National Library of Energy BETA

Sample records for ridge gas recovery

  1. Chestnut Ridge Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Chestnut Ridge Gas Recovery Sector Biomass Facility Type Landfill Gas Location Anderson County, Tennessee Coordinates 36.0809574, -84.2278796 Show Map Loading map......

  2. Gas Recovery Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Jump to: navigation, search Name: Gas Recovery Systems Place: California Zip: 94550 Product: Turnkey landfill gas (LFG) energy extraction systems. References: Gas Recovery...

  3. Department of Energy Completes Five Recovery Act Projects- Moves Closer to Completing Recovery Act Funded Work at Oak Ridge Site

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. - The U.S. Department of Energy’s (DOE) Environmental Management (EM) program recently completed five projects at the Oak Ridge site funded through the American Recovery and Reinvestment Act.

  4. CSL Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  5. BJ Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  6. DFW Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  7. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  8. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  9. Oak Ridge completes field work on Recovery Act-projects | Department of

    Energy Savers [EERE]

    Energy Ridge completes field work on Recovery Act-projects Oak Ridge completes field work on Recovery Act-projects May 8, 2014 - 12:00pm Addthis The U.S. Department of Energy's Oak Ridge Office of Environmental Management (EM) has finished field work on the last Recovery Act-funded environmental cleanup project. Since 2009, EM has used the $751 million in Recovery Act funds to accomplish 27 projects, many of which included multiple subcomponents and extensive scopes. "This is a landmark

  10. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Settlers Hill Gas Recovery Biomass Facility Jump to: navigation, search Name Settlers Hill Gas Recovery Biomass Facility Facility Settlers Hill Gas Recovery Sector Biomass Facility...

  11. Prairie View Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    View Gas Recovery Biomass Facility Jump to: navigation, search Name Prairie View Gas Recovery Biomass Facility Facility Prairie View Gas Recovery Sector Biomass Facility Type...

  12. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  13. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  14. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  15. One of EM's Last Recovery Act Projects at Oak Ridge Improves Safety at

    Office of Environmental Management (EM)

    Laboratory | Department of Energy EM's Last Recovery Act Projects at Oak Ridge Improves Safety at Laboratory One of EM's Last Recovery Act Projects at Oak Ridge Improves Safety at Laboratory November 26, 2013 - 12:00pm Addthis EM deactivated one of five ventilation branches that led to stack 3039. The ventilation branches are connected to numerous facilities throughout ORNL’s central campus. EM deactivated one of five ventilation branches that led to stack 3039. The ventilation branches

  16. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

  17. Recovery Act Funds are Helping Oak Ridge's Building K-33 Disappear Fast |

    Office of Environmental Management (EM)

    Department of Energy Funds are Helping Oak Ridge's Building K-33 Disappear Fast Recovery Act Funds are Helping Oak Ridge's Building K-33 Disappear Fast American Recovery and Reinvestment Act workers in Oak Ridge are working safely and quickly to complete the demolition of Building K-33, a 1.4 million-square-foot former gaseous diffusion plant in the East Tennessee Technology Park (ETTP). Diligent work from LATA-Sharp Remediation Services employees is creating remarkable results – a

  18. Altamont Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    search Name Altamont Gas Recovery Biomass Facility Facility Altamont Gas Recovery Sector Biomass Facility Type Landfill Gas Location Alameda County, California Coordinates...

  19. The Canoe Ridge Natural Gas Storage Project

    SciTech Connect (OSTI)

    Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

    2003-06-18

    In 1999 the Pacific Gas and Electric Gas Transmission Northwest (GTN) drilled a borehole to investigate the feasibility of developing a natural gas-storage facility in a structural dome formed in Columbia River basalts in the Columbia Basin of south-central Washington State. The proposed aquifer storage facility will be an unconventional one where natural gas will be initially injected (and later retrieved) in one or multiple previous horizons (interflow zones) that are confined between deep (>700 meters) basalt flows of the Columbia River Basalt Group. This report summarizes the results of joint investigations on that feasibility study by GTN and the US Department of Energy.

  20. Ethane enrichment and propane depletion in subsurface gases indicate gas hydrate occurrence in marine sediments at southern Hydrate Ridge offshore Oregon

    SciTech Connect (OSTI)

    Milkov, Alexei V.; Claypool, G E.; Lee, Young-Joo; Torres, Marta E.; Borowski, W S.; Tomaru, H; Sassen, Roger; Long, Philip E.

    2004-07-02

    The recognition of finely disseminated gas hydrate in deep marine sediments heavily depends on various indirect techniques because this mineral quickly decomposes upon recovery from in situ pressure and temperature conditions. Here, we discuss molecular properties of closely spaced gas voids (formed as a result of core recovery) and gas hydrates from an area of relatively low gas flux at the flanks of the southern Hydrate Ridge Offshore Oregon (ODP Sites 1244, 1245 and 1247).

  1. Waste Disposal and Recovery Act Efforts at the Oak Ridge Reservation,OAS-RA-L-12-01

    Broader source: Energy.gov (indexed) [DOE]

    Inspection Report Waste Disposal and Recovery Act Efforts at the Oak Ridge Reservation INS-RA-L-12-01 December 2011 Department of Energy Washington, DC 20585 December 16, 2011 MEMORANDUM FOR THE MANAGER, OAK RIDGE OFFICE FROM: Sandra D. Bruce Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Inspection Report on "Waste Disposal and Recovery Act Efforts at the Oak Ridge Reservation" BACKGROUND The Department of Energy's (Department) expends

  2. Unconventional gas recovery: state of knowledge document

    SciTech Connect (OSTI)

    Geffen, C.A.

    1982-01-01

    This report is a synthesis of environmental data and information relevant to the four areas of unconventional gas recovery (UGR) resource recovery: methane from coal, tight western sands, Devonian shales and geopressurized aquifers. Where appropriate, it provides details of work reviewed; while in other cases, it refers the reader to relevant sources of information. This report consists of three main sections, 2, 3, and 4. Section 2 describes the energy resource base involved and characteristics of the technology and introduces the environmental concerns of implementing the technology. Section 3 reviews the concerns related to unconventional gas recovery systems which are of significance to the environment. The potential health and safety concerns of the recovery of natural gas from these resources are outlined in Section 4.

  3. High potential recovery -- Gas repressurization

    SciTech Connect (OSTI)

    Madden, M.P.

    1998-05-01

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  4. RIDGE

    Office of Legacy Management (LM)

    ' RIDGE NATIONAL : LABORATORY MANAGED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOG THE UNITED STATES DEPARTMENT OF ENERGY ORNL/RASA-X9/70 RADIOLOGICALSURVEYAT THEJESSOPSTEELCOMPANYSITE, 500GREENSTREET, WASHINGTON,PENNSYLVANIA (JSPOOl) W. D. Cottrell R. D. Foley L M. Floyd HiE IXPY This repon has been reproduced directly from the best available copy. Available to DOE and DOE contr+ztors from the Onice of Scientiiic end Tech+ cd Information. P.O. Box 62, Oak Ridge, TN 37631: prices available from

  5. Water-related Issues Affecting Conventional Oil and Gas Recovery...

    Office of Scientific and Technical Information (OSTI)

    Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Michael Vanden Berg; Paul Anderson; Janae Wallace;...

  6. Underground CO2 Storage, Natural Gas Recovery Targeted by Virginia

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tech/NETL Research | Department of Energy Underground CO2 Storage, Natural Gas Recovery Targeted by Virginia Tech/NETL Research Underground CO2 Storage, Natural Gas Recovery Targeted by Virginia Tech/NETL Research October 20, 2015 - 8:14am Addthis Researchers from Virginia Tech are injecting CO2 into coal seams in three locations in Buchanan County, Va., as part of an NETL-sponsored CO2 storage research project associated with enhanced gas recovery. Researchers from Virginia Tech are

  7. Water-related Issues Affecting Conventional Oil and Gas Recovery...

    Office of Scientific and Technical Information (OSTI)

    Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Citation Details In-Document Search Title: Water-relat...

  8. Water-related Issues Affecting Conventional Oil and Gas Recovery...

    Office of Scientific and Technical Information (OSTI)

    Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Citation Details In-Document Search Title: Water-re...

  9. Carbon sequestration with enhanced gas recovery: Identifying candidate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sites for pilot study (Conference) | SciTech Connect Carbon sequestration with enhanced gas recovery: Identifying candidate sites for pilot study Citation Details In-Document Search Title: Carbon sequestration with enhanced gas recovery: Identifying candidate sites for pilot study × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service.

  10. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

  11. Cryogenic recovery of LPG from natural gas

    SciTech Connect (OSTI)

    Gray, M.L.; McClintock, W.A.

    1984-02-07

    In accordance with the present invention a natural gas stream predominating in methane and containing significant amounts of C/sub 2/, C/sub 3/, C/sub 4/ and C/sub 5/ and higher molecular weight hydrocarbons is cooled in a plurality of cooling stages to a temperature sufficient to produce at least one liquid phase portion predominating in C/sub 2/, C/sub 3/, C/sub 4/ and C/sub 5/ and higher molecular weight hydrocarbons. Then at least one liquid phase portion predominating in C/sub 2/, C/sub 3/, C/sub 4/ and C/sub 5/ and higher molecular weight hydrocarbons is separated from the main gas stream during the course of the cooling. The thus separated liquid phase portion or portions predominating in C/sub 2/, C/sub 3/, C/sub 4/ and C/sub 5/ and higher molecular weight hydrocarbons is further separated into a vapor phase portion predominating in C/sub 2/, C/sub 3/, and C/sub 4/ hydrocarbons and at least one liquid phase portion predominating in C/sub 5/ and higher molecular weight hydrocarbons, at least one second separation step, at least one portion of the at least one vapor phase portion predominating in C/sub 2/, C/sub 3/ and C/sub 4/, hydrocarbons is recovered as at least one product of the process and at least one portion of the remaining portion of the at least one phase portion predominating in C/sub 2/, C/sub 3/ and C/sub 4/ hydrocarbons is recycled to and recombined with the main gas stream as a liquid phase.

  12. Natural gas recovery, storage, and utilization SBIR program

    SciTech Connect (OSTI)

    Shoemaker, H.D.

    1993-12-31

    A Fossil Energy natural-gas topic has been a part of the DOE Small Business Innovation Research (SBIR) program since 1988. To date, 50 Phase SBIR natural-gas applications have been funded. Of these 50, 24 were successful in obtaining Phase II SBIR funding. The current Phase II natural-gas research projects awarded under the SBIR program and managed by METC are presented by award year. The presented information on these 2-year projects includes project title, awardee, and a project summary. The 1992 Phase II projects are: landfill gas recovery for vehicular natural gas and food grade carbon dioxide; brine disposal process for coalbed gas production; spontaneous natural as oxidative dimerization across mixed conducting ceramic membranes; low-cost offshore drilling system for natural gas hydrates; motorless directional drill for oil and gas wells; and development of a multiple fracture creation process for stimulation of horizontally drilled wells.The 1993 Phase II projects include: process for sweetening sour gas by direct thermolysis of hydrogen sulfide; remote leak survey capability for natural gas transport storage and distribution systems; reinterpretation of existing wellbore log data using neural-based patter recognition processes; and advanced liquid membrane system for natural gas purification.

  13. Semi-annual report for the unconventional gas recovery program, period ending March 31, 1980

    SciTech Connect (OSTI)

    Manilla, R.D.

    1980-06-01

    Four subprograms are reported on: methane recovery from coalbeds, Eastern gas shales, Western gas sands, and methane from geopressured aquifers. (DLC)

  14. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect (OSTI)

    La Pointe, Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike; Whitney, John; Eubanks, Darrel

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  15. Low-quality natural gas sulfur removal/recovery

    SciTech Connect (OSTI)

    Damon, D.A.; Siwajek, L.A.; Klint, B.W.

    1993-12-31

    Low quality natural gas processing with the integrated CFZ/CNG Claus process is feasible for low quality natural gas containing 10% or more of CO{sub 2}, and any amount of H{sub 2}S. The CNG Claus process requires a minimum CO{sub 2} partial pressure in the feed gas of about 100 psia (15% CO{sub 2} for a 700 psia feed gas) and also can handle any amount of H{sub 2}S. The process is well suited for handling a variety of trace contaminants usually associated with low quality natural gas and Claus sulfur recovery. The integrated process can produce high pressure carbon dioxide at purities required by end use markets, including food grade CO{sub 2}. The ability to economically co-produce high pressure CO{sub 2} as a commodity with significant revenue potential frees process economic viability from total reliance on pipeline gas, and extends the range of process applicability to low quality gases with relatively low methane content. Gases with high acid gas content and high CO{sub 2} to H{sub 2}S ratios can be economically processed by the CFZ/CNG Claus and CNG Claus processes. The large energy requirements for regeneration make chemical solvent processing prohibitive. The cost of Selexol physical solvent processing of the LaBarge gas is significantly greater than the CNG/CNG Claus and CNG Claus processes.

  16. Low Quality Natural Gas Sulfur Removal and Recovery CNG Claus Sulfur Recovery Process

    SciTech Connect (OSTI)

    Klint, V.W.; Dale, P.R.; Stephenson, C.

    1997-10-01

    Increased use of natural gas (methane) in the domestic energy market will force the development of large non-producing gas reserves now considered to be low quality. Large reserves of low quality natural gas (LQNG) contaminated with hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and nitrogen (N) are available but not suitable for treatment using current conventional gas treating methods due to economic and environmental constraints. A group of three technologies have been integrated to allow for processing of these LQNG reserves; the Controlled Freeze Zone (CFZ) process for hydrocarbon / acid gas separation; the Triple Point Crystallizer (TPC) process for H{sub 2}S / C0{sub 2} separation and the CNG Claus process for recovery of elemental sulfur from H{sub 2}S. The combined CFZ/TPC/CNG Claus group of processes is one program aimed at developing an alternative gas treating technology which is both economically and environmentally suitable for developing these low quality natural gas reserves. The CFZ/TPC/CNG Claus process is capable of treating low quality natural gas containing >10% C0{sub 2} and measurable levels of H{sub 2}S and N{sub 2} to pipeline specifications. The integrated CFZ / CNG Claus Process or the stand-alone CNG Claus Process has a number of attractive features for treating LQNG. The processes are capable of treating raw gas with a variety of trace contaminant components. The processes can also accommodate large changes in raw gas composition and flow rates. The combined processes are capable of achieving virtually undetectable levels of H{sub 2}S and significantly less than 2% CO in the product methane. The separation processes operate at pressure and deliver a high pressure (ca. 100 psia) acid gas (H{sub 2}S) stream for processing in the CNG Claus unit. This allows for substantial reductions in plant vessel size as compared to conventional Claus / Tail gas treating technologies. A close integration of the components of the CNG Claus process also allow for use of the methane/H{sub 2}S separation unit as a Claus tail gas treating unit by recycling the CNG Claus tail gas stream. This allows for virtually 100 percent sulfur recovery efficiency (virtually zero SO{sub 2} emissions) by recycling the sulfur laden tail gas to extinction. The use of the tail gas recycle scheme also deemphasizes the conventional requirement in Claus units to have high unit conversion efficiency and thereby make the operation much less affected by process upsets and feed gas composition changes. The development of these technologies has been ongoing for many years and both the CFZ and the TPC processes have been demonstrated at large pilot plant scales. On the other hand, prior to this project, the CNG Claus process had not been proven at any scale. Therefore, the primary objective of this portion of the program was to design, build and operate a pilot scale CNG Claus unit and demonstrate the required fundamental reaction chemistry and also demonstrate the viability of a reasonably sized working unit.

  17. DOE THREE-DIMENSIONAL STRUCTURE AND PHYSICAL PROPERTIES OF A METHANE HYDRATE DEPOSIT AND GAS RESERVOIR, BLAKE RIDGE

    SciTech Connect (OSTI)

    W. Steven Holbrook

    2004-11-11

    This report contains a summary of work conducted and results produced under the auspices of award DE-FC26-00NT40921, ''DOE Three-Dimensional Structure and Physical Properties of a Methane Hydrate Deposit and Gas Reservoir, Blake Ridge.'' This award supported acquisition, processing, and interpretation of two- and three-dimensional seismic reflection data over a large methane hydrate reservoir on the Blake Ridge, offshore South Carolina. The work supported by this project has led to important new conclusions regarding (1) the use of seismic reflection data to directly detect methane hydrate, (2) the migration and possible escape of free gas through the hydrate stability zone, and (3) the mechanical controls on the maximum thickness of the free gas zone and gas escape.

  18. Unconventional gas recovery program. Semi-annual report for the period ending September 30, 1979

    SciTech Connect (OSTI)

    Manilla, R.D.

    1980-04-01

    This document is the third semi-annual report describing the technical progress of the US DOE projects directed at gas recovery from unconventional sources. Currently the program includes Methane Recovery from Coalbeds Project, Eastern Gas Shales Project, Western Gas Sands Project, and Geopressured Aquifers Project.

  19. Apparatus and method for fast recovery and charge of insulation gas

    DOE Patents [OSTI]

    Jordan, Kevin

    2013-09-03

    An insulation gas recovery and charge apparatus is provided comprising a pump, a connect, an inflatable collection device and at least one valve.

  20. Gas miscible displacement enhanced oil recovery: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01

    Gas miscible displacement enhanced oil recovery research is conducted by the US Department of Energy's Morgantown Energy Technology Center to advance the application of miscible carbon dioxide flooding. This research is an integral part of a multidisciplinary effort to improve the technology for producing additional oil from US resources. This report summarizes the problems of the technology and the 1986 results of the ongoing research that was conducted to solve those problems. Poor reservoir volumetric sweep efficiency is the major problem associated with gas flooding and all miscible displacements. This problem results from the channeling and viscous fingering that occur due to the large differences between viscosity or density of the displacing and displaced fluids (i.e., carbon dioxide and oil, respectively). Simple modeling and core flooding studies indicate that, because of differences in fluid viscosities, breakthrough can occur after only 30% of the total pore volume (PV) of the rock has been injected with gas, while field tests have shown breakthrough occurring much earlier. The differences in fluid densities lead to gravity segregation. The lower density carbon dioxide tends to override the residual fluids in the reservoir. This process would be considerably more efficient if a larger area of the reservoir could be contacted by the gas. Current research has focused on the mobility control, computer simulation, and reservoir heterogeneity studies. Three mobility control methods have been investigated: (1) the use of polymers for direct thickening of high-density carbon dioxide, (2) mobile ''foam-like dispersions'' of carbon dioxide and an aqueous surfactant, and (3) in situ deposition of chemical precipitates. 22 refs., 14 figs., 6 tabs.

  1. Method for controlling exhaust gas heat recovery systems in vehicles

    DOE Patents [OSTI]

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  2. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    SciTech Connect (OSTI)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

  3. Review of technology for Arctic offshore oil and gas recovery

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-08-01

    The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleum production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.

  4. Recovery of nitrogen and light hydrocarbons from polyalkene purge gas

    DOE Patents [OSTI]

    Zwilling, Daniel Patrick; Golden, Timothy Christoph; Weist, Jr., Edward Landis; Ludwig, Keith Alan

    2003-06-10

    A method for the separation of a gas mixture comprises (a) obtaining a feed gas mixture comprising nitrogen and at least one hydrocarbon having two to six carbon atoms; (b) introducing the feed gas mixture at a temperature of about 60.degree. F. to about 105.degree. F. into an adsorbent bed containing adsorbent material which selectively adsorbs the hydrocarbon, and withdrawing from the adsorbent bed an effluent gas enriched in nitrogen; (c) discontinuing the flow of the feed gas mixture into the adsorbent bed and depressurizing the adsorbent bed by withdrawing depressurization gas therefrom; (d) purging the adsorbent bed by introducing a purge gas into the bed and withdrawing therefrom an effluent gas comprising the hydrocarbon, wherein the purge gas contains nitrogen at a concentration higher than that of the nitrogen in the feed gas mixture; (e) pressurizing the adsorbent bed by introducing pressurization gas into the bed; and (f) repeating (b) through (e) in a cyclic manner.

  5. Oil and Gas Recovery Data from the Riser Insertion Tub- ODS

    Broader source: Energy.gov [DOE]

    Oil and Gas Recovery Data from the Riser Insertion Tube from May17 until the Riser Insertion Tube was disconnected on May 24 in preparation for cutting off the riser.

  6. Oil and Gas Recovery Data from the Riser Insertion Tub- XLS

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oil and Gas Recovery Data from the Riser Insertion Tube from May17 until the Riser Insertion Tube was disconnected on May 24 in preparation for cutting off the riser.

  7. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    SciTech Connect (OSTI)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  8. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  9. Water-related Issues Affecting Conventional Oil and Gas Recovery and

    Office of Scientific and Technical Information (OSTI)

    Potential Oil-Shale Development in the Uinta Basin, Utah (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Citation Details In-Document Search Title: Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Saline water disposal is one of the most pressing issues

  10. Low-quality natural gas sulfur removal/recovery

    SciTech Connect (OSTI)

    K. Amo; R.W. Baker; V.D. Helm; T. Hofmann; K.A. Lokhandwala; I. Pinnau; M.B. Ringer; T.T. Su; L. Toy; J.G. Wijmans

    1998-01-29

    A significant fraction of U.S. natural gas reserves are subquality due to the presence of acid gases and nitrogen; 13% of existing reserves (19 trillion cubic feed) may be contaminated with hydrogen sulfide. For natural gas to be useful as fuel and feedstock, this hydrogen sulfide has to be removed to the pipeline specification of 4 ppm. The technology used to achieve these specifications has been amine, or similar chemical or physical solvent, absorption. Although mature and widely used in the gas industry, absorption processes are capital and energy-intensive and require constant supervision for proper operation. This makes these processes unsuitable for treating gas at low throughput, in remote locations, or with a high concentration of acid gases. The U.S. Department of Energy, recognizes that exploitation of smaller, more sub-quality resources will be necessary to meet demand as the large gas fields in the U.S. are depleted. In response to this need, Membrane Technology and Research, Inc. (MTR) has developed membranes and a membrane process for removing hydrogen sulfide from natural gas. During this project, high-performance polymeric thin-film composite membranes were brought from the research stage to field testing. The membranes have hydrogen sulfide/methane selectivities in the range 35 to 60, depending on the feed conditions, and have been scaled up to commercial-scale production. A large number of spiral-wound modules were manufactured, tested and optimized during this project, which culminated in a field test at a Shell facility in East Texas. The short field test showed that membrane module performance on an actual natural gas stream was close to that observed in the laboratory tests with cleaner streams. An extensive technical and economic analysis was performed to determine the best applications for the membrane process. Two areas were identified: the low-flow-rate, high-hydrogen-sulfide-content region and the high-flow-rate, high-hydrogen-sulfide-content region. In both regions the MTR membrane process will be combined with another process to provide the necessary hydrogen sulfide removal from the natural gas. In the first region the membrane process will be combined with the SulfaTreat fixed-bed absorption process, and in the second region the membrane process will be combined with a conventional absorption process. Economic analyses indicate that these hybrid processes provide 20-40% cost savings over stand-alone absorption technologies.

  11. Semi-annual report for the unconventional gas recovery program, period ending September 30, 1980

    SciTech Connect (OSTI)

    Manilla, R.D.

    1980-11-01

    Progress is reported in research on methane recovery from coalbeds, eastern gas shales, western gas sands, and geopressured aquifers. In the methane from coalbeds project, data on information evaluation and management, resource and site assessment and characterization, model development, instrumentation, basic research, and production technology development are reported. In the methane from eastern gas shales project, data on resource characterization and inventory, extraction technology, and technology testing and verification are presented. In the western gas sands project, data on resource assessments, field tests and demonstrations and project management are reported. In the methane from geopressured aquifers project, data on resource assessment, supporting research, field tests and demonstrations, and technology transfer are reported.

  12. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H.

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  13. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    SciTech Connect (OSTI)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible multiphase mechanisms at work, namely, Darcy-type displacement until gas breakthrough, gravity drainage after breakthrough and film-drainage in gas-invaded zones throughout the duration of the process. The partially-scaled physical model was used in a series of experiments to study the effects of wettability, gas-oil miscibility, secondary versus tertiary mode gas injection, and the presence of fractures on GAGD oil recovery. In addition to yielding recoveries of up to 80% IOIP, even in the immiscible gas injection mode, the partially-scaled physical model confirmed the positive influence of fractures and oil-wet characteristics in enhancing oil recoveries over those measured in the homogeneous (unfractured) water-wet models. An interesting observation was that a single logarithmic relationship between the oil recovery and the gravity number was obeyed by the physical model, the high-pressure corefloods and the field data.

  14. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect (OSTI)

    Seaman, John

    2013-01-14

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittals Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  15. OpenEI Community - natural gas+ condensing flue gas heat recovery...

    Open Energy Info (EERE)

    groupincrease-natural-gas-energy-efficiency

  16. An integrated process for simultaneous desulfurization, dehydration, and recovery of hydrocarbon liquids from natural gas streams

    SciTech Connect (OSTI)

    Sciamanna, S.F. ); ))

    1988-01-01

    Conventional processing schemes for desulfurizing, drying, and separation of natural gas liquids from natural gas streams require treating the gas by a different process for each separation step. In a simpler process, based on the University of California, Berkeley Sulfur Recovery Process (UCBSRP) technology, hydrogen sulfide, propane and heavier hydrocarbons, and water are absorbed simultaneously by a polyglycol ether solvent containing a homogenous liquid phase catalyst. The catalyst promotes the subsequent reaction of hydrogen sulfide with added sulfur dioxide to produce a high quality sulfur product. Hydrocarbons are separated as two product streams with the split between propane and butane. This new process offers an overall reduction in both capital and energy costs.

  17. Improvement in oil recovery using cosolvents with CO{sub 2} gas floods

    SciTech Connect (OSTI)

    Raible, C.

    1992-01-01

    This report presents the results of investigations to improve oil recovery using cosolvents in CO{sub 2} gas floods. Laboratory experiments were conducted to evaluate the application and selection of cosolvents as additives to gas displacement processes. A cosolvent used as a miscible additive changed the properties of the supercritical gas phase. Addition of a cosolvent resulted in increased viscosity and density of the gas mixture, and enhanced extraction of oil compounds into the CO{sub 2} rich phase. Gas phase properties were measured in an equilibrium cell with a capillary viscometer and a high pressure densitometer. A number of requirements must be considered in the application of a cosolvent. Cosolvent miscibility with CO{sub 2}, brine solubility, cosolvent volatility and relative quantity of the cosolvent partitioning into the oil phase were factors that must be considered for the successful application of cosolvents. Coreflood experiments were conducted with selected cosolvents to measure oil recovery efficiency. The results indicate lower molecular weight additives, such as propane, are the most effective cosolvents to increase oil recovery.

  18. Improvement in oil recovery using cosolvents with CO sub 2 gas floods

    SciTech Connect (OSTI)

    Raible, C.

    1992-01-01

    This report presents the results of investigations to improve oil recovery using cosolvents in CO{sub 2} gas floods. Laboratory experiments were conducted to evaluate the application and selection of cosolvents as additives to gas displacement processes. A cosolvent used as a miscible additive changed the properties of the supercritical gas phase. Addition of a cosolvent resulted in increased viscosity and density of the gas mixture, and enhanced extraction of oil compounds into the CO{sub 2} rich phase. Gas phase properties were measured in an equilibrium cell with a capillary viscometer and a high pressure densitometer. A number of requirements must be considered in the application of a cosolvent. Cosolvent miscibility with CO{sub 2}, brine solubility, cosolvent volatility and relative quantity of the cosolvent partitioning into the oil phase were factors that must be considered for the successful application of cosolvents. Coreflood experiments were conducted with selected cosolvents to measure oil recovery efficiency. The results indicate lower molecular weight additives, such as propane, are the most effective cosolvents to increase oil recovery.

