Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Financing Energy Efficiency Retrofits in the Commercial Sector Webinar  

Energy.gov (U.S. Department of Energy (DOE))

Financing Energy Efficiency Retrofits in the Commercial Sector Webinar, from the U.S. Department of Energy's Better Buildings program.

2

Types of Nuclear Industry Jobs Commercial and Government Sectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Jobs Commercial and Government Sectors Professional Category Technician Category Engineer Category Craft Category Chemist Chemistry Technician Chemical Engineer Boilermaker...

3

Commercial Buildings Sector Agent-Based Model | Open Energy Information  

Open Energy Info (EERE)

Commercial Buildings Sector Agent-Based Model Commercial Buildings Sector Agent-Based Model Jump to: navigation, search Tool Summary Name: Commercial Buildings Sector Agent-Based Model Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Buildings - Commercial Phase: Evaluate Options Topics: Implementation Resource Type: Technical report User Interface: Website Website: web.anl.gov/renewables/research/building_agent_based_model.html OpenEI Keyword(s): EERE tool, Commercial Buildings Sector Agent-Based Model Language: English References: Building Efficiency: Development of an Agent-based Model of the US Commercial Buildings Sector[1] Model the market-participants, dynamics, and constraints-help decide whether to adopt energy-efficient technologies to meet commercial building

4

EA-0513: Approaches for Acquiring Energy Savings in Commercial Sector  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13: Approaches for Acquiring Energy Savings in Commercial 13: Approaches for Acquiring Energy Savings in Commercial Sector Buildings, Bonneville Power Administration EA-0513: Approaches for Acquiring Energy Savings in Commercial Sector Buildings, Bonneville Power Administration SUMMARY This EA evaluates the environmental impacts of a proposal for DOE's Bonneville Power Administration to use several diverse approaches to purchase or acquire energy savings from commercial sector buildings region wide. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 25, 1991 EA-0513: Final Environmental Assessment Approaches for Acquiring Energy Savings in Commercial Sector Buildings, Bonneville Power Administration September 25, 1991 EA-0513: Finding of No Significant Impact Approaches for Acquiring Energy Savings in Commercial Sector Buildings,

5

EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities,  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables provide estimates of commercial sector energy consumption and energy intensities for 1992, 1995, 1999 and 2003 based on the Commercial Buildings Energy Consumption Survey (CBECS). They also provide estimates of energy consumption and intensities adjusted for the effect of weather on heating, cooling, and ventilation energy use. Total Site Energy Consumption (U.S. and Census Region) Html Excel PDF bullet By Principal Building Activity (Table 1a) html Table 1a excel table 1a. pdf table 1a. Weather-Adjusted by Principal Building Activity (Table 1b) html table 1b excel table 1b pdf table 1b.

6

Methodology for Modeling Building Energy Performance across the Commercial Sector  

SciTech Connect

This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2008-03-01T23:59:59.000Z

7

sector Renewable Energy Non renewable Energy Biomass Buildings Commercial  

Open Energy Info (EERE)

user interface valueType text user interface valueType text sector valueType text abstract valueType text website valueType text openei tool keyword valueType text openei tool uri valueType text items label Calculator user interface Spreadsheet Website sector Renewable Energy Non renewable Energy Biomass Buildings Commercial Buildings Residential Economic Development Gateway Geothermal Greenhouse Gas Multi model Integration Multi sector Impact Evaluation Gateway Solar Wind energy website https www gov uk pathways analysis openei tool keyword calculator greenhouse gas emissions GHG low carbon energy planning energy data emissions data openei tool uri http calculator tool decc gov uk pathways primary energy chart uri http en openei org w index php title Calculator type Tools label AGI

8

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

7 7 Commercial Building Median Lifetimes (Years) Building Type Median (1) 66% Survival (2) 33% Survival (2) Assembly 55 40 75 Education 62 45 86 Food Sales 55 41 74 Food Service 50 35 71 Health Care 55 42 73 Large Office 65 46 92 Mercantile & Service 50 36 69 Small Office 58 41 82 Warehouse 58 41 82 Lodging 53 38 74 Other 60 44 81 Note(s): Source(s): 1) PNNL estimates the median lifetime of commercial buildings is 70-75 years. 2) Number of years after which the building survives. For example, a third of the large office buildings constructed today will survive 92 years later. EIA, Assumptions for the Annual Energy Outlook 2011, July 2011, Table 5.2, p. 40; EIA, Model Documentation Report: Commercial Sector 'Demand Module of the National Energy Modeling System, May 2010, p. 30-35; and PNNL, Memorandum: New Construction in the Annual Energy Outlook 2003, Apr. 24,

9

Solid-State Lighting: LED Site Lighting in the Commercial Building Sector:  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Lighting in the Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification to someone by E-mail Share Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Facebook Tweet about Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Twitter Bookmark Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Google Bookmark Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Delicious

10

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

3.3 Commercial Sector Expenditures 3.3 Commercial Sector Expenditures March 2012 3.3.3 Commercial Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Natural Gas Petroleum (2) Total 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 148.6 37.0 17.0 202.6 148.9 37.2 17.1 203.2 145.9 36.2 16.7 198.9 147.5 36.8 16.9 201.2 143.8 35.1 16.4 195.2 145.0 35.5 16.6 197.0 141.1 34.0 16.0 191.1 142.5 34.6 16.2 193.3 136.9 32.1 15.7 184.8 139.1 33.0 15.9 188.0 133.5 31.0 15.4 179.9 135.0 31.6 15.6 182.2 131.0 29.7 15.1 175.8 131.9 30.3 15.3 177.5 128.1 28.7 14.5 171.3 130.0 29.3 15.0 174.4 129.4 29.7 15.4 174.5 127.7 29.2 13.8 170.7 134.8 29.9 14.5 179.2 134.5 28.5 16.9 180.0 141.1

11

Major models and data sources for residential and commercial sector energy conservation analysis. Final report  

SciTech Connect

Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

Not Available

1980-09-01T23:59:59.000Z

12

Regulatory Amendment for a Pacific Halibut Catch Sharing Plan for the Charter Sector and Commercial Setline Sector in  

E-Print Network (OSTI)

) identified a need to develop a catch sharing plan (CSP) for the charter and commercial sectors to address considered five alternatives and adopted a Preferred Alternative from among proposed CSP elements charter halibut harvest. The Council intends that the CSP would be implemented by National Marine

13

Regulatory Amendment for a Pacific Halibut Catch Sharing Plan for the Charter Sector and Commercial Setline Sector in  

E-Print Network (OSTI)

a need to develop a catch sharing plan (CSP) for the charter and commercial sectors to address considered five alternatives and adopted a Preferred Alternative from among proposed CSP elements charter halibut harvest. The Council intends that the CSP would be implemented by National Marine

14

BetterBuildings Financing Energy Efficiency Retrofits in the Commercial Sector - Part 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Commercial Energy Efficiency Finance Programs Small Commercial Energy Efficiency Finance Programs Sponsored by State Governments SURVEY OF SURVEY OF SMALL COMMERCIAL ENERGY EFFICIENCY FINANCE PROGRAMS SPONSORED BY PROGRAMS SPONSORED BY STATE GOVERNMENTS May 3, 2011 Background of Small Commercial Finance Program Survey  Includes 20 States ( (mostly y identified from database of state incentives for renewable energy, DSIRE)  Sponsoring programs for:  small commercial (generally defined as 30,000 square feet or less and/or 150 kW or less) or   both small and large commercial sectors both small and large commercial sectors  Discussions with program managers   Creation of a table of program elements Creation of a table of program elements

15

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

2 2 Principal Commercial Building Types, as of 2003 (Percent of Total Floorspace) (1) Office 17% 17% 19% Mercantile 16% 14% 18% Retail 6% 9% 5% Enclosed & Strip Malls 10% 4% 13% Education 14% 8% 11% Warehouse and Storage 14% 12% 7% Lodging 7% 3% 7% Service 6% 13% 4% Public Assembly 5% 6% 5% Religious Worship 5% 8% 2% Health Care 4% 3% 8% Inpatient 3% 0% 6% Outpatient 2% 2% 2% Food Sales 2% 5% 5% Food Service 2% 6% 6% Public Order and Safety 2% 1% 2% Other 2% 2% 4% Vacant 4% 4% 1% Total 100% 100% 100% Note(s): Source(s): Total Floorspace Total Buildings Primary Energy Consumption 1) For primary energy intensities by building type, see Table 3.1.13. Total CBECS 2003 commercial building floorspace is 71.7 billion SF. EIA, 2003 Commercial Buildings Energy Consumption Survey: Consumption and Expenditures Tables, Oct. 2006, Table C1A

16

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

1 1 Total Commercial Floorspace and Number of Buildings, by Year 1980 50.9 (1) N.A. 3.1 (3) 1990 64.3 N.A. 4.5 (3) 2000 (4) 68.5 N.A. 4.7 (5) 2008 78.8 15% N.A. 2010 81.1 26% N.A. 2015 84.1 34% N.A. 2020 89.2 43% N.A. 2025 93.9 52% N.A. 2030 98.2 60% N.A. 2035 103.0 68% N.A. Note(s): Source(s): EIA, Annual Energy Outlook 1994, Jan. 1994, Table A5, p. 62 for 1990 floorspace; EIA, AEO 2003, Jan. 2003, Table A5, p. 127-128 for 2000 floorspace; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Summary Reference Case Tables, Table A5, p. 11-12 for 2008-2035 floorspace; EIA Commercial Building Characteristics 1989, June 1991, Table A4, p. 17 for 1990 number of buildings; EIA, Commercial Building Characteristics 1999, Aug. 2002, Table 3 for 1999 number of buildings and floorspace; and EIA, Buildings and Energy in the 1980s, June 1995, Table 2.1, p. 23 for number of buildings in 1980.

17

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

NONE

1998-01-01T23:59:59.000Z

18

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

9 9 2003 Energy Expenditures per Square Foot of Commercial Floorspace and per Building, by Building Type ($2010) ($2010) Food Service 4.88 27.2 Mercantile 2.23 38.1 Food Sales 4.68 26.0 Education 1.43 36.6 Health Care 2.76 68.0 Service 1.39 9.1 Public Order and Safety 2.07 32.0 Warehouse and Storage 0.80 13.5 Office 2.01 29.8 Religious Worship 0.76 7.8 Public Assembly 1.73 24.6 Vacant 0.34 4.8 Lodging 1.72 61.5 Other 2.99 65.5 Note(s): Source(s): Mall buildings are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Oct. 2006, Table 4; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators. Per Square Foot Per Building

19

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

8 8 2003 Average Commercial Building Floorspace, by Principal Building Type and Vintage Building Type 1959 or Prior 1960 to 1989 1990 to 2003 All Education 27.5 26.9 21.7 25.6 Food Sales N.A. N.A. N.A. 5.6 Food Service 6.4 4.4 5.0 5.6 Health Care 18.5 37.1 N.A. 24.5 Inpatient N.A. 243.6 N.A. 238.1 Outpatient N.A. 11.3 11.6 10.4 Lodging 9.9 36.1 36.0 35.9 Retail (Other Than Mall) 6.2 9.3 17.5 9.7 Office 12.4 16.4 14.2 14.8 Public Assembly 13.0 13.8 17.3 14.2 Public Order and Safety N.A. N.A. N.A. 15.4 Religious Worship 8.7 9.6 15.6 10.1 Service 6.1 6.5 6.8 6.5 Warehouse and Storage 19.7 17.2 15.4 16.9 Other N.A. N.A. N.A. 22.0 Vacant N.A. N.A. N.A. 14.1 Source(s): Average Floorspace/Building (thousand SF) EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, June 2006, Table B8, p. 63-69, and Table B9, p. 70-76

20

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

1 1 Energy Service Company (ESCO) Industry Activity ($Million Nominal) (1) Low High 1990 143 342 Market Segment Share 1991 218 425 MUSH (2) 69% 1992 331 544 Federal 15% 1993 505 703 Commercial & Industrial 7% 1994 722 890 Residential 6% 1995 1,105 1,159 Public Housing 3% 1996 1,294 1,396 1997 1,394 1,506 1998 1,551 1,667 2008 Revenues by Project/Technology Type 1999 1,764 1,925 2000 1,876 2,186 Market Segment Share 2001 - - Energy Efficiency 75% 2002 - - Onsite Renewables 14% 2003 - - Engine/Turbine Generators 6% 2004 2,447 2,507 Consulting/Master Planning 3% 2005 2,949 3,004 Other 2% 2006 3,579 3,627 2007 - - 2008 4,087 4,171 Note(s): Source(s): Estimated Revenue ($Million Nominal) (1) 2008 Revenue Sources 1) Estimates based on surveys of major ESCOs and input from industry experts. 2) Includes municipal and state governments, universities

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2015 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 28.4 28.4 16.3% Space Heating 14.6 2.9 1.3 0.1 4.3 0.1 4.7 23.7 13.6% Ventilation 15.1 15.1 8.6% Space Cooling 0.3 14.2 14.5 8.3% Refrigeration 9.9 9.9 5.7% Electronics 8.8 8.8 5.1% Water Heating 4.1 0.7 0.7 2.5 7.3 4.2% Computers 5.3 5.3 3.0% Cooking 1.7 0.6 2.3 1.3% Other (4) 2.9 0.3 3.7 1.4 5.4 22.8 31.1 17.8% Adjust to SEDS (5) 5.8 4.5 4.5 17.7 28.1 16.1% Total 29.3 8.4 1.3 3.7 1.5 14.9 0.1 130.0 174.5 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.1 billion) and motor gasoline other uses ($1.4 billion). 3) Coal average price is from AEO 2012 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

22

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

8 8 Average Annual Energy Expenditures per Square Foot of Commercial Floorspace, by Year ($2010) Year $/SF 1980 (1) 2.12 1981 2.22 (2) 1982 2.24 1983 2.21 1984 2.25 1985 2.20 1986 2.06 1987 2.00 1988 1.99 1989 2.01 1990 1.98 1991 1.92 1992 1.86 1993 1.96 1994 2.05 1995 2.12 1996 2.10 1997 2.08 1998 1.97 1999 1.88 2000 2.06 2001 2.20 2002 2.04 2003 2.13 2004 2.16 2005 2.30 2006 2.36 2007 2.35 2008 1.71 2009 2.43 2010 2.44 2011 2.44 2012 2.35 2013 2.28 2014 2.27 2015 2.29 2016 2.29 2017 2.28 2018 2.29 2019 2.29 2020 2.29 2021 2.31 2022 2.32 2023 2.32 2024 2.32 2025 2.32 2026 2.32 2027 2.33 2028 2.32 2029 2.31 2030 2.31 2031 2.32 2032 2.35 2033 2.37 2034 2.39 2035 2.42 Note(s): Source(s): EIA, State Energy Data Prices and Expenditures Database, June 2011 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Summary Reference Case Tables, Table A2, p. 3-5 and Table A5, p. 11-12 for consumption, Table A3, p. 6-8 for prices for 2008-2035; EIA, Annual Energy Review

23

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 2010 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 35.4 35.4 19.7% Space Heating 15.0 2.9 0.9 0.1 3.9 0.1 8.5 27.5 15.3% Space Cooling 0.4 25.0 25.3 14.1% Ventilation 15.9 15.9 8.9% Refrigeration 11.6 11.6 6.5% Water Heating 4.0 0.6 0.6 2.7 7.3 4.1% Electronics 7.8 7.8 4.3% Computers 6.3 6.3 3.5% Cooking 1.6 0.7 2.3 1.3% Other (4) 2.7 0.3 3.3 1.2 4.8 20.4 28.0 15.6% Adjust to SEDS (5) 6.2 5.2 5.2 0.6 12.0 6.7% Total 29.9 9.0 0.9 3.3 1.3 14.5 0.1 134.8 179.4 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.1 billion) and motor gasoline other uses ($1.2 billion). 3) Coal average price is from AEO 2012 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

24

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

6 6 2025 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 30.1 30.1 15.2% Space Heating 17.1 2.8 1.5 0.1 4.4 0.2 4.5 26.1 13.3% Electronics 11.2 11.2 5.7% Space Cooling 0.3 14.3 14.6 7.4% Water Heating 5.2 0.8 0.8 2.5 8.5 4.3% Computers 5.5 5.5 2.8% Refrigeration 9.4 9.4 4.8% Ventilation 16.6 16.6 8.4% Cooking 2.1 0.6 2.7 1.4% Other (4) 4.8 0.3 4.3 1.7 6.3 31.2 42.3 21.5% Adjust to SEDS (5) 5.9 4.9 4.9 19.2 30.0 15.2% Total 35.5 8.9 1.5 4.3 1.9 16.5 0.2 145.0 197.1 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.1 billion) and motor gasoline other uses ($1.7 billion). 3) Coal average price is from AEO 2011 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

25

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

7 7 2035 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 32.3 32.3 14.4% Space Heating 19.0 2.7 1.6 0.2 4.5 0.2 4.6 28.2 12.5% Water Heating 6.3 1.0 1.0 18.1 25.4 11.3% Space Cooling 0.4 15.1 15.5 6.9% Electronics 13.0 13.0 5.8% Refrigeration 10.0 10.0 4.4% Computers 6.0 6.0 2.7% Cooking 2.6 0.6 3.2 1.4% Ventilation 2.4 2.4 1.1% Other (4) 9.3 0.4 4.9 2.0 7.2 40.9 57.5 25.5% Adjust to SEDS (5) 4.6 5.3 5.3 21.7 31.6 14.0% Total 42.2 9.4 1.6 4.9 2.2 18.0 0.2 164.8 225.1 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.2 billion) and motor gasoline other uses ($2.0 billion). 3) Coal average price is from AEO 2012 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

26

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 Commercial Energy Prices, by Year and Fuel Type ($2010) Electricity Natural Gas Distillate Oil Residual Oil ($/gal) ($/gal) 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 9.39 104.50 2.79 3.78 9.35 104.74 2.81 3.81 9.47 101.25 2.73 3.69 9.40 103.22 2.76 3.75 9.54 99.28 2.67 3.60 9.51 100.49 2.70 3.64 9.52 94.53 2.66 3.52 9.55 97.45 2.64 3.55 9.46 90.92 2.61 3.46 9.48 92.13 2.63 3.49 9.49 87.65 2.54 3.41 9.47 89.48 2.58 3.42 9.58 85.91 2.41 3.28 9.54 86.36 2.49 3.34 9.57 87.02 2.07 2.97 9.52 84.58 2.26 3.14 10.09 86.14 2.34 3.55 9.76 87.22 2.37 3.57 10.27 97.87 1.49 2.03 10.14 90.95 1.66 2.86 10.04 114.33 1.51 2.47 10.56 121.16 2.01 3.34 9.59 121.45 1.24 2.07 10.13 124.31 1.39 2.32 9.44 94.94 0.93 1.23

27

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

Commercial Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Average 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 (2) 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 27.39 10.47 27.48 21.15 27.10 10.45 27.73 21.01 27.56 10.32 27.04 21.10 27.52 10.45 27.28 21.18 27.86 10.05 26.41 21.06 27.74 10.12 26.73 21.07 28.00 9.75 25.85 20.90 27.96 9.93 26.16 21.01 27.78 9.21 25.46 20.46 27.90 9.45 25.69 20.67 27.76 8.95 24.95 20.23 27.72 9.09 25.24 20.32 27.96 8.64 24.34 20.11 27.81 8.77 24.80 20.14 27.91 8.46 23.15 19.90 28.07 8.59 24.07 20.11 28.61 8.72 23.94 20.36 28.05 8.70 22.00 19.99 29.73 9.10 20.28 20.99 29.57 8.61 24.24 21.03 30.95 12.12 23.75 23.21 30.09 9.79 15.83 21.13 29.70

28

Green Marketing, Renewables, Free Riders  

NLE Websites -- All DOE Office Websites (Extended Search)

0632 0632 UC-1321 Green Marketing, Renewables, and Free Riders: Increasing Customer Demand for a Public Good Ryan Wiser and Steven Pickle Environmental Energy Technologies Division Ernest Orlando Lawrence Berkeley National Laboratory University of California Berkeley, California 94720 September 1997 The work described in this study was funded by the Assistant Secretary of Energy Efficiency and Renewable Energy, Office of Utility Technologies, Office of Energy Management Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. i Table of Contents Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Section 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

Text-Alternative Version: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification  

Energy.gov (U.S. Department of Energy (DOE))

Below is the text-alternative version of the LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification webcast.

30

Transit Rider Information King County Metro Transit  

E-Print Network (OSTI)

Transit Rider Information King County Metro Transit Rider Information (206) 553-3000 http the On the Move Blog http://www.seattle.gov/transportation King County Road Services Division Road Maintenance closely with King County Metro Transit, the Seattle School District, local universities, hospitals

Queitsch, Christine

31

Comparative analysis of energy data bases for the industrial and commercial sectors  

SciTech Connect

Energy data bases for the industrial and commercial sectors were analyzed to determine how valuable this data might be for policy analysis. The approach is the same for both end-use sectors: first a descrption or overview of relevant data bases identifies the available data; the coverage and methods used to generate the data are then explained; the data are then characterized and examples are provided for the major data sets under consideration. A final step assesses the data bases under consideration and draws conclusions. There are a variety of data bases considered for each of the end-use sectors included in this report. Data bases for the industrial sector include the National Energy Accounts, process-derived data bases such as the Drexel data base and data obtained from industry trade associations. For the commercial sector, three types of data bases are analyzed: the Nonresidential Building Energy Consumption Surveys, Dodge Construction Data and the Building Owners and Manager's Association Experience Exchange Report.

Roop, J.M.; Belzer, D.B.; Bohn, A.A.

1986-12-01T23:59:59.000Z

32

Laboratory Shuttle Bus Routes: Instructions for Riders  

NLE Websites -- All DOE Office Websites (Extended Search)

Instructions for Riders Instructions for Riders Shuttle stops are marked with this sign: Bus sign image Tips for riders: When you see a shuttle bus approaching WAVE AT THE DRIVER so the driver knows you want to board the bus For safety reasons, shuttle bus drivers can only pick-up and drop-off passengers at designated stops. Shuttle services are for Berkeley Lab employee and guest use only. All riders are required to show ID when boarding off-site buses. Acceptable ID's are: LBNL badge, UC Berkeley student and faculty ID badge, DOE badge, or UCOP badge. Guests are required to present a visitor bus pass, email, or permission from Lab host, written on official letterhead. See Site Access for more information. As you board, tell the driver the building number of your destination. The driver will be able to assist you with directions.

33

Charting a Path to Net Zero Energy: Public-Private Sector Perspectives of the Commercial Buildings Consortium  

E-Print Network (OSTI)

Transforming the commercial buildings market to become "net-zero-energy-capable" will require dramatically lower levels of energy use sector wide. A comprehensive and concerted industry effort, partnering with utilities and government, must...

Harris, J.

2011-01-01T23:59:59.000Z

34

Rigging a horse and rider: simulating the predictable and repetitive movement of the rider  

E-Print Network (OSTI)

setup. If an animation piece is only going to have a few shots with a horse and rider, then the trouble of setting up an automated character rig is not practical, but if there are a significant amount of shots with a horse and rider galloping across...

Kuhnel, Jennifer Lynn

2004-09-30T23:59:59.000Z

35

ENERGY STAR Snapshot: Measuring Progress in the Commercial and Industrial Sectors, Spring 2008.  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Progress in the Commercial and Industrial Sectors Spring 2008 Introduction Through 2007, commercial and industrial (C&I) leaders have made unprecedented progress in their efforts to improve energy efficiency and reduce greenhouse gas emissions across their buildings and facilities. This includes: y Hundreds of organizations and individuals stepping forward to take the ENERGY STAR Challenge to improve the energy efficiency of America's buildings by 10 percent or more y Measuring the energy performance in tens of thousands of buildings y Achieving energy savings across millions of square feet y Designating more than 4,000 efficient buildings and facilities with the ENERGY STAR label ENERGY STAR partners are building tremendous momentum for energy efficiency and seeing important

36

Integrated estimation of commercial sector end-use load shapes and energy use intensities  

SciTech Connect

The Southern California Edison Company (SCE) and the California Energy Commission (CEC) have contracted with Energy Analysis Program of the Applied Science Division at the Lawrence Berkeley Laboratory (LBL) to develop an integrated set of commercial sector load shapes (LS) and energy utilization indices (EUI) for use in forecasting electricity demand. The overall objectives of this project are to conduct detailed analyses of SCE data on commercial building characteristics, energy use, and whole-building load shapes, and, in conjunction with other data, to develop, test, and apply an integrated approach for the estimation of end-use LSs and EUIs. The project is one of the first attempts ever to combine simulation-based, prototypical building analyses with direct reconciliation to measured hourly load data.

Akbari, H.; Eto, J.; Turiel, I.; Heinemeier, K.; Lebot, B.; Nordman, B.; Rainer, L.

1989-01-01T23:59:59.000Z

37

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1995-02-01T23:59:59.000Z

38

Where did the money go? The cost and performance of the largest commercial sector DSM program  

SciTech Connect

We calculate the total resource cost (TRC) of energy savings for 40 of the largest 1992 commercial sector DSM programs. The calculation includes the participating customer`s cost contribution to energy saving measures and all utility costs, including incentives received by customers, program administrative and overhead costs, measurement and evaluation costs, and shareholder incentives paid to the utility. All savings are based on post-program savings evaluations. We find that, on a savings-weighted basis, the programs have saved energy at a cost of 3.2 {cents}/kWh. Taken as a whole, the programs have been highly cost effective when compared to the avoided costs faced by the utilities when the programs were developed. We investigate reasons for differences in program costs and examine uncertainties in current utility practices for reporting costs and evaluating savings.

Eto, J.; Kito, S.; Shown, L.; Sonnenblick, R.

1995-12-01T23:59:59.000Z

39

Model documentation report: Commercial sector demand module of the national energy modeling system  

SciTech Connect

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1994-08-01T23:59:59.000Z

40

Risk factors for injury accidents among moped and motorcycle riders  

E-Print Network (OSTI)

Risk factors for injury accidents among moped and motorcycle riders Aurélie Moskal a , Jean on the vehicle. Moped and motorcycle riders are analyzed separately, adjusting for the main characteristics of the accident. Results: for both moped and motorcycle riders, being male, not wearing a helmet, exceeding

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

From comfort to kilowatts: An integrated assessment of electricity conservation in Thailand's commercial sector  

SciTech Connect

Thailand serves as a case study of the potential to conserve electricity in the fast-growing commercial sectors of the tropical developing world. We performed a field study of over 1100 Thai office workers in which a questionnaire survey and simultaneous physical measurements were taken. Both air-conditioned and non-air-conditioned buildings were included. We analyzed Thai subjective responses on the ASHRAE, McIntyre and other rating scales, relating them to Effective Temperature, demographics, and to rational indices of warmth such as PMV and TSENS. These results suggest that without sacrificing comfort, significant energy conservation opportunities exist through the relaxation of upper space temperature limits. To investigate the potential for conserving energy in a cost-effective manner, we performed a series of parametric simulations using the DOE-2.1D computer program on three commercial building prototypes based on actual buildings in Bangkok; an office, a hotel, and a shopping center. We investigated a wide range of energy conservation measures appropriate for each building type, from architectural measures to HVAC equipment and control solutions. The best measures applied in combination into high efficiency cases can generate energy savings in excess of 50%. Economic analyses performed for the high efficiency cases, resulted in costs of conserved energy of less than and internal rates of return in excess of 40%. Thermal cool storage, cogeneration, and gas cooling technology showed promise as cost-effective electric load management strategies.

Busch, J.F. Jr.

1990-08-01T23:59:59.000Z

42

Integrated estimation of commercial sector end-use load shapes and energy use intensities  

SciTech Connect

The Southern California Edison Company (SCE) and the California Energy Commission (CEC) have contracted with the Energy Analysis Program of the Applied Science Division at the Lawrence Berkeley Laboratory (LBL) to develop an integrated set of commercial sector load shapes (LS) and energy utilization indices (EUI) for use in forecasting electricity demand. The objectives of this project are to conduct detailed analyses of SCE data on commercial building characteristics, energy use, and whole-building load shapes; and in conjunction with other data, to develop, test, and apply an integrated approach for the estimation of end-use LSs and EUIs. The project represents one of the first attempts to combine simulation-based, prototypical building analyses with direct reconciliation to measured hourly load data. The project examined electricity and gas use for nine building types, including large offices, small offices, large retails, small retails, food stores, sitdown restaurants, fastfood restaurants, refrigerated warehouses, and non-refrigerated warehouses. For each building type, nine end uses were examined, including cooling, heating, ventilation, indoor lighting, outdoor lighting, miscellaneous equipment, water heating, cooking, and refrigeration. For the HVAC end uses (cooling, ventilation, and heating), separate analyses were performed for three climate zones: coastal, inland, and desert.

Akbari, H.; Eto, J.; Turiel, I.; Heinemeier, K.; Lebot, B.; Nordman, B.; Rainer, L.

1989-01-01T23:59:59.000Z

43

A new approach to estimate commercial sector end-use load shapes and energy use intensities  

SciTech Connect

We discuss the application of an end-use load shape estimation technique to develop annual energy use intensities (EUIs) and hourly end-use load shapes (LSs) for commercial buildings in the Pacific Gas and Electric Company (PG&E) service territory. Results will update inputs for the commercial sector energy and peak demand forecasting models used by PG&E and the California Energy Commission (CEC). EUIs were estimated for 11 building types, up to 10 end uses, 3 fuel types, 2 building vintages, and up to 5 climate regions. The integrated methodology consists of two major parts. The first part is the reconciliation of initial end-use load-shape estimates with measured whole-building load data to produce intermediate EUIs and load shapes, using LBL`s End-use Disaggregation Algorithm, EDA. EDA is a deterministic hourly algorithm that relies on the observed characteristics of the measured hourly whole-building electricity use and disaggregates it into major end-use components. The end-use EUIs developed through the EDA procedure represent a snap-shot of electricity use by building type and end-use for two regions of the PG&E service territory, for the year that disaggregation is performed. In the second part of the methodology, we adjust the EUIs for direct application to forecasting models based on factors such as climatic impacts on space-conditioning EUIs, fuel saturation effects, building and equipment vintage, and price impacts. Core data for the project are detailed on-site surveys for about 800 buildings, mail surveys ({approximately}6000), load research data for over 1000 accounts, and hourly weather data for five climate regions.

Akbari, H.; Eto, J.; Konopacki, S.; Afzal, A.; Heinemeier, K.; Rainer, L.

1994-08-01T23:59:59.000Z

44

Modeling of Demand Side Management Options for Commercial Sector in Maharashtra  

Science Journals Connector (OSTI)

Abstract There has been an unbalance between demand and supply of electricity in Maharashtra, a shortage of 20% peak power was reported in year 2011-12. Demand side management (DSM) in the commercial sector (consuming about 12% of the state electricity) can help to bridge this gap. In this paper three DSM options namely global temperature adjustment (GTA), chilled water storage (CWS) and variable air volume system (VAVS) are evaluated to give potential energy savings and load shifting. Simulation of GTA model for a sample school building gave 21.3% saving in compressor work for a change of room settings from 23oC, 50% RH to 26oC, 40% RH. Model for CWS was simulated for an office building in Mumbai; the results showed a cooling load shifting of 1638TRh out of 2075TRh was possible with an optimum tank size of 450kl. Simulation of VAVS for a sample school building showed fan energy savings of 68% over CAVS.

Vishal Vadabhat; Rangan Banerjee

2014-01-01T23:59:59.000Z

45

Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs  

E-Print Network (OSTI)

Energy Analysis 3 LILCO--Commercial Energy Audit 4Large Commercial Audit 7 SCE--Energy Management SurveysUtilities--Energy Check 5 SMUD--Small Commercial Audit 6

Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

2008-01-01T23:59:59.000Z

46

LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification  

Energy.gov (U.S. Department of Energy (DOE))

This March 26, 2009 webcast presented information about the Commercial Building Energy Alliances' (CBEA) efforts to explore the viability of LED site lighting in commercial parking lots. LED...

47

AN ASSESSMENT OF THE MARKET POTENTIAL AND ECONOMIC IMPACTS OF ENERGY CONSERVATION IN THE CANADIAN RESIDENTIAL/COMMERCIAL/INDUSTRIAL SECTORS  

Science Journals Connector (OSTI)

ABSTRACT Energy conservation in the residential/commercial/industrial sectors is a significant supply option for Canada. The conservation business can also produce an important impact on national economic performance. Although some achievement has been made in energy conservation, the potential in Canada has remained mostly untapped. In order to develop the energy conservation potential aggressively, demographic and institutional barriers must be overcome. The non-residential sector is likely to experience a more aggressive rate of energy conservation achievement than the residential sector. Financing is a crucial issue confronting the aggressive development of energy conservation. Good decisions require good information bases. There is much to improve on the quality and variety of data available to the public on energy conservation. Emphasis should also be placed on education and effective communication of energy conservation to managers and the public.

Lorne D.R. Dyke; W. Samuel Chan

1984-01-01T23:59:59.000Z

48

Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Commercial Commercial Industrial Lighting Energy Smart Grocer Program HVAC Program Shell Measures Commercial Kitchen & Food Service Equipment Plug Load New...

49

Targeted CHP Outreach in Selected Sectors of the Commercial Market, 2004  

Energy.gov (U.S. Department of Energy (DOE))

This report defines the opportunity for CHP in three specific commercial building market segments: Smaller Educational Facilities, Smaller Healthcare Facilities, and Data Centers/Server Farms/Telecom Switching Centers.

50

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

1 2003 Commercial Delivered Energy Consumption Intensities, by Ownership of Unit (1) Ownership Nongovernment Owned 85.1 72% Owner-Occupied 87.3 35% Nonowner-Occupied 88.4 36%...

51

Models for residential- and commercial-sector energy-conservation analysis: applications, limitations, and future potential. Final report  

SciTech Connect

This report reviews four of the major models used by the Department of Energy (DOE) for energy conservation analyses in the residential- and commercial-building sectors. The objective is to provide a critical analysis of how these models can serve as tools for DOE and its Conservation Policy Office in evaluating and quantifying their policy and program requirements. For this, the study brings together information on the models' analytical structure and their strengths and limitations in policy applications these are then employed to assess the most-effective role for each model in addressing future issues of buildings energy-conservation policy and analysis. The four models covered are: Oak Ridge Residential Energy Model; Micro Analysis of Transfers to Households/Comprehensive Human Resources Data System (MATH/CHRDS) Model; Oak Ridge Commercial Energy Model; and Brookhaven Buildings Energy Conservation Optimization Model (BECOM).

Cole, Henry E.; Fullen, Robert E.

1980-09-01T23:59:59.000Z

52

Price Responsiveness in the AEO2003 NEMS Residential and Commercial Buildings Sector Models  

Reports and Publications (EIA)

This paper describes the demand responses to changes in energy prices in the Annual Energy Outlook 2003 versions of the Residential and Commercial Demand Modules of the National Energy Modeling System (NEMS). It updates a similar paper completed for the Annual Energy Outlook 1999 version of the NEMS.

