postdoctoral Scholar position Area: Mathematics Education  

E-Print Network [OSTI]

with the City of Calgary's vibrant energy and diversity. The university is home to scholars in 14 facultiesPostdoctoral Scholar position Area: Mathematics Education Duration: 18 months Start date: January 1, invites applications for a Postdoctoral Fellowship in the area of mathematics education. This competition

de Leon, Alex R.

276

ARRA Proposed Award: Retrofit Bay Area  

E-Print Network [OSTI]

ARRA Proposed Award: Retrofit Bay Area Counties of Alameda, Contra Costa, Marin, San Francisco per year Prime contractor: Association of Bay Area Governments (ABAG) Sub contractors: Alameda County Waste Management Authority (StopWaste.org) County of Contra Costa County of Marin City

277

7, 66876718, 2007 Mexico City area  

E-Print Network [OSTI]

Discussions Emissions from forest fires near Mexico City R. Yokelson1 , S. Urbanski2 , E. Atlas3 , D. Toohey4ACPD 7, 6687­6718, 2007 Mexico City area mountain fires R. Yokelson et al. Title Page Abstract to: R. Yokelson (bob.yokelson@umontana.edu) 6687 #12;ACPD 7, 6687­6718, 2007 Mexico City area

Boyer, Edmond

278

Alamo Area Regional Public Transportation Coordination Plan  

E-Print Network [OSTI]

KFH GROUP, INC. ALAMO AREA REGIONAL PUBLIC TRANSPORTATION COORDINATION PLAN Developed for: The Alamo Area Council of Governments and the San Antonio-Bexar County Metropolitan Planning Organization By: KFH Group..............................................................................................................................4 SUMMARY OF TRAVEL PATTERNS IN THE ALAMO REGION...............................................9 COORDINATION AND SERVICE ALTERNATIVES .................................................................16 COORDINATED TRANSPORTATION: PLANNED...

Alamo Area Council of Governments

2006-11-30T23:59:59.000Z

279

BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION  

E-Print Network [OSTI]

OU III BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION FINAL Prepared by: Brookhaven FOR U.S. Department of Energy March 2009 #12;i OU III BUILDING 96 RECOMMENDATION FOR SOURCE AREA..................................................................................................................4 4.0 Building 96 ­ Operational Background

280

Nutrient Management Examination Competency Areas Individual Specialists  

E-Print Network [OSTI]

and reference materials are included on the Nutrient Management Resource CD distributed at the Nutrientv.01.2014 Nutrient Management Examination Competency Areas Individual Specialists The competency areas in this listing were developed according to the requirements of Pennsylvania's Nutrient Management

Guiltinan, Mark

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

3000 Area Phase 1 environmental assessment  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is planning to sell the 3000 Area to prospective buyers. Environmental Services was requested by the WHC Economic Transition group to assess potential environmental liabilities in the area. Historical review of the area indicated that the site was the location of ``Camp Hanford`` in 1951 and has been used for a variety of purposes since then. The activities in the area have changed over the years. A number of Buildings from the area have been demolished and at least 15 underground storage tanks (USTs) have been removed. Part of the 3000 Area was identified as Operable Unit 1100-EM-3 in the Tri-Party Agreement and was cleaned up by the US Army Corps of Engineers (USACE). The cleanup included removal of contaminated soil and USTS. WHC and ICF KH had also performed sampling and analysis at some locations in the 3000 Area prior to USACE`s work on the Operable Unit 1100-EM-3. They removed a number of USTs and performed remediation.

Ranade, D.G.

1995-09-01T23:59:59.000Z

282

200 North Aggregate Area source AAMS report  

SciTech Connect (OSTI)

This report presents the results of an aggregate area management study (AAMS) for the 200 North Aggregate Area in the 200 Areas of the US Department of Energy (DOE) Hanford Site in Washington State. This scoping level study provides the basis for initiating Remedial Investigation/Feasibility Study (RI/FS) activities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) or Resource Conservation and Recovery Act (RCRA) Facility Investigations (RFI) and Corrective Measures Studies (CMS) under RCRA. This report also integrates select RCRA treatment, storage, or disposal (TSD) closure activities with CERCLA and RCRA past practice investigations.

Not Available

1993-06-01T23:59:59.000Z

283

Trial Demonstration of Area Lighting Retrofit  

Broader source: Energy.gov [DOE]

LED Area Lighting Retrofit: Yuma Border Patrol Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations. The LED system was found to equal or better the incumbent system in terms of both illuminance and uniformity, and an advanced optical system and lower pole height improved the illuminance uniformity, reduced stray light, and increased projected energy and maintenance cost savings. This high luminous flux and high temperature application is not unique and similar applications can benefit from the findings of this installation.

284

About Kings Area Rural Transit The Kings County Area Public Transit Agency operates the Kings  

E-Print Network [OSTI]

Case Study About Kings Area Rural Transit The Kings County Area Public Transit Agency operates's Central Valley. In the middle is Kings County, home to diverse communities of rural workers. The county the Kings Area Rural Transit (KART) vanpool program in California's San Joaquin Valley. Part of KART

Greenberg, Albert

285

Regulating new construction in historic areas  

E-Print Network [OSTI]

This study is an examination of how the restrictiveness of different design regulations impacts the process of new construction in historic areas. The North End, South End, and Back Bay neighborhoods of Boston were identified ...

Sellers-Garcia, Oliver

2006-01-01T23:59:59.000Z

286

Critical Areas Act of 1973 (Minnesota)  

Broader source: Energy.gov [DOE]

This Act applies to certain areas of the state with important historic, cultural, or esthetic values, or natural systems with functions of greater than local significance. Plans for a given...

287

Coal seam natural gas producing areas (Louisiana)  

Broader source: Energy.gov [DOE]

In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is...

288

Fast Adaptive Silhouette Area based Template Matching  

E-Print Network [OSTI]

Fast Adaptive Silhouette Area based Template Matching Daniel Mohr and Gabriel Zachmann If (Technical Informatics and Computer Systems) Prof. Dr. Gabriel Zachmann (Computer Graphics) Prof. Dr Template Matching Daniel Mohr and Gabriel Zachmann Clausthal University of Technology, Department

Zachmann, Gabriel

289

300 area TEDF permit compliance monitoring plan  

SciTech Connect (OSTI)

This document presents the permit compliance monitoring plan for the 300 Area Treated Effluent Disposal Facility (TEDF). It addresses the compliance with the National Pollutant Discharge Elimination System (NPDES) permit and Department of Natural Resources Aquatic Lands Sewer Outfall Lease.

BERNESKI, L.D.

1998-11-20T23:59:59.000Z

290

Knoxville Area Transit: Propane Hybrid Electric Trolleys  

SciTech Connect (OSTI)

A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

Not Available

2005-04-01T23:59:59.000Z

291

Metropolitan area network support at Fermilab  

SciTech Connect (OSTI)

Advances in wide area network service offerings, coupled with comparable developments in local area network technology have enabled many research sites to keep their offsite network bandwidth ahead of demand. For most sites, the more difficult and costly aspect of increasing wide area network capacity is the local loop, which connects the facility LAN to the wide area service provider(s). Fermilab, in coordination with neighboring Argonne National Laboratory, has chosen to provide its own local loop access through leasing of dark fiber to nearby network exchange points, and procuring dense wave division multiplexing (DWDM) equipment to provide data channels across those fibers. Installing and managing such optical network infrastructure has broadened the Laboratory's network support responsibilities to include operating network equipment that is located off-site, and is technically much different than classic LAN network equipment. Effectively, the Laboratory has assumed the role of a local service provider. This paper will cover Fermilab's experiences with deploying and supporting a Metropolitan Area Network (MAN) infrastructure to satisfy its offsite networking needs. The benefits and drawbacks of providing and supporting such a service will be discussed.