  19. Compression Stripping of Flue Gas with Energy Recovery

    DOE Patents [OSTI]

    Ochs, Thomas L.; O'Connor, William K.

    2005-05-31

    A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SOX and NOX and CO2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO2, SO2, and H2O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

  20. Compression stripping of flue gas with energy recovery

    DOE Patents [OSTI]

    Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

    2005-05-31

    A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SO.sub.X and NO.sub.X and CO.sub.2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO.sub.2, SO.sub.2, and H.sub.2 O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

  1. Recent ORNL experience in site performance prediction: the Gas Centrifuge Enrichment Plant and the Oak Ridge Central Waste Disposal Facility

    SciTech Connect (OSTI)

    Pin, F.G.

    1985-01-01

    The suitability of the Portsmouth Gas Centrifuge Enrichment Plant Landfill and the Oak Ridge, Tennessee, Central Waste Disposal Facility for disposal of low-level radioactive waste was evaluated using pathways analyses. For these evaluations, a conservative approach was selected; that is, conservatism was built into the analyses when assumptions concerning future events had to be made or when uncertainties concerning site or waste characteristics existed. Data from comprehensive laboratory and field investigations were used in developing the conceptual and numerical models that served as the basis for the numerical simulations of the long-term transport of contamination to man. However, the analyses relied on conservative scenarios to describe the generation and migration of contamination and the potential human exposure to the waste. Maximum potential doses to man were calculated and compared to the appropriate standards. Even under this conservative framework, the sites were found to provide adequate buffer to persons outside the DOE reservations and conclusions concerning site capacity and site acceptability were drawn. Our experience through these studies has shown that in reaching conclusions in such studies, some consideration must be given to the uncertainties and conservatisms involved in the analyses. Analytical methods to quantitatively assess the probability of future events to occur and to quantitatively determine the sensitivity of the results to data uncertainty may prove useful in relaxing some of the conservatism built into the analyses. The applicability of such methods to pathways analyses is briefly discussed.

  2. Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine

    DOE Patents [OSTI]

    Eldrid, Sacheverel Q. (Saratoga Springs, NY); Salamah, Samir A. (Niskayuna, NY); DeStefano, Thomas Daniel (Ballston Lake, NY)

    2002-01-01

    The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

  3. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Tight Western Sands

    SciTech Connect (OSTI)

    Riedel, E.F.; Cowan, C.E.; McLaughlin, T.J.

    1980-02-01

    Results of a study to identify and evaluate potential public health and safety problems and the potential environmental impacts from recovery of natural gas from Tight Western Sands are reported. A brief discussion of economic and technical constraints to development of this resource is also presented to place the environmental and safety issues in perspective. A description of the resource base, recovery techniques, and possible environmental effects associated with tight gas sands is presented.

  4. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    DOE Patents [OSTI]

    Rao, Dandina N. (Baton Rouge, LA)

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  5. Rotary gas expander for energy recovery from natural gas expansion. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-12-15

    The specific purpose of this project was to develop a positive-displacement rotary expansion device (based on the Wankel Engine principle) and demonstrate that it could be used as an economical alternative to sophisticated turboexpanders for low gas flow and small pressure differential stations. The positive-displacement rotary expander would operate at much lower speeds than conventional turboexpanders. It would therefore be more efficient at lower pressure differentials and gas flows, and could cost significantly less because inefficient and costly gear-reduction equipment would not be required. Another purpose of this project was to develop a fail safe control system for operation in hazardous atmospheres. Design considerations for the rotary gas expander and the control system are discussed. A projection is made of the electrical generation potential and the economics of recovering the energy present in the high temperature gas. (MCW)

  6. Surface acoustic wave sensors/gas chromatography; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process

    SciTech Connect (OSTI)

    Klint, B.W.; Dale, P.R.; Stephenson, C.

    1997-12-01

    This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon the following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.

  7. Oak Ridge

    Office of Legacy Management (LM)

    ~, . ., . .- -. -_ .._ ..-. - .- ..- Oak Ridge Associated post Of%ce Box 117 Uniwx.ities Oak Riie. Tennessee 37631-0117 Apill. 1991 Ms. cethy Hickey Bschtel Nstiod Inc. P. 0. Box 350 Oak Ridge, Tn 378314350 Subject: BLDG. 621-527 - BAKER AND WlLLfAMS WAREHOUSES Deer Ms. Hiikey: 8etween March 1 l-22, 1991, the Envfronmental Suvey and Sine Assessment Program fESSAP1 of Oak Ridge Associated Urtiversities fORALl conducted a radiological charscterization euwey of the East end West besernent bays in

  8. Calendar Year 2007 Resource Conservation and Recovery Act Annual Monitoring Report for the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee - RCRA Post-Closure Permit Nos. TNHW-113, TNHW-116, and TNHW-128

    SciTech Connect (OSTI)

    Elvado Environmental

    2008-02-01

    This report contains groundwater quality monitoring data obtained during calendar year (CY) 2007 at the following hazardous waste treatment, storage, and disposal (TSD) units located at the US Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee; this S-3 Site, Oil Landfarm, Bear Creek Burial Grounds/Walk-In Pits (BCBG/WIP), Eastern S-3 Site Plume, Chestnut Ridge Security Pits (CRSP), Chestnut Ridge Sediment Disposal Baste (CRSDB), few Hollow Quarry (KHQ), and East Chestnut Ridge Waste Pile (ECRWP). Hit monitoring data were obtained in accordance with the applicable Resource Conservation and Recovery Act of 1976 (RCRA) hazardous waste post-closure permit (PCP). The Tennessee Department of Environment and Conservation (TDEC) - Division of Solid Waste Management issued the PCPs to define the requirements for RCRA post-closure inspection, maintenance, and groundwater monitoring at the specified TSD units located within the Bear Creek Hydrogeologic Regime (PCP no. TNHW-116), Upper East Fork Poplar Creek Hydrogeologic Regime (PCP no. TNHW-113), and Chestnut Ridge Hydrogeologic Regime (PCP no. TNHW-128). Each PCP requires the Submittal of an annual RCRA groundwater monitoring report containing the groundwater sampling information and analytical results obtained at each applicable TSD unit during the preceding CY, along with an evaluation of groundwater low rates and directions and the analytical results for specified RCRA groundwater target compounds; this report is the RCRA annual groundwater monitoring report for CY 2007. The RCRA post-closure groundwater monitoring requirements specified in the above-referenced PCP for the Chestnut Ridge Regime replace those defined in the previous PCP (permit no. TNHW-088), which expired on September 18, 2005, but remained effective until the TDEC issued the new PCP in September 2006. The new PCP defines site-specific groundwater sampling and analysis requirements for the CRSDB, CRSP, and KHQ that differ from those established under the expired PCP, including modified suites of laboratory analytes (RCRA groundwater target compounds) for each site and annual rather than semiannual sampling frequencies for the CRSDB and KHQ. The new PCP also specifies the RCRA post-closure groundwater monitoring requirements for the ECRWP, a closed TSD unit that was not addressed in the expired PCP.

  9. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh�s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

  10. Microsoft Word - NETL-TRS-4-2014_CO2 Storage and Enhanced Gas Recovery_20140924.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation of CO 2 Storage and Enhanced Gas Recovery in Depleted Shale Gas Formations Using a Dual- Porosity/Dual-Permeability, Multiphase Reservoir Simulator 25 September 2014 Office of Fossil Energy NETL-TRS-4-2014 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

  11. Oak Ridge Environmental Management Program Completes Work at Bethel Valley

    Broader source: Energy.gov (indexed) [DOE]

    Burial Grounds | Department of Energy Media Contact Ben Williams http://www.oakridge.doe.gov 865-576-0885 OAK RIDGE, Tenn. - The U.S. Department of Energy's (DOE) Oak Ridge Environmental Management (EM) program recently completed upgrades and soil remediation work at the Bethel Valley Burial Grounds, using approximately $17.5 million in American Recovery and Reinvestment Act funds. Oak Ridge's EM program was able to use Recovery Act funds to address five areas needing improvement, including

  12. Low-quality natural gas sulfur removal/recovery: Task 2. Topical report, September 30, 1992--August 29, 1993

    SciTech Connect (OSTI)

    Cook, W.J.; Neyman, M.; Brown, W.; Klint, B.W.; Kuehn, L.; O`Connell, J.; Paskall, H.; Dale, P.

    1993-08-01

    The primary purpose of this Task 2 Report is to present conceptual designs developed to treat a large portion of proven domestic natural gas reserves which are low quality. The conceptual designs separate hydrogen sulfide and large amounts of carbon dioxide (>20%) from methane, convert hydrogen sulfide to elemental sulfur, produce a substantial portion of the carbon dioxide as EOR or food grade CO{sub 2}, and vent residual CO{sub 2} virtually free of contaminating sulfur containing compounds. A secondary purpose of this Task 2 Report is to review existing gas treatment technology and identify existing commercial technologies currently used to treat large volumes of low quality natural gas with high acid content. Section II of this report defines low quality gas and describes the motivation for seeking technology to develop low quality gas reserves. The target low quality gas to be treated with the proposed technology is identified, and barriers to the production of this gas are reviewed. Section III provides a description of the Controlled Freeze Zone (CFG)-CNG technologies, their features, and perceived advantages. The three conceptual process designs prepared under Task 2 are presented in Section IV along with the design basis and process economics. Section V presents an overview of existing gas treatment technologies, organized into acid gas removal technology and sulfur recovery technology.

  13. OAK RIDGE

    Office of Legacy Management (LM)

    or _^ *ORNL/RASA-89/1 I : OAK RIDGE _NATIONAL LABORATORY |*H~~~~~ -~~Results of the I'I-------_____ ~ Preliminary Radiological * "~ i, .irri uSurvey at B&T Metals, _" 425 West Town Street, i * !' V Columbus, Ohio (C0001) I i. U Wo. 0aa-. r m ~~~~~~~~~ if? _ ~ W. D. Cottrell J. L Quillen J. W. Crutcher , I OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY ORNL/RASA-89/1 3*1~~ ~HEALTH AND SAFETY RESEARCH DIVISION Waste Management Research and

  14. Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery

    SciTech Connect (OSTI)

    Yang Na; Zhang Hua; Chen Miao; Shao Liming; He Pinjing

    2012-12-15

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO{sub 2}-eq t{sup -1} rw. Within all process stages, the emission of fossil CO{sub 2} from the combustion of MSW was the main contributor (111-254 kg CO{sub 2}-eq t{sup -1} rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO{sub 2}-eq t{sup -1} rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

  15. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analyses and forms, inspection logs, equipment identification, etc.

  16. Oak Ridge Office

    Office of Environmental Management (EM)

    PO. Box 2001 Oak Ridge, Tennessee 37831 July 21, 2010 Mr. Ron Murphree, Chair Oak Ridge Site Specific Advisory Board Post Office Box 200 1 Oak Ridge, Tennessee 3783 1 Dear Mr....

  17. Application of pathways analyses for site performance prediction for the Gas Centrifuge Enrichment Plant and Oak Ridge Central Waste Disposal Facility

    SciTech Connect (OSTI)

    Pin, F.G.; Oblow, E.M.

    1984-01-01

    The suitability of the Gas Centrifuge Enrichment Plant and the Oak Ridge Central Waste Disposal Facility for shallow-land burial of low-level radioactive waste is evaluated using pathways analyses. The analyses rely on conservative scenarios to describe the generation and migration of contamination and the potential human exposure to the waste. Conceptual and numerical models are developed using data from comprehensive laboratory and field investigations and are used to simulate the long-term transport of contamination to man. Conservatism is built into the analyses when assumptions concerning future events have to be made or when uncertainties concerning site or waste characteristics exist. Maximum potential doses to man are calculated and compared to the appropriate standards. The sites are found to provide adequate buffer to persons outside the DOE reservations. Conclusions concerning site capacity and site acceptability are drawn. In reaching these conclusions, some consideration is given to the uncertainties and conservatisms involved in the analyses. Analytical methods to quantitatively assess the probability of future events to occur and the sensitivity of the results to data uncertainty may prove useful in relaxing some of the conservatism built into the analyses. The applicability of such methods to pathways analyses is briefly discussed. 18 refs., 9 figs.

  18. Oak Ridge Office

    Office of Environmental Management (EM)

    Oak Ridge Terry Frank, Anderson County Mayor Mark Watson, Oak Ridge City Manager Ron Woody, Roane County Executive Cate Alexander, EM-42, FORS Fred Butterfield, EM-51, FORS...

  19. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 1, 2008 Oak Ridge Associated Universities Attn: Mr. Ivan Boatner, General Counsel P.O. Box 117 Oak Ridge, Tennessee 37831 Dear Mr. Boatner: SUBJECT: CONTRACT NO....

  20. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect (OSTI)

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  1. DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming

    Broader source: Energy.gov [DOE]

    Research sponsored by the U.S. Department of Energy Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana.

  2. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    DOE Patents [OSTI]

    Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

    2006-03-07

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  3. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Devonian shale

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    The purpose of this study is to identify and examine potential public health and safety issues and the potential environmental impacts from recovery of natural gas from Devonian age shale. This document will serve as background data and information for planners within the government to assist in development of our new energy technologies in a timely and environmentally sound manner. This report describes the resource and the DOE eastern gas shales project in Section 2. Section 3 describes the new and developing recovery technologies associated with Devonian shale. An assessment of the environment, health and safety impacts associated with a typical fields is presented in Section 4. The typical field for this assessment occupies ten square miles and is developed on a 40-acre spacing (that is, there is a well in each 40-acre grid). This field thus has a total of 160 wells. Finally, Section 5 presents the conclusions and recommendations. A reference list is provided to give a greater plant. Based on the estimated plant cost and the various cases of operating income, an economic analysis was performed employing a profitability index criterion of discounted cash flow to determine an interest rate of return on the plant investment.

  4. Geohydrologic study of the Michigan Basin for the applicability of Jack W. McIntyre`s patented process for simultaneous gas recovery and water disposal in production wells

    SciTech Connect (OSTI)

    Maryn, S.

    1994-03-01

    Geraghty & Miller, Inc. of Midland, Texas conducted a geohydrologic study of the Michigan Basin to evaluate the applicability of Jack McIntyre`s patented process for gas recovery and water disposal in production wells. A review of available publications was conducted to identify, (1) natural gas reservoirs which generate large quantities of gas and water, and (2) underground injection zones for produced water. Research efforts were focused on unconventional natural gas formations. The Antrim Shale is a Devonian gas shale which produces gas and large quantities of water. Total 1992 production from 2,626 wells was 74,209,916 Mcf of gas and 25,795,334 bbl of water. The Middle Devonian Dundee Limestone is a major injection zone for produced water. ``Waterless completion`` wells have been completed in the Antrim Shale for gas recovery and in the Dundee Limestone for water disposal. Jack McIntyre`s patented process has potential application for the recovery of gas from the Antrim Shale and simultaneous injection of produced water into the Dundee Limestone.

  5. Gas treatment and by-products recovery of Thailand`s first coke plant

    SciTech Connect (OSTI)

    Diemer, P.E.; Seyfferth, W.

    1997-12-31

    Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

  6. Oak Ridge Office

    Office of Environmental Management (EM)

    Oak Ridge Terry Frank, Anderson County Mayor Mark Watson, Oak Ridge City Manager Ron Woody, Roane County Executive Cate Alexander, EM-42, FORS Fred Butterfiel9, EM-51, FORS...

  7. Oak Ridge Operations.

    Office of Legacy Management (LM)

    4s - 22 Department of Energy Oak Ridge Operations. SI9J>liB P.O. Box 2001 Oak Ridge. Tennessee 37831-8723 October 21, 1994 Mr. Charles A. Duritsa Regional Director...

  8. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas Utilizing proven and reliable technology and equipment Maximizing electrical efficiency Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill Maximizing equipment uptime Minimizing water consumption Minimizing post-combustion emissions The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWhs of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  9. Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism

    SciTech Connect (OSTI)

    El-Fadel, Mutasem; Abi-Esber, Layale; Salhab, Samer

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

  10. Report of the workshop on Arctic oil and gas recovery. [Offshore

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-09-01

    Mission of the workshop was to identify research priorities for the technology related to Arctic offshore oil and gas production. Two working groups were formed on ice-related subjects and soil-related subjects. Instrumentation needed to accomplish some of the research objectives was also discussed. Results of a research priority allocation survey are summarized. (DLC)

  11. Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery

    DOE Patents [OSTI]

    Ochs, Thomas L. (Albany, OR); Summers, Cathy A. (Albany, OR); Gerdemann, Steve (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul (Independence, OR); Patrick, Brian R. (Chicago, IL)

    2011-10-18

    A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

  12. Review of technology for Arctic offshore oil and gas recovery. Appendices

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-06-06

    This volume contains appendices of the following: US Geological Survey Arctic operating orders, 1979; Det Noske Vertas', rules for the design, construction and inspection of offshore technology, 1977; Alaska Oil and Gas Association, industry research projects, March 1980; Arctic Petroleum Operator's Association, industry research projects, January 1980; selected additional Arctic offshore bibliography on sea ice, icebreakers, Arctic seafloor conditions, ice-structures, frost heave and structure icing.

  13. DOE Completes Five Recovery Act Projects | Department of Energy

    Office of Environmental Management (EM)

    Completes Five Recovery Act Projects DOE Completes Five Recovery Act Projects August 18, 2011 - 12:00pm Addthis OAK RIDGE, Tenn. - The U.S. Department of Energy's (DOE) Environmental Management (EM) program recently completed five projects at the Oak Ridge site funded through the American Recovery and Reinvestment Act. The projects included the expansion of two landfills at the Oak Ridge Reservation (ORR). The Sanitary Landfill, a designated area for non-hazardous waste, was expanded by 385,000

  14. Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993

    SciTech Connect (OSTI)

    Levey, R.A.; Finley, R.J.; Hardage, B.A.

    1994-06-01

    The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

  15. Oak Ridge | Department of Energy

    Energy Savers [EERE]

    Ridge Oak Ridge Oak Ridge's compliance agreements - which help support the development of effective compliance approaches and strategies - are listed below. Summaries of the agreements also are included. PDF icon Oak Ridge Reservation Compliance Order, September 26, 1995 PDF icon Oak Ridge Reservation Compliance Order, September 26, 1995 Summary PDF icon Federal Facility Agreement for the Oak Ridge Reservation, January 1, 1992 PDF icon Federal Facility Agreement for the Oak Ridge Reservation,

  16. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

  17. Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas

    SciTech Connect (OSTI)

    Mohan, Arvind Murali; Hartsock, Angela; Hammack, Richard W.; Vidic, Radisav D; Gregory, Kelvin B.

    2013-12-01

    Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa [gamma]-proteobacteria, [alpha]-proteobacteria, ?-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the [alpha]-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments.

  18. Oak Ridge Office

    Office of Environmental Management (EM)

    Committee Myron Iwanski, Anderson County Mayor Mark Watson, Oak Ridge City Manager Ron Woody, Roane County Executive Cate Alexander, EM-42, FORS Fred Butterfield, EM-51, FORS...

  19. Manager, Oak Ridge Office

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will provide overall executive leadership to and integration of the Oak Ridge Integrated Support Center, which houses mission critical activities and support...

  20. Type B Accident Investigation of the Subcontractor Employee Injuries from a November 15, 2000, Fall Accident at the Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    On November 15, 2000, an accident occurred at the U. S. Department of Energy (DOE) Oak Ridge National Laboratory located in Oak Ridge, Tennessee. An employee of Decon and Recovery Services of Oak Ridge, LLC (DRS), working on an Oak Ridge Operations Office (ORO) Environmental Management decommissioning and demolition project received serious injuries from a fall (approximately 13 feet) from a fixed ladder.

  1. Recovery Act. Sub-Soil Gas and Fluid Inclusion Exploration and Slim Well Drilling, Pumpernickel Valley, Nevada

    SciTech Connect (OSTI)

    Fairbank, Brian D.

    2015-03-27

    Nevada Geothermal Power Company (NGP) was awarded DOE Award DE-EE0002834 in January 2010 to conduct sub-soil gas and fluid inclusion studies and slim well drilling at its Black Warrior Project (now known as North Valley) in Washoe and Churchill Counties, Nevada. The project was designed to apply highly detailed, precise, low-cost subsoil and down-hole gas geochemistry methods from the oil and gas industry to identify upflow zone drilling targets in an undeveloped geothermal prospect. NGP ran into multiple institutional barriers with the Black Warrior project relating to property access and extensive cultural survey requirement. NGP requested that the award be transferred to NGP’s Pumpernickel Valley project, due to the timing delay in obtaining permits, along with additional over-budget costs required. Project planning and permit applications were developed for both the original Black Warrior location and at Pumpernickel. This included obtaining proposals from contractors able to conduct required environmental and cultural surveying, designing the two-meter probe survey methodology and locations, and submitting Notices of Intent and liaising with the Bureau of Land Management to have the two-meter probe work approved. The award had an expiry date of April 30, 2013; however, due to the initial project delays at Black Warrior, and the move of the project from Black Warrior to Pumpernickel, NGP requested that the award deadline be extended. DOE was amenable to this, and worked with NGP to extend the deadline. However, following the loss of the Blue Mountain geothermal power plant in Nevada, NGP’s board of directors changed the company’s mandate to one of cash preservation. NGP was unable to move forward with field work on the Pumpernickel property, or any of its other properties, until additional funding was secured. NGP worked to bring in a project partner to form a joint venture on the property, or to buy the property. This was unsuccessful, and NGP notified the DOE on February 13, 2014 that it would not be able to complete the project objectives before the recovery act awards deadline and submitted a mutual termination request to the DOE which was accepted.

  2. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Advancing a Novel Microbial Reverse Electrodialysis Electrolytic System. Many current manufacturing processes produce both low-grade waste heat and wastewater effuents which contain organic materials. A microbial reverse electrodialysis electrolytic cell, designed to integrate

  3. Ridge Partners | Open Energy Information

    Open Energy Info (EERE)

    Product: Ridge Partners has developed a diversified portfolio of Caribbean and Latin American energy and transportation infrastructure projects. References: Ridge Partners1 This...

  4. Oak Ridge National Laboratory to be Fueled by Biomass | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Oak Ridge National Laboratory (ORNL) will be saving nearly 4 million a year by switching a portion of their current natural gas-fueled steam plant for one powered by biofuel. The ...

  5. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Wilson, R. C.; Lewis, K. K.

    1991-09-01

    This report presents data and information related to remedial investigation studies for Oak Ridge National Laboratory (ORNL). Information is included on a soil gas survey, surface radiological investigations of waste areas, and well installation for ground water monitoring. (CBS)

  6. Oak Ridge Site

    Broader source: Energy.gov [DOE]

    OVERVIEWThe U.S. Department of Energy's (DOE) Oak Ridge Reservation is located on approximately 33,500 acres in East Tennessee. The reservation was established in the early 1940s by the Manhattan...

  7. Field Office, Osk Ridge

    Office of Legacy Management (LM)

    ,_ . -... .,- .._ -,,. ..- _~ ,.- .- ,~._ _- "- .- Depanment of Energy Field Office, Osk Ridge P.O. Box 2001 Oak Ridge, Tennessee 37831- 8723 April 20, 1993 Ms. Rita Aldrich Principle Radiophysicist Oivisfon of Safety and Health New York State Department of Labor 1 Rain Street Brooklyn, New York 11201 Dear Iis. Aldrich: BAKER AND WILLIAM WAREHOUSES SITE - COMPLETION OF CLEANUP ACTIVITIES The purpose of this notice is to inform you about further scheduled cleanup activities to be conducted

  8. Oak Ridge Reservation Needs Assessment

    Broader source: Energy.gov [DOE]

    Needs Assessment for former Oak Ridge National Laboratory and Y-12 Nuclear Security Complex production workers.

  9. An Oak Ridge baseball team | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Oak Ridge baseball team An Oak Ridge baseball team An Oak Ridge baseball team

  10. Report of the workshop on Arctic oil and gas recovery held at Sandia National Laboratories, Albuquerque, New Mexico, June 30-July 2, 1980

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-09-01

    This report is the result of a workshop on Arctic offshore oil and gas recovery, held at Sandia National Laboratories Albuquerque, New Mexico, on June 30-July 2, 1980. Research priorities for the technology related to Arctic offshore oil and gas production were defined. The workshop was preceded by a report entitled, A Review of Technology for Arctic Offshore Oil and Gas Recovery, authored by Dr. W. M. Sackinger. The mission of the workshop was to identify research priorities without considering whether the research should be conducted by government or by industry. Nevertheless, at the end of the meeting the general discussion did consider this, and the concensus was that environmental properties should certainly be of concern to the government, that implementation of petroleum operations was the province of industry, and that overlapping, coordinated areas of interest include both environment and interactions of the environment with structures, transport systems, and operations. An attempt to establish relative importance and a time frame was made after the workshop through the use of a survey form. The form and a summary of its results, and a discussion of its implications, are given.

  11. Oak Ridge Associated Universities Procurement Questionnaire Application

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Supplier Profile PIA, Oak ridge Operations Office | Department of Energy Associated Universities Procurement Questionnaire Application System Supplier Profile PIA, Oak ridge Operations Office Oak Ridge Associated Universities Procurement Questionnaire Application System Supplier Profile PIA, Oak ridge Operations Office Oak Ridge Associated Universities Procurement Questionnaire Application System Supplier Profile PIA, Oak ridge Operations Office PDF icon Oak Ridge Associated

  12. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 30, 2008 Oak Ridge Associated Universities Attn: Mr. Ivan Boatner, General Counsel P.O. Box 117 Oak Ridge, Tennessee 37831 Dear Mr. Boatner: SUBJECT: CONTRACT NO. DE-AC05-060R231 00, MODIFICATION A049 Enclosed is one fully executed copy of the subject document. This modification obligates the sum of $14,265 ,839.77, resulting in total obligations to this contract of $515,743,782 .56 . If you have any questions regarding this action, you may contact me at 576-0757 or via e-mail at

  13. Energy Recovery Associates | Open Energy Information

    Open Energy Info (EERE)

    - NY NJ CT PA Area Sector: Biofuels Product: Landfill Gas, Digester Gas, mixed methane and Greenhouse gases recovery and utilization equipment and projects. Number of...

  14. Antelope Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Antelope Ridge Wind Farm Jump to: navigation, search Name Antelope Ridge Wind Farm Facility Antelope Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Locust Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Locust Ridge Wind Farm Jump to: navigation, search Name Locust Ridge Wind Farm Facility Locust Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  16. Laredo Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Laredo Ridge Wind Farm Jump to: navigation, search Name Laredo Ridge Wind Farm Facility Laredo Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  17. Hatchet Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hatchet Ridge Wind Farm Jump to: navigation, search Name Hatchet Ridge Wind Farm Facility Hatchet Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  18. Allegheny Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Allegheny Ridge Wind Farm Jump to: navigation, search Name Allegheny Ridge Wind Farm Facility Allegheny Ridge wind farm Sector Wind energy Facility Type Commercial Scale Wind...