2003-01-01T23:59:59.000Z

53

MHK Technologies/Wave Rider | Open Energy Information  

Open Energy Info (EERE)

Rider Rider < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rider.jpg Technology Profile Primary Organization Seavolt Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The company s Wave Rider system uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity Electricity is generated via small turbines powered by hydraulic circuits which captures the energy of the wave and converts it into high pressure hydraulic fluid flow spinning the turbines to generate electricity Technology Dimensions Device Testing Date Submitted 19:42.1 << Return to the MHK database homepage

54

Wheeler, Conrad, and Figliozzi 1 A Statistical Analysis of Bicycle Rider Performance  

E-Print Network (OSTI)

Wheeler, Conrad, and Figliozzi 1 A Statistical Analysis of Bicycle Rider Performance: The impact) A Statistical Analysis of Bicycle Rider Performance: The impact of gender on riders' performance at signalized;Wheeler, Conrad, and Figliozzi 2 A Statistical Analysis of Bicycle Rider Performance: The impact of gender

Bertini, Robert L.

55

Motorcycle Rider Integrated Safety OPEN POSITION AT PARTNER UNIPD IN THE FIELD OF SAFER MOTORCYCLING  

E-Print Network (OSTI)

MOTORIST Motorcycle Rider Integrated Safety OPEN POSITION AT PARTNER UNIPD IN THE FIELD OF SAFER MOTORCYCLING MOTORIST (Motorcycle Rider Integrated Safety) is an Initial Training Network (ITN) Nr. 608092 involved as MOTORIST Associated #12;MOTORIST Motorcycle Rider Integrated Safety Partners, on rider training

Cesare, Bernardo

56

Countries Launch Initiative to Drive Energy Efficiency in the Commercial and Industrial Sectors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 20, 2010 July 20, 2010 1 FACT SHEET: THE GLOBAL SUPERIOR ENERGY PERFORMANCE PARTNERSHIP At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers launched a new public- private partnership to accelerate energy efficiency improvements in commercial buildings and industrial facilities, which together account for almost 60 percent of global energy use. The Global Superior Energy Performance (GSEP) Partnership will cut energy use, reduce greenhouse gas emissions and pollution, save money, and create

57

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

5 5 Commercial Buildings Share of U.S. Petroleum Consumption (Percent) Site Consumption Primary Consumption Total Commercial Industry Electric Gen. Transportation Commercial Industry Transportation (quads) 1980 4% 28% 8% 56% | 6% 31% 56% 34.2 1981 4% 26% 7% 59% | 5% 29% 59% 31.9 1982 3% 26% 5% 61% | 5% 28% 61% 30.2 1983 4% 25% 5% 62% | 5% 27% 62% 30.1 1984 4% 26% 4% 61% | 5% 27% 61% 31.1 1985 3% 25% 4% 63% | 5% 26% 63% 30.9 1986 4% 24% 5% 63% | 5% 26% 63% 32.2 1987 3% 25% 4% 63% | 5% 26% 63% 32.9 1988 3% 24% 5% 63% | 5% 26% 63% 34.2 1989 3% 24% 5% 63% | 5% 25% 63% 34.2 1990 3% 25% 4% 64% | 4% 26% 64% 33.6 1991 3% 24% 4% 65% | 4% 26% 65% 32.8 1992 3% 26% 3% 65% | 4% 27% 65% 33.5 1993 2% 25% 3% 65% | 3% 26% 65% 33.8 1994 2% 25% 3% 65% | 3% 26% 65% 34.7 1995 2% 25% 2% 67% | 3% 26% 67% 34.6 1996 2% 25% 2% 66% | 3% 26% 66% 35.8 1997 2% 26% 3% 66% | 3% 26% 66% 36.3 1998 2% 25% 4% 66% | 3% 26% 66% 36.9 1999 2% 25% 3% 66% | 3% 26% 66% 38.0 2000 2% 24% 3% 67% | 3% 25%

58

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

4 4 Commercial Buildings Share of U.S. Natural Gas Consumption (Percent) Site Consumption Primary Consumption Total Commercial Industry Electric Gen. Transportation Commercial Industry Transportation (quads) 1980 13% 41% 19% 3% | 18% 49% 3% 20.22 1981 13% 42% 19% 3% | 18% 49% 3% 19.74 1982 14% 39% 18% 3% | 20% 45% 3% 18.36 1983 14% 39% 17% 3% | 19% 46% 3% 17.20 1984 14% 40% 17% 3% | 19% 47% 3% 18.38 1985 14% 40% 18% 3% | 19% 46% 3% 17.70 1986 14% 40% 16% 3% | 19% 46% 3% 16.59 1987 14% 41% 17% 3% | 19% 47% 3% 17.63 1988 15% 42% 15% 3% | 19% 47% 3% 18.44 1989 14% 41% 16% 3% | 19% 47% 3% 19.56 1990 14% 43% 17% 3% | 19% 49% 4% 19.57 1991 14% 43% 17% 3% | 19% 49% 3% 20.03 1992 14% 43% 17% 3% | 19% 49% 3% 20.71 1993 14% 43% 17% 3% | 19% 48% 3% 21.24 1994 14% 42% 18% 3% | 19% 48% 3% 21.75 1995 14% 42% 19% 3% | 20% 49% 3% 22.71 1996 14% 43% 17% 3% | 19% 49% 3% 23.14 1997 14% 43% 18% 3% | 20% 49% 3% 23.34 1998 13% 43% 20% 3% | 20% 50% 3% 22.86 1999 14%

59

Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption  

Buildings Energy Data Book (EERE)

1 1 Commercial Water Use by Source (Million Gallons per Day) Year 1980 - - - 1985 5,710 1,230 1990 5,900 2,390 1995 6,690 2,890 2000 (3) 7,202 3,111 2005 (3) 7,102 3,068 Note(s): Source(s): 10,314 10,171 1) Public supply water use: water withdrawn by public and private water suppliers that furnish water to at least 25 people or have a minimum of 15 connections. 2) Self-supply water use: Water withdrawn from a groundwater or surface-water source by a user rather than being obtained from a public supply. 3) USGS did not estimate commercial water use in this year. Estimates are based on available data and percentage breakdown of commercial use in the 1995 survey. U.S. Geological Survey, Estimated Use of Water in the U.S. in 1985, U.S. Geological Survey Circular 1004, 1988; U.S. Geological Survey, Estimated Use of

60

Distributed Generation Potential of the U.S. CommercialSector  

SciTech Connect

Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems in developed countries over the next two decades. In the U.S., private and public expectations for this technology are heavily influenced by forecasts published by the Energy Information Administration (EIA), most notably the Annual Energy Outlook (AEO). EIA's forecasts are typically made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. Annual penetration is forecast by estimating the payback period for each technology, for each of a limited number of representative building types, for each of nine regions. This process results in an AEO2004 forecast deployment of about a total 3 GW of DG electrical generating capacity by 2025, which is only 0.25 percent of total forecast U.S. capacity. Analyses conducted using both the AEO2003 and AEO2004 versions of NEMS changes the baseline costs and performance characteristics of DG to reflect a world without U.S. Department of Energy (DOE) research into several thermal DG technologies, which is then compared to a case with enhanced technology representative of the successful achievement of DOE research goals. The net difference in 2025 DG penetration is dramatic using the AEO2003 version of NEMS, but much smaller in the AEO2004 version. The significance and validity of these contradictory results are discussed, and possibilities for improving estimates of commercial U.S. DG potential are explored.

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman,Etan; Marnay, Chris

2005-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Countries Launch Initiative to Drive Energy Efficiency in the Commercial and Industrial Sectors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Updated on July 23, 2010 Updated on July 23, 2010 1 FACT SHEET: THE GLOBAL SUPERIOR ENERGY PERFORMANCE PARTNERSHIP At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers launched a new public- private partnership to accelerate energy efficiency improvements in commercial buildings and industrial facilities, which together account for almost 60 percent of global energy use. The Global Superior Energy Performance (GSEP) Partnership will cut energy use, reduce greenhouse gas emissions and pollution, save money, and create

62

Assessment of the Energy Impacts of Outside Air in the Commercial Sector  

SciTech Connect

The enormous quantity of energy consumed by U.S. commercial buildings places a significant burden on the energy supply and is a potential source of economic strain. To address this, the DOE Building Technologies Program has established the goal of developing market-viable zero energy buildings by 2025. This study focuses on the effects of outside air, and considers various outside air sources, types of building construction, building subsectors, and climates. Based on the information about energy consumption attributed to outside air, it identifies topics for further research that have the greatest potential to achieve energy savings.

Benne, K.; Griffith, B.; Long, N.; Torcellini, P.; Crawley, D.; Logee, T.

2009-04-01T23:59:59.000Z

63

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

3 3 2003 Commercial Buildings Delivered Energy End-Use Intensities, by Building Activity (Thousand Btu per SF) (1) Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Note(s): Source(s): 43.5 45.2 164.4 20.9 1) Due to rounding, end-uses do not sum to total. EIA, 2003 Commercial Building Energy Consumption Survey, Energy End-Uses, Oct. 2008, Table E.2A. 0.3 0.6 3.0 N.A. 4.9 4.8 18.9 3.1 1.7 3.5 6.0 N.A. 0.1 0.2 N.A. N.A. 4.4 13.1 34.1 1.7 0.8 N.A. N.A. N.A. 1.4 2.0 6.1 0.4 0.8 0.6 2.1 0.1 26.2 19.3 79.4 14.4 2.9 1.3 10.5 0.6 Religious

64

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

2 2 Aggregate Commercial Building Component Loads as of 1998 (1) Load (quads) and Percent of Total Load Component Heating Cooling Roof -0.103 12% 0.014 1% Walls (2) -0.174 21% -0.008 - Foundation -0.093 11% -0.058 - Infiltration -0.152 18% -0.041 - Ventilation -0.129 15% -0.045 - Windows (conduction) -0.188 22% -0.085 - Windows (solar gain) 0.114 - 0.386 32% Internal Gains Lights 0.196 - 0.505 42% Equipment (electrical) 0.048 - 0.207 17% Equip. (non-electrical) 0.001 - 0.006 1% People 0.038 - 0.082 7% NET Load -0.442 100% 0.963 100% Note(s): Source(s): 1) Loads represent the thermal energy losses/gains that, when combined, will be offset by a building's heating/cooling system to maintain a set interior temperature (which equals site energy). 2) Includes common interior walls between buildings. LBNL, Commercial Heating and Cooling Loads Component Analysis, June 1998, Table 24, p. 45 and Figure 3, p. 61

65

Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption  

Buildings Energy Data Book (EERE)

3 3 Normalized Annual End Uses of Water in Select Restaurants in Western United States (1) Fixture/End Use (2) Faucets Dishwashing Toilets/Urinals Ice Making Total Indoor Use (3) (4) (4) Building Size (SF) Seats: Meals: Benchmarking Values for Restaurants (6) N Gal./SF/year 90 Gal./meal 90 Gal./seat/day 90 Gal./employee/day 90 Note(s): Source(s): American Water Works Association Research Foundation, Commercial and Institutional End Uses of Water, 2000. 25th Percentile of Users 130 - 331 6 - 9 20 - 31 86 - 122 Familiy-style dine-in establishments. Four restaurants in southern California, one in Phoenix, AZ. 1) Water use data for the buildings was collected over a few days. Estimates of annual use were created by accounting for seasonal use and other variables, billing data, and

66

Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption  

Buildings Energy Data Book (EERE)

6 6 Normalized Annual End Uses of Water in Two California High Schools Fixture/End Use Toilet Urinal Faucet Shower Kitchen Misc. uses (2) Cooling Leaks Swimming Pool Total Use Benchmarking Values for Schools (3) N Indoor Use, Gal./sq. ft./year 142 Indoor Use, Gal./school day/student 141 Cooling Use, Gal./sq. ft./year 35 Note(s): Source(s): 8 - 20 1) Water use data for the buildings was collected over a few days. Estimates of annual use were created by accounting for seasonal use and other variables, billing data, and interviews with building managers. 2) One high school. 3) The study derived efficiency benchmarks by analyzing measured data and audit data. The benchmark was set at the lower 25th percentile of users. American Water Works Association Research Foundation, Commercial and Institutional End Uses of Water, 2000.

67

Scale Matters: An Action Plan for Realizing Sector-Wide"Zero-Energy" Performance Goals in Commercial Buildings  

SciTech Connect

It is widely accepted that if the United States is to reduce greenhouse gas emissions it must aggressively address energy end use in the building sector. While there have been some notable but modest successes with mandatory and voluntary programs, there have also been puzzling failures to achieve expected savings. Collectively, these programs have not yet reached the majority of the building stock, nor have they yet routinely produced very large savings in individual buildings. Several trends that have the potential to change this are noteworthy: (1) the growing market interest in 'green buildings' and 'sustainable design', (2) the major professional societies (e.g. AIA, ASHRAE) have more aggressively adopted significant improvements in energy efficiency as strategic goals, e.g. targeting 'zero energy', carbon-neutral buildings by 2030. While this vision is widely accepted as desirable, unless there are significant changes to the way buildings are routinely designed, delivered and operated, zero energy buildings will remain a niche phenomenon rather than a sector-wide reality. Toward that end, a public/private coalition including the Alliance to Save Energy, LBNL, AIA, ASHRAE, USGBC and the World Business Council for Sustainable Development (WBCSD) are developing an 'action plan' for moving the U.S. commercial building sector towards zero energy performance. It addresses regional action in a national framework; integrated deployment, demonstration and R&D threads; and would focus on measurable, visible performance indicators. This paper outlines this action plan, focusing on the challenge, the key themes, and the strategies and actions leading to substantial reductions in GHG emissions by 2030.

Selkowitz, Stephen; Selkowitz, Stephen; Granderson, Jessica; Haves, Philip; Mathew, Paul; Harris, Jeff

2008-06-16T23:59:59.000Z

68

Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption  

Buildings Energy Data Book (EERE)

2 2 Average Water Use of Commercial and Institutional Establishments (Gallons per Establishment per Day) Average Variation % Total % of CI % Seasonal Daily Use In Use (1) CI Use Customers Use (2) Hotels and Motels 7,113 5.41 5.8% 1.9% 23.1% Laundries/Laundromats 3,290 8.85 4.0% 1.4% 13.4% Car Washes 3,031 3.12 0.8% 0.4% 14.2% Urban Irrigation 2,596 8.73 28.5% 30.2% 86.9% Schools and Colleges 2,117 12.13 8.8% 4.8% 58.0% Hospitals/Medical Offices 1,236 78.5 3.9% 4.2% 23.2% Office Buildings 1,204 6.29 10.2% 11.7% 29.0% Restaurants 906 7.69 8.8% 11.2% 16.1% Food Stores 729 16.29 2.9% 5.2% 19.4% Auto Shops (3) 687 7.96 2.0% 6.7% 27.2% Membership Organizations (4) 629 6.42 2.0% 5.6% 46.2% Total 77.6% 83.3% Note(s): Source(s): 23,538 Estimated from 24 months of water utility billing data in five Western locations: four locations in Southern California and one in Arizona. 1)

69

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

9 9 2003 Commercial Delivered Energy Consumption Intensities, by Principal Building Type and Vintage (1) | Building Type Pre-1959 1960-1989 1990-2003 | Building Type Pre-1959 1960-1989 1990-2003 Health Care 178.1 216.0 135.7 | Education 77.7 88.3 80.6 Inpatient 230.3 255.3 253.8 | Service 62.4 86.0 74.8 Outpatient 91.6 110.4 84.4 | Food Service 145.2 290.1 361.2 Food Sales 205.8 197.6 198.3 | Religious Worship 46.6 39.9 43.3 Lodging 88.2 111.5 88.1 | Public Order & Safety N.A. 101.3 110.6 Office 93.6 94.4 88.0 | Warehouse & Storage N.A. 38.9 33.3 Mercantile 80.4 91.8 94.4 | Public Assembly 61.9 107.6 119.7 Retail (Non-Malls) 74.1 63.7 86.4 | Vacant 21.4 23.1 N.A. Retail (Malls) N.A. 103.9 99.5 | Other 161.3 204.9 125.3 Note(s): Source(s): Consumption (kBtu/SF) Consumption (kBtu/SF) 1) See Table 3.1.3 for primary versus delivered energy consumption.

70

Linking, leveraging and learning: sectoral systems of innovation and technological catch-up in China's commercial aerospace industry  

Science Journals Connector (OSTI)

Developing countries often have ambitions to become major players in the commercial aerospace industry, but it remains effectively a duopoly dominated by Boeing of the USA and Europe's Airbus. China is no exception and the projects designed to bring this about have taken a number of forms. Adopting the sectoral system of innovation (SSI) as an analytical framework, this paper explores recent changes in the industry. Using China's ARJ21 regional jet programme as a case study, it examines how these changes provide opportunities for latecomer nations to catch-up technologically. It is argued that the new institutional context and the presence of new actors within the SSI, represent an opportunity for latecomer nations like China to acquire the capability to design, develop and manufacture commercial jet airliners, through linking with Western suppliers. However the analysis reveals that as a latecomer nation, China may prove to be a special case, with the opportunities for catch-up by other latecomers much more limited.

David J. Smith; Michael Zhang

2014-01-01T23:59:59.000Z

71

Assessing National Employment Impacts of Investment in Residential and Commercial Sector Energy Efficiency: Review and Example Analysis  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) modeled the employment impacts of a major national initiative to accelerate energy efficiency trends at one of two levels: 15 percent savings by 2030. In this scenario, efficiency activities save about 15 percent of the Annual Energy Outlook (AEO) Reference Case electricity consumption by 2030. It is assumed that additional energy savings in both the residential and commercial sectors begin in 2015 at zero, and then increase in an S-shaped market penetration curve, with the level of savings equal to about 7.0 percent of the AEO 2014 U.S. national residential and commercial electricity consumption saved by 2020, 14.8 percent by 2025, and 15 percent by 2030. 10 percent savings by 2030. In this scenario, additional savings begin at zero in 2015, increase to 3.8 percent in 2020, 9.8 percent by 2025, and 10 percent of the AEO reference case value by 2030. The analysis of the 15 percent case indicates that by 2030 more than 300,000 new jobs would likely result from such policies, including an annual average of more than 60,000 jobs directly supporting the installation and maintenance of energy efficiency measures and practices. These are new jobs resulting initially from the investment associated with the construction of more energy-efficient new buildings or the retrofit of existing buildings and would be sustained for as long as the investment continues. Based on what is known about the current level of building-sector energy efficiency jobs, this would represent an increase of more than 10 percent from the current estimated level of over 450,000 such jobs. The more significant and longer-lasting effect comes from the redirection of energy bill savings toward the purchase of other goods and services in the general economy, with its attendant influence on increasing the total number of jobs. This example analysis utilized PNNLs ImSET model, a modeling framework that PNNL has used over the past two decades to assess the economic impacts of the U.S. Department of Energys (DOEs) energy efficiency programs in the buildings sector.

Anderson, David M.; Belzer, David B.; Livingston, Olga V.; Scott, Michael J.

2014-06-18T23:59:59.000Z

72

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

3 3 Commercial Delivered and Primary Energy Consumption Intensities, by Year Percent Delivered Energy Consumption Primary Energy Consumption Floorspace Post-2000 Total Consumption per Total Consumption per (million SF) Floorspace (1) (10^15 Btu) SF (thousand Btu/SF) (10^15 Btu) SF (thousand Btu/SF) 1980 50.9 N.A. 5.99 117.7 10.57 207.7 1990 64.3 N.A. 6.74 104.8 13.30 207.0 2000 (2) 68.5 N.A. 8.20 119.7 17.15 250.3 2010 81.1 26% 8.74 107.7 18.22 224.6 2015 84.1 34% 8.88 105.5 18.19 216.2 2020 89.1 43% 9.02 101.2 19.15 214.9 2025 93.9 52% 9.56 101.8 20.06 213.6 2030 98.2 60% 9.96 101.5 20.92 213.1 2035 103.0 68% 10.38 100.8 21.78 211.4 Note(s): Source(s): EIA, State Energy Consumption Database, June 2011 for 1980-2009; DOE for 1980 floorspace; EIA, Annual Energy Outlook 1994, Jan. 1994, Table A5, p. 62 for 1990 floorspace; EIA, AEO 2003, Jan. 2003, Table A5, p. 127 for 2000 floorspace; and EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012,

73

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

5 5 2015 Commercial Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Natural Fuel Other Renw. Site Site Primary Primary Gas Oil (1) LPG Fuel(2) En.(3) Electric Total Percent Electric (4) Total Percent Lighting 1.01 1.01 11.4% | 3.05 3.05 16.7% Space Heating 1.69 0.20 0.06 0.11 0.17 2.23 25.2% | 0.50 2.57 14.1% Space Cooling 0.04 0.51 0.54 6.1% | 1.52 1.56 8.6% Ventilation 0.54 0.54 6.1% | 1.62 1.62 8.9% Refrigeration 0.35 0.35 4.0% | 1.06 1.06 5.8% Electronics 0.32 0.32 3.6% | 0.95 0.95 5.2% Water Heating 0.48 0.03 0.03 0.09 0.63 7.1% | 0.27 0.81 4.5% Computers 0.19 0.19 2.1% | 0.57 0.57 3.1% Cooking 0.19 0.02 0.21 2.4% | 0.07 0.26 1.4% Other (5) 0.33 0.01 0.14 0.05 0.01 0.81 1.35 15.2% | 2.45 2.99 16.4% Adjust to SEDS (6) 0.68 0.19 0.63 1.50 16.9% | 1.90 2.77 15.2% Total 3.33 0.43 0.14 0.11 0.15 4.63 8.88 100% | 13.99 18.23 100% Note(s): Source(s): 1) Includes (0.35 quad) distillate fuel oil and (0.08 quad) residual fuel oil. 2) Kerosene (less than 0.01 quad) and coal (0.06 quad) are

74

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

6 6 2025 Commercial Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Natural Fuel Other Renw. Site Site Primary Primary Gas Oil (1) LPG Fuel(2) En.(3) Electric Total Percent Electric (4) Total Percent Lighting 1.08 1.08 11.3% | 3.27 3.27 16.3% Space Heating 1.68 0.18 0.06 0.11 0.16 2.20 23.1% | 0.49 2.53 12.6% Ventilation 0.60 0.60 6.2% | 1.80 1.80 9.0% Space Cooling 0.03 0.52 0.55 5.7% | 1.56 1.59 7.9% Electronics 0.40 0.40 4.2% | 1.22 1.22 6.1% Refrigeration 0.34 0.34 3.6% | 1.02 1.02 5.1% Water Heating 0.52 0.03 0.03 0.09 0.67 7.0% | 0.27 0.85 4.2% Computers 0.20 0.20 2.1% | 0.60 0.60 3.0% Cooking 0.21 0.02 0.23 2.4% | 0.07 0.27 1.4% Other (5) 0.48 0.01 0.15 0.05 0.01 1.12 1.82 19.1% | 3.39 4.09 20.3% Adjust to SEDS (6) 0.58 0.18 0.69 1.46 15.3% | 2.09 2.85 14.2% Total 3.50 0.41 0.15 0.12 0.15 5.23 9.56 100% | 15.77 20.10 100% Note(s): Source(s): 1) Includes (0.33 quad) distillate fuel oil and (0.08 quad) residual fuel oil. 2) Kerosene (less than 0.01 quad) and coal (0.06 quad) are

75

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

Commercial Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total) Electricity Growth Rate Natural Gas Petroleum (1) Coal Renewable(2) Sales Losses Total Total(3) 2010-Year 1980 2.63 24.9% 1.31 12.4% 0.12 1.1% 0.02 0.2% 1.91 4.58 6.49 61.4% 1981 2.54 23.9% 1.12 10.5% 0.14 1.3% 0.02 0.2% 2.03 4.76 6.80 64.1% 1982 2.64 24.3% 1.03 9.5% 0.16 1.4% 0.02 0.2% 2.08 4.91 6.99 64.5% 1983 2.48 22.7% 1.16 10.7% 0.16 1.5% 0.02 0.2% 2.12 4.98 7.09 65.0% 1984 2.57 22.5% 1.22 10.7% 0.17 1.5% 0.02 0.2% 2.26 5.17 7.43 65.1% 1985 2.47 21.6% 1.08 9.4% 0.14 1.2% 0.02 0.2% 2.35 5.39 7.74 67.6% 1986 2.35 20.3% 1.16 10.0% 0.14 1.2% 0.03 0.2% 2.44 5.47 7.91 68.3% 1987 2.47 20.8% 1.13 9.5% 0.13 1.1% 0.03 0.2% 2.54 5.62 8.16 68.5% 1988 2.72 21.6% 1.09 8.7% 0.13 1.0% 0.03 0.3% 2.68 5.92 8.60 68.4% 1989 2.77 21.0% 1.04 7.9% 0.12 0.9% 0.10 0.8% 2.77 6.39 9.16 69.5% 1990 2.67 20.1%

76

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

7 7 2035 Commercial Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Natural Fuel Other Renw. Site Site Primary Primary Gas Oil (1) LPG Fuel(2) En.(3) Electric Total Percent Electric (4) Total Percent Lighting 1.15 1.15 11.1% | 3.40 3.40 15.6% Space Heating 1.65 0.18 0.06 0.11 0.16 2.16 20.8% | 0.48 2.48 11.3% Ventilation 0.65 0.65 6.2% | 1.91 1.91 8.7% Space Cooling 0.03 0.54 0.57 5.5% | 1.59 1.62 7.4% Electronics 0.46 0.46 4.5% | 1.37 1.37 6.3% Refrigeration 0.36 0.36 3.4% | 1.05 1.05 4.8% Water Heating 0.54 0.03 0.04 0.09 0.70 6.8% | 0.25 0.87 4.0% Computers 0.22 0.22 2.1% | 0.64 0.64 2.9% Cooking 0.22 0.02 0.25 2.4% | 0.06 0.29 1.3% Other (5) 0.81 0.01 0.16 0.06 0.01 1.46 2.51 24.2% | 4.30 5.35 24.5% Adjust to SEDS (6) 0.40 0.18 0.77 1.36 13.1% | 2.28 2.86 13.1% Total 3.65 0.40 0.16 0.12 0.16 5.89 10.38 100% | 17.33 21.83 100% Note(s): Source(s): 1) Includes (0.32 quad) distillate fuel oil and (0.08 quad) residual fuel oil. 2) Kerosene (0.01 quad) and coal (0.06 quad) are assumed

77

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

4 4 2010 Commercial Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Natural Fuel Other Renw. Site Site Primary Primary Gas Oil (1) LPG Fuel(2) En.(3) Electric Total Percent Electric (4) Total Percent Lighting 1.19 1.19 13.6% | 3.69 3.69 20.2% Space Heating 1.65 0.22 0.06 0.11 0.28 2.33 26.6% | 0.88 2.93 16.0% Space Cooling 0.04 0.84 0.88 10.1% | 2.60 2.64 14.5% Ventilation 0.54 0.54 6.1% | 1.66 1.66 9.1% Refrigeration 0.39 0.39 4.5% | 1.21 1.21 6.6% Water Heating 0.44 0.03 0.03 0.09 0.58 6.7% | 0.28 0.78 4.3% Electronics 0.26 0.26 3.0% | 0.81 0.81 4.4% Computers 0.21 0.21 2.4% | 0.66 0.66 3.6% Cooking 0.18 0.02 0.20 2.3% | 0.07 0.25 1.4% Other (5) 0.30 0.01 0.14 0.05 0.01 0.69 1.20 13.7% | 2.13 2.64 14.5% Adjust to SEDS (6) 0.68 0.25 0.02 0.95 10.9% | 0.06 0.99 5.4% Total 3.29 0.52 0.14 0.12 0.14 4.54 8.74 100% | 14.05 18.26 100% Note(s): Source(s): 1) Includes (0.43 quad) distillate fuel oil and (0.08 quad) residual fuel oil. 2) Kerosene (0.01 quad) and coal (0.06 quad) are assumed

78

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

2 2 Commercial Site Renewable Energy Consumption (Quadrillion Btu) (1) Growth Rate Wood (2) Solar Thermal (3) Solar PV (3) GHP Total 2010-Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 0.110 0.035 0.010 N.A. 0.155 0.4% 0.110 0.035 0.009 N.A. 0.154 0.4% 0.110 0.035 0.009 N.A. 0.153 0.4% 0.110 0.034 0.009 N.A. 0.153 0.4% 0.110 0.034 0.009 N.A. 0.152 0.4% 0.110 0.034 0.008 N.A. 0.152 0.4% 0.110 0.034 0.008 N.A. 0.151 0.4% 0.110 0.033 0.008 N.A. 0.151 0.4% 0.110 0.033 0.008 N.A. 0.150 0.4% 0.110 0.033 0.007 N.A. 0.150 0.4% 0.110 0.032 0.007 N.A. 0.149 0.4% 0.110 0.032 0.007 N.A. 0.149 0.4% 0.110 0.032 0.007 N.A. 0.149 0.5% 0.110 0.032 0.007 N.A. 0.149 0.5% 0.110 0.032 0.007 N.A. 0.148 0.6%

79

Motorcycle Riding Simulator: How to Estimate Robustly the Rider's Action?  

E-Print Network (OSTI)

1 Motorcycle Riding Simulator: How to Estimate Robustly the Rider's Action? Lamri Nehaoua, Hichem Arioui and Said Mammar Abstract This paper deals with a motorcycle riding simulator and addresses two key. The reconstructed torque is used as the main control of the virtual motorcycle dynamic model, in order to actuate

Paris-Sud XI, Université de

80

COMMERCIALIZING  

NLE Websites -- All DOE Office Websites (Extended Search)

COMMERCIALIZING TECHNOLOGIES & CREATING JOBS Our location in the SS&TP plays a vital role in our ability to leverage the deep domain expertise of Sandia. Our proximity to the Labs...

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

SRC 7439-R3 Energy Edge Impact Evaluation Early Overview, Final Report. R. Diamond, J. Harris, M. Piette, O. deBuen, and B. Nordman. Lawrence Berkeley Lab. (1290). Commercial...

82

Integrated estimation of commercial sector end-use load shapes and energy use intensities in the PG&E service area  

SciTech Connect

This project represents a unique research effort to address the commercial sector end-use energy forecasting data needs of the Pacific Gas and Electric Company (PG&E) and the California Energy Commission (CEC). The object of the project was to develop an updated set of commercial sector end-use energy use intensity (EUI) data that has been fully reconciled with measured data. The research was conducted in two stages. First, we developed reconciled electricity end-use EUIs and load shapes for each of the 11 building types in the inland and coastal regions of the PG&E service territory using information collected in 1986. Second, we developed procedures to translate these results into a consistent set of commercial sector forecasting model inputs recognizing the separate modeling conventions used by PG&E and CEC. EUIs have been developed for: II commercial building types; up to 10 end uses; up to 3 fuel types; 2 and 5 subservice territory forecasting regions (as specified by the PG&E and CEC forecasting models, respectively); and up to 2 distinct vintages corresponding to the period prior to and immediately following the adoption of the first generation of California building and equipment standards. For the electricity end uses, 36 sets of daily load shapes have been developed representing average weekday, average weekend, and peak weekday electricity use for each month of the year by building type for both the inland and coastal climate zones.

Akbari, H.; Eto, J.; Konopacki, S.; Afzal, A.; Heinemeier, K.; Rainer, L.

1993-12-01T23:59:59.000Z

83

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

84

Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector  

SciTech Connect

DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

Not Available

1994-10-01T23:59:59.000Z

85

The Market and Technical Potential for Combined Heat and Power in the Commercial/Institutional Sector, January 2000  

Energy.gov (U.S. Department of Energy (DOE))

Report of an analysis to determine the potential for cogeneration or combined heat and power (CHP) in the commercial/institutional market.

86

For Motorcycle Riders Don't place yourself in danger of becoming a statistic  

E-Print Network (OSTI)

For Motorcycle Riders Risks Don't place yourself in danger of becoming a statistic by increasing · Makesureyouhaveasuitableseatfittedonyour motorcycle · Apassengerisyourresponsibility-makesurethey areaswellprotectedasyouare

Tobar, Michael

87

Development and formative evaluation of a motorcycle rider training intervention to address risk taking.  

E-Print Network (OSTI)

??The need to address on-road motorcycle safety in Australia is important due to the disproportionately high percentage of riders and pillions killed and injured each (more)

Rowden, Peter John

2012-01-01T23:59:59.000Z

88

FARKLE or Die: Edgework, Risk Control, and Impression Management among BMW Motorcycle Riders.  

E-Print Network (OSTI)

??This research explores intersections of identity and voluntary risk taking, or edgework, among BMW motorcycle riders. Drawing upon interviews, participant observation, and analytic autoethnographic methods (more)

Austin, Mathew L.

2010-01-01T23:59:59.000Z

89

Barriers to the increased utilization of coal combustion/desulfurization by-products by government & commercial sectors - update 1998,7/99,3268845  

NLE Websites -- All DOE Office Websites (Extended Search)

BARRIERS TO THE INCREASED UTILIZATION BARRIERS TO THE INCREASED UTILIZATION OF COAL COMBUSTION/DESULFURIZATION BY-PRODUCTS BY GOVERNMENT AND COMMERCIAL SECTORS - UPDATE 1998 EERC Topical Report DE-FC21-93MC-30097--79 Submitted by: Debra F. Pflughoeft-Hassett Everett A. Sondreal Edward N. Steadman Kurt E. Eylands Bruce A. Dockter Energy & Environmental Research Center PO Box 9018 Grand Forks, ND 58202-9018 99-EERC-07-08 July 1999 i TABLE OF CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF ACRONYMS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii TERMINOLOGY AND DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .

90

Commercial Marketing Toolkit  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial-Marketing-Toolkit Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors Technology...

91

Status of the space-cooling-equipment market in the commercial sector. Topical report, November 1985-March 1986  

SciTech Connect

The report covers the cooling equipment market for commercial applications as characterized by a data base on shipments (with adjustment for U.S. exports and foreign imports), highlighting activities in the absorption chiller market, and predicting scenarios for future equipment shipments. An analysis of unitary air-conditioning equipment and commercial liquid chillers was performed to determine the population of domesticaly shipped equipment by type and capacity. A review of absorption liquid chiller marketing was performed to identify marketing techniques used to enhance absorption liquid chiller sales and to determine decision-making criteria used to evaluate replacement of existing equipment with absorption liquid chillers. Finally, cooling-market projections were made to forecast the future sales trends of commercial air-conditioning equipment.

Harris, L.; Katsenelenbogen, S.; Bernstein, H.; Bluestein, J.

1986-04-01T23:59:59.000Z

92

Encyclopedia of Energy, Volume 1, pp 605616. Elsevier. 2004. Author nonexclusive, royalty-free copyright 1 Commercial Sector and  

E-Print Network (OSTI)

of Commercial Energy Use 3. Measuring Energy Performance 4. Performance Rating Systems 5. Energy Efficiency used from all sources in a year. British thermal unit (Btu) Generically, the amount of energy or heatEncyclopedia of Energy, Volume 1, pp 605­616. Elsevier. 2004. Author nonexclusive, royalty

Oak Ridge National Laboratory

93

Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning  

E-Print Network (OSTI)

the US EIA Commercial Buildings Energy Consumption Survey (2: US commercial building stock energy consumption and floorof time varying energy consumption in the US commercial

Coffey, Brian

2010-01-01T23:59:59.000Z

94

Cracked skulls and social liability : relating helmet safety messages to motorcycle riders.  

E-Print Network (OSTI)

??Indiana University-Purdue University Indianapolis (IUPUI) Grounded theory analysis, informed by a socio-cultural lens, was applied to the narratives of eighteen motorcycle riders in order to (more)

Voight, Susan Amy

2014-01-01T23:59:59.000Z

95

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

96

Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning  

E-Print Network (OSTI)

Potential for Achieving Net Zero-Energy Buildings in thea commitment to delivering net-zero energy new (and in someplan calls for net-zero energy commercial buildings by

Coffey, Brian

2010-01-01T23:59:59.000Z

97

Best Management Practice #11: Commercial Kitchen Equipment  

Energy.gov (U.S. Department of Energy (DOE))

Commercial kitchen equipment represents a large set of water users in the non-residential sector. Water efficiency for commercial kitchen equipment is especially important because high volume...