DeMar, Phil; Andrews, Chuck; Bobyshev, Andrey; Crawford, Matt; Colon, Orlando; Fry, Steve; Grigaliunas, Vyto; Lamore, Donna; Petravick, Don; /Fermilab

2007-09-01T23:59:59.000Z

292

Annex D-200 Area Interim Storage Area Final Safety Analysis Report [FSAR] [Section 1 & 2  

SciTech Connect (OSTI)

The 200 Area Interim Storage Area (200 Area ISA) at the Hanford Site provides for the interim storage of non-defense reactor spent nuclear fuel (SNF) housed in aboveground dry cask storage systems. The 200 Area ISA is a relatively simple facility consisting of a boundary fence with gates, perimeter lighting, and concrete and gravel pads on which to place the dry storage casks. The fence supports safeguards and security and establishes a radiation protection buffer zone. The 200 Area ISA is nominally 200,000 ft{sup 2} and is located west of the Canister Storage Building (CSB). Interim storage at the 200 Area ISA is intended for a period of up to 40 years until the materials are shipped off-site to a disposal facility. This Final Safety Analysis Report (FSAR) does not address removal from storage or shipment from the 200 Area ISA. Three different SNF types contained in three different dry cask storage systems are to be stored at the 200 Area ISA, as follows: (1) Fast Flux Test Facility Fuel--Fifty-three interim storage casks (ISC), each holding a core component container (CCC), will be used to store the Fast Flux Test Facility (FFTF) SNF currently in the 400 Area. (2) Neutron Radiography Facility (NRF) TRIGA'--One Rad-Vault' container will store two DOT-6M3 containers and six NRF TRIGA casks currently stored in the 400 Area. (3) Commercial Light Water Reactor Fuel--Six International Standards Organization (ISO) containers, each holding a NAC-I cask4 with an inner commercial light water reactor (LWR) canister, will be used for commercial LWR SNF from the 300 Area. An aboveground dry cask storage location is necessary for the spent fuel because the current storage facilities are being shut down and deactivated. The spent fuel is being transferred to interim storage because there is no permanent repository storage currently available.

CARRELL, R.D.

2002-07-16T23:59:59.000Z

293

Energy Efficiency of MIMO Transmission Strategies in Wireless Sensor Networks Huaiyu Dai, Liang Xiao, and Quan Zhou  

E-Print Network [OSTI]

Energy Efficiency of MIMO Transmission Strategies in Wireless Sensor Networks Huaiyu Dai, Liang in the link adaptation study. Keywords: Cooperative MIMO, Energy Efficiency, MIMO Transmission, Mobile Agent, Sensor Network, Spectral Efficiency, Virtual MIMO, Wideband Regime. #12;Energy Efficiency of MIMO

Dai, Huaiyu

294

Fluorescence optical diffusion tomography Adam B. Milstein, Seungseok Oh, Kevin J. Webb, Charles A. Bouman, Quan Zhang,  

E-Print Network [OSTI]

tomography ODT is emerging as a powerful tissue imaging modality.1,2 In ODT, im- ages are comprised sources and detectors are used to recover the unknown parame- ters from a scattering model described to diffusion model computations. As a result of the nonlinear dependence of the diffusion equation photon flux

295

USACE Small Business Area of Responsibility  

E-Print Network [OSTI]

ACE Page 1 USACE Small Business Area of Responsibility OFC CODE STREET CITY ST ZIP TELEPHONE D S N-761-4609 Deputy to PARCs , Office of Small Business Prog, HQ U.S. Army Corps of CESB 60 Forsyth Street RM10M15

US Army Corps of Engineers

296

Geophysical investigations of certain Montana geothermal areas  

SciTech Connect (OSTI)

Selected hot springs areas of Montana have been investigated by a variety of geophysical techniques. Resistivity, gravity, seismic, and magnetic methods have been applied during investigations near the hot springs. Because the geology is extremely varied at the locations of the investigations, several geophysical techniques have usually been applied at each site.

Wideman, C.J. (Montana Bureau of Mines and Geology, Butte); Dye, L.; Halvorson, J.; McRae, M.; Ruscetta, C.A.; Foley, D. (eds.)

1981-05-01T23:59:59.000Z

297

Central Facilities Area Sewage Lagoon Evaluation  

SciTech Connect (OSTI)

The Central Facilities Area (CFA), located in Butte County, Idaho, at the Idaho National Laboratory has an existing wastewater system to collect and treat sanitary wastewater and non-contact cooling water from the facility. The existing treatment facility consists of three cells: Cell #1 has a surface area of 1.7 acres, Cell #2 has a surface area of 10.3 acres, and Cell #3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5-acre land application site that uses a center-pivot irrigation sprinkler system. As flows at CFA have decreased in recent years, the amount of wastewater discharged to the land application site has decreased from 13.64 million gallons in 2004 to no discharge in 2012 and 2013. In addition to the decreasing need for land application, approximately 7.7 MG of supplemental water was added to the system in 2013 to maintain a water level and prevent the clay soil liners in the cells from drying out and cracking. The Idaho National Laboratory is concerned that the sewage lagoons and land application site may be oversized for current and future flows. A further concern is the sustainability of the large volumes of supplemental water that are added to the system according to current operational practices. Therefore, this study was initiated to evaluate the system capacity, operational practices, and potential improvement alternatives, as warranted.

Mark R. Cole

2013-12-01T23:59:59.000Z

298

Evolution of the Size and Functional Areas  

E-Print Network [OSTI]

Evolution of the Size and Functional Areas of the Human Brain P. Thomas Schoenemann Department-6570/06/1021-0379$20.00 Key Words neuroanatomy, encephalization, behavior, adaptation, selection Abstract The human brain to understand basic principles of brain evolution that appear to operate across broad classes of organisms

Schoenemann, P. Thomas

299

Orc Notation Structured Wide-Area Programming  

E-Print Network [OSTI]

Orc Notation Structured Wide-Area Programming Jayadev Misra Department of Computer Science University of Texas at Austin http://orc.csres.utexas.edu April 12, 2010 Rennes, France #12;Orc Notation hierarchical structure. #12;Orc Notation Orc · Goal: Internet scripting language. · Next: Component integration

Misra, Jayadev

300

Structured Wide-Area Programming: Orc Calculus  

E-Print Network [OSTI]

Structured Wide-Area Programming: Orc Calculus Jayadev Misra Department of Computer Science University of Texas at Austin http://orc.csres.utexas.edu #12;Concurrency · ubiquitous. · difficult interactions. · Support hierarchical structure. #12;Orc · Initial Goal: Internet scripting language. · Next

Misra, Jayadev

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Determination of leakage areas in nuclear piping  

SciTech Connect (OSTI)

For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakage areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.

Keim, E. [Siemens/KWU, Erlangen (Germany)

1997-04-01T23:59:59.000Z

302

ARLINGTON/DEFOREST AREA CATERING INFORMATION  

E-Print Network [OSTI]

ARLINGTON/DEFOREST AREA CATERING INFORMATION Rude's Family Catering DeForest, WI 608-846-5959 (Debbie) Roadside Grill DeForest, WI 608-846-1874 (Pete) Piggly Wiggly Poynette, WI 608-635-2647 (Heidi INFORMATION Holiday Inn Express 7184 Morrisonville Rd. DeForest, WI 53532 608-846-8686 toll free 800-HOLIDAY

Balser, Teri C.

303

n. Area Dipartimento Proponente Titolo Finanziamento  

E-Print Network [OSTI]

Breuil (Monte Circeo) e di altri siti del Lazio meridionale, quale possibile area rifugio nel Pleistocene'enteropatogeno Shigella flexneri. 5.000,00 si 13 A Dip. Biologia e biotecnologie BIAGIONI Stefano Biochemical biotecnologie CACCHIONE Stefano Functional characterization of Drosophila telomeres 5.000,00 17 A Dip. Biologia

Guidoni, Leonardo

304

Renewal of Brooklyn's GowanusCanalArea  

E-Print Network [OSTI]

Renewal of Brooklyn's GowanusCanalArea #12;#12;#12;54 TheJournalofIJrbanTechnology/Spnng1995 is active in all aspectsof the harbor sedimentwork. The Gowanus Canal project will benefit fiom this work economicallyacceptable methodsofdisposingofthesediment. unlikely that the dredged materials fiom the Gowanus Canal can

Brookhaven National Laboratory

305

ICME & MGI Big Area Additive Manufacturing  

E-Print Network [OSTI]

ICME & MGI Big Area Additive Manufacturing Neutron Characterization for AM Materials problems in additive manu- facturing (AM). Additive manufacturing, or three-dimensional (3-D) printing of the world's most advanced neu- tron facilities, the HFIR and SNS, to characterize additive manufactured

306

California Energy Balance ENVIRONMENTAL AREA RESEARCH  

E-Print Network [OSTI]

California Energy Balance Database ENVIRONMENTAL AREA RESEARCH PIER Environmental Research www.energy.ca.gov/research/ environmental January 2012 The Issue Comprehensive and reliable energy statistics are essential for good policy analysis and for future projections of energy supply and demand. In 2005, Lawrence Berkeley National Lab

307

300 Area Process Trenches Closure Plan  

SciTech Connect (OSTI)

Since 1987, Westinghouse Hanford Company has been a major contractor to the US Department of Energy, Richland Operations Office and has served as co-operator of the 300 Area Process Trenches, the waste management unit addressed in this closure plan. For the purposes of the Resource Conservation and Recovery Act, Westinghouse Hanford Company is identified as ``co-operator.`` The 300 Area Process Trenches Closure Plan (Revision 0) consists of a Resource Conservation and Recovery Act Part A Dangerous Waste Permit Application, Form 3 and a Resource Conservation and Recovery Act Closure Plan. An explanation of the Part A Permit Application, Form 3 submitted with this document is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and six appendices. The 300 Area Process Trenches received dangerous waste discharges from research and development laboratories in the 300 Area and from fuels fabrication processes. This waste consisted of state-only toxic (WT02), corrosive (D002), chromium (D007), spent halogenated solvents (F001, F002, and F003), and spent nonhalogented solvent (F005). Accurate records are unavailable concerning the amount of dangerous waste discharged to the trenches. The estimated annual quantity of waste (item IV.B) reflects the total quantity of both regulated and nonregulated waste water that was discharged to the unit.