  19. Vansycle Ridge II | Open Energy Information

    Open Energy Info (EERE)

    Vansycle Ridge II Jump to: navigation, search Name Vansycle Ridge II Facility Vansycle Ridge II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  20. In-Situ Measurements of Low Enrichment Uranium Holdup Process Gas Piping at K-25 - Paper for Waste Management Symposia 2010 East Tennessee Technology Park Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Rasmussen B.

    2010-01-01

    This document is the final version of a paper submitted to the Waste Management Symposia, Phoenix, 2010, abstract BJC/OR-3280. The primary document from which this paper was condensed is In-Situ Measurement of Low Enrichment Uranium Holdup in Process Gas Piping at K-25 Using NaI/HMS4 Gamma Detection Systems, BJC/OR-3355. This work explores the sufficiency and limitations of the Holdup Measurement System 4 (HJVIS4) software algorithms applied to measurements of low enriched uranium holdup in gaseous diffusion process gas piping. HMS4 has been used extensively during the decommissioning and demolition project of the K-25 building for U-235 holdup quantification. The HMS4 software is an integral part of one of the primary nondestructive assay (NDA) systems which was successfully tested and qualified for holdup deposit quantification in the process gas piping of the K-25 building. The initial qualification focused on the measurement of highly enriched UO{sub 2}F{sub 2} deposits. The purpose of this work was to determine if that qualification could be extended to include the quantification of holdup in UO{sub 2}F{sub 2} deposits of lower enrichment. Sample field data are presented to provide evidence in support of the theoretical foundation. The HMS4 algorithms were investigated in detail and found to sufficiently compensate for UO{sub 2}F{sub 2} source self-attenuation effects, over the range of expected enrichment (4-40%), in the North and East Wings of the K-25 building. The limitations of the HMS4 algorithms were explored for a described set of conditions with respect to area source measurements of low enriched UO{sub 2}F{sub 2} deposits when used in conjunction with a 1 inch by 1/2 inch sodium iodide (NaI) scintillation detector. The theoretical limitations of HMS4, based on the expected conditions in the process gas system of the K-25 building, are related back to the required data quality objectives (DQO) for the NBA measurement system established for the K-25 demolition project. The combined review of the HMS software algorithms and supporting field measurements lead to the conclusion that the majority of process gas pipe measurements are adequately corrected for source self-attenuation using HMS4. While there will be instances where the UO{sub 2}F{sub 2} holdup mass presents an infinitely thick deposit to the NaI-HMS4 system these situations are expected to be infrequent. This work confirms that the HMS4 system can quantify UO{sub 2}F{sub 2} holdup, in its current configuration (deposition, enrichment, and geometry), below the DQO levels for the K-25 building decommissioning and demolition project. For an area measurement of process gas pipe in the K-25 building, if an infinitely thick UO{sub 2}F{sub 2} deposit is identified in the range of enrichment of {approx}4-40%, the holdup quantity exceeds the corresponding DQO established for the K-25 building demolition project.

  1. SBOT TENNESSEE OAK RIDGE INSTITUTE SCIENCE AND EDUCATION POC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TENNESSEE OAK RIDGE INSTITUTE SCIENCE AND EDUCATION POC Ernest W. Whitaker Telephone (865) 576-9224 Email ernest.whitaker@orise.orau.gov ADMINISTATIVE / WASTE / REMEDIATION Professional Employer Organizations 561330 Exterminating and Pest Control Services 561710 Landscaping Services 561730 Remediation Services 562910 Materials Recovery Facilities 562920 CONSTRUCTION Power and Communication Line and Related Structures Construction 237130 Other Building Equipment Contractors 238290 EDUCATION

  2. cityOakRidgeWeb

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Children 's Museum OFFICE OF SCIENTIFIC & TECHNICAL INFORMATION Oak Ridge Marina Centennial Golf Course Oak Ridge Memorial Park Swimming Pool 11 10 9 9 8 6 7 5 4 3 2 1...

  3. Spray process for the recovery of CO.sub.2 from a gas stream and a related apparatus

    DOE Patents [OSTI]

    Soloveichik, Grigorii Lev; Perry, Robert James; Wood, Benjamin Rue; Genovese, Sarah Elizabeth

    2014-02-11

    A method for recovering carbon dioxide (CO.sub.2) from a gas stream is disclosed. The method includes the step of reacting CO.sub.2 in the gas stream with fine droplets of a liquid absorbent, so as to form a solid material in which the CO.sub.2 is bound. The solid material is then transported to a desorption site, where it is heated, to release substantially pure CO.sub.2 gas. The CO.sub.2 gas can then be collected and used or transported in any desired way. A related apparatus for recovering carbon dioxide (CO.sub.2) from a gas stream is also described herein.

  4. Enforcement Letter, Oak Ridge National Laboratory LLC- May 13, 2009 |

    Office of Environmental Management (EM)

    Department of Energy Oak Ridge National Laboratory LLC- May 13, 2009 Enforcement Letter, Oak Ridge National Laboratory LLC- May 13, 2009 May 13, 2009 Issued to UT-Battelle, LLC related to a Radioactive Material Release at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory On May 13, 2009, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of Enforcement issued an Enforcement Letter to UT-Battelle related to radioactive noble gas

  5. Tennessee: Oak Ridge National Laboratory Optimizes Carbon Fiber Production,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduces Carbon Fiber Costs by 30% | Department of Energy Tennessee: Oak Ridge National Laboratory Optimizes Carbon Fiber Production, Reduces Carbon Fiber Costs by 30% Tennessee: Oak Ridge National Laboratory Optimizes Carbon Fiber Production, Reduces Carbon Fiber Costs by 30% January 24, 2014 - 12:00am Addthis The high cost of aerospace-grade carbon fiber (CF) is currently a barrier to widespread commercialization of light-weight, high-pressure hydrogen and natural gas storage tanks. To

  6. Oak Ridge Associated Llniversities

    Office of Legacy Management (LM)

    ii!fil Prepared by Oak Ridge Associated Llniversities Prepared for U.S. Nuclear Regulatory Commission's Region I Office Supported by Safeguards dnd Materials Program Branch; Division of Quality Assurance, Safeguards, and Inspection Programs; Off ice of Inspection and r Enforcement I - CONFIRMATORY RADIOLOGICAL SURVEYS OF BUILDING 10 AND OUTSIDE AREAS ASSOCIATED WITH BUILDINGS 7 AND 8 WESTINGHOUSE NUCLEAR FUEL DIVISION CHESWICK, PENNSYLVANIA A. J. BOERNER Radiological Site Assessment Program

  7. ASSESSING AND FORECASTING, BY PLAY, NATURAL GAS ULTIMATE RECOVERY GROWTH AND QUANTIFYING THE ROLE OF TECHNOLOGY ADVANCEMENTS IN THE TEXAS GULF COAST BASIN AND EAST TEXAS

    SciTech Connect (OSTI)

    William L. Fisher; Eugene M. Kim

    2000-12-01

    A detailed natural gas ultimate recovery growth (URG) analysis of the Texas Gulf Coast Basin and East Texas has been undertaken. The key to such analysis was determined to be the disaggregation of the resource base to the play level. A play is defined as a conceptual geologic unit having one or more reservoirs that can be genetically related on the basis of depositional origin of the reservoir, structural or trap style, source rocks and hydrocarbon generation, migration mechanism, seals for entrapment, and type of hydrocarbon produced. Plays are the geologically homogeneous subdivision of the universe of petroleum pools within a basin. Therefore, individual plays have unique geological features that can be used as a conceptual model that incorporates geologic processes and depositional environments to explain the distribution of petroleum. Play disaggregation revealed important URG trends for the major natural gas fields in the Texas Gulf Coast Basin and East Texas. Although significant growth and future potential were observed for the major fields, important URG trends were masked by total, aggregated analysis based on a broad geological province. When disaggregated by plays, significant growth and future potential were displayed for plays that were associated with relatively recently discovered fields, deeper reservoir depths, high structural complexities due to fault compartmentalization, reservoirs designated as tight gas/low-permeability, and high initial reservoir pressures. Continued technology applications and advancements are crucial in achieving URG potential in these plays.

  8. Oak Ridge National Laboratory DOE Oak Ridge Environmental Management Program

    Office of Environmental Management (EM)

    National Laboratory DOE Oak Ridge Environmental Management Program Background The U.S. Department of Energy's (DOE) Oak Ridge Reservation includes several contaminated areas that are a result of years of operation at Oak Ridge National Laboratory (ORNL). To better address the restoration of ORNL, the Environmental Management program has divided ORNL into two major areas: Bethel Valley and Melton Valley. The Bethel Valley area includes the principal research facilities. The Melton Valley Area was

  9. Experimental and life cycle assessment analysis of gas emission from mechanicallybiologically pretreated waste in a landfill with energy recovery

    SciTech Connect (OSTI)

    Di Maria, Francesco Sordi, Alessio; Micale, Caterina

    2013-11-15

    Highlights: Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup ?1}) was evaluated. k ranged from 0.436 to 0.308 year{sup ?1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.

  10. Oak Ridge Site Specific

    Office of Environmental Management (EM)

    Site Specific adviSORy BOaRd fy 2014 annual RepORt OctOBeR 2013 - SeptemBeR 2014 ORSSAB FY 2014 ANNUAL REPORT FY 2014 was my first term as chair of the Oak Ridge Site Specific Advisory Board. I thank the members of the board for putting their confidence in me for the year and again for FY 2015. It is an honor and a privilege to represent this important organization. The board's primary mission is to provide independent advice and recommendations to the Department of Energy on its environmental

  11. Oak Ridge Associated

    Office of Legacy Management (LM)

    2012 IL.06 *128 Oak Ridge Associated Post Of/ICE: 80 '17 Unl e Sllles Oa d. )Cp€ T nness £: 37 1 *01 '7 '-1.\0.-»"--" 10. June 14, 1989 Mr. Andrew Wallo ruSRAP/Surplus Facilities Group Division of Facili y & Site Decommissioning Projects Office of Nuclear Energy U.S. D~partment of Energy Washington, D.C. 20545 Subject: LETTER REPORT - VERIFIC~TION ACTIVITIES AT UNIVERSITY OF CHICAGO Dear Mr. Wallo: Enclosed is the report for the recent ORAU verification activities involving

  12. Oak Ridge Operations

    Office of Legacy Management (LM)

    Ridge. Tennessee 37831- 8723 October 6, 1993 Ms. Susan Zacker State H i s t o r i c Preservation O f f i c e - - Pennsylvania H i s t o r i c a l and Museum Cornmi ssion P.O. Box 1026 Harrisburg, Pennsylvania 17108 Dear Ms. Zacker: SPRINGDALE SITE - NATIONAL HISTORIC PRESERVATION ACT (NHPA) (SECTION 106) DETERMINATION I n accordance w i t h Section 106 o f t h e National H i s t o r i c Preservation Act (NHPA), t h e Department o f Energy (DOE) has determined t h a t t h e proposed removal o f r

  13. Oak Ridge Operations YTO

    Office of Legacy Management (LM)

    ed States Government Department of Energy Oak Ridge Operations YTO r , , EM-93:Hartman I -= CATEGORICAL EXCLUSION (CX) DETERMINATION - RMOVAL ACTION AT M E SPRINGDALE r SITE I -a Carol U. Borgstrom, Director, Office o f NEPA Oversight, EH-25 . r Attached i s a categorical exclusion (CX) determination describing t h e proposed removal and disposal o f r a d i o l o g i c a l l y contaminated materials a t t h e r Springdale, Pennsylvania, s i t e . I have determined t h a t t h i s a c t i o n

  14. OAK RIDGE NATIONAL LABORATORY

    Office of Legacy Management (LM)

    POST OFFICE 80X 2008 OAK RIDGE, TENNESSEE 37831 MANAGED BY MARTIN MARlElTA ENERGY SYSTEMS. INC. FOR THE U.S. DEPARTMENT OF ENERGY July 15, 1992 Dr. W. A Williams Department of Energy Trevion II Building EM-421 Washington, D. C. 20585 Dear Dr. Williams: Trip Report of ORNL Health Physics Support at the Uniroyal Chemical Company Painesvik, Ohio, on June 25,1992 As per agreement between DOE-HQ and Uniroyal of Painesville, on June 25, 1992, a member, the undersigned, from the Health and Safety

  15. DOE Oak Ridge Operations managers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge Operations managers As the last few articles have shown, the period immediately following the end of World War II was one of constant and continuing change for Oak Ridge. The contractor changes settled down after all three sites came under Carbide and Carbon Chemicals Company. The Atomic Energy Commission, although headquartered in Washington, DC, continued to manage much of the atomic energy activities through the Oak Ridge office. By the early 1950's five important area offices were

  16. Oak Ridge ARI Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge ARI Overview Oak Ridge ARI Overview This fact sheet covers the asset revitalization initiative in Oak Ridge, TN. PDF icon Oakridge_Fact_Sheet.pdf More Documents & Publications ARI Quarterly Newsletter Oak Ridge ARI Overview ARI: Creating a 2020 DOE Recommendation 225: Recommendation on DOE Oak Ridge GIS Fact Sheets

  17. Secretary Chu Highlights Recovery Act Cleanup Progress | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Cleanup Progress Secretary Chu Highlights Recovery Act Cleanup Progress March 23, 2010 - 12:00am Addthis OAK RIDGE, TENN. - Energy Secretary Steven Chu announced today that the Department's Environmental Management program has spent more than $1.5 billion in American Recovery and Reinvestment Act funds on cleanup projects around the country - 25 percent of the program's total - creating an estimated 14,400 jobs since the start of the Recovery Act. "Because of the Recovery Act,

  18. Department of Energy Completes Demolition of K-33 Building- Largest Completed Demo Project in Oak Ridge History

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. - The U.S. Department of Energys Oak Ridge Environmental Management (EM) program recently completed its largest demolition project to date. The removal of K-33, a former gaseous diffusion uranium enrichment facility spanning 32-acres, was completed several months ahead of schedule. The American Recovery and Reinvestment Act funded the $51 million project.

  19. Oak Ridge Associ Universities

    Office of Legacy Management (LM)

    ir.\ "'t-"' , i 'Prepared by Oak Ridge Associ Universities Prepared for Division of Remedial Action Proiects 'U.S. Department of Energy 5 : ! l :;"i\ r l!! ,iri$, t . r ' i , , . 1 . E".:r- i{$, i. 'ii idi 1, . :{. I i:li C O M P R E H E N S I V E R A D I O L O G I C A L S U R V E Y O F F - S I T E P R O P E R T Y W N I A G A R A F A L L S S T O R A G E S I T E LEWlsToN, NEW YORK J . D . B E R G E R Radiol-oglcal Site Assessment Program Manpower Education, Research, and

  20. Oak Ridge Associated

    Office of Legacy Management (LM)

    l/s1 Prepared by Oak Ridge Associated 'Universities Prepared for Division of Remedial Action Froiects ilJ..S. Department of Energy N( , /7 C O M P R E H E N S I V E R A D I O L O G I C A L S U R V E Y O F F . S I T E P R O P E R T Y F N I A G A R A F A L L S S T O R A G E S I T E L E W I S T O N , N E W Y O R K J. D. BERGER Radiologieal Site Assessment Program . Manpower Education, Research, and Training Division FINAL REPORT February 1984 COMPREHENSIVE RADIOLOGICAI SURVEY OFF-SITE PROPERTY F

  1. Oak Ridge Universities

    Office of Legacy Management (LM)

    Oak Ridge Universities Prepared for Division of Remedial Action Projects U.S. Department of Energy C O M P R E H E N S I V E R A D I O L O G I C A L S U R V E Y O F F - S I T E P R O P E R T Y X N I A G A R A F A L L S S T O R A G E S I T E L E W l s T o N , N E W Y O R K J . D . B E R G E R R a d i o l o g i c a l M a n p o w e r E d u c a t i o n ' Site Assessment Program Research, and Training Division FINA], May REPORT 1 9 8 4 COMPREHENSIVE MDIOLOGICAI SURVEY OFF-SITE PROPERTY X NIAGARA

  2. Small Business Administration Honors Oak Ridge Subcontractor

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. The U.S. Small Business Administration (SBA) recently honored an environmental cleanup company that supports Oak Ridges EM program as its Subcontractor of the Year in an eight-state region.

  3. Flat Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Flat Ridge Wind Farm Jump to: navigation, search Name Flat Ridge Wind Farm Facility Flat Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  4. Synthesis and development of processes for the recovery of sulfur from acid gases. Part 1, Development of a high-temperature process for removal of H{sub 2}S from coal gas using limestone -- thermodynamic and kinetic considerations; Part 2, Development of a zero-emissions process for recovery of sulfur from acid gas streams

    SciTech Connect (OSTI)

    Towler, G.P.; Lynn, S.

    1993-05-01

    Limestone can be used more effectively as a sorbent for H{sub 2}S in high-temperature gas-cleaning applications if it is prevented from undergoing calcination. Sorption of H{sub 2}S by limestone is impeded by sintering of the product CaS layer. Sintering of CaS is catalyzed by CO{sub 2}, but is not affected by N{sub 2} or H{sub 2}. The kinetics of CaS sintering was determined for the temperature range 750--900{degrees}C. When hydrogen sulfide is heated above 600{degrees}C in the presence of carbon dioxide elemental sulfur is formed. The rate-limiting step of elemental sulfur formation is thermal decomposition of H{sub 2}S. Part of the hydrogen thereby produced reacts with CO{sub 2}, forming CO via the water-gas-shift reaction. The equilibrium of H{sub 2}S decomposition is therefore shifted to favor the formation of elemental sulfur. The main byproduct is COS, formed by a reaction between CO{sub 2} and H{sub 2}S that is analogous to the water-gas-shift reaction. Smaller amounts of SO{sub 2} and CS{sub 2} also form. Molybdenum disulfide is a strong catalyst for H{sub 2}S decomposition in the presence of CO{sub 2}. A process for recovery of sulfur from H{sub 2}S using this chemistry is as follows: Hydrogen sulfide is heated in a high-temperature reactor in the presence of CO{sub 2} and a suitable catalyst. The primary products of the overall reaction are S{sub 2}, CO, H{sub 2} and H{sub 2}O. Rapid quenching of the reaction mixture to roughly 600{degrees}C prevents loss Of S{sub 2} during cooling. Carbonyl sulfide is removed from the product gas by hydrolysis back to CO{sub 2} and H{sub 2}S. Unreacted CO{sub 2} and H{sub 2}S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H{sub 2} and CO, which recovers the hydrogen value from the H{sub 2}S. This process is economically favorable compared to the existing sulfur-recovery technology and allows emissions of sulfur-containing gases to be controlled to very low levels.

  5. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  6. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  7. Oak Ridge OPEIU 2001 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge OPEIU 2001 Oak Ridge OPEIU 2001 Oak Ridge OPEIU 2001 INTRO PDF icon OakRidge-AFL-CIO2001 Agreement 2009.pdf PDF icon OakRidge-cert-OPEIU 1981.pdf Responsible Contacts Carl Swick Senior Human Resources Specialist E-mail carl.swick@hq.doe.gov Phone 202-586-3121 More Documents & Publications CBA.PDF� Oak Ridge OPEIU 2001 HQ NTEU Collective Bargaining Agreement

  8. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  9. Hopkins Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Hopkins Ridge Wind Farm Facility Hopkins Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. Independent Oversight Review, Oak Ridge National Laboratory ...

    Energy Savers [EERE]

    National Laboratory - January 2013 Independent Oversight Review, Oak Ridge National Laboratory - January 2013 January 2013 Review of the Oak Ridge National Laboratory High Flux...

  11. Blue Ridge Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Blue Ridge Biofuels LLC Place: Asheville, North Carolina Zip: 28801 Sector: Biofuels Product: Blue Ridge Biofuels is a worker...

  12. Wildcat Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wildcat Ridge Wind Farm Facility Wildcat Ridge Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Midwest Wind Energy Developer Midwest Wind...

  13. State Energy Program Recovery Act Evaluation

    Energy Savers [EERE]

    of a major national evaluation of the State Energy Program (SEP), under the Office of Energy Efficiency and Renewable Energy. The National Evaluation of SEP during the American Recovery and Reinvestment Act (ARRA) provides insight into the unique program that was administered by DOE in the national effort to create jobs and promote economic recovery. The National Evaluation was a multiyear, peer-reviewed, statistically robust effort led by Oak Ridge National Laboratory. The purpose of the

  14. Oak Ridge Construction | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction Oak Ridge Construction Construction of typical A- and B-type houses in Oak Ridge

  15. Oak Ridge shoppers | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shoppers Oak Ridge shoppers Oak Ridge shoppers in a crowded grocery store

  16. Oak Ridge Office Document Management Ststem(HummingbirdDM) PIA, Oak Ridge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations Office | Department of Energy Document Management Ststem(HummingbirdDM) PIA, Oak Ridge Operations Office Oak Ridge Office Document Management Ststem(HummingbirdDM) PIA, Oak Ridge Operations Office Oak Ridge Office Document Management Ststem(HummingbirdDM) PIA, Oak Ridge Operations Office PDF icon Oak Ridge Office Document Management Ststem(HummingbirdDM) PIA, Oak Ridge Operations Office More Documents & Publications Integrated Safety Management Workshop Registration, PIA,

  17. Feed Resource Recovery | Open Energy Information

    Open Energy Info (EERE)

    search Name: Feed Resource Recovery Place: Wellesley, Massachusetts Product: Start-up planning to convert waste to fertilizer and biomethane gas. Coordinates: 42.29776,...

  18. ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down ...

  19. Recovery Act: Innovative CO2 Sequestration from Flue Gas Using Industrial Sources and Innovative Concept for Beneficial CO2 Use

    SciTech Connect (OSTI)

    Dando, Neal; Gershenzon, Mike; Ghosh, Rajat

    2012-07-31

    field testing of a biomimetic in-duct scrubbing system for the capture of gaseous CO2 coupled with sequestration of captured carbon by carbonation of alkaline industrial wastes. The Phase 2 project, reported on here, combined efforts in enzyme development, scrubber optimization, and sequestrant evaluations to perform an economic feasibility study of technology deployment. The optimization of carbonic anhydrase (CA) enzyme reactivity and stability are critical steps in deployment of this technology. A variety of CA enzyme variants were evaluated for reactivity and stability in both bench scale and in laboratory pilot scale testing to determine current limits in enzyme performance. Optimization of scrubber design allowed for improved process economics while maintaining desired capture efficiencies. A range of configurations, materials, and operating conditions were examined at the Alcoa Technical Center on a pilot scale scrubber. This work indicated that a cross current flow utilizing a specialized gas-liquid contactor offered the lowest system operating energy. Various industrial waste materials were evaluated as sources of alkalinity for the scrubber feed solution and as sources of calcium for precipitation of carbonate. Solids were mixed with a simulated sodium bicarbonate scrubber blowdown to comparatively examine reactivity. Supernatant solutions and post-test solids were analyzed to quantify and model the sequestration reactions. The best performing solids were found to sequester between 2.3 and 2.9 moles of CO2 per kg of dry solid in 1-4 hours of reaction time. These best performing solids were cement kiln dust, circulating dry scrubber ash, and spray dryer absorber ash. A techno-economic analysis was performed to evaluate the commercial viability of the proposed carbon capture and sequestration process in full-scale at an aluminum smelter and a refinery location. For both cases the in-duct scrubber technology was compared to traditional amine- based capture. Incorporation of the laboratory results showed that for the application at the aluminum smelter, the in-duct scrubber system is more economical than traditional methods. However, the reverse is true for the refinery case, where the bauxite residue is not effective enough as a sequestrant, combined with challenges related to contaminants in the bauxite residue accumulating in and fouling the scrubber absorbent. Sensitivity analyses showed that the critical variables by which process economics could be improved are enzyme concentration, efficiency, and half-life. At the end of the first part of the Phase 2 project, a gate review (DOE Decision Zero Gate Point) was conducted to decide on the next stages of the project. The original plan was to follow the pre-testing phase with a detailed design for the field testing. Unfavorable process economics, however, resulted in a decision to conclude the project before moving to field testing. It is noted that CO2 Solutions proposed an initial solution to reduce process costs through more advanced enzyme management, however, DOE program requirements restricting any technology development extending beyond 2014 as commercial deployment timeline did not allow this solution to be undertaken.

  20. Blue Ridge EMC- Net Metering

    Broader source: Energy.gov [DOE]

    The Blue Ridge Electric Membership Corporation offers net metering to its residential customers with solar photovoltaic, wind, or micro-hydro generators up to 25 kilowatts. There is no aggregate...

  1. emergency recovery

    National Nuclear Security Administration (NNSA)

    basis.

    Recovery includes the evaluation of the incident to identify lessons learned and development of initiatives to mitigate the effects of future...

  2. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    January 12, 2012 Susan Cange Acting Assistant Manager for Environmental Management DOE-Oak Ridge Office P.O. Box 2001, EM-90 Oak Ridge, TN 37831 Dear Ms. Cange: Recommendation 208: Recommendation for DOE to Use White Paper on Environmental Management's Challenges on the Oak Ridge Reservation At our January 11, 2012, meeting the Oak Ridge Site Specific Advisory Board approved the enclosed recommendation suggesting DOE Oak Ridge make use of the white paper, "Balancing Environmental

  3. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    May 9, 2013 Susan Cange Deputy Manager for Environmental Management DOE-Oak Ridge Office P.O. Box 2001, EM-90 Oak Ridge, TN 37831 Dear Ms. Cange: Recommendation 215: Recommendation on Remaining Legacy Materials on the Oak Ridge Reservation At our May 8, 2013, meeting the Oak Ridge Site Specific Advisory Board approved the enclosed recommendation on remaining legacy materials on the Oak Ridge Reservation. The board recommends several points to consider concerning remaining legacy waste and

  4. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    1, 2015 Susan Cange Manager Oak Ridge Office of Environmental Management U.S. Department of Energy P.O. Box 2001, EM-90 Oak Ridge, TN 37831 Dear Ms. Cange: Recommendation 228: Recommendation on Fiscal Year 2017 DOE Oak Ridge Environmental Management Budget Request At our June 10, 2015, meeting, the Oak Ridge Site Specific Advisory Board approved the enclosed recommendations regarding the FY 2017 DOE Oak Ridge Environmental Management Program budget request. We appreciate your consideration of

  5. Oak Ridge National Laboratory | Department of Energy

    Energy Savers [EERE]

    Oak Ridge National Laboratory Oak Ridge National Laboratory Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory (ORNL) conducts research and development to create scientific knowledge and solutions that strengthen the nation's leadership in key areas of science; increase the availability of clean, abundant energy; restore and protect the environment; and contribute to national security. ORNL also performs

  6. Oak Ridge National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge National Laboratory Oak Ridge National Laboratory An aerial view of the Oak Ridge National Laboratory campus. An aerial view of the Oak Ridge National Laboratory campus. The U.S. Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) is the nation's largest multi-program science and technology laboratory. ORNL's mission is to deliver scientific discoveries and technical breakthroughs that will accelerate the development and deployment of solutions in clean energy and global

  7. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Broader source: Energy.gov [DOE]

    A project to develop a microbial heat recovery cell (MHRC) system prototype using wastewater effluent samples from candidate facilities to produce either electric power or hydrogen

  8. EM Recovery Act Lessons Learned (Sites) | Department of Energy

    Office of Environmental Management (EM)

    Recovery Act Lessons Learned (Sites) EM Recovery Act Lessons Learned (Sites) Presentation slides from EM ARRA Best Practices and Lessons Learned Workshop Waste Management Symposium Phoenix, AZ March 1, 2012. PDF icon EM ARRA Best Practices and Lessons Learned Workshop: Oak Ridge More Documents & Publications Info-Exch 2012 - Sites Lessons Learned Presentation EM Recovery Act Lessons Learned (Johnson) Info-Exch 2012 - Thomas Johnson Presentation

  9. OAK RIDG:E NATlOlNAL

    Office of Legacy Management (LM)

    RIDG:E NATlOlNAL - - ~ I ~ O , R A T O I R Y - -~ Results of the Independent L O C J I H E g D Y A u . T I n , Radiological Verification Survey of the Remedial Action Performed at 525 S. Main Street Oxford, Ohio (0x0002) K. R. Kleinhans D. E. Rice M. E. Murray R. F. Carrier DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty,

  10. Oak Ridge Opw~tlon~

    Office of Legacy Management (LM)

    634 eo.7to Department of Energy Oak Ridge Opw~tlon~ P.O. Box 2001 Oak Ridge, Tmnmeea 37Wl- September 27. 1990 ,- __ .._ .- Dr. Frank Bradley Principle Radiophy??t.ist New York State Departront of Labor 1 Main Street Brooklyn, NY 11201 Dear Dr. Bradley: DESIGNATION OF THE FORMER BAKER AND WILLIAMS WAREHOUSES INTO DOE'S FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM The purpose of this letter is to inform you that on August 9, 1990, the site of :;; former Baker and Williams warehouses, currently

  11. Recommendation 208 : Use White Paper on Oak Ridge Reservation...

    Office of Environmental Management (EM)

    8 : Use White Paper on Oak Ridge Reservation Recommendation 208 : Use White Paper on Oak Ridge Reservation The ORSSAB approved the enclosed recommendation suggesting DOE Oak Ridge...