98

Louisville Private Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Private Sector Attendees Private Sector Attendees ENERGY STAR Kick-off Meeting December 2007 5/3rd Bank Al J Schneider Company (The Galt House East) Baptist Hospital East Brown - Forman Building Owner and Managers Association (BOMA) Louisville CB Richard Ellis Commercial Real Estate Women (CREW) Louisville Cushman Wakefield General Electric Company Golden Foods Greater Louisville Chapter of International Facility Management Association (IFMA) Hines Humana, Inc Institute of Real Estate Management (IREM) Kentucky Chapter Jewish Hospital & St Mary's Healthcare Kentucky Chapter, Certified Commercial Investment Managers (CCIM) Kentucky Governor's Office of Energy Policy Kentucky Society of Health Care Engineers Kindred Health Care Louisville Air Pollution Control Board

99

Commercialization | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercialization Commercialization Commercialization See an example of these steps in the commercialization process of Nickel Metal Hydride Batteries. See an example of these steps in the commercialization process of Nickel Metal Hydride Batteries. Commercialization is the process by which technologies and innovations developed in the lab make their way to market. By licensing patents or using Energy Department facilities, researchers from the private sector and academia are able to take advantage of federal investments into basic science research, while researchers are able to ensure that their discoveries have a life beyond the lab. The Energy Department also helps entrepreneurs, small business owners and

100

Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning  

SciTech Connect

This paper describes the origin, structure and continuing development of a model of time varying energy consumption in the US commercial building stock. The model is based on a flexible structure that disaggregates the stock into various categories (e.g. by building type, climate, vintage and life-cycle stage) and assigns attributes to each of these (e.g. floor area and energy use intensity by fuel type and end use), based on historical data and user-defined scenarios for future projections. In addition to supporting the interactive exploration of building stock dynamics, the model has been used to study the likely outcomes of specific policy and innovation scenarios targeting very low future energy consumption in the building stock. Model use has highlighted the scale of the challenge of meeting targets stated by various government and professional bodies, and the importance of considering both new construction and existing buildings.

Coffey, Brian; Borgeson, Sam; Selkowitz, Stephen; Apte, Josh; Mathew, Paul; Haves, Philip

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

sector | OpenEI  

Open Energy Info (EERE)

sector sector Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 5, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption sector South Atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - South Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

102

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications A Reminder for Sector 7 PIs and Users: Please report your new publications to the Sector Manager and the CAT Director. The APS requires PIs to submit new publications to its Publication Database, a link which can be found on the Publication section of the APS web site. Publication information for work done at 7ID Proper acknowledgement sentences to include in papers. Sector 7 Call for APS User Activity Reports. APS User Activity Reports by MHATT-CATers. Recent articles Recent theses Sector 7 Reports Sector 7 Recent research highlights (New) Design documents in ICMS on Sector 7 construction and operation Sector 7 related ICMS documents Library Resources available on the WWW The ANL Library system ANL electronic journal list AIM Find it! Citation Ranking by ISI (see Journal citation report)

103

Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential  

SciTech Connect

The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

NONE

1995-04-01T23:59:59.000Z

104

EIA - Assumptions to the Annual Energy Outlook 2008 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2008 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

105

EIA - Assumptions to the Annual Energy Outlook 2009 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

106

EIA - Assumptions to the Annual Energy Outlook 2010 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services [1].

107

1999 Commercial Buildings Characteristics--Trends in Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Trends in Commercial Buildings and Floorspace Trends in Commercial Buildings and Floorspace Trends in Commercial Buildings and Floorspace The addition of commercial buildings and floorspace from 1995 to 1999 continued the general trends noted since 1979 (Figures 1 and 2). The size of the commercial buildings has grown steadily over the twenty years of CBECS. Each year more buildings are added to the sector (new construction or conversion of pre-existing buildings to commercial activity) than are removed (demolition or conversion to non-commercial activity). The definition for the commercial buildings population was changed for the 1995 CBECS which resulted in a slightly smaller buildings population and accounts for the data break in both Figures 1 and 2 (see report "Trends in the Commercial Buildings Sector" for complete details). Figure 1. Total Commercial Buildings, 1979 to 1999

108

Commercial Buildings Consortium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings Consortium Commercial Buildings Consortium Sandy Fazeli National Association of State Energy Officials sfazeli@naseo.org; 703-299-8800 ext. 17 April 2, 2013 Supporting Consortium for the U.S. Department of Energy Net-Zero Energy Commercial Buildings Initiative 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Many energy savings opportunities in commercial buildings remain untapped, underserved by the conventional "invest-design-build- operate" approach * The commercial buildings sector is siloed, with limited coordination

109

Understanding the Link Between Bicyclists and Light Rail Survey Results from Bicycle Riders on MAX in Portland, Oregon  

E-Print Network (OSTI)

Understanding the Link Between Bicyclists and Light Rail Survey Results from Bicycle Riders on MAX Introduction 1 Portland Bicycle Master Plan, Section V 2 History of Bicycles on MAX 3 Benefits of the Bicycle is a bicycle friendly city. In 1995 and 1998, Bicycling Magazine named Portland the best city for bicycling

Bertini, Robert L.

110

Data:9eca9211-d0bc-4e92-a907-9e72608b6476 | Open Energy Information  

Open Energy Info (EERE)

Commonwealth Edison Co Effective date: 20131223 End date if known: Rate name: DSPP- Watt - Hour Delivery Class Sector: Commercial Description: This rate is subject to RIDER ECA...

111

Idaho Power - Commercial Custom Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Power - Commercial Custom Efficiency Program Idaho Power - Commercial Custom Efficiency Program Idaho Power - Commercial Custom Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source Conservation Program Funding Charge Energy Efficiency Riders State Oregon Program Type Utility Rebate Program Rebate Amount 0.12/kWh saved or 70% of project cost, whichever is less. Provider Idaho Power Company Large commercial and industrial Idaho Power customers that reduce energy usage through more efficient electrical commercial and industrial processes may qualify for an incentive that is the lesser of either 12 cents per

112

Assumptions to the Annual Energy Outlook 1999 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

commercial.gif (5196 bytes) commercial.gif (5196 bytes) The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings, however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

113

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Sector 7 : Time Resolved Research Group Sector 7 is operated by the Time Resolved Research Group, which is part of the X-ray Science Division (XSD) of the Advanced Photon Source. Our research focus is the study of Ultrafast fs-laser excitation of matter, using x-ray scattering and spectroscopy techniques. The sector developped two hard x-ray beamlines (7ID and 7BM) focused on time-resolved science. The 7BM beamline has been dedicated for time-resolved radiography of fuel sprays. Sector 7 Links: What's New Beamlines Overview User information: Getting Beamtime Current Research Programs Links to our partners, and collaborators (New) Publications Contact information Operational data (w/ current 7ID schedule) ES&H information (ESAF, EOR, TMS training, User Training)

114

Commercialization of clean coal technologies  

SciTech Connect

The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

1994-12-31T23:59:59.000Z

115

Trends in Commercial Buildings--Introduction  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Commercial > Commercial Buildings Home > Special Home > Commercial > Commercial Buildings Home > Special Reports > Trends in Commercial Buildings Trends: Buildings and Floorspace Energy Consumption and Energy Sources Overview: The Commercial Buildings Energy Consumption Survey (CBECS) Trends in the Commercial Buildings Sector Since 1978, the Energy Information Administration has collected basic statistical information from three of the major end-use sectors— residential, and industrial— periodic energy consumption surveys. Each survey is a snapshot of how energy is used in the year of the survey; the series of surveys in each sector reveals the trends in energy use for the sector. Introduction The Commercial Buildings Energy Consumption Survey (CBECS) collects data from a sample of buildings representative of the commercial buildings

116

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

E-Print Network (OSTI)

energy efficiency requirements. In this work, we estimate the CO 2 abatement potential in the California commercial sector and report

Stadler, Michael

2010-01-01T23:59:59.000Z

117

Sector X  

NLE Websites -- All DOE Office Websites (Extended Search)

X X If there is an emergency at ETTP requiring evacuation, Sector X reports to the shelter at: Oak Ridge High School 127 Providence Road Oak Ridge, TN 37830 Take most direct route to northbound Bethel Valley Road toward Oak Ridge. Turn left onto Illinois Avenue (Highway 62). Turn right onto Oak Ridge Turnpike and turn left to Oak Ridge High School. If there is an emergency at ORNL requiring evacuation, Sector X reports to the shelter at: Karns High School 2710 Byington Solway Road Knoxville, TN 37931 Take most direct route to northbound Bethel Valley Road toward Knoxville. Then take a left at Highway 62 (Oak Ridge Highway) eastbound to Knoxville. Take a right onto State Route 131 (Byington Beaver Ridge) to Karns High School. If there is an emergency at Y-12 requiring evacuation, Sector X reports to the shelter at:

118

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Link to Sector 7 Users and Collaborators Link to Sector 7 Users and Collaborators This is an incomplete list of Partners from Universities and National Labs who use the facilities at Sector 7. If you wish to add a link to your institutional page, do no hesitate to contact Eric Dufresne at the APS. The APS XSD Atomic, Molecular and Optical Physics group Center for Molecular Movies at Copenhagen University Roy Clarke Group at the University of Michigan Rob Crowell Group at BNL Chris Elles's group at Kansas University Argonne's Transportation Technology R&D Center Fuel Injection and Spray Research Group Paul Evans's group web page at the University of Wisconsin Alexei Grigoriev's group at Univ. of Tulsa Eric Landahl's web page at DePaul University The SLAC Pulse Institute Ultrafast Materials Science group (D. Reis and A. Lindenberg)

119

Help us to manage Welsh Assembly Government Woodlands Feedback form for horse riders/carriage drivers to report problems on designated routes,  

E-Print Network (OSTI)

Help us to manage Welsh Assembly Government Woodlands Feedback form for horse riders@forestry.gsi.gov.uk or phone 0845 604 0845 Thank you for your help #12;

120

The Commercial Energy Consumer: About Whom Are We Speaking?  

SciTech Connect

Who are commercial sector customers, and how do they make decisions about energy consumption and energy efficiency investment? The energy policy field has not done a thorough job of describing energy consumption in the commercial sector. First, the discussion of the commercial sector itself is dominated by discussion of large businesses/buildings. Second, discussion of this portion of the commercial sectors consumption behavior is driven primarily by theory, with very little field data collected on the way commercial sector decision-makers describe their own options, choices, and reasons for taking action. These limitations artificially constrain energy policy options. This paper reviews the extant literature on commercial sector energy consumption behavior and identifies gaps in our knowledge. In particular, it argues that the primary energy policy model of commercial sector energy consumption is a top-down model that uses macro-level investment data to make conclusions about commercial behavior. Missing from the discussion is a model of consumption behavior that builds up to a theoretical framework informed by the micro-level data provided by commercial decision-makers themselves. Such a bottom-up model could enhance the effectiveness of commercial sector energy policy. In particular, translation of some behavioral models from the residential sector to the commercial sector may offer new opportunities for policies to change commercial energy consumption behavior. Utility bill consumption feedback is considered as one example of a policy option that may be applicable to both the residential and small commercial sector.

Payne, Christopher

2006-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Covered Product Category: Commercial Griddles | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

commercial kitchen equipment. In the Federal sector, these products are typically used in food service operations like cafeterias in GSA buildings, kitchens in penitentiaries, and...

122

Commercial Buildings Partnerships | Department of Energy  

Energy Savers (EERE)

cover key market sectors: retail, food service, commercial real estate, hospitality, health care, higher education, and state and local building owners and managers. Learn...

123

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

: News : News Sector 7 calendar of events. APS News APS Monthly meeting slides What's new at the APS Sector 7? 2013 news 2012 news 2011 news 2010 news 2009 news 2008 news 2007 news 2006 news 2005 news 2004 news 2003 news 2002 news 2001 news 2013 News from APS Sector 7 May 2013: Ruben Reininger et al. recently published an article on the optical design of the SPX Imaging and Microscopy beamline (SPXIM). The details can be found on the RSI web site here. A new web page is now available to guide 7-BM users. See the official 7-BM web page for more details. 2012 News from APS Sector 7 August 2012: Jin Wang gave a talk on August 29, 2012 entitled "The APS 7-BM is Open for Business, Officially!" at the August APS Monthly Operation Meeting. On August 1, Alan Kastengren joined the X-ray Science Division to operate the 7-BM beamline. Alan has been involved in the construction

124

Assumptions to the Annual Energy Outlook 2001 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

125

Assumptions to the Annual Energy Outlook 2002 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

126

Commercial | Open Energy Information  

Open Energy Info (EERE)

Commercial Commercial Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends The AEO2011 Reference case shows minimal change in commercial energy use per capita between 2009 and 2035 (Figure 62). While growth in commercial floorspace (1.2 percent per year) is faster than growth in population (0.9 percent per year), energy use per capita remains relatively steady due to efficiency improvements in equipment and building shells. Efficiency standards and the addition of more efficient technologies account for a large share of the improvement in the efficiency of end-use services, notably in space cooling, refrigeration, and lighting.[1] Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6

127

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Programs Research Programs Sector 7's research program exploits the brilliance of the APS undulator radiation to perform material research studies with high spatial and temporal resolution. Microbeam studies are made using x-ray beam sizes on the submicron-scale, and time-resolved diffraction measurements are carried out with picosecond resolution. Sector 7's undulator line has experimental enclosures dedicated to both time-resolved and microbeam research. In one of these enclosures (7ID-D), a femtosecond laser facility is set up for ultrafast diffraction and spectroscopy studies in a pump-probe geometry. The 7ID-B hutch is a white beam capable station used for time-resolved phase-contrast imaging and beamline optics development. A third enclosure (7ID-C) is instrumented for high-resolution diffraction studies with a Huber 6-circle diffractometer. The instrument is ideal for thin-film and interface studies, including the recently developed Coherent Bragg Rod Analysis (COBRA) technique. The fs-laser has recently been delivered to 7ID-C so time-resolved laser pump-x-ray probe can be performed in 7ID-C since March 2007. An x-ray streak camera is also being commissioned in 7ID-C. 7ID-C is equipped for microdiffraction studies with a small Huber 4-cicle diffractometer used with zone-plate optics.

128

EIA-Assumptions to the Annual Energy Outlook - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2007 Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

129

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

User Information & Getting Beamtime User Information & Getting Beamtime There are three ways to request beamtime to perform an experiment on APS-7ID. One can request beam time as an APS General User, as an APS Partner User, or one can contact a staff member of Sector 7 to work collaboratively with them using a small amount of staff time to gather preliminary data. 80% of the available beamtime on 7ID is given to General and Partner Users, while 20% is reserved for staff use. Beam time is allocated and announced by email shortly before the start of an experimental run. In October 2002, beamline 7ID welcomed its first APS General Users (GU). To gain access to 7ID, General or Partner Users are required to submit a proposal to the APS GU Website by the specified deadline. Sucessful proposals will be scheduled for the next cycle following the proposal deadline. There are three proposal cycles per year with deadlines about two months before the start of a run. The deadlines and General User forms are available on the web through the APS General User Web site. Specific instructions for new General Users are available on the site. These instructions can be helpful also for new APS Users in general.

130

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview and History Overview and History Sector 7 consists of two APS beamlines: 7-ID: an insertion device beamline based on an APS Type-A Undulator 7-BM: a bend magnet beam line for time-resolved radiography (currently being commissioned) Overview of 7-ID 7-ID comprises four large experimental enclosures designated A, B, C, and D. In 2004, a laser enclosure was also added (7ID-E). Enclosure 7-ID-A is the first optics enclosure and houses a polished Be window, an empty x-ray filter unit, a pair of white beam slits, a water-cooled double crystal diamond monochromator (Kohzu HLD4), and a P4 mode shutter. The beamline vertical offset is 35 mm. Enclosure 7-ID-B is a white-, or monochromatic-beam experimental enclosure. It is equipped with two precision motorized table for alignment and positioning of experimental equipment. This station is used for white-beam imaging or microdiffraction experiments.

131

Updated Buildings Sector Appliance and Equipment Costs and Efficiency  

U.S. Energy Information Administration (EIA) Indexed Site

Full report (4.1 mb) Full report (4.1 mb) Heating, cooling, & water heating equipment Appendix A - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.9 mb) Appendix B - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1.3 mb) Lighting and commercial ventilation & refrigeration equipment Appendix C - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.1 mb) Appendix D - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1.1 mb) Updated Buildings Sector Appliance and Equipment Costs and Efficiency Release date: August 7, 2013 Energy used in the residential and commercial sectors provides a wide range

132

Trends in Commercial Buildings--Overview  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Trends in Commercial Buildings > Commercial Home > Trends in Commercial Buildings > Commercial Buildings Energy Consumption Survey Survey Methodology Sampling Error, Standard Errors, and Relative Standard Errors The Commercial Buildings Energy Consumption Survey The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of buildings that would not be considered “commercial” in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Excluded from the sector are the goods-producing industries: manufacturing, agriculture, mining, forestry and fisheries, and construction.

133

Overview of Commercial Buildings, 2003 - Trends  

U.S. Energy Information Administration (EIA) Indexed Site

Trends in Commercial Buildings Sector-1979 to 2003 Trends in Commercial Buildings Sector-1979 to 2003 Since the first CBECS in 1979, the commercial buildings sector has increased in size. From 1979 to 2003: The number of commercial buildings increased from 3.8 million to 4.9 million (Figure 3). The amount of commercial floorspace increased from 51 billion to 72 billion square feet (Figure 4). Total energy consumed increased from less than 5,900 trillion to more than 6,500 trillion Btu (Figure 5). Electricity and natural gas consumption, nearly equal in 1979, diverged; electricity increased to more than 3,500 trillion Btu by 2003 while natural gas declined to 2,100 trillion Btu. Figure 3. The number of commercial buildings increased from 1979 to 2003. Figure 3. The number of commercial buildings increased from 1979 to 2003.

134

Energy End-Use Flow Maps for the Buildings Sector  

SciTech Connect

Graphical presentations of energy flows are widely used within the industrial sector to depict energy production and use. PNNL developed two energy flow maps, one each for the residential and commercial buildings sectors, in response to a need for a clear, concise, graphical depiction of the flows of energy from source to end-use in the building sector.

Belzer, David B.

2006-12-04T23:59:59.000Z

135

Comments About The Impact of Federal Technology Transfer on the Commercialization Process  

Science Journals Connector (OSTI)

Much has been said about technology transfer and little about technology commercialization. My comments will focus on the commercialization of public sector technology by industry.

James P. Wilhelm

1994-01-01T23:59:59.000Z

136

Flathead Electric Cooperative - Commercial Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Flathead Electric Cooperative - Commercial Lighting Rebate Program Flathead Electric Cooperative - Commercial Lighting Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Appliances & Electronics Commercial Lighting Lighting Heating & Cooling Commercial Heating & Cooling Maximum Rebate 70% of project cost Program Info State Montana Program Type Utility Rebate Program Rebate Amount Retrofit Lighting: $3 - $400 per unit New Construction Lighting: $10 - $50 per unit Provider Flathead Electric Cooperative Flathead Electric Cooperative, in conjunction with Bonneville Power Administration, encourages energy efficiency in the commercial sector by providing a commercial lighting retro-fit rebate program and a new

137

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

E-Print Network (OSTI)

the total primary energy consumption in 2000. Furthermore,The Commercial Primary Energy Consumption by Sector GDP

Zhou, Nan

2008-01-01T23:59:59.000Z

138

The Commercial Energy Consumer: About Whom Are We Speaking? Christopher Payne, Lawrence Berkeley National Laboratory  

E-Print Network (OSTI)

. In particular, it argues that the primary energy policy model of commercial sector energy consumption is a top energy consumption and energy efficiency investment? The energy policy field has not done a thorough job of describing energy consumption in the commercial sector. First, the discussion of the commercial sector itself

139

Commercial Building Energy Asset Score - 2014 BTO Peer Review...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Pacific Northwest National Laboratory One of the primary market barriers to enhancing energy efficiency in the commercial building sector is that building owners and investors...

140

Public Sector New Construction and Retrofit Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Sector New Construction and Retrofit Program Public Sector New Construction and Retrofit Program Public Sector New Construction and Retrofit Program < Back Eligibility Fed. Government Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Appliances & Electronics Ventilation Heat Pumps Commercial Lighting Lighting Manufacturing Insulation Water Heating Windows, Doors, & Skylights Maximum Rebate Bonus maximum: $100,000 All incentives: $2.50/sq. ft. (base plus bonus), $300,000, 75% of project costs, and 100% of incremental costs Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) surcharge for Ameren,

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy Efficiency Financing for Public Sector Projects (California) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Financing for Public Sector Projects (California) Energy Efficiency Financing for Public Sector Projects (California) Energy Efficiency Financing for Public Sector Projects (California) < Back Eligibility Institutional Local Government Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Buying & Making Electricity Energy Sources Solar Wind Maximum Rebate $3 million Program Info State California Program Type State Loan Program Provider California Energy Commission Cities, counties, public care institutions, public hospitals, public schools and colleges, and special districts in California can apply for low-interest loans from the California Energy Commission for energy

142

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of NH","Investor-Owned",4600990,3030181,1391043,179766,0...

143

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado" ,"Entity","Type of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of Colorado","Investor-Owned",28786033,9192981,12...

144

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-Owned",18912606,3579076,8038708,7294822,0...

145

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Entergy Arkansas Inc","Investor-Owned",21086842,7858971,6302526,6925231,114 2,"Southwestern...

146

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Entergy Mississippi Inc","Investor-Owned",13272532,5550307,5322525,2399700,0 2,"Mississippi...

147

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-Owned",2477751,835602,896610,745539,0 2,"Central...

148

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut" ,"Entity","Type of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Connecticut Light & Power Co","Investor-Owned",7162779,5456175,1...

149

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico" ,"Entity","Type of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of NM","Investor-Owned",9396214,3323544,4301354,177...

150

Overview of Commercial Buildings, 2003 - Major Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Major Characteristics of All Commercial Buildings in 2003 Major Characteristics of All Commercial Buildings in 2003 CBECS data are used to answer basic questions about the commercial buildings sector, such as: What types are there? How large are they? How old are they? and Where are they? Results from the 2003 CBECS show that: The commercial buildings sector is not dominated by a single building type. Office buildings, the most common type of commercial building, account for 17 percent of buildings, floorspace, and energy consumed. Commercial buildings range widely in size and smaller buildings are much more numerous than larger buildings. The smallest buildings (1,001 to 5,000 square feet) account for 53 percent of buildings, but consume only 11 percent of total energy. The largest buildings (those larger than 500,000 square feet)

151

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Commercial sector energy demand Commercial sector energy demand For commercial buildings, pace of decline in energy intensity depends on technology figure data Average delivered energy consumption per square foot of commercial floorspace declines at an annual rate of 0.4 percent from 2011 to 2040 in the AEO2013 Reference case (Figure 59), while commercial floorspace grows by 1.0 percent per year. Natural gas consumption increases at about one-half the rate of delivered electricity consumption, which grows by 0.8 percent per year in the Reference case. With ongoing improvements in equipment efficiency and building shells, the growth of energy consumption declines more rapidly than commercial floorspace increases, and the average energy intensity of commercial buildings is reduced. Three alternative technology cases show the effects of efficiency

152

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Commercial sector energy demand Commercial sector energy demand For commercial buildings, pace of decline in energy intensity depends on technology figure data Average delivered energy consumption per square foot of commercial floorspace declines at an annual rate of 0.4 percent from 2011 to 2040 in the AEO2013 Reference case (Figure 59), while commercial floorspace grows by 1.0 percent per year. Natural gas consumption increases at about one-half the rate of delivered electricity consumption, which grows by 0.8 percent per year in the Reference case. With ongoing improvements in equipment efficiency and building shells, the growth of energy consumption declines more rapidly than commercial floorspace increases, and the average energy intensity of commercial buildings is reduced. Three alternative technology cases show the effects of efficiency

153

Commercial Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Performance Commercial Performance Objectives: To review the market potential for improvements in commercial building glazings, quantify the energy savings potentials, explore potential design solutions, and develop guidelines and tools for building designers so that systems are specified and used in an optimal manner. A special emphasis is placed on the daylighting performance of glazings in commercial buildings since lighting is the single largest energy end use and daylighting can improve both visual performance and the quality of the indoor space as well as saving energy. Technical Approach: This project has two major complementary elements. The first is the exploration and assessment of glazing performance in commercial buildings leading to development of design strategies that reduce unnecessary energy use. The final step is creating design guides and tools that make this design knowledge accessible to practitioners, typically carried out in partnership with others. Although the emphasis is energy impacts, e.g. annual energy use, the performance issues addressed in the guides and tools include all that impact the final glazing selection process, e.g. appearance, glare. The second element is an exploration of daylighting strategies for commercial buildings since lighting energy use is the major energy end use in most buildings. This work develops and evaluates new daylighting devices and designs, assesses performance in commercial buildings, and demonstrates system performance using test cells, test rooms and case study buildings. All energy-related aspects of the design solutions, as well as other critical performance issues, are addressed in this work. Results of this work are integrated into the guides and tools described above. Much of this work has been co-supported by utilities and has been carried on in conjunction with participants in an International Energy Agency Daylighting Task.

154

Public Sector Electric Efficiency Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Sector Electric Efficiency Programs Public Sector Electric Efficiency Programs Public Sector Electric Efficiency Programs < Back Eligibility Fed. Government Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate $300,000 per location Total incentive may not exceed 75% of project cost (equipment + labor) or 100% of incremental measure cost Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) surcharge for ComEd, Ameren subsidiary customers Start Date 06/01/2008 State Illinois Program Type State Rebate Program Rebate Amount Standard Incentive Program: Varies by technology

155

Sector 1 welcome  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome to Sector 1 of the Advanced Photon Source (APS) located at Argonne Welcome to Sector 1 of the Advanced Photon Source (APS) located at Argonne National Laboratory (ANL). The Sector 1 beamlines are operated by the Materials Physics & Engineering Group (MPE) of the APS X-ray Science Division (XSD). Sector 1 consists of the 1-ID and 1-BM beamlines, and 80% of the available beamtime is accessible to outside users through the General User program. The main programs pursued at Sector 1 are described below. 1-ID is dedicated to providing and using brilliant, high-energy x-ray beams (50-150 keV) for the following activities: Coupled high-energy small- and wide-angle scattering (HE-SAXS/WAXS) High-energy diffraction microscopy (HEDM) Sector 1 General Layout Stress/strain/texture studies Pair-distribution function (PDF) measurements

156

Buildings Sector Working Group  

Annual Energy Outlook 2012 (EIA)

heating, cooking, lighting, and refrigeration * Hurdle rates - Update using latest Johnson Controls reports regarding commercial investment decisions * ENERGY STAR buildings -...

157

Alliance for Chinese Electric Vehicle Development and Commercialization |  

Open Energy Info (EERE)

Development and Commercialization Development and Commercialization Jump to: navigation, search Name Alliance for Chinese Electric Vehicle Development and Commercialization Place China Sector Vehicles Product China-based alliance announced in January 2010 for speeding up the commercialization and achieving mass adoption of Pure Electronic Vehicles (Pure EVs) in China. References Alliance for Chinese Electric Vehicle Development and Commercialization[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alliance for Chinese Electric Vehicle Development and Commercialization is a company located in China . References ↑ "Alliance for Chinese Electric Vehicle Development and Commercialization"

158

Commercial Norms, Commercial Codes, and International Commercial Arbitration  

E-Print Network (OSTI)

The article defends the incorporation of commercial norms into commercial codes, through provisions such as statute 1-205 of the Uniform Commercial Code. It finds significant reliance on trade usages in international ...

Drahozal, Christopher R.

2000-01-01T23:59:59.000Z

159

Miscellaneous Electricity Services in the Buildings Sector (released in AEO2007)  

Reports and Publications (EIA)

Residential and commercial electricity consumption for miscellaneous services has grown significantly in recent years and currently accounts for more electricity use than any single major end-use service in either sector (including space heating, space cooling, water heating, and lighting). In the residential sector, a proliferation of consumer electronics and information technology equipment has driven much of the growth. In the commercial sector, telecommunications and network equipment and new advances in medical imaging have contributed to recent growth in miscellaneous electricity use.

2007-01-01T23:59:59.000Z

160

Public Sector Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Capitol dome Capitol dome Public Sector Energy Efficiency Research on sustainable federal operations supports the implementation of sustainable policies and practices in the public sector. This work serves as a bridge between the technology development of Department of Energy's National Laboratories and the operational needs of public sector. Research activities involve many aspects of integrating sustainability into buildings and government practices, including technical assistance for sustainable building design, operations, and maintenance; project financing for sustainable facilities; institutional change in support of sustainability policy goals; and procurement of sustainable products. All of those activities are supported by our work on program and project evaluation, which analyzes overall program effectiveness while ensuring

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Table A5. Commercial sector indicators and consumption  

Gasoline and Diesel Fuel Update (EIA)

based on: U.S. Energy Information Administration (EIA), Monthly Energy Review, DOEEIA-0035(201309) (Washington, DC, September 2013). 2011 and 2012 degree days based on...

162

Commercial Building Asset Rating Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 eere.energy.gov 1 eere.energy.gov Commercial Building Asset Rating Program August 23, 2011 12 p.m. ET, 9 a.m. PT Presenter: Cody Taylor PRE-DECISIONAL Information included in this document is for discussion purposes and does not constitute the final program design. FOR INFORMATION ONLY 2 eere.energy.gov Outline * Goals * Scope & schedule * Guiding principles * Program design issues - Metrics - Rating method - Rating scale - Opportunities for efficiency improvement - Quality assurance Please submit clarifying questions during today's webinar via the Q&A function of Live Meeting. 3 eere.energy.gov National Building Rating Program Goals * Facilitate cost-effective investment in energy efficiency and reduce energy use in the commercial building sector * Establish a national standard for voluntary commercial building asset rating

163

Sector 6 Research Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

MM-Group Home MM-Group Home MMG Advisory Committees Beamlines 4-ID-C Soft Spectroscopy 4-ID-D Hard Spectroscopy 6-ID-B,C Mag. Scattering 6-ID-D HighE Scattering 29-ID IEX - ARPES,RSXS Getting Beamtime Sector Orientation Sector 4 Orientation Sector 6 Orientation Publications (4-ID) Publications (6-ID) Contact Us APS Ring Status Current APS Schedule Highlights of research on Sector 6 Teasing Out the Nature of Structural Instabilities in Ceramic Compounds Teasing Out the Nature of Structural Instabilities in Ceramic Compounds March 12, 2013 Researchers have used beamlines 6-ID-B at the APS and XmAS at the ESRF to probe the structure of the rare-earth magnetic material europium titanate. In a magnetic field, the optical properties of this system change quite dramatically, presenting hope of a strong magneto-electric material for potential use in new memory, processing, and sensor devices.

164

Improving the Energy Efficiency of Commercial Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings Commercial Buildings Improving the Energy Efficiency of Commercial Buildings Engaging Industry Leaders to Deploy Energy Saving Tools, Technologies and Best Practices Learn More Engaging Industry Leaders to Deploy Energy Saving Tools, Technologies and Best Practices Learn More The Building Technologies Office (BTO) works with the commercial building industry to accelerate the uptake of energy efficiency technologies and techniques in both existing and new commercial buildings. By developing, demonstrating, and deploying cost-effective solutions, BTO strives to reduce energy consumption across the commercial building sector by at least 1,600 TBtu. Key Tools and Resources Use the guides, case studies, and other tools developed by the DOE

165

List of Commercial Refrigeration Equipment Incentives | Open Energy  

Open Energy Info (EERE)

Refrigeration Equipment Incentives Refrigeration Equipment Incentives Jump to: navigation, search The following contains the list of 103 Commercial Refrigeration Equipment Incentives. CSV (rows 1 - 103) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) Utility Rebate Program West Virginia Commercial Industrial Central Air conditioners Chillers Custom/Others pending approval Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Programmable Thermostats Commercial Refrigeration Equipment Ground Source Heat Pumps Yes AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Industrial Local Government Municipal Utility

166

Commercialization of sustainable energy technologies  

Science Journals Connector (OSTI)

Commercialization efforts to diffuse sustainable energy technologies (SETs11The \\{SETs\\} can be viewed as a portfolio of technologies, which are expected to use renewable energy resources as input to produce modern energy carriers. ) have so far remained as the biggest challenge in the field of renewable energy and energy efficiency. Limited success of diffusion through government driven pathways urges the need for market based approaches. This paper reviews the existing state of commercialization of \\{SETs\\} in the backdrop of the basic theory of technology diffusion. The different \\{SETs\\} in India are positioned in the technology diffusion map to reflect their slow state of commercialization. The dynamics of SET market is analysed to identify the issues, barriers and stakeholders in the process of SET commercialization. By upgrading the potential adopters to techno-entrepreneurs, the study presents the mechanisms for adopting a private sector driven business model approach for successful diffusion of SETs. This is expected to integrate the processes of market transformation and entrepreneurship development with innovative regulatory, marketing, financing, incentive and delivery mechanisms leading to SET commercialization.

P. Balachandra; Hippu Salk Kristle Nathan; B. Sudhakara Reddy

2010-01-01T23:59:59.000Z

167

City of San Jose - Private Sector Green Building Policy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jose - Private Sector Green Building Policy Jose - Private Sector Green Building Policy City of San Jose - Private Sector Green Building Policy < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Building Energy Code Provider City of San Jose In October 2008, the City of San Jose enacted the Private Sector Green Building Policy (Policy No. 6-32). The policy was adopted in Ordinance No. 28622 in June, 2009. All new buildings must meet certain green building requirements in order to receive a building permit. Requirements are dependent on the size and type of the project. * Tier 1 Commercial Projects include commercial industrial projects

168

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Commercial Sector Energy Demand Commercial Sector Energy Demand On This Page End-use efficiency... Growth in electricity use... Core technologies... Improved interconnection... End-use efficiency improvements could lower energy consumption per capita The AEO2011 Reference case shows minimal change in commercial energy use per capita between 2009 and 2035 (Figure 62). While growth in commercial floorspace (1.2 percent per year) is faster than growth in population (0.9 percent per year), energy use per capita remains relatively steady due to efficiency improvements in equipment and building shells. Efficiency standards and the addition of more efficient technologies account for a large share of the improvement in the efficiency of end-use services, notably in space cooling, refrigeration, and lighting. figure data

169

AEP Appalachian Power - Commercial and Industrial Rebate Programs...  

Office of Environmental Management (EM)

available to all non-residential customers who pay into the Energy Efficiency and Demand Response Cost Recovery rider and receive their electricity from APCo. A customer may...