Luke, S.N.

1994-08-15T23:59:59.000Z

308

Campus Area Housing RENTAL RESOURCE GUIDE  

E-Print Network [OSTI]

, faculty, staff, communi- ty members, and area property owners and management companies. For more they live, have access to the academic and personal support programs and services offered by UW owned properties that participate in PHC. PHC property owners and managers provide enhanced services

Wisconsin at Madison, University of

309

Turkish Trailblazer: Boosting Rural Areas through Business  

E-Print Network [OSTI]

okgezen Reviewed by Aline Kraemer Sector Consumer Products Enterprise Class Large Domestic Company her company and the economic and social welfare of rural areas of Turkey. To achieve success, Ms production units in impoverished parts of Turkey in six years. Hey Textile's investment has improved

Sheldon, Nathan D.

310

RESEARCH INTERESTS My research has four major areas of emphasis presently. The first area is the  

E-Print Network [OSTI]

is the documentation of radiation dispersion in rural and urban areas subsequent to release from a nuclear accident to refine models for predicting fallout patterns subsequent to nuclear dispersive weapons (dirty bombs and outside of the body. Radiation dosimetry is a central tenet of my third area of research, the biological

Chesser, Ronald Keith

311

100 Area and 300 Area Component of the RCBRA Fall 2005 Data Compilation  

SciTech Connect (OSTI)

The purpose of this report is to provide a brief description of the sampling approaches, a description of the samples collected, and the results for the Fall 2005 sampling event. This report presents the methods and results of the work to support the 100 Area and 300 Area Component of the River Corridor Baseline Risk Assessment.

J.M. Queen

2006-05-30T23:59:59.000Z

312

Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL), under an interagency agreement with the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development and evaluation of the delineations for the New Jersey (NJ) WEA. The overarching objective of this study is to develop a logical process by which the New Jersey WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL identified a selection of leasing areas and proposed delineation boundaries within the established NJ WEA. The primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

2013-10-01T23:59:59.000Z

313

Electrohydrodynamically driven large-area liquid ion sources  

DOE Patents [OSTI]

A large-area liquid ion source comprises means for generating, over a large area of the surface of a liquid, an electric field of a strength sufficient to induce emission of ions from a large area of said liquid. Large areas in this context are those distinct from emitting areas in unidimensional emitters.

Pregenzer, Arian L. (Corrales, NM)

1988-01-01T23:59:59.000Z

314

Kirkland gets license in hot Philippines area  

SciTech Connect (OSTI)

This paper reports that Kirkland As, Oslo, has received a geophysical survey and exploration contract (GSEC) in a sizzling exploration and development theater off the Philippines. The license covers about 6,000 sq miles of undisputed waters, with depths mostly less than 300 ft, and lies in the Reed Bank area off Northwest Palawan Island, where several major oil and gas strikes have been made recently. Kirkland has 1 year in which to carry out its seismic work commitment. The terms of the GSEC then give an option to drill one well in a 6 month period. Once the results have been analyzed, the company can either drill another well or enter into a service contract for the license. Kirkland has a 65% share in the license, with the remainder split between Philippine companies Philodrill Corp., Beguet Mining Corp. subsidiary Petrofields, and Seafront Resources Corp. The Philippines is one of Kirkland's main areas of activity, the Kirkland Commercial Manager Ralph Baxter.

Kirkland, A.S.

1992-08-03T23:59:59.000Z

315

Mixed waste characterization, treatment & disposal focus area  

SciTech Connect (OSTI)

The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

NONE

1996-08-01T23:59:59.000Z

316

Assessment of Offshore Wind Energy Leasing Areas for the BOEM Massachusetts Wind Energy Area  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development of three delineated leasing area options for the Massachusetts (MA) WEA and the technical evaluation of these leasing areas. The overarching objective of this study is to develop a logical process by which the MA WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL worked with BOEM to identify an appropriate number of leasing areas and proposed three delineation alternatives within the MA WEA based on the boundaries announced in May 2012. A primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

Musial, W.; Parker, Z.; Fields, M.; Scott, G.; Elliott, D.; Draxl, C.

2013-12-01T23:59:59.000Z

317

WRAP process area development control work plan  

SciTech Connect (OSTI)

This work plan defines the manner in which the Waste Receiving and Processing Facility, Module I Process Area will be maintained under development control status. This status permits resolution of identified design discrepancies, control system changes, as-building of equipment, and perform modifications to increase process operability and maintainability as parallel efforts. This work plan maintains configuration control as these efforts are undertaken. This task will end with system testing and reissue of field verified design drawings.

Leist, K.L., Fluor Daniel Hanford

1997-02-27T23:59:59.000Z

318

Functional Area Criteria & Review Approach Documents  

Broader source: Energy.gov [DOE]

CRADS provided on this page are provided as examples of functional area Objectives and Criteria used to evaluate how requirements are meet. They are only examples and should not be utilized as is. In accordance with DOE Standard 3006-2010, CRADs should be developed by team members to reflect the specifics of the proposed review (i.e., breadth and depth) as defined in the approved Plan of Action.

319

Landfill stabilization focus area: Technology summary  

SciTech Connect (OSTI)

Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

NONE

1995-06-01T23:59:59.000Z

320

Property:GeothermalArea | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilipspresentsGeothermalArea Jump to: navigation,

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Southern CA Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa,HomeIndiana:RhodeSoutheasternCA Area Jump to:

322

Ohaaki Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy Resources JumpBuildingsOhaaki Geothermal Area

323

Olkaria Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCoMaine: EnergyOlkaria Geothermal Area

324

Larderello Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) JumpLarderello Geothermal Area Jump to:

325

Los Azufres Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown,Longwei SiliconLos Azufres Geothermal Area

326

Medicine Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanosElectric Co LtdJacksonLake Geothermal Area

327

Mokai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo,Energy Information Modoc HighMokai Geothermal Area

328

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a townLoadingMastic,(Redirected from Maui Area) Jump

329

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a townLoadingMastic,(Redirected from Maui Area)

330

Banbury Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,AurantiaBanbury Geothermal Area Jump to:

331

Reykjanes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge AndREIIReykjanes Geothermal Area Jump to:

332

Pamukoren Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPPSolar Jump to:Pamukoren Geothermal Area Jump to:

333

Whiskey Flats Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal Area Jump to: navigation, search

334

Development Wells At Salt Wells Area (Nevada Bureau of Mines...  

Open Energy Info (EERE)

Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Salt Wells Area...

335

Static Temperature Survey At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Static Temperature Survey Activity...

336

Conceptual Model At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Conceptual Model At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

337

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 -...

338

Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff...  

Open Energy Info (EERE)

Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff, Et Al., 1982) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique...

339

Wind Forecast Improvement Project Southern Study Area Final Report...  

Office of Environmental Management (EM)

Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern...

340

areas vulnerabilities impacts: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on residential electricity consumption for the nine San Francisco Bay Area counties 22 Seismic vulnerability analysis of moderate seismicity areas using in situ experimental...

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal...

342

Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank...  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank Engineering Ltd, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date...

343

Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

Home Exploration Activity: Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area...

344

Aerial Photography At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

Exploration Activity: Aerial Photography At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area...

345

Multispectral Imaging At Columbus Salt Marsh Area (Shevenell...  

Open Energy Info (EERE)

Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Columbus Salt Marsh Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful...

346

Ground Gravity Survey At Under Steamboat Springs Area (Warpinski...  

Open Energy Info (EERE)

Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Under Steamboat Springs Area (Warpinski,...

347

Analytical Modeling At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

Analytical Modeling At Valles Caldera - Redondo Geothermal Area (White, 1986) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique...

348

Geothermal Literature Review At White Mountains Area (Goff &...  

Open Energy Info (EERE)

White Mountains Area (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At White Mountains Area...

349

Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Goff & Decker, 1983) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique...

350

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

351

Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2013) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

352

Aeromagnetic Survey At Roosevelt Hot Springs Geothermal Area...  