  12. Trailer homes in Oak Ridge | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trailer homes in Oak Ridge Trailer homes in Oak Ridge An aerial of Oak Ridge showing the extensive use of trailer homes

  13. Bluegrass Ridge Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Bluegrass Ridge Wind Energy Project Jump to: navigation, search Name Bluegrass Ridge Wind Energy Project Facility Bluegrass Ridge Wind Energy Project Sector Wind energy Facility...

  14. Oak Ridge Operations Office of Environmental Management Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Operations Office of Environmental Management Overview Oak Ridge Operations Office of Environmental Management Overview PDF icon Oak Ridge Operations Office of...

  15. Voluntary Protection Program Onsite Review, Oak Ridge Associated...

    Office of Environmental Management (EM)

    Oak Ridge Associated Universities, Oak Ridge Institute for Science and Education - January 2015 Voluntary Protection Program Onsite Review, Oak Ridge Associated Universities, Oak...

  16. Voluntary Protection Program Onsite Review, Oak Ridge Associated...

    Energy Savers [EERE]

    Onsite Review, Oak Ridge Associated Universities Oak Ridge Institute for Science and Education - April 2008 Voluntary Protection Program Onsite Review, Oak Ridge Associated...

  17. Beech Ridge Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Beech Ridge Energy Wind Farm Jump to: navigation, search Name Beech Ridge Energy Wind Farm Facility Beech Ridge Energy Sector Wind energy Facility Type Commercial Scale Wind...

  18. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  19. Sulfur recovery process

    SciTech Connect (OSTI)

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  20. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    DOE-HQ Melyssa Noe, DOE-ORO John Owsley, TDEC Mark Watson, Oak Ridge City Manager Ron Woody, Roane County Executive File Code 140 Oak Ridge Site Specific Advisory Board * P.O....

  1. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    Mayor Melyssa Noe, DOE-ORO John Owsley, TDEC Mark Watson, Oak Ridge City Manager Ron Woody, Roane County Executive File Code 140 Oak Ridge Site Specific Advisory Board * P.O....

  2. Oak Ridge Site Specific Advisory Board

    Broader source: Energy.gov [DOE]

    The Oak Ridge Site Specific Advisory Board (ORSSAB) is a federally appointed citizens’ panel that provides independent advice and recommendations to the U.S. Department of Energy (DOE)’s Oak Ridge...

  3. 2014 House Nuclear Cleanup Caucus Oak Ridge

    Office of Environmental Management (EM)

    August 16, 2014 Sue Cange Acting Manager Oak Ridge Office of Environmental Management Oak Ridge Site Specific Advisory Board Annual Planning Meeting www.energy.gov/EM 2 Complete the cleanup of the Oak Ridge Reservation to: * Protect the region's health and environment * Make clean land available for future use * Ensure Department of Energy's ongoing vital missions OREM Mission www.energy.gov/EM 3 Work is organized by Cleanup Portfolios: * East Tennessee Technology Park (ETTP) * Oak Ridge

  4. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    SciTech Connect (OSTI)

    Weaver, Phyllis C

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The process for D&D and final dismantlement of facilities requires that the known contaminants of concern (COCs) be evaluated and quantified and to identify and quantify any additional contaminants in order to satisfy the waste acceptance criteria requirements for the desired disposal pathway. Known facility contaminants include, but are not limited to, asbestos-containing material (ACM), radiological contaminants, and chemical contaminants including polychlorinated biphenyls (PCBs) and metals.

  5. DOE Names Oak Ridge Cleanup Manager

    Broader source: Energy.gov [DOE]

    Oak Ridge, Tenn. – The U.S. Department of Energy (DOE) announced today the selection of Sue Cange as the manager of the Oak Ridge Office of Environmental Management (EM). Previously, Cange served as the acting manager of EM’s Oak Ridge Office since May 2014, and she has served as the deputy manager since March 2011.

  6. Early Oak Ridge Trailer Home | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Early Oak Ridge Trailer Home A typical trailer home

  7. Comments from the Office of Oak Ridge Mayor, Warren Gooch:

    Office of Environmental Management (EM)

    from the Office of Oak Ridge Mayor, Warren Gooch:

  8. Work Begins On First Recovery Act Funded Demolition Project at ORNL |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Work Begins On First Recovery Act Funded Demolition Project at ORNL Work Begins On First Recovery Act Funded Demolition Project at ORNL July 20, 2009 - 12:00pm Addthis OAK RIDGE, Tenn. - The Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) has begun cleanup and demolition of the former Radioisotope Development Laboratory, a long-vacant facility on the Laboratory's central campus. Contractors expect to employ approximately 30 workers for the project,

  9. Independent Oversight Review, Oak Ridge Office- August 2011

    Broader source: Energy.gov [DOE]

    Review of the Oak Ridge Office Oversight of the Fire Protection Program at the Oak Ridge Reservation

  10. Oak Ridge Facilities Construction | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities ... Oak Ridge Facilities Construction Work in wet and mud was common during the construction of Oak Ridge facilities...

  11. Environmental Assessment for U-233 Stabilization, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory Oak Ridge, Tennessee

    Office of Environmental Management (EM)

    574 Environmental Assessment for U-233 Stabilization, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory Oak Ridge, Tennessee U. S. Department of Energy Oak Ridge Office Oak Ridge, Tennessee March 2007 TABLE OF CONTENTS ACRONYMS ........................................................................................................................... vi 1.

  12. EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EIS evaluates DOE's proposal to construct, operate, and decontaminate/decommission a Transuranic (TRU) Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste.

  13. Oak Ridge National Laboratory Review

    SciTech Connect (OSTI)

    Krause, C.; Pearce, J.; Zucker, A.

    1992-01-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  14. Even more Oak Ridge transitions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Even more Oak Ridge transitions The University of Chicago managed the Clinton Laboratories until July 1, 1945 when Monsanto Chemical Company took over operations. Charles A. Thomas, Monsanto's president had primary interest in developing the laboratory through building two advanced reactors being designed at the time. With Eugene Wigner leading the efforts as Director of Research at the Clinton Laboratories, he was in the best position available to direct the research and development of

  15. Oak Ridge Associated Universities II

    Office of Legacy Management (LM)

    Prepared by Oak Ridge Associated Universities II Prepared for Division of Fuel - Cycle and Material Safety II U.S. Nuclear Regulatory Commission L RADIOLOGICAL SURVEY OF THE W. R. GRACE PROPERTY WAYNE, NEW JERSEY P. W. FRAME Radiological Site Assessment Program Manpower Education, Research, and Training Division FINAL REPORT January 1983 RADIOLOGICAL SURVEY OF THE W.R. GRACE PROPERTY WAYNE, NEW JERSEY Prepared for Division of Fuel Cycle and Material Safety U.S. Nuclear Regulatory Commission P.

  16. ARM - Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govAboutRecovery Act Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send ARM and the Recovery Act Through the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy's Office of

  17. NERSC Supercomputers Help Reveal Secrets of Natural Gas Reserves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Energy Research Supercomputing Center (NERSC) helped scientists at Oak Ridge National Laboratory (ORNL) study gas and oil deposits in shale and reveal structural...

  18. Final report on the waste area grouping perimeter groundwater quality monitoring well installation program at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Greene, J.A.

    1991-06-01

    A groundwater quality monitoring well installation program was conducted at Oak Ridge National Laboratory (ORNL) to meet the requirements of environmental regulations, including the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). A total of 173 wells were installed and developed at 11 different waste area groupings (WAGs) between June 1986 and November 1990. A location map of the wells is included.

  19. Voluntary Protection Program Onsite Review, Oak Ridge Associated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Universities Oak Ridge Institute for Science and Education - April 2008 | Department of Energy Voluntary Protection Program Onsite Review, Oak Ridge Associated Universities Oak Ridge Institute for Science and Education - April 2008 Voluntary Protection Program Onsite Review, Oak Ridge Associated Universities Oak Ridge Institute for Science and Education - April 2008 April 2008 Evaluation to determine whether Oak Ridge Associated Universities Oak Ridge Institute for Science and Education is

  20. Oak Ridge Cleanup Areas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management » Environmental Stewardship » Oak Ridge Cleanup Areas Oak Ridge Cleanup Areas Employees conduct soil and water samples to determine which areas require cleanup. Employees conduct soil and water samples to determine which areas require cleanup. On November 21, 1989, the Environmental Protection Agency placed the Department of Energy's Oak Ridge site on its National Prioritization List (NPL). The list names national priorities where there are known or threatened releases of

  1. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    October 13, 2011 John Eschenberg Manager for Environmental Management DOE-Oak Ridge Office P.O. Box 2001, EM-90 Oak Ridge, TN 37831 Dear Mr. Eschenberg: Recommendation 207: Recommendation to Automate the Stewardship Verification Process for the Remediation Effectiveness Report At our October 12, 2011, meeting the Oak Ridge Site Specific Advisory Board approved the enclosed recommendation to automate the stewardship verification process for the annual Remediation Effectiveness Report. The board

  2. EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to construct and maintain additional storage capacity at the U.S. Department of Energy's Oak Ridge National Laboratory, Oak Ridge,...

  3. Independent Oversight Inspection, Oak Ridge National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    8 Inspection of Nuclear Safety at the Oak Ridge National Laboratory Radiochemical Engineering Development Center, Building 7920 This report provides the results of an inspection of...

  4. Oak Ridge Moves Forward in Mercury Cleanup

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – Oak Ridge’s EM program is making significant progress to reduce environmental mercury releases from the Y-12 National Security Complex.

  5. Wheat Ridge Solar | Open Energy Information

    Open Energy Info (EERE)

    4550 Teller St Place: Wheat Ridge, Colorado Zip: 80033 Region: Rockies Area Sector: Solar Product: Design and installation of solar systems for residential and small business...

  6. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    February 12, 2014, 6:00 p.m. DOE Information Center 1 Science.gov Way, Oak Ridge, Tenn. AGENDA I. Welcome and Announcements (D. Hemelright) ......

  7. Oak Ridge National Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Tool 4 References 4.1 References Overview "Oak Ridge National Laboratory (ORNL) is a science and technology laboratory managed for the United States Department of Energy by...

  8. Oak Ridge National Laboratory Environmental Management Portfolio...

    Office of Environmental Management (EM)

    Ridge Office of Environmental Management (OREM) East Tennessee Technology Park Portfolio Plan Jim Kopotic Portfolio Federal Project Director East Tennessee Technology Park...

  9. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    4 Annual Meeting Oak Ridge Site Specific Advisory Board Saturday, August 16, 2014, 8 a.m. to noon DOE Information Center, 1 Science.gov Way Oak Ridge, Tenn. The Oak Ridge Site Specific Advisory Board (ORSSAB) met for its annual planning meeting beginning at 8 a.m., on Saturday, August 16, 2014, at the Department of Energy (DOE) Information Center, 1 Science.gov Way, Oak Ridge, Tenn. The objectives of the meeting were to: * Develop an increased understanding of and commitment to the goals of the

  10. Tectonic origin of Crowley's Ridge, northeastern Arkansas

    SciTech Connect (OSTI)

    VanArsdale, R.B. (Univ. of Arkansas, Fayetteville, AR (United States). Geology Dept.); Williams, R.A.; Shedlock, K.M.; King, K.W.; Odum, J.K. (Geological survey, Denver, CO (United States). Denver Federal Center); Schweig, E.S. III; Kanter, L.R. (Memphis State Univ., TN (United States))

    1992-01-01

    Crowley's Ridge is a 320 km long topographic ridge that extends from Thebes, Illinois to Helena, Arkansas. The ridge has been interpreted as an erosional remnant formed during Quaternary incision of the ancestral Mississippi and Ohio rivers; however, the Reelfoot Rift COCORP line identified a down-to-the-west fault bounding the western margin of Crowley's Ridge south of Jonesboro, Arkansas. Subsequent Mini-Sosie seismic reflection profiles confirmed the COCORP data and identified additional faults beneath other margins of the ridge. In each case the faults lie beneath the base of the ridge scarp. The Mini-Sosie data did not resolve the uppermost 150 m and so it was not possible to determine if the faults displace the near-surface Claiborne Group (middle Eocene). A shotgun source seismic reflection survey was subsequently conducted to image the uppermost 250 m across the faulted margins. The shotgun survey across the western margin of the ridge south of Jonesboro reveals displaced reflectors as shallow as 30 m depth. Claiborne Group strata are displaced approximately 6 m and it appears that some of the topographic relief of Crowley's Ridge at this location is due to post middle Eocene fault displacement. Based on the reflection data, the authors suggest that Crowley's Ridge is tectonic in origin.

  11. ARM - Recovery Act Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ActRecovery Act Instruments Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Recovery Act Instruments These pages provide a breakdown of the new instruments planned for installation among the

  12. President Obama Announces Over $467 Million in Recovery Act Funding...

    Office of Environmental Management (EM)

    Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects ... areas, as well as geothermal energy production from oil and natural gas fields, ...

  13. The Department of Energy's American Recovery and Reinvestment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation and reduce greenhouse gas emissions. The Washington State Department of Commerce (WSDC) was granted 60.9 million in SEP Recovery Act grant funds to invest in...

  14. Audit Report: The Department of Energy's American Recovery and...

    Energy Savers [EERE]

    SEP Recovery Act objectives to preserve and create jobs, save energy, increase renewable energy sources, and, reduce greenhouse gas emissions. The California Energy Commission...

  15. DOE Awards More than $16 Million for Recovery Act Cleanup at ORNL |

    Office of Environmental Management (EM)

    Department of Energy More than $16 Million for Recovery Act Cleanup at ORNL DOE Awards More than $16 Million for Recovery Act Cleanup at ORNL March 31, 2010 - 12:00pm Addthis OAK RIDGE, Tenn. - As a part of the American Recovery and Reinvestment Act, the Department of Energy has awarded a $16.8 million contract to Safety and Ecology Corporation (SEC) for environmental cleanup operations at the Oak Ridge National Laboratory (ORNL). Under this contract, SEC will demolish and dispose (D&D)

  16. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science |

    Office of Environmental Management (EM)

    Department of Energy Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. PDF icon 04_adams_nat_gas.pdf More Documents & Publications Evalutation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service Hydrogen

  17. Oak Ridge Office of Environmental Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ridge Office of Environmental Management Program Plan October 2013 FY 2014 to 2024 U.S. DEPARTMENT OF ENERGY OREM III Oak Ridge Office of Environmental Management Program Plan FY 2014 to 2024 October 2013 OREM U.S. DEPARTMENT OF ENERGY A message from Mark Whitney .................................................................. 3 Vision ............................................................................................................ 6 Mission

  18. Oak Ridge Office of Environmental Management

    Broader source: Energy.gov [DOE]

    This website highlights activities that support the mission of the Oak Ridge Office of Environmental Management (Oak Ridge Office of EM), which is to remove environmental legacies resulting from more than 60 years of nuclear weapons development and government-sponsored nuclear energy and scientific research.

  19. Oak Ridge EM Program Collaborates with Regulators on Groundwater Strategy

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – The Oak Ridge EM program has joined state and federal regulators in a series of workshops to address contaminated groundwater on the Oak Ridge Reservation.

  20. Sue Cange Provides Insight on Oak Ridge's Cleanup Progress, Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Sue Cange Provides Insight on Oak Ridge's Cleanup Progress, Partnerships Sue Cange Provides Insight on Oak Ridge's Cleanup Progress, Partnerships August 31, 2015 - 12:45pm Addthis Sue Cange, manager for the Oak Ridge Office of Environmental Management Sue Cange, manager for the Oak Ridge Office of Environmental Management OAK RIDGE, Tenn. - Sue Cange, manager for the Oak Ridge Office of Environmental Management, is responsible for safely executing the environmental

  1. DATA SHARING REPORT CHARACTERIZATION OF POPULATION 7: PERSONAL PROTECTIVE EQUIPMENT, DRY ACTIVE WASTE, AND MISCELLANEOUS DEBRIS, SURVEILLANCE AND MAINTENANCE PROJECT OAK RIDGE NATIONAL LABORATORY OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    Harpenau, Evan M

    2013-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.

  2. Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-08-01

    This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1, Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.

  3. SRNL Development of Recovery Processes for Mark-18A Heavy Actinide Targets

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect SRNL Development of Recovery Processes for Mark-18A Heavy Actinide Targets Citation Details In-Document Search Title: SRNL Development of Recovery Processes for Mark-18A Heavy Actinide Targets Savannah River National Laboratory (SRNL) and Oak Ridge National Laboratory (ORNL) are developing plans for the recovery of rare and unique isotopes contained within heavy-actinide target assemblies, specifically the Mark-18A. Mark-18A assemblies were irradiated in

  4. Green Ridge Power Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Green Ridge Power Wind Farm II Facility Green Ridge Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  5. Transuranic Waste Processing Center Oak Ridge Site Specific...

    Office of Environmental Management (EM)

    Transuranic Waste Processing Update Oak Ridge Site Specific Advisory Board May 14, 2014 ...EM 3 Oak Ridge Transuranic (TRU) Waste Inventory * TRU waste is waste ...

  6. Blue Ridge Renewable Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy LLC Jump to: navigation, search Name: Blue Ridge Renewable Energy LLC Place: Arlington, Virginia Zip: 22209 Product: Developer and operator of the Blue Ridge...

  7. Oak Ridge National Laboratory Analysis of Waste Isolation Pilot...

    Office of Environmental Management (EM)

    Ridge National Laboratory Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report Oak Ridge National Laboratory Analysis of Waste Isolation Pilot Plant Samples:...

  8. Buffalo Ridge II Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    II Wind Power Project Jump to: navigation, search Name Buffalo Ridge II Wind Power Project Facility Buffalo Ridge II Wind Power Project Sector Wind energy Facility Type Commercial...

  9. Oak Ridge Site Specific Advisory Board Committees | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Committees Oak Ridge Site Specific Advisory Board Committees Oak Ridge's Site Specific Advisory Board uses its committee structure to achieve its mission and conduct many of its...

  10. 2013 Federal Energy and Water Management Award Winner Oak Ridge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Federal Energy and Water Management Award Winner Oak Ridge National Laboratory 2013 Federal Energy and Water Management Award Winner Oak Ridge National Laboratory Poster showing ...

  11. ITER movie created by Oak Ridge National Laboratory, National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ITER movie created by Oak Ridge National Laboratory, National Center for Computational Sciences American Fusion News Category: U.S. ITER Link: ITER movie created by Oak Ridge...

  12. John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines and Switched Reluctance Motors to Replace Permanent Magnets in Electric Vehicles John Hsu, Oak Ridge National...

  13. Evaluation of Side Stream Filtration Technology at Oak Ridge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory Document provides...

  14. Phase I (CATTS Theory), Phase II (Milne Point), Phase III (Hydrate Ridge)

    SciTech Connect (OSTI)

    2009-10-31

    This study introduces a new type of “cumulative seismic attribute” (CATT) which quantifies gas hydrates resources in Hydrate Ridge offshore Oregon. CATT is base on case-specific transforms that portray hydrated reservoir properties. In this study we used a theoretical rock physics model to correct measured velocity log data.

  15. Oak Ridge Office of Environmental Management

    Energy Savers [EERE]

    Oak Ridge Office of Environmental Management Congressional Nuclear Cleanup Caucus Mark Whitney Manager Oak Ridge, TN May 16, 2013 www.energy.gov/EM 2 EM Program Overview ETTP ORNL Y-12 City of Oak Ridge * Work is organized by Cleanup Por7olios * ETTP * Y-12 * ORNL www.energy.gov/EM 3 -3- * Approximately 10-Year Scope of Work * Regulatory Agreements * Partners and Stakeholders U-233 DisposiKon Project ETTP Cleanup and S&M TRU Waste Processing Center * Diverse, complex projects * Ongoing DOE

  16. Soil Management Plan for the Oak Ridge Y-12 National Security Complex Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    2005-03-02

    This Soil Management Plan applies to all activities conducted under the auspices of the National Nuclear Security Administration (NNSA) Oak Ridge Y-12 National Security Complex (Y-12) that involve soil disturbance and potential management of waste soil. The plan was prepared under the direction of the Y-12 Environmental Compliance Department of the Environment, Safety, and Health Division. Soil disturbances related to maintenance activities, utility and building construction projects, or demolition projects fall within the purview of the plan. This Soil Management Plan represents an integrated, visually oriented, planning and information resource tool for decision making involving excavation or disturbance of soil at Y-12. This Soil Management Plan addresses three primary elements. (1) Regulatory and programmatic requirements for management of soil based on the location of a soil disturbance project and/or the regulatory classification of any contaminants that may be present (Chap. 2). Five general regulatory or programmatic classifications of soil are recognized to be potentially present at Y-12; soil may fall under one or more these classifications: (a) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) pursuant to the Oak Ridge Reservation (ORR) Federal Facilities Agreement; (b) Resource Conservation and Recovery Act (RCRA); (c) RCRA 3004(u) solid waste managements units pursuant to the RCRA Hazardous and Solid Waste Amendments Act of 1984 permit for the ORR; (d) Toxic Substances and Control Act-regulated soil containing polychlorinated biphenyls; and (e) Radiologically contaminated soil regulated under the Atomic Energy Act review process. (2) Information for project planners on current and future planned remedial actions (RAs), as prescribed by CERCLA decision documents (including the scope of the actions and remedial goals), land use controls implemented to support or maintain RAs, RCRA post-closure regulatory requirements for former waste management units, legacy contamination source areas and distribution of contamination in soils, and environmental infrastructure (e.g., caps, monitoring systems, etc.) that is in place or planned in association with RAs. (3) Regulatory considerations and processes for management and disposition of waste soil upon generation, including regulatory drivers, best management practices (BMPs), waste determination protocols, waste acceptance criteria, and existing waste management procedures and BMPs for Y-12. This Soil Management Plan provides information to project planners to better coordinate their activities with other organizations and programs with a vested interest in soil disturbance activities at Y-12. The information allows project managers and maintenance personnel to evaluate and anticipate potential contaminant levels that may be present at a proposed soil disturbance site prior to commencement of activities and allows a more accurate assessment of potential waste management requirements.

  17. Enhancement of automotive exhaust heat recovery by thermoelectric devices

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Enhancement of automotive exhaust heat recovery by thermoelectric devices Citation Details In-Document Search Title: Enhancement of automotive exhaust heat recovery by thermoelectric devices In an effort to improve automobile fuel economy, an experimental study is undertaken to explore practical aspects of implementing thermoelectric devices for exhaust gas energy recovery. A highly instrumented apparatus consisting of a hot (exhaust gas)

  18. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act More Documents & Publications Overview of Recovery Act FAR Clauses Map Data: Recovery Act Funding DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage...

  19. Alabama Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alabama Recovery Act State Memo Alabama Recovery Act State Memo Alabama has substantial natural resources, including gas, coal, biomass, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alabama are supporting a broad range of clean energy projects, from energy efficiency and the electric grid to renewable energy and carbon capture and

  20. Alaska Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these

  1. Arkansas Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arkansas Recovery Act State Memo Arkansas Recovery Act State Memo Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to advanced battery manufacturing and renewable energy.

  2. Utah Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Recovery Act State Memo Utah Recovery Act State Memo Utah has substantial natural resources, including oil, coal, natural gas, wind, geothermal, and solar power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Utah are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal, alternative fuel vehicles, and the

  3. Virginia Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia Recovery Act State Memo Virginia Recovery Act State Memo Virginia has substantial natural resources, including coal and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Virginia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to alternative fuel vehicles and the Thomas Jefferson National Accelerator Facility

  4. Texas Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Texas Recovery Act State Memo Texas Recovery Act State Memo Texas has substantial natural resources, including oil, gas, solar, biomass, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Texas are supporting a broad range of clean energy projects, from carbon capture and storage to energy efficiency, the smart grid, solar, geothermal, and biomass projects.

  5. North Dakota Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Dakota Recovery Act State Memo North Dakota Recovery Act State Memo North Dakota has substantial natural resources, including coal, natural gas, oil, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in North Dakota are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to clean coal, wind, and carbon capture

  6. Oklahoma Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Oklahoma Recovery Act State Memo Oklahoma Recovery Act State Memo Oklahoma has substantial natural resources, including oil, gas, solar, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Oklahoma are supporting a broad range of clean energy projects from energy efficiency and the smart grid to environmental cleanup and geothermal. Through these

  7. Wyoming Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wyoming Recovery Act State Memo Wyoming Recovery Act State Memo Wyoming has substantial natural resources including coal, natural gas, oil, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Wyoming are supporting a broad range of clean energy projects from energy efficiency and the smart grid to carbon capture and storage. Through these investments, Wyoming's

  8. Kansas Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Kansas Recovery Act State Memo Kansas Recovery Act State Memo Kansas has substantial natural resources, including oil, gas, biomass and wind power.The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Kansas are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to geothermal and carbon capture and storage. Through these investments, Kansas'

  9. Kentucky Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Kentucky are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles.

  10. Louisiana Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Louisiana Recovery Act State Memo Louisiana Recovery Act State Memo Louisiana has substantial natural resources, including abundant oil, gas, coal, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Louisiana are supporting a broad range of clean energy projects, from energy efficiency and smart grid to solar and geothermal, advanced battery

  11. Illinois Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Illinois Recovery Act State Memo Illinois Recovery Act State Memo Illinois has substantial natural resources, including coal, oil, and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Illinois are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, carbon capture and storage, and environmental cleanup, as

  12. Mississippi Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Mississippi Recovery Act State Memo Mississippi Recovery Act State Memo Mississippi has substantial natural resources, including biomass, oil, coal, and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Mississippi are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to advanced biofuels. Through these investments,

  13. Montana Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Montana Recovery Act State Memo Montana Recovery Act State Memo Montana has substantial natural resources, including coal, oil, natural gas, hydroelectric, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Montana are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal. Through these investments,

  14. New Mexico Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Mexico Recovery Act State Memo New Mexico Recovery Act State Memo New Mexico has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New Mexico are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and solar, geothermal and hydro,

  15. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    Specific Advisory Board Wednesday, March 12, 2014, 6:00 p.m. DOE Information Center 1 Science.gov Way, Oak Ridge, Tenn. AGENDA I. Welcome and Announcements (D. Hemelright)...

  16. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    A. EMStewardship (B. Hatcher, C. Staley) B. Executive (D. Hemelright) 1. Public Outreach-Earth Day Festival (M. Smalling) 2. Center for Oak Ridge Oral History (C. Staley) IX....

  17. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    Mayor Connie Jones, EPA Region 4 Melissa Nielson, DOE-HQ Melyssa Noe, DOE-ORO John Owsley, TDEC Mark Watson, Oak Ridge City Manager Ron Woody, Roane County Executive File Code 140...

  18. Oak Ridge Office of Environmental Management

    Office of Environmental Management (EM)

    EPA Region 4 Terry Frank, Anderson County Mayor Mark Watson, Oak Ridge City Manager Ron Woody, Roane County Executive Dave Adler, EM-90 Jason Darby; EM-91 Jay Mullis, EM-90 Melyssa...

  19. Oak Ridge Office of Environmental Management

    Office of Environmental Management (EM)

    EPA Region 4 Terry Frank, Anderson County Mayor Mark Watson, Oak Ridge City Manager Ron Woody, Roane County Executive Dave Adler, EM-90 Jay Mullis, EM-90 Melyssa Noe, EM-92...

  20. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    Butterfield, DOE-HQ Kristof Czartoryski, TDEC Connie Jones, EPA Region 4 Terry Frank, Anderson County Mayor Melyssa Noe, DOE-ORO John Owsley, TDEC Mark Watson, Oak Ridge City...

  1. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  2. Californium Electrodepositions at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Boll, Rose Ann

    2015-01-01

    Electrodepositions of californium isotopes were successfully performed at Oak Ridge National Laboratory (ORNL) during the past year involving two different types of deposition solutions, ammonium acetate (NH4C2H3O2) and isobutanol ((CH3)2CHCH2OH). A californium product that was decay enriched in 251Cf was recovered for use in super-heavy element (SHE) research. This neutron-rich isotope, 251Cf, provides target material for SHE research for the potential discovery of heavier isotopes of Z=118. The californium material was recovered from aged 252Cf neutron sources in storage at ORNL. These sources have decayed for over 30 years, thus providing material with a very high 251Cf-to-252Cf ratio. After the source capsules were opened, the californium was purified and then electrodeposited using the isobutanol method onto thin titanium foils for use in an accelerator at the Joint Institute for Nuclear Research in Dubna, Russia. Another deposition method, ammonium acetate, was used to produce a deposition containing 1.7 0.1 Ci of 252Cf onto a stainless steel substrate. This was the largest single electrodeposition of 252Cf ever prepared. The 252Cf material was initially purified using traditional ion exchange media, such as AG50-AHIB and AG50-HCl, and further purified using a TEVA-NH4SCN system to remove any lanthanides, resulting in the recovery of 3.6 0.1 mg of purified 252Cf. The ammonium acetate deposition was run with a current of 1.0 amp, resulting in a 91.5% deposition yield. Purification and handling of the highly radioactive californium material created additional challenges in the production of these sources.

  3. Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    N /A

    2000-06-30

    The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), the Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.

  4. Stewardship on the Oak Ridge Reservation

    Office of Environmental Management (EM)

    Stewardship on the on the Oak Ridge Reservation Oak Ridge Reservation * * End Use Working Group End Use Working Group formed in 1997 formed in 1997 - - a broad a broad based community based community constituency determined in constituency determined in its 1998 Final Report that its 1998 Final Report that some contamination would some contamination would remain in place at certain remain in place at certain locations with adequate locations with adequate groundwater protection and groundwater

  5. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    January 14, 2015, 6:00 p.m. DOE Information Center 1 Science.gov Way, Oak Ridge, Tenn. AGENDA I. Welcome and Announcements (D. Hemelright) .................................................................. 6:006:05 A. Next Meeting: Wednesday, February 11 Presentation Topic: Sufficient Waste Disposal Capacity on the Oak Ridge Reservation II. Comments from the Deputy Designated Federal Officer, and the DOE, EPA, and TDEC Liaisons (S. Cange, D. Adler, C. Jones, K. Czartoryski)

  6. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    February 11, 2015, 6:00 p.m. DOE Information Center 1 Science.gov Way, Oak Ridge, Tenn. AGENDA I. Welcome and Announcements (D. Hemelright) .................................................................. 6:00-6:05 A. Next Meeting: Wednesday, March 11 Presentation Topic: State of the Oak Ridge Environmental Management Program/FY 2016 Budget and Prioritization Planning B. Introduction of New Members (S. Cange) II. Comments from the Deputy Designated Federal Officer, and the DOE, EPA, and TDEC

  7. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    30: Final Proposed Plan for Soils in Zone 1 at East Tennessee Technology Park, Oak Ridge, Tennessee Background The East Tennessee Technology Park (ETTP) - formerly known as the Oak Ridge Gaseous Diffusion Plant - was built in the 1940s as part of the Manhattan Project to enrich uranium for use in nuclear weapons. Over time, the mission of the facility changed to that of producing low enriched uranium to fuel commercial and research nuclear reactors and researching new technologies for uranium

  8. Michael Starke, Oak Ridge National Laboratory

    Office of Environmental Management (EM)

    Starke, Oak Ridge National Laboratory starkemr@ornl.gov Team: Sachin Nimbalkar, Brandon Johnson Oak Ridge National Laboratory Prashant More, Carlos Silva ENBALA Power Networks Anna Shipley SRA September 17, 2014 Berkeley, CA DOE/OE Transmission Reliability R&D Load as a Resource (LaaR) Objectives * ORNL is examining potential for manufacturing processes to provide regulation service. This includes: ▪ Conducting modeling analysis (more detailed understanding on impact of industrial

  9. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    SciTech Connect (OSTI)

    Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

  10. Independent Oversight Inspection, Oak Ridge National Laboratory- October 2008

    Broader source: Energy.gov [DOE]

    Inspection of Nuclear Safety at the Oak Ridge National Laboratory Radiochemical Engineering Development Center, Building 7920

  11. Enforcement Letter, Oak Ridge National Laboratory- May 31, 2002

    Broader source: Energy.gov [DOE]

    Issued to UT-Battelle, LLC related to Unplanned Radiation Exposures at Oak Ridge National Laboratory

  12. Michelle Buchanan > Oak Ridge National Laboratory > Scientific Advisory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Board > The Energy Materials Center at Cornell Michelle Buchanan Oak Ridge National Laboratory

  13. Early Oak Ridge Home | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Early Oak Ridge Home A typical dwelling predating the Manhattan Project homes

  14. Early Oak Ridge Trailer Homes | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Early Oak Ridge Trailer Homes A row of trailer homes used

  15. Independent Oversight Review, Oak Ridge National Laboratory- January 2013

    Broader source: Energy.gov [DOE]

    Review of the Oak Ridge National Laboratory High Flux Isotope Reactor Implementation Verification Review Processes

  16. Oak Ridge Reservation environmental report for 1989

    SciTech Connect (OSTI)

    Jacobs, V.A.; Wilson, A.R.

    1990-10-01

    This two-volume report, the Oak Ridge Reservation Environmental Report for 1989, is the nineteenth in an annual series that began in 1971. It reports the results of a comprehensive, year-round program to monitor the impact of operations at the three major US Department of Energy (DOE) production and research installations in Oak Ridge on the immediate areas' and surrounding region's groundwater and surface waters, soil, air quality, vegetation and wildlife, and through these multiple and varied pathways, the resident human population. Information is presented for the environmental monitoring Quality Assurance (QA) Program, audits and reviews, waste management activities, land special environmental studies. Data are included for the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory (ORNL), and Oak Ridge Gaseous Diffusion Plant (ORGDP). Volume 1 presents narratives, summaries, and conclusions based on environmental monitoring at the three DOE installations and in the surrounding environs during calendar year (CY) 1989. Volume 1 is intended to be a stand-alone'' report about the Oak Ridge Reservation (ORR) for the reader who does not want an in-depth review of 1989 data. Volume 2 presents the detailed data from which these conclusions have been drawn and should be used in conjunction with Volume 1.

  17. Energy Secretary Steven Chu Visits Oak Ridge | Department of Energy

    Energy Savers [EERE]

    Visits Oak Ridge Energy Secretary Steven Chu Visits Oak Ridge March 23, 2010 - 12:00am Addthis OAK RIDGE, TN - At an event earlier this afternoon at Oak Ridge National Laboratory, U.S. Energy Secretary Steven Chu announced that DOE has issued a five-year extension to its current management and operating contractor, UT-Battelle, LLC, for the continued operation of the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. While at Oak Ridge, Secretary Chu also met with staff from the

  18. Oak Ridge's K-27 Demolition Officially Begins | Department of Energy

    Energy Savers [EERE]

    Ridge's K-27 Demolition Officially Begins Oak Ridge's K-27 Demolition Officially Begins February 11, 2016 - 12:50pm Addthis Oak Ridge's EM program kicked off the K-27 Building demolition Feb. 8. Oak Ridge's EM program kicked off the K-27 Building demolition Feb. 8. OAK RIDGE, Tenn. - The ceremonial "first bite" on Feb. 8 signaled the start of the K-27 Building demolition as URS|CH2M Oak Ridge, the EM Oak Ridge program's lead cleanup contractor for the East Tennessee Technology Park

  19. Mesoporous Carbon Membranes for Selective Gas Separations

    SciTech Connect (OSTI)

    2009-04-01

    This factsheet describes a study whose focus is on translating a novel class of material developed at Oak Ridge National Laboratoryselfassembled mesoporous carboninto robust, efficient membrane systems for selective industrial gas separations.

  20. 2011 Annual Planning Summary for Oak Ridge Operations Office (OR) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oak Ridge Operations Office (OR) 2011 Annual Planning Summary for Oak Ridge Operations Office (OR) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Oak Ridge Operations Office (OR) (See Environmental Management and Science). PDF icon 2011 Annual Planning Summary for Oak Ridge Operations Office (OR) More Documents & Publications 2012 Annual Planning Summary for Oak Ridge Office 2011 Annual Planning

  1. Voluntary Protection Program Onsite Review, Oak Ridge Associated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Universities, Oak Ridge Institute for Science and Education - January 2015 | Department of Energy January 2015 Voluntary Protection Program Onsite Review, Oak Ridge Associated Universities, Oak Ridge Institute for Science and Education - January 2015 January 2015 Recertification of ORISE/ORAU at Oak Ridge as a Star Participant in the Department of Energy Voluntary Protection Program. This report summarizes the results from the evaluation of Oak Ridge Institute for Science and Education

  2. Voluntary Protection Program Onsite Review, Oak Ridge Associated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Universities, Oak Ridge Institute for Science and Education - October 2011 | Department of Energy October 2011 Voluntary Protection Program Onsite Review, Oak Ridge Associated Universities, Oak Ridge Institute for Science and Education - October 2011 October 2011 Evaluation to determine whether Oak Ridge Associated Universities, Oak Ridge Institute for Science and Education is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review during October

  3. Oak Ridge's EM Program Realizes Successful 2010 | Department of Energy

    Energy Savers [EERE]

    Ridge's EM Program Realizes Successful 2010 Oak Ridge's EM Program Realizes Successful 2010 February 7, 2011 - 12:00pm Addthis OAK RIDGE, Tenn. - Cleanup at the Oak Ridge Reservation took a major leap forward in 2010, as the U.S. Department of Energy's (DOE) Office of Environmental Management (EM) completed numerous projects that reduced risks, decreased the site's footprint, and paved the way for new development for DOE missions. Major accomplishments were completed across the Oak Ridge

  4. Governor Haslam touts Oak Ridge's economic possibilities | Department of

    Office of Environmental Management (EM)

    Energy Governor Haslam touts Oak Ridge's economic possibilities Governor Haslam touts Oak Ridge's economic possibilities March 24, 2014 - 12:00pm Addthis Tennessee Governor Bill Haslam, at ETTP's fire station, discusses economic opportunities in Oak Ridge. Tennessee Governor Bill Haslam, at ETTP's fire station, discusses economic opportunities in Oak Ridge. On March 21, Tennessee Governor Bill Haslam visited the Energy Department's East Tennessee Technology Park in Oak Ridge. During his

  5. Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels in Its Fleet Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet on Twitter Bookmark Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet on Google Bookmark Alternative Fuels Data Center: Blue Ridge

  6. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 4, Technical memorandums 06-03A, 06-04A, 06-05A, and 06-08A: Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This report presents data and information related to remedial investigation studies for Oak Ridge National Laboratory (ORNL). Information is included on a soil gas survey, surface radiological investigations of waste areas, and well installation for ground water monitoring. (CBS)

  7. Oak Ridge Site Specific Advisory Board * P.O. Box 2001, EM-91, Oak Ridge, TN 37831

    Office of Environmental Management (EM)

    April 12, 2012 Susan Cange Acting Manager for Environmental Management DOE-Oak Ridge Office P.O. Box 2001, EM-90 Oak Ridge, TN 37831 Dear Ms. Cange: Recommendation # 209: Recommendation on Fiscal Year 2014 DOE Oak Ridge Environmental Management Budget Request At our April 11, 2012, meeting the Oak Ridge Site Specific Advisory Board approved the enclosed recommendation regarding the FY 2014 DOE-Oak Ridge Environmental Management Budget Request. The board's Environmental Management Budget &

  8. DOE Awards $10 Million in Recovery Act Funding for Soil Cleanup at ORNL |

    Office of Environmental Management (EM)

    Department of Energy $10 Million in Recovery Act Funding for Soil Cleanup at ORNL DOE Awards $10 Million in Recovery Act Funding for Soil Cleanup at ORNL September 22, 2009 - 12:00pm Addthis OAK RIDGE, Tenn. - The U.S. Department of Energy has awarded $10.1 million to an Ohio-based small business to contain and cap contaminated soil in the Bethel Valley area near the Oak Ridge National Laboratory. Starting in October, LATA-Sharp Remediation Services, LLC of Westerville, Ohio is expected to

  9. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately, develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI.

  10. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    the lease sale could result in the recovery of between 276 and 654 million barrels of oil and from 1.59 to 3.30 trillion cubic feet of natural gas. Sale 197 in the Eastern Gulf...

  11. Oak Ridge Site Specific Advisory Board Contacts | Department of Energy

    Energy Savers [EERE]

    Contacts Oak Ridge Site Specific Advisory Board Contacts Mailing Address Oak Ridge Site Specific Advisory Board P.O. Box 2001, EM-91 Oak Ridge, TN 37831 Phone Numbers (865) 241-4583, (865) 241-4584 (800) 382-6938, option 4 Melyssa Noe, DOE Federal Coordinator U.S. DOE-OREM, P.O. Box 2001, EM-92, Oak Ridge, TN 37831 Phone: (865) 241-3315 Fax: (865) 241-6932 Email: noemp@emor.doe.gov Pete Osborne, ORSSAB Support Office Oak Ridge SSAB, P.O. Box 2001, EM-90, Oak Ridge, TN 37831 Phone: (865) 241-4583

  12. Bechtel National, Inc. Engineers Constructors Oak Ridge Office

    Office of Legacy Management (LM)

    389 Bechtel National, Inc. Engineers - Constructors Oak Ridge Office Jackson Plaza Tower 800 Oak Ridge Turnpike Oak Ridge, Tennessee Mail Address: P. O. Box 350, Oak Ridge. TN 37830 u.s. Department of Energy Oak Ridge Operations Post Office Box E Oak Ridge, TN 37830 ATTN: E. L. Keller, Director Technical Services Division SUBJECT: Bechtel Job No. 14501, FUSRAP Project DOE Contract No. DE-AC05-8l0R20722 Bayo Canyon Restrictive Covenants WBS No. 04D Dear Mr. Keller: Attached are the restrictive

  13. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    2: Recommendations on Additional Off-site Groundwater Migration Studies At our May 14, 2014, meeting, the Oak Ridge Site Specific Advisory Board approved the enclosed recommendations on additional off-site groundwater migration studies. These recommendations were the result of the Groundwater Strategy Document for the Oak Ridge Reservation (DOE/OR/01-2628/V1&V2/D1) that was developed in September 2013. In summary, the recommendation requests that DOE proceed with an off-site groundwater

  14. Repetitive, small-bore two-stage light gas gun

    SciTech Connect (OSTI)

    Combs, S.K.; Foust, C.R.; Fehling, D.T.; Gouge, M.J.; Milora, S.L.

    1991-01-01

    A repetitive two-stage light gas gun for high-speed pellet injection has been developed at Oak Ridge National Laboratory. In general, applications of the two-stage light gas gun have been limited to only single shots, with a finite time (at least minutes) needed for recovery and preparation for the next shot. The new device overcomes problems associated with repetitive operation, including rapidly evacuating the propellant gases, reloading the gun breech with a new projectile, returning the piston to its initial position, and refilling the first- and second-stage gas volumes to the appropriate pressure levels. In addition, some components are subjected to and must survive severe operating conditions, which include rapid cycling to high pressures and temperatures (up to thousands of bars and thousands of kelvins) and significant mechanical shocks. Small plastic projectiles (4-mm nominal size) and helium gas have been used in the prototype device, which was equipped with a 1-m-long pump tube and a 1-m-long gun barrel, to demonstrate repetitive operation (up to 1 Hz) at relatively high pellet velocities (up to 3000 m/s). The equipment is described, and experimental results are presented. 124 refs., 6 figs., 5 tabs.

  15. Typical Oak Ridge cemesto houses and city bus | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex Typical Oak Ridge cemesto ... Typical Oak Ridge cemesto houses and city bus Typical Oak Ridge cemesto houses and city bus

  16. Recovery Act Milestones

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  17. Caustic Recovery Technology

    Office of Environmental Management (EM)

    366, REVISON 0 Key Words: Waste Treatment Plant Sodium Recovery Electrochemical Retention: ... (E. Stevens, Manager, Solid Waste and Special Programs) ...

  18. WIPP Recovery Information

    Broader source: Energy.gov [DOE]

    At the March 26, 2014 Board meeting J. R. Stroble CBFO, Provided Information on Locations to Access WIPP Recovery Information.

  19. Oak Ridge recognized for bird protection practices

    Broader source: Energy.gov [DOE]

    Oak Ridge’s efforts to protect migratory birds recently garnered honorable mention for the 2013 Presidential Migratory Bird Federal Stewardship Award. The Energy Department championed the effort through partnerships with the Tennessee Wildlife Resources Agency, UT-Battelle, and URS | CH2M Oak Ridge.

  20. Oak Ridge reservation land-use plan

    SciTech Connect (OSTI)

    Bibb, W. R.; Hardin, T. H.; Hawkins, C. C.; Johnson, W. A.; Peitzsch, F. C.; Scott, T. H.; Theisen, M. R.; Tuck, S. C.

    1980-03-01

    This study establishes a basis for long-range land-use planning to accommodate both present and projected DOE program requirements in Oak Ridge. In addition to technological requirements, this land-use plan incorporates in-depth ecological concepts that recognize multiple uses of land as a viable option. Neither environmental research nor technological operations need to be mutually exclusive in all instances. Unique biological areas, as well as rare and endangered species, need to be protected, and human and environmental health and safety must be maintained. The plan is based on the concept that the primary use of DOE land resources must be to implement the overall DOE mission in Oak Ridge. This document, along with the base map and overlay maps, provides a reasonably detailed description of the DOE Oak Ridge land resources and of the current and potential uses of the land. A description of the land characteristics, including geomorphology, agricultural productivity and soils, water courses, vegetation, and terrestrial and aquatic animal habitats, is presented to serve as a resource document. Essentially all DOE land in the Oak Ridge area is being fully used for ongoing DOE programs or has been set aside as protected areas.

  1. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    -6:05 A. Next Meeting: Wednesday, October 8 Presentation Topic: Update on the Uranium-233 Project II. Comments from the Deputy Designated Federal Officer, and the DOE, EPA, and TDEC Liaisons (S. Cange, D. Adler, C. Jones, K. Czartoryski) ...................................................... 6:05-6:20 III. Public Comment Period (C. Rowcliffe) ................................................................................ 6:20-6:30 IV. Presentation: Oak Ridge Environmental Management Stewardship

  2. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    This Remedial Investigation (RI) Work Plan specifically addresses Chestnut Ridge Operable Unit 1, (OU1) which consists of the Chestnut Ridge Security Pits (CRSP). The CRSP are located {approximately}800 ft southeast of the central portion of the Y-12 Plant atop Chestnut Ridge, which is bounded to the northwest by Bear Creek Valley and to the southeast by Bethel Valley. Operated from 1973 to 1988, the CRSP consisted of a series of trenches used for the disposal of classified hazardous and nonhazardous waste materials. Disposal of hazardous waste materials was discontinued in December 1984, while nonhazardous waste disposal ended on November 8, 1988. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern (COC), support an ecological risk assessment (ERA) and a human health risk assessment (HHRA), support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this Work Plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU1. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the overall risk posed to human health and the environment by OU1.

  3. Oak Ridge Manufacturing Demonstration Facility (MDF)

    Broader source: Energy.gov [DOE]

    The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

  4. Oak Ridge Reservation Waste Management Plan

    SciTech Connect (OSTI)

    Turner, J.W.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  5. Green Ridge Power Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Green Ridge Power Wind Farm I Facility Green Ridge Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  6. Oak Ridge Focuses on Old and New in 2013

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. - In 2013, the Oak Ridge Office of Environmental Management completed numerous projects. Some of the major accomplishments involved reaching two long-standing goals and progressing on the design of a new construction project.

  7. Oak Ridge Project Opens Possibilities for Future Mission Work, Development

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. EM is refining the picture of uncontaminated areas within the 33,500-acre Oak Ridge Reservation through a review of historic documents and extensive sampling, analysis and characterization.

  8. Oak Ridge Site Specific Advisory Board Contacts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM-90, Oak Ridge, TN 37831 Phone: (865) 241-4583 Fax: (865) 241-6932 Email: osbornepl@oro.doe.gov Spencer Gross, ORSSAB Support Office Oak Ridge SSAB, P.O. Box 2001, EM-90, Oak...

  9. Oak Ridge Micro Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Ridge, Tennessee Zip: 37830 Product: Developer and producer of thin film rechargeable lithium and lithium-ion batteries. References: Oak Ridge Micro-Energy Inc1 This article is...

  10. Blue Ridge Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    Blue Ridge Elec Member Corp Place: North Carolina Phone Number: 1-800-448-2383 Website: www.blueridgeemc.com Twitter: @blueridgeemc Facebook: https:www.facebook.comBlueRidgeEMC...

  11. Hopkins Ridge II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Hopkins Ridge II Wind Farm Facility Hopkins Ridge II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  12. EM, UCOR Quickly Reconcile Oak Ridge Cleanup Contract

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – At a ceremony today, Oak Ridge’s Environmental Management (EM) program and its prime contractor, URS | CH2M Oak Ridge, LLC (UCOR) celebrated the completion of the site’s reconciled cleanup contract.

  13. Human Resources at Oak Ridge National Laboratory | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Oak Ridge National Laboratory Contact Information The main contact for human resources for CMI at Oak Ridge National Laboratory: David Lett Phone: 865-576-5675 Email: lettdg@ornl.gov Link to ORNL's career website

  14. Oak Ridge: Approaching 4 Million Safe Work Hours

    Broader source: Energy.gov [DOE]

    Workers at URS | CH2M Oak Ridge (UCOR), the prime contractor for EM’s Oak Ridge cleanup, are approaching a milestone of 4 million safe work hours without a lost time away incident.

  15. Oak Ridge Reservation Compliance Order, September 26, 1995

    Office of Environmental Management (EM)

    Box 2001, Oak Ridge, TN 37831. Go to Table of Contents http:www.em.doe.govffaaorrffca.html 4252001 Oak Ridge Reservation Compliance Order, September 26, 1995 Page 2 of 5...

  16. FTCP Site Specific Information - Nuclear Energy Oak Ridge Site Office |

    Office of Environmental Management (EM)

    Department of Energy Nuclear Energy Oak Ridge Site Office FTCP Site Specific Information - Nuclear Energy Oak Ridge Site Office Annual Workforce Analysis and Staffing Plan Report Calendar Year 2013 Calendar Year 2012

  17. P.O. Box 117, Oak Ridge, TN 37831

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Box 117, Oak Ridge, TN 37831 g (865) 241-8893 g IVsurveys@orau.org On the Web: www.orau.orgenvironmental-assessments-health-physics Oak Ridge Associated Universities (ORAU) is a...

  18. Waste Heat Recovery

    Broader source: Energy.gov (indexed) [DOE]

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3.

  19. EA-1117: Management of Spent Nuclear Fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for the management of spent nuclear fuel on the U.S. Department of Energy's Oak Ridge Reservation to implement the preferred alternative...

  20. Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Costs | Department of Energy Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs One-page factsheet describing how ArcelorMittal Indiana Harbor Energy Recovery & Reuse 504 Boiler was constructed and installed with DOE Recovery Act Funding. PDF icon Blast Furnace Gas

  1. Oak Ridge's Reindustrialization Program Named Finalist for National

    Office of Environmental Management (EM)

    Competition | Department of Energy Oak Ridge's Reindustrialization Program Named Finalist for National Competition Oak Ridge's Reindustrialization Program Named Finalist for National Competition November 15, 2010 - 12:00pm Addthis OAK RIDGE, Tenn. - The Reindustrialization Program at the U.S. Department of Energy's (DOE) Oak Ridge Office (ORO) was recently named a finalist in the U.S. General Services Administration's (GSA) 14th Annual Achievement Award for Real Property Innovation. This

  2. 2013 Annual Planning Summary for the Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Oak Ridge National Laboratory.

  3. Workplace Charging Challenge Partner: Oak Ridge National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oak Ridge National Laboratory Workplace Charging Challenge Partner: Oak Ridge National Laboratory Workplace Charging Challenge Partner: Oak Ridge National Laboratory Oak Ridge National Laboratory's (ORNL's) Sustainable Campus Initiative contains a roadmap for development of electric vehicle charging stations, indicating that plug-in electric vehicle (PEV) charging is part of a broad sustainability focus for the Laboratory. ORNL has 44 charging stations on campus, 25 of

  4. Independent Activity Report, Oak Ridge Office- June 2011

    Broader source: Energy.gov [DOE]

    Review of the Oak Ridge Office FY 2012 Draft Schedules for Oversight Activities [HIAR-ORO-2011-06-21

  5. DOE Awards Contract for Oak Ridge Transuranic Waste Processing Center

    Energy Savers [EERE]

    Services | Department of Energy Oak Ridge Transuranic Waste Processing Center Services DOE Awards Contract for Oak Ridge Transuranic Waste Processing Center Services June 18, 2015 - 6:00pm Addthis Media Contact: Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati - The U.S. Department of Energy (DOE) today announced the award of a contract to North Wind Solutions, LLC for waste processing services at the Oak Ridge Transuranic Waste Processing Center (TWPC) in Oak Ridge,

  6. Oak Ridge Operations Office of Environmental Management Overview

    Office of Environmental Management (EM)

    Oak Ridge Environmental Management Program Moving to the Future by Cleaning up the Past Sue Cange Acting Manager May 16, 2012 Oak Ridge Cleanup Work is Urgent and Essential * Our Mission: Complete the cleanup of the Oak Ridge Reservation to protect the region's health and environment; make clean land available for future use; and ensure DOE's ongoing vital missions * Our Vision: The Oak Ridge Reservation will be remediated, modernized and reindustrialized 2 ETTP ORNL Y-12 * More than 700,000

  7. Oak Ridge Site Specific Advisory Board Monthly Meeting

    Office of Environmental Management (EM)

    6 p.m., DOE Information Center 1 Science.gov Way Oak Ridge, Tennessee The mission of the Oak Ridge Site Specific Advisory Board (ORSSAB) is to provide informed advice and recommendations concerning site specific issues related to the Department of Energy's (DOE's) Environmental Management (EM) Program at the Oak Ridge Reservation. In order to provide unbiased evaluation and recommendations on the cleanup efforts related to the Oak Ridge site, the Board seeks opportunities for input through

  8. Oak Ridge Metrology Center | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Services Oak Ridge Metrology Center Capabilities Disciplines Contacts Secure Manufacturing Technical Services Ultrasonic cleaner cuts costs, enhances safety Nuclear...

  9. Oak Ridge Reservation annual site environmental report summary 1998

    SciTech Connect (OSTI)

    Hamilton, L.V.

    1999-12-01

    This report summarizes the information found in the Oak Ridge Reservation Annual Site Environmental for 1998 (DOE/ORO/2091).

  10. Oak Ridge National Laboratory - Computing and Computational Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directorate Oak Ridge to acquire next generation supercomputer Oak Ridge to acquire next generation supercomputer The U.S. Department of Energy's (DOE) Oak Ridge Leadership Computing Facility (OLCF) has signed a contract with IBM to bring a next-generation supercomputer to Oak Ridge National Laboratory (ORNL). The OLCF's new hybrid CPU/GPU computing system, Summit, will be delivered in 2017. (more) Links Department of Energy Consortium for Advanced Simulation of Light Water Reactors Extreme

  11. EM's Oak Ridge Office Launches New Website | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Office Launches New Website EM's Oak Ridge Office Launches New Website February 6, 2014 - 12:00pm Addthis The Oak Ridge Office of Environmental Management's new website, above, features more news and resources for stakeholders, residents and media. The Oak Ridge Office of Environmental Management's new website, above, features more news and resources for stakeholders, residents and media. The office's previous website is shown above. The office's previous website is shown above. The

  12. August 1, 2005: Bodman visits Oak Ridge | Department of Energy

    Energy Savers [EERE]

    2005: Bodman visits Oak Ridge August 1, 2005: Bodman visits Oak Ridge August 1, 2005: Bodman visits Oak Ridge August 1, 2005 Secretary Bodman visits (pdf) DOE's Oak Ridge National Laboratory to tour the facility and host an all-hands meeting with lab employees. The Secretary tells the employees that he is pleased and enthusiastic, on the whole, with the Energy Policy Act, particularly in that it has measures to encourage more nuclear energy generation. When asked what methods of generation he

  13. Major Risk Factors Integrated Facility Disposition Project - Oak Ridge |

    Energy Savers [EERE]

    Department of Energy Integrated Facility Disposition Project - Oak Ridge Major Risk Factors Integrated Facility Disposition Project - Oak Ridge Full Document and Summary Versions are available for download PDF icon Major Risk Factors Integrated Facility Disposition Project - Oak Ridge PDF icon Summary - Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN More Documents & Publications Major Risk Factors to the Integrated Facility Disposition Project Compilation

  14. Follow-up Review, Oak Ridge National Laboratory - December 2001 |

    Office of Environmental Management (EM)

    Department of Energy Follow-up Review, Oak Ridge National Laboratory - December 2001 Follow-up Review, Oak Ridge National Laboratory - December 2001 December 2001 Follow-up Review of the Oak Ridge National Laboratory Health Services Division This report summarizes the results of a follow-up evaluation to an occupational medicine program review that was performed at the Department of Energy's (DOE) Oak Ridge National Laboratory Health Services Division in September 1998. The follow-up review

  15. DATA SHARING REPORT CHARACTERIZATION OF THE SURVEILLANCE AND MAINTENANCE PROJECT MISCELLANEOUS PROCESS INVENTORY WASTE ITEMS OAK RIDGE NATIONAL LABORATORY, Oak Ridge TN

    SciTech Connect (OSTI)

    Weaver, Phyllis C

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, to provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a sampling and analysis campaign to target certain items associated with URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing for final disposal. This waste was generated during processing, surveillance, and maintenance activities associated with the facilities identified in the process knowledge (PK) provided in Appendix A. A list of items for sampling and analysis were generated from a subset of materials identified in the WHP populations (POPs) 4, 5, 6, 7, and 8, plus a small number of items not explicitly addressed by the WHP. Specifically, UCOR S&M project personnel identified 62 miscellaneous waste items that would require some level of evaluation to identify the appropriate pathway for disposal. These items are highly diverse, relative to origin; composition; physical description; contamination level; data requirements; and the presumed treatment, storage, and disposal facility (TSDF). Because of this diversity, ORAU developed a structured approach to address item-specific data requirements necessary for acceptance in a presumed TSDF that includes the Environmental Management Waste Management Facility (EMWMF)using the approved Waste Lot (WL) 108.1 profilethe Y-12 Sanitary Landfill (SLF) if appropriate; EnergySolutions Clive; and the Nevada National Security Site (NNSS) (ORAU 2013b). Finally, the evaluation of these wastes was more suited to a judgmental sampling approach rather than a statistical design, meaning data were collected for each individual item, thereby providing information for item-byitem disposition decisions. ORAU prepared a sampling and analysis plan (SAP) that outlined data collection strategies, methodologies, and analytical guidelines and requirements necessary for characterizing targeted items (ORAU 2013b). The SAP described an approach to collect samples that allowed evaluation as to whether or not the waste would be eligible for disposal at the EMWMF. If the waste was determined not to be eligible for EMWMF disposal, then there would be adequate information collected that would allow the waste to be profiled for one of the alternate TSDFs listed above.

  16. Recovery Act State Summaries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Summaries Recovery Act State Summaries Alabama Recovery Act State Memo Alaska Recovery Act State Memo American Samoa Recovery Act State Memo Arizona Recovery Act State Memo Arkansas Recovery Act State Memo California Recovery Act State Memo Colorado Recovery Act State Memo Connecticut Recovery Act State Memo Delaware Recovery Act State Memo District of Columbia Recovery Act State Memo Florida Recovery Act State Memo Georgia Recovery Act State Memo Guam Recovery Act State Memo

  17. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

    1986-10-14

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

  18. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, William R.; Cassano, Anthony A.; Dunbobbin, Brian R.; Rao, Pradip; Erickson, Donald C.

    1986-01-01

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

  19. Short Mountain Landfill gas recovery project

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA's latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers' demand for electrical power.

  20. Californium Recovery from Palladium Wire

    SciTech Connect (OSTI)

    Burns, Jon D.

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratorys Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  1. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

  2. Faces of the Recovery Act: The Impact of Smart Grid

    Broader source: Energy.gov [DOE]

    On October 27th, 2009, Baltimore Gas & Electric was selected to receive $200 million for Smart Grid innovation projects under the Recovery Act. Watch as members of their team, along with...

  3. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar/U.S. Department of Energy PDF icon 2004_deer_hopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar, Inc., June 2011

  4. Recommendation 215: Recommendation on Remaining Legacy Materials on the Oak Ridge Reservation

    Broader source: Energy.gov [DOE]

    The Oak Ridge Site Specific Advisory Board approved the enclosed recommendation on remaining legacy materials on the Oak Ridge Reservation.

  5. Next generation processes for NGL/LPG recovery

    SciTech Connect (OSTI)

    Pitman, R.N.; Hudson, H.M.; Wilkinson, J.D.; Cuellar, K.T.

    1998-12-31

    Up to now, Ortloff`s Gas Subcooled Process (GSP) and OverHead Recycle Process (OHR) have been the state-of-the-art for efficient NGL/LPG recovery from natural gas, particularly for those gases containing significant concentrations of carbon dioxide (CO{sub 2}). Ortloff has recently developed new NGL recovery processes that advance the start-of-the-art by offering higher recovery levels, improved efficiency, and even better CO{sub 2} tolerance. The simplicity of the new process designs and the significantly lower gas compression requirements of the new processes reduce the investment and operating costs for gas processing plants. For gas streams containing significant amounts of carbon dioxide, the CO{sub 2} removal equipment upstream of the NGL recovery plant can be smaller or eliminated entirely, reducing both the investment cost and the operating cost for gas processing companies. In addition, the new liquids extraction processes can be designed to efficiently recover or reject ethane, allowing the gas processor to respond quickly to changing market conditions. This next generation of NGL/LPG recovery processes is now being applied to natural gas processing here in the US and abroad. Two of the new plants currently under construction provide practical examples of the benefits of the new processes.

  6. About Oak Ridge | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Oak Ridge 2012 Y-12 interns Oak Ridge is one of the most scientifically influential cities in the United States. With a rich history dating back to the 1940s, the Atomic City has played a key role in many major scientific developments through the years. You can explore Oak Ridge's scientific heritage in the American Museum of Science and Energy. Oak Ridge offers a variety of attractions such as the Oak Ridge Playhouse, the Secret City Commemorative Walk, and Excursion Train, as well as

  7. Oak Ridge's EM Program Demolishes North America's Tallest Water Tower |

    Energy Savers [EERE]

    Department of Energy EM Program Demolishes North America's Tallest Water Tower Oak Ridge's EM Program Demolishes North America's Tallest Water Tower August 27, 2013 - 12:00pm Addthis Oak Ridge’s K-1206 F Fire Water Tower falls into an empty field during a recent demolition project. Oak Ridge's K-1206 F Fire Water Tower falls into an empty field during a recent demolition project. OAK RIDGE, Tenn. - Oak Ridge's EM program recently demolished one of the most iconic structures at the East

  8. Department of energy oak riDge office

    Office of Environmental Management (EM)

    energy oak riDge office of environmental management economic impact analysis The Oak Ridge Office of Environmental Management was established to remove environmental legacies resulting from more than 60 years of nuclear weapons development and government-sponsored nuclear energy research. Each of Oak Ridge's three primary cleanup sites faces unique challenges that present risk and hinder the Department's missions. 2 DEpaRTMEnT Of EnERgy Oak RiDgE EnviROnMEnTal ManagEMEnT The Oak Ridge Office of

  9. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  10. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    6:05 A. Next Meeting: Wednesday, October 8 Presentation Topic: Update on the Uranium-233 Project II. Comments from the Deputy Designated Federal Officer, and the DOE, EPA, and TDEC Liaisons (S. Cange, D. Adler, C. Jones, K. Czartoryski) ...................................................... 6:056:20 III. Public Comment Period (C. Rowcliffe) ................................................................................ 6:206:30 IV. Presentation: Oak Ridge Environmental Management

  11. Oak Ridge Mobile Agent Community (ORMAC)

    Energy Science and Technology Software Center (OSTI)

    2003-06-30

    The Oak Ridge Mobile Agent Community (ORMAC) framework software facilitates the execution of a collection of mobile software agents across a heterogeneous collection of computer systems. ORMAC provides the software agents with the ability to communicate with each other in a synchronous and asynchronous manner. Also, ORMAC allows the software agents to move to any computer system in the community and continue execution there. ORMAC is intended to aid programmers in solving a very generalmoreset of distributed software problems.less

  12. ORISE: Oak Ridge Sitewide Institutional Review Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge Sitewide Institutional Review Board The Federal Policy for the Protection of Human Subjects, also known as the Common Rule, requires that each institution that engages in human subjects research establish an institutional review board (IRB). The IRB is to be composed of scientists, non-scientists and community members from differing backgrounds and perspectives. The role of the IRB is to ensure that risks to human research subjects are minimized and reasonable relative to the

  13. Oak Ridge Associated Universities / ORISE, October 2011

    Office of Environmental Management (EM)

    Associated Universities, Oak Ridge Institute for Science and Education Report from the Department of Energy Voluntary Protection Program Onsite Review October 24-27, 2011 U.S. Department of Energy Office of Health, Safety and Security Office of Health and Safety Office of Worker Safety and Health Assistance Washington, DC 20585 i Foreword The Department of Energy (DOE) recognizes that true excellence can be encouraged and guided, but not standardized. For this reason, on January 26, 1994, the

  14. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    May 14, 2014, 6:00 p.m. DOE Information Center 1 Science.gov Way, Oak Ridge, Tenn. AGENDA I. Welcome and Announcements (D. Hemelright) .................................................................. 6:00-6:05 A. Next Meeting: Wednesday, June 11. Presentation Topic: Community Reuse Organization of East Tennessee Efforts at the East Tennessee Technology Park B. Introduction of New Student Representatives (S. Cange) II. Comments from the Deputy Designated Federal Officer, and the DOE, EPA, and

  15. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    June 11, 2014, 6:00 p.m. DOE Information Center 1 Science.gov Way, Oak Ridge, Tenn. AGENDA I. Welcome and Announcements (D. Hemelright) .................................................................. 6:00-6:05 A. Next Meeting: Wednesday, July 9. New Member Training Meeting II. Comments from the Deputy Designated Federal Officer, and the DOE, EPA, and TDEC Liaisons (S. Cange, D. Adler, C. Jones, J. Owsley).............................................................. 6:05-6:20 III. Public

  16. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    October 8, 2014, 6:00 p.m. DOE Information Center 1 Science.gov Way, Oak Ridge, Tenn. AGENDA I. Welcome and Announcements (D. Hemelright) .................................................................. 6:00-6:05 A. Next Meeting: Wednesday, November 12 Presentation Topic: East Tennessee Technology Park Zone 1 Soils Proposed Plan II. Comments from the Deputy Designated Federal Officer, and the DOE, EPA, and TDEC Liaisons (S. Cange, D. Adler, C. Jones, K. Czartoryski)

  17. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    March 11, 2015, 6:00 p.m. DOE Information Center 1 Science.gov Way, Oak Ridge, Tenn. AGENDA I. Welcome and Announcements (D. Hemelright) .................................................................. 6:00-6:05 A. Next Meeting: May 13, Location to Be Announced (No Meeting in April) II. Comments from the Deputy Designated Federal Officer, and the DOE, EPA, and TDEC Liaisons (S. Cange, D. Adler, C. Jones, K. Czartoryski) ...................................................... 6:05-6:20 III.

  18. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    October 14, 2015, 6:00 p.m. DOE Information Center 1 Science.gov Way, Oak Ridge, Tenn. AGENDA I. Welcome and Announcements (B. Price) ............................................................................ 6:00-6:05 A. Next Meeting: Wednesday, November 10, (Location TBD) Presentation Topic: The Federal Oversight Model-Ensuring a Safe Work Environment II. Comments from the Deputy Designated Federal Officer, and EPA and TDEC Liaisons (S. Cange, C. Jones, K. Czartoryski)

  19. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    January 13, 2016, 6:00 p.m. DOE Information Center 1 Science.gov Way, Oak Ridge, Tenn. AGENDA I. Welcome and Announcements (B. Price) ............................................................................ 6:006:05 A. February 10 Presentation Topic: Groundwater Monitoring Program B. Presentation of Service Awards to Outgoing Members Hagy, Staley (S. Cange) II. Comments from the Deputy Designated Federal Officer, and EPA and TDEC Liaisons (S. Cange, C. Jones, K. Czartoryski)

  20. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    February 10, 2016, 6:00 p.m. DOE Information Center 1 Science.gov Way, Oak Ridge, Tenn. AGENDA I. Welcome and Announcements (B. Price) ............................................................................ 6:006:05 A. March 9 Presentation Topic: FY 2018 Budget Formulation and Prioritization of Projects B. Introduction of New Members (S. Cange) II. Comments from the Deputy Designated Federal Officer, and EPA and TDEC Liaisons (S. Cange, C. Jones, K. Czartoryski)

  1. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    9, 2016, 6:00 p.m. DOE Information Center 1 Science.gov Way, Oak Ridge, Tenn. AGENDA I. Welcome and Announcements (A. Cook) ......................................................................... 6:00-6:05 A. April - No Meeting in Lieu of Spring Chairs Meeting B. Presentation of Service Award (M. Noe) II. Comments from the Alternate Deputy Designated Federal Officer, and EPA and TDEC Liaisons (M. Noe, C. Jones, K. Czartoryski) .................................................... 6:05-6:15 III.

  2. Oak Ridge Operations PO. Box E

    Office of Legacy Management (LM)

    PO. Box E Oak Ridge,Tennessee 37830 E. 6. DeLaney, DRAP, NE-24 COMPLETION OF DECONTAMINATION OF GILMAN HALL, UNIVERSITY OF CALIFORNIA AT BERKELEY Attached is a copy of the final report covering the remedial actions and associated radiological survey work on Gilman Hall. Your attention is called to the last paragraph of the attached letter from Mr. Davis (SAN) which states: "Completion of this work has fulfilled OR's obligation under the Formerly Utilized Sites Remedial Action Program

  3. Summary - Caustic Recovery Technology

    Office of Environmental Management (EM)

    Caustic Recovery Technology ETR Report Date: July 2007 ETR-7 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Caustic Recovery Technology Why DOE-EM Did This Review The Department of Energy (DOE) Environmental Management Office (EM-21) has been developing caustic recovery technology for application to the Hanford Waste Treatment Plant (WTP) to reduce the amount of Low Activity Waste (LAW) vitrified. Recycle of sodium hydroxide with an

  4. American Recovery & Reinvestment Act Newsletter July 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including at Oak Ridge, where 755 million has been allocated for environmental man- agement activities. The Oak Ridge Institute for Science and Education (ORISE), which...

  5. Exhaust bypass flow control for exhaust heat recovery

    DOE Patents [OSTI]

    Reynolds, Michael G.

    2015-09-22

    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  6. Recovery Act Open House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light snacks for those attending. DOE ID Manager Rick Provencher discusses the non-cleanup work that was accomplished with Recovery Act funding. Editorial Date November 15, 2010...

  7. EM Recovery Act Performance

    Broader source: Energy.gov [DOE]

    The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40...

  8. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect (OSTI)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

  9. Completed Recovery Act Project Gives Y-12 New Look | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Completed Recovery Act Project Gives Y-12 New Look Completed Recovery Act Project Gives Y-12 New Look May 26, 2011 - 12:00pm Addthis OAK RIDGE, Tenn. - The Y-12 National Security Complex's (Y-12) final Recovery Act-funded demolition project recently completed three months ahead of schedule when the final truckload of debris left the site of the former Biology Complex. The $26.5 million project removed four of the seven buildings from the complex, and helped modernize the site through much-needed

  10. Final Recovery Act-Funded Demolition Underway at Y-12 | Department of

    Office of Environmental Management (EM)

    Energy Final Recovery Act-Funded Demolition Underway at Y-12 Final Recovery Act-Funded Demolition Underway at Y-12 October 26, 2010 - 12:00pm Addthis OAK RIDGE, Tenn. - The final and most high-profile demolition funded at the Y-12 National Security Complex by the American Recovery and Reinvestment Act continues this week. Building 9211, one of seven buildings in Y-12's vacant Biology Complex, was constructed in 1945 to house biological research. The 83,471-square-foot facility has not been

  11. Continuous recovery system for electrorefiner system

    SciTech Connect (OSTI)

    Williamson, Mark A.; Wiedmeyer, Stanley G.; Willit, James L.; Barnes, Laurel A.; Blaskovitz, Robert J.

    2014-06-10

    A continuous recovery system for an electrorefiner system may include a trough having a ridge portion and a furrow portion. The furrow portion may include a first section and a second section. An inlet and exit pipe may be connected to the trough. The inlet pipe may include an outlet opening that opens up to the first section of the furrow portion of the trough. The exit pipe may include an entrance opening that opens up to the second section of the furrow portion of the trough. A chain may extend through the inlet and exit pipes and along the furrow portion of the trough. The chain may be in a continuous loop form. A plurality of flights may be secured to the chain. Accordingly, the desired product may be continuously harvested from the electrorefiner system without having to halt the electrical power and/or remove the cathode and anode assemblies.

  12. Natural Gas Heat Pump and Air Conditioner | Department of Energy

    Energy Savers [EERE]

    Natural Gas Heat Pump and Air Conditioner Natural Gas Heat Pump and Air Conditioner Lead Performer: Thermolift - Stony Brook, NY Partners: -- New York State Energy Research & Development Authority - Albany, NY -- Stony Brook University - Stony Brook, NY -- Oak Ridge National Laboratory - Oak Ridge, TN -- National Grid - Washington, DC -- Applied Thermodynamic Apparatus (ATA) - Ann Arbor, MI -- Fala Technologies - Kingston, NY -- LoDolce - Saugerties, NY DOE Funding: $750,000 Cost Share:

  13. DOE/EA-1651: Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory Oak Ridge, Tennessee (January 2010)

    Office of Environmental Management (EM)

    651 Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory Oak Ridge, Tennessee U. S. Department of Energy Oak Ridge Office Oak Ridge, Tennessee January 2010 FINDING OF NO SIGNIFICANT IMPACT URANIUM-233 MATERIAL DOWNBLENDING AND DISPOSITION PROJECT AT THE OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: DOE has completed the

  14. CONTENTS Preliminary Results of China's Third Gas Hydrate Drilling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preliminary Results of China's Third Gas Hydrate Drilling Expedition: A Critical Step From Discovery to Development in the South China Sea ............................1 Gas Hydrate Occurrences in the Black Sea - New Observations from the German SUGAR Project ...............................................6 Methane Hydrate Dynamics on the Northern US Atlantic Margin ............................................ 10 Gas Hydrate, Carbonate Crusts, and Chemosynthetic Organisms on A Vestnesa Ridge

  15. Maximizing NGL recovery by refrigeration optimization

    SciTech Connect (OSTI)

    Baldonedo H., A.H.

    1999-07-01

    PDVSA--Petroleo y Gas, S.A. has within its facilities in Lake Maracaibo two plants that extract liquids from natural gas (NGL), They use a combined mechanic refrigeration absorption with natural gasoline. Each of these plants processes 420 MMsccfd with a pressure of 535 psig and 95 F that comes from the compression plants PCTJ-2 and PCTJ-3 respectively. About 40 MMscfd of additional rich gas comes from the high pressure system. Under the present conditions these plants produce in the order of 16,800 and 23,800 b/d of NGL respectively, with a propane recovery percentage of approximately 75%, limited by the capacity of the refrigeration system. To optimize the operation and the design of the refrigeration system and to maximize the NGL recovery, a conceptual study was developed in which the following aspects about the process were evaluated: capacity of the refrigeration system, refrigeration requirements, identification of limitations and evaluation of the system improvements. Based on the results obtained it was concluded that by relocating some condensers, refurbishing the main refrigeration system turbines and using HIGH FLUX piping in the auxiliary refrigeration system of the evaporators, there will be an increase of 85% on the propane recovery, with an additional production of 25,000 b/d of NGL and 15 MMscfd of ethane rich gas.

  16. AEC and Oak Ridge High School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School Last week we noted that the Atomic Energy Commission proudly published the following milestones in 1964 in the AEC Handbook on Oak Ridge Operations: 1. The gates were opened to the public in 1949 2. Land first leased to residents in 1953 - opening the way for extensive construction 3. In 1956 the first property was sold to private owners 4. In 1959 Oak Ridgers voted to incorporate and establish their own municipal government Another milestone that could have been included would have

  17. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    June 13, 2013 Letitia O'Conor EM-11 U.S. Department of Energy 1000 Independence Ave., S.W. Washington, DC 20585 Sue Smiley Program Analyst Project Management Support Division USDOE, EM Consolidated Business Center 250 E. Fifth St., Suite 500 Cincinnati, OH 45202 Dear Ms. O'Conor and Smiley Recommendation 218: Recommendation to Develop a Fact Sheet on Site Transition at On-going Mission Sites At our June 12, 2013, meeting the Oak Ridge Site Specific Advisory Board approved the enclosed

  18. Lion Television films at Oak Ridge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lion Television films at Oak Ridge Several weeks ago an interesting e-mail came to me from ORNL's Public Relations office. The e-mail had a patent application drawing attached and asked if I knew anything about the apparatus being depicted in the drawing. I did not, but from the description of the patent application and some of the components shown in the drawing, I thought it might have something to do with the calutrons at Y-12. The cover e-mail from an associate producer of the Public

  19. OAK RIDGE NATIONAL LABORATORY RESULTS OF RADIOLOGICAL

    Office of Legacy Management (LM)

    2 7% d &y / 7 ORNL/TM- 10076 OAK RIDGE NATIONAL LABORATORY RESULTS OF RADIOLOGICAL ~-T-m -~=- -~ w-~- -"" * ,<.~- ~w&$UREMENTs: TAKEN IN THE NIAGARA FALLS, NEW YORK, AREA (NF002) J. K. Williams B. A. Berven ~.~~;:;-~~~ ~. -,' - ~~ 7, OPERATED BY MARTIN MARIDTA ENERGY SYSTEMS, INC, FOR THE UNITED STATES DEPARTMENT OF ENERGY --... ORNL/TM-10076 HEALTH AND SAFETY RESEARCH DIVISION Nuclear and Chemical Waste Programs (Activity No. AH 10 05 00 0; ONLWCOI) RESULTS OF RADIOLOGICAL

  20. Oak Ridge Field O%ce

    Office of Legacy Management (LM)

    DOC F ' ;fz; , NiJlo-2- - ' U ' ted St tes Go e e t kh&~~durn Der>artment of Energy rm jl# Oak Ridge Field O%ce DATE: June 21, 1993 REPLY TO ATTW Of: EW-93:Hartman SUBJECT: WAYNE INTERIM STORAGE SITE - TERMINATION OF SITE ENVIRONMENTAL REPORT TO: Peter 3. Gross, Director, Environmental Protection Division, SE-31 The Wayne Interim Storage Site (WISS) is part of the Formerly Utilized Sites Remedial Action Program. Based upon our surveillance efforts at WISS since 1984, the data for all

  1. Resource Recovery Opportunities at America's Water Resource Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities | Department of Energy Resource Recovery Opportunities at America's Water Resource Recovery Facilities Resource Recovery Opportunities at America's Water Resource Recovery Facilities Breakout Session 3A-Conversion Technologies III: Energy from Our Waste (Will we Be Rich in Fuel or Knee Deep in Trash by 2025?) Resource Recovery Opportunities at America's Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL PDF icon

  2. Recovery Act: State Assistance for Recovery Act Related Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policies | Department of Energy Information Center » Recovery Act » Recovery Act: State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related Electricity Policies $44 Million for State Public Utility Commissions State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to

  3. Environmental baseline survey report for West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge and parcel 21D in the vicinity of the East Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    King, David A.

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy?s (DOE?s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only no-further-investigation (NFI) reports. Groundwater sampling was also conducted to support a Parcel 21d decision. Based on available data West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, and West Pine Ridge are not impacted by site operations and are not subject to actions per the Federal Facility Agreement (FFA). This determination is supported by visual inspections, records searches and interviews, groundwater conceptual modeling, approved NFI reports, analytical data, and risk analysis results. Parcel 21d data, however, demonstrate impacts from site operations, specifically as associated with lead in surface soil at the abandoned water tank and nickel in surface soils over the northern portion of the parcel from former Bldg. K-1037 smelting operations. Low level detections of organics are also reported in some surface soils including Polycyclic aromatic hydrocarbons (PAHs) near Blair Road and common laboratory contaminants at randomly distributed locations. However, human health risk from site-related contaminants of potential concern (COPCs) are acceptable?though maximum concentrations of lead and nickel and the screening-level ecological risk assessment (SLERA) demonstrate no further ecological evaluation is warranted. The weight of evidence leads to the conclusion Parcel 21d does not require any actions per the FFA.