170

Energy Efficiency and the Finance Sector | Open Energy Information  

Open Energy Info (EERE)

the Finance Sector the Finance Sector Jump to: navigation, search Name Energy Efficiency and the Finance Sector Agency/Company /Organization United Nations Environment Programme Sector Energy Focus Area Energy Efficiency Topics Finance, Market analysis, Policies/deployment programs Website http://www.unepfi.org/fileadmi References Energy Efficiency and the Finance Sector[1] Summary "This survey was carried out in 2008, when high and volatile oil prices, steadily rising demand for energy, and global imperatives, such as climate change, created significant renewed attention to energy efficiency - both in the policy and commercial world. UNEP Finance Initiative sought to provide an evidence base on current lending activities in the energy efficiency space, as well as views on this issue through a survey among

171

Property:Incentive/ImplSector | Open Energy Information  

Open Energy Info (EERE)

ImplSector ImplSector Jump to: navigation, search Property Name Incentive/ImplSector Property Type String Description Implementing Sector. Pages using the property "Incentive/ImplSector" Showing 25 pages using this property. (previous 25) (next 25) 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) + Federal + 3 30% Business Tax Credit for Solar (Vermont) + State/Territory + 4 401 Certification (Vermont) + State/Province + A AEP (Central and North) - CitySmart Program (Texas) + Utility + AEP (Central and North) - Residential Energy Efficiency Programs (Texas) + Utility + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + Utility + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + Utility + AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) + Utility +

172

By Sector, 2010 Nonprofit /  

E-Print Network (OSTI)

% West USA 46% By Region, 2010 Consul9ng 9% Environment/Energy 7% Finance/Investment Banking 4Public 38% Private 44% By Sector, 2010 Nonprofit / Mul9lateral 18% Asia 32% East USA 22 4% Manufacturing 3% Market Research 4% Media 3% Other 6% Technology 12% Think Tank 2

Tsien, Roger Y.

173

Making Africa's Power Sector Sustainable: An Analysis of Power Sector  

Open Energy Info (EERE)

Making Africa's Power Sector Sustainable: An Analysis of Power Sector Making Africa's Power Sector Sustainable: An Analysis of Power Sector Reforms in Africa Jump to: navigation, search Tool Summary Name: Making Africa's Power Sector Sustainable: An Analysis of Power Sector Reforms in Africa Agency/Company /Organization: United Nations Environment Programme, United Nations Economic Commission for Africa Sector: Energy Topics: Market analysis, Policies/deployment programs, Co-benefits assessment, - Energy Access, - Environmental and Biodiversity Resource Type: Guide/manual, Lessons learned/best practices Website: www.uneca.org/eca_programmes/nrid/pubs/powersectorreport.pdf UN Region: Eastern Africa References: Making Africa's Power Sector Sustainable: An Analysis of Power Sector Reforms in Africa[1] Overview "This study assesses the socio-economic and environmental impacts of power

174

1992 Commercial Buildings Characteristics -- Overview/Executive Summary  

U.S. Energy Information Administration (EIA) Indexed Site

Overview Overview Overview Percent of Buildings and Floorspace by Census Region, 1992 Percent of Buildings and Floorspace By Census Region divider line Executive Summary Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

175

Best Management Practice: Commercial Kitchen Equipment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Management Practice: Commercial Kitchen Equipment Best Management Practice: Commercial Kitchen Equipment Best Management Practice: Commercial Kitchen Equipment October 8, 2013 - 9:42am Addthis Commercial kitchen equipment represents a large set of water users in the non-residential sector. Water efficiency for commercial kitchen equipment is especially important because high volume applications typically use mostly hot water. Ensuring commercial kitchen equipment uses water efficiently affords both significant water and energy savings. Water-using commercial kitchen equipment include pre-rinse spray valves, wash tanks and sinks, commercial dishwashers, food steamers, steam kettles, commercial ice makers, and combination ovens (combination oven/steamer). Operation and Maintenance To maintain water efficiency in operations and maintenance, Federal

176

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

177

New and Underutilized Technology: Commercial Ground Source Heat Pumps |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Ground Source Heat Commercial Ground Source Heat Pumps New and Underutilized Technology: Commercial Ground Source Heat Pumps October 8, 2013 - 2:59pm Addthis The following information outlines key deployment considerations for commercial ground source heat pumps within the Federal sector. Benefits Commercial ground source heat pumps are ground source heat pump with loops that feed multiple packaged heat pumps and a single ground source water loop. Unit capacity is typically 1-10 tons and may be utilized in an array of multiple units to serve a large load. Application Condensing boilers are appropriate for housing, service, office, and research and development applications. Key Factors for Deployment FEMP has made great progress with commercial ground source heat pump technology deployment within the Federal sector. Primary barriers deal with

178

The National Energy Modeling System: An Overview 1998 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

COMMERCIAL DEMAND MODULE COMMERCIAL DEMAND MODULE blueball.gif (205 bytes) Floorspace Submodule blueball.gif (205 bytes) Energy Service Demand Submodule blueball.gif (205 bytes) Equipment Choice Submodule blueball.gif (205 bytes) Energy Consumption Submodule The commercial demand module (CDM) forecasts energy consumption by Census division for eight marketed energy sources plus solar thermal energy. For the three major commercial sector fuels, electricity, natural gas and distillate oil, the CDM is a "structural" model and its forecasts are built up from projections of the commercial floorspace stock and of the energy-consuming equipment contained therein. For the remaining five marketed "minor fuels," simple econometric projections are made. The commercial sector encompasses business establishments that are not

179

Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &  

Gasoline and Diesel Fuel Update (EIA)

All Reports & Publications All Reports & Publications Search By: Go Pick a date range: From: To: Go Commercial BuildingsAvailable formats PDF Modeling Distributed Generation in the Buildings Sectors Released: August 29, 2013 This report focuses on how EIA models residential and commercial sector distributed generation, including combined heat and power, for the Annual Energy Outlook. PDF Distributed Generation System Characteristics and Costs in the Buildings Sector Released: August 7, 2013 EIA works with technology experts to project the cost and performance of future residential and commercial sector photovoltaic (PV) and small wind installations rather than developing technology projections in-house. These reports have always been available by request. By providing the reports

180

Industry Research and Recommendations for New Commercial Buildings  

SciTech Connect

Researchers evaluated industry needs and developed logic models to support possible future commercial new construction research and deployment efforts that could be led or supported by DOE's Commercial Building Integration program or other national initiatives. The authors believe that these recommendations support a proposed course of action from the current state of commercial building energy efficiency to a possible long-term goal of achieving significant market penetration of cost-effective NZE buildings in all building sectors and climates by 2030.

Hendron, B.; Leach, M.; Gregory, N.; Pless, S.; Selkowitz, S.; Matthew, P.

2014-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DRAFT DRAFT Electricity and Natural Gas Sector Description  

E-Print Network (OSTI)

DRAFT DRAFT Electricity and Natural Gas Sector Description For Public Distribution AB 32 Scoping of electricity and natural gas; including electricity generation, combined heat and power, and electricity and natural gas end uses for residential and commercial purposes. Use of electricity and/or gas for industrial

182

Responsible Investment in the Forest Sector Recommendations for Institutional Investors  

E-Print Network (OSTI)

May 2012 Responsible Investment in the Forest Sector Recommendations for Institutional Investors, the advice herein is general in nature and is not intended to influence specific investment decisions and commercial attractiveness of any forestry investment should be considered. # # # Approved for release

183

Garnering the Industrial Sector: A Comparison of Cutting Edge Industrial DSM Programs  

E-Print Network (OSTI)

The industrial sector has posed a daunting DSM challenge to utilities throughout North America, even to those with successful and creative residential and commercial DSM programs. Most utilities have had great difficulty in going beyond conventional...

Kyricopoulos, P. F.; Wikler, G. A.; Faruqui, A.; Wood, B. G.

184

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Survey Background and Technical Information Survey Background and Technical Information Survey Background The commercial sector encompasses a vast range of building types-service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as certain buildings that would not be considered "commercial" in a traditional economic sense, such as public and private schools, correctional institutions, and religious and fraternal organizations. Excluded from the sector are the goods-producing industries: manufacturing, agriculture, mining, forestry and fisheries, and construction. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with

185

Department of Energy and Commercial Real Estate Executives Launch Alliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Commercial Real Estate Executives Launch and Commercial Real Estate Executives Launch Alliance to Reduce Energy Consumption of Buildings Department of Energy and Commercial Real Estate Executives Launch Alliance to Reduce Energy Consumption of Buildings April 9, 2009 - 12:00am Addthis WASHINGTON, D.C. - Top executives from 19 commercial real estate companies met with U.S. Department of Energy (DOE) officials in New York City today to discuss plans to dramatically reduce the sector's energy consumption and greenhouse gas emissions. The meeting officially launched DOE's Commercial Real Estate Energy Alliance (CREEA), a partnership of commercial real estate owners and operators who have volunteered to work together with DOE to make lasting change in the energy consumption of commercial real estate buildings in the United States. Currently, commercial buildings

186

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Commercial Commercial Mkt trends Market Trends The AEO2011 Reference case shows minimal change in commercial energy use per capita between 2009 and 2035 (Figure 62). While growth in commercial floorspace (1.2 percent per year) is faster than growth in population (0.9 percent per year), energy use per capita remains relatively steady due to efficiency improvements in equipment and building shells. Efficiency standards and the addition of more efficient technologies account for a large share of the improvement in the efficiency of end-use services, notably in space cooling, refrigeration, and lighting. See more issues Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy

187

Commercial Building National Accounts | Open Energy Information  

Open Energy Info (EERE)

Commercial Building National Accounts Commercial Building National Accounts Jump to: navigation, search National Accounts is part of DOE's Net-Zero Energy Commercial Building Initiative (CBI), which was mandated by the 2007 Energy Independence and Security Act (EISA). EISA enabled DOE to bring together parties from the private sector, DOE national labs, other federal agencies and nongovernmental organizations to advance research into low- and zero-net-energy buildings. CBI's goal is to develop market-ready, net zero-energy commercial buildings by 2025. A net zero-energy building makes as much energy as it uses over a year[1] [2]. As of 2009, estimates indicated that retail and office buildings consume 18 percent of the nation's total energy and half of nation's overall building energy (including homes, schools, and other structures). The program

188

Commercial Buildings Consortium  

Energy.gov (U.S. Department of Energy (DOE))

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

189

Technology Commercialization Fund - EERE Commercialization Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Fund The Technology Commercialization Fund (TCF) is designed to complement angel investment or early stage corporate product development. The fund totaled nearly 14.3 million in...

190

Cool energy savings opportunities in commercial refrigeration  

SciTech Connect

The commercial sector consumes over 13 quads of primary energy annually. Most of this consumption (two-thirds) meets the energy needs of lighting and heating, ventilation, and air-conditioning. The largest consuming group of the remaining one-third is commercial refrigeration at about one quad annually (990 trillion Btu), valued at over $7 billion per year to the commercial sector consumer. Potential energy savings are estimated to be about 266 trillion Btu, with consumer savings valued at about $2 billion. This study provides the first known estimates of these values using a bottom-up approach. The authors evaluated numerous self-contained and engineered commercial refrigeration systems in this study, such as: supermarket central systems, beverage merchandisers, ice machines, and vending machines. Typical physical characteristics of each equipment type were identified at the component level for energy consumption. This information was used to form a detailed database from which they arrived at the estimate of 990 trillion Btu energy consumption for the major equipment types used in commercial refrigeration. Based on the implementation of the most cost-effective technology improvements for the seven major equipment types, they estimated an annual potential energy savings of 266 trillion Btu. Much of the savings can be realized with the implementation of high-efficiency fan motors and compressors. In many cases, payback can be realized within three years.

Westphalen, D.; Brodrick, J.; Zogg, R.

1998-07-01T23:59:59.000Z

191

MANAGING COMMERCIAL RECREATION ON CROWN LAND IN BRITISH COLUMBIA: A POLICY EVALUATION  

E-Print Network (OSTI)

MANAGING COMMERCIAL RECREATION ON CROWN LAND IN BRITISH COLUMBIA: A POLICY EVALUATION By Neil of Research Project: Managing Commercial Recreation on Crown Land in British Columbia: A Policy Evaluation, the commercial recreation tourism sector has traditionally found little government support either in broader

192

Sector 1 - Software  

NLE Websites -- All DOE Office Websites (Extended Search)

APS Software APS Software Scientists and researchers at the APS develop custom scientific software to help with acquisition and analysis of beamline data. Several packages are available for a variety of platforms and uses. Data Acquisition Motion control and data collection at the 1-BM and 1-ID beamlines are primarily executed using EPICS software. We also utilize SPEC, running through EPICS, for many experiments. Data Analysis Some of the programs used at Sector 1 to analyse 1-d and/or 2-d data sets are described: Fit2d, for viewing and analysing 2-dimensional data Igor, for analysis of small-angle scattering data Matlab, for strain/texture analysis and image analysis. GSAS/EXPGUI, for structural refinement of diffraction data. A comprehensive list of Powder Diffraction Software and Resources can be

193

Louisville Private Sector Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

Thursday, December 13, 2007 Thursday, December 13, 2007 9:00 AM - 12:00 PM Agenda * Welcome and introductions from the Mayor (9:00-9:15) o The Mayor's energy and climate protection goals for Louisville o Request for private sector input for the upcoming public-private partnership to promote increased energy efficiency in buildings throughout the Louisville community o Highlights from the December 12 meeting of the ENERGY STAR Challenge implementation group o Introduction to Metro's Green Initiative and goals for today's session * Getting started with ENERGY STAR (9:15-10:00) o Introduction to the program and overview of ENERGY STAR resources o Kentucky and regional ENERGY STAR Partners and labeled buildings o Simple steps for energy savings o The benefits of energy savings

194

Sector 6 Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 2009 2008 2007 2006 2005 2004 2003 2002 2001 APS Pubs. Database Sector 6 Publications Publications 2013:(45) "Classical and quantum phase transitions revealed using transport and x-ray measurements," Arnab Banerjee, Ph.D.-Thesis, University of Chicago, 2013. "Charge transfer and multiple density waves in the rare earth tellurides," A. Banerjee, Yejun Feng, D.M. Silevitch, Jiyang Wang, J.C. Lang, H.-H. Kuo, I.R. Fisher, T.F. Rosenbaum, Phys. Rev. B 87, 155131 (2013). "Controlling Size-Induced Phase Transformations Using Chemically Designed Nanolaminates," Matt Beekman, Sabrina Disch, Sergei Rouvimov, Deepa Kasinathan, Klaus Koepernik, Helge Rosner, Paul Zschack, Wolfgang S. Neumann, David C. Johnson, Angew. Chem. Int. Ed. 52, 13211 (2013).

195

Energy Sector Market Analysis  

SciTech Connect

This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

2006-10-01T23:59:59.000Z

196

Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Electric Power Sector Hydroelectric Power (a) ............... 0.670 0.785 0.653 0.561 0.633 0.775 0.631 0.566 0.659 0.776 0.625 0.572 2.668 2.605 2.633 Wood Biomass (b) ........................ 0.048 0.043 0.052 0.046 0.045 0.039 0.051 0.052 0.055 0.049 0.060 0.054 0.190 0.187 0.218 Waste Biomass (c) ....................... 0.063 0.064 0.066 0.069 0.061 0.063 0.063 0.064 0.062 0.065 0.068 0.065 0.262 0.250 0.261 Wind ............................................. 0.376 0.361 0.253 0.377 0.428 0.461 0.315 0.400 0.417 0.461 0.340 0.424 1.368 1.604 1.641 Geothermal ................................. 0.036 0.037 0.038 0.039 0.041 0.041 0.041 0.042 0.041 0.040 0.041 0.042 0.149 0.164 0.165 Solar ............................................. 0.007 0.022 0.021 0.014 0.013 0.022 0.026 0.016 0.021 0.048 0.048 0.025 0.064

197

Program Program Organization Country Region Topic Sector Sector  

Open Energy Info (EERE)

Program Organization Country Region Topic Sector Sector Program Organization Country Region Topic Sector Sector Albania Enhancing Capacity for Low Emission Development Strategies EC LEDS Albania Enhancing Capacity for Low Emission Development Strategies EC LEDS United States Agency for International Development USAID United States Environmental Protection Agency United States Department of Energy United States Department of Agriculture United States Department of State Albania Southern Asia Low emission development planning LEDS Energy Land Climate Algeria Clean Technology Fund CTF Algeria Clean Technology Fund CTF African Development Bank Asian Development Bank European Bank for Reconstruction and Development EBRD Inter American Development Bank IDB World Bank Algeria South Eastern Asia Background analysis Finance Implementation

198

Lighting in Residential and Commercial Buildings (1993 and 1995 Data) --  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Home > Special Topics and Data Reports > Types of Lights Commercial Buildings Home > Special Topics and Data Reports > Types of Lights Picture of a light bulb At Home and At Work: What Types of Lights Are We Using? Two national EIA surveys report that . . . Of residential households, 98 percent use incandescent, 42 percent use fluorescent. Of commercial buildings, 59 percent use incandescent, 92 percent use fluorescent. At a glance, we might conclude that substantial energy savings could occur in both the residential and commercial sectors if they replaced their incandescent lights with fluorescent lights, given that fluorescent lights consume approximately 75-85 percent less electricity than incandescent lights. In the residential sector, this is true. However, in the commercial sector, where approximately 92 percent of the buildings already use fluorescent lights, increasing energy savings will require upgrading existing lights and lighting systems. To maximize energy savings, analysis must also consider the hours the lights are used and the amount of floorspace lit by that lighting type. Figures 1 and 2 show the types of lights used by the percent of households and by the percent of floorspace lit for the residential and the commercial sectors, respectively.

199

US National Institute of Hydrogen Fuel Cell Commercialization | Open Energy  

Open Energy Info (EERE)

Institute of Hydrogen Fuel Cell Commercialization Institute of Hydrogen Fuel Cell Commercialization Jump to: navigation, search Name US National Institute of Hydrogen Fuel Cell Commercialization Place Columbia, South Carolina Zip 29250-0768 Sector Hydro, Hydrogen Product The National Institute of Hydrogen Fuel Cell Commercialization, a nonprofit organization, will work to find commercial opportunities for USC and other state research institutions doing fuel cell research. References US National Institute of Hydrogen Fuel Cell Commercialization[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US National Institute of Hydrogen Fuel Cell Commercialization is a company located in Columbia, South Carolina . References

200

Liberty Utilities (Electric) - Commercial New Construction Rebate Program  

Open Energy Info (EERE)

Utilities (Electric) - Commercial New Construction Rebate Program Utilities (Electric) - Commercial New Construction Rebate Program (New Hampshire) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Summary Last modified on March 13, 2013. Financial Incentive Program Place New Hampshire Name Liberty Utilities (Electric) - Commercial New Construction Rebate Program (New Hampshire) Incentive Type Utility Rebate Program Applicable Sector Commercial, Industrial, Local Government, Schools Eligible Technologies Central Air conditioners, Chillers, Compressed air, Custom/Others pending approval, Energy Mgmt. Systems/Building Controls, Heat pumps, Lighting, Lighting Controls/Sensors, Motor VFDs, Motors, Geothermal Heat Pumps, Control Sensors, Economizers

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Electricity savings potentials in the residential sector of Bahrain  

SciTech Connect

Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

Akbari, H. [Lawrence Berkeley National Lab., CA (United States); Morsy, M.G.; Al-Baharna, N.S. [Univ. of Bahrain, Manama (Bahrain)

1996-08-01T23:59:59.000Z

202

Energy Sector Cybersecurity Framework Implementation Guidance  

Energy Savers (EERE)

DRAFT FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of...

203

Advanced Vehicle Electrification & Transportation Sector Electrificati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

204

Solar Photovoltaic Financing: Residential Sector Deployment ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Photovoltaic Financing: Residential Sector Deployment Solar Photovoltaic Financing: Residential Sector Deployment This report presents the information that homeowners and...

205

Commercial | OpenEI  

Open Energy Info (EERE)

Commercial Commercial Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

206

A look at commercial buildings in 1995: Characteristics, energy consumption, and energy expenditures  

SciTech Connect

The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of facilities that would not be considered commercial in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The target population for the 1995 CBECS consisted of all commercial buildings in the US with more than 1,000 square feet of floorspace. Decision makers, businesses, and other organizations that are concerned with the use of energy--building owners and managers, regulators, legislative bodies and executive agencies at all levels of government, utilities and other energy suppliers--are confronted with a buildings sector that is complex. Data on major characteristics (e.g., type of building, size, year constructed, location) collected from the buildings, along with the amount and types of energy the buildings consume, help answer fundamental questions about the use of energy in commercial buildings.

NONE

1998-10-01T23:59:59.000Z

207

Limited Lawn & Limited Commercial  

E-Print Network (OSTI)

Limited Lawn & Ornamental Limited Commercial Landscape Maintenance Review and Exams Limited for Commercial Landscape Maintenance Application: http://www.flaes.org/ pdf/lndspckt.pdf Limited Certification.floridatermitehelp.org or request by phone at 850-921-4177. Limited Lawn & Ornamental/Limited Commercial Landscape Maintenance

Watson, Craig A.

208

Limited Lawn & Limited Commercial  

E-Print Network (OSTI)

Limited Lawn & Ornamental Limited Commercial Landscape Maintenance Review and Exams Limited-921-4177. Limited Lawn & Ornamental/Limited Commercial Landscape Maintenance: Ornamental and Turf Pest Control (SM 7&O/Structural only). See web locations below for applications. Limited Certification for Commercial Landscape

Jawitz, James W.

209

AIDS and the private sector  

Science Journals Connector (OSTI)

... a host of other celebrities are promoting the US launch of 'Product Red', the private sector's campaign to fight AIDS. Some of the profits on products sold in ... is to be welcomed. For two decades, AIDS activists and officials have implored the private sector to join the fight against AIDS. In reality, that effort remains overwhelmingly dependent ...

2006-10-18T23:59:59.000Z

210

Market Assessment of Public Sector Energy Efficiency Potential in India  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Assessment of Public Sector Energy Efficiency Potential in India Market Assessment of Public Sector Energy Efficiency Potential in India Title Market Assessment of Public Sector Energy Efficiency Potential in India Publication Type Report Year of Publication 2012 Authors Iyer, Maithili, and Jayant A. Sathaye Date Published 10-Mar Publisher LBNL Keywords energy efficiency, india, market assessment Abstract The purpose of this study is to assess, with limited resources, the potential for improving energy efficiency in public buildings by providing preliminary estimates of the size of the public sector buildings market, the patterns of energy use in public buildings, and the opportunity for reducing energy use in public buildings. This report estimates the size of this market and the potential for carbon savings with conservative assumptions requiring moderate investment towards efficiency improvement in public sector buildings-here defined as the sum of the public sector commercial and institutional buildings as characterized by the Ministry of Statistics and Program Implementation (MOSPI). Information from this study will be provided to the World Bank and the BEE to assist them in designing effective energy efficiency programs for public buildings

211

Commercial Building Partnerships | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Partnerships Building Partnerships Commercial Building Partnerships Image shows a well-lit, warehouse-like produce section of a Whole Foods store. Much of the lighting in the photo eminates from windows along the left side of the photo. The Commercial Building Partnerships (CBP) initiative is demonstrating dramatic energy savings in commercial buildings. Through this cost-shared initiative, partner organizations team with Building Technologies Office (BTO) representatives and others to improve energy efficiency in new and existing buildings. U.S. Department of Energy (DOE) national laboratory staff and private-sector technical experts provide energy analysis support and engineering expertise to explore energy-saving ideas and strategies. Organizations not involved with CBP will benefit from the lessons learned,

212

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

7. Key assumptions for the commercial sector in the AEO2012 integrated demand technology cases 7. Key assumptions for the commercial sector in the AEO2012 integrated demand technology cases Assumptions Integrated 2011 Deand Technology Integraged High Demand Technologya Integrated Buildings Best Available Demand Technologya End-use equipment Limited to technology menu available in 2011. Promulgated standards still take effect. Earlier availability, lower cost, and/ or higher efficiencies for advanced equipment. Purchases limited to highest available efficiency for each technology class, regardless of cost. Hurdle rates Same as Reference case distribution. All energy efficiency investments evaluated at 7-percent real interest rate. All energy efficiency investments evaluated at 7-percent real interest rate. Building shells Fixed at 2011 levels. 25 percent more improvement than in the Reference case by 2035. 50 percent more improvement than in the Reference case by 2035.

213

Solar Photovoltaic Financing: Residential Sector Deployment  

SciTech Connect

This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

Coughlin, J.; Cory, K.

2009-03-01T23:59:59.000Z

214

Commercial Kitchen & Food Service Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Commercial Commercial Industrial Lighting Energy Smart Grocer Program HVAC Program Shell Measures Commercial Kitchen & Food Service Equipment Plug Load New...

215

1999 Commercial Buildings Characteristics--Energy Sources and End Uses  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Sources and End Uses Energy Sources and End Uses Topics: Energy Sources and End Uses End-Use Equipment Conservation Features and Practices Energy Sources and End Uses CBECS collects information that is used to answer questions about the use of energy in the commercial buildings sector. Questions such as: What kind of energy sources are used? What is energy used for? and What kinds of equipment use energy? Energy Sources Nearly all commercial buildings used at least one source of energy for some end use (Figure 1). Electricity was the most commonly used energy source in commercial buildings (94 percent of buildings comprising 98 percent of commercial floorspace). More than half of commercial buildings (57 percent) and two-thirds of commercial floorspace (68 percent) were served by natural gas. Three sources-fuel oil, district heat, and district chilled water-when used, were used more often in larger buildings.

216

Smart grid technologies and applications for the industrial sector  

Science Journals Connector (OSTI)

Smart grids have become a topic of intensive research, development, and deployment across the world over the last few years. The engagement of consumer sectorsresidential, commercial, and industrialis widely acknowledged as crucial for the projected benefits of smart grids to be realized. Although the industrial sector has traditionally been involved in managing power use with what today would be considered smart grid technologies, these applications have mostly been one-of-a-kind, requiring substantial customization. Our objective in this article is to motivate greater interest in smart grid applications in industry. We provide an overview of smart grids and of electricity use in the industrial sector. Several smart grid technologies are outlined, and automated demand response is discussed in some detail. Case studies from aluminum processing, cement manufacturing, food processing, industrial cooling, and utility plants are reviewed. Future directions in interoperable standards, advances in automated demand response, energy use optimization, and more dynamic markets are discussed.

Tariq Samad; Sila Kiliccote

2012-01-01T23:59:59.000Z

217

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

0. Comparisons of energy consumption by sector projections, 2025, 2035, and 2040 0. Comparisons of energy consumption by sector projections, 2025, 2035, and 2040 (quadrillion Btu) Sector AEO2013 Reference INFORUM IHSGI ExxonMobil IEA 2011 Residential 11.3 11.5 10.8 -- -- Residential excluding electricity 6.4 6.6 6.0 5.0 -- Commercial 8.6 8.6 8.5 -- -- Commercial excluding electricity 4.1 4.1 4.0 4.0 -- Buildings sector 19.9 20.1 19.3 -- 19.3a Industrial 24.0 23.6 -- -- 23.7a Industrial excluding electricity 20.7 20.2 -- 20.0 -- Lossesb 0.7 -- -- -- -- Natural gas feedstocks 0.5 -- -- -- -- Industrial removing losses and feedstocks 22.9 -- 21.7 -- -- Transportation 27.1 27.2 26.2 27.0 23.1a Electric power 39.4 39.2 40.5 37.0 37.2a Less: electricity demandc 12.7 12.8 12.7 -- 15.0a

218

Effective Occupied and Vacant Square Footage in Commercial Buildigs in 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Effective Occupied and Vacant Sq. Ft. Effective Occupied and Vacant Sq. Ft. Effective Occupied and Vacant Square Footage in Commercial Buildings in 1992 -- A Useful Benchmark of Commercial Floorspace Vacancy Rates -- Introduction One of the major approaches to analyzing energy use in end-use sectors is to relate energy use to measures of the extent of utilization of the sector, either in absolute terms or in terms relative to some maximum utilization level. For example, vehicle miles traveled is a measure of vehicle utilization in the transportation sector. The percent of maximum production capability at which an industry or an individual plant is operating is a measure of industrial capacity utilization in the industrial sector. For the commercial buildings sector, two concepts that measure how intensely a building is utilized seem to predominate: the number of hours the building is in operation and the amount of floorspace in the building that is occupied (or conversely, the amount that is vacant).

219

A Market-Specific Methodology for a Commercial Building Energy Performance Index  

Science Journals Connector (OSTI)

The scaling of energy efficiency initiatives in the commercial building sector ... methodologies that do not adequately model patterns of energy consumption, nor provide accurate measures of relative energy perfo...

Constantine E. Kontokosta

2014-08-01T23:59:59.000Z

220

Characterization of the U.S. Industrial/Commercial Boiler Population- Final Report, May 2005  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. industrial and commercial sectors consume large quantities of energy. Much of this energy is used in boilers to generate steam and hot water. This 2005 report characterizes the boilers in...

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cross-sector Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

222

Transforming Commercial Building Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

223

Transforming Commercial Building Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

224

industrial sector | OpenEI  

Open Energy Info (EERE)

industrial sector industrial sector Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

225

service sector | OpenEI  

Open Energy Info (EERE)

service sector service sector Dataset Summary Description The energy consumption data consists of five spreadsheets: "overall data tables" plus energy consumption data for each of the following sectors: transport, domestic, industrial and service. Each of the five spreadsheets contains a page of commentary and interpretation. Source UK Department of Energy and Climate Change (DECC) Date Released July 31st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption coal Coke domestic Electricity Electricity Consumption energy data Industrial Natural Gas Petroleum service sector transportation UK Data application/zip icon Five Excel spreadsheets with UK Energy Consumption data (zip, 2.6 MiB) Quality Metrics Level of Review Peer Reviewed Comment The data in ECUK are classified as National Statistics

226

Commercial Building Asset Rating Program  

Energy.gov (U.S. Department of Energy (DOE))

Slides from a Commercial Building Initiative webinar outlining the Commercial Building Asset Rating Program on August 23, 2011.

227

Symbiosis Biofeedstock Conference: Expanding Commercialization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofeedstock Conference: Expanding Commercialization of Mutualistic Microbes to Increase Feedstock Production Symbiosis Biofeedstock Conference: Expanding Commercialization of...

228

Commercial Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Commercial Buildings Integration Program Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. 3 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce

229

Renae Speck Commercialization Manager  

NLE Websites -- All DOE Office Websites (Extended Search)

Manager Renae Speck, Ph.D is a Commercialization Manager in the Office of Technology Transfer in the Partnership Directorate at the United States Department of Energy's Oak...

230

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics 1992 Buildings Characteristics Overview Full Report Tables National and Census region estimates of the number of commercial buildings in the U.S. and...

231

Average Commercial Price  

Annual Energy Outlook 2012 (EIA)

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 1231 Reserves...

232

Commercial & Industrial Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

233

Commercial fertilizers 1993  

SciTech Connect

This report is a compendium of tables on consumption of commercial fertilizers in the USA in 1993, including types of different fertilizers and consumption of each.

Berry, J.T.; Montgomery, M.H.

1993-12-01T23:59:59.000Z

234

High Performance Commercial Buildings Technology Roadmap | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » High Performance Commercial Buildings Technology Roadmap Jump to: navigation, search Tool Summary Name: High Performance Commercial Buildings Technology Roadmap Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Technology characterizations Resource Type: Dataset Website: www.nrel.gov/docs/fy01osti/30171.pdf References: High Performance Commercial Buildings Technology Roadmap[1] Overview "This technology roadmap describes the vision and strategies for addressing these challenges developed by representatives of the buildings industry. Collaborative research, development, and deployment of new technologies, coupled with an integrated "whole-buildings" approach, can shape future

235

Commercial Building Energy Asset Score- 2014 BTO Peer Review  

Energy.gov (U.S. Department of Energy (DOE))

Presenter: Nora Wang, Pacific Northwest National Laboratory One of the primary market barriers to enhancing energy efficiency in the commercial building sector is that building owners and investors lack a reliable and low cost source to understand a buildings as-built efficiency and identify opportunities for cost-effective improvements.

236

Data:07460713-1c57-417b-b2e5-b3d867141623 | Open Energy Information  

Open Energy Info (EERE)

Data Data Edit with form History Facebook icon Twitter icon » Data:07460713-1c57-417b-b2e5-b3d867141623 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern States Power Co - Minnesota Effective date: 2012/05/01 End date if known: Rate name: ENERGY CONTROLLED SERVICE (NON-DEMAND METERED) Commercial & Industrial (A05) Sector: Commercial Description: Available to residential and commercial customers with permanently connected interruptible loads of up to 50 kW that would be under Company control. The types of loads served would include dual fuel space heating, water heating, and other loads subject to Company approval. DETERMINATION OF CUSTOMER BILLS Customer bills shall reflect energy charges (if applicable) based on customer's kWh usage, plus a customer charge (if applicable), plus demand charges (if applicable) based on customer's kW billing demand as defined. OPTIONAL ENERGY CHARGE This option is available to customers with heat pump installations for non-interruptible service during June through September billing months. PLEASE SEE REFERENCE FOR MORE INFORMATION ON THE OPTIONAL ENERGY CHARGES. INTERIM RATE ADJUSTMENT A 4.49% Interim Rate Surcharge will be applied to rate components specified in the "Interim Rate Surcharge Rider." In addition, customer bills under this rate are subject to the following adjustments and/or charges. FUEL CLAUSE Bills are subject to the adjustments provided for in the Fuel Clause Rider. RESOURCE ADJUSTMENT Bills are subject to the adjustments provided for in the Conservation Improvement Program Adjustment Rider, the State Energy Policy Rate Rider, the Renewable Development Fund Rider, the Transmission Cost Recovery Rider, the Renewable Energy Standard Rider and the Mercury Cost Recovery Rider. ENVIRONMENTAL IMPROVEMENT RIDER Bills are subject to the adjustments provided for in the Environmental Improvement Rider.

237

Transitioning the Transportation Sector: Exploring the Intersection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection...

238

Oak Ridge Reservation's emergency sectors change | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reservation's emergency sectors change Oak Ridge Reservation's emergency sectors change March 11, 2014 - 11:30am Addthis On March 12, the Tennessee Emergency Management Agency...

239

Restructuring our Transportation Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Restructuring our Transportation Sector Restructuring our Transportation Sector 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting,...

240

Energy Sector Cybersecurity Framework Implementation Guidance  

Energy Savers (EERE)

JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector...

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Federal Sector Renewable Energy Project Implementation: ""What...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

242

Energy Analysis by Sector | Department of Energy  

Office of Environmental Management (EM)

Energy Analysis by Sector Energy Analysis by Sector Manufacturers often rely on energy-intensive technologies and processes. AMO conducts a range of analyses to explore energy use...