Open Energy Info (EERE)

literature review of the Roosevelt Hot Springs Geothermal Area. Notes Aeromagnetic intensity residual map compiled for Roosevelt Hot Springs Geothermal Area, providing...

353

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area...  

Open Energy Info (EERE)

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique...

354

Savannah River Site - D-Area Groundwater | Department of Energy  

Office of Environmental Management (EM)

- D-Area Groundwater Savannah River Site - D-Area Groundwater January 1, 2013 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report...

355

THURSDAY: Deputy Secretary of Energy to Visit Western Area Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

THURSDAY: Deputy Secretary of Energy to Visit Western Area Power Administration Transmission Substation THURSDAY: Deputy Secretary of Energy to Visit Western Area Power...

356

Compound and Elemental Analysis At Lake City Hot Springs Area...  

Open Energy Info (EERE)

Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity...

357

Compound and Elemental Analysis At Lake City Hot Springs Area...  

Open Energy Info (EERE)

Lake City Hot Springs Area (Sladek, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity...

358

Data Acquisition-Manipulation At Lake City Hot Springs Area ...  

Open Energy Info (EERE)

Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Data Acquisition-Manipulation Activity...

359

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Exploration Activity Details Location Lightning Dock Geothermal Area...

360

Exploratory Well At Long Valley Caldera Geothermal Area (Smith...  

Open Energy Info (EERE)

Home Exploration Activity: Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area...

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Geothermal...

362

Abraham Hot Springs Geothermal Area Northern Basin and Range...  

Open Energy Info (EERE)

Range Geothermal Region Big Windy Hot Springs Geothermal Area Alaska Geothermal Region Bingham Caribou Geothermal Area Yellowstone Caldera Geothermal Region Birdsville...

363

Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Thermal Gradient Holes Activity...

364

area mercantour massif: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

image through flexible fiber bundle One set of optics per viewport 11 12; tight environment high radiation area non-serviceable area passive components...

365

Financing Climate Adaptation and Mitigation in Rural Areas of...  

Open Energy Info (EERE)

Rural Areas of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financing Climate Adaptation and Mitigation in Rural Areas of Developing Countries...

366

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

367

Size dependent specific surface area of nanoporous film assembled...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Size dependent specific surface area of nanoporous film assembled by core-shell iron nanoclusters. Size dependent specific surface area of nanoporous film assembled by core-shell...

368

Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...  

Open Energy Info (EERE)

Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff & Bowers, 2005) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Thermal...

369

Geothermal Resource Area 6: Lander and Eureka Counties. Area development plan  

SciTech Connect (OSTI)

Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two county area. Eleven of these resources are considered major and have been selected for evaluation in this area development plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the geothermal sites considered are summarized.

Robinson, S.; Pugsley, M.

1981-01-01T23:59:59.000Z

370

Geothermal resource area 6: Lander and Eureka Counties. Area development plan  

SciTech Connect (OSTI)

Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two country area. Eleven of these resources are considered major and have been selected for evaluation in this Area Development Plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 11 geothermal sites considered are summarized.

Pugsley, M.

1981-01-01T23:59:59.000Z

371

Algorithm for the calculation of proximity area and area centroid within the carpal joint  

E-Print Network [OSTI]

's corresponding proximity distance and projected bone information to calculate proximity "area" and its centroid. The programs accuracy was tested creating input files from a know geometry and testing the output for different thresholds. Each wrist was analyzed...

Boyd, Nolan Lee

1998-01-01T23:59:59.000Z

372

Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

2013-04-01T23:59:59.000Z

373

Area C borrow Site Habitat Assessment  

SciTech Connect (OSTI)

A habitat quality assessment was performed within selected portions of the proposed Area C Borrow Source. The previously identified Bitterbrush / Indian ricegrass stabilized dune element occurrence was determined to be better described as a sagebrush /needle-and-thread grass element occurrence of fair to good quality. A new habitat polygon is suggested adjacent to this element occurrence, which would also be sagebrush/needle-and-thread grass, but of poor quality. The proposed site of initial borrow site development was found to be a very low quality community dominated by cheatgrass.

Sackschewsky, Michael R.; Downs, Janelle L.

2009-12-04T23:59:59.000Z

374

REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS  

SciTech Connect (OSTI)

The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel.

NELSON RL

2008-07-18T23:59:59.000Z

375

Expanding the Area of Gravitational Entropy  

E-Print Network [OSTI]

I describe how gravitational entropy is intimately connected with the concept of gravitational heat, expressed as the difference between the total and free energies of a given gravitational system. From this perspective one can compute these thermodyanmic quantities in settings that go considerably beyond Bekenstein's original insight that the area of a black hole event horizon can be identified with thermodynamic entropy. The settings include the outsides of cosmological horizons and spacetimes with NUT charge. However the interpretation of gravitational entropy in these broader contexts remains to be understood.

R. B. Mann

2002-11-12T23:59:59.000Z

376

100-N Area underground storage tank closures  

SciTech Connect (OSTI)

This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

Rowley, C.A.

1993-08-01T23:59:59.000Z

377

Type of Farming Areas in Texas.  

E-Print Network [OSTI]

-L180 I'EXAS AGRICULTURAL EXPERIMkNrI' FI'AI'ION A. B. CONNER, DIRECTOR - COLLEGE, STATION, BRAZOS COUNTY, TEXAS - JLLETIN NO. 427 MAY, 1931 1IVISION OF FARM AND RANCH ECONOMICS i COOPERATION WITH THE BUREAU OF AGRICULTURAL ECO- NOMICS..., UNITED STATES DEPARTMENT OF AGRICULTURE ype of Farming Areas in Texas AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS T. 0. WALTON, President STATION STAF'Ft ADMINISTRATION : A. B CONNER M S Director R. E: KARPER: M: s:: Vice-Director CLARICE MIXSON...

Elliot, F. F. (Foster Floyd); Bonnen, C. A. (Clarence Alfred)

1931-01-01T23:59:59.000Z

378

Pacific Northwest Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLC Place:Ferry County JumpPVDAQBiodieselArea

379

Klamath Falls Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,George CountyMexicoFacility |Geothermal Area Jump

380

Clean Cities: Chicago Area Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansasCentralChicago Area

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Astor Pass Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio EnergyInstituteFunding JumpGeothermal Area Jump

382

Gumuskoy Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., ItGumuskoy Geothermal Area Jump to:

383

Hot Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace, NorthHorvatic JumpOpenHot Lake Area)

384

Outdoor Area Lighting | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on Our National-Projects2008Outdoor Area Lighting

385

SULI Areas of Research | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA REPORTSORNRecoverynaturalSTORM/PALMSULI Areas

386

Bouillante Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Area Solar Energy Association Jump to:BotetourtHumboldt2Geothermal

387

Newberry Caldera Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) | OpenInc JumpNew YorkNew pageJump to:

388

Cerro Prieto Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse,CER.png El CER esMidAmericanArea

389

Mcleod 88 Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermalMcFarland is a cityMcleod 88 Geothermal Area

390

Shakes Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaft River,Shakes Springs Geothermal Area

391

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergy LtdSnyderGeothermal Area

392

100-F/IU Area ROD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable solar:2 OFsupports national securityArea

393

Silver Peak Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,Pvt LtdShrub Oak, NewSilicium deSilver Peak Area) Jump

394

Property:AreaGeology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open Energy InformationAirQualityPermitProcessAreaGeology

395

Manley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a town in Carroll County,Manitoba HydroGeothermal Area

396

Surrond Area Resturants | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallengeCompliance with OrderSupportSurrond Area

397

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has TypeGeothermal Area Jump to: navigation,

398

Jemez Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate Zone Subtype A.645565°,Jehin Co Ltd JumpOpenArea

399

Desert Queen Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CXBasinDeseret Generation &Area Jump

400

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation DixieTraverseEnergy. ItTroy,Truckhaven Area) Jump

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fang Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: Energy Resources Jump4748456°,Fallon NavalFang Geothermal Area

402

Fenton Hill Hdr Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: EnergyFeilden Clegg Bradley Studios Jump to:FenixArea Jump

403

Fernley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: EnergyFeilden Clegg Bradley StudiosFernFernley Geothermal Area

404

Jemez Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview Jump to:Jamestown,JeffersonGeothermal Area

405

Kilo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone Clean Air Jump to: navigation,Kilo Geothermal Area

406

Geological Modeling of Dahomey and Liberian Basins  

E-Print Network [OSTI]

eastern Ivory Coast, off Benin and western Nigeria, and off the Brazilian conjugates of these areas), while large areas were subjected to transform rifting (northern Sierra Leone, southern Liberia, Ghana and the Brazilian conjugates of these areas...). The future Demerara-Guinea marginal plateaus were also progressively subjected to this new rifting event. Stage 2: In Aptian times, the progress of rifting resulted in the creation of small divergent Basins (off northern Liberia, eastern Ivory Coast, Benin...