  4. Recent Demolition Makes Oak Ridge National Laboratory Cleaner, Safer |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Recent Demolition Makes Oak Ridge National Laboratory Cleaner, Safer Recent Demolition Makes Oak Ridge National Laboratory Cleaner, Safer April 16, 2012 - 12:00pm Addthis Media Contact Ben Williams , (865) 576-0885, http://www.oakridge.doe.gov OAK RIDGE, Tenn. - U.S. Department of Energy (DOE) cleanup contractor Safety and Ecology Corporation recently removed four structures as part of the Building 3026 C/D Hot Cells Project. The structures, which once processed

  5. DOE's Oak Ridge Supercomputer Now World's Fastest for Open Science |

    Energy Savers [EERE]

    Department of Energy Supercomputer Now World's Fastest for Open Science DOE's Oak Ridge Supercomputer Now World's Fastest for Open Science November 10, 2008 - 4:47pm Addthis OAK RIDGE, Tenn. -- The latest upgrade to the Cray XT Jaguar supercomputer at the Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) has increased the system's computing power to a peak 1.64 "petaflops," or quadrillion mathematical calculations per second, making Jaguar the world's first

  6. Oak Ridge 'Jaguar' Supercomputer is World's Fastest | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge 'Jaguar' Supercomputer is World's Fastest Oak Ridge 'Jaguar' Supercomputer is World's Fastest November 16, 2009 - 12:00am Addthis Washington, DC -An upgrade to a Cray XT5 high-performance computing system deployed by the Department of Energy has made the "Jaguar" supercomputer the world's fastest. Located at Oak Ridge National Laboratory, Jaguar is the scientific research community's most powerful computational tool for exploring solutions to some of today's most difficult

  7. Oak Ridge City Center Technology Demonstration Project | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Oak Ridge City Center Technology Demonstration Project Oak Ridge City Center Technology Demonstration Project Project objectives: To broaden market understanding of large-scale GSHP technology, and the design considerations that will impact front-end costs, ongoing maintenance costs, future energy savings, and system breakeven/lifecycle cost. PDF icon gshp_thrash_oak_ridge_city_center.pdf More Documents & Publications Ground Source Heat Pump System Data Analysis Analysis of

  8. Oak Ridge National Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Oak Ridge National Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Oak Ridge National Laboratory (ORNL). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Oak Ridge National Laboratory 156 Technology Marketing Summaries Category Title and Abstract Laboratories Date Industrial Technologies Startup America Find

  9. Fact Sheet: Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Fact Sheet: Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) Fact Sheet: Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) The Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) is a joint procurement activity among three of the Department of Energy's National Laboratories launched in 2014 to build state-of-the-art high-performance computing technologies that are essential for supporting U.S. national nuclear security and are key tools used for

  10. Enterprise Assessments, Oak Ridge National Laboratory Irradiated Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Examination Laboratory - April 2015 | Department of Energy Assessments, Oak Ridge National Laboratory Irradiated Fuels Examination Laboratory - April 2015 Enterprise Assessments, Oak Ridge National Laboratory Irradiated Fuels Examination Laboratory - April 2015 April 2015 Review of the Safety-Significant Ventilation Systems at the Irradiated Fuels Examination Laboratory Operated by UT-Battelle for the Oak Ridge National Laboratory Office of Science The Office of Nuclear Safety and

  11. Contractor Fee Payments - Oak Ridge Operations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Operations Contractor Fee Payments - Oak Ridge Operations See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Oak Ridge Operations on these charts. PDF icon East Tennessee Technology Park PDF icon Transuranic Waste Processing - Wastren More Documents & Publications Major Contracts Summary Contractor Fee Payments - Savannah River Operations Office Contractor Fee Payments - Portsmouth Paducah Projec

  12. Oak Ridge - A Center of Innovation & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    logo-blank Home Oak Ridge Advantages Managed Properties News Corporate Residents / Affiliates Contact Events CROET's Award-winning program CROET's Award-winning program Established in 1995, CROET and its subsidiaries own, develop and manage over 300 acres of former Department of Energy property at the East Tennessee Technology Park (ETTP) and the Oak Ridge Science & Technology Park. CROET's award-winning program to revitalize former DOE properties in Oak Ridge has resulted in the creation of

  13. CHP Research and Development - Presentation by Oak Ridge National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory, June 2011 | Department of Energy Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 CHP Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 Presentation on Combined Heat and Power (CHP) Research and Development, given by K. Dean Edwards of Oak Ridge National Lab, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011. PDF icon chp_rd_edwards.pdf More Documents

  14. SLIDESHOW: Secretary Moniz Visits Oak Ridge National Laboratory |

    Energy Savers [EERE]

    Department of Energy SLIDESHOW: Secretary Moniz Visits Oak Ridge National Laboratory SLIDESHOW: Secretary Moniz Visits Oak Ridge National Laboratory Addthis Energy Secretary Moniz at CASL 1 of 25 Energy Secretary Moniz at CASL Secretary Moniz tours the Consortium for Advanced Simulation of Light Water Reactors (CASL) facility at Oak Ridge National Laboratory (ORNL). CASL is one of the Energy Department's Energy Innovation Hubs. Date taken: 2013-06-03 12:04 Energy Secretary Moniz at CASL 2 of

  15. Oak Ridge National Laboratory Cleanup | Department of Energy

    Energy Savers [EERE]

    Oak Ridge National Laboratory Cleanup Oak Ridge National Laboratory Cleanup This fact sheet provides an update on all of the current cleanup projects at the site, and it also lists the major projects that were completed at the Oak Ridge National Laboratory. This document dicusses the following projects: Tank W-1A Removal Action Project Building 3026 Hot Cells Facility Non-Reactor Facilities Removal Action 2000 Complex D&D Project Bethel Valley Burial Grounds Project U-233 Material

  16. Oak Ridge Operations Office of Environmental Management Overview |

    Energy Savers [EERE]

    Department of Energy Operations Office of Environmental Management Overview Oak Ridge Operations Office of Environmental Management Overview PDF icon Oak Ridge Operations Office of Environmental Management Overview More Documents & Publications OREM Hosts Community Workshop ORSSAB Meeting - August 2013 Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition. Deactivation &

  17. Independent Oversight Review, Oak Ridge Transuranic Waste Processing

    Energy Savers [EERE]

    Center, September 2013 | Department of Energy Oak Ridge Transuranic Waste Processing Center, September 2013 Independent Oversight Review, Oak Ridge Transuranic Waste Processing Center, September 2013 September 2013 Review of Management of Safety Systems at the Oak Ridge Transuranic Waste Processing Center and Associated Feedback and Improvement Processes. This report documents the results of an independent oversight review of the management of safety significant structures, systems, and

  18. Evaluation of Side Stream Filtration Technology at Oak Ridge National

    Office of Environmental Management (EM)

    Laboratory | Department of Energy Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory Document provides an in-depth look at side stream filtration at Oak Ridge National Laboratory. PDF icon ssf_evaluation.pdf More Documents & Publications Side Stream Filtration for Cooling Towers Technical Evaluation of Side Stream Filtration for Cooling Towers Cooling Towers: Understanding Key

  19. Oak Ridge Manufacturing Demonstration Facility (MDF) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities » Oak Ridge Manufacturing Demonstration Facility (MDF) Oak Ridge Manufacturing Demonstration Facility (MDF) The Manufacturing Demonstration Facility (MDF) is a collabora-tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused

  20. Independent Oversight Review, Oak Ridge Transuranic Waste Processing

    Office of Environmental Management (EM)

    Facility - December 2013 | Department of Energy Oak Ridge Transuranic Waste Processing Facility - December 2013 Independent Oversight Review, Oak Ridge Transuranic Waste Processing Facility - December 2013 December 2013 Review of the Fire Protection Program and Fire Protection Systems at the Transuranic Waste Processing Center This report documents the results of an independent oversight review of the fire protection programs and systems at the Oak Ridge Transuranic Waste Processing Center.

  1. DOE Prepared for Implementation of Oak Ridge Transuranic Waste Processing

    Office of Environmental Management (EM)

    Center Services | Department of Energy Oak Ridge Transuranic Waste Processing Center Services DOE Prepared for Implementation of Oak Ridge Transuranic Waste Processing Center Services October 9, 2015 - 4:00pm Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati - The U.S. Department of Energy (DOE) awarded a contract on June 18, 2015 to North Wind Solutions, LLC for support services at the Oak Ridge Transuranic Waste Processing Center (TWPC) in Oak

  2. Quality Assurance Project Plan for the Environmental Monitoring Program in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    Waste Area Grouping (WAG) 6 is a hazardous and low-level radioactive waste disposal site at Oak Ridge National Laboratory (ORNL). Extensive site investigations have revealed contaminated surface water, sediments, groundwater, and soils. Based on the results of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) conducted from 1989--1991 and on recent interactions with the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), a decision was made to defer implementing source control remedial measures at the WAG. The information shows WAG 6 contributes < 2% of the total off-site contaminant risk released over White Oak Dam (WOD). The alternative selected to address hazards at WAG 6 involves maintenance of site access controls to prevent public exposure to on-site contaminants, continued monitoring of contaminant releases to determine if source control measures will be required in the future, and development of technologies to support final remediation of WAG 6. This Quality Assurance Project Plan (QAPjP) has been developed as part of the Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE/OR/01-1192&D1). Environmental monitoring will be conducted in two phases: the baseline monitoring phase and the routine annual monitoring phase. The baseline monitoring phase will be conducted to establish the baseline contaminant release conditions at the Waste Area Grouping (WAG), to confirm the site-related chemicals of concern (COC), and to gather data to confirm the site hydrologic model. The baseline monitoring phase is expected to begin in 1994 and continue for 12-18 months. The routine annual monitoring phase will consist of continued sampling and analyses of COC to determine off-WAG contaminant flux, to identify trends in releases, and to confirm the COC. The routine annual monitoring phase will continue for {approximately}4 years.

  3. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    DOE Patents [OSTI]

    McBride, Troy O; Bell, Alexander; Bollinger, Benjamin R; Shang, Andrew; Chmiel, David; Richter, Horst; Magari, Patrick; Cameron, Benjamin

    2013-07-02

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  4. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    DOE Patents [OSTI]

    McBride, Troy O.; Bell, Alexander; Bollinger, Benjamin R.

    2012-08-07

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  5. Independent Oversight Targeted Review, Oak Ridge National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    Controls Activity-Level Implementation at the Oak Ridge National Laboratory Radiochemical Engineering Development Center and High Flux Isotope Reactor Facilities The U.S....

  6. A Morphometric Analysis Of The Submarine Volcanic Ridge South...

    Open Energy Info (EERE)

    Of Pico Island, Azores Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Morphometric Analysis Of The Submarine Volcanic Ridge...

  7. Recommendation 169: Establishment of an Oak Ridge Oral History Program

    Broader source: Energy.gov [DOE]

    The ORSSAB recommends DOE-ORO fully endorse the establishment of an Oak Ridge Oral History Program and provide necessary assistance.

  8. CHP Research and Development - Presentation by Oak Ridge National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 Presentation on Combined Heat and Power (CHP) Research and Development, given by K. Dean ...

  9. City of Oak Ridge, Tennessee (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Tennessee (Utility Company) Jump to: navigation, search Name: City of Oak Ridge Place: Tennessee Phone Number: (865) 425-1803 Website: www.oakridgetn.govdepartment Twitter:...

  10. UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE TENNESSEE THE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MDDC 869 UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE TENNESSEE THE DIFFRACTION OF NEUTRONS BY CRYSTALLINE POWDERS by E. 0. Wollan C. G. Shull Clinton Laboratories Published...

  11. Stone Ridge, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    place in Ulster County, New York.1 Registered Energy Companies in Stone Ridge, New York Prism Solar Technologies Inc References US Census Bureau 2005 Place to 2006...

  12. Ridge Energy Storage and Grid Services LP | Open Energy Information

    Open Energy Info (EERE)

    Energy Storage and Grid Services LP Jump to: navigation, search Name: Ridge Energy Storage and Grid Services LP Place: Houston, Texas Zip: 77027 Product: Developer of compressed...

  13. Clean energy growing part of Oak Ridge's reindustrialization efforts |

    Energy Savers [EERE]

    Department of Energy Clean energy growing part of Oak Ridge's reindustrialization efforts Clean energy growing part of Oak Ridge's reindustrialization efforts April 22, 2015 - 5:12pm Addthis Leadership from the DOE’s Oak Ridge Office of EM, UCOR, RSI, and Vis Solis plug in the site’s third solar array development. The newest addition adds 1 megawatt of clean, renewable energy to the grid. Leadership from the DOE's Oak Ridge Office of EM, UCOR, RSI, and Vis Solis plug in the site's

  14. Independent Oversight Review, Oak Ridge Transuranic Waste Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ridge Transuranic Waste Processing Facility - December 2013 December 2013 Review of the Fire Protection Program and Fire Protection Systems at the Transuranic Waste Processing...

  15. Ambitious Vision Drives Oak Ridge's Progress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ambitious Vision Drives Oak Ridge's Progress Ambitious Vision Drives Oak Ridge's Progress December 23, 2014 - 12:00pm Addthis Oak Ridge’s EM program began the K-31 Demolition Project in 2014. It is scheduled for completion in 2015 as part of EM’s goal to remove all of the site’s uranium enrichment facilities by 2016. Oak Ridge's EM program began the K-31 Demolition Project in 2014. It is scheduled for completion in 2015 as part of EM's goal to remove all of the site's uranium

  16. Oak Ridge National Laboratory Evaluation for Drum Characterization...

    Office of Environmental Management (EM)

    National Laboratory Evaluation for Drum Characterization and Source Term Report Oak Ridge National Laboratory Evaluation for Drum Characterization and Source Term Report This...

  17. Oak Ridge Removes Laboratory's Greatest Source of Groundwater...

    Energy Savers [EERE]

    Removes Laboratory's Greatest Source of Groundwater Contamination Oak Ridge Removes Laboratory's Greatest Source of Groundwater Contamination May 1, 2012 - 12:00pm Addthis Workers...

  18. Independent Oversight Review, Oak Ridge Transuranic Waste Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center, September 2013 Independent Oversight Review, Oak Ridge Transuranic Waste Processing Center, September 2013 September 2013 Review of Management of Safety Systems at the Oak...

  19. NREL: MIDC/Oak Ridge National Laboratory Rotating Shadowband Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (35.93 N, 84.31 W, 245 m, GMT-5) Oak Ridge National Laboratory Irradiance Inc. Rotating Shadowband

  20. Independent Oversight Targeted Review, Oak Ridge National Laboratory- April 2014

    Broader source: Energy.gov [DOE]

    Targeted Review of Radiological Controls Activity-Level Implementation at the Oak Ridge National Laboratory Radiochemical Engineering Development Center and High Flux Isotope Reactor Facilities

  1. Audit of Work Force Restructuring at the Oak Ridge Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... employees internally and perform job searches for employees taking early retirement. ... RECOMMENDATION We recommend that the Manager, Oak Ridge Operations Office, direct the ...

  2. Inspection, Oak Ridge National Laboratory - July 2004 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    4 Inspection of Environment, Safety, and Health Management at the Oak Ridge National Laboratory This report provides the results of an inspection of environment, safety, and health...

  3. PIA - Oak Ridge Institute for Science and Education Program Applicant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applicant and Participant Status System (APSS) PDF icon PIA - Oak Ridge Institute for Science and Education Program Applicant and Participant Status System (APSS) More...

  4. Incinerator Completes Mission in Oak Ridge | Department of Energy

    Energy Savers [EERE]

    Incinerator Completes Mission in Oak Ridge Incinerator Completes Mission in Oak Ridge December 1, 2009 - 12:00pm Addthis OAK RIDGE, Tenn. - After more than 18 years of operation and more than 35 million pounds of waste safely incinerated, the U.S. Department of Energy's (DOE) Toxic Substances Control Act (TSCA) Incinerator at the East Tennessee Technology Park (former K-25 site) in Oak Ridge shut down operations on December 2. During its operating lifetime, the one-of-a-kind thermal treatment

  5. ORIS: the Oak Ridge Imaging System program listings. [Nuclear...

    Office of Scientific and Technical Information (OSTI)

    program listings. Nuclear medicine imaging with rectilinear scanner and gamma camera Citation Details In-Document Search Title: ORIS: the Oak Ridge Imaging System program...

  6. Deputy Secretary visits Oak Ridge | Department of Energy

    Office of Environmental Management (EM)

    Deputy Secretary visits Oak Ridge Deputy Secretary visits Oak Ridge March 13, 2015 - 12:00pm Addthis (Left to right) Elizabeth Sherwood-Randall, Deputy Secretary of Energy; Sue Cange, Oak Ridge Office of Environmental Managment Manager; and Tim McClees, Chief of Staff to the Deputy Secretary of Energy (Left to right) Elizabeth Sherwood-Randall, Deputy Secretary of Energy; Sue Cange, Oak Ridge Office of Environmental Managment Manager; and Tim McClees, Chief of Staff to the Deputy Secretary of

  7. Work plan for support to Upper East Fork Poplar Creek east end VOC plumes well installation project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1998-03-01

    Under the Resource Conservation and Recovery Act of 1976 guidelines and requirements from the Tennessee Department of Environment and Conservation (TDEC), the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire Oak Ridge Reservation (ORR) was placed on the National Priorities List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) sites in November 1989. Following CERCLA guidelines, sites within the ORR require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) or an engineering evaluation/cost analysis (EE/CA) of potential remedial actions. Data from monitoring wells at the east end of the Y-12 Plant have identified an area of groundwater contamination dominated by the volatile organic compound (VOC) carbon tetrachloride; other VOCs include chloroform, tetrachloroethene, and trichloroethene.

  8. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  9. Recovery of tritium dissolved in sodium at the steam generator of fast breeder reactor

    SciTech Connect (OSTI)

    Oya, Y.; Oda, T.; Tanaka, S.; Okuno, K.

    2008-07-15

    The tritium recovery technique in steam generators for fast breeder reactors using the double pipe concept was proposed. The experimental system for developing an effective tritium recovery technique was developed and tritium recovery experiments using Ar gas or Ar gas with 10-10000 ppm oxygen gas were performed using D{sub 2} gas instead of tritium gas. It was found that deuterium permeation through two membranes decreased by installing the double pipe concept with Ar gas. By introducing Ar gas with 10000 ppm oxygen gas, the concentration of deuterium permeation through two membranes decreased by more than 1/200, compared with the one pipe concept, indicating that most of the deuterium was scavenged by Ar gas or reacted with oxygen to form a hydroxide. However, most of the hydroxide was trapped at the surface of the membranes because of the short duration of the experiment. (authors)

  10. Oak Ridge completes field work on Recovery Act-projects | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Completion Date: February 2013 Bethel Valley Burial Grounds: The Bethel Valley Burial Ground Project remediated a series of sites including Solid Waste Storage Areas 1 and 3,...

  11. One of EM's Last Recovery Act Projects at Oak Ridge Improves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    arriving at a safer, cleaner campus to conduct their advanced research." The project's main objective was to deactivate a ventilation branch connected to ORNL's central gaseous...

  12. American Recovery and Reinvestment Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a 212 million award from the American...

  13. Recovery Act Milestones

    Broader source: Energy.gov [DOE]

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to...

  14. Oak Ridge National Laboratory Environmental Management Portfolio...

    Office of Environmental Management (EM)

    gas handling equipment and 250 ft stack Miles of underground piping and underground tanks Radioactive liquid processing equipment and facilities Contaminated soils ...

  15. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  16. Alternatives evaluation and decommissioning study on shielded transfer tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    DeVore, J.R.; Hinton, R.R.

    1994-08-01

    The shielded transfer tanks (STTs) are five obsolete cylindrical shipping casks which were used to transport high specific activity radioactive solutions by rail during the 1960s and early 1970s. The STTs are currently stored at the Oak Ridge National Laboratory under a shed roof. This report is an evaluation to determine the preferred alternative for the final disposition of the five STTs. The decommissioning alternatives assessed include: (1) the no action alternative to leave the STTs in their present location with continued surveillance and maintenance; (2) solidification of contents within the tanks and holding the STTs in long term retrievable storage; (3) sale of one or more of the used STTs to private industry for use at their treatment facility with the remaining STTs processed as in Alternative 4; and (4) removal of tank contents for de-watering/retrievable storage, limited decontamination to meet acceptance criteria, smelting the STTs to recycle the metal through the DOE contaminated scrap metal program, and returning the shielding lead to the ORNL lead recovery program because the smelting contractor cannot reprocess the lead. To completely evaluate the alternatives for the disposition of the STTs, the contents of the tanks must be characterized. Shielding and handling requirements, risk considerations, and waste acceptance criteria all require that the radioactive inventory and free liquids residual in the STTs be known. Because characterization of the STT contents in the field was not input into a computer model to predict the probable inventory and amount of free liquid. The four alternatives considered were subjected to a numerical scoring procedure. Alternative 4, smelting the STTs to recycle the metal after removal/de-watering of the tank contents, had the highest score and is, therefore, recommended as the preferred alternative. However, if a buyer for one or more STT could be found, it is recommended that Alternative 3 be reconsidered.

  17. Federal Facility Agreement (FFA) Signed at Oak Ridge

    Broader source: Energy.gov [DOE]

    The Oak Ridge Reservation FFA was implemented on January 1, 1992. It is a CERCLA-required agreement among DOE, the United States Environmental Protection Agency, and the Tennessee Department of Environment and Conservation to promote cooperation and participation to clean and remediate the Oak Ridge Reservation.

  18. Dielectrophoresis device and method having insulating ridges for manipulating particles

    DOE Patents [OSTI]

    Cummings, Eric B. (Livermore, CA); Fiechtner, Gregory J. (Livermore, CA)

    2008-03-25

    Embodiments of the present invention provide methods and devices for manipulating particles using dielectrophoresis. Insulating ridges and valleys are used to generate a spatially non-uniform electrical field. Particles may be concentrated, separated, or captured during bulk fluid flow in a channel having insulating ridges and valleys.

  19. 60 Years of Great Science (Oak Ridge National Laboratory)

    DOE R&D Accomplishments [OSTI]

    2003-01-01

    This issue of Oak Ridge National Laboratory Review (vol. 36, issue 1) highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  20. FTCP Site Specific Information - Oak Ridge Office | Department of Energy

    Office of Environmental Management (EM)

    Office FTCP Site Specific Information - Oak Ridge Office FTCP Agent Organization Name Phone E-Mail Oak Ridge Patrick Smith 865/574-0960 smithpn@oro.doe.gov Annual Workforce Analysis and Staffing Plan Reports Calendar Year 2013 Calendar Year 2012 Calendar Year 2011 Calendar Year 2010 TQP Self-Assessment ORO TQP Self-Assessment, March 2014

  1. Oak Ridge Reservation Environmental report for 1990

    SciTech Connect (OSTI)

    Wilson, A.R.

    1991-09-01

    The first two volumes of this report are devoted to a presentation of environmental data and supporting narratives for the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) and surrounding environs during 1990. Volume 1 includes all narrative descriptions, summaries, and conclusions and is intended to be a stand-alone'' report for the ORR for the reader who does not want to review in detail all of the 1990 data. Volume 2 includes the detailed data summarized in a format to ensure that all environmental data are represented in the tables. Narratives are not included in Vol. 2. The tables in Vol. 2 are addressed in Vol. 1. For this reason, Vol. 2 cannot be considered a stand-alone report but is intended to be used in conjunction with Vol. 1.

  2. Oak Ridge Reservation environmental report for 1989

    SciTech Connect (OSTI)

    Jacobs, V.A.; Wilson, A.R.

    1990-10-01

    The first two volumes of this report are devoted to a presentation of environmental data and supporting narratives for the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) and surrounding environs during 1989. Volume 1 includes all narrative descriptions, summaries, and conclusions and is intended to be a stand-alone'' report for the ORR for the reader who does not want to review in detail all of the 1989 data. Volume 2 includes the detailed data summarized in a format to ensure that all environmental data are represented in the tables. Narratives are not included in Vol. 2. The tables in Vol. 2 are addressed in Vol. 1. For this reason, Vol. 2 cannot be considered a stand-alone report but is intended to be used in conjunction with Vol. 1. 16 figs., 194 tabs.

  3. Strategies for the cost effective treatment of Oak Ridge legacy wastes

    SciTech Connect (OSTI)

    Compere, A.L.; Griffith, W.L.; Huxtable, W.P.; Wilson, D.F.

    1998-03-01

    Research and development treatment strategies for treatment or elimination of several Oak Ridge plant liquid, solid, and legacy wastes are detailed in this report. Treatment strategies for volumetrically contaminated nickel; enriched uranium-contaminated alkali metal fluorides; uranium-contaminated aluminum compressor blades; large, mercury-contaminated lithium isotope separations equipment; lithium process chlorine gas streams; high-concentration aluminum nitrate wastes, and high-volume, low-level nitrate wastes are discussed. Research needed to support engineering development of treatment processes is detailed.

  4. Source document for waste area groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Osborne, P.L.; Kuhaida, A.J., Jr.

    1996-09-01

    This document serves as a source document for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and other types of documents developed for and pertaining to Environmental Restoration (ER) Program activities at Oak Ridge National Laboratory (ORNL). It contains descriptions of the (1) regulatory requirements for the ORR ER Program, (2) Oak Ridge Reservation (ORR) ER Program, (3) ORNL site history and characterization, and (4) history and characterization of Waste Area Groupings (WAGS) 1-20. This document was created to save time, effort, and money for persons and organizations drafting documents for the ER Program and to improve consistency in the documents prepared for the program. By eliminating the repetitious use of selected information about the program, this document will help reduce the time and costs associated with producing program documents. By serving as a benchmark for selected information about the ER Program, this reference will help ensure that information presented in future documents is accurate and complete.

  5. DOE Tour of Zero Floorplans: Pumpkin Ridge Passive House by Hammer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumpkin Ridge Passive House by Hammer and Hand DOE Tour of Zero Floorplans: Pumpkin Ridge Passive House by Hammer and Hand DOE Tour of Zero Floorplans: Pumpkin Ridge Passive House...

  6. DOE Tour of Zero Floorplans: Pumpkin Ridge Passive House by Hammer and Hand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Pumpkin Ridge Passive House by Hammer and Hand DOE Tour of Zero Floorplans: Pumpkin Ridge Passive House by Hammer and Hand DOE Tour of Zero Floorplans: Pumpkin Ridge Passive House by Hammer and Hand

  7. Oak Ridge Associated Universities, Oak Ridge Institute for Science and Education - January 2015

    Office of Environmental Management (EM)

    Associated Universities, Oak Ridge Institute for Science and Education Report from the Department of Energy Voluntary Protection Program Onsite Review January 26-30, 2015 U.S. Department of Energy Office of Environment, Health, Safety and Security Office of Health and Safety Office of Worker Safety and Health Assistance Washington, DC 20585 ORAU/ORISE DOE-VPP Onsite Review January 2015 Foreword The Department of Energy (DOE) recognizes that true excellence can be encouraged and guided but not

  8. Site descriptions of environmental restoration units at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Kuhaida, A.J. Jr.; Parker, A.F.

    1997-02-01

    This report provides summary information on Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) sites as listed in the Oak Ridge Reservation Federal Facility Agreement (FFA), dated January 1, 1992, Appendix C. The Oak Ridge National Laboratory was built in 1943 as part of the World War II Manhattan Project. The original mission of ORNL was to produce and chemically separate the first gram-quantities of plutonium as part of the national effort to produce the atomic bomb. The current mission of ORNL is to provide applied research and development in support of the U.S. Department of Energy (DOE) programs in nuclear fusion and fission, energy conservation, fossil fuels, and other energy technologies and to perform basic scientific research in selected areas of the physical, life, and environmental sciences. ER is also tasked with clean up or mitigation of environmental impacts resulting from past waste management practices on portions of the approximately 37,000 acres within the Oak Ridge Reservation (ORR). Other installations located within the ORR are the Gaseous Diffusion Plant (K-25) and the Y-12 plant. The remedial action strategy currently integrates state and federal regulations for efficient compliance and approaches for both investigations and remediation efforts on a Waste Area Grouping (WAG) basis. As defined in the ORR FFA Quarterly Report July - September 1995, a WAG is a grouping of potentially contaminated sites based on drainage area and similar waste characteristics. These contaminated sites are further divided into four categories based on existing information concerning whether the data are generated for scoping or remedial investigation (RI) purposes. These areas are as follows: (1) Operable Units (OU); (2) Characterization Areas (CA); (3) Remedial Site Evaluation (RSE) Areas; and (4) Removal Site Evaluation (RmSE) Areas.

  9. Oak Ridge Associated Post Office Box 117 Universities Oak Ridge, Tennessee 37831-0117

    Office of Legacy Management (LM)

    Associated Post Office Box 117 Universities Oak Ridge, Tennessee 37831-0117 June 19, 1990 Mr. James Wagoner, II FUSRAP Program Manager Decontamination and Decommissioning Division ' Office of Environmental .Restoration and Waste Management U.S. Department of Energy Washington, DC 20545 Subject: SCOPING VISIT TO FORMER ZUCKERMAN SITE - N. KENM( AVENUE, CHICAGO, ILLINOIS 0 9Yf onment ?ms Division IRE Dear Mr. Wagoner: On June 14, 1990, while in the Chicago area for several other meetings, Ms.

  10. Recovery Act State Memos Montana

    Broader source: Energy.gov (indexed) [DOE]

    ......... 5 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Green power transmission line given new life ...... 6 * ...

  11. NETL: Oil & Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Efficient recovery of our nation's fossil fuel resources in an environmentally safe manner requires the development and application of new technologies that address the unique nature and challenging locations of many of our remaining oil and natural gas accumulations. The National Energy Technology Laboratory's (NETL) research projects are designed to help catalyze the development of these new technologies, provide objective data to help quantify the environmental and safety risks

  12. Pore size distribution and methane equilibrium conditions at Walker Ridge Block 313, northern Gulf of Mexico

    SciTech Connect (OSTI)

    Bihani, Abhishek; Daigle, Hugh; Cook, Ann; Glosser, Deborah; Shushtarian, Arash

    2015-12-15

    Coexistence of three methane phases (liquid (L), gas (G), hydrate (H)) in marine gas hydrate systems may occur according to in-situ pressure, temperature, salinity and pore size. In sediments with salinity close to seawater, a discrete zone of three-phase (3P) equilibrium may occur near the base of the regional hydrate stability zone (RHSZ) due to capillary effects. The existence of a 3P zone influences the location of the bottom-simulating reflection (BSR) and has implications for methane fluxes at the base of the RHSZ. We studied hydrate stability conditions in two wells, WR313-G and WR313-H, at Walker Ridge Block 313 in the northern Gulf of Mexico. We determined pore size distributions (PSD) by constructing a synthetic nuclear magnetic resonance (NMR) relaxation time distribution. Correlations were obtained by non-linear regression on NMR, gamma ray, and bulk density logs from well KC-151 at Keathley Canyon. The correlations enabled construction of relaxation time distributions for WR313-G and WR313-H, which were used to predict PSD through comparison with mercury injection capillary pressure measurements. With the computed PSD, L+H and L+G methane solubility was determined from in-situ pressure and temperature. The intersection of the L+G and L+H curves for various pore sizes allowed calculation of the depth range of the 3P equilibrium zone. As in previous studies at Blake Ridge and Hydrate Ridge, the top of the 3P zone moves upwards with increasing water depth and overlies the bulk 3P equilibrium depth. In clays at Walker Ridge, the predicted thickness of the 3P zone is approximately 35 m, but in coarse sands it is only a few meters due to the difference in absolute pore sizes and the width of the PSD. The thick 3P zone in the clays may explain in part why the BSR is only observed in the sand layers at Walker Ridge, although other factors may influence the presence or absence of a BSR.

  13. EA-1779: Proposed Changes to the Sanitary Biosolids Land Application Program on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to amend (e.g., by changing setback requirements from surface water features and potential channels to groundwater) the Sanitary Biosolids Land Application Program at the Oak Ridge Reservation in Oak Ridge, Tennessee.

  14. LOW-VELOCITY SHOCKS TRACED BY EXTENDED SiO EMISSION ALONG THE W43 RIDGES: WITNESSING THE FORMATION OF YOUNG MASSIVE CLUSTERS

    SciTech Connect (OSTI)

    Nguyen-Luong, Q.; Martin, P. G.; Motte, F.; Louvet, F.; Hill, T.; Hennemann, M.; Didelon, P.; Lesaffre, P.; Gusdorf, A.; Menten, K. M.; Wyrowski, F.; Bendo, G.; Roussel, H.; Bernard, J.-P.; Bronfman, L.; and others

    2013-10-01

    The formation of high-mass stars is tightly linked to that of their parental clouds. Here, we focus on the high-density parts of W43, a molecular cloud undergoing an efficient event of star formation. Using a column density image derived from Herschel continuum maps, we identify two high-density filamentary clouds, called the W43-MM1 and W43-MM2 ridges. Both have gas masses of 2.1 10{sup 4} M{sub ?} and 3.5 10{sup 4} M{sub ?} above >10{sup 23} cm{sup -2} and within areas of ?6 and ?14 pc{sup 2}, respectively. The W43-MM1 and W43-MM2 ridges are structures that are coherent in velocity and gravitationally bound, despite their large velocity dispersion measured by the N{sub 2}H{sup +} (1-0) lines of the W43-HERO IRAM large program. Another intriguing result is that these ridges harbor widespread (?10 pc{sup 2}) bright SiO (2-1) emission, which we interpret to be the result of low-velocity shocks (?10 km s{sup 1}). We measure a significant relationship between the SiO (2-1) luminosity and velocity extent and show that it distinguishes our observations from the high-velocity shocks associated with outflows. We use state-of-the-art shock models to demonstrate that a small percentage (10%) of Si atoms in low-velocity shocks, observed initially in gas phase or in grain mantles, can explain the observed SiO column density in the W43 ridges. The spatial and velocity overlaps between the ridges of high-density gas and the shocked SiO gas suggest that ridges could be forming via colliding flows driven by gravity and accompanied by low-velocity shocks. This mechanism may be the initial conditions for the formation of young massive clusters.

  15. EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory, Oak Ridge, Tennessee | Department of Energy 305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee SUMMARY This EIS evaluates DOE's proposal to construct, operate, and decontaminate/decommission a Transuranic (TRU) Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at

  16. Data Sharing Report for the Quantification of Removable Activity in Various Surveillance and Maintenance Facilities at the Oak Ridge National Laboratory Oak Ridge TN

    SciTech Connect (OSTI)

    King, David A

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (OR-EM) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using American Recovery and Reinvestment Act (ARRA) funds. Specifically, DOE OR-EM requested that ORAU plan and implement a sampling and analysis campaign targeting potential removable radiological contamination that may be transferrable to future personal protective equipment (PPE) and contamination control materialscollectively referred to as PPE throughout the remainder of this reportused in certain URS|CH2M Oak Ridge, LLC (UCOR) Surveillance and Maintenance (S&M) Project facilities at the Oak Ridge National Laboratory (ORNL). Routine surveys in Bldgs. 3001, 3005, 3010, 3028, 3029, 3038, 3042, 3517, 4507, and 7500 continuously generate PPE. The waste is comprised of Tyvek coveralls, gloves, booties, Herculite, and other materials used to prevent worker exposure or the spread of contamination during routine maintenance and monitoring activities. This report describes the effort to collect and quantify removable activity that may be used by the ORNL S&M Project team to develop radiation instrumentation screening criteria. Material potentially containing removable activity was collected on smears, including both masselin large-area wipes (LAWs) and standard paper smears, and analyzed for site-related constituents (SRCs) in an analytical laboratory. The screening criteria, if approved, may be used to expedite waste disposition of relatively clean PPE. The ultimate objectives of this effort were to: 1) determine whether screening criteria can be developed for these facilities, and 2) provide process knowledge information for future site planners. The screening criteria, if calculated, must be formally approved by Federal Facility Agreement parties prior to use for ORNL S&M Project PPE disposal at the Environmental Management Waste Management Facility (EMWMF). ORAU executed the approved sampling and analysis plan (SAP) (DOE 2013) while closely coordinating with ORNL S&M Project personnel and using guidelines outlined in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012). WHP guidelines were followed because the PPE waste targeted by this SAP is consistent with that addressed under the approved Waste Lot (WL) 108.1 profile for disposal at EMWMFthis PPE is a future waste stream as defined in the WHP. The SAP presents sampling strategy and methodology, sample selection guidelines, and analytical guidelines and requirements necessary for characterizing future ORNL S&M Project PPE waste. This report presents a review of the sample and analysis methods including data quality objectives (DQOs), required deviations from the original design, summary of field activities, radiation measurement data, analytical laboratory results, a brief presentation of results, and process knowledge summaries.

  17. Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were fabricated and assembled into prototype thermoelectric generators (TEGs), then installed on a standard GM production vehicle and tested for performance PDF icon meisner.pdf More Documents & Publications Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Development of

  18. High Efficiency Microturbine with Integral Heat Recovery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High Efficiency Microturbine with Integral Heat Recovery High Efficiency Microturbine with Integral Heat Recovery Introduction The U.S. economic market potential for distributed generation is significant. This market, however, remains mostly untapped in the commercial and small industrial buildings that are well suited for microturbines. Gas turbines have many advantages, including high power density, light weight, clean emissions, fuel flexibility, low vibration, low maintenance,

  19. DOE Marks Major Milestone with Startup of Recovery Act Demonstration

    Office of Environmental Management (EM)

    Project | Department of Energy Marks Major Milestone with Startup of Recovery Act Demonstration Project DOE Marks Major Milestone with Startup of Recovery Act Demonstration Project April 9, 2014 - 10:36am Addthis News Media Contact 202-586-4940 Editor's Note: This post has been updated as of April 11, 2014. TAMPA, FL. - Today, the Department of Energy joined RTI International and Tampa Electric Company (TECO) to celebrate the successful startup of a pilot project to demonstrate a warm gas

  20. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act Center Map PERFORMANCE The Department estimates the $6 billion Recovery Act investment will allow us to complete work now that would cost approximately $13 billion in future years, saving $7 billion. As Recovery Act work is completed through the cleanup of contaminated sites, facilities, and material disposition, these areas will becoming available for potential reuse by other entities. Recovery Act funding is helping the Department reach our cleanup goals faster.

  1. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act Total Federal Payments to OE Recovery Act Recipients by Month, through August 31, 2015 Total Federal Payments to OE Recovery Act Recipients by Month, through August 31, 2015 American Recovery and Reinvestment Act Overview PROGRAMS TOTAL OBLIGATIONS AWARD RECIPIENTS Smart Grid Investment Grant $3,482,831,000 99 Smart Grid Regional and Energy Storage Demonstration Projects $684,829,000 32 Workforce Development Program $100,000,000 52 Interconnection Transmission Planning

  2. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act Recovery Act With the passage of the American Recovery and Reinvestment Act of 2009 (Recovery Act), the Department of Energy (Department) will have new responsibilities and receive approximately $40 billion to foster various energy, environmental, and science programs and initiatives. As a result, the Office of Inspector General's oversight responsibilities will increase dramatically. As is the case with all Office of Inspector General work, its overarching goal is to

  3. FY 2014 Economic Impact Analysis for DOE's Oak Ridge Office of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2014 Economic Impact Analysis for DOE's Oak Ridge Office of Environmental Management FY 2014 Economic Impact Analysis for DOE's Oak Ridge Office of Environmental Management The ...

  4. Preliminary Notice of Violation, MK-Ferguson of Oak Ridge Company- EA-98-08

    Broader source: Energy.gov [DOE]

    Issued to MK-Ferguson of Oak Ridge Company, related to Bioassay Program Deficiencies at DOE's Oak Ridge Facilities, (EA-98-08)

  5. Oak Ridge Environmental Management: 30 years in 30 minutes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Oak Ridge Environmental Management: 30 years in 30 minutes Oak Ridge Environmental Management: 30 years in 30 minutes Addthis

  6. Oak Ridge National Laboratory Site Office Homepage | U.S. DOE...

    Office of Science (SC) Website

    Oak Ridge National Laboratory Site Office (OSO) OSO Home About Projects Contract Management NEPA Documents Contact Information Oak Ridge National Laboratory Site Office U.S....

  7. Solvent recovery targeting

    SciTech Connect (OSTI)

    Ahmad, B.S.; Barton, P.I.

    1999-02-01

    One of the environmental challenges faced by the pharmaceutical and specialty chemical industries is the widespread use of organic solvents. With a solvent-based chemistry, the solvent necessarily has to be separated from the product. Chemical species in waste-solvent streams typically form multicomponent azeotropic mixtures, and this often complicates separation and, hence, recovery of solvents. A design approach is presented whereby process modifications proposed by the engineer to reduce the formation of waste-solvent streams can be evaluated systematically. This approach, called solvent recovery targeting, exploits a recently developed algorithm for elucidating the separation alternatives achievable when applying batch distillation to homogeneous multicomponent mixtures. The approach places the composition of the waste-solvent mixture correctly in the relevant residue curve map and computes the maximum amount of pure material that can be recovered via batch distillation. Solvent recovery targeting is applied to two case studies derived from real industrial processes.

  8. ENVIRONMENTAL BASELINE SURVEY REPORT FOR WEST BLACK OAK RIDGE, EAST BLACK OAK RIDGE, MCKINNEY RIDGE, WEST PINE RIDGE, AND PARCEL 21D IN THE VICINITY OF THE EAST TENNESSEE TECHNOLOGY PARK, OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    David A. King

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy’s (DOE’s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. The goal is to obtain all media no-further-investigation (NFI) determinations for the subject parcels considering existing soils. To augment the existing soils-only NFI determinations, samples of groundwater, surface water, soil, and sediment were collected to support all media NFI decisions. The only updates presented here are those that were made after the original issuance of the NFI documents. In the subject parcel where the soils NFI determination was not completed for approval (Parcel 21d), the full process has been performed to address the soils as well. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only NFI reports. Groundwater sampling was also conducted to support a Parcel 21d decision.

  9. Research Portfolio Report Small Producers: Operations/Improved Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Producers: Operations/Improved Recovery Cover image: Drill rigs and pump jacks are some typical tools used in natural gas and oil opera- tions and for improved recovery Research Portfolio Report Small Producers: Operations/Improved Recovery DOE/NETL-2015/1698 Prepared by: Mari Nichols-Haining and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract DE-FE0004003 Activity 4003.200.03 DISCLAIMER This report

  10. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    Blog entry Discussion Document Event Poll Question Keywords Author Apply There is no matching content in the group. Group links The technology of Condensing Flue Gas Heat Recovery...

  11. Covered Product Category: Residential Gas Storage Water Heaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... site-specific values for energy factor, recovery efficiency, and the rate for natural gas. ... for Energy-Efficient Products Contract Language for Energy-Consuming Product Purchases ...

  12. Remote Gas Well Monitoring Technology Applied to Marcellus Shale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for Improved Enhanced Oil Recovery Technique Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site New Breathalyzer Offers Hope of Pain-Free Diabetes Monitoring

  13. All metal valve structure for gas systems

    DOE Patents [OSTI]

    Baker, Ray W. (Hamilton, OH); Pawlak, Donald A. (Centerville, OH); Ramey, Alford J. (Miamisburg, OH)

    1984-11-13

    A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

  14. Biological Monitoring and Abatement Program for the Oak Ridge K-25 Site

    SciTech Connect (OSTI)

    Kszos, L.A.; Adams, S.M.; Ashwood, T.L.; Blaylock, B.G.; Greeley, M.S.; Loar, J.M.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Hinzman, R.L.; Shoemaker, B.A.

    1993-04-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge K-25 Site was prepared in December 1992 as required by the renewed National Pollutant Discharge Elimination System permit that was issued on October 1, 1992. The proposed BMAP is based on results of biological monitoring conducted from 1986 to 1992 and discussions held on November 12, 1992, between staff of Martin Marietta Energy Systems, Inc. (Oak Ridge National Laboratory and the K-25 Site), and the Tennessee Department of Environment and Conservation, Department of Energy Oversight Division. The proposed BMAP consists of four tasks that reflect different but complementary approaches to evaluating the effects of K-25 Site effluents on the ecological integrity of Mitchell Branch, Poplar Creek, and the Poplar Creek embayment of the Clinch River. These tasks include (1) ambient toxicity monitoring, (2) bioaccumulation monitoring, (3) assessment of fish health, and (4) instream monitoring of biological communities. This overall BMAP plan combines established protocols with current biological monitoring techniques to assess environmental compliance and quantify ecological recovery. The BMAP will also determine whether the effluent limits established for the K-25 Site protect the designated use of the receiving streams (Mitchell Branch, Poplar Creek, and Clinch River) for growth and propagation of fish and other aquatic life. Results obtained from this biological monitoring program will also be used to document the ecological effects (and effectiveness) of remedial actions.

  15. NERSC Supercomputers Help Reveal Secrets of Natural Gas Reserves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Helps Reveal Secrets of Natural Gas Reserves NERSC Supercomputers Help Reveal Secrets of Natural Gas Reserves New structural information could yield more efficient extraction of gas and oil from shale December 3, 2013 Supercomputers at the Department of Energy's National Energy Research Supercomputing Center (NERSC) helped scientists at Oak Ridge National Laboratory (ORNL) study gas and oil deposits in shale and reveal structural information that could lead to more efficient extraction of

  16. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect (OSTI)

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  17. Mr. David Hemelright, Chair Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    David Hemelright, Chair Oak Ridge Site Specific Advisory Board P.O. Box 2001 , EM-91 Oak Ridge, Tennessee 37831 Dear Mr. Hemelright: SEP.. 2 0 2013 This is in response to your June 13 letter transmitting the Oak Ridge Site Specific Advisory Board (SSAB) Recommendation 218: Recommendation to Develop a Fact Sheet on Site Transition at On-Going Mission Sites. Enclosed is the fact sheet Site Transition Process upon Completion of the Cleanup Mission you requested by September 2013. This fact sheet

  18. Proceedings of the Oak Ridge Electron Linear Accelerator (ORELA) Workshop

    SciTech Connect (OSTI)

    Dunn, M.E.

    2006-02-27

    The Oak Ridge National Laboratory (ORNL) organized a workshop at ORNL July 14-15, 2005, to highlight the unique measurement capabilities of the Oak Ridge Electron Linear Accelerator (ORELA) facility and to emphasize the important role of ORELA for performing differential cross-section measurements in the low-energy resonance region that is important for nuclear applications such as nuclear criticality safety, nuclear reactor and fuel cycle analysis, stockpile stewardship, weapons research, medical diagnosis, and nuclear astrophysics. The ORELA workshop (hereafter referred to as the Workshop) provided the opportunity to exchange ideas and information pertaining to nuclear cross-section measurements and their importance for nuclear applications from a variety of perspectives throughout the U.S. Department of Energy (DOE). Approximately 50 people, representing DOE, universities, and seven U.S. national laboratories, attended the Workshop. The objective of the Workshop was to emphasize the technical community endorsement for ORELA in meeting nuclear data challenges in the years to come. The Workshop further emphasized the need for a better understanding of the gaps in basic differential nuclear measurements and identified the efforts needed to return ORELA to a reliable functional measurement facility. To accomplish the Workshop objective, nuclear data experts from national laboratories and universities were invited to provide talks emphasizing the unique and vital role of the ORELA facility for addressing nuclear data needs. ORELA is operated on a full cost-recovery basis with no single sponsor providing complete base funding for the facility. Consequently, different programmatic sponsors benefit by receiving accurate cross-section data measurements at a reduced cost to their respective programs; however, leveraging support for a complex facility such as ORELA has a distinct disadvantage in that the programmatic funds are only used to support program-specific measurements. As a result, ORELA has not received base funding to support major upgrades and significant maintenance operations that are essential to keep the facility in a state of readiness over the long term. As a result, ORELA has operated on a ''sub-bare-minimum'' budget for the past 10 to 15 years, and the facility has not been maintained at a level for continued reliable operation for the long term. During the Workshop, Jerry McKamy (NNSA/NA-117) used a hospital patient metaphor that accurately depicts the facility status. ORELA is currently in the intensive care unit (ICU) on life support, and refurbishment efforts are needed to get the ''patient'' off life support and out to an ordinary hospital room. McKamy further noted that the DOE NCSP is planning to fund immediate refurbishment tasks ($1.5 M over three years) to help reestablish reliable ORELA operation (i.e., move ORELA from ICU to an ordinary hospital room). Furthermore, the NCSP will work to identify and carry out the actions needed to discharge ORELA from the ''hospital'' over the next five to seven years. In accordance with the Workshop objectives, the technical community publicly endorsed the need for a reliable ORELA facility that can meet current and future nuclear data needs. These Workshop proceedings provide the formal documentation of the technical community endorsement for ORELA. Furthermore, the proceedings highlight the past and current contributions that ORELA has made to the nuclear industry. The Workshop further emphasized the operational and funding problems that currently plague the facility, thereby limiting ORELA's operational reliability. Despite the recent operational problems, ORELA is a uniquely capable measurement facility that must be part of the overall U.S. nuclear data measurement portfolio in order to support current and emerging nuclear applications. The Workshop proceedings further emphasize that ORNL, the technical community, and programmatic sponsors are eager to see ORELA reestablish reliable measurement operation and be readily available to address nuclear data challe

  19. Oak Ridge Reservation environmental report for 1990

    SciTech Connect (OSTI)

    Wilson, A.R.

    1991-09-01

    The purpose of this report is to provide information to the public about the impact of the US Department of Energy's (DOE's) facilities located on the Oak Ridge Reservation (ORR) on the public and the environment. It describes the environmental surveillance and monitoring activities conducted at and around the DOE facilities operated by Martin Marietta Energy Systems, Inc. Preparation and publication of this report is in accordance with DOE Order 5400.1. The order specifies a publication deadline of June of the following year for each calendar year of data. The primary objective of this report is to summarize all information collected for the previous calendar year regarding effluent monitoring, environmental surveillance, and estimates of radiation and chemical dose to the surrounding population. When multiple years of information are available for a program, trends are also evaluated. The first seven sections of Volume 1 of this report address this objective. The last three sections of Volume 1 provide information on solid waste management, special environmental studies, and quality assurance programs.

  20. Recovery Act Production of Algal BioCrude Oil from Cement Plant Carbon Dioxide

    SciTech Connect (OSTI)

    Robert Weber; Norman Whitton

    2010-09-30

    The consortium, led by Sunrise Ridge Algae Inc, completed financial, legal, siting, engineering and environmental permitting preparations for a proposed demonstration project that would capture stack gas from an operating cement plant and convert the carbon dioxide to beneficial use as a liquid crude petroleum substitute and a coal substitute, using algae grown in a closed system, then harvested and converted using catalyzed pyrolysis.

  1. Energy Department, Oak Ridge National Lab Officials to Celebrate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Celebrate First of its Kind Carbon Fiber Facility Energy Department, Oak Ridge National Lab Officials to Celebrate First of its Kind Carbon Fiber Facility March 25, 2013 - 9:51am ...

  2. Blue Ridge Electric Cooperative- Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Blue Ridge Electric Cooperative (BREC) offers low interest loans to help members finance the purchase of energy efficient heat pumps. Loans under $1,500 can be financed for up to 42 months, and...

  3. Science and Technology at Oak Ridge National Laboratory

    ScienceCinema (OSTI)

    Mason, Thomas

    2013-02-25

    ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.

  4. New EM Facility Treats Groundwater at Oak Ridge

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – Oak Ridge’s EM program is operating a new facility that reduces the amount of contaminants entering Mitchell Branch, a stream at DOE’s East Tennessee Technology Park.

  5. Wood-Ridge, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wood-Ridge, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8456555, -74.0879195 Show Map Loading map... "minzoom":false,"mappin...

  6. OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of fissile material. This SP limits the number of waste packages per exclusive use trailer to 2. This year, approval was received from the Department of Energy (DOE)Oak Ridge...

  7. Oak Ridge Environmental Management Program Completes Work at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Bethel Valley Burial Grounds September 1, 2011 - 12:00pm Addthis Media Contact Ben Williams http:www.oakridge.doe.gov 865-576-0885 OAK RIDGE, Tenn. - The U.S. Department of...

  8. Oak Ridge North, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Oak Ridge North is a city in Montgomery County, Texas. It falls under Texas's 8th congressional district.12 References...

  9. Blue Ridge, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Ridge is a city in Collin County, Texas. It falls under Texas's 4th congressional...

  10. Blue Ridge Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Blue Ridge Electric Coop Inc Place: South Carolina Phone Number: 864-878-6326; 864-647-2005; 1-800-240-3400 Website: www.blueridge.coop Twitter: @blueridgecoop Facebook: https:...

  11. Park Ridge, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Park Ridge is a city in Cook County, Illinois. It falls under Illinois' 9th congressional...

  12. Park Ridge, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Park Ridge is a borough in Bergen County, New Jersey. It falls under New Jersey's 5th...

  13. Blue Ridge Electric Cooperative- Residential Water Heater Rebate

    Broader source: Energy.gov [DOE]

    Blue Ridge Electric Cooperative offers up to $300 for the purchase of an electric water heater. The rebate amount varies based on the size of the water heater purchased.

  14. Beckett Ridge, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Beckett Ridge is a census-designated place in Butler County, Ohio.1 References US Census Bureau 2005 Place to 2006 CBSA Retrieved...

  15. Blue Ridge Mountain Electric Membership Corporation- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Blue Ridge Mountain EMC and TVA, its power supplier, offer the Energy Right and TVA E-Score rebates to qualified members. To qualify for water heater rebates provided by the Energy Right program, a...

  16. ORISE: Recruiting students and faculty to Oak Ridge National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    error occurred. Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your browser. WATCH: Linking Students with Oak Ridge National Laboratory...

  17. Blue Ridge Mountain E M C | Open Energy Information

    Open Energy Info (EERE)

    C Jump to: navigation, search Name: Blue Ridge Mountain E M C Abbreviation: brmemc Place: Georgia Phone Number: 706.379.3121; 828.837.1017 Website: www.brmemc.com Outage Hotline:...

  18. ‘Project Wipeout’ Helps Clean Up Oak Ridge

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – A term like “Project Wipeout,” may conjure images of military operations, extreme sporting events or a comical competition show on television.

  19. Science and Technology at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Mason, Thomas

    2012-11-01

    ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.

  20. Oak Ridge Reflects on 30 Years of Cleanup

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – Oak Ridge’s EM program hosted an event this month that documented the site’s environmental cleanup efforts since 1983, six years before the official founding of the Department’s EM.