243

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Trends in Commercial Buildings > Home > Trends in Commercial Buildings > Trends in Buildings Floorspace Data tables Commercial Buildings Trend—Detail Commercial Floorspace Trend—Detail Background: Adjustment to data Trends in Buildings and Floorspace Each year buildings are added to and removed from the commercial buildings sector. Buildings are added by new construction or conversion of existing buildings from noncommercial to commercial activity. Buildings are removed by demolition or conversion from commercial to noncommercial activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the United States; by 1992, the number increased 27 percent to 4.8 million (an average annual increase of 1.8%) (Figure 1). In 1995, the estimated number declined to 4.6 million buildings, but it is unlikely that there was an actual decline in the number of buildings. To understand the apparent decline, two factors should be considered—the change in the way that the target population of commercial buildings was defined in 1995 and the uncertainty of estimates from sample surveys:

244

Nanotechnology Commercialization in Oregon  

E-Print Network (OSTI)

Nanotechnology Commercialization in Oregon February 27, 2012 Portland State University Physics Seminar Robert D. "Skip" Rung President and Executive Director #12;2 Nanotechnology Commercialization on "green" nanotechnology and gap fund portfolio company examples #12;3 Goals of the National Nanotechnology

Moeck, Peter

245

AEO2011: Renewable Energy Consumption by Sector and Source | OpenEI  

Open Energy Info (EERE)

Consumption by Sector and Source Consumption by Sector and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 17, and contains only the reference case. The dataset uses quadrillion Btu. The data is broken down into marketed renewable energy, residential, commercial, industrial, transportation and electric power. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Renewable Energy Consumption Residential sector source transportation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Consumption by Sector and Source- Reference Case (xls, 105 KiB) Quality Metrics Level of Review Peer Reviewed

246

Commercial Buildings Energy Consumption and Expenditures 1992 - Executive  

U.S. Energy Information Administration (EIA) Indexed Site

& Expenditures > Executive Summary & Expenditures > Executive Summary 1992 Consumption & Expenditures Executive Summary Commercial Buildings Energy Consumption and Expenditures 1992 presents statistics about the amount of energy consumed in commercial buildings and the corresponding expenditures for that energy. These data are based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), a national energy survey of buildings in the commercial sector, conducted by the Energy Information Administration (EIA) of the U.S. Department of Energy. Figure ES1. Energy Consumption is Commercial Buidings by Energy Source, 1992 Energy Consumption: In 1992, the 4.8 million commercial buildings in the United States consumed 5.5 quadrillion Btu of electricity, natural gas, fuel oil, and district heat. Of those 5.5 quadrillion Btu, consumption of site electricity accounted for 2.6 quadrillion Btu, or 48.0 percent, and consumption of natural gas accounted for 2.2 quadrillion Btu, or 39.6 percent. Fuel oil consumption made up 0.3 quadrillion Btu, or 4.0 percent of the total, while consumption of district heat made up 0.4 quadrillion Btu, or 7.9 percent of energy consumption in that sector. When the energy losses that occur at the electricity generating plants are included, the overall energy consumed by commercial buildings increases to about 10.8 quadrillion Btu (Figure ES1).

247

Sector 1 Frequently Asked Questions  

NLE Websites -- All DOE Office Websites (Extended Search)

Sector 1 - General Information Sector 1 - General Information Sector 1 Safety Plan (pdf) Useful X-Ray Related Numbers Si a0 = 5.4308 Angstrom CeO2 a0=5.411 Angstrom Cd-109 gamma = 88.036 keV X-ray energy/wavelength conversion constant = 12.39842 Angstrom/keV Useful 1-ID Operations Information Always set the undulator by closing from large to small gap. Always scan the Kohzu monochromator from high to low energy. A Cd-109 source that can be used to calibrate detectors can be obtained by contacting Ali. It has Ag flourescent lines and a 88.036 keV gamma line. Tim Mooney's telephone number is 2-5417. Frequently Asked Questions The following questions come up often when using the Sector 1 beamlines. If you have a question (and maybe answer) that would be of general interest to Sector 1 users, please give it to Jon or Greg for inclusion in this list.

248

List of Commercial Cooking Equipment Incentives | Open Energy Information  

Open Energy Info (EERE)

Cooking Equipment Incentives Cooking Equipment Incentives Jump to: navigation, search The following contains the list of 39 Commercial Cooking Equipment Incentives. CSV (rows 1 - 39) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Industrial Local Government Municipal Utility Nonprofit Schools State Government Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Room Air Conditioners Yes Agricultural Energy Efficiency Program (New York) State Rebate Program New York Agricultural Agricultural Equipment

249

Data:1fe5612b-cb06-4d48-9f51-3428f5d69a69 | Open Energy Information  

Open Energy Info (EERE)

b-cb06-4d48-9f51-3428f5d69a69 b-cb06-4d48-9f51-3428f5d69a69 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Hawaiian Electric Co Inc Effective date: 2011/03/01 End date if known: Rate name: RIDER M Off-Peak and Curtailable Rider Sector: Commercial Description: Availability: This Rider is available to customers served under rate Schedule J, DS, P, whose maximum measured demands prior to any load modifications effected under this rider, exceed 100 and 300 kilowatts, respectively. A customer may utilize this Rider in conjunction with Schedule SS. This Rider cannot be used in conjunction with Rider T, Rider I, Schedule U, and Schedule TOU-J.

250

Commercial Solar Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures Ventures Jump to: navigation, search Name Commercial Solar Ventures Place Portland, Oregon Zip 97205 Sector Solar Product Portland based company that specializes in commercial scale solar installations throughout Oregon. Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Commercial Building Energy Asset Rating Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BUILDING BUILDING ENERGY ASSET RATING WORKSHOP December 8-9, 2011 Washington, D.C. Nora Wang (Pacific Northwest National Laboratory) Will Gorrissen (Pacific Northwest National Laboratory) Molly McCabe (Hayden Tanner, LLC) Cody Taylor (Department of Energy) 1 I Asset Rating D.C. Workshop eere.energy.gov PRE-DECISIONAL Information included in this document is for discussion purposes and does not constitute the final program design. FOR INFORMATION ONLY 2 I Asset Rating D.C. Workshop eere.energy.gov Program Goals * Facilitate cost-effective investment in energy efficiency and reduce energy use in the commercial building sector * Establish a national standard for voluntary commercial building asset rating * Create a tool to help building owners identify and implement

252

Funding Opportunity Webinar- Advancing Solutions To Improve the Energy Efficiency of US Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE))

This webinar provides an overview of the DOE Funding Opportunity Announcement DE-FOA-0001168, "Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings," which seeks to fund the scale-up of promising solutions to the market barriers that hinder the growth of energy efficiency in the commercial building sector.

253

Technology data characterizing water heating in commercial buildings: Application to end-use forecasting  

SciTech Connect

Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

Sezgen, O.; Koomey, J.G.

1995-12-01T23:59:59.000Z

254

1999 Commercial Buildings Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption Survey—Commercial Buildings Characteristics Released: May 2002 Topics: Energy Sources and End Uses | End-Use Equipment | Conservation Features and Practices Additional Information on: Survey methods, data limitations, and other information supporting the data The 1999 Commercial Buildings Energy Consumption Survey (CBECS) was the seventh in the series begun in 1979. The 1999 CBECS estimated that 4.7 million commercial buildings (± 0.4 million buildings, at the 95% confidence level) were present in the United States in that year. Those buildings comprised a total of 67.3 (± 4.6) billion square feet of floorspace. Additional information on 1979 to 1999 trends

255

Number of Retail Customers by State by Sector, 1990-2012  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Retail Customers by State by Sector, 1990-2012" Number of Retail Customers by State by Sector, 1990-2012" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2012,"AK","Total Electric Industry",275405,48790,1263,0,"NA",325458 2012,"AL","Total Electric Industry",2150977,357395,7168,0,"NA",2515540 2012,"AR","Total Electric Industry",1332154,181823,33926,2,"NA",1547905 2012,"AZ","Total Electric Industry",2585638,305250,7740,0,"NA",2898628 2012,"CA","Total Electric Industry",13101887,1834779,73805,12,"NA",15010483

256

Retail Sales of Electricity (Megawatthours) by State by Sector by Provider, 1990  

U.S. Energy Information Administration (EIA) Indexed Site

Retail Sales of Electricity (Megawatthours) by State by Sector by Provider, 1990-2012" Retail Sales of Electricity (Megawatthours) by State by Sector by Provider, 1990-2012" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2012,"AK","Total Electric Industry",2160196,2875038,1381177,0,"NA",6416411 2012,"AL","Total Electric Industry",30632261,21799181,33751106,0,"NA",86182548 2012,"AR","Total Electric Industry",17909301,12102048,16847755,463,"NA",46859567 2012,"AZ","Total Electric Industry",32922970,29692256,12448117,0,"NA",75063343 2012,"CA","Total Electric Industry",90109995,121791536,46951714,684793,"NA",259538038

257

DOE Brings Together Private-Sector Leaders to Reduce Petroleum Use  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brings Together Private-Sector Leaders to Reduce Petroleum Use Brings Together Private-Sector Leaders to Reduce Petroleum Use The National Clean Fleets Partnership is helping America's largest commercial fleets speed the adoption of alternative fuels, electric vehicles, and fuel economy improvements. In April 2011, President Barack Obama announced the launch of the National Clean Fleets Partnership - an initiative to reduce the country's dependence on imported oil. Less than a year later, the partnership has grown to include 14 of the nation's largest private-sector fleets (noted in sidebar). Together, the partners operate more than 1 million vehicles across the nation and

258

Technology Commercialization Program 1991  

SciTech Connect

This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

Not Available

1991-11-01T23:59:59.000Z

259

Agricultural commercialization and diversification: processes and policies  

Science Journals Connector (OSTI)

Agricultural commercialization and diversification involve the gradual replacement of integrated farming systems by specialized enterprises for crop, livestock, poultry and aquaculture products. Changes in product mix and input uses are determined largely by the market forces during this transition. Commercialization of agricultural production is an endogenous process and is accompanied by economic growth, urbanization and withdrawal of labor from the agricultural sector. This paper provides a selective overview and synthesis of the issues involved in the commercialization and diversification process of agriculture, drawing in significant part from the papers in this volume. Based on an assessment of the process observed in selected countries, we show that the commercialization process should not be expected to be a frictionless process, and significant equity and environmental consequences may occur, at least in the short to medium term, particularly when inappropriate policies are followed. However, we highlight that appropriate government policies including investment in rural infrastructure and crop improvement research and extension, establishment of secure rights to land and water, and development and liberalization of capital markets, can help alleviate many of the possible adverse transitional consequences.

Prabhu L. Pingali; Mark W. Rosegrant

1995-01-01T23:59:59.000Z

260

Renewable Energy Consumption by Energy Use Sector and Energy Source, 2004 -  

Open Energy Info (EERE)

by Energy Use Sector and Energy Source, 2004 - by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Working with the Private Sector to Achieve a Clean Energy Economy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Working with the Private Sector to Achieve a Clean Energy Economy Working with the Private Sector to Achieve a Clean Energy Economy Working with the Private Sector to Achieve a Clean Energy Economy October 29, 2010 - 10:39am Addthis Doug Schultz Program Director, Loan Programs Office of the Department of Energy. What does this project do? Brings more certainty to the market by incentivizing the capital markets. Increases non-government lending capacity to the renewable sector. Provides a bridge between innovative but high tech risk projects and commercial technology projects whose risk profiles banks readily assume. It's an example of how the Administration is working with the private sector to achieve its goal of a clean energy economy. Today, I had the pleasure to speak to some of the leading power industry players about the DOE Loan Program Office's (LPO) Financial Institution

262

Working with the Private Sector to Achieve a Clean Energy Economy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with the Private Sector to Achieve a Clean Energy Economy with the Private Sector to Achieve a Clean Energy Economy Working with the Private Sector to Achieve a Clean Energy Economy October 29, 2010 - 10:39am Addthis Doug Schultz Program Director, Loan Programs Office of the Department of Energy. What does this project do? Brings more certainty to the market by incentivizing the capital markets. Increases non-government lending capacity to the renewable sector. Provides a bridge between innovative but high tech risk projects and commercial technology projects whose risk profiles banks readily assume. It's an example of how the Administration is working with the private sector to achieve its goal of a clean energy economy. Today, I had the pleasure to speak to some of the leading power industry players about the DOE Loan Program Office's (LPO) Financial Institution

263

Commercial Space Activities at Goddard  

E-Print Network (OSTI)

, environmental verification, and engineering `Best Practices' requirements #12;Commercial Utilization's commercial practices and processes · Brief summary of procurement activities under the three Rapid Catalogs Quantity ­ Leverage commercial practices and processes when possible ­ NASA mission assurance

Waliser, Duane E.

264

Data:C39725a6-d960-4740-a637-97b1ce9218c3 | Open Energy Information  

Open Energy Info (EERE)

9725a6-d960-4740-a637-97b1ce9218c3 9725a6-d960-4740-a637-97b1ce9218c3 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: El Paso Electric Co Effective date: 2011/01/10 End date if known: Rate name: GENERAL SERVICE TRANSITION RATE RIDER FOR CHARITABLE ORGANIZATIONS Sector: Commercial Description: Service under this rider is only available in conjunction with service under the Company's Rate Schedule 24. This rider is applicable only to customers that are churches, synagogues or other houses of worship and other charitable organizations with similar usage characteristics that were taking service under Rate Schedule No. 02 - Small Commercial Service on July 1, 2010 and that qualified for service under Rate Schedule No. 24 - General Service as of January 1, 2011. To be eligible for this rider, customers must have average monthly load factors below 30% and operate predominantly during nights and weekends. The rider is not applicable to separate offices, meeting halls, schools or other ancillary buildings which may be associated with the organization. This rider is not available to any customer that owns distributed generation facilities at the premise served or that is taking service under the Church Rider under Rate Schedule No. 24.

265

Sector Profiles of Significant Large CHP Markets, March 2004  

Energy.gov (U.S. Department of Energy (DOE))

Overview of market assessments of large CHP sector profiles of the chemicals, food, and pharmaceuticals sectors

266

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Industrial sector energy demand Industrial sector energy demand On This Page Heat and power energy... Industrial fuel mix changes... Iron and steel... Delivered energy use... Chemical industry use of fuels... Output growth for... Industrial and commercial... Heat and power energy consumption increases in manufacturing industries Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case. Energy consumption growth is moderated by a shift in the mix of output, as growth in energy-intensive manufacturing output (aluminum, steel, bulk chemicals, paper, and refining) slows and growth in high-value (but less energy-intensive) industries, such as computers and transportation equipment, accelerates. figure data

267

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

coal Residential coal Residential market trends icon Market Trends In the AEO2011 Reference case, residential energy use per capita declines by 17.0 percent from 2009 to 2035 (Figure 58). Delivered energy use stays relatively constant while population grows by 26.7 percent during the period. Growth in the number of homes and in average square footage leads to increased demand for energy services, which is offset in part by efficiency gains in space heating, water heating, and lighting equipment. Population shifts to warmer and drier climates also reduce energy demand for space heating. See more issues Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy consumption. The residential sector accounted for 57 percent of that energy

268

Carbon dioxide emissions from the U.S. electricity sector  

SciTech Connect

As climate change negotiators from around the world prepared together in 1996 to consider new international targets and policies for greenhouse-gas reductions, the US Department of Energy asked the authors to review the options available to the electricity sector to reduce CO{sub 2} emissions. The charge was to focus on supply-side options and utility demand-side management (DSM) programs because other researchers were considered energy efficiency options for the residential, commercial, and industrial sectors. The next section presents the EIA baseline projections of electricity production, use, and CO{sub 2} emissions to the year 2010. Subsequent sections briefly summarize the options available to the electricity industry to reduce its CO{sub 2} emissions, speculate on how industry restructuring might affect the ability of the industry and its regulators to reduce CO{sub 2} emissions, and discuss the policies available to affect those emissions: research and development, voluntary programs, regulation, and fiscal policies.

Hirst, E.; Baxter, L. [Oak Ridge National Lab., TN (United States)

1998-02-01T23:59:59.000Z

269

Dissipative hidden sector dark matter  

E-Print Network (OSTI)

A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken $U(1)^{'}$ gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength $\\epsilon \\sim 10^{-9}$ appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on Big Bang Nucleosynthesis and its contribution to the relativistic energy density at Hydrogen recombination. Subsequently we examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. We then analyze the phenomenology of our model in the context of galactic structure, and find that it can reproduc...

Foot, R

2014-01-01T23:59:59.000Z

270

Competition on the Hospital Sector  

Science Journals Connector (OSTI)

Abstract This article is about the role of competition in the health care sector. It concentrates on competition amongst hospitals for fixed budgets. The literature supports the argument that with fixed prices hospitals will compete on quality dimensions, and quality of output will increase. Under variable prices, competition can lead to chiseling of output quality. The evidence, at least with respect to the UK, shows that competition need not have an adverse effect on equity of access to health care.

Z. Cooper; A. McGuire

2014-01-01T23:59:59.000Z

271

IID Energy - Commercial Rebate Program (Commercial Check Me) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IID Energy - Commercial Rebate Program (Commercial Check Me) IID Energy - Commercial Rebate Program (Commercial Check Me) IID Energy - Commercial Rebate Program (Commercial Check Me) < Back Eligibility Commercial Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Construction Commercial Weatherization Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate General: $100,000 per customer per year; may not exceed 50% of the total installed cost of measures New Construction (Whole Building Approach - Owner): $150,000 per year New Construction (Whole Building Approach - Design Team): $30,000 per year New Construction (Systems Approach): $50,000 per year Program Info State California Program Type Utility Rebate Program Rebate Amount Programmable Thermostats: $50/unit

272

Average Commercial Price  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

273

Average Commercial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

274

Local Option - Commercial PACE Financing (Utah) | Open Energy Information  

Open Energy Info (EERE)

Option - Commercial PACE Financing (Utah) Option - Commercial PACE Financing (Utah) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Summary Last modified on April 2, 2013. Financial Incentive Program Place Utah Name Local Option - Commercial PACE Financing (Utah) Incentive Type PACE Financing Applicable Sector Commercial, Fed. Government, Industrial, Local Government, Multi-Family Residential, Nonprofit, State Government Eligible Technologies Boilers, Building Insulation, Caulking/Weather-stripping, Central Air conditioners, Chillers, Custom/Others pending approval, Doors, Energy Mgmt. Systems/Building Controls, Equipment Insulation, Furnaces, Heat pumps, Heat recovery, Lighting, Programmable Thermostats, Roofs, Windows, Daylighting, Geothermal Direct Use, Geothermal Electric, Geothermal Heat Pumps, Other Distributed Generation Technologies, Photovoltaics, Small Hydroelectric, Small Wind, Solar Water Heat, Wind

275

Calistoga Private and Commercial Industrial Low Temperature Geothermal  

Open Energy Info (EERE)

Calistoga Private and Commercial Industrial Low Temperature Geothermal Calistoga Private and Commercial Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Calistoga Private and Commercial Industrial Low Temperature Geothermal Facility Facility Calistoga Private and Commercial Sector Geothermal energy Type Industrial Location Calistoga, California Coordinates 38.5787965°, -122.5797054° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

276

Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy"  

E-Print Network (OSTI)

this are noteworthy: 1) the growing market interest in "green buildings" and "sustainable design", 2) the major, LBNL, AIA, ASHRAE, USGBC and the World Business Council for Sustainable Development (WBCSD) are developing an "action plan" for moving the U.S. commercial building sector towards zero energy performance

277

The impact on photovoltaic worth of utulity rate and reform and of specific market, financial, and policy variables : a commercialindustrialinstitution sector analysis  

E-Print Network (OSTI)

This work provides an assessment of the economic outlook for photovoltaic systems in the commercial, industrial and institutional sectors in the year 1986. We first summarize the expected cost and performance goals for ...

Dinwoodie, Thomas L.

1980-01-01T23:59:59.000Z

278

Water Impacts of the Electricity Sector (Presentation)  

SciTech Connect

This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

Macknick, J.

2012-06-01T23:59:59.000Z

279

Pathways to commercial success  

NLE Websites -- All DOE Office Websites (Extended Search)

HYDROGEN, FUEL CELLS & INFRASTRUCTURE HYDROGEN, FUEL CELLS & INFRASTRUCTURE TECHNOLOGIES (HFCIT) PROGRAM Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells & Infrastructure Technologies Program August 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Hydrogen, Fuel Cells & Infrastructure Technologies Program iii Table of Contents Summary .................................................................................................................................................................................................................. v 1.0 Introduction.......................................................................................................................................................................................................1-1

280

PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--  

E-Print Network (OSTI)

know that solar energy is environ- mentally attractive--and that photovoltaic or PV systems have made's electrical output matches well with patterns of energy use in commercial buildings, promoting effective convey tax advantages, such as accelerated depreciation and a federal income tax credit. M ost people

Perez, Richard R.

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

282

The private sector offers an alternative  

Science Journals Connector (OSTI)

... industrialists have been trying to launch an alternative to the sixth generation computer project with private sector funding.

David Swinbanks

1991-05-30T23:59:59.000Z

283

2 - The evolution, reform and development of the Chinese banking sector  

Science Journals Connector (OSTI)

Abstract: Since the late 1970s, a series of banking reforms have been implemented by the Chinese government to improve the performance, enhance the stability, and create a more competitive environment in the banking sector. This chapter will start by reviewing banking reforms since 1979 and then review the structure of the Chinese banking sector. This will be followed by an overview of the Chinese banking sector over the period 200311 with emphasis on different indicators such as market share of assets, volume of non-performing loans and non-performing loan ratios, and capital adequacy and profitability of different ownerships of commercial banks. The chapter is structured as follows: Chinas banking reforms reviews Chinese banking reforms that have taken place over the last three decades. Structure of the Chinese banking sector looks at the structure of the Chinese banking sector with a focus on the introduction of banking regulatory authority and different ownerships of commercial banks. Overview of the Chinese banking sector over the period 200311 and Summary and conclusion bring the chapter to an end.

Yong Tan

2014-01-01T23:59:59.000Z

284

Residential and commercial buildings data book: Third edition  

SciTech Connect

This Data Book updates and expands the previous Data Book originally published by the Department of Energy in September, 1986 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; and Additional Buildings and Community Systems Information. 12 refs., 59 figs., 118 tabs.

Amols, G.R.; Howard, K.B.; Nicholls, A.K.; Guerra, T.D.

1988-02-01T23:59:59.000Z

285

Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption  

Buildings Energy Data Book (EERE)

1 1 Total Use of Water by Buildings (Million Gallons per Day) (1) Year 1985 1990 1995 2000 (2) 2005 (3) Note(s): Source(s): 1) Includes water from the public supply and self-supplied sources (e.g., wells) for residential and commercial sectors. 2) USGS did not estimate water use in the commercial and residential sectors for 2000. Estimates are based on available data and 1995 splits between domestic and commercial use. 3) USGS did not estimate commercial sector use for 2005. Estimated based on available data and commercial percentage in 1995. U.S. Geological Survey, Estimated Use of Water in the U.S. in 1985, U.S. Geological Survey Circular 1004, 1988; U.S. Geological Survey, Estimated Use of Water in the U.S. in 1990, U.S. Geological Survey Circular 1081, 1993; U.S. Geological Survey, Estimated Use of Water in the U.S. in 1995, U.S. Geological

286

Data:83669e8d-8597-4808-b83c-bb498888e53a | Open Energy Information  

Open Energy Info (EERE)

d-8597-4808-b83c-bb498888e53a d-8597-4808-b83c-bb498888e53a No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern States Power Co - Minnesota Effective date: 2012/05/01 End date if known: Rate name: MUNICIPAL PUMPING SERVICE A41 Sector: Commercial Description: Available to municipal owned water works and municipal sewage systems for operation of pumping and treatment plants. (Rate schedule is applied separately to each delivery point.) Energy Charge Credit per Month per kWh All kWh in Excess of 400 Hours Times the Billing Demand $0.0090 Voltage Discounts per Month Per kW, Per kWh Primary Voltage $0.90, $0.00087 INTERIM RATE ADJUSTMENT A 4.49% Interim Rate Surcharge will be applied to rate components specified in the "Interim Rate Surcharge Rider." In addition, customer bills under this rate are subject to the following adjustments and/or charges. FUEL CLAUSE Bills are subject to the adjustments provided for in the Fuel Clause Rider. RESOURCE ADJUSTMENT Bills are subject to the adjustments provided for in the Conservation Improvement Program Adjustment Rider, the State Energy Policy Rate Rider, the Renewable Development Fund Rider, the Transmission Cost Recovery Rider, the Renewable Energy Standard Rider and the Mercury Cost Recovery Rider. ENVIRONMENTAL IMPROVEMENT RIDER Bills are subject to the adjustments provided for in the Environmental Improvement Rider.

287

Data:D28923dc-45dc-45e5-b62b-3ca789517591 | Open Energy Information  

Open Energy Info (EERE)

923dc-45dc-45e5-b62b-3ca789517591 923dc-45dc-45e5-b62b-3ca789517591 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern States Power Co - Minnesota Effective date: 2012/05/01 End date if known: Rate name: SMALL GENERAL TIME OF DAY SERVICE Low Wattage (A22) Sector: Commercial Description: Customer Charge per Month (Please see page 5-24.1) Available to any non-residential customer for single or three phase electric service supplied through one meter. DETERMINATION OF CUSTOMER BILLS Customer bills shall reflect energy charges (if applicable) based on customer's kWh usage, plus a customer charge (if applicable), plus demand charges (if applicable) based on customer's kW billing demand as defined. INTERIM RATE ADJUSTMENT A 4.49% Interim Rate Surcharge will be applied to rate components specified in the "Interim Rate Surcharge Rider." In addition, customer bills under this rate are subject to the following adjustments and/or charges. FUEL CLAUSE Bills are subject to the adjustments provided for in the Fuel Clause Rider. RESOURCE ADJUSTMENT Bills are subject to the adjustments provided for in the Conservation Improvement Program Adjustment Rider, the State Energy Policy Rate Rider, the Renewable Development Fund Rider, the Transmission Cost Recovery Rider, the Renewable Energy Standard Rider and the Mercury Cost Recovery Rider. ENVIRONMENTAL IMPROVEMENT RIDER Bills are subject to the adjustments provided for in the Environmental Improvement Rider.

288

Data:3be537d2-87b2-42d5-96e4-ae968a50960f | Open Energy Information  

Open Energy Info (EERE)

be537d2-87b2-42d5-96e4-ae968a50960f be537d2-87b2-42d5-96e4-ae968a50960f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City Utilities of Springfield Effective date: 2012/02/01 End date if known: Rate name: Community Economic Development Rider Sector: Description: Under this Rider D, City Utilities will provide electric service to a new or existing customer with a new electric load addition of 300 kW (monthly billing demand) or greater, and with an annual load factor of at least 50 percent. A special service contract between the customer and City Utilities is required for billing under Rider D. Customers receiving service under this rider must satisfy billing demand and load factor requirements within two years of commencing service under this rider, and must meet these requirements to continue receiving the discounts provided in this rider. The Board of Public Utilities may choose to waive billing demand and/or load factor requirements of this rider, under special circumstances described in Terms section of this rider. Service under this rider shall be available within the corporate limits of the City of Springfield, Missouri, and the adjacent territory served by City Utilities for commercial and industrial customers. The discount for service under this rider shall be applied to charges for service under other applicable electric service rates. Availability is subject to the General Terms and Conditions Governing Electric Service and the Utility Service Rules and Regulations, and applicable policies of the Board of Public Utilities. Credit is determined as a percentage of all otherwise applicable demand charges for all kW of billing demand:

289

Data:81ba3d93-577d-4c94-bf96-867fbaa39596 | Open Energy Information  

Open Energy Info (EERE)

ba3d93-577d-4c94-bf96-867fbaa39596 ba3d93-577d-4c94-bf96-867fbaa39596 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern States Power Co - Minnesota Effective date: 2012/05/01 End date if known: Rate name: SMALL GENERAL TIME OF DAY SERVICE kWh Metered (A16) Sector: Commercial Description: AVAILABILITY Available to any non-residential customer for single or three phase electric service supplied through one meter. DETERMINATION OF CUSTOMER BILLS Customer bills shall reflect energy charges (if applicable) based on customer's kWh usage, plus a customer charge (if applicable), plus demand charges (if applicable) based on customer's kW billing demand as defined. INTERIM RATE ADJUSTMENT A 4.49% Interim Rate Surcharge will be applied to rate components specified in the "Interim Rate Surcharge Rider." In addition, customer bills under this rate are subject to the following adjustments and/or charges. FUEL CLAUSE Bills are subject to the adjustments provided for in the Fuel Clause Rider. RESOURCE ADJUSTMENT Bills are subject to the adjustments provided for in the Conservation Improvement Program Adjustment Rider, the State Energy Policy Rate Rider, the Renewable Development Fund Rider, the Transmission Cost Recovery Rider, the Renewable Energy Standard Rider and the Mercury Cost Recovery Rider. ENVIRONMENTAL IMPROVEMENT RIDER Bills are subject to the adjustments provided for in the Environmental Improvement Rider.

290

Data:0560bf8c-5d5b-4ebe-9e1b-44320349de2a | Open Energy Information  

Open Energy Info (EERE)

c-5d5b-4ebe-9e1b-44320349de2a c-5d5b-4ebe-9e1b-44320349de2a No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern States Power Co - Minnesota Effective date: 2012/05/01 End date if known: Rate name: SMALL GENERAL TIME OF DAY SERVICE Unmetered (A18) Sector: Commercial Description: AVAILABILITY Available to any non-residential customer for single or three phase electric service supplied through one meter. DETERMINATION OF CUSTOMER BILLS Customer bills shall reflect energy charges (if applicable) based on customer's kWh usage, plus a customer charge (if applicable), plus demand charges (if applicable) based on customer's kW billing demand as defined. INTERIM RATE ADJUSTMENT A 4.49% Interim Rate Surcharge will be applied to rate components specified in the "Interim Rate Surcharge Rider." In addition, customer bills under this rate are subject to the following adjustments and/or charges. FUEL CLAUSE Bills are subject to the adjustments provided for in the Fuel Clause Rider. RESOURCE ADJUSTMENT Bills are subject to the adjustments provided for in the Conservation Improvement Program Adjustment Rider, the State Energy Policy Rate Rider, the Renewable Development Fund Rider, the Transmission Cost Recovery Rider, the Renewable Energy Standard Rider and the Mercury Cost Recovery Rider. ENVIRONMENTAL IMPROVEMENT RIDER Bills are subject to the adjustments provided for in the Environmental Improvement Rider.

291

Danish Government - Sector Programmes | Open Energy Information  

Open Energy Info (EERE)

Government - Sector Programmes Government - Sector Programmes Jump to: navigation, search Name Danish Government - Sector Programmes Agency/Company /Organization Danish Government Partner Danish Ministry for Climate, Energy, and Building; The Danish Energy Agency Sector Energy Focus Area Renewable Energy, Wind Topics Implementation, Low emission development planning, -LEDS, Policies/deployment programs Program End 2012 Country South Africa, Vietnam Southern Africa, South-Eastern Asia References Denmark[1] Promoting wind energy in South Africa and energy efficiency in Vietnam (subject to parliamentary approval) References ↑ "Denmark" Retrieved from "http://en.openei.org/w/index.php?title=Danish_Government_-_Sector_Programmes&oldid=580876" Category: Programs

292

The Changing US Electric Sector Business Model  

E-Print Network (OSTI)

The Changing US Electric Sector Business Model CATEE 2013 Clean Air Through Energy Efficiency Conference San Antonio, Texas December 17, 2013 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16...-18 Copyright 2013 Deloitte Development LLC. All rights reserved. Fundamentals of the US Electric Sector Business Model Todays Challenges Faced by U.S. Electric Sector The Math Does Not Lie: A Look into the Sectors Future Disruption to Today...

Aliff, G.

2013-01-01T23:59:59.000Z

293

Average Commercial Price  

Gasoline and Diesel Fuel Update (EIA)

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

294

Macroscopic theory of dark sector  

E-Print Network (OSTI)

A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields {\\phi}_{I} with {\\phi}^{K}{\\phi}_{K}0 describe two different forms of dark matter. The space-like ({\\phi}^{K}{\\phi}_{K}0) massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to display the main properties of the dark sector analytically and avoid unnecessary model assumptions.

Boris E. Meierovich

2014-10-06T23:59:59.000Z

295

Working to Achieve Cybersecurity in the Energy Sector | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Working to Achieve Cybersecurity in the Energy Sector Working to Achieve Cybersecurity in the Energy Sector Presentation covers cybersecurity in the energy sector and is given at...

296

Private Sector Outreach and Partnerships | Department of Energy  

Energy Savers (EERE)

Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to...

297

Making Africa's Power Sector Sustainable: An Analysis of Power...  

Open Energy Info (EERE)

Sector Sustainable: An Analysis of Power Sector Reforms in Africa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Making Africa's Power Sector Sustainable: An Analysis...

298

Better Buildings Alliance for the Public Sector | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Alliance for the Public Sector Better Buildings Alliance for the Public Sector Better Buildings Alliance for the Public Sector Webinar. Presentation More Documents...

299

Commercial equipment cost database  

SciTech Connect

This report, prepared for DOE, Office of Codes and Standards, as part of the Commercial Equipment Standards Program at Pacific Northwest Laboratory, specifically addresses the equipment cost estimates used to evaluate the economic impacts of revised standards. A database including commercial equipment list prices and estimated contractor costs was developed, and through statistical modeling, estimated contractor costs are related to equipment parameters including performance. These models are then used to evaluate cost estimates developed by the ASHRAE 90.1 Standing Standards Project Committee, which is in the process of developing a revised ASHRAE 90.1 standard. The database will also be used to support further evaluation of the manufacturer and consumer impacts of standards. Cost estimates developed from the database will serve as inputs to economic modeling tools, which will be used to estimate these impacts. Preliminary results suggest that list pricing is a suitable measure from which to estimate contractor costs for commercial equipment. Models developed from these cost estimates accurately predict estimated costs. The models also confirm the expected relationships between equipment characteristics and cost. Cost models were developed for gas-fired and electric water heaters, gas-fired packaged boilers, and warm air furnaces for indoor installation. Because of industry concerns about the use of the data, information was not available for the other categories of EPAct-covered equipment. These concerns must be addressed to extend the analysis to all EPAct equipment categories.

Freeman, S.L.

1995-01-01T23:59:59.000Z

300

Data:6b720975-87b5-4806-a93d-96b520026853 | Open Energy Information  

Open Energy Info (EERE)

20975-87b5-4806-a93d-96b520026853 20975-87b5-4806-a93d-96b520026853 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: UNS Electric, Inc Effective date: 2011/01/01 End date if known: Rate name: Rider - 5 General Service - SGS-10 Sector: Commercial Description: Pricing Plan Rider-5 is for individually metered customers who wish to participate in the Bright Arizona Community Solar Program. Under Rider-5, customers will be able to purchase blocks of electricity from solar generation sources. Participation in Rider-5 is limited in the Company's sole discretion to the amount of solar generation available and subscription will be made on a first come, first served basis.

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Proceedings: Commercial Refrigeration Research Workshop  

SciTech Connect

Improving refrigeration systems for commercial use can enhance both utility load factors and supermarket profits. This workshop has pinpointed research needs in commercial refrigeration and systems integration for a supermarket environment.

None

1984-10-01T23:59:59.000Z

302

REPORT OF THE COMMERCIAL FISHERIES  

E-Print Network (OSTI)

REPORT OF THE BUREAU OF COMMERCIAL FISHERIES BIOLOCICAL LABORATORY GALVESTON, TEXAS FISCAL YEAR, GALVESTON, TEXAS Fiscal Year 1966 Milton J. Lindner, Director Robert E. Stevenson, Assistant Director Contribution No. 226, Bureau of Commercial Fisheries Biological Laboratory, Galveston, Texas Circular 268

303

Commercialization of Genetically Engineered Crops  

Science Journals Connector (OSTI)

...1993 research-article Commercialization of Genetically Engineered...patent protection of the processes and final products provide...world's food supply. Commercialization of genetically engineered...patent protection of the processes and final products provide...

1993-01-01T23:59:59.000Z

304

Commercial Building Funding Opportunity Webinar  

Energy.gov (U.S. Department of Energy (DOE))

This webinar provide an overview of the Commercial Building Technology Demonstrations Funding Opportunity Announcement DE-FOA-0001084.

305

Chapter 15: Commercial New Construction Protocol  

SciTech Connect

This protocol is intended to describe the recommended method when evaluating the whole-building performance of new construction projects in the commercial sector. The protocol focuses on energy conservation measures (ECMs) measures (or packages of measures) where evaluators can best analyze impacts using building simulation. These ECMs typically require the use of calibrated building simulations under Option D of the International Performance Measurement and Verification Protocol. Examples of such measures include Leadership in Energy and Environmental Design building certification, novel and/or efficient heating, ventilation, and air conditioning system designs, and extensive building controls systems. In general, it is best to evaluate any ECM (or set of measures) expected to significantly interact with other systems within the building and with savings sensitive to seasonal variations in weather.