Gbadamosi, Hakeem B.

2010-01-16T23:59:59.000Z

407

2002 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites  

SciTech Connect (OSTI)

Environmental, subsidence, and meteorological monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS)(refer to Figure 1). These monitoring data include radiation exposure, air, groundwater,meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorological data indicate that 2002 was a dry year: rainfall totaled 26 mm (1.0 in) at the Area 3 RWMS and 38 mm (1.5 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2002 rainfall infiltrated less than 30 cm (1 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. Special investigations conducted in 2002 included: a comparison between waste cover water contents measured by neutron probe and coring; and a comparison of four methods for measuring radon concentrations in air. All 2002 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility Performance Assessments (PAs).

Y. E. Townsend

2003-06-01T23:59:59.000Z

408

Geothermal Resources of Rifts- a Comparison of the Rio Grande Rift and the  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - A Survey of Work to Date Jump

409

Contributed Paper Protected-Area Boundaries as Filters of  

E-Print Network [OSTI]

Contributed Paper Protected-Area Boundaries as Filters of Plant Invasions LLEWELLYN C. FOXCROFT of Pretoria, Pretoria 0002, South Africa Abstract: Human land uses surrounding protected areas provide propagules for colonization of these areas by non-native species, and corridors between protected-area

Kratochvl, Lukas

410

FY 2000 Deactivation and Decommissioning Focus Area Annual Report  

SciTech Connect (OSTI)

This document describes activities of the Deactivation and Decommissioning Focus Area for the past year.

None

2001-03-01T23:59:59.000Z

411

High surface area, high permeability carbon monoliths  

SciTech Connect (OSTI)

The goal of this work is to prepare carbon monoliths having precisely tailored pore size distribution. Prior studies have demonstrated that poly(acrylonitrile) can be processed into a precursor having tailored macropore structure. Since the macropores were preserved during pyrolysis, this synthetic process provided a route to porous carbon having macropores with size =0.1 to 10{mu}m. No micropores of size <2 nm could be detected in the carbon, however, by nitrogen adsorption. In the present work, the authors have processed a different polymer, poly(vinylidene chloride) into a macroporous precursor, Pyrolysis produced carbon monoliths having macropores derived from the polymer precursor as well as extensive microporosity produced during the pyrolysis of the polymer. One of these carbons had BET surface area of 1,050 m{sup 2}/g and about 1.2 cc/g total pore volume, with about 1/3 of the total pore volume in micropores and the remainder in 1{mu}m macropores. No mesopores in the intermediate size range could be detected by nitrogen adsorption. Carbon materials having high surface area as well as micron size pores have potential applications as electrodes for double layer supercapacitors containing liquid electrolyte, or as efficient media for performing chemical separations.

Lagasse, R.R.; Schroeder, J.L. [Sandia National Labs., Albuquerque, NM (United States). Organic Materials Processing Dept.

1994-12-31T23:59:59.000Z

412

Turbine airfoil with controlled area cooling arrangement  

DOE Patents [OSTI]

A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.

Liang, George

2010-04-27T23:59:59.000Z

413

E-Print Network 3.0 - active single basin Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

basins... ) existed during the Late Oligocene and Miocene when the rift basins of Thailand were active because active... into three main areas and tec- tonic provinces: 1)...

414

Home Area Networks and the Smart Grid  

SciTech Connect (OSTI)

With the wide array of home area network (HAN) options being presented as solutions to smart grid challenges for the home, it is time to compare and contrast their strengths and weaknesses. This white paper examines leading and emerging HAN technologies. The emergence of the smart grid is bringing more networking players into the field. The need for low consistent bandwidth usage differs enough from the traditional information technology world to open the door to new technologies. The predominant players currently consist of a blend of the old and new. Within the wired world Ethernet and HomePlug Green PHY are leading the way with an advantage to HomePlug because it doesn't require installing new wires. In the wireless the realm there are many more competitors but WiFi and ZigBee seem to have the most momentum.

Clements, Samuel L.; Carroll, Thomas E.; Hadley, Mark D.

2011-04-01T23:59:59.000Z

415

Radioactive tank waste remediation focus area  

SciTech Connect (OSTI)

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

NONE

1996-08-01T23:59:59.000Z

416

L AREA WASTEWATER STORAGE DRUM EVALUATION  

SciTech Connect (OSTI)

This report documents the determination of the cause of pressurization that led to bulging deformation of a 55 gallon wastewater drum stored in L-Area. Drum samples were sent to SRNL for evaluation. The interior surface of these samples revealed blistering and holes in the epoxy phenolic drum liner and corrosion of the carbon steel drum. It is suspected that osmotic pressure drove permeation of the water through the epoxy phenolic coating which was weakened from exposure to low pH water. The coating failed at locations throughout the drum interior. Subsequent corrosion of the carbon steel released hydrogen which pressurized the drum causing deformation of the drum lid. Additional samples from other wastewater drums on the same pallet were also evaluated and limited corrosion was visible on the interior surfaces. It is suspected that, with time, the corrosion would have advanced to cause pressurization of these sealed drums.

Vormelker, P; Cynthia Foreman, C; Zane Nelson, Z; David Hathcock, D; Dennis Vinson, D

2007-11-30T23:59:59.000Z

417

The CLAS12 large area RICH detector  

SciTech Connect (OSTI)

A large area RICH detector is being designed for the CLAS12 spectrometer as part of the 12 GeV upgrade program of the Jefferson Lab Experimental Hall-B. This detector is intended to provide excellent hadron identification from 3 GeV/c up to momenta exceeding 8 GeV/c and to be able to work at the very high design luminosity-up to 1035 cm2 s?1. Detailed feasibility studies are presented for two types of radiators, aerogel and liquid C6F14 freon, in conjunction with a highly segmented light detector in the visible wavelength range. The basic parameters of the RICH are outlined and the resulting performances, as defined by preliminary simulation studies, are reported.

M. Contalbrigo, E. Cisbani, P. Rossi

2011-05-01T23:59:59.000Z

418

Ashland Area Support Substation Project : Environmental Assessment.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) provides wholesale electric service to the City of Ashland (the City) by transferring power over Pacific Power & Light Company`s (PP&L) 115-kilovolt (kV) transmission lines and through PP&L`s Ashland and Oak Knoll Substations. The City distributes power over a 12.5-kV system which is heavily loaded during winter peak periods and which has reached the limit of its ability to serve peak loads in a reliable manner. Peak loads under normal winter conditions have exceeded the ratings of the transformers at both the Ashland and Oak Knoll Substations. In 1989, the City modified its distribution system at the request of PP&L to allow transfer of three megawatts (MW`s) of electric power from the overloaded Ashland Substation to the Oak Knoll Substation. In cooperation with PP&L, BPA installed a temporary 6-8 megavolt-amp (MVA) 115-12.5-kV transformer for this purpose. This additional transformer, however, is only a temporary remedy. BPA needs to provide additional, reliable long-term service to the Ashland area through additional transformation in order to keep similar power failures from occurring during upcoming winters in the Ashland area. The temporary installation of another 20-MVA mobile transformer at the Ashland Substation and additional load curtailment are currently being studied to provide for sustained electrical service by the peak winter period 1992. Two overall electrical plans-of-service are described and evaluated in this report. One of them is proposed for action. Within that proposed plan-of-service are location options for the substation. Note that descriptions of actions that may be taken by the City of Ashland are based on information provided by them.

United States. Bonneville Power Administration.

1992-06-01T23:59:59.000Z

419

Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

2013-06-01T23:59:59.000Z

420

Surface features of the Stetson Bank area and a non-bank area of comparable depth  

E-Print Network [OSTI]

of bathymetric survey tracks from cruise 74-G-10 of the R/V Gyre. 39 10. 12. 13. 14. 15. Fathogram I. Fathogram 2. Fathogram 3. Fathogram 4. Fathogram 5. Fathogram 6. Fathogram 7. Fathogram 8. 42 43 45 46 Bathymetric profiles of Stetson Bank... or secondary disturbances for all sediment cores. 93o 40 3 ~ 2o lo 12 ~ ~ ~ IO 5o NON-BANK AREA 28o20 7 ~ 8o 4 ~ ' ~ STETSON BANK 30 LOU. NIUIICAL III 10 94 00' 25 C3 STUDY, ( 1 && ' ? AREA / / I ( . r 1 1 Fig. 1 ? Location...

Dunphy, Janet Louise

1975-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Vegetation communities associated with the 100-Area and 200-Area facilities on the Hanford Site  

SciTech Connect (OSTI)

The Hanford Site, Benton County, Washington, lies within the broad semi-arid shrub-steppe vegetation zone of the Columbia Basin. Thirteen different habitat types on the Hanford Site have been mapped in Habitat Types on the Hanford Site: Wildlife and Plant Species of Concern (Downs et al. 1993). In a broad sense, this classification is correct. On a smaller scale, however, finer delineations are possible. This study was conducted to determine the plant communities and estimate vegetation cover in and directly adjacent to the 100 and 200 Areas, primarily in relation to waste sites, as part of a comprehensive ecological study for the Compensation Environmental Response, Compensation, and Liability Act (CERCLA) characterization of the 100 and 200 Areas. During the summer of 1993, field surveys were conducted and a map of vegetation communities in each area, including dominant species associations, was produced. The field surveys consisted of qualitative community delineations. The community delineations described were made by field reconnaissance and are qualitative in nature. The delineations were made by visually determining the dominant plant species or vegetation types and were based on the species most apparent at the time of inspection. Additionally, 38 transects were run in these plant communities to try to obtain a more accurate representation of the community. Because habitat disturbances from construction/operations activities continue to occur in these areas, users of this information should be cautious in applying these maps without a current ground survey. This work will complement large-scale habitat maps of the Hanford Site.

Stegen, J.A.

1994-01-17T23:59:59.000Z

422

Guidelines for ACUC Oversight of Satellite Facilities, Study Areas, Laboratories and other Animal Activity Areas  

E-Print Network [OSTI]

Guidelines for ACUC Oversight of Satellite Facilities, Study Areas, Laboratories and other Animal? · Are pharmaceuticals in-date? Are chemical-grade materials in use for compounds for which pharmaceutical preparations familiar with procedures for receipt and disposition of animals and transport containers? If applicable

Bandettini, Peter A.

423

100 Area soil washing treatability test plan  

SciTech Connect (OSTI)

This test plan describes specifications, responsibilities, and general methodology for conducting a soil washing treatability study as applied to source unit contamination in the 100 Area. The objective ofthis treatability study is to evaluate the use of physical separation systems and chemical extraction methods as a means of separating chemically and radioactively contaminated soil fractions from uncontaminated soil fractions. The purpose of separating these fractions is to minimize the volume of soil requiring permanent disposal. It is anticipated that this treatability study will be performed in two phases of testing, a remedy screening phase and a remedy selection phase. The remedy screening phase consists of laboratory- and bench-scale studies performed by Battelle Pacific Northwest laboratories (PNL) under a work order issued by Westinghouse Hanford Company (Westinghouse Hanford). This phase will be used to provide qualitative evaluation of the potential effectiveness of the soil washing technology. The remedy selection phase, consists of pilot-scale testing performed under a separate service contract to be competitively bid under Westinghouse Hanford direction. The remedy selection phase will provide data to support evaluation of the soil washing technology in future feasibility studies for Interim Remedial Measures (IRMs) or final operable unit (OU) remedies. Performance data from these tests will indicate whether applicable or relevant and appropriate requirements (ARARs) or cleanup goals can be met at the site(s) by application of soil washing. The remedy selection tests wig also allow estimation of costs associated with implementation to the accuracy required for the Feasibility Study.

Not Available

1993-03-01T23:59:59.000Z

424

Fermi Large Area Telescope Third Source Catalog  

E-Print Network [OSTI]

We present the third Fermi Large Area Telescope source catalog (3FGL) of sources in the 100~MeV--300~GeV range. Based on the first four years of science data from the Fermi Gamma-ray Space Telescope mission, it is the deepest yet in this energy range. Relative to the 2FGL catalog, the 3FGL catalog incorporates twice as much data as well as a number of analysis improvements, including improved calibrations at the event reconstruction level, an updated model for Galactic diffuse gamma-ray emission, a refined procedure for source detection, and improved methods for associating LAT sources with potential counterparts at other wavelengths. The 3FGL catalog includes 3033 sources above 4 sigma significance, with source location regions, spectral properties, and monthly light curves for each. Of these, 78 are flagged as potentially being due to imperfections in the model for Galactic diffuse emission. Twenty-five sources are modeled explicitly as spatially extended, and overall 232 sources are considered as identifie...

,

2015-01-01T23:59:59.000Z

425

Large area atmospheric-pressure plasma jet  

DOE Patents [OSTI]

Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

Selwyn, Gary S. (Los Alamos, NM); Henins, Ivars (Los Alamos, NM); Babayan, Steve E. (Huntington Beach, CA); Hicks, Robert F. (Los Angeles, CA)

2001-01-01T23:59:59.000Z

426

area consortium energy: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Solar Energy in Un-electrified Areas' in Namibia by Heidi Camesano, Terri 54 FINITE ENERGY CYLINDERS OF SMALL AREA H. HOFER 1, K. WYSOCKI 2, AND E. ZEHNDER 3 Mathematics...

427

Gas Flux Sampling At Dixie Valley Geothermal Area (Iovenitti...  

Open Energy Info (EERE)

of the geothermal area. Ultimately for potential development of EGS. Notes A CO2 soil gas flux survey was conducted in areas recognized as geothermal upflow zones within the...

428

Incremental Updates to Scenes Illuminated by Area Light Sources  

E-Print Network [OSTI]

by a singular sharp boundary (umbra), but also have partially lit areas (penumbra). In this paper we present. The boundaries between lit and penumbra and between penumbra and umbra areas are called the extremal boundaries

Chrysanthou, Yiorgos

429

A comparative analysis of area navigation systems for general aviation  

E-Print Network [OSTI]

Within the next decade area navigation is to become the primary method of air navigation within the United States. There are numerous radio navigation systems that offer the capabilities of area navigation to general ...

Dodge, Steven Malcolm

1973-01-01T23:59:59.000Z

430

IMPACTS OF CLIMATE CHANGE ON SAN FRANCISCO BAY AREA  

E-Print Network [OSTI]

IMPACTS OF CLIMATE CHANGE ON SAN FRANCISCO BAY AREA RESIDENTIAL ELECTRICITY CONSUMPTION anthropogenic climate change on residential electricity consumption for the nine San Francisco Bay Area counties with different meant temperatures on households' electricity consumption. The estimation uses a comprehensive

431

Packing efficiency and accessible surface area of crumpled graphene  

E-Print Network [OSTI]

Graphene holds promise as an ultracapacitor due to its high specific surface area and intrinsic capacitance. To exploit both, a maximum surface area must be accessible while the two-dimensional (2D) graphene is deformed ...

Cranford, Steven Wayne

432

area index lai: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Derived Leaf Area Index over the High-Latitude Northern Hemisphere. Part II: Earth System Models CiteSeer Summary: Abstract: Leaf Area Index (LAI) is a key parameter in the...

433

area part ii: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Derived Leaf Area Index over the High-Latitude Northern Hemisphere. Part II: Earth System Models CiteSeer Summary: Abstract: Leaf Area Index (LAI) is a key parameter in the...

434

ECONOMIC IMPACTS OF A WIDE AREA RELEASE OF ANTHRAX  

E-Print Network [OSTI]

ECONOMIC IMPACTS OF A WIDE AREA RELEASE OF ANTHRAX May 2009 Prepared Regional Technology Center for Homeland Security Economic Impacts of a Wide Area Release of Anthrax KS .................................................................................................................................................. 1 Categories of Economic Impacts

435

Decomposition algorithms for multi-area power system analysis  

E-Print Network [OSTI]

. This dissertation investigates decomposition algorithms for multi-area power system transfer capability analysis and economic dispatch analysis. All of the proposed algorithms assume that areas do not share their network operating and economic information among...

Min, Liang

2007-09-17T23:59:59.000Z

436

Energy Innovation Hub Report Shows Philadelphia-area Building...  

Energy Savers [EERE]

Hub Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support 23,500...

437

AREAS OF GROUND SUBSIDENCE DUE TO GEO-FLUID WITHDRAWAL  

E-Print Network [OSTI]

here, and the Raft River geothermal wells a r e located t oPROPERTIES OF RAFT RIVER GEOTHERMAL WELL CORES (from Stokerin the area of Geothermal wells rs a 9 square mile area with

Grimsrud, G. Paul

2011-01-01T23:59:59.000Z

438

area dnapl characterization: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assumes to consider the images in terms of area with the same texture. In uncertain environment, it could be better to take an imprecise decision or to reject the area...

439

GUIDELINES MANUAL FOR SURFACE MONITORING OF GEOTHERMAL AREAS  

E-Print Network [OSTI]

1976, "Blowout o f a Geothermal Well", California Geology,in Rocks from Two Geothermal Areas'' , -- P1 anetary ScienceMonitoring Ground Movement in Geothermal Areas", Hydraul ic

Til, C. J. Van

2012-01-01T23:59:59.000Z

440

Data Acquisition-Manipulation At Truckhaven Area (Layman Energy...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Truckhaven Area (Layman Energy Associates, 2007)...