Keates, S.

2014-09-01T23:59:59.000Z

306

Commercial Building Profiles | OpenEI  

Open Energy Info (EERE)

Building Profiles Building Profiles Dataset Summary Description This dataset includes simulation results from a national-scale study of the commercial buildings sector. Electric load profiles contain the hour-by-hour demand for electricity for each building. Summary tables describe individual buildings and their overall annual energy performance. The study developed detailed EnergyPlus models for 4,820 different samples in 2003 CBECS. Simulation output is available for all and organized by CBECS's identification number in public use datasets. Three modeling scenarios are available: existing stock (with 2003 historical weather), stock as if rebuilt new (with typical weather), and the stock if rebuilt using maximum efficiency technology (with typical weather). The following reports describe how the dataset was developed:

307

SECTOR MANAGER CONTACT INFORMATION As of 13 May 2014  

E-Print Network (OSTI)

-545-0013 paulasectorX@yahoo.com Northeast Fishery Sector XI Sector Manager: Josh Wiersma PO Box 118 Portsmouth NH 03802 603-682-6115 josh.wiersma@gmail.com Northeast Fishery Sector XIII Sector Manager: John Haran 205

308

Commercial Feeding Stuffs  

E-Print Network (OSTI)

'7, of the Texas Experiment Station. OBJECTS OF THE LAW. 1. quani or otl tho+ IrllcL. U bu yic 2, he co centa 4. place 5 The intent of the Feeding Stuff Law is to provide means by which every purchaser of feeding stuffs may know exactly what he...371-410-30m TEXAS AGRICULTURAL EXPERIMENT STATIONS BULLETIN NO. 127 March, 1910 Commercial Feeding Stuffs J. W. CARSON and G. S. FRAPS POSTOFFICE COLLEGE STATION, BRAZOS COUNTY, TEXAS AUSTIN, TEXAS: VON BOECKMANN-JONES CO., PRINTERS. 1910...

Carson, J.W.; Fraps, G. S. (George Stronach)

1910-01-01T23:59:59.000Z

309

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum...

310

Federal Opportunities to Leverage the Commercial Building Energy Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

| Building Technologies Program | Building Technologies Program buildings.energy.gov Federal Opportunities to Leverage the Commercial Building Energy Alliance Brian Holuj Building Technologies Program March 15, 2012 IATF Technology Deployment Working Group - Commercial Building Energy Alliance Building owners and operators, efficiency organizations and DOE target common energy efficiency challenges and opportunities Retail and Food Commercial Real Estate Hospitals Service and Hospitality * 55 members * 2.2+ billion ft 2 * 95 members * 5.3+ billion ft 2 * 51 members * 0.5+ billion ft 2 Strength in numbers → Higher Ed sector added in 2011; new members join regularly www.commercialbuildings.energy.gov/alliances 1 | Building Technologies Program buildings.energy.gov Approx. market % from member reported ft

311

Federal Opportunities to Leverage the Commercial Building Energy Alliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

| Building Technologies Program | Building Technologies Program buildings.energy.gov Federal Opportunities to Leverage the Commercial Building Energy Alliance Brian Holuj Building Technologies Program March 15, 2012 IATF Technology Deployment Working Group - Commercial Building Energy Alliance Building owners and operators, efficiency organizations and DOE target common energy efficiency challenges and opportunities Retail and Food Commercial Real Estate Hospitals Service and Hospitality * 55 members * 2.2+ billion ft 2 * 95 members * 5.3+ billion ft 2 * 51 members * 0.5+ billion ft 2 Strength in numbers → Higher Ed sector added in 2011; new members join regularly www.commercialbuildings.energy.gov/alliances 1 | Building Technologies Program buildings.energy.gov Approx. market % from member reported ft

312

DOE Issues Energy Sector Cyber Organization NOI  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues National Energy Sector Cyber Organization Notice of Intent Issues National Energy Sector Cyber Organization Notice of Intent February 11, 2010 The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) announced on Jan. 7 that it intends to issue a Funding Opportunity Announcement (FOA) for a National Energy Sector Cyber Organization, envisioned as a partnership between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security of the grid. The cyber organization is expected to have the knowledge, expertise, capabilities, and capacity, at a minimum to: * Identify and prioritize cyber security research and development issues.

313

Energy Sector Cybersecurity Framework Implementation Guidance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cybersecurity Framework Implementation Guidance - Notice of Public Comment: Federal Register Notice, Volume 79, No. 177, September 12, 2014 Energy Sector Cybersecurity Framework...

314

Decoupling limits in multi-sector supergravities  

SciTech Connect

Conventional approaches to cosmology in supergravity assume the existence of multiple sectors that only communicate gravitationally. In principle these sectors decouple in the limit M{sub pl}??. In practice such a limit is delicate: for generic supergravities, where sectors are combined by adding their Khler functions, the separate superpotentials must contain non-vanishing vacuum expectation values supplementing the nave global superpotential. We show that this requires non-canonical scaling in the nave supergravity superpotential couplings to recover independent sectors of globally supersymmetric field theory in the decoupling limit M{sub pl} ? ?.

Achcarro, Ana; Hardeman, Sjoerd; Schalm, Koenraad; Aalst, Ted van der [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden (Netherlands); Oberreuter, Johannes M., E-mail: achucar@lorentz.leidenuniv.nl, E-mail: j.m.oberreuter@uva.nl, E-mail: kschalm@lorentz.leidenuniv.nl, E-mail: vdaalst@lorentz.leidenuniv.nl [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Science Park 904, Amsterdam (Netherlands)

2013-03-01T23:59:59.000Z

315

Category:Private Sectors | Open Energy Information  

Open Energy Info (EERE)

currently contains no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:PrivateSectors&oldid272250" Categories: Programs Projects...

316

Category:Public Sectors | Open Energy Information  

Open Energy Info (EERE)

This category currently contains no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:PublicSectors&oldid272249" Categories: Programs Projects...

317

Photonic Sensing Technology in the Energy Sector  

Science Journals Connector (OSTI)

A review of photonic sensing technologies based on spectroscopic, fiber optics, and LIDAR technologies used in energy sector for measurement and monitoring applications in wind, oil...

Mendez, Alexis

318

Energy Sector Cybersecurity Framework Implementation Guidance...  

Energy Savers (EERE)

and government. In developing this guidance, the Energy Department collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council and the...

319

Draft Energy Sector Cybersecurity Framework Implementation Guidance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC)...

320

Table 4. 2010 State energy-related carbon dioxide emission shares by sector  

U.S. Energy Information Administration (EIA) Indexed Site

2010 State energy-related carbon dioxide emission shares by sector " 2010 State energy-related carbon dioxide emission shares by sector " "percent of total" ,"Shares" "State","Commercial","Electric Power","Residential","Industrial","Transportation" "Alabama",0.01584875241,0.5778871607,0.02136328943,0.1334667239,0.2514340736 "Alaska",0.06448385239,0.0785744956,0.0462016929,0.4291084798,0.3816314793 "Arizona",0.02474932909,0.5668758159,0.02425067581,0.04966758421,0.334456595 "Arkansas",0.03882032779,0.4886410984,0.03509200153,0.1307772146,0.3066693577 "California",0.04308920353,0.1176161395,0.07822332929,0.1824277392,0.5786435885 "Colorado",0.04301641968,0.4131279202,0.08115394032,0.1545280216,0.3081736982

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Clothes Washers Commercial Clothes Washers Sign up for e-mail updates on regulations for this and other products Manufacturers have been required to comply with the Department of Energy's (DOE) energy conservation standards for commercial clothes washers since 2007. Commercial clothes washers use a water solution of soap, detergent, or both and mechanical movement to clean clothes. Commercial clothes washers are used in commercial settings, multi-family housing, or laundromats. There are two classes of commercial clothes washers: front-loading and top-loading clothes washers. The current standard will save approximately 0.12 quads of energy and result in approximately $1.1 billion in energy bill savings for products shipped from 2007-2036. The standard will avoid about 6.4 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of 1.3 million automobiles.

322

Best Management Practice #11: Commercial Kitchen Equipment |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

savings. Water-using commercial kitchen equipment include pre-rinse spray valves, wash tanks and sinks, commercial dishwashers, food steamers, steam kettles, commercial ice...

323

Commercial Vehicle Safety Alliance | Department of Energy  

Office of Environmental Management (EM)

Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance More Documents & Publications North American Standard Level VI Inspection...

324

Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROGRAM PROGRAM The Drive for Net-Zero Energy Commercial Buildings Drury B. Crawley, Ph.D. U.S. Department of Energy Energy Efficiency and Renewable Energy Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 1 gy y gy Buildings' Energy Use Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 2 Commercial Square Footage Projections g j 104 Plus ~38B ft. 2 new additions 72 82 66 Minus ~16B ft. 2 demolitions 66 Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 3 Source: EIA's Annual Energy Outlook 2009, Table 5. 2010 2003 2030 Projected Electricity Growth 2010 to 2025, by End-Use Sector (site quad) Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 4 Projected Increase in

325

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

326

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

(92) (92) Distribution Category UC-950 Commercial Buildings Characteristics 1992 April 1994 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The Energy Information Administration (EIA) prepared this publication under the general direction of W. Calvin Kilgore, Director of the Office of Energy Markets and End Use (202-586-1617). The project was directed by Lynda T. Carlson, Director of the Energy End Use and Integrated Statistics Division (EEUISD) (202-586-1112) and Nancy L. Leach, Chief

327

Energy Efficient Commercial Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Technologies April 11th, 2012 Presented by: Warren Willits Energy Solutions Center (202) 824-7150 www.ESCenter.org Federal Utility Partnership Working Group Spring 2012 Jekyll Island, GA Todays Energy Efficient Technologies  Water Heating  Heating  Air Conditioning  Humidity Control  CHP / Cogeneration Atmospheric Direct Vent High Efficiency .7 EF Atmospheric water heaters now available 97 % efficient tank water heaters now available Traditional Tank Style Water Heating  Tankless Water Heaters  EF = .82 Standard Unit  EF = .97 Condensing  Solar Water Heaters  With H.E. gas back up systems Newer Water Heaters Water Heater Life Cycle Cost Life Cycle Costs Electric Tank Water Heater Gas Water Heater

328

National Electric Sector Cybersecurity Organization Resource (NESCOR)  

SciTech Connect

The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

None, None

2014-06-30T23:59:59.000Z

329

Doors open in the private sector  

Science Journals Connector (OSTI)

... Foreign R & D personnel employed by private corporations in Japan PARALLEL with the opening of the public sector there has been rapid ... public sector there has been rapid growth in opportunities for foreign researchers in Japan's private companies. Between 1988 and 1991 the number of foreign researchers in the ...

David Swinbanks

1993-04-29T23:59:59.000Z

330

UK observatories look to private sector  

Science Journals Connector (OSTI)

... London. The British government has announced that private-sector organizations will be invited to bid for the services provided by its 'Royal ... a negotiator with the Institute of Professionals, Managers and Specialists (IPMS), says that private-sector management of the observatories is not the solution to what he describes as " ...

Ehsan Masood

1996-05-02T23:59:59.000Z

331

Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption  

Buildings Energy Data Book (EERE)

4 4 Normalized Annual End Uses of Water in Select Supermarkets in Western United States (1) Fixture/End Use Toilets/Urinals Other/Misc. Indoor (2) Cooling Total Building Size (SF) Benchmarking Values for Supermarkets (3) N Indoor Use with Cooling, gal./SF/year 38 Indoor Use with Cooling, gal./SF/daily transaction 38 Note(s): Source(s): 25th Percentile of Users 52 - 64 9 - 16 1) Water use data for the buildings was collected over a few days. Estimates of annual use were created by accounting for seasonal use and other variables, billing data, and interviews with building managers. 2) Includes water for sinks, spraying vegetables, cleaning, etc. 3) The study derived efficiency benchmarks by analyzing measured data and audit data. The benchmark was set at the lower 25th percentile of

332

Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption  

Buildings Energy Data Book (EERE)

5 5 Normalized Annual End Uses of Water in Select Hotels in Western United States (Gallons per Room per Year) (1) Fixture/End Use Bathtub (2) Faucets Showers Toilets Leaks Laundry Ice making (3) Other/misc. indoor Total Indoor Use Number of Rooms Logged average daily use, kgal: Peak instantaneous demand, gpm: Benchmarking Values for Hotels N Indoor Use, gal./day/occupied room 98 Cooling Use, gal./year/occupied room 97 Note(s): Source(s): 25th Percentile of Users 60 - 115 7,400 - 41,600 Based on four budget hotels and one luxury hotel. Three budget hotels in Southern California, one in Phoenix, AZ. Luxury hotel in Los Angeles, CA. 1) Water use data for the buildings was collected over a few days. Estimates of annual use were created by accounting for seasonal use and other variables, billing data, and interviews with building managers. 2) Based on one hotel. 3) Based on three hotels. 5) The

333

Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs  

E-Print Network (OSTI)

short-run marginal cost or avoided cost) to get a value ofcan be added to the fuel cost avoided by each kWh (i.e. ,CCE, in /kWh) and the Cost of Avoided Peak Power (CAPP, in

Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

2008-01-01T23:59:59.000Z

334

Energy Use in the U.S. Commercial Sector - Energy Information Administration Data, Information and Analyses  

E-Print Network (OSTI)

developments in energy markets. Midterm forecasts are developed and published annually in the Annual Energy Outlook (AEO), which provides projections and analyses of domestic energy consumption, supply, prices, and energy-related carbon dioxide emissions...-term trends in technology development, demographics, economic growth, and energy resources may evolve along a different path than assumed in the AEO reference case. Many of these uncertainties are explored through alternative cases in both the STEO and AEO...

Boedecker, E.

2001-01-01T23:59:59.000Z

335

From comfort to kilowatts: An integrated assessment of electricity conservation in Thailand's commercial sector  

SciTech Connect

This document contains Appendix A, B, and C. In Appendix A, we are working as part of a research project with King Monkut's Institute of Technology, Thonburi, and the University of California, Berkeley (USA) to determine how people respond to the thermal environment inside buildings. We have prepared a short questionnaire which will survey thermal comfort. Our plan is to survey each building during each of three seasons over this year (e.g. hot, rainy, and cool seasons). Appendix B contains supporting technical documentation on conservation potential and Appendix C contains documentation on utility impacts.

Busch, J.F. Jr.

1990-08-01T23:59:59.000Z

336

Guidelines for Marketing Demand-Side Management in the Commercial Sector  

E-Print Network (OSTI)

For the past decade, electric and gas utilities throughout the nation, not just in hot and humid climates, have promoted energy efficiency through a variety of demand-side management (DSM) programs. In 1984, the Electric Power Research Institute...

George, S. S.

1988-01-01T23:59:59.000Z

337

Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs  

E-Print Network (OSTI)

Conservation and Renewable Energy, Building EquipmentConservation and Renewable Energy, Office of Buildings andConservation and Renewable Energy, Office of Buildings and

Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

2008-01-01T23:59:59.000Z

338

The energy-savings potential of electrochromic windows in the US commercial buildings sector  

E-Print Network (OSTI)

Fig. 12. Market penetration rates of electrochromic windowsmarket penetration level in that year. Keywords: Building energy-efficiency, electrochromic

Lee, Eleanor; Yazdanian, Mehry; Selkowitz, Stephen

2004-01-01T23:59:59.000Z

339

The energy-savings potential of electrochromic windows in the US commercial buildings sector  

E-Print Network (OSTI)

Alone Photovoltaic-Powered Electrochromic Smart Window.Subject responses to electrochromic windows. To be publishedAnalysis of Prototype Electrochromic Windows, ASHRAE

Lee, Eleanor; Yazdanian, Mehry; Selkowitz, Stephen

2004-01-01T23:59:59.000Z

340

Towards a Very Low Energy Building Stock: Modeling the US Commercial Building Sector  

E-Print Network (OSTI)

area and energy use intensity by fuel type and end use), based on historical data and user-defined scenarios for future projections. In addition to supporting the interactive exploration of building stock targeting very low future energy consumption in the building stock. Model use has highlighted the scale

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Dissemination of Climate Model Output to the Public and Commercial Sector  

SciTech Connect

Climate is defined by the Glossary of Meteorology as the mean of atmospheric variables over a period of time ranging from as short as a few months to multiple years and longer. Although the term climate is often used to refer to long-term weather statistics, the broader definition of climate is the time evolution of a system consisting of the atmosphere, hydrosphere, lithosphere, and biosphere. Physical, chemical, and biological processes are involved in interactions among the components of the climate system. Vegetation, soil moisture, and glaciers are part of the climate system in addition to the usually considered temperature and precipitation (Pielke, 2008). Climate change refers to any systematic change in the long-term statistics of climate elements (such as temperature, pressure, or winds) sustained over several decades or longer. Climate change can be initiated by external forces, such as cyclical variations in the Earth's solar orbit that are thought to have caused glacial and interglacial periods within the last 2 million years (Milankovitch, 1941). However, a linear response to astronomical forcing does not explain many other observed glacial and interglacial cycles (Petit et al., 1999). It is now understood that climate is influenced by the interaction of solar radiation with atmospheric greenhouse gasses (e.g., carbon dioxide, chlorofluorocarbons, methane, nitrous oxide, etc.), aerosols (airborne particles), and Earth's surface. A significant aspect of climate are the interannual cycles, such as the El Nino La Nina cycle which profoundly affects the weather in North America but is outside the scope of weather forecasts. Some of the most significant advances in understanding climate change have evolved from the recognition of the influence of ocean circulations upon the atmosphere (IPCC, 2007). Human activity can affect the climate system through increasing concentrations of atmospheric greenhouse gases, air pollution, increasing concentrations of aerosol, and land alteration. A particular concern is that atmospheric levels of CO{sub 2} may be rising faster than at any time in Earth's history, except possibly following rare events like impacts from large extraterrestrial objects (AMS, 2007). Atmospheric CO{sub 2} concentrations have increased since the mid-1700s through fossil fuel burning and changes in land use, with more than 80% of this increase occurring since 1900. The increased levels of CO{sub 2} will remain in the atmosphere for hundreds to thousands of years. The complexity of the climate system makes it difficult to predict specific aspects of human-induced climate change, such as exactly how and where changes will occur, and their magnitude. The Intergovernmental Panel for Climate Change (IPCC) was established by World Meteorological Organization (WMO) and the United Nations in 1988. The IPCC was tasked with assessing the scientific, technical and socioeconomic information needed to understand the risk of human-induced climate change, its observed and projected impacts, and options for adaptation and mitigation. The IPCC concluded in its Fourth Assessment Report (AR4) that warming of the climate system is unequivocal, and that most of the observed increase in globally averaged temperatures since the mid-20th century is very likely due to the observed increased in anthropogenic greenhouse gas concentrations (IPCC, 2007).

Robert Stockwell, PhD

2010-09-23T23:59:59.000Z

342

Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs  

E-Print Network (OSTI)

7/kWh Gas Turbine 5/kWh Combined-Cycle Oil Baseload Coal7/kWh Gas Turbine 5/kWh Combined-Cycle Oi Baseload Coalof Supply Technologies CT Combined- Cycle Oil Baseload Coal

Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

2008-01-01T23:59:59.000Z

343

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

Building Type (thousand BtuSF) Consumption | Building Type (thousand BtuSF) Consumption Health Care 345.9 8% | Education 159.0 11% Inpatient 438.8 6% | Service 151.6 4%...

344

Present Status and Perspective of Energy Efficiency and Conservation Policies in Japan Residential and Commercial Sector  

Science Journals Connector (OSTI)

This paper presents the status quo of the energy efficiency and conservation policies adopted by the government of Japan, and also addresses some controversial issues on these policies. The major policies conc...

Hidetoshi Nakagami; Yoshiaki Shibata

2001-01-01T23:59:59.000Z

345

residential sector key indicators | OpenEI  

Open Energy Info (EERE)

residential sector key indicators residential sector key indicators Dataset Summary Description This dataset is the 2009 United States Residential Sector Key Indicators and Consumption, part of the Source EIA Date Released March 01st, 2009 (5 years ago) Date Updated Unknown Keywords AEO consumption EIA energy residential sector key indicators Data application/vnd.ms-excel icon 2009 Residential Sector Key Indicators and Consumption (xls, 55.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment http://www.eia.gov/abouteia/copyrights_reuse.cfm Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

346

energy use by sector | OpenEI  

Open Energy Info (EERE)

use by sector use by sector Dataset Summary Description Statistics New Zealand conducted and published results of an energy use survey across industry and trade sectors to evaluate energy use in 2009. The data includes: energy use by fuel type and industry (2009); petrol and diesel purchasing and end use by industry (2009); energy saving initiatives by industry (2009); and areas identified as possibilities for less energy use (2009). Source Statistics New Zealand Date Released October 15th, 2010 (4 years ago) Date Updated Unknown Keywords diesel energy savings energy use by sector New Zealand petrol Data application/vnd.ms-excel icon New Zealand Energy Use Survey: Industrial and Trade Sectors (xls, 108 KiB) application/zip icon Energy Use Survey (zip, 127 KiB) Quality Metrics

347

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial and Industrial Pumps Energy Conservation Standards Commercial and Industrial Pumps Energy Conservation Standards Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) is considering developing test procedures, labels, and energy conservation standards for commercial and industrial pumps. Pumps exist in numerous applications, including agriculture, oil and gas production, water and wastewater, manufacturing, mining, and commercial building systems. There are currently no federal standards or test procedures for commercial and industrial pumps. Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a notice of public meeting and availability of the framework document regarding commercial and industrial pumps. 78 FR 7304 (February 1, 2013).

348

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Warm Air Furnaces Commercial Warm Air Furnaces Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of commercial warm air furnaces since 1994. Commercial warm air furnaces are self-contained oil-fired or gas-fired furnaces that are designed to supply heated air through ducts to spaces that require it. Commercial warm air furnaces are industrial equipment and have a maximum rated input capacity of 225,000 British thermal units (Btu) an hour or more. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information Recent Updates DOE published a request for information regarding energy conservation standards for commercial warm air furnaces. 78 FR 25627 (May 2, 2013). For more information, please see the rulemaking webpage.

349

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

COMMERCIAL TRUCKS COMMERCIAL TRUCKS AVIATION MARINE MODES RAILROADS PIPELINES OFF-ROAD EQUIPMENT Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector TRANSPORTATION ENERGY FUTURES SERIES: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy February 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, IL 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

350

Value chain analysis of the aquaculture feed sector in Egypt  

Science Journals Connector (OSTI)

Abstract This study was carried out to evaluate the value chain performance of the aquaculture feed sector in Egypt, in terms of value addition, employment and profitability. The strengths and weaknesses of each link of the value chain were assessed and appropriate upgrading, management and development strategies were suggested. Quantitative data were collected for each link in the value-chain through structured questionnaires that were drafted and distributed to the key players in the sector; 25 fish feed mills and 34 fish farms covering different geographical and production regions. The results indicated that the Egyptian aquafeed value-chain is relatively simple; including only four main stakeholder groups. These are feed input suppliers, aquafeed producers, aquafeed marketers and traders and fish farmers. Between 50 and 99% of feed ingredients used in aquafeed production in Egypt are imported. About 90% of Egyptian aquafeeds are produced by the private sector in the form of conventionally pressed, pelleted feeds (8085%) and extruded feeds (1520%). About 85% of those producers sell their feeds directly to farmers with payment either in cash or on credit, while the remaining 15% sell through intermediaries such as traders. State-owned mills produced only 10% of total commercial fish feed production in 2012, exclusively in the form of pressed, pelleted feeds. Employment generation in private sector feed mills was 29.2 full-time equivalent (FTE) jobs per mill, with an average of 3.9 jobs per 1000 tonnes of feed produced. Employment generation in state-owned mills was much higher; with an average of 90.3 FTE per mill. Males represented 90% of the full-time employment in the state-owned mills and 96.6% in the private sector. Feed costs represent 7590% of the total operating costs of the fish farms. The major factors impacting on the performance of the value-chain relate to inputs, to feed production, to fish farmers and to marketing and financial services. The study recommends actions to mitigate these issues including the local production of more feed raw materials, strengthening quality control and inspection, providing training for feed mills, better organization of fish farmers and improving the legal and policy environment.

Abdel-Fattah M. El-Sayed; Malcolm W. Dickson; Gamal O. El-Naggar

2015-01-01T23:59:59.000Z

351

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity On This Page Residential and... Coal-fired plants... Most new capacity... Annual capacity... Growth in generating... Costs and regulatory... EPACT2005 tax... Biomass and wind... Renewable capacity... State portfolio... Electricity use... Real Growth in... Improved interconn... Residential and commercial sectors dominate electricity demand growth Electricity demand growth has slowed in each decade since the 1950s. After 9.8-percent annual growth in the 1950s, demand (including retail sales and direct use) increased 2.4 percent per year in the 1990s. From 2000 to 2009 (including the 2008-2009 economic downturn) demand grew by 0.5 percent per year. In the Reference case, electricity demand growth rebounds but remains relatively slow, as growing demand for electricity services is offset by

352

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

U.S. energy demand U.S. energy demand In the United States, average energy use per person declines from 2010 to 2035 figure data Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use but also the mix of fuels consumed. Changes in the structure of the economy and in the efficiency of the equipment deployed throughout the economy also have an impact on energy use per capita. The shift in the industrial sector away from energy-intensive manufacturing toward services is one reason for the projected decline in industrial energy intensity (energy use per dollar of GDP), but its impact on energy consumption per capita is less direct (Figure 71). From 1990 to

353

Technology Commercialization & Partnerships | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Commercialization & Partnerships Technology Commercialization & Partnerships Home For BNL Inventors For Industry For Entrepreneurs Sponsored Research Search Technologies Patents Contacts TCP Director Connie Cleary Tech Commercialization Christine Brakel Cyrena Condemi Kimberley Elcess Poornima Upadhya Partnerships Mike Furey, Manager Ginny Coccorese Alison Schwarz Intellectual Property Legal Group (Legal Dept.) Dorene Price, Chief Intellectual Property Counsel Lars Husebo, Attorney Maria Pacella, Sr. Staff Specialist William Russell, Asst. Staff Specialist INNOVATION MEETS BUSINESS at Brookhaven National Laboratory. WE GRANT LICENSES for our intellectual property to existing and start up companies. WE SEEK FUNDING from experienced investors to develop our intellectual assets. Tech Commercialization News

354

NREL: Technology Transfer - Commercialization Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercialization Programs Commercialization Programs Through our commercialization programs, we help accelerate the transfer of renewable energy and energy efficiency technologies into the marketplace. Clean Energy Alliance The Clean Energy Alliance is an alliance of the nation's top business incubators that provide business services to nascent clean energy entrepreneurs. NREL partners with these elite business incubators to help foster the growth of robust clean energy businesses and commercialize their technologies. Colorado Center for Renewable Energy Economic Development Formerly the Colorado Cleantech Initiative program, the Colorado Center for Renewable Energy Economic Development (CREED) is a joint effort between NREL, the State of Colorado, and affiliated stakeholders to provide

355

Commercial Weatherization | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Weatherization Commercial Weatherization Commercial Weatherization When high energy bills and a dwindling customer base threatened the Athenian Corner's well-being, the restaurant turned to energy efficiency upgrades to help operating costs and improve its bottom line. Learn how energy efficiency upgrades are helping the Athenian Corner be a viable business. When high energy bills and a dwindling customer base threatened the Athenian Corner's well-being, the restaurant turned to energy efficiency upgrades to help operating costs and improve its bottom line. Learn how energy efficiency upgrades are helping the Athenian Corner be a viable business. Commercial buildings consume 19 percent of the energy used in the U.S.

356

Site Map - EERE Commercialization Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Site Map Printable Version Share this resource Quick Links Energy Innovation Portal Site Map Commercialization Home Page About Success Stories Legacy Initiatives Small...

357

Covered Product Category: Commercial Griddles  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial griddles, which is a product category covered by the ENERGY STAR program

358

Covered Product Category: Commercial Ovens  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial ovens, which is a product category covered by the ENERGY STAR program.

359

The process of technology commercialization.  

E-Print Network (OSTI)

?? This thesis investigates, describes and understands the extensive process of technology commercialization. What stages there are, important aspects and implications. It is structured as (more)

Holmgren, Annie

2007-01-01T23:59:59.000Z

360

Commercial Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Lighting Commercial Lighting At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. By combining an inexpensive camera with a high-speed microprocessor and algorithms, researchers at the National Renewable Energy Lab developed an occupancy sensor can recognize the presence of human occupants more than 90 percent of the time -- an advancement that could lead to enormous energy savings in commercial buildings. At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. By combining an inexpensive camera with a high-speed microprocessor and

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Residential Commercial Industrial Year  

Gasoline and Diesel Fuel Update (EIA)

4 4 Residential Commercial Industrial Year and State Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers 2000 Total ................... 4,996,179 59,252,728 3,182,469 5,010,817 8,142,240 220,251 2001 Total ................... 4,771,340 60,286,364 3,022,712 4,996,446 7,344,219 217,026 2002 Total ................... 4,888,816 61,107,254 3,144,169 5,064,384 7,507,180 205,915 2003 Total ................... R 5,079,351 R 61,871,450 R 3,179,493 R 5,152,177 R 7,150,396 R 205,514 2004 Total ................... 4,884,521 62,469,142 3,141,653 5,135,985 7,250,634 212,191 Alabama ...................... 43,842 806,175 26,418 65,040 169,135 2,800 Alaska.......................... 18,200 104,360 18,373 13,999 46,580 10 Arizona ........................

362

Federal Sector Renewable Energy Project Implementation: "What's Working and Why"  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Sector Renewable Energy Project Federal Sector Renewable Energy Project Implementation: "What's Working and Why" Implementation: What s Working and Why DOD-DOE Waste-to- Energy and Fuel Cell Workshop January 13, 2011 Bob Westby Bob Westby NREL Laboratory Program Manager: Federal Energy Management Program NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Innovation for Our Energy Future Contents Federal Sector Renewable Energy Project Implementation: "What's Working and Why" "What's Working and Why" ƒ Commercially viable RE technologies ƒ RE project economic drivers ƒ Project construct scenarios ƒ ƒ Implementation mechanisms Implementation mechanisms

363

AEO2011: Natural Gas Delivered Prices by End-Use Sector and Census Division  

Open Energy Info (EERE)

Delivered Prices by End-Use Sector and Census Division Delivered Prices by End-Use Sector and Census Division Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 137, and contains only the reference case. This dataset is in trillion cubic feet. The data is broken down into residential, commercial, industrial, electric power and transportation. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Natural Gas Data application/vnd.ms-excel icon AEO2011: Natural Gas Delivered Prices by End-Use Sector and Census Division- Reference Case (xls, 140.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

364

Electricity Net Generation From Renewable Energy by Energy Use Sector and  

Open Energy Info (EERE)

Net Generation From Renewable Energy by Energy Use Sector and Net Generation From Renewable Energy by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual net electricity generation (thousand kilowatt-hours) from renewable energy in the United States by energy use sector (commercial, industrial, electric power) and by energy source (e.g. biomas, solar thermal/pv). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords 2004 2008 Electricity net generation renewable energy Data application/vnd.ms-excel icon 2008_RE.net_.generation_EIA.Aug_.2010.xls (xls, 16.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2004 - 2008 License License Other or unspecified, see optional comment below Comment Rate this dataset

365

New Zealand Energy Data: Oil Consumption by Fuel and Sector | OpenEI  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector Oil Consumption by Fuel and Sector Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other petroleum products. Included here are two oil consumption datasets: quarterly petrol consumption by sector (agriculture, forestry and fishing; industrial; commercial; residential; transport industry; and international transport), from 1974 to 2010; and oil consumption by fuel type (petrol, diesel, fuel oil, aviation fuels, LPG, and other), also for the years 1974 through 2010. The full 2010 Energy Data File is available: http://www.med.govt.nz/upload/73585/EDF%202010.pdf. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 02nd, 2010 (4 years ago)

366

Renewable Energy Consumption for Nonelectric Use by Energy Use Sector and  

Open Energy Info (EERE)

Nonelectric Use by Energy Use Sector and Nonelectric Use by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description This dataset provides annual renewable energy consumption (in quadrillion Btu) for nonelectric use in the United States by energy use sector and energy source between 2004 and 2008. The data was compiled and published by EIA; the spreadsheet provides more details about specific sources for data used in the analysis. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Nonelectric Renewable Energy Consumption Residential transportation Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Non-Elec.Gen_EIA.Aug_.2010.xls (xls, 27.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

367

AEO2011: Natural Gas Consumption by End-Use Sector and Census Division |  

Open Energy Info (EERE)

Consumption by End-Use Sector and Census Division Consumption by End-Use Sector and Census Division Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 136, and contains only the reference case. This dataset is in trillion cubic feet. The data is broken down into residential, commercial, industrial, electric power and transportation. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Natural gas consumption Data application/vnd.ms-excel icon AEO2011: Natural Gas Consumption by End-Use Sector and Census Division- Reference Case (xls, 138.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

368

Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States  

SciTech Connect

Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

Zhou, Yuyu; Gurney, Kevin R.

2011-07-01T23:59:59.000Z

369

Application of technology roadmaps for renewable energy sector  

Science Journals Connector (OSTI)

Technology Roadmapping (TRM) is a growing technique widely used for strategy planning and aligning technology with overall business objectives. Technology roadmaps are extensively used in many diverse fields at product, technology, industry, company and national levels. An increasing number of articles published on TRM and technology roadmaps indicate that there is a growing attention for TRM among the researchers from academia, industry and government. In this article, an overview of the application of TRM in renewable energy sector has been provided. After survey of the relevant academic literature and industry roadmaps, we tried to group the roadmaps related to the renewable energy technologies into national, industry/sector and organizational level roadmaps. Research findings indicate that goals and objectives of renewable energy roadmaps are different at these three levels. At national level, roadmaps focus on future energy security, energy dependence, energy policy formulation and environment protection. At industry/sector level, roadmaps are used to identify vision, common needs and evaluate barriers, constraints and risks faced by the industry from technical, political and commercial aspects. Organizational roadmap focuses on evaluation and prioritization of R&D projects to achieve the business goals. Similarly different methods, tools and approaches are used to develop roadmaps at different levels. Various other characteristics of these roadmaps are also discussed and analyzed. Research findings also indicate that greater numbers of roadmaps are developed for those renewable energy technologies undergoing rapid growth. Moreover, most of these roadmaps are developed in the regions where more research, development and deployment activities of renewable energy technologies is taking place.

Muhammad Amer; Tugrul U. Daim

2010-01-01T23:59:59.000Z

370

Small Buildings Small Portfolio Commercial Upstream Incentive Project: Regional Roll-Out- 2014 BTO Peer Review  

Energy.gov (U.S. Department of Energy (DOE))

Presenter: Todd Levin, Argonne National Laboratory To cost-effectively spur energy efficiency improvements in the small buildings and small portfolios (SBSP) sector, this project is evaluating how to expand commercial upstream incentive approaches to a level that will be nationally replicated.