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Business Role Focus Area From a business  

E-Print Network [OSTI]

Coopers, Sony, Teijin, Umicore and Weyerhaeuser. The Business Role Focus Area aims to engage, equip and mobilize

442

Isotopic Analysis At Lassen Volcanic National Park Area (Janik...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity...

443

Cuttings Analysis At Roosevelt Hot Springs Area (Christensen...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Roosevelt Hot Springs Area (Christensen, Et Al., 1983) Exploration Activity...

444

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito & Tanaka, 1995) Exploration...

445

Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Phillips, 2004) Exploration Activity...

446

Procedures for Establishing and Evaluating Research Areas for Strategic Development  

E-Print Network [OSTI]

the area into a self-sustaining field of excellence, the University needs to identify and promote those

Carleton University

447

Compound and Elemental Analysis At International Geothermal Area...  

Open Energy Info (EERE)

Indonesia (Laney, 2005) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Compound and Elemental Analysis Activity Date Usefulness...

448

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian & Blackwell, 2004) Exploration...

449

Modeling-Computer Simulations At Stillwater Area (Wisian & Blackwell...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Stillwater Area (Wisian & Blackwell, 2004) Exploration Activity...

450

Modeling-Computer Simulations At Desert Peak Area (Wisian & Blackwell...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Desert Peak Area (Wisian & Blackwell, 2004) Exploration Activity...

451

Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details...

452

Conceptual Model At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Redondo Geothermal Area (Gardner, 2010) Exploration Activity...

453

Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson, 1985) Exploration Activity Details...

454

Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity Details...

455

Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh, 2008) Exploration Activity Details Location...

456

Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Boreholes At Blue Mountain Geothermal Area (Parr & Percival, 1991) Exploration Activity Details Location...

457

AREA DEL PERSONALE SETTORE PERSONALE DOCENTE E RICERCATORE  

E-Print Network [OSTI]

vota nei seggi telematici. IL CAPO AREA DEL PERSONALE (Dott. Francesco Battaglia) f.to Francesco Battaglia #12;

Milano-Bicocca, Universit

458

area northeastern arizona: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arizona's Riparian Areas Environmental Sciences and Ecology Websites Summary: management, riparian ecology, riparian restoration, soils and soil ecology. Recent and...

459

ELECTRICAL AREA CONTROLLED ACCESS PROCEDURE SP-18 Revision 01  

E-Print Network [OSTI]

ELECTRICAL AREA CONTROLLED ACCESS PROCEDURE SP-18 Page 1 Revision 01 April 17, 2007 NATIONAL HIGH ______________________________________________________ ASSOCIATE DIRECTOR for MANAGEMENT & ADMINISTRATION Brian Fairhurst #12;ELECTRICAL AREA CONTROLLED ACCESS TITLE: ELECTRICAL AREA CONTROLLED ACCESS PROCEDURE 1.0 PURPOSE 1.1 This document establishes policy

Weston, Ken

460

Identification of 300 Area Contaminants of Potential Concern for Soil  

SciTech Connect (OSTI)

This report documents the process used to identify source area contaminants of potential concern (COPCs) in support of the 300 Area remedial investigation/feasibility study (RI/FS) work plan. This report also establishes the exclusion criteria applicable for 300 Area use and the analytical methods needed to analyze the COPCs.

R.W. Ovink

2010-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

AREA-EFFICIENTHIGH-THROUGHPUTVLSI ARCHITECTUREFOR MAP-BASED TURBO EQUALIZER  

E-Print Network [OSTI]

AREA-EFFICIENTHIGH-THROUGHPUTVLSI ARCHITECTUREFOR MAP-BASED TURBO EQUALIZER Seok-Jun Lee, Naresh R an area-efficient MAP-based turbo equalizer VLSI architecture by proposing a symbol-based soft-input soft-interleaved com- putation with an area savings of 25%. 1. INTRODUCTION The turbo decoding technique has found

Singer, Andrew C

462

Market Implications of Synergism Between Low Drag Area and Electric  

E-Print Network [OSTI]

compared, Drag Area per unit vehicle mass dropped consistently from the EPRI 2001 base case vs. 3 HEVs the UDDS, Highway, and US06 Cycles. The 2001 EPRI Base Case Had a High Drag Area. Prius/Volt-like Drag Areas (EPRI Low Load & MIT) Improved 48 MPH "per Mile" Results Significantly 7 #12;Absolute Savings per

463

Energy and Switch Area Optimizations for FPGA Global Routing Architectures  

E-Print Network [OSTI]

13 Energy and Switch Area Optimizations for FPGA Global Routing Architectures YI ZHU, YUANFANG HU and wire style optimization, to reduce the energy and switch area of FPGA global routing architectures achieve up to 10% to 15% energy savings and up to 20% switch area savings in average for a set of seven

Fainman, Yeshaiahu

464

Mixed waste focus area alternative technologies workshop  

SciTech Connect (OSTI)

This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ``wise`` configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE`s mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities.

Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A. [Los Alamos National Lab., NM (United States). Technology Analysis Group

1995-05-24T23:59:59.000Z

465

Alternatives to incineration. Technical area status report  

SciTech Connect (OSTI)

Recently, the DOE`s Mixed Waste Integrated Program (MWIP) (superseded by the Mixed Waste Focus Area) initiated an evaluation of alternatives to incineration to identify technologies capable of treating DOE organically contaminated mixed wastes and which may be more easily permitted. These technologies have the potential of alleviating stakeholder concerns by decreasing off-gas volurties and the associated emissions of particulates, volatilized metals and radionuclides, PICs, NO{sub x}, SO{sub x}, and recombination products (dioxins and furans). Ideally, the alternate technology would be easily permitted, relatively omnivorous and effective in treating a variety of wastes with varying constituents, require minimal pretreatment or characterization, and be easy to implement. In addition, it would produce secondary waste stream volumes significantly smaller than the original waste stream, and would minimize the environmental health and safety effects on workers and the public. The purpose of this report is to provide an up-to-date (as of early 1995) compendium of iternative technologies for designers of mixed waste treatment facilities, and to identify Iternate technologies that may merit funding for further development. Various categories of non-thermal and thermal technologies have been evaluated and are summarized in Table ES-1. Brief descriptions of these technologies are provided in Section 1.7 of the Introduction. This report provides a detailed description of approximately 30 alternative technologies in these categories. Included in the report are descriptions of each technology; applicable input waste streams and the characteristics of the secondary, or output, waste streams; the current status of each technology relative to its availability for implementation; performance data; and costs. This information was gleaned from the open literature, governments reports, and discussions with principal investigators and developers.

Schwinkendorf, W.E. [BDM Federal, Inc., Albuquerque, NM (United States); McFee, J.; Devarakonda, M. [International Technology Corp., Albuquerque, NM (United States); Nenninger, L.L.; Fadullon, F.S. [Science Applications International Corp., Gaithersburg, MD (United States); Donaldson, T.L. [Oak Ridge National Lab., TN (United States); Dickerson, K. [Oak Ridge National Lab., TN (United States); [Rocky Flats Environmental Technology Site, Golden, CO (United States)

1995-04-01T23:59:59.000Z

466

Wide Area Security Region Final Report  

SciTech Connect (OSTI)

This report develops innovative and efficient methodologies and practical procedures to determine the wide-area security region of a power system, which take into consideration all types of system constraints including thermal, voltage, voltage stability, transient and potentially oscillatory stability limits in the system. The approach expands the idea of transmission system nomograms to a multidimensional case, involving multiple system limits and parameters such as transmission path constraints, zonal generation or load, etc., considered concurrently. The security region boundary is represented using its piecewise approximation with the help of linear inequalities (so called hyperplanes) in a multi-dimensional space, consisting of system parameters that are critical for security analyses. The goal of this approximation is to find a minimum set of hyperplanes that describe the boundary with a given accuracy. Methodologies are also developed to use the security hyperplanes, pre-calculated offline, to determine system security margins in real-time system operations, to identify weak elements in the system, and to calculate key contributing factors and sensitivities to determine the best system controls in real time and to assist in developing remedial actions and transmission system enhancements offline . A prototype program that automates the simulation procedures used to build the set of security hyperplanes has also been developed. The program makes it convenient to update the set of security hyperplanes necessitated by changes in system configurations. A prototype operational tool that uses the security hyperplanes to assess security margins and to calculate optimal control directions in real time has been built to demonstrate the project success. Numerical simulations have been conducted using the full-size Western Electricity Coordinating Council (WECC) system model, and they clearly demonstrated the feasibility and the effectiveness of the developed technology. Recommendations for the future work have also been formulated.

Makarov, Yuri V.; Lu, Shuai; Guo, Xinxin; Gronquist, James; Du, Pengwei; Nguyen, Tony B.; Burns, J. W.

2010-03-31T23:59:59.000Z

467

Design and Materials The Design area is a rapidly growing research area aimed at furthering the development of  

E-Print Network [OSTI]

Design and Materials Design The Design area is a rapidly growing research area aimed at furthering the development of competitive products and systems. Research in this department focuses on design theories, design methodologies

Calgary, University of

468

100 Area and 300 Area Component of the River Corridor Baseline Risk Assessment Spring 2006 Data Compilation  

SciTech Connect (OSTI)

The purpose of this report is to describe the sampling approaches, modifications made to the 100 Area and 300 Area component of the RCBRA Sampling and Analysis Plan, summarize validation efforts, and provide sample identification numbers.

J. M. Queen; S. G. Weiss

2006-11-20T23:59:59.000Z

469

Subproject L-045H 300 Area Treated Effluent Disposal Facility  

SciTech Connect (OSTI)

The study focuses on the project schedule for Project L-045H, 300 Area Treated Effluent Disposal Facility. The 300 Area Treated Effluent Disposal Facility is a Department of Energy subproject of the Hanford Environmental Compliance Project. The study scope is limited to validation of the project schedule only. The primary purpose of the study is to find ways and means to accelerate the completion of the project, thereby hastening environmental compliance of the 300 Area of the Hanford site. The 300 Area'' has been utilized extensively as a laboratory area, with a diverse array of laboratory facilities installed and operational. The 300 Area Process Sewer, located in the 300 Area on the Hanford Site, collects waste water from approximately 62 sources. This waste water is discharged into two 1500 feet long percolation trenches. Current environmental statutes and policies dictate that this practice be discontinued at the earliest possible date in favor of treatment and disposal practices that satisfy applicable regulations.

Not Available

1991-06-01T23:59:59.000Z

470

Wetland Survey of Selected Areas in the Oak Ridge Y-12 Plant Area of Responsibilty, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This document was prepared to summarize wetland surveys performed in the Y- 1 2 Plant area of responsibility in June and July 1994. Wetland surveys were conducted in three areas within the Oak Ridge Y- 12 Plant area of responsibility in June and July 1994: the Upper East Fork Poplar Creek (UEFPC) Operable Unit (OU), part of the Bear Creek Valley OU (the upper watershed of Bear Creek from the culvert under Bear Creek Road upstream through the Y-12 West End Environmental Management Area, and the catchment of Bear Creek North Tributary 1), and part of Chestnut Ridge OU 2 (the McCoy Branch area south of Bethel Valley Road). Using the criteria and methods set forth in the Wetlands Delineation Manual, 18 wetland areas were identified in the 3 areas surveyed; these areas were classified according to the system developed by Cowardin. Fourteen wetlands and one wetland/pond area that are associated with disturbed or remnant stream channels and seeps were identified in the UEFPC OU. Three wetlands were identified in the Bear Creek Valley OU portion of the survey area. One wetland was identified in the riparian zone of McCoy Branch in the southern portion of Chestnut Ridge OU 2.

Rosensteel

1997-01-01T23:59:59.000Z

471

Technical Basis Document for PFP Area Monitoring Dosimetry Program  

SciTech Connect (OSTI)

This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

COOPER, J.R.

2000-04-17T23:59:59.000Z

472

Attenuation structure of Coso geothermal area, California, from...  

Open Energy Info (EERE)

Coso geothermal area, California, from wave pulse widths Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Attenuation structure of Coso...

473

Geology and alteration of the Coso Geothermal Area, Inyo County...  

Open Energy Info (EERE)

California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology and alteration of the Coso Geothermal Area, Inyo County, California Abstract Geology...

474

area sho energy: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reference of the suitable plans for the energy efficient reconstruction of buildings in cold area. 2. ANALYSIS ON HEATING ENERGY CONSUMPTION 2.1 Building Situation Based... on...

475

area northern part: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Water Conservation Florida, University of 6 Structural core analysis from the Gullfaks area, northern North Sea J. Hesthammera,*, H. Fossenb Geosciences Websites Summary:...

476

area northern brazil: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

northern Argentina, was one of the first academic institutions to start research in the area of solar energy applications in the country. In 1982, a Non Conventional Energy...

477

area operations building: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reference of the suitable plans for the energy efficient reconstruction of buildings in cold area. 2. ANALYSIS ON HEATING ENERGY CONSUMPTION 2.1 Building Situation Based... on...

478

Well Log Data At Valles Caldera - Redondo Geothermal Area (Shevenell...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At Valles Caldera - Redondo Geothermal Area (Shevenell, Et Al., 1988) Exploration...

479

Soil Sampling At Waunita Hot Springs Geothermal Area (Ringrose...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Waunita Hot Springs Geothermal Area (Ringrose & Pearl, 1981) Exploration...

480

area norte da: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wild hyperbolic sets ac- cumulated by elliptic isles Lisbon, University of 13 Patagonia Norte AREA de Investigacin en RECURSOS NATURALESRECURSOS NATURALES Environmental...

Note: This page contains sample records for the topic "rift area quane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

area northern territory: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LOGAN, C.A. 1987. Fluctuations in fall and winter territory Lougheed, Stephen 52 Evaluation of Land Surface Models in Reproducing Satellite Derived Leaf Area Index over the...

482

area energy vulnerability: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

further aggravate the environmental conditions and the associated risks. Despite the climate warming, cold climatic conditions will prevail in circumpolar areas and contribute...

483

Field Mapping At Long Valley Caldera Geothermal Area (Sorey ...  

Open Energy Info (EERE)

Sorey & Farrar, 1998) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Long Valley Caldera Geothermal Area (Sorey & Farrar, 1998)...

484

Geothermometry At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Home Exploration Activity: Geothermometry At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal...

485

Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area (Farrar, Et...

486

Water Sampling At Valley Of Ten Thousand Smokes Region Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

487

Water-Gas Samples At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Valles Caldera - Redondo Geothermal Area (Janik & Goff, 2002)...

488

Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

489

Water Sampling At Valles Caldera - Sulphur Springs Area (Rao...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Exploration...

490

Synthesis of High Surface Area Foams for Functional and Structural...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in porous metallic bulk materials for functional applications such as catalysts, hydrogen storage or high-sensitivity sensors. Traditionally, high surface area functional...

491

Guide to good practices for control area activities  

SciTech Connect (OSTI)

This Guide to Good Practices is written to enhance understanding of, and provide direction for, Control Area Activities, Chapter III of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements.'' The practices in this guide should be considered for controlling the activities in control areas. Contractors are advised to adopt methods that meet the intent of DOE Order 5480.19. Control Area Activities'' is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for maintaining a formal environment in operational control areas to promote safe and efficient operations.

Not Available

1993-06-01T23:59:59.000Z

492

Guide to good practices for control area activities  

SciTech Connect (OSTI)

This Guide to Good Practices is written to enhance understanding of, and provide direction for, Control Area Activities, Chapter III of Department of Energy (DOE) Order 5480.19, ``Conduct of Operations Requirements.`` The practices in this guide should be considered for controlling the activities in control areas. Contractors are advised to adopt methods that meet the intent of DOE Order 5480.19. ``Control Area Activities`` is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for maintaining a formal environment in operational control areas to promote safe and efficient operations.

Not Available

1993-06-01T23:59:59.000Z

493

Guide to good practices for control area activities  

SciTech Connect (OSTI)

This Guide to Good Practices is written to enhance understanding of, and provide direction for, Control Area Activities, Chapter III of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The practices in this guide should be considered for controlling the activities in control areas. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19. Control Area Activities is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for maintaining a formal environment in operational control areas to promote safe and efficient operations.

NONE

1998-12-01T23:59:59.000Z

494

area management plan: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 NEW RIVER AREA OF CRITICAL ENVIRONMENTAL CONCERN MANAGEMENT PLAN CiteSeer Summary: New River is a dynamic, ever-changing system influenced by biological, climatological,...

495

Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area...  

Open Energy Info (EERE)

Activity: Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area (Colorado School of Mines and Imperial College London, 2011) Exploration Activity Details Location Neal...

496

LED Provides Effective and Efficient Parking Area Lighting at...  

Broader source: Energy.gov (indexed) [DOE]

White Light Options for Parking Area Lighting Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report Guide to FEMP-Designated Parking Lot...

497

Injectivity Test At Long Valley Caldera Geothermal Area (Morin...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Exploration Activity...

498

Geodetic Survey At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Nevada Test And...

499

Aerial Photography At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location...

500

Geothermometry At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nevada Test And...