371

Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy"  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Performance Goals in Commercial Buildings Title Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Performance Goals in Commercial Buildings Publication Type Conference Proceedings Year of Publication 2008 Authors Selkowitz, Stephen E., Jessica Granderson, Philip Haves, Paul A. Mathew, and Jeffrey P. Harris Conference Name 2008 ACEEE Summer Study on Energy Efficiency in Buildings Conference Location Asilomar, California, USA Abstract It is widely accepted that if the United States is to reduce greenhouse gas emissions it must aggressively address energy end use in the building sector. While there have been some notable but modest successes with mandatory and voluntary programs, there have also been puzzling failures to achieve expected savings. Collectively, these programs have not yet reached the majority of the building stock, nor have they yet routinely produced very large savings in individual buildings.

372

Data:05d17029-dcd9-46b0-b6ec-9904d8088945 | Open Energy Information  

Open Energy Info (EERE)

029-dcd9-46b0-b6ec-9904d8088945 029-dcd9-46b0-b6ec-9904d8088945 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern States Power Co - Minnesota Effective date: 2012/05/01 End date if known: Rate name: LIMITED OFF PEAK SERVICE Transmission (Commercial & Industrial) Sector: Commercial Description: Available to any customers for controlled loads that will be energized only for the time period between 10:00 p.m. to 6:30 a.m. daily. DETERMINATION OF CUSTOMER BILLS Customer bills shall reflect energy charges (if applicable) based on customer's kWh usage, plus a customer charge (if applicable), plus demand charges (if applicable) based on customer's kW billing demand as defined. INTERIM RATE ADJUSTMENT A 4.49% Interim Rate Surcharge will be applied to rate components specified in the "Interim Rate Surcharge Rider." In addition, customer bills under this rate are subject to the following adjustments and/or charges. FUEL CLAUSE Bills are subject to the adjustments provided for in the Fuel Clause Rider. RESOURCE ADJUSTMENT Bills are subject to the adjustments provided for in the Conservation Improvement Program Adjustment Rider, the State Energy Policy Rate Rider, the Renewable Development Fund Rider, the Transmission Cost Recovery Rider, the Renewable Energy Standard Rider and the Mercury Cost Recovery Rider.

373

Data:Ae67fc36-3373-483a-9558-3b43cfc3f4c7 | Open Energy Information  

Open Energy Info (EERE)

7fc36-3373-483a-9558-3b43cfc3f4c7 7fc36-3373-483a-9558-3b43cfc3f4c7 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern States Power Co - Minnesota Effective date: 2012/05/01 End date if known: Rate name: LIMITED OFF PEAK SERVICE Secondary Single Phase (Commercial & Industrial) Sector: Commercial Description: AVAILABILITY Available to any customers for controlled loads that will be energized only for the time period between 10:00 p.m. to 6:30 a.m. daily. DETERMINATION OF CUSTOMER BILLS Customer bills shall reflect energy charges (if applicable) based on customer's kWh usage, plus a customer charge (if applicable), plus demand charges (if applicable) based on customer's kW billing demand as defined. INTERIM RATE ADJUSTMENT A 4.49% Interim Rate Surcharge will be applied to rate components specified in the "Interim Rate Surcharge Rider." In addition, customer bills under this rate are subject to the following adjustments and/or charges. FUEL CLAUSE Bills are subject to the adjustments provided for in the Fuel Clause Rider. RESOURCE ADJUSTMENT Bills are subject to the adjustments provided for in the Conservation Improvement Program Adjustment Rider, the State Energy Policy Rate Rider, the Renewable Development Fund Rider, the Transmission Cost Recovery Rider, the Renewable Energy Standard Rider and the Mercury Cost Recovery Rider.

374

Data:Ca91d2a6-c389-4166-9aec-870440a8f7c0 | Open Energy Information  

Open Energy Info (EERE)

1d2a6-c389-4166-9aec-870440a8f7c0 1d2a6-c389-4166-9aec-870440a8f7c0 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern States Power Co - Minnesota Effective date: 2012/05/01 End date if known: Rate name: LIMITED OFF PEAK SERVICE Secondary Three Phase (Commercial & Industrial) Sector: Commercial Description: Available to any customers for controlled loads that will be energized only for the time period between 10:00 p.m. to 6:30 a.m. daily. DETERMINATION OF CUSTOMER BILLS Customer bills shall reflect energy charges (if applicable) based on customer's kWh usage, plus a customer charge (if applicable), plus demand charges (if applicable) based on customer's kW billing demand as defined. INTERIM RATE ADJUSTMENT A 4.49% Interim Rate Surcharge will be applied to rate components specified in the "Interim Rate Surcharge Rider." In addition, customer bills under this rate are subject to the following adjustments and/or charges. FUEL CLAUSE Bills are subject to the adjustments provided for in the Fuel Clause Rider. RESOURCE ADJUSTMENT Bills are subject to the adjustments provided for in the Conservation Improvement Program Adjustment Rider, the State Energy Policy Rate Rider, the Renewable Development Fund Rider, the Transmission Cost Recovery Rider, the Renewable Energy Standard Rider and the Mercury Cost Recovery Rider.

375

Data:A34ef0e7-1b34-42ba-a8ca-feca8734d100 | Open Energy Information  

Open Energy Info (EERE)

ef0e7-1b34-42ba-a8ca-feca8734d100 ef0e7-1b34-42ba-a8ca-feca8734d100 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern States Power Co - Minnesota Effective date: 2012/05/01 End date if known: Rate name: LIMITED OFF PEAK SERVICE Primary (Commercial & Industrial) Sector: Commercial Description: Available to any customers for controlled loads that will be energized only for the time period between 10:00 p.m. to 6:30 a.m. daily. DETERMINATION OF CUSTOMER BILLS Customer bills shall reflect energy charges (if applicable) based on customer's kWh usage, plus a customer charge (if applicable), plus demand charges (if applicable) based on customer's kW billing demand as defined. INTERIM RATE ADJUSTMENT A 4.49% Interim Rate Surcharge will be applied to rate components specified in the "Interim Rate Surcharge Rider." In addition, customer bills under this rate are subject to the following adjustments and/or charges. FUEL CLAUSE Bills are subject to the adjustments provided for in the Fuel Clause Rider. RESOURCE ADJUSTMENT Bills are subject to the adjustments provided for in the Conservation Improvement Program Adjustment Rider, the State Energy Policy Rate Rider, the Renewable Development Fund Rider, the Transmission Cost Recovery Rider, the Renewable Energy Standard Rider and the Mercury Cost Recovery Rider.

376

Data:360311ac-6ca0-4146-89ac-db323120f125 | Open Energy Information  

Open Energy Info (EERE)

11ac-6ca0-4146-89ac-db323120f125 11ac-6ca0-4146-89ac-db323120f125 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern States Power Co - Minnesota Effective date: 2012/05/01 End date if known: Rate name: LIMITED OFF PEAK SERVICE Transmission Transformed (Commercial & Industrial) Sector: Commercial Description: Available to any customers for controlled loads that will be energized only for the time period between 10:00 p.m. to 6:30 a.m. daily. DETERMINATION OF CUSTOMER BILLS Customer bills shall reflect energy charges (if applicable) based on customer's kWh usage, plus a customer charge (if applicable), plus demand charges (if applicable) based on customer's kW billing demand as defined. INTERIM RATE ADJUSTMENT A 4.49% Interim Rate Surcharge will be applied to rate components specified in the "Interim Rate Surcharge Rider." In addition, customer bills under this rate are subject to the following adjustments and/or charges. FUEL CLAUSE Bills are subject to the adjustments provided for in the Fuel Clause Rider. RESOURCE ADJUSTMENT Bills are subject to the adjustments provided for in the Conservation Improvement Program Adjustment Rider, the State Energy Policy Rate Rider, the Renewable Development Fund Rider, the Transmission Cost Recovery Rider, the Renewable Energy Standard Rider and the Mercury Cost Recovery Rider.

377

COMMERCIAL SERVICES SUSTAINABLE FOOD POLICY  

E-Print Network (OSTI)

COMMERCIAL SERVICES SUSTAINABLE FOOD POLICY February 2013 Commercial Services (CS) provides a range high standards of sustainability across all its activities. This policy supports CS aim to become a `Sustainable, Efficient and Effective Organisation' that "....will carefully consider the impact of our

Haase, Markus

378

Better Buildings Alliance for the Public Sector  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scoring Tool Buildings Performance Database Green Button Data Access Map Real Estate appraisal work 3 Make public, commercial, and industrial buildings 20% more...

379

NEMS Buildings Sector Working Group Meeting  

Gasoline and Diesel Fuel Update (EIA)

20 * Photovoltaic system cost path - Updated 2010 system costs based on Tracking the Sun IV (LBNL, 2011) * No change from AEO2012 for residential, 7% lower for commercial -...

380

Climate VISION: Private Sector Initiatives: Electric Power  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements The electric power sector participates in the Climate VISION program through the Electric Power Industry Climate Initiative (EPICI) and its Power Partners program, which is being developed in cooperation with the Department of Energy. The memberships of the seven organizations that comprise EPICI represent 100% of the power generators in the United States. Through individual commitments and collective actions, the power sector will strive to make meaningful contributions to the President's greenhouse gas intensity goal. EPICI members also support efforts to increase technology research, development and deployment that will help the power sector, and other sectors, achieve the President's goal. The seven organizations comprising EPICI are the American Public Power

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Property:ProgramSector | Open Energy Information  

Open Energy Info (EERE)

ProgramSector ProgramSector Jump to: navigation, search This is a property of type String. Pages using the property "ProgramSector" Showing 25 pages using this property. (previous 25) (next 25) 2 2008 Solar Technologies Market Report + Energy + 2010 Solar Market Transformation Analysis and Tools + Energy + 2011 APTA Public Transportation Fact Book + Energy + A A Case for Climate Neutrality: Case Studies on Moving Towards a Low Carbon Economy + Energy +, Land +, Climate + A Conceptual Framework for Progressing Towards Sustainability in the Agriculture and Food Sector + Land + A Guide to Community Solar: Utility, Private, and Non-profit Project Development + Energy + A Low Carbon Economic Strategy for Scotland + Energy +, Land + A Municipal Official's Guide to Diesel Idling Reduction + Climate +, Energy +

382

Cosmology of hidden sector with Higgs portal  

E-Print Network (OSTI)

In this thesis, we are investigating cosmological implications of hidden sector models which involve scalar fields that do not interact with the Standard Model gauge interactions, but couple directly to the Higgs field. ...

Cabi, Serkan

2009-01-01T23:59:59.000Z

383

Top partner probes of extended Higgs sectors  

E-Print Network (OSTI)

Natural theories of the weak scale often include fermionic partners of the top quark. If the electroweak symmetry breaking sector contains scalars beyond a single Higgs doublet, then top partners can have sizable branching ...

Kearney, John

384

17 - Protecting Commercial and Institutional Critical Infrastructure  

Science Journals Connector (OSTI)

This chapter focuses on protecting commercial and institutional sectors, including retail businesses, banks and financial businesses, educational institutions (a subsector of government facilities), and healthcare and public health institutions. Each of these topics begins with a broad perspective from U.S. Department of Homeland Security Sector-Specific Plans. Keywords shrinkage, shopping service, checkout counters, point-of-sale (POS) accounting systems, exception reporting, counterfeiting, kleptomania, organized retail theft, electronic article surveillance, source tagging, civil recovery, robbery, burglary, substitutability, U.S. Department of the Treasury, Bank Protection Act (BPA) of 1968, savings and loan (S&L) scandal, Bank Secrecy Act of 1986, Anti-Drug Abuse Act of 1988, The Antiterrorism and Effective Death Penalty Act of 1996, Gramm-Leach-Bliley Act of 1999, USA Patriot Act of 2001, Sarbanes-Oxley (SOX) Act of 2002, Regulation H, Code of Federal Regulations, suspicious activity reports, money laundering, tear gas/dye packs, Global Positioning System (GPS), skimming, Gun-Free Schools Act, zero-tolerance policy, Family Educational Rights and Privacy Act, Gang Resistance Education and Training (GREAT), soft targets, Safe and Drug-Free Schools and Communities Act, hard targets, Columbine High School massacre, Beslan Elementary School massacre, Virginia Tech massacre, Student-Right-to-Know and Campus Security Act of 1990, Campus Sexual Assault Victims Bill of Rights, community policing, Emergency Medical Treatment and Active Labor Act, Health Insurance Portability and Accountability Act of 1996 (HIPAA), The Joint Commission, National Center for Missing and Exploited Children, Controlled Substances Act of 1970, first receivers, personal protective equipment (PPE), Public Health Security and Bioterrorism Preparedness and Response Act of 2002, Centers for Disease Control and Prevention (CDC)

Philip P. Purpura

2013-01-01T23:59:59.000Z

385

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Small, Large, and Very Large Commercial Package Air Conditioners and Heat Pumps Small, Large, and Very Large Commercial Package Air Conditioners and Heat Pumps Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) regulates the energy efficiency of small, large, and very large commercial package air conditioners and heat pumps. Commercial air conditioners and heat pumps are air-cooled, water-cooled, evaporatively-cooled, or water source unitary air conditioners or heat pumps that are used for space conditioning of commercial and industrial buildings. The standards implemented in 2010 for small and large, air-cooled commercial package air conditioners and heat pumps, and SPVUs, will save approximately 1.7 quads of energy and result in approximately $28.9 billion in energy bill savings for products shipped from 2010-2034. These standards will avoid about 90.3 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of 31.1 million automobiles. The standard implemented in 2010 for very large, air-cooled commercial package air conditioners and heat pumps will save approximately 0.43 quads of energy and result in approximately $4.3 billion in energy bill savings for products shipped from 2010-2034. The standard will avoid about 22.6 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of 4.4 million automobiles.

386

Export.gov - Welcome to U.S. Commercial Service  

NLE Websites -- All DOE Office Websites (Extended Search)

Mexico Mexico Local Time: Print | E-mail Page Mexico Mexico Home Doing Business in Mexico Services for U.S. Companies Trade Events Business Service Providers Leading Industry Sectors Service Solutions USA Business Information Center-Re-launch! Smart Grid to Markets Mexico Opportunities-Webinars Podcasts and Webinars Internship Program Contact Us Our Worldwide Network About Us Press Room Other American Markets Other Worldwide Markets Welcome to U.S. Commercial Service Mexico Join our Mexico is Open for your Business group The U.S. Commercial Service in Mexico is committed to advancing the goals of the National Export Initiative, which aims to create more and better paying jobs and enhance the U.S. economic recovery through the doubling of U.S. exports in five years. U.S.-manufactured products enjoy duty free

387

Benchmarking and Performance Based Rating System for Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking and Performance Based Rating System for Commercial Buildings Benchmarking and Performance Based Rating System for Commercial Buildings in India Speaker(s): Saket Sarraf Date: May 4, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Girish Ghatikar The Indian building sector has witnessed huge surge in interest in energy performance in the last decade. The 'intention' based codes like the national Energy Conservation Building Code (ECBC) and green building rating systems such as Leadership in Energy and Environment Design (LEED-India) and Green Rating for Integrated Habitat Assessment (GRIHA) have been the prime mechanisms to design and assess energy efficient buildings. However, they do not rate the 'achieved' energy performance of buildings over time or reward their performance through a continuous evaluation process.

388

Residential and commercial buildings data book. Second edition  

SciTech Connect

This Data Book updates and expands the previous Data Book originally published by the Department of Energy in October, 1984 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; Additional Buildings and Community Systems Information. This Data Book complements another Department of Energy document entitled ''Overview of Building Energy Use and Report of Analysis-1985'' October, 1985 (DOE/CE-0140). The Data Book provides supporting data and documentation to the report.

Crumb, L.W.; Bohn, A.A.

1986-09-01T23:59:59.000Z

389

Commercial Building Partnerships: Mainstreaming Energy-Efficient Strategies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Through the Commercial Building Partnerships program, building owners and operators, Through the Commercial Building Partnerships program, building owners and operators, teamed with U.S. Department of Energy representatives, national laboratories staff, and private-sector technical experts, are exploring and implementing energy-saving ideas- including many that might have been too expensive or technologically challenging for Partners to tackle on their own. Photo: Massery Photography, Inc./L.D. Astorino Companies less energy than ANSI/ASHRAE/IES Standard 90.1-2004, and retrofits are designed to consume at least 30 percent less energy than either Standard 90.1-2004 or current consumption. Increasing Speed and Scale of Change Opportunities abound to dramatically expand the program's reach: CBP projects represent 8,295,636 square feet

390

Data:F8f246b9-a44f-4915-8a7e-1e9d6ad1ee05 | Open Energy Information  

Open Energy Info (EERE)

6b9-a44f-4915-8a7e-1e9d6ad1ee05 6b9-a44f-4915-8a7e-1e9d6ad1ee05 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Hawaiian Electric Co Inc Effective date: 2011/03/01 End date if known: Rate name: RIDER T TIME-OF-DAY RIDER Sector: Commercial Description: Availability: This rider is available to customers on rate Schedule J, DS or P but cannot be used in conjunction with the load management Rider M, Rider I, Schedule U, and Schedule TOU-J. A customer may utilize this Rider in conjunction with Schedule SS. Time-of-day Metering Charge - per month: $10.00 Time-of-day Energy Charge Adjustment: on-peak energy surcharge - all on-peak kwh +2.00 cents/kwh off-peak energy credit - all off-peak kwh -3.00 cents/kwh For more information, see the source of rate.

391

Data:6ee6c22b-3a76-486a-bdc0-2817da9ed5da | Open Energy Information  

Open Energy Info (EERE)

ee6c22b-3a76-486a-bdc0-2817da9ed5da ee6c22b-3a76-486a-bdc0-2817da9ed5da No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City Utilities of Springfield Effective date: 1999/10/01 End date if known: Rate name: Automatic Throwover Switch Sector: Description: Applicability Under this Rider B, City Utilities will install an automatic throwover switch which can automatically change a customer's source of electric supply. Customers electing to receive service under this rider will remain on this rider for a minimum period of five (5) years. Customers requesting a disconnect will be required to pay $250.00 per month for each month less than 60 the customer has received service under this rider. Availability Service under this rider shall be available within the corporate limits of the City of Springfield, Missouri, and the adjacent territory served by City Utilities for commercial and industrial customers with monthly demands of 300 kilowatts or greater. Charges for service under this rider shall be in addition to charges for service under other applicable electric service rates. Availability is subject to the General Terms and Conditions Governing Electric Service and the Utility Service Rules and Regulations.

392

Data:8ea015ae-b1f2-472c-9e13-5cea8f538b57 | Open Energy Information  

Open Energy Info (EERE)

ea015ae-b1f2-472c-9e13-5cea8f538b57 ea015ae-b1f2-472c-9e13-5cea8f538b57 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Piedmont Electric Member Corp Effective date: 2003/01/01 End date if known: Rate name: NC GREENPOWER PROGRAM -1 Sector: Commercial Description: Availability: This Rider is available on a voluntary basis in conjunction with any of the Cooperative's Schedules for a Consumer who contracts with the Cooperative for a block or blocks of electricity produced from Renewable Resources provided through the NC GreenPower Program. The maximum number of consumers served under this Rider shall be determined by the maximum number of blocks of electricity available through the NC GreenPower Program. This Rider is not for temporary service or for resale service. The provisions of the Schedule with which this Rider is used are modified only as shown herein. Service rendered under this Rider is subject to the provisions of the Cooperative's Service Rules and Regulations on file with the state regulatory commission.This Rider's Monthly Rate shall be applied to Consumer's billing regardless of Consumer's actual monthly kilowatt-hour consumption.

393

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program 2012 DOE Hydrogen...

394

Energy-Sector Stakeholders Attend the Department of Energy's...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's...

395

Combined Heat & Power Technology Overview and Federal Sector...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat & Power Technology Overview and Federal Sector Deployment Combined Heat & Power Technology Overview and Federal Sector Deployment Presentation covers the Combined...

396

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

Building Sector Electricity Consumption parameter logisticin Building Sector Electricity Consumption iii iv Sectoralsome water with electricity consumption, it is not possible

2006-01-01T23:59:59.000Z

397

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

values. Figure 7. Global Primary Energy by End-Use Sector,Scenario Figure 8. Global Primary Energy by End-Use Sector,

2006-01-01T23:59:59.000Z

398

Changes Sweeping Through the Electricity Sector: Moving toward...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Changes Sweeping Through the Electricity Sector: Moving toward a 21st Century Electricity System Changes Sweeping Through the Electricity Sector: Moving toward a 21st Century...

399

Ground-source Heat Pumps Applied to Commercial Buildings  

SciTech Connect

Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

Parker, Steven A.; Hadley, Donald L.

2009-07-14T23:59:59.000Z

400

A Model of U.S. Commercial Distributed Generation Adoption  

SciTech Connect

Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

2006-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ground-Source Heat Pumps Applied to Commercial Buildings  

SciTech Connect

Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

Parker, Steven A.; Hadley, Donald L.

2006-12-31T23:59:59.000Z

402

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Clothes Washers Energy Conservation Standard Commercial Clothes Washers Energy Conservation Standard Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) is considering whether to revise its energy conservation standards for commercial clothes washers. This current rulemaking will satisfy the requirement to publish the second final rule by January 1, 2015 as mandated by the Energy Policy and Conservation Act (EPCA). Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates The DOE published a notice of public meeting and availability of the framework document for commercial clothes washers. 77 FR 48108 (August 13, 2012). Public Meeting Information

403

Tax Deductions for Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Deductions for Commercial Buildings Tax Deductions for Commercial Buildings Promoting Energy Savings for Businesses S igned by President Bush on August 8, 2005, the Energy Policy Act (EPACT) lays the foundation for the new Federal tax incentives for consumers and businesses that pursue energy efficiency and the use of renewable energy. For updated information about the tax incentives, see www.energy.gov. This web- site also describes other EPACT provisions of interest to businesses, including incen- tives for distributed generation and hybrid fuel fleet vehicles. Tax Deductions for Commercial Building Owners Commercial building owners and lessees who purchase and install energy-saving products in their businesses can qualify for a tax deduction under EPACT. Buildings must achieve a 50 percent reduction in

404

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial and Industrial Pumps Commercial and Industrial Pumps Sign up for e-mail updates on regulations for this and other products Pumps are used in agriculture, oil and gas production, water and wastewater, manufacturing, mining, and commercial building systems. Currently there are no energy conservation standards for pumps. The Department of Energy (DOE) will conduct an analysis of the energy use, emissions, costs, and benefits associated with this equipment during the commercial and industrial pumps energy conservation standards rulemaking. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information Recent Updates DOE published a notice of public meeting and availability of the framework document. 78 FR 7304 (Feb. 1, 2013). For more information, please see the rulemaking page.

405

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial and Industrial Compressors Determination Commercial and Industrial Compressors Determination Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) proposes to determine that commercial and industrial compressors meet the criteria for covered equipment under Part A-1 of Title III of the Energy Policy and Conservation Act (EPCA), as amended. Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a Proposed Coverage Determination concerning commercial and industrial compressors. 77 FR 76972 (Dec. 31, 2012). Public Meeting Information No public meeting is scheduled at this time. Submitting Public Comments The comment period is closed.

406

Commercial Combustion and CHP Systems  

Science Journals Connector (OSTI)

Wood heat for individual homes (i.e., wood stoves and pellet stoves) is widely recognized and understood in the Northeast USA. Commercial-scale wood heat and CHP (combined heat and power), however, ... the region...

Daniel Ciolkosz; Jim Babcock

2013-01-01T23:59:59.000Z

407

Technology Commercialization: Opportunities and Challenges  

Science Journals Connector (OSTI)

Commercialization of technology from university and national laboratory ... in the early 1970s to an active process in the 1990s, involving exclusive licensing ... development professional involved in the licen...

K. L. Crandell

1991-01-01T23:59:59.000Z

408

New Report Highlights Growth of America's Clean Energy Job Sector |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector August 23, 2012 - 12:20pm Addthis New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs

409

Technology data characterizing space conditioning in commercial buildings: Application to end-use forecasting with COMMEND 4.0  

SciTech Connect

In the US, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of space conditioning end uses in terms of specific technologies is complicated by several factors. First, the number of configurations of heating, ventilating, and air conditioning (HVAC) systems and heating and cooling plants is very large. Second, the properties of the building envelope are an integral part of a building`s HVAC energy consumption characteristics. Third, the characteristics of commercial buildings vary greatly by building type. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. This report describes the process by which the authors collected space-conditioning technology data and then mapped it into the COMMEND 4.0 input format. The data are also generally applicable to other end-use forecasting frameworks for the commercial sector.

Sezgen, O.; Franconi, E.M.; Koomey, J.G.; Greenberg, S.E.; Afzal, A.; Shown, L.

1995-12-01T23:59:59.000Z

410

Translation and commercialization of regenerative medicines  

Science Journals Connector (OSTI)

...issue 'Translation and commercialization of regenerative medicines...Prescott Translation and commercialization of regenerative medicines...accelerate the banking process and facilitate appropriate...Supplement Translation and commercialization of regenerative medicines...

2010-01-01T23:59:59.000Z

411

NREL: Energy Analysis: Electric Sector Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Sector Integration Electric Sector Integration Integrating higher levels of renewable resources into the U.S. electricity system could pose challenges to the operability of the nation's grid. NREL's electric sector integration analysis work investigates the potential impacts of expanding renewable technology deployment on grid operations and infrastructure expansion including: Feasibility of higher levels of renewable electricity generation. Options for increasing electric system flexibility to accommodate higher levels of variable renewable electricity. Impacts of renewable electricity generation on efficiency and emissions of conventional generators. Grid expansion and planning to allow large scale deployment of renewable generation. Graphic showing a high concept diagram of how a modern electricity system can be designed to include storage and incorporate large scale renewable generation. High Renewable Generation Electric System Flexibility and Storage Impacts on Conventional Generators Transmission Infrastructure

412

Modeling distributed generation in the buildings sectors  

Gasoline and Diesel Fuel Update (EIA)

Modeling distributed generation Modeling distributed generation in the buildings sectors August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. July 2013 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors 1

413

EU competition law on electricity sector liberalisation  

Science Journals Connector (OSTI)

This paper aims to study how competition law helps facilitate the process of EU electricity liberalisation and study the use of competition law on the liberalised EU energy market. This paper provides an overview of competition law regarding to purposes of EU competition law and articles 101, 102 and 106 of EC Treaty on the Functioning of the European Union. The paper explores the role of competition law on EU electricity market liberalisation and focuses on the three main directive packages that transform EU electricity market towards competition. It further explores competition law enforcement that facilitates the structural change in EU electricity sector and discusses how the EU Competition Commission utilise the competition law to decrease market barriers in EU electricity sector. Finally the paper focuses on possible issues for competition law on EU electricity sector, especially on merger and acquisition cases. The last part provides conclusion of the paper.

Pornchai Wisuttisak

2014-01-01T23:59:59.000Z

414

Dams and Energy Sectors Interdependency Study  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

[Type text] [Type text] Dams and Energy Sectors Interdependency Study September 2011 September 2011 Page 2 Abstract The U.S. Department of Energy (DOE) and the U.S. Department of Homeland Security (DHS) collaborated to examine the interdependencies between two critical infrastructure sectors - Dams and Energy. 1 The study highlights the importance of hydroelectric power generation, with a particular emphasis on the variability of weather patterns and competing demands for water which determine the water available for hydropower production. In recent years, various regions of the Nation suffered drought, impacting stakeholders in both the Dams and Energy Sectors. Droughts have the potential to affect the operation of dams and reduce hydropower production,

415

Data:70fb1a96-4bf7-4d99-8c11-bf6fb693232b | Open Energy Information  

Open Energy Info (EERE)

a96-4bf7-4d99-8c11-bf6fb693232b a96-4bf7-4d99-8c11-bf6fb693232b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern States Power Co - Minnesota Effective date: 2012/05/01 End date if known: Rate name: SMALL GENERAL SERVICE Water Heating (A11) Sector: Commercial Description: Standard service (i.e., alternating current) is available to any non-residential customer for single or three phase electric service. Direct Current service is only available in Minneapolis and St. Paul to the extent now used. Demand Charge (Direct Current Only) per Month per kW of Connected Load $3.03 DETERMINATION OF CUSTOMER BILLS Customer bills shall reflect energy charges (if applicable) based on customer's kWh usage, plus a customer charge (if applicable), plus demand charges (if applicable) based on customer's kW billing demand as defined. INTERIM RATE ADJUSTMENT A 4.49% Interim Rate Surcharge will be applied to rate components specified in the "Interim Rate Surcharge Rider." In addition, customer bills under this rate are subject to the following adjustments and/or charges. FUEL CLAUSE Bills are subject to the adjustments provided for in the Fuel Clause Rider. RESOURCE ADJUSTMENT Bills are subject to the adjustments provided for in the Conservation Improvement Program Adjustment Rider, the State Energy Policy Rate Rider, the Renewable Development Fund Rider, the Transmission Cost Recovery Rider, the Renewable Energy Standard Rider and the Mercury Cost Recovery Rider.

416

Data:Ae14f0d7-546c-421c-a4c9-02db9ff3a4de | Open Energy Information  

Open Energy Info (EERE)

Ae14f0d7-546c-421c-a4c9-02db9ff3a4de Ae14f0d7-546c-421c-a4c9-02db9ff3a4de No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern States Power Co - Minnesota Effective date: 2012/05/01 End date if known: Rate name: SMALL GENERAL SERVICE Unmetered (A09) Sector: Commercial Description: Standard service (i.e., alternating current) is available to any non-residential customer for single or three phase electric service. Direct Current service is only available in Minneapolis and St. Paul to the extent now used. Demand Charge (Direct Current Only) per Month per kW of Connected Load $3.03 DETERMINATION OF CUSTOMER BILLS Customer bills shall reflect energy charges (if applicable) based on customer's kWh usage, plus a customer charge (if applicable), plus demand charges (if applicable) based on customer's kW billing demand as defined. INTERIM RATE ADJUSTMENT A 4.49% Interim Rate Surcharge will be applied to rate components specified in the "Interim Rate Surcharge Rider." In addition, customer bills under this rate are subject to the following adjustments and/or charges. FUEL CLAUSE Bills are subject to the adjustments provided for in the Fuel Clause Rider. RESOURCE ADJUSTMENT Bills are subject to the adjustments provided for in the Conservation Improvement Program Adjustment Rider, the State Energy Policy Rate Rider, the Renewable Development Fund Rider, the Transmission Cost Recovery Rider, the Renewable Energy Standard Rider and the Mercury Cost Recovery Rider.

417

Data:E7f83200-8d01-45e8-9373-26a6de147154 | Open Energy Information  

Open Energy Info (EERE)

00-8d01-45e8-9373-26a6de147154 00-8d01-45e8-9373-26a6de147154 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern States Power Co - Minnesota Effective date: 2012/05/01 End date if known: Rate name: SMALL GENERAL SERVICE Direct Current (A13) Sector: Commercial Description: Standard service (i.e., alternating current) is available to any non-residential customer for single or three phase electric service. Direct Current service is only available in Minneapolis and St. Paul to the extent now used. Demand Charge (Direct Current Only) per Month per kW of Connected Load $3.03 DETERMINATION OF CUSTOMER BILLS Customer bills shall reflect energy charges (if applicable) based on customer's kWh usage, plus a customer charge (if applicable), plus demand charges (if applicable) based on customer's kW billing demand as defined. INTERIM RATE ADJUSTMENT A 4.49% Interim Rate Surcharge will be applied to rate components specified in the "Interim Rate Surcharge Rider." In addition, customer bills under this rate are subject to the following adjustments and/or charges. FUEL CLAUSE Bills are subject to the adjustments provided for in the Fuel Clause Rider. RESOURCE ADJUSTMENT Bills are subject to the adjustments provided for in the Conservation Improvement Program Adjustment Rider, the State Energy Policy Rate Rider, the Renewable Development Fund Rider, the Transmission Cost Recovery Rider, the Renewable Energy Standard Rider and the Mercury Cost Recovery Rider.

418

Public-Private Sector Media Partnerships  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public-Private Sector Public-Private Sector Media Partnerships Stacy Hunt, Confluence Communications March 1, 2012 Who is the Building America Retrofit Alliance (BARA)? * One of 10 industry teams funded in part by the U.S. Department of Energy's Building America program * Multidisciplinary and focused on building performance, multimedia content and program development, and EE/RE outreach Why are media partnerships important to Building America? * Access to large, loyal, qualified existing audiences * Tried and true communications channels, strategies, and materials * Often strong editorial voices and/or industry leadership positions Media Case Study The Cool Energy House Media Case Study What's Useful to Remodelers?

419

Yucca MountainTransportation: Private Sector Perspective  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation: Transportation: Private Sector "Lessons Learned" US Transport Council David Blee Executive Director dblee@ustransportcouncil.org DOE Transportation External Coordination (TEC) Working Group April 4, 2005 Phoenix, Arizona US Transport Council -- DOE TEC 4/4/05 2 US Transport Council Formed in 2002 during the Yucca Mountain Ratification debate to provide factual information on nuclear materials transportation, experience, safety & emergency planning Comprised of 24 member companies from the transport sector including suppliers and customers Principal focus is transport education, policy and business commerce related to nuclear materials transport US Transport Council -- DOE TEC 4/4/05 3 USTC Members AREVA BNFL, Inc Burns & Roe Cameco

420

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

422

Commercial Algae Management | Open Energy Information  

Open Energy Info (EERE)

Commercial Algae Management Jump to: navigation, search Name: Commercial Algae Management Address: 320 Arbor Lane Place: Franklin, NC Zip: 28734 Year Founded: 2002 Phone Number:...

423

DOE Commercial Reference Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings DOE Commercial Reference Buildings DOE Commercial Reference Buildings refbldgseuitables1-47-0.pdf More Documents & Publications Energy Information Agency's 2003...

424

Small Buildings Small Portfolio Commercial Upstream Incentive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Small Portfolio Commercial Upstream Incentive Project: Regional Roll-Out - 2014 BTO Peer Review Small Buildings Small Portfolio Commercial Upstream Incentive Project:...

425

International Fuel Services and Commercial Engagement | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Fuel Services and Commercial Engagement International Fuel Services and Commercial Engagement The Office of International Nuclear Energy Policy and Cooperation...

426

commercial buildings initiative | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Buildings Initiative The DOE Building Technologies Office works with the commercial building industry to accelerate the use of energy efficiency technologies in both...

427

Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliance Alliance Commercial Vehicle Safety Alliance North American Standard Level VI Inspection Program Update: Ensuring Safe Transportation of Radioactive Material Carlisle Smith Director, Hazardous Materials Programs Commercial Vehicle Safety Alliance Email: carlisles@cvsa.org Phone: 301-830-6147 CVSA Levels of Inspections Level I Full inspection Level II Walk Around - Driver - Vehicle Level III Driver - Paperwork Level IV Special Project - Generally focus on one item CVSA Levels of Inspections Level V Vehicle Only Level VI Enhanced RAM Level VII Jurisdictional Mandated * 8 basic classes/year held in various states * Prerequisites: CVSA Level I and HAZMAT certified * Industry attends course * To date 135 classes/2268 attendees * Currently 702 certified Level VI

428

Commercial SNF Accident Release Fractions  

SciTech Connect

The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M&O 1999). In contrast to bare unconfined fuel assemblies, the container that confines the fuel assemblies could provide an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. This analysis, however, does not take credit for the additional barrier and establishes only the total release fractions for bare unconfined intact commercial SNF assemblies, which may be conservatively applied to confined intact commercial I SNF assemblies.

J. Schulz

2004-11-05T23:59:59.000Z

429

Commercially Valuable Smart Grid Data  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 4, 2010 1 February 4, 2010 1 Commercially Valuable Smart Grid Data Commercially Valuable Smart Grid Data Question: What is the Department of Energy's (DOE's) approach for ensuring confidentiality of information that contains confidential and/or proprietary information that recipients are required to submit in carrying out their Metrics and Benefits Reporting Plan obligations? Answer: DOE does not anticipate requiring delivery of any "proprietary" information, i.e., confidential information developed at private expense outside the DOE grant. For data developed under a SGIG grant, DOE has the right to obtain and publish such data. However, certain "commercially valuable data" as set forth in more detail below, may be protected from publication.

430

Retail competition in the UK electricity sector  

E-Print Network (OSTI)

Retail competition in the UK electricity sector Stephen Littlechild Workshops on Retail Competition Santiago, Chile 16 &17 March 2006 #12;Outline · Why retail competition? · Preparations and large user;Why retail competition? · Wholesale competition to deliver most efficient pattern of generation

Rudnick, Hugh

431

Australian telecommunications: Private sector at arms' length  

Science Journals Connector (OSTI)

... has been busily reversing the free-market bent of Mr Malcolm Eraser's policy on telecommunications in order to keep it in the public sector. The latest policy reversal is ... year. But it seems the government has now given in to pressure from the Australian Telecommunications Employees' Association which was against private ownership. The decreased deficit in the August budget ...

Vimala Sarma

1983-12-08T23:59:59.000Z

432

NATURAL GAS ADVISORY COMMITTEE Name Affiliation Sector  

E-Print Network (OSTI)

NATURAL GAS ADVISORY COMMITTEE 2011-2013 Name Affiliation Sector Dernovsek, David Bonneville Power Defenbach, Byron Intermountain Gas Distribution Dragoon, Ken NWPCC Council Friedman, Randy NW Natural Gas Distribution Gopal, Jairam Southern CA Edison Electric Utility Hamilton, Linda Shell Trading Gas & Power

433

Training & Research in the Indian Power Sector  

E-Print Network (OSTI)

Training & Research in the Indian Power Sector An academic perspective Rangan Banerjee, Energy requirements, financing investments, providing reliable electricity at affordable costs #12;Need for Training France ­ Power Generation & Transmission Group ­ Average 80 hours of training/year (14% of budget) 3

Banerjee, Rangan

434

SUPPLIERS WITHIN AN ECOLOGICALLY AWARE AUTOMOTIVE SECTOR  

E-Print Network (OSTI)

1 SUPPLIERS WITHIN AN ECOLOGICALLY AWARE AUTOMOTIVE SECTOR 1 Overview on the theme It is clear, materials recyclers and shredders, as represented in figure 1. Figure 1 - Automobile life cycle and the hulk are sent to shredders. The shredder reduces the hulk to small pieces, with around 10 cm each

Instituto de Sistemas e Robotica

435

Rabi multi-sector reservoir simulation model  

SciTech Connect

To ensure optimum ultimate recovery of the 46 meter thick oil rim of the Rabi Field in Gabon, a full field simulation model was required. Due to it`s size and complexity, with local cusping, coning and geological circumstances dominating individual well behavior, a single full field model would be too large for existing hardware. A method was developed to simulate the full field with 5 separate sector models, whilst allowing the development in one sector model to have an effect on the boundary conditions of another sector. In this manner, the 13 x 4.5 km field could be simulated with a horizontal well spacing down to 175 meter. This paper focuses on the method used to attach single 3-phase tank cells to a sector simulation grid in order to represent non-simulated parts of the field. It also describes the history matching methodology and how to run a multisector model in forecasting mode. This method can be used for any reservoir, where size and complexity require large reservoir simulation models that normally could not be modeled within the constraints of available computer facilities. Detailed studies can be conducted on specific parts of a field, whilst allowing for dynamic flow and pressure effects caused by the rest of the field.

Bruijnzeels, C.; O`Halloran, C.

1995-12-31T23:59:59.000Z

436

The Bamble Sector, South Norway: A review  

Science Journals Connector (OSTI)

Abstract The Proterozoic Bamble Sector, South Norway, is one of the world's classic amphibolite- to granulite-facies transition zones. It is characterized by a well-developed isograd sequence, with isolated granulite-facies islands in the amphibolite-facies portion of the transition zone. The area is notable for the discovery of CO2-dominated fluid inclusions in the granulite-facies rocks by Jacques Touret in the late 1960's, which triggered discussion of the role of carbonic fluids during granulite genesis. The aim of this review is to provide an overview of the current state of knowledge of the Bamble Sector, with an emphasis on the Arendal-Froland-Nelaug-Tvedestrand area and off shore islands (most prominantly Tromy and Hisy) where the transition zone is best developed. After a brief overview of the history of geological research and mining in the area, aspects of sedimentary, metamorphic and magmatic petrology of the Bamble Sector are discussed, including the role of fluids. Issues relevant to current geotectonic models for SW Scandinavia, directly related to the Bamble Sector, are discussed at the end of the review.

Timo G. Nijland; Daniel E. Harlov; Tom Andersen

2014-01-01T23:59:59.000Z

437

WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE  

E-Print Network (OSTI)

WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE WARMING IN THE SIERRA NEVADA: Water Year explores the sensitivity of water indexing methods to climate change scenarios to better understand how water management decisions and allocations will be affected by climate change. Many water management

438

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Plumbing Products Test Procedure Plumbing Products Test Procedure Sign up for e-mail updates on regulations for this and other products The Department of Energy has proposed to update its test procedures for showerheads, faucets, water closets, urinals,and commercial prerinse spray valves, collectively known as plumbing products. This activity is mandated by the Energy Policy and Conservation Act of 2007 (EPCA). Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a final rule regarding test procedures for showerheads, faucets, water closets, urinals, and commercial prerinse spray valves. 78 FR 62970 (October 23, 2013). Public Meeting Information

439

China's industrial sector in an international context  

SciTech Connect

The industrial sector accounts for 40% of global energy use. In 1995, developing countries used an estimated 48 EJ for industrial production, over one-third of world total industrial primary energy use (Price et al., 1998). Industrial output and energy use in developing countries is dominated by China, India, and Brazil. China alone accounts for about 30 EJ (National Bureau of Statistics, 1999), or about 23% of world industrial energy use. China's industrial sector is extremely energy-intensive and accounted for almost 75% of the country's total energy use in 1997. Industrial energy use in China grew an average of 6.6% per year, from 14 EJ in 1985 to 30 EJ in 1997 (Sinton et al., 1996; National Bureau of Statistics, 1999). This growth is more than three times faster than the average growth that took place in the world during the past two decades. The industrial sector can be divided into light and heavy industry, reflecting the relative energy-intensity of the manufacturing processes. In China, about 80% of the energy used in the industrial sector is consumed by heavy industry. Of this, the largest energy-consuming industries are chemicals, ferrous metals, and building materials (Sinton et al., 1996). This paper presents the results of international comparisons of production levels and energy use in six energy-intensive subsectors: iron and steel, aluminum, cement, petroleum refining, ammonia, and ethylene. The sectoral analysis results indicate that energy requirements to produce a unit of raw material in China are often higher than industrialized countries for most of the products analyzed in this paper, reflecting a significant potential to continue to improve energy efficiency in heavy industry.

Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

2000-05-01T23:59:59.000Z

440

Technology data characterizing refrigeration in commercial buildings: Application to end-use forecasting with COMMEND 4.0  

SciTech Connect

In the United States, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of the refrigeration end use in terms of specific technologies, however, is complicated by several factors. First, the number of configurations of refrigeration cases and systems is quite large. Also, energy use is a complex function of the refrigeration-case properties and the refrigeration-system properties. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. Expanding end-use forecasting models so that they address individual technology options requires characterization of the present floorstock in terms of service requirements, energy technologies used, and cost-efficiency attributes of the energy technologies that consumers may choose for new buildings and retrofits. This report describes the process by which we collected refrigeration technology data. The data were generated for COMMEND 4.0 but are also generally applicable to other end-use forecasting frameworks for the commercial sector.

Sezgen, O.; Koomey, J.G.

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Data:C7742db5-6ec9-4602-9120-d01cf53c6c62 | Open Energy Information  

Open Energy Info (EERE)

db5-6ec9-4602-9120-d01cf53c6c62 db5-6ec9-4602-9120-d01cf53c6c62 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Haywood Electric Member Corp Effective date: 2012/06/01 End date if known: Rate name: REPS Renewable Energy Portfolio Standard Rider Commercial Sector: Commercial Description: APPLICABILITY Service under this Rider is applicable to all retail consumers of the Cooperative for the recovery of the Cooperative's incremental costs associated with meeting their Renewable Energy Portfolio Standard (REPS) pursuant to North Carolina General Statute 62-133.8 and NCUC Rule R8-67. This Rider is not for resale service. The provisions of the Schedule with which this Rider is used are modified only as shown herein. Service rendered under this Rider is subject to the provisions of the Cooperative's Service Rules and Regulations on file with the state regulatory commission.

442

Commercial Building Energy Asset Score Program  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet summarizing the Building Technologies Program's commercial building energy asset score program

443

Today in Energy - commercial consumption & efficiency  

Reports and Publications (EIA)

Short, timely articles with graphs about recent commercial consumption and efficiency issues and trends.

2028-01-01T23:59:59.000Z

444

Massachusetts Municipal Commercial Industrial Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Ventilation Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Maximum Rebate Varies depending on utility Program Info Start Date Varies Expiration Date Varies State Massachusetts Program Type Utility Rebate Program Rebate Amount Varies depending on utility Provider Massachusetts Municipal Wholesale Electric Company Certain municipal utilities in Massachusetts, in cooperation with

445

Energy Optimization (Electric) - Commercial Efficiency Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Optimization (Electric) - Commercial Efficiency Program Energy Optimization (Electric) - Commercial Efficiency Program Energy Optimization (Electric) - Commercial Efficiency Program < Back Eligibility Commercial Industrial Savings Category Other Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate General: See program web site Custom: 50% of project cost Program Info Expiration Date 12/31/2013 State Michigan Program Type Utility Rebate Program Rebate Amount Custom: $0.06/kWh/yr saved CFL Bulbs: $1 - $5 CFL Fixtures: $22/fixture High Performance T8 Lighting Retrofit: $4-$20/fixture retrofit

446

Lighting Controls in Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Controls in Commercial Buildings Lighting Controls in Commercial Buildings Title Lighting Controls in Commercial Buildings Publication Type Report Year of Publication 2012 Authors Williams, Alison A., Barbara A. Atkinson, Karina Garbesi, Erik Page, and Francis M. Rubinstein Series Title The Journal of the Illuminating Engineering Society of North America Volume 8 Document Number 3 Pagination 161-180 Date Published January ISBN Number 1550-2716 Keywords controls, daylighting, energy, occupancy sensors, tuning. Abstract Researchers have been quantifying energy savings from lighting controls in commercial buildings for more than 30 years. This study provides a meta-analysis of lighting energy savings identified in the literature-240 savings estimates from 88 papers and case studies, categorized into daylighting strategies, occupancy strategies, personal tuning, and institutional tuning. Beginning with an overall average of savings estimates by control strategy, successive analytical filters are added to identify potential biases introduced to the estimates by different analytical approaches. Based on this meta-analysis, the bestestimates of average lighting energy savings potential are 24 percent for occupancy, 28 percent for daylighting, 31 percent for personal tuning, 36 percent for institutional tuning, and 38 percent for multiple approaches. The results also suggest that simulations significantly overestimate (by at least 10 percent) the average savings obtainable from daylighting in actual buildings.

447

The NASA Food Commercial Space  

E-Print Network (OSTI)

The NASA Food Technology Commercial Space Center and How Your Company Can Participate space in a range of food development projects. For more information about NASA FTCSC or to arrange a presentation about the NASA FTCSC program, contact Dr. Anthony L. Pometto III Director NASA Food Technology

Lin, Zhiqun

448

Covered Product Category: Commercial Boilers  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for commercial boilers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

449

Covered Product Category: Commercial Fryers  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance across a variety of product categories, including commercial fryers, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

450

Covered Product Category: Commercial Dishwashers  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial dishwashers, which is a product category covered by the ENERGY STAR program. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

451

International Commercial Vehicle Technology Symposium  

E-Print Network (OSTI)

Cluster (CVC), the Fraunhofer Innovations Cluster for Digital Commercial Vehicle Technology (DNT Fraunhofer Innovation Cluster DNT/FUMI, Fraunhofer ITWM Opening of exhibition and come together WEDNESDAY, 12 innovation projects between the industry and the scientific fraternity. A network like the CVA works like

Steidl, Gabriele

452

REPORT OF THE COMMERCIAL FISHERIES  

E-Print Network (OSTI)

REPORT OF THE BUREAU OF COMMERCIAL FISHERIES BIOLOGICAL LABORATORY GALVESTON, TEXAS FISCAL YEAR, GALVESTON, TEXAS Fiscal Year 1967 Milton J. Lindner, Director Robert E. Stevenson, Assistant Director Contribution No. Z6l, Bureau of Connmercial Fisheries Biological Laboratory, Galveston, Texas Circular 295

453

Commercial Equipment Testing Enforcement Policies  

Energy.gov (U.S. Department of Energy (DOE))

In an exercise of its enforcement discretion, under specific conditions, DOE will not perform assessment testing, verification testing, or enforcement testing on units of certain types of commercial equipment if the manufacturer distributes in commerce an otherwise identical unit that does not have that feature.

454

Table 3. 2010 state energy-related carbon dioxide emissions by sector  

U.S. Energy Information Administration (EIA) Indexed Site

2010 state energy-related carbon dioxide emissions by sector " 2010 state energy-related carbon dioxide emissions by sector " "million metric tons of carbon dioxide" "State","Commercial","Electric Power","Residential","Industrial","Transportation","Total" "Alabama",2.103862865,76.71236863,2.835897119,17.71721059,33.37693698,132.7462762 "Alaska",2.497277997,3.042968925,1.789261448,16.61816292,14.7795124,38.72718369 "Arizona",2.373783271,54.37078005,2.325955921,4.76376875,32.07874715,95.91303514 "Arkansas",2.566776983,32.30865878,2.320262268,8.646911643,20.27679552,66.11940519 "California",15.93482613,43.49564577,28.92778352,67.46363514,213.9882899,369.8101805 "Colorado",4.150125234,39.85763155,7.82954551,14.90850811,29.73188961,96.47770002

455

AEO2011: Energy Consumption by Sector and Source - Middle Atlantic | OpenEI  

Open Energy Info (EERE)

Middle Atlantic Middle Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 2, and contains only the reference case. The dataset uses quadrillion btu. The energy consumption data is broken down by sector (residential, commercial, industrial, transportation, electric power) as well as source, and also provides total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA middle atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Middle Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment

456

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

7 7 Range 10 4 48 Clothes Dryer 359 (2) 4 49 Water Heating Water Heater-Family of 4 40 64 (3) 26 294 Water Heater-Family of 2 40 32 (3) 12 140 Note(s): Source(s): 1) $1.139/therm. 2) Cycles/year. 3) Gallons/day. A.D. Little, EIA-Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case, Sept. 2, 1998, p. 30 for range and clothes dryer; LBNL, Energy Data Sourcebook for the U.S. Residential Sector, LBNL-40297, Sept. 1997, p. 62-67 for water heating; GAMA, Consumers' Directory of Certified Efficiency Ratings for Heating and Water Heating Equipment, Apr. 2002, for water heater capacity; and American Gas Association, Gas Facts 1998, December 1999, www.aga.org for range and clothes dryer consumption. Operating Characteristics of Natural Gas Appliances in the Residential Sector

457

AEO2011: Energy Consumption by Sector and Source - South Atlantic | OpenEI  

Open Energy Info (EERE)

South Atlantic South Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 5, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption sector South Atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - South Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

458

Review of private sector treatment, storage, and disposal capacity for radioactive waste. Revision 1  

SciTech Connect

This report is an update of a report that summarized the current and near-term commercial and disposal of radioactive and mixed waste. This report was capacity for the treatment, storage, dating and written for the Idaho National Engineering Laboratory (INEL) with the objective of updating and expanding the report entitled ``Review of Private Sector Treatment, Storage, and Disposal Capacity for Radioactive Waste``, (INEL-95/0020, January 1995). The capacity to process radioactively-contaminated protective clothing and/or respirators was added to the list of private sector capabilities to be assessed. Of the 20 companies surveyed in the previous report, 14 responded to the request for additional information, five did not respond, and one asked to be deleted from the survey. One additional company was identified as being capable of performing LLMW treatability studies and six were identified as providers of laundering services for radioactively-contaminated protective clothing and/or respirators.

Smith, M.; Harris, J.G.; Moore-Mayne, S.; Mayes, R.; Naretto, C.

1995-04-14T23:59:59.000Z

459

Ecofys-Sectoral Proposal Templates | Open Energy Information  

Open Energy Info (EERE)

Ecofys-Sectoral Proposal Templates Ecofys-Sectoral Proposal Templates Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Ecofys Sectoral Proposal Templates Agency/Company /Organization: Ecofys Partner: GtripleC Sector: Energy, Land Phase: Determine Baseline Topics: Baseline projection, GHG inventory, Low emission development planning Resource Type: Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.sectoral-approaches.net/ Cost: Free References: Ecofys Sectoral Proposal Templates[1] The 'Sectoral Proposal Templates' aim at supporting developing countries in proposing sectoral emission baselines under a post-Kyoto climate regime. The sectoral approach underlying this work is seen as a means to scale-up investments in clean technology and systems in developing countries.

460

A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings  

SciTech Connect

Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

2013-06-06T23:59:59.000Z

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Home Energy Checkup/Commercial Energy Checkup | Open Energy Information  

Open Energy Info (EERE)

Checkup/Commercial Energy Checkup Checkup/Commercial Energy Checkup Jump to: navigation, search Name Home Energy Checkup/Commercial Energy Checkup Address 20 High Street Suite 315 Place Hamilton, Ohio Zip 45011 Sector Buildings, Efficiency, Geothermal energy, Renewable Energy, Solar Product String representation "Agriculture;Bus ... education;Other" is too long. Phone number 513-939-9194 Website http://www.homeenergycheckup.c Coordinates 39.4005755°, -84.5637389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4005755,"lon":-84.5637389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

Economic Development and the Structure of the Demand for Commercial Energy Ruth A. Judson, Richard Schmalensee and Thomas M. Stoker*  

E-Print Network (OSTI)

development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption in major economic sectors to per- capita GDP. Panel data covering up to 123 nations are employedEconomic Development and the Structure of the Demand for Commercial Energy Ruth A. Judson, Richard

463

Data:05837181-6193-4812-b34e-7f4db7e28eea | Open Energy Information  

Open Energy Info (EERE)

181-6193-4812-b34e-7f4db7e28eea 181-6193-4812-b34e-7f4db7e28eea No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Edgecombe-Martin County E M C Effective date: 2006/08/01 End date if known: Rate name: GENERAL SERVICE Single Phase(Small Renewable Generation Rider) Sector: Commercial Description: AVAILABILITY: Electric service is available under this Schedule in the territory served by the Cooperative for nonresidential use with less than 100 kVA of transformer capacity. Resale and standby services are not permitted. Rates are subject to wholesale power cost adjustments, power factor adjustments,a North Carolina Sales Tax and Rider EE (Energy Efficiency Rider).

464

Technologies for Climate Change Mitigation: Transport Sector | Open Energy  

Open Energy Info (EERE)

Technologies for Climate Change Mitigation: Transport Sector Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector Agency/Company /Organization: Global Environment Facility, United Nations Environment Programme Sector: Energy, Climate Focus Area: Transportation Topics: Low emission development planning Resource Type: Guide/manual Website: tech-action.org/Guidebooks/TNAhandbook_Transport.pdf Cost: Free Technologies for Climate Change Mitigation: Transport Sector Screenshot References: Technologies for Climate Change Mitigation: Transport Sector[1] "The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries

465

Property:Sector | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Sector Jump to: navigation, search This is a property of type Page. Subproperties This property has the following 1 subproperty: G Green Economy Toolbox Pages using the property "Sector" Showing 25 pages using this property. (previous 25) (next 25) 1 1 Solar Inc + Renewable Energy +, Solar + 1.5-ft Wave Flume Facility + Hydro + 10-ft Wave Flume Facility + Hydro + 11-ft Wave Flume Facility + Hydro + 12 Voltz Limited + Renewable Energy +, Solar +, Wind energy + 1366 Technologies + Solar + 1st Light Energy, Inc. + Solar + 2 2-ft Flume Facility + Hydro + 2008 Solar Technologies Market Report + Renewable Energy +, Solar +, Concentrating solar power +, ... 2010 Carbon Sequestration Atlas of the United States and Canada: Third Edition + Clean Fossil Energy +

466

Climate VISION: Private Sector Initiatives: Progress Report  

Office of Scientific and Technical Information (OSTI)

PROGRESS REPORT PROGRESS REPORT Progress Report NEWS MEDIA CONTACT: Megan Barnett, (202) 586-4940 FOR IMMEDIATE RELEASE Friday, February 8, 2008 DOE Releases Climate VISION Progress Report 2007 Outlines Industry Progress in Reducing Greenhouse Gas Emissions Intensity through Climate VISION Partnership WASHINGTON, DC - The U.S. Department of Energy (DOE) today released the Climate VISION Progress Report 2007, which reports on the actions taken by energy-intensive industries to improve greenhouse gas emissions intensity of their operations from 2002 to 2006. The report indicates that the power and energy-intensive industrial sectors improved their combined emissions intensity by 9.4 percent over this four year period, and in 2006, actual greenhouse gas emissions for these sectors fell a combined 1.4 percent.

467

Climate VISION: Private Sector Initiatives: Chemical Manufacturing  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements American Chemistry Council (ACC), representing 85% of the chemical industry production in the U.S., has agreed American Chemistry Council Logo to an overall greenhouse gas intensity reduction target of 18% by 2012 from 1990 levels. ACC will measure progress based on data collected directly from its members. ACC also pledges to support the search for new products and pursue innovations that help other industries and sectors achieve the President's goal. Activities include increased production efficiencies, promoting coal gasification technology, increasing bio-based processes, and, most importantly, developing efficiency-enabling products for use in other sectors, such as appliance transportation and construction. The following documents are available for download as Adobe PDF documents.

468

Laser experiments explore the hidden sector  

E-Print Network (OSTI)

Recently, the laser experiments BMV and GammeV, searching for light shining through walls, have published data and calculated new limits on the allowed masses and couplings for axion-like particles. In this note we point out that these experiments can serve to constrain a much wider variety of hidden-sector particles such as, e.g., minicharged particles and hidden-sector photons. The new experiments improve the existing bounds from the older BFRT experiment by a factor of two. Moreover, we use the new PVLAS constraints on a possible rotation and ellipticity of light after it has passed through a strong magnetic field to constrain pure minicharged particle models. For masses <~0.05 eV, the charge is now restricted to be less than (3-4)x10^(-7) times the electron electric charge. This is the best laboratory bound and comparable to bounds inferred from the energy spectrum of the cosmic microwave background.

M. Ahlers; H. Gies; J. Jaeckel; J. Redondo; A. Ringwald

2007-11-30T23:59:59.000Z

469

Mapping expert perspectives of the aviation sector  

Science Journals Connector (OSTI)

Aviation globally is characterised by significant change and consequently the future of the sector has always been difficult to predict. This study adopts a systemic approach based on findings from exploratory interviews with UK aviation academics to: determine the roles of stakeholders in the air transport system; report the current issues facing the sector; explore how these issues interact and impact on the stakeholders in the system; and speculate on the future implications. Six core stakeholders are identified: airlines, airports, consumers, manufacturers, governing institutions and interest groups. Nine core issues are reported, namely: local environment, climate change, peak oil, the state of the economy, social norms, demographics, disruptive events, national (or international) regulations and capacity. A matrix of interactions and their impacts and implications for managing the aviation system is then presented.

Namasoondrum P. Mootien; James P. Warren; Dick Morris; Marcus P. Enoch

2013-01-01T23:59:59.000Z

470

The Lepton Sector of a Fourth Generation  

E-Print Network (OSTI)

In extensions of the standard model with a heavy fourth generation one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

Gustavo Burdman; Leandro Da Rold; Ricardo D. Matheus

2010-05-10T23:59:59.000Z

471

Trends in Commercial Buildings--Trends in Energy Consumption and Energy  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption and Energy Sources - Part 1 Energy Consumption and Energy Sources - Part 1 Part 2. Energy Intensity Data Tables Total Energy Consumption Consumption by Energy Source Background: Site and Primary Energy Trends in Energy Consumption and Energy Sources Part 1. Energy Consumption The CBECS collects energy consumption statistics from energy suppliers for four major energy sources—electricity, natural gas, fuel oil, and district heat—and collects information from the sampled buildings on the use of the four major sources and other energy sources (e.g., district chilled water, solar, wood). Energy consumed in commercial buildings is a significant fraction of that consumed in all end-use sectors. In 2000, about 17 percent of total energy was consumed in the commercial sector. Total Energy Consumption

472

Implications for decision making: Industrial sector perspectives  

SciTech Connect

Implications for decision making in areas related to policy towards greenhouse gas emissions are discussed from the perspective of the industrial sector. Industry is presented as supportive of energy conservation measures in spite of the large uncertainties in the global warming issue. Perspectives of developed and developing countries are contrasted, and carbon dioxide emissions are compared. Socioeconomic implications of reducing greenhouse gas emissions, particularly in the form of higher prices for goods and services, are outlined.

Mangelsdorf, F.E. [Texaco, Inc., Beacon, NY (United States)

1992-12-31T23:59:59.000Z

473

AEO2011: Energy Consumption by Sector and Source - East South Central |  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 6, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Commercial East South Central EIA Electric Power Energy Consumption Industrial Residential transportation Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - East South Central- Reference Case (xls, 297.5 KiB) Quality Metrics Level of Review Peer Reviewed

474

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Clothes Washers Clothes Washers Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of residential clothes washers since 1988. Residential clothes washers use a water solution of soap and/or detergent and mechanical agitation or other movement to clean clothes. These include automatic, semi-automatic, and "other" clothes washers (known collectively as "clothes washer products"). This category does not include commercial clothes washers used in commercial settings, multifamily housing, or coin laundries. Standards put in place in 1994, 2004, and 2007 will save approximately 16.4 quads of energy and result in approximately $346.2 billion in energy bill savings for products shipped from 1994-2036. The standards will avoid about 870.2 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of about 170.6 million automobiles.

475

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Intensity Discharge Lamps High-Intensity Discharge Lamps Sign up for e-mail updates on regulations for this and other products There are currently no energy conservation standards for high-intensity discharge (HID) lamps. HID lamps are electric discharge lamps and include high-pressure sodium, mercury vapor, and metal halide lamps. HID lamps require an HID ballast to start and regulate electric current flow through the lamp. HID lamps are used in street and roadway lighting, area lighting such as for parking lots and plazas, industrial and commercial building interior lighting, security lighting for commercial, industrial, and residential spaces, and landscape lighting. The Standards and Test Procedures for this product are related to Rulemaking for High Intensity Discharge Lamps Energy Conservation Standard and Rulemaking for High Intensity Discharge Lamps Test Procedures.

476

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Single Package Vertical Air Conditioners and Heat Pumps Single Package Vertical Air Conditioners and Heat Pumps Sign up for e-mail updates on regulations for this and other products Manufacturers have been required to comply with the Department of Energy's energy conservation standards for single package vertical air conditioners and heat pumps as a separate equipment class since 2008. Before 2010, this equipment was regulated under the broader scope of commercial air conditioning and heating equipment. Single package vertical air conditioners and heat pumps are commercial air conditioning and heating equipment with its main components arranged in a vertical fashion. They are mainly used in modular classrooms, modular office buildings, telecom shelters, and hotels, and are typically installed on the outside of an exterior wall or in a closet against an exterior wall but inside the building.

477

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Full Report Full Report Energy Information Administration > Commercial Buildings Energy Consumption Survey > Overview of Commercial Buildings Overview of Commercial Buildings, 2003 Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: ● total nearly 4.9 million buildings ● comprise more than 71.6 billion square feet of floorspace ● consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1) ●

478

Barron Electric Cooperative - Commercial, Industrial, and Agricultural  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Barron Electric Cooperative - Commercial, Industrial, and Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $10,000 per account, not to exceed 20% of cost Scroll Refrigeration Compressors: $500 Variable Speed/Frequency Drive Motor: $500 Variable Speed Compressed Air Motor: $500 Energy Audit: One in Five Years Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Energy Audit: Free General Lighting: $1 - $15/unit LED Lamps: $2/bulb

479

Burlington Electric Department - Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Burlington Electric Department - Commercial Energy Efficiency Burlington Electric Department - Commercial Energy Efficiency Rebate Program Burlington Electric Department - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Savings Category Manufacturing Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heating Heat Pumps Commercial Lighting Lighting Maximum Rebate Rebates exceeding $5,000 require pre-approval by BED prior to purchase Buildings exceeding 10,000 square feet must consult BED regarding rebates prior to purchase Program Info State Vermont Program Type Utility Rebate Program Rebate Amount Lighting: See Program Website HVAC Air Conditioners/Heat Pumps: $50 - $100/ton Integrated Dual Enthalpy Economizer Controls: $250/controlled unit Ventilation Fans: $35 - $60

480

Roseville Electric - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Energy Efficiency Rebate Program Commercial Energy Efficiency Rebate Program Roseville Electric - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Appliances & Electronics Commercial Lighting Lighting Home Weatherization Insulation Design & Remodeling Windows, Doors, & Skylights Program Info Expiration Date 6/30/2013 State California Program Type Utility Rebate Program Rebate Amount Unitary AC/Heat Pump: $120/ton or $500/ton Package Terminal AC/Heat Pumps: $125/unit Variable Frequency Drive: $120/hp Variable Speed Motor: $75/hp Window Film: $4/sq ft Shade Tree: $30/tree Desktop Computer Network Controller: $10/computer Cold Cathode Lamps: $4/lamp Ceramic Metal Halide: $20/lamp

Note: This page contains sample records for the topic "rider sector commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liberty Utilities (Electric) - Commercial Energy Efficiency Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive Programs Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive Programs < Back Eligibility Commercial Industrial Local Government Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom Incentives: amount that buys down the cost of the project to a 1 year simple payback Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount Custom Retrofits and Engineering Studies: 50% of project cost Fluorescent Lighting: $10-$50 High Bay: $70 or $100 (retrofit) Metal Halide: $50 or $70 LED Exit Signs: $12 LED Traffic Signals: $50

482

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > Overview of Commercial Buildings Print Report: PDF Overview of Commercial Buildings, 2003 Introduction | Trends | Major Characteristics Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: total nearly 4.9 million buildings comprise more than 71.6 billion square feet of floorspace consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1)

483

Liberty Utilities (Gas) - Commercial Energy Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liberty Utilities (Gas) - Commercial Energy Efficiency Programs Liberty Utilities (Gas) - Commercial Energy Efficiency Programs Liberty Utilities (Gas) - Commercial Energy Efficiency Programs < Back Eligibility Commercial Industrial Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Construction Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Custom Projects: $100,000 (existing facilities); $250,000 (new construction) Energy Efficiency Engineering Study: $10,000 Steam Traps: $2500 Programmable Thermostats: up to five units Boiler Reset Controls: up to two units Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount

484

Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral  

Open Energy Info (EERE)

Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral Approach Jump to: navigation, search Tool Summary Name: Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral Approach Agency/Company /Organization: GTZ Sector: Energy Focus Area: Transportation Topics: Implementation, Pathways analysis Resource Type: Publications Website: www.transport2012.org/bridging/ressources/files/1/817,Transport_sector Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral Approach Screenshot References: Reducing Emissions Through Sustainable Transport[1] Summary "The large mitigation potential and associated co-benefits of taking action in the land transport sector can be tapped into by a sectoral approach drawing financial resources from a transport window, in the short term

485

Private Sector Outreach and Partnerships | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to respond to the needs of the sector and the nation. The division's domestic capabilities have been greatly enhanced by the relationships that have been created over years of collaborations with companies from all parts the sector, including electricity, oil, and natural gas. Specific mission areas, such as risk and system analysis, modeling and visualization across subsectors, and incident response would not be possible without the participation of the private sector. The relationships ISER maintains with energy sector owners and operators and public associations representing energy subsectors, including the American

486

Vehicle Technologies Office: Fact #610: February 15, 2010 All Sectors'  

NLE Websites -- All DOE Office Websites (Extended Search)

10: February 15, 10: February 15, 2010 All Sectors' Petroleum Gap to someone by E-mail Share Vehicle Technologies Office: Fact #610: February 15, 2010 All Sectors' Petroleum Gap on Facebook Tweet about Vehicle Technologies Office: Fact #610: February 15, 2010 All Sectors' Petroleum Gap on Twitter Bookmark Vehicle Technologies Office: Fact #610: February 15, 2010 All Sectors' Petroleum Gap on Google Bookmark Vehicle Technologies Office: Fact #610: February 15, 2010 All Sectors' Petroleum Gap on Delicious Rank Vehicle Technologies Office: Fact #610: February 15, 2010 All Sectors' Petroleum Gap on Digg Find More places to share Vehicle Technologies Office: Fact #610: February 15, 2010 All Sectors' Petroleum Gap on AddThis.com... Fact #610: February 15, 2010 All Sectors' Petroleum Gap

487

Fact #610: February 15, 2010 All Sectors' Petroleum Gap | Department...  

Energy Savers (EERE)

10: February 15, 2010 All Sectors' Petroleum Gap Fact 610: February 15, 2010 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the...

488

Fact #561: March 9, 2009 All Sectors' Petroleum Gap  

Energy.gov (U.S. Department of Energy (DOE))

Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial,...

489

Fact #688: August 15, 2011 All Sectors' Petroleum Gap | Department...  

Energy Savers (EERE)

8: August 15, 2011 All Sectors' Petroleum Gap Fact 688: August 15, 2011 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the...

490

ANL Study Shows Wind Power Decreases Power Sector Emissions ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ANL Study Shows Wind Power Decreases Power Sector Emissions ANL Study Shows Wind Power Decreases Power Sector Emissions May 1, 2012 - 3:38pm Addthis This is an excerpt from the...

491

Oil prices and transport sector returns: an international analysis  

Science Journals Connector (OSTI)

This study examines the role of oil prices in explaining transport sector equity returns ... study are strongly supportive of some role for oil prices in determining the transport sector returns for ... asymmet...

Mohan Nandha; Robert Brooks

2009-11-01T23:59:59.000Z

492

Convergence of carbon dioxide emissions in different sectors in China  

Science Journals Connector (OSTI)

Abstract In this paper, we analyze differences in per capita carbon dioxide emissions from 1996 to 2010 in six sectors across 28 provinces in China and examine the ?-convergence, stochastic convergence and ?-convergence of these emissions. We also investigate the factors that impact the convergence of per capita carbon dioxide emissions in each sector. The results show that per capita carbon dioxide emissions in all sectors converged across provinces from 1996 to 2010. Factors that impact the convergence of per capita carbon dioxide emissions in each sector vary: GDP (gross domestic product) per capita, industrialization process and population density impact convergence in the Industry sector, while GDP per capita and population density impact convergence in the Transportation, Storage, Postal, and Telecommunications Services sector. Aside from GDP per capita and population density, trade openness also impacts convergence in the Wholesale, Retail, Trade, and Catering Service sector. Population density is the only factor that impacts convergence in the Residential Consumption sector.

Juan Wang; Kezhong Zhang

2014-01-01T23:59:59.000Z

493

California commercial building energy benchmarking  

SciTech Connect

Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct