Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table 2 -Lime use and practices on Corn, major producing states, 2001 CO GA IL IN IA KS KY MI MN MO NE NY NC ND OH PA SD TX WI Area  

E-Print Network [OSTI]

Table 2 - Lime use and practices on Corn, major producing states, 2001 CO GA IL IN IA KS KY MI MN.7 Table 2 - Lime use and practices on Corn, major producing states, 2000 CO IL IN IA KS KY MI MN MO NE NY use and practices on Corn, major producing states, 1999 CO IL IN IA KS KY MI MN MO NE NC OH SD TX WI

Kammen, Daniel M.

2

?? / Kagaku / ?? /Ky?ri: Science  

E-Print Network [OSTI]

question when considering science and technology in Japanese?? /Kagaku / ?? /Ky?ri: Science Tsukahara T?go Translationto incorporate and develop science and technology from the

Tsukahara, T?go

2012-01-01T23:59:59.000Z

3

Category:Amarillo, TX | Open Energy Information  

Open Energy Info (EERE)

Amarillo, TX Amarillo, TX Jump to: navigation, search Go Back to PV Economics By Location Media in category "Amarillo, TX" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Amarillo TX CPS Energy.png SVFullServiceRestauran... 62 KB SVHospital Amarillo TX CPS Energy.png SVHospital Amarillo TX... 66 KB SVLargeHotel Amarillo TX CPS Energy.png SVLargeHotel Amarillo ... 61 KB SVLargeOffice Amarillo TX CPS Energy.png SVLargeOffice Amarillo... 59 KB SVMediumOffice Amarillo TX CPS Energy.png SVMediumOffice Amarill... 62 KB SVMidriseApartment Amarillo TX CPS Energy.png SVMidriseApartment Ama... 61 KB SVOutPatient Amarillo TX CPS Energy.png SVOutPatient Amarillo ... 60 KB SVPrimarySchool Amarillo TX CPS Energy.png SVPrimarySchool Amaril... 61 KB SVQuickServiceRestaurant Amarillo TX CPS Energy.png

4

EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...  

Broader source: Energy.gov (indexed) [DOE]

2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412:...

5

US WSC TX Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

6

US WSC TX Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

7

Category:Houston, TX | Open Energy Information  

Open Energy Info (EERE)

TX TX Jump to: navigation, search Go Back to PV Economics By Location Media in category "Houston, TX" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Houston TX Entergy Texas Inc..png SVFullServiceRestauran... 73 KB SVHospital Houston TX Entergy Texas Inc..png SVHospital Houston TX ... 74 KB SVLargeHotel Houston TX Entergy Texas Inc..png SVLargeHotel Houston T... 74 KB SVLargeOffice Houston TX Entergy Texas Inc..png SVLargeOffice Houston ... 74 KB SVMediumOffice Houston TX Entergy Texas Inc..png SVMediumOffice Houston... 78 KB SVMidriseApartment Houston TX Entergy Texas Inc..png SVMidriseApartment Hou... 77 KB SVOutPatient Houston TX Entergy Texas Inc..png SVOutPatient Houston T... 75 KB SVPrimarySchool Houston TX Entergy Texas Inc..png

8

Category:Providence, RI | Open Energy Information  

Open Energy Info (EERE)

RI RI Jump to: navigation, search Go Back to PV Economics By Location Media in category "Providence, RI" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Providence RI The Narragansett Electric Co.png SVFullServiceRestauran... 66 KB SVQuickServiceRestaurant Providence RI The Narragansett Electric Co.png SVQuickServiceRestaura... 66 KB SVHospital Providence RI The Narragansett Electric Co.png SVHospital Providence ... 60 KB SVLargeHotel Providence RI The Narragansett Electric Co.png SVLargeHotel Providenc... 61 KB SVLargeOffice Providence RI The Narragansett Electric Co.png SVLargeOffice Providen... 61 KB SVMediumOffice Providence RI The Narragansett Electric Co.png SVMediumOffice Provide... 63 KB SVMidriseApartment Providence RI The Narragansett Electric Co.png

9

D&TX  

Office of Legacy Management (LM)

*. *. ( ARGONNE RATIONAL 1-Ci3ORATORY . 1 D&TX 7. my 19, 1349 70 t. Z. ROse at L, Em &=i*p~~4 DVur;uM hLl%L ?bvs -Lcs . FReti c. c. Fqpr an2 2. E. sulu+rr fis2 S*crep t & fbQ s-e: of the ?atagel DrFAm%un !! 1 0 * the >rt &Fz=z d t& &men of ScieJce & >&7*-z 4-q 2s'; %rZion 0C the ZLLS~~~ of Science a2 31~52-37 fo2 T&imcyyg c.=A+=< he-< - ,,a uas c:cgetes ALL 12, 1SL9. Z 0 sor;~~,-~-lioi! c.jme s 'm&-go& ~WC& c ",& d*cg&A c&.6 be ciS',&Ctti 03 2.q ZLS CC the 5iiUdi; 0~ eqt&-p*t ~-3 niq b the &-CT iq95, - < less Se&,-0~22 3 wels off tze b.ckm5n' ,e ueze t& 233 &,/zip fe pe*-se a?& coL&cs El5 less t&3 c. 5z/z fo- pcxabi beta-g+iis couxezs.

10

Category:Pierre, SD | Open Energy Information  

Open Energy Info (EERE)

Pierre, SD Pierre, SD Jump to: navigation, search Go Back to PV Economics By Location Media in category "Pierre, SD" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Pierre SD Black Hills Power Inc.png SVFullServiceRestauran... 68 KB SVHospital Pierre SD Black Hills Power Inc.png SVHospital Pierre SD B... 67 KB SVLargeHotel Pierre SD Black Hills Power Inc.png SVLargeHotel Pierre SD... 69 KB SVLargeOffice Pierre SD Black Hills Power Inc.png SVLargeOffice Pierre S... 67 KB SVMediumOffice Pierre SD Black Hills Power Inc.png SVMediumOffice Pierre ... 71 KB SVMidriseApartment Pierre SD Black Hills Power Inc.png SVMidriseApartment Pie... 68 KB SVOutPatient Pierre SD Black Hills Power Inc.png SVOutPatient Pierre SD... 68 KB SVPrimarySchool Pierre SD Black Hills Power Inc.png

11

Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic Feet) Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic...

12

RAPID/Roadmap/19-TX-e | Open Energy Information  

Open Energy Info (EERE)

Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission Geothermal Solar Resources Contribute Contact Us 19-TX-e Temporary Surface Water Permit 19-TX-e Temporary...

13

TX-100 manufacturing final project report.  

SciTech Connect (OSTI)

This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. The molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three testing facilities.

Ashwill, Thomas D.; Berry, Derek S. (TPI Composites, Inc., Warren, RI)

2007-11-01T23:59:59.000Z

14

Microsoft Word - SD452.3 FINAL  

National Nuclear Security Administration (NNSA)

NA SD M 452.3-1 NA SD M 452.3-1 Approved: 12-10-09 DEFENSE PROGRAMS BUSINESS REQUIREMENTS AND PROCESSES MANUAL NATIONAL NUCLEAR SECURITY ADMINISTRATION Office of Defense Programs AVAILABLE ONLINE AT: INITIATED BY: http://www.nnsa.energy.gov Office of Defense Programs NA SD M 452.3-1 Page 12-10-09 1 DEFENSE PROGRAMS BUSINESS REQUIREMENTS AND PROCESSES MANUAL 1. PURPOSE. This Department of Energy (DOE), National Nuclear Security Administration (NNSA) Business Requirements and Process Manual supplements DOE O 452.3 "Management of the Department of Energy Nuclear Weapons Complex." This supplemental directive establishes the Requirements Modernization and Integration (RMI) Explorer as the electronic Defense Programs manual that implements DOE O

15

Category:El Paso, TX | Open Energy Information  

Open Energy Info (EERE)

El Paso, TX El Paso, TX Jump to: navigation, search Go Back to PV Economics By Location Media in category "El Paso, TX" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant El Paso TX CPS Energy.png SVFullServiceRestauran... 60 KB SVHospital El Paso TX CPS Energy.png SVHospital El Paso TX ... 65 KB SVLargeHotel El Paso TX CPS Energy.png SVLargeHotel El Paso T... 60 KB SVLargeOffice El Paso TX CPS Energy.png SVLargeOffice El Paso ... 59 KB SVMediumOffice El Paso TX CPS Energy.png SVMediumOffice El Paso... 62 KB SVMidriseApartment El Paso TX CPS Energy.png SVMidriseApartment El ... 60 KB SVOutPatient El Paso TX CPS Energy.png SVOutPatient El Paso T... 60 KB SVPrimarySchool El Paso TX CPS Energy.png SVPrimarySchool El Pas... 61 KB SVQuickServiceRestaurant El Paso TX CPS Energy.png

16

Tank 241-TX-105 tank characterization plan  

SciTech Connect (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-105.

Carpenter, B.C.

1995-01-01T23:59:59.000Z

17

WA_02_015_AIR_PRODUCTS_AND_CHEMICALS_INC_Waiver_of_Patent_Ri...  

Broader source: Energy.gov (indexed) [DOE]

15AIRPRODUCTSANDCHEMICALSINCWaiverofPatentRi.pdf WA02015AIRPRODUCTSANDCHEMICALSINCWaiverofPatentRi.pdf WA02015AIRPRODUCTSANDCHEMICALSINCWaiverofPatent...

18

RAPID/Roadmap/3-TX-a | Open Energy Information  

Open Energy Info (EERE)

has not identified geothermal resources on the land, then they must initiate the State Exploration Process. 3-TX-a.2 - Initiate State Exploration Process Green arrow.PNG 4-TX-a:...

19

RAPID/Roadmap/19-TX-b | Open Energy Information  

Open Energy Info (EERE)

while, groundwater rights belong to the surface owner and are dictated by the rule-of-capture. 19-TX-b.2 to 19-TX-b.4 - Is the Surface Water Use Temporary? Texas allows developers...

20

CleanTX Foundation | Open Energy Information  

Open Energy Info (EERE)

CleanTX Foundation CleanTX Foundation Address 3925 W Braker Lane Place Austin, Texas Zip 78759 Region Texas Area Notes Promotes entrepreneurship in the field of clean technology, by providing educational forums, content, awareness and networking opportunities Website http://cleantx.org/ Coordinates 30.396989°, -97.735768° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.396989,"lon":-97.735768,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE - Office of Legacy Management -- Sutton Steele and Steele Co - TX 09  

Office of Legacy Management (LM)

Sutton Steele and Steele Co - TX 09 Sutton Steele and Steele Co - TX 09 FUSRAP Considered Sites Site: SUTTON, STEELE & STEELE CO. (TX.09) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Sutton, Steele & Steele, Inc. TX.09-1 Location: Dallas , Texas TX.09-1 Evaluation Year: 1993 TX.09-2 Site Operations: Conducted operations to separate Uranium shot by means of air float tables and conducted research to air classify C-Liner and C-Special materials. TX.09-1 TX.09-3 TX.09-4 TX.09-5 Site Disposition: Eliminated - Potential for contamination considered remote TX.09-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium TX.09-4 TX.09-5 Radiological Survey(s): Health and Safety Monitoring TX.09-4 TX.09-5 Site Status: Eliminated from consideration under FUSRAP

22

OPTIONAL I-""... ..o SD  

Office of Legacy Management (LM)

OPTIONAL I-""... ..o SD , * ' y)IP-lW ' a * UNITED S T A T E S COVEKNMENT TO : Files DATE: September 25, 1962 M o m 4' Materials Branch; Division of Licensing & Regulation SUBJECT: PRE-LICENSING VISIT TO THE CONTEMPORARY METALS CORPORATION PROPOSED FACILITY AT HAZELWOOD, M ISSOURI, AND RESIDUE STOCKPILES AT ROBERTSON, M ISSOURI, DOCKET NO, 40-6811 The Contemporary Metals Corporation was awarded a contract by the AEC for the removal of uranium -bearing residues from stock- pile areas at Robertson, M issouri. These residues were generated by the Commission at its Destrehan Street Plant, St; Louis, M issouri. The applicant intends to process these residues at its Hazelwocd facility which is about three (3) m iles from the stock- pile site, Attempts will be made to extract the associated

23

Price Liquefied Freeport, TX Natural Gas Exports Price to United...  

U.S. Energy Information Administration (EIA) Indexed Site

United Kingdom (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to United Kingdom (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1...

24

RAPID/Roadmap/3-TX-d | Open Energy Information  

Open Energy Info (EERE)

RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission Geothermal Solar Tools Contribute Contact Us 3-TX-d Lease of Permanent...

25

RAPID/Roadmap/3-TX-g | Open Energy Information  

Open Energy Info (EERE)

RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission Geothermal Solar Tools Contribute Contact Us 3-TX-g Lease of...

26

RAPID/Roadmap/3-TX-i | Open Energy Information  

Open Energy Info (EERE)

construction plans on the leased asset; Permission for the representatives of TxDOT to enter the area for inspection, maintenance, or reconstruction of highway facilities as...

27

WA_00_018_PRAXAIR_Waive_of_Domestic_and_Foreign_Invention_Ri...  

Broader source: Energy.gov (indexed) [DOE]

18PRAXAIRWaiveofDomesticandForeignInventionRi.pdf WA00018PRAXAIRWaiveofDomesticandForeignInventionRi.pdf WA00018PRAXAIRWaiveofDomesticandForeignInvention...

28

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines Presentation given at the...

29

Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm  

SciTech Connect (OSTI)

This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

Girardot, C. L.; Harlow, D> G.

2014-07-22T23:59:59.000Z

30

Price of Freeport, TX Natural Gas LNG Imports from Other Countries...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Price of Freeport, TX Natural Gas LNG Imports from Other Countries (Nominal Dollars per Thousand Cubic Feet) Price of Freeport, TX Natural Gas LNG Imports from Other Countries...

31

DOE - Office of Legacy Management -- C I Haynes Inc - RI 02  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C I Haynes Inc - RI 02 C I Haynes Inc - RI 02 FUSRAP Considered Sites Site: C. I. Haynes, Inc. (RI.02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: C.I. Hayes, Incorporated RI.02-1 Location: Cranston , Rhode Island RI.02-1 Evaluation Year: 1994 RI.02-2 RI.02-3 Site Operations: Performed limited scale tests on heat treating uranium in a vacuum cold-wall furnace in 1964 RI.02-1 Site Disposition: Eliminated - Potential for contamination considered remote based on the limited quantities of material handled RI.02-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium RI.02-1 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to C. I. Haynes, Inc.

32

EDF Industrial Power Services (TX), LLC | Open Energy Information  

Open Energy Info (EERE)

Power Services (TX), LLC Power Services (TX), LLC Jump to: navigation, search Name EDF Industrial Power Services (TX), LLC Place Texas Utility Id 56315 Utility Location Yes Ownership R NERC ERCOT Yes ISO Ercot Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0394/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=EDF_Industrial_Power_Services_(TX),_LLC&oldid=410609" Categories: EIA Utility Companies and Aliases

33

RAPID/Roadmap/4-TX-a | Open Energy Information  

Open Energy Info (EERE)

4-TX-a State Exploration Process 04TXAStateExplorationProcess.pdf Click to View Fullscreen Permit Overview In Texas, geothermal exploration on state lands or lands with state...

34

Freeport, TX Liquefied Natural Gas Exports to Brazil (Million...  

Gasoline and Diesel Fuel Update (EIA)

to Brazil (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Brazil (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,581 2014 2,664...

35

Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Egypt (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,969 -...

36

RAPID/Roadmap/11-TX-c | Open Energy Information  

Open Energy Info (EERE)

of the terms of the contract or permit. (NRC Sec. 191.053 and Sec. 191.054). 11-TX-c.20 - Conduct Survey All scientific investigations or recovery operations conducted under the...

37

RAPID/Roadmap/3-TX-b | Open Energy Information  

Open Energy Info (EERE)

and forfeiture of the application fee. 3-TX-b.7 - LeaseEasement The developer may not conduct any operations on the land prior to receiving a completed contract from the GLO....

38

,"TX, RRC District 4 Onshore Dry Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12292014 1:55:39 AM" "Back to Contents","Data 1: TX, RRC...

39

RAPID/Roadmap/19-TX-c | Open Energy Information  

Open Energy Info (EERE)

9-TX-c Surface Water Permit 19TXCSurfaceWaterPermit.pdf Click to View Fullscreen Permit Overview In Texas, the Texas Commission on Environmental Quality (TCEQ) issues surface water...

40

Price Liquefied Freeport, TX Natural Gas Exports Price to Japan...  

Gasoline and Diesel Fuel Update (EIA)

Japan (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to Japan (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Freeport, TX Exports to japan Liquefied Natural Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

japan Liquefied Natural Gas (Million Cubic Feet) Freeport, TX Exports to japan Liquefied Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

42

Stellar wind signatures in sdB stars?  

E-Print Network [OSTI]

Subdwarf B (sdB) stars form the blue end of the horizonal branch (EHB). Their peculiar atmospheric abundance patterns are due to diffusion processes. However, diffusion models fail to explain these anomalies quantitatively. Weak mass loss has been invoked to solve these discrepancies, but up to now has not been observed. We report first observational evidence for stellar winds in four sdB stars from a NLTE model atmosphere analysis of high quality optical spectra.

U. Heber; P. F. L. Maxted; T. R. Marsh; C. Knigge; J E. Drew

2002-12-20T23:59:59.000Z

43

Supplementary southern standards for UBV(RI)C photometry  

Science Journals Connector (OSTI)

......RCIC. Fainter UBV standards were added (Menzies...Cousins 1983), and a review of the results from...transformation to the standard UBV and (RI)C has...test these proposed standards by repeated observation and we plan to include these in......

D. Kilkenny; F. Van Wyk; G. Roberts; F. Marang; D. Cooper

1998-02-11T23:59:59.000Z

44

Ri* Report No. 139 Danish Atomic Energy Commission  

E-Print Network [OSTI]

I 3 Ri* Report No. 139 Danish Atomic Energy Commission Research Establishment Riso Metallurgy Energy Commission Research Establishment Riso METALLURGY DEPARTMENT ANNUAL PROGRESS REPORT for th* Period firet pbaaa, aeorieoaf olamente willba laaaaiBaaliii ail lorIrradiation InmoHaMoa raarrtor ia Norway

45

RI&E Nano particles*) Carried out by  

E-Print Network [OSTI]

1 RI&E Nano particles*) Carried out by: Faculty: CTW/EWI/TNW Department: 1. Information Nano characteristics of nano material (or parent material) **) Carcinogenic Mutagenic Reprotoxic Density (kg/dm3 ) kg/dm3 State of aggregation of the nano material Liquid Solid 2. Health hazard nano material Danger

Twente, Universiteit

46

DOE - Office of Legacy Management -- Pantex Sewage Reservoir - TX 03  

Office of Legacy Management (LM)

Pantex Sewage Reservoir - TX 03 Pantex Sewage Reservoir - TX 03 FUSRAP Considered Sites Site: Pantex Sewage Reservoir (TX.03 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC operations. Reviews of contact lists, accountable station lists, health and safety records and other documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open" to

47

DOE - Office of Legacy Management -- Edgemont Mill Site - SD 01  

Office of Legacy Management (LM)

Edgemont Mill Site - SD 01 Edgemont Mill Site - SD 01 FUSRAP Considered Sites Site: Edgemont Mill Site (SD.01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Edgemont, South Dakota, Disposal Site Documents Related to Edgemont Mill Site 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites-Edgemont, South Dakota, Disposal Site. LMS/S09415. November 2012 U.S. Department of Energy 2008 UMTRCA Title II Sites Annual Report November 2008 Edgemont, South Dakota FACT SHEET Office of Legacy Management Edgemont, South Dakota, Disposal Site This fact sheet provides information about the Uranium Mill

48

Stellar wind signatures in sdB stars?  

E-Print Network [OSTI]

Subdwarf B (sdB) stars form the blue end of the horizonal branch. Their peculiar atmospheric abundance patterns are due to diffusion processes. However, diffusion models fail to explain these anomalies quantitatively. From a NLTE model atmosphere analysis of 40 sdB stars, we found that the more luminous (i.e. more evolved) stars have anomalous H alpha and HeI 6678Ang line profiles, i.e, the lines are too broad and shallow and may even show some emission. We interpret these anomalies as the signatures of a stellar wind, the first such detection in this class of star (if confirmed). Mass loss may also explain the peculiar abundance patterns seen in sdB stars. High-quality UV spectra are needed to confirm that these stars do have stellar winds.

U. Heber; P. F. L. Maxted; T. R. Marsh; C. Knigge; J. E. Drew

2002-12-20T23:59:59.000Z

49

The COSI Tool -Carbon Offsets with SD Impacts (COSI)  

E-Print Network [OSTI]

) Procedural guidelines #12;Design of an assessment methodology The SD criteria tree (URC): Project Environment Learning 1 Employment 1 Growth 1 Energy 1 Balance of Payment 1 Sustainability tax 1 Corporate social: - indicators · Improved Electricity Service: · Volume of electricity fed to into the grid (target: MWh

50

STATEMENT OF CONSIDERATIONS ADVANCE CLASS WAIVER OF PATENT RI  

Broader source: Energy.gov (indexed) [DOE]

RI RI GHTS FOR TECHNOLOGY DEVELOPED UNDER DOE FUNDING AGREEMENTS RELATING TO DOE'S SOLID STATE LIGHTING PRODUCT DEVELOPMENT ROUND 8; DOE FUNDING OPPORTUNITY ANNOUNCMEN T DE-FOA-0000563; W(C)-2011-012 ; CH1632 The Department of Energy Office of Energy Efficiency and Renewable Energy anticipates providing federal financial assistance in the form of cooperative agreements that develop or improve commercially viable materials, devices, or systems for solid-state lighting general illumination applications. Successful applicants will engage in applied resea rch in the Solid State Lighting (SSL) Product Development Program . Product Development is the systematic use of knowledge gained from basic and applied research to develop or improve commercially viable materials, devices, or systems. Technical

51

txH2O: Volume 1, Number 1 (Complete)  

E-Print Network [OSTI]

OF DESALINATION ? SEDIMENT SETBACK ? PHOSPHORUS LOSS ? CLOUD SEEDING ? RAINWATER HARVESTING ? AND MUCH MORE! tx H 2 O Published by Texas Water Resources Institute Clint Wolfe Managing Editor Texas Water Resources Institute Steven Keating Art Director... Student Research Assessing Phosphorus Loss to Protect Surface Water The Sky is Falling Using cloud-seeding technology to produce rain Communicating Outcomes Collaboration leads to water conservation Live, Learn and Thrive RGBI team award presented at NMSU...

Texas Water Resources Institute

2005-01-01T23:59:59.000Z

52

THE UBV(RI){sub C} COLORS OF THE SUN  

SciTech Connect (OSTI)

Photometric data in the UBV(RI){sub C} system have been acquired for 80 solar analog stars for which we have previously derived highly precise atmospheric parameters T{sub eff}, log g, and [Fe/H] using high-resolution, high signal-to-noise ratio spectra. UBV and (RI){sub C} data for 46 and 76 of these stars, respectively, are published for the first time. Combining our data with those from the literature, colors in the UBV(RI){sub C} system, with {approx_equal} 0.01 mag precision, are now available for 112 solar analogs. Multiple linear regression is used to derive the solar colors from these photometric data and the spectroscopically derived T{sub eff}, log g, and [Fe/H] values. To minimize the impact of systematic errors in the model-dependent atmospheric parameters, we use only the data for the 10 stars that most closely resemble our Sun, i.e., the solar twins, and derive the following solar colors: (B - V){sub Sun} = 0.653 {+-} 0.005, (U - B){sub Sun} = 0.166 {+-} 0.022, (V - R){sub Sun} = 0.352 {+-} 0.007, and (V - I){sub Sun} = 0.702 {+-} 0.010. These colors are consistent, within the 1{sigma} errors, with those derived using the entire sample of 112 solar analogs. We also derive the solar colors using the relation between spectral-line-depth ratios and observed stellar colors, i.e., with a completely model-independent approach, and without restricting the analysis to solar twins. We find (B - V){sub Sun} = 0.653 {+-} 0.003, (U - B){sub Sun} = 0.158 {+-} 0.009, (V - R){sub Sun} = 0.356 {+-} 0.003, and (V - I){sub Sun} = 0.701 {+-} 0.003, in excellent agreement with the model-dependent analysis.

Ramirez, I. [McDonald Observatory and Department of Astronomy, University of Texas at Austin, 1 University Station, C1400 Austin, TX 78712-0259 (United States); Michel, R.; Schuster, W. J. [Observatorio Astronomico Nacional, Universidad Nacional Autonoma de Mexico, Apartado Postal 877, Ensenada, B.C., CP 22800 (Mexico); Sefako, R.; Van Wyk, F. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Tucci Maia, M. [UNIFEI, DFQ-Instituto de Ciencias Exatas, Universidade Federal de Itajuba, Itajuba MG (Brazil); Melendez, J. [Departamento de Astronomia do IAG/USP, Universidade de Sao Paulo, Rua do Matao 1226, Sao Paulo, 05508-900 SP (Brazil); Casagrande, L. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317, D-85741 Garching (Germany); Castilho, B. V. [Laboratorio Nacional de Astrofisica/MCT, Rua Estados Unidos 154, 37504-364 Itajuba, MG (Brazil)

2012-06-10T23:59:59.000Z

53

GRR/Section 8-TX-b - ERCOT Interconnection | Open Energy Information  

Open Energy Info (EERE)

8-TX-b - ERCOT Interconnection 8-TX-b - ERCOT Interconnection < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-b - ERCOT Interconnection 8-TX-b - ERCOT Interconnection Process.pdf Click to View Fullscreen Regulations & Policies PUCT Substantive Rule 25.198 Triggers None specified Click "Edit With Form" above to add content 8-TX-b - ERCOT Interconnection Process.pdf 8-TX-b - ERCOT Interconnection Process.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the procedures for interconnection with Electricity Reliability Council of Texas (ERCOT) in Texas. According to PUCT Substantive Rule 25.198, the responsibility for

54

GRR/Section 8-TX-c - Distributed Generation Interconnection | Open Energy  

Open Energy Info (EERE)

GRR/Section 8-TX-c - Distributed Generation Interconnection GRR/Section 8-TX-c - Distributed Generation Interconnection < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-c - Distributed Generation Interconnection 8-TX-c - Distributed Generation Interconnection.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive Rule 25.211 PUCT Substantive Rule 25.212 Triggers None specified Click "Edit With Form" above to add content 8-TX-c - Distributed Generation Interconnection.pdf 8-TX-c - Distributed Generation Interconnection.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process for distributed generation (DG)

55

GRR/Section 3-TX-g - Lease of Relinquishment Act Lands | Open Energy  

Open Energy Info (EERE)

3-TX-g - Lease of Relinquishment Act Lands 3-TX-g - Lease of Relinquishment Act Lands < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-g - Lease of Relinquishment Act Lands 03-TX-g - Lease of Relinquishment Act Lands.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-g - Lease of Relinquishment Act Lands.pdf 03-TX-g - Lease of Relinquishment Act Lands.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of obtaining a geothermal lease on Relinquishment Act Lands in Texas. The Texas General Land Office (GLO) of Texas handles the leasing process on Relinquishment Act Lands through Title

56

Staubli TX-90XL robot qualification at the LLIHE.  

SciTech Connect (OSTI)

The Light Initiated High Explosive (LIHE) Facility uses a robotic arm to spray explosive material onto test items for impulse tests. In 2007, the decision was made to replace the existing PUMA 760 robot with the Staubli TX-90XL. A qualification plan was developed and implemented to verify the safe operating conditions and failure modes of the new system. The robot satisfied the safety requirements established in the qualification plan. A performance issue described in this report remains unresolved at the time of this publication. The final readiness review concluded the qualification of this robot at the LIHE facility.

Covert, Timothy Todd

2010-10-01T23:59:59.000Z

57

txH20: Volume 8, Number 2 (Complete)  

E-Print Network [OSTI]

Texas A&M AgriLife Research Texas A&M AgriLife Extension Service Texas A&M University College of Agriculture and Life Sciences Summer 2013 TECHNOLOGY & WATER Computer models, electron beams, irrigation efficiencies and more Kevin Wagner... Message from the Director Welcome to the Summer #31;#30;#29;#28; edition of txH#31;O. #27;is issue highlights technologies developed and enhanced by #27;e Texas A&M University System researchers to help the state meet its growing water and food needs...

Wythe, Kathy

2013-01-01T23:59:59.000Z

58

E-Print Network 3.0 - austin tx usa Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Austin Collection: Engineering 9 Updated 050411 First Name Last Name City State Country Cell Phone Home Phone Summary: Acosta Austin TX United States (512) 6574215 (512) 8262678...

59

Potential value extraction from TxDOTs right of way and other property assets.  

E-Print Network [OSTI]

??Many Departments of Transportation (DOTs), including Texas Department of Transportation (TxDOT), have been challenged by inadequate funding from traditional federal and state fuel taxes, increasing (more)

Paes, Thiago Mesquita

2012-01-01T23:59:59.000Z

60

AA Dor - An Eclipsing sdOB - Brown Dwarf Binary  

E-Print Network [OSTI]

AA Dor is an eclipsing, close, post common-envelope binary consisting of a sdOB primary star and an unseen secondary with an extraordinary small mass - formally a brown dwarf. The brown dwarf may have been a former planet which survived a common envelope phase and has even gained mass. A recent determination of the components' masses from results of NLTE spectral analysis and subsequent comparison to evolutionary tracks shows a discrepancy to masses derived from radial-velocity and the eclipse curves. Phase-resolved high-resolution and high-SN spectroscopy was carried out in order to investigate on this problem. We present results of a NLTE spectral analysis of the primary, an analysis of its orbital parameters, and discuss possible evolutionary scenarios.

Thomas Rauch

2003-11-25T23:59:59.000Z

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE Challenge Home Case Study, Caldwell and Johnson, Exeter, RI  

Broader source: Energy.gov (indexed) [DOE]

Caldwell and Caldwell and Johnson Exeter, RI BUILDING TECHNOLOGIES OFFICE DOE Challenge Home builders are in the top 1% of builders in the country meeting the extraordinary levels of excellence and quality specifi ed by the U.S. Department of Energy. Every DOE Challenge Home starts with ENERGY STAR for Homes Version 3 for an energy-e cient home built on a solid foundation of building science research. Then, even more advanced technologies are designed in for a home that goes above and beyond current code to give you the superior quality construction, HVAC, appliances, indoor air quality, safety, durability, comfort, and solar-ready components along with ultra-low or no utility bills. This provides homeowners with a quality home that will last for generations to come.

62

TX Cnc as a Member of the Praesepe Open Cluster  

Science Journals Connector (OSTI)

We present B-, V-, and I-band CCD photometry of the W UMa-type binary system TX Cnc, which is a member star of the Praesepe open cluster. Based on the observations, new ephemeris and a revised photometric solution of the binary system were derived. Combined with the results of the radial velocity solution contributed by Pribulla etal., the absolute parameters of the system were determined. The mass, radius, and luminosity of the primary component are derived to be 1.35 0.02 M ?, 1.27 0.04 R ?, and 2.13 0.11 L ?. Those for the secondary star are computed as 0.61 0.01 M ?, 0.89 0.03 R ?, and 1.26 0.07 L ?, respectively. Based on these results, a distance modulus of (m M) V = 6.34 0.05 is determined for the star. It confirms the membership of TX Cnc to the Praesepe open cluster. The evolutionary status and the physical nature of the binary system are discussed compared with the theoretical model.

X. B. Zhang; L. Deng; P. Lu

2009-01-01T23:59:59.000Z

63

CX-100 and TX-100 blade field tests.  

SciTech Connect (OSTI)

In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

2005-12-01T23:59:59.000Z

64

GRR/Section 13-TX-a - State Land Use Assessment | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 13-TX-a - State Land Use Assessment GRR/Section 13-TX-a - State Land Use Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 13-TX-a - State Land Use Assessment 13-TX-a - State Land Use Assessment.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Regulations & Policies Open Beaches Act Dune Protection Act Beach Dune Rules Triggers None specified Click "Edit With Form" above to add content 13-TX-a - State Land Use Assessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Texas General Land Office (GLO) is in charge of making sure construction on the Texas coast that affects the beach and dunes is

65

GRR/Section 3-TX-e - Lease of Texas Parks & Wildlife Department Land | Open  

Open Energy Info (EERE)

TX-e - Lease of Texas Parks & Wildlife Department Land TX-e - Lease of Texas Parks & Wildlife Department Land < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-e - Lease of Texas Parks & Wildlife Department Land 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Texas Parks & Wildlife Department (TPWD) land in Texas. The Texas General Land Office manages

66

GRR/Section 3-TX-d - Lease of Permanent School Fund Land | Open Energy  

Open Energy Info (EERE)

3-TX-d - Lease of Permanent School Fund Land 3-TX-d - Lease of Permanent School Fund Land < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-d - Lease of Permanent School Fund Land 03-TX-d - Lease of Public School Fund Land (1).pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-d - Lease of Public School Fund Land (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Public School Fund (PSF) lands in Texas. The Texas General Land Office (GLO) oversees the leasing process for PSF lands through Title 31 of the Texas Administrative Code

67

GRR/Section 19-TX-e - Temporary Surface Water Permit | Open Energy  

Open Energy Info (EERE)

-TX-e - Temporary Surface Water Permit -TX-e - Temporary Surface Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-e - Temporary Surface Water Permit 19-TX-e Temporary Surface Water Permit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11.138 Triggers None specified Click "Edit With Form" above to add content 19-TX-e Temporary Surface Water Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, the Texas Commission on Environmental Quality (TCEQ), or in certain instances regional TCEQ offices or local Watermasters, issue

68

GRR/Section 3-TX-f - Lease of Land Trade Lands | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-TX-f - Lease of Land Trade Lands GRR/Section 3-TX-f - Lease of Land Trade Lands < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-f - Lease of Land Trade Lands 03-TX-f - Lease of Land Trade Lands.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-f - Lease of Land Trade Lands.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Land Trade Lands in Texas. The Texas General Land Office (GLO) administers leases on Land Trade Lands through Title 31 of the Texas Administrative Code Section 155.42.

69

A New Path Forward for WTP AL Boldt and RI Smith  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dick Smith and Al Boldt - thoughts to share with the Tank Waste Committee Not a committee work product A New Path Forward for WTP AL Boldt and RI Smith February 3, 2014...

70

GRR/Section 3-TX-c - Highway Right of Way Lease | Open Energy Information  

Open Energy Info (EERE)

3-TX-c - Highway Right of Way Lease 3-TX-c - Highway Right of Way Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-c - Highway Right of Way Lease 03TXCEncroachmentIssues.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Texas Department of Transportation Regulations & Policies 43 TAC 21.600 43 TAC 21.603 43 TAC 21.606 Triggers None specified Click "Edit With Form" above to add content 03TXCEncroachmentIssues.pdf 03TXCEncroachmentIssues.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the procedure for obtaining a state highway asset lease in Texas. The Texas Department of Transportation (TxDOT) may lease any highway asset.

71

GRR/Section 11-TX-a - State Cultural Considerations Overview | Open Energy  

Open Energy Info (EERE)

GRR/Section 11-TX-a - State Cultural Considerations Overview GRR/Section 11-TX-a - State Cultural Considerations Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-TX-a - State Cultural Considerations Overview 11TXAStateCulturalConsiderationsOverview.pdf Click to View Fullscreen Contact Agencies Texas Historical Commission Regulations & Policies NRC Ch. 191: Antiquities Code CCP Ch. 49: Inquests Upon Dead Bodies Triggers None specified Click "Edit With Form" above to add content 11TXAStateCulturalConsiderationsOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 11-TX-a.1 - Have Potential Human Remains Been Discovered?

72

DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready affordable home in Garland, TX, that was the first retrofit home certified to the DOE Zero Energy Ready home requirements. The construction team achieved a...

73

Verification of the WRF model during a high ozone event over Houston, TX  

E-Print Network [OSTI]

High ozone values were observed in Houston, TX during August 25 - September 1, 2000. A comparison of WRF data with observations and MM5 data was conducted to determine the WRF model's performance in simulating the meteorological conditions...

Ames, Douglas Seeley

2012-06-07T23:59:59.000Z

74

GRR/Section 11-TX-c - Cultural Resource Discovery Process | Open Energy  

Open Energy Info (EERE)

-TX-c - Cultural Resource Discovery Process -TX-c - Cultural Resource Discovery Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-TX-c - Cultural Resource Discovery Process 11TXCCulturalResourceDiscoveryProcess.pdf Click to View Fullscreen Contact Agencies Texas Historical Commission Regulations & Policies Sec. 191: Antiquities Code Triggers None specified Click "Edit With Form" above to add content 11TXCCulturalResourceDiscoveryProcess.pdf 11TXCCulturalResourceDiscoveryProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 11-TX-c.1 - Is the Project Located on State or Local Public Land? Before breaking ground at a project location on state or local public land,

75

EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy  

Broader source: Energy.gov (indexed) [DOE]

12: Federal Loan Guarantee to Support Construction of the TX 12: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas Overview The Department of Energy is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to TX Energy, LLC (TXE). TXE submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 (EPAct 2005) to support construction of the TXE industrial Gasification Facility near Beaumont, Texas. TXE is a subsidiary of Eastman Chemical Company (Eastman) and proposes to develop the Facility on a 417-acre parcel of land. The Facility would

76

Farmers and ranchers in Calhoun County, TX: their land ethic and their interest in nature tourism  

E-Print Network [OSTI]

FARMERS AND RANCHERS IN CALHOUN COUNTY, TX: THEIR LAND ETHIC AND THEIR INTEREST IN NATURE TOURISM A Thesis by KIMBERLY LYN WILLIAMS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2000 Major Subject: Recreation, Park and Tourism Sciences FARMERS AND RANCHERS IN CALHOUN COUNTY, TX: THEIR LAND ETHIC AND INTEREST IN NATURE TOURISM A Thesis by KIMBERLY LYN WILLIAMS Submitted to Texas ASM...

Williams, Kimberly Lyn

2000-01-01T23:59:59.000Z

77

An impact of bias and structure dependent L$$_\\mathrm{SD}$$SD variation on the performance of GaN HEMTs based biosensor  

Science Journals Connector (OSTI)

In this paper, we discussed the effect of different bias and structures in relation to S-D distance variation on the device electrical and expected biosensing performance. Devices with source to drain length ( Keywords: Biosensors, HEMTs, Response time, Sensitivity, Transconductance

Niketa Sharma, Diksha Joshi, Nidhi Chaturvedi

2014-06-01T23:59:59.000Z

78

Absorption cross section of RN and SdS extremal black hole  

E-Print Network [OSTI]

The nature of scalar wave functions near the horizon of Reissner Nordstrom (RN) extremal and Schwarzschild-de Sitter (SdS) extremal black holes are found using WKB approximation and the effect of reflection of waves from the horizon. The absorption cross section $\\sigma_{abs}$ when RN extremal and SdS extremal black holes placed in a Klein-Gordon field is calculated.

Sini R; Nijo Varghese; V C Kuriakose

2008-02-29T23:59:59.000Z

79

RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY  

SciTech Connect (OSTI)

WMA TX-TY contains underground, single-shell tanks that were used to store liquid waste that contained chemicals and radionuclides. Most of the liquid has been removed, and the remaining waste is regulated under the RCRA as modified in 40 CFR Part 265, Subpart F and Washington States Hazardous Waste Management Act . WMA TX-TY was placed in assessment monitoring in 1993 because of elevated specific conductance. A groundwater quality assessment plan was written in 1993 describing the monitoring activities to be used in deciding whether WMA TX-TY had affected groundwater. That plan was updated in 2001 for continued RCRA groundwater quality assessment as required by 40 CFR 265.93 (d)(7). This document further updates the assessment plan for WMA TX-TY by including (1) information obtained from ten new wells installed at the WMA after 1999 and (2) information from routine quarterly groundwater monitoring during the last five years. Also, this plan describes activities for continuing the groundwater assessment at WMA TX TY.

Horton, Duane G.

2007-03-26T23:59:59.000Z

80

GRR/Section 19-TX-b - New Water Right Process For Surface Water and Ground  

Open Energy Info (EERE)

TX-b - New Water Right Process For Surface Water and Ground TX-b - New Water Right Process For Surface Water and Ground Water < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-b - New Water Right Process For Surface Water and Ground Water 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Texas Water Development Board Regulations & Policies Tex. Water Code § 11 Triggers None specified Click "Edit With Form" above to add content 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

GRR/Section 11-TX-b - Human Remains Process | Open Energy Information  

Open Energy Info (EERE)

1-TX-b - Human Remains Process 1-TX-b - Human Remains Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-TX-b - Human Remains Process 11TXBHumanRemainsProcess.pdf Click to View Fullscreen Regulations & Policies CCP Art. 49 Triggers None specified Click "Edit With Form" above to add content 11TXBHumanRemainsProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the procedure a developer must follow when human remains are discovered on or near the project site. Local law enforcement must conduct an investigation into the death of the person, and is the

82

GRR/Section 14-TX-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

TX-c - Underground Injection Control Permit TX-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-c - Underground Injection Control Permit Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 27 16 TAC 3.9 46 TAC 3.46 16 TAC 3.30 - MOU between the RRC and the TCEQ Triggers None specified Click "Edit With Form" above to add content Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

83

GRR/Section 7-TX-b - REC Generator | Open Energy Information  

Open Energy Info (EERE)

TX-b - REC Generator TX-b - REC Generator < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-TX-b - REC Generator 07TXBRECGeneratorCertification.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies Goal for Renewable Energy, PUCT Substantive Rule 25.173 Triggers None specified Click "Edit With Form" above to add content 07TXBRECGeneratorCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the application and approval process for participating in the Renewable Energy Credit program in Texas.

84

GRR/Section 19-TX-c - Surface Water Permit | Open Energy Information  

Open Energy Info (EERE)

19-TX-c - Surface Water Permit 19-TX-c - Surface Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-c - Surface Water Permit 19TXCSurfaceWaterPermit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 30 TAC 295 30 TAC 297 Triggers None specified Click "Edit With Form" above to add content 19TXCSurfaceWaterPermit.pdf 19TXCSurfaceWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, the Texas Commission on Environmental Quality (TCEQ) issues surface water permits. Under, Tex. Water Code § 11, surface water permits

85

GRR/Section 5-TX-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-TX-a - Drilling and Well Development GRR/Section 5-TX-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-TX-a - Drilling and Well Development 05TXADrillingAndWellDevelopment.pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Texas Water Development Board Regulations & Policies 16 TAC 3.5: Application To Drill, Deepen, Reenter, or Plug Back 16 TAC 3.78: Fees and Financial Security Requirements 16 TAC 3.37: Statewide Spacing Rule 16 TAC 3.38: Well Densities 16 TAC 3.39: Proration and Drilling Units: Contiguity of Acreage and Exception 16 TAC 3.33: Geothermal Resource Production Test Forms Required Triggers None specified Click "Edit With Form" above to add content

86

GRR/Section 14-TX-b - Texas NPDES Permitting Process | Open Energy  

Open Energy Info (EERE)

14-TX-b - Texas NPDES Permitting Process 14-TX-b - Texas NPDES Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-b - Texas NPDES Permitting Process 14TXBTexasNPDESPermittingProcess (4).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas United States Environmental Protection Agency Regulations & Policies Tex. Water Code § 26.131(b) 16 TAC 3.8 Memorandum of Understanding between the RRC and the TCEQ 16 TAC 3.30 Triggers None specified Click "Edit With Form" above to add content 14TXBTexasNPDESPermittingProcess (4).pdf 14TXBTexasNPDESPermittingProcess (4).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

87

,"Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_irp_ygrt-nmx_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_irp_ygrt-nmx_mmcfa.htm" ,"Source:","Energy Information Administration"

88

GRR/Section 8-TX-a - Transmission Siting | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 8-TX-a - Transmission Siting GRR/Section 8-TX-a - Transmission Siting < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-a - Transmission Siting 08TXATransmissionSiting.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive 25.83: Transmission Construction Reports PUCT Substantive Rule 25.101: Certification Criteria Triggers None specified Click "Edit With Form" above to add content 08TXATransmissionSiting.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Transmission siting is handled by the Public Utility Commission of Texas

89

GRR/Section 6-TX-a - Extra-Legal Vehicle Permitting Process | Open Energy  

Open Energy Info (EERE)

6-TX-a - Extra-Legal Vehicle Permitting Process 6-TX-a - Extra-Legal Vehicle Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-TX-a - Extra-Legal Vehicle Permitting Process 06TXAExtraLegalVehiclePermittingProcess.pdf Click to View Fullscreen Contact Agencies Texas Department of Motor Vehicles Texas Department of Transportation Regulations & Policies Tex. Transportation Code § 621 Tex. Transportation Code § 622 Tex. Transportation Code § 623 43 TAC 219 Triggers None specified Click "Edit With Form" above to add content 06TXAExtraLegalVehiclePermittingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

90

GRR/Section 19-TX-d - Transfer of Surface Water Right | Open Energy  

Open Energy Info (EERE)

19-TX-d - Transfer of Surface Water Right 19-TX-d - Transfer of Surface Water Right < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-d - Transfer of Surface Water Right 19TXDTransferOfWaterRight.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 30 TAC 297.81 30 TAC 297.82 30 TAC 297.83 Triggers None specified Click "Edit With Form" above to add content 19TXDTransferOfWaterRight.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Texas water law allows surface water rights to be transferred from one party to another. (Tex. Water Code § 11)

91

GRR/Section 18-TX-a - Underground Storage Tank Process | Open Energy  

Open Energy Info (EERE)

TX-a - Underground Storage Tank Process TX-a - Underground Storage Tank Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-TX-a - Underground Storage Tank Process 18TXAUndergroundStorageTanks (1).pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies 30 Texas Administrative Code 334 - Underground and Aboveground Storage Tanks 30 Texas Administrative Code 37 - Financial Assurance for Petroleum Underground Storage Tanks Triggers None specified Click "Edit With Form" above to add content 18TXAUndergroundStorageTanks (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

92

GRR/Section 3-TX-a - State Geothermal Lease | Open Energy Information  

Open Energy Info (EERE)

3-TX-a - State Geothermal Lease 3-TX-a - State Geothermal Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-a - State Geothermal Lease 03TXAStateGeothermalLease.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Regulations & Policies Texas Natural Resources Code 31 TAC 9.22 31 TAC 13.33 31 TAC 13.62 31 TAC 155.42 Triggers None specified Click "Edit With Form" above to add content 03TXAStateGeothermalLease.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of obtaining a state geothermal lease from the state of Texas. The Texas General Land Office manages

93

GRR/Section 19-TX-a - Water Access and Water Issues Overview | Open Energy  

Open Energy Info (EERE)

9-TX-a - Water Access and Water Issues Overview 9-TX-a - Water Access and Water Issues Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-a - Water Access and Water Issues Overview 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 Triggers None specified Click "Edit With Form" above to add content 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf Flowchart Narrative In the late 1960's Texas transitioned its water law system, switching

94

GRR/Section 12-TX-a - Flora and Fauna Considerations | Open Energy  

Open Energy Info (EERE)

TX-a - Flora and Fauna Considerations TX-a - Flora and Fauna Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 12-TX-a - Flora and Fauna Considerations 12TXAFloraAndFaunaConsiderations.pdf Click to View Fullscreen Contact Agencies Texas Parks and Wildlife Department Regulations & Policies Texas Parks and Wildlife Code § 68 31 TAC 65.175 31 TAC 65.176 31 TAC 65.173 Triggers None specified Click "Edit With Form" above to add content 12TXAFloraAndFaunaConsiderations.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, no person may capture, trap, take, or kill, or attempt to

95

GRR/Section 14-TX-a - Nonpoint Source Pollution | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 14-TX-a - Nonpoint Source Pollution GRR/Section 14-TX-a - Nonpoint Source Pollution < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-a - Nonpoint Source Pollution 14TXANonpointSourcePollution.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Clean Water Act CWA §319(b) Triggers None specified Click "Edit With Form" above to add content 14TXANonpointSourcePollution.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Texas Nonpoint Source Management Program (Management Program) is required under the Clean Water Act(CWA), specifically CWA §319(b). The

96

GRR/Section 6-TX-b - Construction Storm Water Permitting Process | Open  

Open Energy Info (EERE)

6-TX-b - Construction Storm Water Permitting Process 6-TX-b - Construction Storm Water Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-TX-b - Construction Storm Water Permitting Process 06TXBConstructionStormWaterPermit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality EPA Regulations & Policies TPDES Construction General Permit (TXR150000) 30 Texas Administrative Code 205 General Permits for Waste Discharges Texas Water Code 26.040 General Permits Clean Water Act Triggers None specified Click "Edit With Form" above to add content 06TXBConstructionStormWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

97

GRR/Section 4-TX-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

4-TX-a - State Exploration Process 4-TX-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-TX-a - State Exploration Process 04TXAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Railroad Commission of Texas Texas Parks and Wildlife Department Regulations & Policies 16 TAC 3.5: Application to Drill, Deepen, Reenter, or Plug Back 16 TAC 3.7: Strata to Be Sealed Off 16 TAC 3.79: Definitions 16 TAC 3.100: Seismic Holes and Core Holes 31 TAC 10.2: Prospect Permits on State Lands 31 TAC 155.40: Definitions 31 TAC 155.42: Mining Leases on Properties Subject to Prospect 31 TAC 9.11: Geophysical and Geochemical Exploration Permits Triggers None specified

98

GRR/Section 14-TX-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

4-TX-d - Section 401 Water Quality Certification 4-TX-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-d - Section 401 Water Quality Certification 14TXDSection401WaterQualityCertification (2).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Regulations & Policies 16 TAC 3.93 - RRC Water Quality Certification 16 TAC 3.30 - MOU between the RRC and the TCEQ Triggers None specified Click "Edit With Form" above to add content 14TXDSection401WaterQualityCertification (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Section 401 of the Clean Water Act (CWA) requires a Water Quality

99

GRR/Section 3-TX-b - Land Access | Open Energy Information  

Open Energy Info (EERE)

3-TX-b - Land Access 3-TX-b - Land Access < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-b - Land Access 03TXBLandAccess.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Railroad Commission of Texas Regulations & Policies Tex. Nat. Rec. Code Sec. 51.291(a) Tex. Nat. Rec. Code Sec. 33.111 Triggers None specified Click "Edit With Form" above to add content 03TXBLandAccess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of gaining access to certain types of land in Texas apart from the geothermal resource lease process.

100

GRR/Section 14-TX-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-TX-e - Ground Water Discharge Permit GRR/Section 14-TX-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-e - Ground Water Discharge Permit 14TXEGroundWaterDischargePermit (1).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas United States Environmental Protection Agency Regulations & Policies 16 TAC 3.8 (Rule 8) Triggers None specified Click "Edit With Form" above to add content 14TXEGroundWaterDischargePermit (1).pdf 14TXEGroundWaterDischargePermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Pits are used in drilling operations to contain drilling related fluids and

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

GRR/Section 7-TX-a - Energy Facility Registration | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 7-TX-a - Energy Facility Registration GRR/Section 7-TX-a - Energy Facility Registration < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-TX-a - Energy Facility Registration 07TXAEnergyFacilitySiting.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUC Substantive Rule 25.109: Registration of Power Generation Companies and Self-Generators Triggers None specified Click "Edit With Form" above to add content 07TXAEnergyFacilitySiting.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the necessary process for registering as an

102

GRR/Section 7-TX-c - Certificate of Convenience and Necessity | Open Energy  

Open Energy Info (EERE)

GRR/Section 7-TX-c - Certificate of Convenience and Necessity GRR/Section 7-TX-c - Certificate of Convenience and Necessity < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-TX-c - Certificate of Convenience and Necessity 07TXCCertificateOfConvenienceAndNecessity.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive Rule 22 PUCT Substantive Rule 25.5 PUCT Substantive Rule 25.83 PUCT Substantive Rule 25.101 Public Utility Regulatory Act Triggers None specified Click "Edit With Form" above to add content 07TXCCertificateOfConvenienceAndNecessity.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

103

DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready affordable home in Charlestown, RI, that achieved a HERS Index of 47 without PV. The 2,244-ft2 two-story home with basement has 2x6 walls filled with 5.5 in. ...

104

The Disciplined Flood Protocol in Sensor Networks Young-ri Choi and Mohamed G. Gouda  

E-Print Network [OSTI]

The Disciplined Flood Protocol in Sensor Networks Young-ri Choi and Mohamed G. Gouda Department of Computing Science University of Alberta, Canada ehab@cs.ualberta.ca Abstract-- Flood is a communication to every sensor in the network. When a flood of some message is initiated, the message is forwarded

Gouda, Mohamed G.

105

Energy-degraded RI beam for low-energy nuclear reactions  

Science Journals Connector (OSTI)

......Energy-degraded RI beam for low-energy nuclear reactions Eiji Ideguchi * * E-mail...beams are produced by intermediate energy nuclear reactions such as projectile fragmentation...various experiments using low-energy nuclear reactions can be performed and......

Eiji Ideguchi

2012-01-01T23:59:59.000Z

106

Assessment of sustainable development in the EU 27 using aggregated SD index  

Science Journals Connector (OSTI)

Abstract In the European Union the sustainable development is a fundamental and overarchingobjective enshrined in the Treaty and measuring progress towards sustainable development is an integral part of the EU Sustainable Development Strategy. Eurostat produce a monitoring report every two years based on the EU set of sustainable development indicators (SDIs). The main objective of this paper is to create an aggregated index of the sustainable development from EU set of \\{SDIs\\} for each 27 EU country based on the PCA. The headline indicator economic growth was not involved because its increase is not expressly followed by positive change in other \\{SDIs\\} from social, economic and environmental fields. The aggregated SD index enables to get an overall picture about the position of each of the 27 EU countries and its development in terms of the sustainability over time as assumed in the EU Sustainable Development Strategy. Sweden, Denmark, Netherland, and Great Britain have repeatedly reached the highest value of aggregated SD index. The highest positive change in the aggregated SD index has occurred in countries with the lowest value of aggregated SD index. Moreover, we put this new aggregated index in relation with economic growth and found that there is a negative correlation between aggregated SD index and the economic growth for most of the 27 EU countries.

Paula Bolcrov; Stanislav Kolota

2015-01-01T23:59:59.000Z

107

U.S. Energy Information Administration | Annual Energy Outlook...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Supply Model Regions Atlantic WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA VT...

108

F-7 U.S. Energy Information Administration | Annual Energy Outlook...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2014 Regional maps Figure F6. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI...

109

F-5 U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

Supply Model Regions Atlantic WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA VT...

110

U.S. Energy Information Administration | Annual Energy Outlook...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI...

111

U.S. Energy Information Administration | Annual Energy Outlook...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2013 Regional maps Figure F6. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI...

112

padd map  

U.S. Energy Information Administration (EIA) Indexed Site

for Defense Districts AK HI WA OR CA NV AZ MT WY CO UT ID ND SD NE KS OK MO MN WI MI IL IN OH KY TN IA NM TX AR LA AL MS WV VA NC SC GA FL ME NH VT NY PA NJ MD DE MA CT RI...

113

U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

2012 Regional maps Figure F6. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI...

114

Microsoft Word - figure_99.doc  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production." IN OH TN WV VA KY MD PA NY VT NH MA CT ME RI DE DC NC SC GA FL NJ AL MS LA MO AR TX NM OK CO KS UT AZ WY NE IL IA MN WI ND SD ID MT WA OR NV CA HI AK MI Gulf...

115

U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

AZ OR CA HI V MT WY ID UT CO IV OK IA KS MO IL IN KY TN WI MI OH NE SD MN ND II NM TX MS AL AR LA III NJ CT VT ME RI MA NH FL GA SC NC WV MD DE VA NY PA I PAD District I - East...

116

The rapidly pulsating sdO star, SDSS J160043.6+074802.9  

E-Print Network [OSTI]

A spectroscopic analysis of SDSS J160043.6+074802.9, a binary system containing a pulsating subdwarf-O (sdO) star with a late-type companion, yields Teff = 70 000 +/- 5000 K and log g = 5.25 +/- 0.30, together with a most likely type of K3V for the secondary star. We compare our results with atmospheric parameters derived by Fontaine et al. (2008) and in the context of existing evolution models for sdO stars. New and more extensive photometry is also presented which recovers most, but not all, frequencies found in an earlier paper. It therefore seems probable that some pulsation modes have variable amplitudes. A non-adiabatic pulsation analysis of uniform metallicity sdO models show those having log g > 5.3 to be more likely to be unstable and capable of driving pulsation in the observed frequency range.

Rodrguez-Lpez, C; Kilkenny, D; MacDonald, J; Moya, A; Koen, C; Woudt, P A; Wium, D J; Oruru, B; Zietsman, E

2009-01-01T23:59:59.000Z

117

Quasinormal modes for the SdS black hole : an analytical approximation scheme  

E-Print Network [OSTI]

Quasinormal modes for scalar field perturbations of a Schwarzschild-de Sitter (SdS) black hole are investigated. An analytical approximation is proposed for the problem. The quasinormal modes are evaluated for this approximate model in the limit when black hole mass is much smaller than the radius of curvature of the spacetime. The model mirrors some striking features observed in numerical studies of time behaviour of scalar perturbations of the SdS black hole. In particular, it shows the presence of two sets of modes relevant at two different time scales, proportional to the surface gravities of the black hole and cosmological horizons respectively. These quasinormal modes are not complete - another feature observed in numerical studies. Refinements of this model to yield more accurate quantitative agreement with numerical studies are discussed. Further investigations of this model are outlined, which would provide a valuable insight into time behaviour of perturbations in the SdS spacetime.

V. Suneeta

2003-03-31T23:59:59.000Z

118

1996 National Heat Trans/er Conference Houston, TX August 3-6, J996  

E-Print Network [OSTI]

and diffusive transport associated with fluid dynamics. radiative heat transfer often plays a large role in governing combustion dynamics. Radiative heat transfer is the dominant mode of heat transfer in many1996 National Heat Trans/er Conference Houston, TX August 3-6, J996 AN ADAPTIVE MESH REFINEMENT

119

DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home in Houston, TX, that achieves a HERS 45 without PV or HERS 32 with 1.2 kW PV. The three-story, 4,507-ft2 custom home is powered by a unique tri-generation...

120

DOE Zero Energy Ready Home Case Study: Sterling Brook Custom Homes, Double Oak, TX  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home in Double Oak, TX, north of Dallas, that scored a HERS 44 without PV. The 3,752-ft2 two-story home served as an energy-efficient model home for the custom...

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

CCD Photometric Study of the Contact Binary TX Cnc in the Young Open Cluster NGC 2632  

E-Print Network [OSTI]

TX Cnc is a member of the young open cluster NGC 2632. In the present paper, four CCD epochs of light minimum and a complete V light curve of TX Cnc are presented. A period investigation based on all available photoelectric or CCD data showed that it is found to be superimposed on a long-term increase ($dP/dt=+3.97\\times{10^{-8}}$\\,days/year), and a weak evidence suggests that it includes a small-amplitude period oscillation ($A_3=0.^{d}0028$; $T_3=26.6\\,years$). The light curves in the V band obtained in 2004 were analyzed with the 2003 version of the W-D code. It was shown that TX Cnc is an overcontact binary system with a degree of contact factor $f=24.8%(\\pm0.9%)$. The absolute parameters of the system were calculated: $M_1=1.319\\pm0.007M_{\\odot}$, $M_2=0.600\\pm0.01M_{\\odot}$; $R_1=1.28\\pm0.19R_{\\odot}$, $R_2=0.91\\pm0.13R_{\\odot}$. TX Cnc may be on the TRO-controlled stage of the evolutionary scheme proposed by Qian (2001a, b; 2003a), and may contains an invisible tertiary component ($m_3\\approx0.097M_{\\o...

Liang, Liu; Soonthornthum, BOONRUCKSAR; Liying, Zhu; Jiajia, He; Yuan, J -Z

2011-01-01T23:59:59.000Z

122

Free Energy Shift of Condition Electrons Due to the s-d Exchange Interaction  

Science Journals Connector (OSTI)

......1969 research-article Articles Free Energy Shift of Condition Electrons Due...University, Toyonaka, Osaka The free energy shift of the s-d system is recalculated...Vol. 41, No.6, June 1969 Free Energy Shift of Conduction Electrons Due......

Kei Yosida; Hirosi Miwa

1969-06-01T23:59:59.000Z

123

PROC. S.D. ACAD. SCI., VOL. 69 (1990) 109 EVALUATION OF AN EVAPORATION POND  

E-Print Network [OSTI]

in concert with production of electricity. However, we had no data on the extent of winterkill that would Dakota 57007 ABSTRACT The evaporation pond (85 hectares) at the Big Stone Power Plant, Milbank, SD at the Big Stone Power Plant, Milbank, South Dakota (reviewed by Berry 1988). The evaporation pond (85

124

Calculations of parity-nonconserving s-d amplitudes in Cs, Fr, Ba+, and Ra+  

Science Journals Connector (OSTI)

We have performed ab initio mixed-states and sum-over-states calculations of parity-nonconserving (PNC) electric dipole (E1) transition amplitudes between s-d electron states of Cs, Fr, Ba+, and Ra+. For the lower states of these atoms we have also calculated energies, E1 transition amplitudes, and lifetimes. We have shown that PNC E1 amplitudes between s-d states can be calculated to high accuracy. Contrary to the Cs 6s-7s transition, in these transitions there are no strong cancellations between different terms in the sum-over-states approach. In fact, there is one dominating term which deviates from the sum by less than 20%. This term corresponds to an s-p1/2 weak matrix element, which can be calculated with an accuracy of better than 1%, and a p1/2-d3/2 E1 transition amplitude, which can be measured. Also, the s-d amplitudes are about four times larger than the corresponding s-s amplitudes. We have shown that by using a hybrid mixed-statessum-over-states approach the accuracy of the calculations of PNC s-d amplitudes could compete with that of Cs 6s-7s if p1/2-d3/2 E1 amplitudes are measured to high accuracy.

V. A. Dzuba; V. V. Flambaum; J. S. M. Ginges

2001-05-08T23:59:59.000Z

125

Uncertainties in NDE Reliability and Assessing the Impact on RI-ISI  

SciTech Connect (OSTI)

A major thrust in the past 20 years has been to upgrade nondestructive examinations (NDE) for use in inservice inspection (ISI) programs to more effectively manage degradation at operating nuclear power plants. Risk-informed ISI (RI-ISI) is one of the outcomes of this work, and this approach relies heavily on the reliability of NDE, when properly applied, to detect sources of expected degradation. There have been a number of improvements in the reliability of NDE, specifically in ultrasonic testing (UT), through training of examiners, and improved equipment and procedure development. However, the most significant improvements in UT were derived by moving from prescriptive requirements to performance based requirements. Even with these substantial improvements, NDE contains significant uncertainties and RI-ISI programs need to address and accommodate this factor. As part of the work that PNNL is conducting for the U. S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, we are examining the impact of these uncertainties on the effectiveness of RI-ISI programs.

Doctor, Steven R.; Anderson, Michael T.

2010-08-01T23:59:59.000Z

126

File:15-TX-a- Fact Sheet - Tips for a Speedy Administrative Review.pdf |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:15-TX-a- Fact Sheet - Tips for a Speedy Administrative Review.pdf Jump to: navigation, search File File history File usage Metadata File:15-TX-a- Fact Sheet - Tips for a Speedy Administrative Review.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 16 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:17, 12 June 2013 Thumbnail for version as of 14:17, 12 June 2013 1,275 × 1,650 (16 KB) Apalazzo (Talk | contribs)

127

File:03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 46 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:50, 26 July 2013 Thumbnail for version as of 12:50, 26 July 2013 1,275 × 1,650 (46 KB) Apalazzo (Talk | contribs)

128

File:USDA-CE-Production-GIFmaps-TX.pdf | Open Energy Information  

Open Energy Info (EERE)

TX.pdf TX.pdf Jump to: navigation, search File File history File usage Texas Ethanol Plant Locations Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 442 KB, MIME type: application/pdf) Description Texas Ethanol Plant Locations Sources United States Department of Agriculture Related Technologies Biomass, Biofuels, Ethanol Creation Date 2010-01-19 Extent State Countries United States UN Region Northern America States Texas External links http://www.nass.usda.gov/Charts_and_Maps/Ethanol_Plants/ File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:21, 27 December 2010 Thumbnail for version as of 16:21, 27 December 2010 1,650 × 1,275 (442 KB) MapBot (Talk | contribs) Automated bot upload

129

GRR/Section 15-TX-a - Air Permit - Permit to Construct | Open Energy  

Open Energy Info (EERE)

GRR/Section 15-TX-a - Air Permit - Permit to Construct GRR/Section 15-TX-a - Air Permit - Permit to Construct < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-TX-a - Air Permit - Permit to Construct 15TXAAirPermitPermitToConstruct (1).pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Title 30 of the Texas Administrative Code 30 TAC 116.114 30 TAC 39.418 30 TAC 39.604 30 TAC 39.605 30 TAC 39.409 30 TAC 116.136 30 TAC 55.254 30 TAC 116.136 30 TAC 116.137 Triggers None specified Click "Edit With Form" above to add content 15TXAAirPermitPermitToConstruct (1).pdf 15TXAAirPermitPermitToConstruct (1).pdf 15TXAAirPermitPermitToConstruct (1).pdf Error creating thumbnail: Page number not in range.

130

File:03-TX-g - Lease of Relinquishment Act Lands.pdf | Open Energy  

Open Energy Info (EERE)

-TX-g - Lease of Relinquishment Act Lands.pdf -TX-g - Lease of Relinquishment Act Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-g - Lease of Relinquishment Act Lands.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 82 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:49, 29 July 2013 Thumbnail for version as of 11:49, 29 July 2013 1,275 × 1,650, 2 pages (82 KB) Apalazzo (Talk | contribs) 14:43, 26 July 2013 Thumbnail for version as of 14:43, 26 July 2013 1,275 × 1,650, 2 pages (82 KB) Apalazzo (Talk | contribs)

131

File:USDA-CE-Production-GIFmaps-SD.pdf | Open Energy Information  

Open Energy Info (EERE)

SD.pdf SD.pdf Jump to: navigation, search File File history File usage South Dakota Ethanol Plant Locations Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 295 KB, MIME type: application/pdf) Description South Dakota Ethanol Plant Locations Sources United States Department of Agriculture Related Technologies Biomass, Biofuels, Ethanol Creation Date 2010-01-19 Extent State Countries United States UN Region Northern America States South Dakota External links http://www.nass.usda.gov/Charts_and_Maps/Ethanol_Plants/ File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:20, 27 December 2010 Thumbnail for version as of 16:20, 27 December 2010 1,650 × 1,275 (295 KB) MapBot (Talk | contribs) Automated bot upload

132

Diapo SdC 1 1er chapitre sur le concept d'espace de recherche  

E-Print Network [OSTI]

: CSPs binaires. Un CSP binaire est décrit en terme d'un ensemble de variables (dénoté Vi , un domaine de domaine de l'autre variable. Nous pouvons illustrer la structure d'un CSP à l'aide d'un diagramme, comme montré ici, que nous appelons graphe de contrainte pour le problème. #12;Diapo SdC 3 La solution d'un CSP

Turenne, Nicolas

133

Geology of the USW SD-12 drill hole Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Drill hole USW SD-12 is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the {open_quotes}Systematic Drilling Program,{close_quotes} as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada, which has been proposed as the potential location of a repository for high-level nuclear waste. The SD-12 drill hole is located in the central part of the potential repository area, immediately to the west of the Main Test Level drift of the Exploratory Studies Facility and slightly south of midway between the North Ramp and planned South Ramp declines. Drill hole USW SD-12 is 2166.3 ft (660.26 m) deep, and the core recovered essentially complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. A virtually complete section of the Calico Hills Formation was also recovered, as was core from the entire Prow Pass Tuff formation of the Crater Flat Group.

Rautman, C.A. [Sandia National Labs., Albuquerque, NM (United States); Engstrom, D.A. [Spectra Research Institute, Albuquerque, NM (United States)

1996-11-01T23:59:59.000Z

134

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rick Dunst Rick Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 MS 922-273C Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Felicia Manciu Principal Investigator University of Texas at El Paso 500 West University Avenue El Paso, TX 79968-8900 915-747-5715 fsmanciu@utep.edu PROJECT DURATION Start Date 01/15/2009 End Date 12/15/2013 COST Total Project Value $249,546 DOE/Non-DOE Share $249,546 / $0

135

Tank 241-TX-104, cores 230 and 231 analytical results for the final report  

SciTech Connect (OSTI)

This document is the analytical laboratory report for tank 241-TX-104 push mode core segments collected between February 18, 1998 and February 23, 1998. The segments were subsampled and analyzed in accordance with the Tank 241-TX-104 Push Mode Core Sampling and Analysis Plan (TSAP) (McCain, 1997), the Data Quality Objective to Support Resolution of the Organic Complexant Safety Issue (Organic DQO) (Turner, et al., 1995) and the Safety Screening Data Quality Objective (DQO) (Dukelow, et.al., 1995). The analytical results are included in the data summary table. None of the samples submitted for Differential Scanning Calorimetry (DSC) and Total Alpha Activity (AT) exceeded notification limits as stated in the TSAP. The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group in accordance with the Memorandum of Understanding (Schreiber, 1997) and are not considered in this report. Appearance and Sample Handling Attachment 1 is a cross reference to relate the tank farm identification numbers to the 222-S Laboratory LabCore/LIMS sample numbers. The subsamples generated in the laboratory for analyses are identified in these diagrams with their sources shown. Core 230: Three push mode core segments were removed from tank 241-TX-104 riser 9A on February 18, 1998. Segments were received by the 222-S Laboratory on February 19, 1998. Two segments were expected for this core. However, due to poor sample recovery, an additional segment was taken and identified as 2A. Core 231: Four push mode core segments were removed from tank 241-TX-104 riser 13A between February 19, 1998 and February 23, 1998. Segments were received by the 222-S Laboratory on February 24, 1998. Two segments were expected for this core. However, due to poor sample recovery, additional segments were taken and identified as 2A and 2B. The TSAP states the core samples should be transported to the laboratory within three calendar days from the time each segment is removed from the tank; this requirement was not met for the segments from Core 231.

Diaz, L.A.

1998-07-07T23:59:59.000Z

136

The influence of littoral zone structural complexity on fish assemblages in Lake Conroe, TX  

E-Print Network [OSTI]

1999 Major Subject: Wildlife and Fisheries Science ABSTRACT The Influence of Littoral Zone Structural Complexity on Fish Assemblages in Lake Conroe, TX. (May 1999) Perry Felix Trial, B. A. , Austin College Chair of Advisory Committee: Dr. Frances... 6. 3626 6. 1100 5, 24 0. 0047 1. 61 0. 1551 1. 04 0, 4095 Season Habitat Error x Season 3 9 32 879. 134 15. 7056 3. 8325 229. 38 4. 10 0. 0001 0. 001 012 0. 1 E 0. 06 E 006 u 0. 04 IP ru 0. 02 012 01 E o. os E 0. 06 a 0...

Trial, Perry Felix

2012-06-07T23:59:59.000Z

137

Tank 241-TX-118, core 236 analytical results for the final report  

SciTech Connect (OSTI)

This document is the analytical laboratory report for tank 241-TX-118 push mode core segments collected between April 1, 1998 and April 13, 1998. The segments were subsampled and analyzed in accordance with the Tank 241-TX-118 Push Mode Core sampling and Analysis Plan (TSAP) (Benar, 1997), the Safety Screening Data Quality Objective (DQO) (Dukelow, et al., 1995), the Data Quality Objective to Support Resolution of the Organic Complexant Safety Issue (Organic DQO) (Turner, et al, 1995) and the Historical Model Evaluation Data Requirements (Historical DQO) (Sipson, et al., 1995). The analytical results are included in the data summary table (Table 1). None of the samples submitted for Differential Scanning Calorimetry (DSC) and Total Organic Carbon (TOC) exceeded notification limits as stated in the TSAP (Benar, 1997). One sample exceeded the Total Alpha Activity (AT) analysis notification limit of 38.4{micro}Ci/g (based on a bulk density of 1.6), core 236 segment 1 lower half solids (S98T001524). Appropriate notifications were made. Plutonium 239/240 analysis was requested as a secondary analysis. The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group in accordance with the Memorandum of Understanding (Schreiber, 1997) and are not considered in this report.

ESCH, R.A.

1998-11-19T23:59:59.000Z

138

File:03-TX-f - Lease of Land Trade Lands.pdf | Open Energy Information  

Open Energy Info (EERE)

f - Lease of Land Trade Lands.pdf f - Lease of Land Trade Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-f - Lease of Land Trade Lands.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 42 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 13:54, 26 July 2013 Thumbnail for version as of 13:54, 26 July 2013 1,275 × 1,650 (42 KB) Apalazzo (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file: GRR/Section 3-TX-f - Lease of Land Trade Lands

139

Plant Physiol. (1995) 107: 1343-1 353 The Tomato Never-ri'e Locus Regulates Ethylene-lnducible  

E-Print Network [OSTI]

Plant Physiol. (1995) 107: 1343-1 353 The Tomato Never-ri'e Locus Regulates Ethylene-lnducible Gene regulator ethylene (M.B. Lanahan, H.-C. Yen, J.J. Ciovannoni, H.J. Klee I19941 Plant Cell 6: 521-530). We report here ethylene sensi- tivity over a range of concentrations in normal and Nr tomato seedlingsand

Klee, Harry J.

140

Origin of fine structure of the giant dipole resonance in sd-shell nuclei  

E-Print Network [OSTI]

A set of high resolution zero-degree inelastic proton scattering data on 24Mg, 28Si, 32S, and 40Ca provides new insight into the long-standing puzzle of the origin of fragmentation of the Giant Dipole Resonance (GDR) in sd-shell nuclei. Understanding is provided by state-of-the-art theoretical Random Phase Approximation (RPA) calculatios for deformed nuclei using for the first time a realistic nucleon-nucleon interaction derived from the Argonne V18 potential with the unitary correlation operator method and supplemented by a phenomenological three-nucleon contact interaction. A wavelet analysis allows to extract significant scales both in the data and calculations characterizing the fine structure of the GDR. The fair agreement supports that the fine structure arises from ground-state deformation driven by alpha clustering.

R. W. Fearick; B. Erler; H. Matsubara; P. von Neumann-Cosel; A. Richter; R. Roth; A. Tamii

2014-09-03T23:59:59.000Z

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Boyd et al., IEEE International Conference on Multimedia Systems 98, Austin, TX, June 1998 1 MPI-Video Infrastructure for Dynamic Environments  

E-Print Network [OSTI]

Boyd et al., IEEE International Conference on Multimedia Systems 98, Austin, TX, June 1998 1 MPI-Video Infrastructure for Dynamic Environments Je#11;rey E. Boyd #3; Edward Hunter Patrick H. Kelly Li-Cheng Tai Clifton. #12; Boyd et al., IEEE International Conference on Multimedia Systems 98, Austin, TX, June 1998 2

Boyd, Jeffrey E.

142

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

143

Catching the fish - Constraining stellar parameters for TX Psc using spectro-interferometric observations  

E-Print Network [OSTI]

Stellar parameter determination is a challenging task when dealing with galactic giant stars. The combination of different investigation techniques has proven to be a promising approach. We analyse archive spectra obtained with the Short-Wavelength-Spectrometer (SWS) onboard of ISO, and new interferometric observations from the Very Large Telescope MID-infrared Interferometric instrument (VLTI/MIDI) of a very well studied carbon-rich giant: TX Psc. The aim of this work is to determine stellar parameters using spectroscopy and interferometry. The observations are used to constrain the model atmosphere, and eventually the stellar evolutionary model in the region where the tracks map the beginning of the carbon star sequence. Two different approaches are used to determine stellar parameters: (i) the 'classic' interferometric approach where the effective temperature is fixed by using the angular diameter in the N-band (from interferometry) and the apparent bolometric magnitude; (ii) parameters are obtained by fit...

Klotz, D; Hron, J; Aringer, B; Sacuto, S; Marigo, P; Verhoelst, T

2013-01-01T23:59:59.000Z

144

Albany, OR Anchorage, AK Morgantown, WV Pittsburgh, PA Sugar Land, TX Website: www.netl.doe.gov  

E-Print Network [OSTI]

Albany, OR · Anchorage, AK · Morgantown, WV · Pittsburgh, PA · Sugar Land, TX Website: www.netl-285-5437 briggs.white@netl.doe.gov Neil Nofziger Principal Investigator seM-coM company, Inc. 1040 North Westwood 304-285-4717 daniel.driscoll@netl.doe.gov PARTNERS University of Toledo Ceramatec, Inc. PROJECT

Azad, Abdul-Majeed

145

What: UHV Degree Information Session Where: UH System Cinco Ranch, 4242 S Mason Rd. Katy TX 77450  

E-Print Network [OSTI]

What: UHV Degree Information Session Where: UH System Cinco Ranch, 4242 S Mason Rd. Katy TX 77450 with times to suit most schedules, as well as online options. Admission to UHV is straightforward and free! Stop by to learn more about the programs UHV offers at the UHS Cinco Ranch (Katy) campus: Business

Azevedo, Ricardo

146

Orbital periods of the binary sdB stars PG0940+068 and PG1247+554  

E-Print Network [OSTI]

We have used the radial velocity variations of two sdB stars previously reported to be binaries to establish their orbital periods. They are PG0940+068, (P=8.33d) and PG1247+554 (P=0.599d). The minimum masses of the unseen companions, assuming a mass of 0.5 solar masses for the sdB stars, are 0.090 +/- 0.003 solar masses for PG1247+554 and 0.63 +/- 0.02 solar masses for PG0940+068. The nature of the companions is not constrained further by our data.

P. F. L. Maxted; C. K. J. Moran; T. R. Marsh; A. A. Gatti

1999-10-28T23:59:59.000Z

147

U.S. Energy Information Administration | Annual Energy Outlook...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Figure F7. Coal Demand Regions CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT...

148

File:03-TX-d - Lease of Public School Fund Land (1).pdf | Open Energy  

Open Energy Info (EERE)

Land (1).pdf Land (1).pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-d - Lease of Public School Fund Land (1).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 41 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:26, 29 July 2013 Thumbnail for version as of 11:26, 29 July 2013 1,275 × 1,650 (41 KB) Apalazzo (Talk | contribs) 13:47, 26 July 2013 Thumbnail for version as of 13:47, 26 July 2013 1,275 × 1,650 (41 KB) Apalazzo (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information)

149

To be presented at the 2007 ASHRAE Winter Meeting, January 27-31, 2007, Dallas, TX. Measured energy performance a US-China demonstration  

E-Print Network [OSTI]

efficient than ASHRAE 90.1- 1999. The utility data from the first year's operation match well the analysisLBNL-60978 To be presented at the 2007 ASHRAE Winter Meeting, January 27-31, 2007, Dallas, TX

150

Offering Songs, Festive Songs, Processional Songs mGar-gLu, Khro-Glu, Phebsnga: Khang Lhamo, Yandol & Pema Dolma Music: Ri di ngak me ri la, 'The belt on the boots'  

E-Print Network [OSTI]

di ngak me ri la Translation of title The belt on the boots Description (to be used in archive entry) A song about festive dress and customs. Genre or type (i.e. epic, song, ritual) khro glu (festive song) Medium (i.e. reel to reel, web... objects used in performance Level of public access (fully closed, fully open) Fully open for web streaming Notes and context (include reference to any related documentation, such as photographs) "This belt is really long on the boots. If we use...

Blumenthal, Katey

151

RECIPIENT:SD Energy Office u.s. DEP.-illTlVlENT OF ENERGY EERE PROJECT MANAG  

Broader source: Energy.gov (indexed) [DOE]

SD Energy Office SD Energy Office u.s. DEP.-illTlVlENT OF ENERGY EERE PROJECT MANAG EMENT CENTER NEPA DETERMINATION PROJECf TITLE : Technical analysis for geothermal system Page I of2 STATE: SO Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA-OOQOQS2 DE-EEOOOO145 GFO-09-152-007 0 Based on my review of abe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 45I.tA), I have made tbe following determination : ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including. but not limited to. literature surveys, inventories, audits), data analysis (including computer modeling). document preparation (such as conceptual design or feasibility studies, analytical energy supply

152

Cite as: Scott, S.D. & Carpendale, S. (2010). Theory of Tabletop Territoriality. In C. Mller-Tomfelde (ed.), Tabletops -Horizontal Interactive Displays, Springer  

E-Print Network [OSTI]

Cite as: Scott, S.D. & Carpendale, S. (2010). Theory of Tabletop Territoriality. In C. Müller-Tomfelde (ed.), Tabletops - Horizontal Interactive Displays, Springer (HCI Stacey D. Scott and Sheelagh Carpendale Abstract This chapter discusses empirical

DiMarco, Chrysanne

153

Relative quadrupole moments of exotic shapes at ultrahigh spin in 154Er: calibrating the TSD/SD puzzle  

Science Journals Connector (OSTI)

Transition quadrupole moments, Qt, of two ultrahigh-spin, collective structures in 154Er have been measured for the first time using the Doppler Shift Attenuation Method (DSAM). Data were acquired at the ATLAS accelerator facility of Argonne National Laboratory, using the Gammasphere detector array. A thick, gold-backed 110Pd foil was bombarded by a beam of 48Ti ions at 215 MeV. The Qt for each band was determined from the Doppler shift of gamma rays emitted by the resulting recoil nuclei. The extracted transition quadrupole moments are significantly different in magnitude, suggesting the two structures in 154Er represent distinct exotic nuclear shapes, namely axial superdeformed (SD) with Qt ? 20 eb, and triaxial strongly deformed (TSD) with Qt ? 11 eb. Indeed, the results calibrate the quadrupole moments of TSD bands recently measured in light erbium nuclei, 157,158Er.

J P Revill; E S Paul; X Wang; M A Riley; J Simpson; J Ollier; A J Boston; M P Carpenter; C J Chiara; C Hoffman; R V F Janssens; F G Kondev; T Lauritsen; P J Nolan; J M Rees; S V Rigby; C Unsworth; S Zhu; I Ragnarsson

2012-01-01T23:59:59.000Z

154

Cotton Yield Mapping at AG-CARES, Lamesa, TX, 2003 John Everitt, Alan Brashears, Wayne Keeling, and Danny Carmichael, Research Associate,  

E-Print Network [OSTI]

TITLE: Cotton Yield Mapping at AG-CARES, Lamesa, TX, 2003 AUTHORS: John Everitt, Alan Brashears, and Research Associate RESULTS AND DISCUSSION: A John Deere 7445 cotton stripper equipped with a MICRO-TRAK ® yield monitor was used to harvest cotton at AG-CARES in 2003. The MICRO-TRAK ® yield monitor system used

Mukhtar, Saqib

155

Results of Phase I groundwater quality assessment for single-shell tank waste management areas T and TX-TY at the Hanford Site  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) conducted a Phase I, Resource Conservation and Recovery Act of 1976 (RCRA) groundwater quality assessment for the Richland Field Office of the U.S. Department of Energy (DOE-RL) under the requirements of the Federal Facility Compliance Agreement. The purpose of the investigation was to determine if the Single-Shell Tank Waste Management Areas (WMAs) T and TX-TY have impacted groundwater quality. Waste Management Areas T and TX-TY, located in the northern part of the 200 West Area of the Hanford Site, contain the 241-T, 241-TX, and 241-TY tank farms and ancillary waste systems. These two units are regulated under RCRA interim-status regulations (under 40 CFR 265.93) and were placed in assessment groundwater monitoring because of elevated specific conductance in downgradient wells. Anomalous concentrations of technetium-99, chromium, nitrate, iodine-129, and cobalt-60 also were observed in some downgradient wells. Phase I assessment, allowed under 40 CFR 265, provides the owner-operator of a facility with the opportunity to show that the observed contamination has a source other than the regulated unit. For this Phase I assessment, PNNL evaluated available information on groundwater chemistry and past waste management practices in the vicinity of WMAs T and TX-TY. Background contaminant concentrations in the vicinity of WMAs T and TX-TY are the result of several overlapping contaminant plumes resulting from past-practice waste disposal operations. This background has been used as baseline for determining potential WMA impacts on groundwater.

Hodges, F.N.

1998-01-01T23:59:59.000Z

156

OAiC RiDGE NATIONAL LABORAl-ORY LKCKKBSP HAITI MANA%ED AND OPERATED BY  

Office of Legacy Management (LM)

OH42 -7 OH42 -7 / i3-y OAiC RiDGE NATIONAL LABORAl-ORY LKCKKBSP HAITI MANA%ED AND OPERATED BY vxKHEEpyARluEwERoY fEsEARcHcxHtPoM~RN R3RmEuMYED~Am DEPMl' MEU?#bBgKiY . ORNL/TpvI-12968 Results of the Independent Radiological Verification Survey of the Remedial Action l?erformed at the Former Alba Craft Laboratory Site Oxford, Ohio (0x0001) K. R. Kleinhans M. E. Murray R. F. Carrier - This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Techni- cal Information, P.O. 60x 62, Oak Ridge, TN 37631; prices available from (615) 576-640 1, FTS 626-640 1. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd.. Springfield, VA 22161.

157

Measurement of the CP-Violating Phase ?[subscript s] in [bar over B][0 over s] ? D[+ over s]D[- over s] Decays  

E-Print Network [OSTI]

We present a measurement of the CP-violating weak mixing phase ?[subscript s] using the decay [bar over B][0 over s] ? D[+ over s]D[- over s] in a data sample corresponding to 3.0?fb[superscript -1] of integrated luminosity ...

Aaij, R.

158

~tx421.ptx  

U.S. Energy Information Administration (EIA) Indexed Site

FRIDAY APRIL 3, 2009 The meeting convened at 9:00 a.m. in Room 8E-089 of the James Forrestal Building, 1000 Independence Avenue, S.W., Washington, D.C., Edward Blair, Chair, presiding. COMMITTEE MEMBERS PRESENT: EDWARD BLAIR, Chair STEVE BROWN BARBARA FORSYTH WALTER HILL VINCENT IANNACCHIONE NANCY KIRKENDALL EDWARD KOKKELENBERG ISRAEL MELENDEZ MICHAEL TOMAN JOHN WEYANT (202) 234-4433 Neal R. Gross & Co., Inc. Page 2 EIA STAFF PRESENT: STEPHANIE BROWN, Designated Federal Official, Director, Statistics and Methods Group (SMG) JAMES BERRY CAROL JOYCE BLUMBERG TINA BOWERS JAKE BOURNAZIAN, SMG EUGENE BURNS MICHAEL COLE, Office of Integrated Analysis and Forecasting (OIAF) JOHN CONTI BRENDA COX, SRA RAMESH DANDEKAR, SMG JOHN PAUL DELEY, OIT

159

~tx410.ptx  

U.S. Energy Information Administration (EIA) Indexed Site

THURSDAY, APRIL 2, 2009 The meeting convened at 9:00 a.m. in Room 8E-089 of the James Forrestal Building, 1000 Independence Avenue, SW, Washington, D.C., Ed Blair, Chair, presiding. COMMITTEE MEMBERS PRESENT: EDWARD BLAIR, Chair STEVE BROWN MICHAEL COHEN BARBARA FORSYTH WALTER HILL VINCENT IANNACCHIONE NANCY KIRKENDALL EDWARD KOKKELENBERG ISRAEL MELENDEZ MICHAEL TOMAN JOHN WEYANT (202) 234-4433 Neal R. Gross & Co., Inc. Page 2 EIA STAFF PRESENT: STEPHANIE BROWN, Designated Federal Official, Director, Statistics and Methods Group (SMG) JAMES BERRY CAROL JOYCE BLUMBERG TINA BOWERS JAKE BOURNAZIAN, SMG EUGENE BURNS MICHAEL COLE, Office of Integrated Analysis and Forecasting (OIAF) JOHN CONTI BRENDA COX, SRA RAMESH DANDEKAR, SMG

160

LBNL-4183E-rev1 N NA AT TU UR RA AL L G GA AS S V VA AR RI  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4183E-rev1 4183E-rev1 N NA AT TU UR RA AL L G GA AS S V VA AR RI IA AB BI IL LI IT TY Y I IN N C CA AL LI IF FO OR RN NI IA A: : E EN NV VI IR RO ON NM ME EN NT TA AL L I IM MP PA AC CT TS S A AN ND D D DE EV VI IC CE E P PE ER RF FO OR RM MA AN NC CE E E EX XP PE ER RI IM ME EN NT TA AL L E EV VA AL LU UA AT TI IO ON N O OF F I IN NS ST TA AL LL LE ED D C CO OO OK KI IN NG G E EX XH HA AU US ST T F FA AN N P PE ER RF FO OR RM MA AN NC CE E Brett C. Singer, William W. Delp and Michael G. Apte Indoor Environment Department Atmospheric Sciences Department Environmental Energy Technologies Division July 2011 (Revised February 2012) Disclaimer 1 This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alkali/TX sub 2 catalysts for CO/H sub 2 conversion to C sub 1 -C sub 4 alcohols  

SciTech Connect (OSTI)

The objective of this research is to investigate and develop novel catalysts for the conversion of coal-derived synthesis gas into C{sub 1}--C{sub 4} alcohols by a highly selective process. Therefore, the variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO {le}1 synthesis gas for a series of A/TX{sub 2} compounds, where A is a surface alkali dopant, T is a transition metal, and X is a S, Se, or Te, will be determined. The alkali component A, which is essential for C-O and C-C bond forming reactions leading to alcohols, will be highly dispersed on the TX{sub 2} surfaces by using chemical vapor deposition (CVD) and chemical complexation/anchoring (CCA) methods. Catalysts that have been prepared during this quarter include RuS{sub 2}, NbS{sub 2}, K/MoS{sub 2}, and K/Crown either/MoS{sub 2}. Catalysts tested include KOH/MoS{sub 2} and K/Crown ether/MoS{sub 2}. 9 refs., 10 figs., 2 tabs.

Klier, K.; Herman, R.G.; Brimer, A.; Richards, M.; Kieke, M.; Bastian, R.D.

1990-09-01T23:59:59.000Z

162

DOE Zero Energy Ready Home Case Study: Sterling Brook Custom...  

Energy Savers [EERE]

TX More Documents & Publications DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott...

163

I.T. Chapman, R.J. La Haye, R.J. Buttery, W.W. Heidbrink, G.L. Jackson, C.M. Muscatello, C.C. Petty, R.I. Pinsker, B.J. Tobias, and F. Turco  

E-Print Network [OSTI]

seeding deleterious NTMs. When electron cyclotron resonance heating (ECRH) is applied to the plasma, R.I. Pinsker, B.J. Tobias, and F. Turco CCFE-PR(12)21 Sawtooth control using electron cyclotron Atomic Energy Authority is the copyright holder. #12;Sawtooth control using electron cyclotron current

164

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

WA WA MT ID OR WY ND SD CA NV UT CO NE KS AZ NM OK TX MN WI MI IA IL IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Japan Mexico Mexico Algeria Canada Canada Canada Canada Canada Canada Canada Algeria Canada United Arab Emirates Australia Australia Trinidad Qatar Malaysia Canada Mexico Interstate Movements of Natural Gas in the United States, 1999 (Volumes Reported in Million Cubic Feet) Supplemental Data From Volume To From Volume To (T) AL TX MA NH CT RI MD DC DE MD RI MA MA CT VA DC (T) Trucked Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." E I A NERGY NFORMATION DMINISTRATION 837,902 415,636 225,138 232 308,214 805,614 803,034 800,345 685 147 628,589 9,786 790,088 17,369 278,302 40,727 214,076 275,629 51,935 843,280 826,638 9,988 998,603 553,440 896,187 11,817 629,551 98,423

165

NGA98fin5.vp  

Gasoline and Diesel Fuel Update (EIA)

8 8 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1998 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1998 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental

166

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

2000 2000 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-99.99 10.00-11.99 12.00+ 19. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2000 (Dollars per Thousand Cubic Feet) Figure 20. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 2000 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural

167

C:\Annual\VENTCHAP.V8\NGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2002 2002 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and Form EIA 910, "Monthly Natural Gas Marketer Survey." 17. Average Price of Natural Gas Delivered to U.S. Commercial Consumers, 2002 (Dollars per Thousand Cubic Feet) Figure 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 2002 (Dollars per Thousand Cubic Feet) Figure Source: Energy Information Administration

168

Microsoft Word - Figure_18_19.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK MD 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Figure 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2004 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Power Consumers, 2004 (Dollars per Thousand Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: States where the electric power price has been withheld (see Table 23) are included in the $0.00-$2.49 price category.

169

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

49 49 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK MD 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Figure 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2003 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Power Consumers, 2003 (Dollars per Thousand Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: States where the electric power price has been withheld (see Table 23) are included in the $0.00-$1.99 price category.

170

C:\Annual\VENTCHAP.V8\NGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2002 (Dollars per Thousand Cubic Feet) Figure Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 2002 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost

171

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1999 (Dollars per Thousand Cubic Feet) Figure

172

C:\ANNUAL\VENTCHAP.V8\NGA.VP  

Gasoline and Diesel Fuel Update (EIA)

8 8 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1997 (Dollars per Thousand Cubic Feet) Figure

173

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 28. Average Price of Natural Gas Delivered to U.S. Onsystem Residential Consumers, 2001 (Dollars per Thousand Cubic Feet) Figure 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition."

174

NGA98fin5.vp  

Gasoline and Diesel Fuel Update (EIA)

1998 1998 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1998 (Dollars per Thousand Cubic Feet) Figure

175

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 30. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2001 (Dollars per Thousand Cubic Feet) Figure 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 31. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 2001 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of

176

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1999 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1999 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental

177

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

Energy Energy Information Administration / Natural Gas Annual 2000 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ 17. Average Price of Natural Gas Delivered to U.S. Residential

178

NA SD 452.2  

National Nuclear Security Administration (NNSA)

input document SS-21 seamless safety for the 21 st century STA senior technical advisor STD Standard TA technical advisor TSR technical safety requirement USQ unreviewed...

179

Summit Wind Farm, Summit, SD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a draft environmental assessment (EA) on the proposed interconnection of the Summit Wind Farm (Project) in Roberts County, near the city of Summit, South Dakota. SummitWind,...

180

Construction integrity assessment report (ETN-98-0005) S-Farm overground transfer (OGT) system valve pit 241-S-B to valve pit 241-S-D  

SciTech Connect (OSTI)

The S-Farm overground transfer (OGT) line will bypass the existing line(s), between valve pits 241-S-B and 241-S-D that no longer meet system requirements. The new OGT line will provide a waste transfer pipeline between these valve pits in support of saltwell pumping activities. The length of the OGT line is approximately 180 ft from pit to pit. The primary pipe is nominal 1-in. diameter stainless steel (SST) braided Ethylene-propylene Diene Monomer (EPDM) hose. The encasement pipe is a nominal 3-in., flanged, SST pipe made up of several different length pipe spool pieces (drawing H-2-829564, sh. 1 and sh. 2). The OGT line slopes from valve pit 241-S-B toward valve pit 241-S-D. At each end, the primary and encasement pipe connect to a pit entry spool piece. The pit entry spool pieces are constructed of prefabricated SST materials. These spool pieces allow for the separation of the primary and encasement pipelines after the pipes have entered the valve pits (drawing H-2-818280, sh. 2). The pit entry spool pieces also allow for leak detection of the encasement pipe at each end (drawing H-2-829564, sh. 2). The OGT encasement pipeline is supported above ground by adjustable height unistrut brackets and precast concrete bases (drawing H-2-829654, sh. 1). The pipeline is heat-traced and insulated. The heat tracing and insulation supply and retain latent heat that prevents waste solidification during transfers and provides freeze protection. The total length of the pipeline is above ground, thereby negating the need for cathodic corrosion protection. This Construction Integrity Assessment Report (CIAR) is prepared by Fluor Daniel Northwest for Numatec Hanford Corporation/Lockheed Martin Hanford Corporation, the operations contractor, and the U. S. Department of Energy, the system owner. The CIAR is intended to verify that construction was performed in accordance with the provisions of Washington Administrative Code, WAC-173-303-640 (3) (c), (e), (f) and (h).

HICKS, D.F.

1999-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Measurement of the [bar over B][0 over s] ? D[? over s]D[+ over s] and [bar over B][0 over s] ? D[superscript ?]D[+ over s] Effective Lifetimes  

E-Print Network [OSTI]

The first measurement of the effective lifetime of the [bar over B][0 over s] meson in the decay[bar over B][0 over s] ? D[? over s]D[+ over s] is reported using a proton-proton collision data set, corresponding to an ...

Ilten, Philip James

182

RI_50m_Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metadata also available as Metadata: IdentificationInformation DataQualityInformation SpatialDataOrganizationInformation SpatialReferenceInformation EntityandAttributeI...

183

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Selection Tool: New Construction Windows Window Selection Tool: New Construction Windows The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. SELECT LOCATION: AK Anchorage AK Fairbanks AL Birmingham AL Mobile AR Little Rock AZ Flagstaff AZ Phoenix AZ Tucson CA Arcata CA Bakersfield CA Daggett CA Fresno CA Los Angeles CA Red Bluff CA Sacramento CA San Diego CA San Francisco CO Denver CO Grand Junction CT Hartford DC Washington DE Wilmington FL Daytona Beach FL Jacksonville FL Miami FL Tallahassee FL Tampa GA Atlanta GA Savannah HI Honolulu IA Des Moines ID Boise IL Chicago IL Springfield IN Indianapolis KS Wichita KY Lexington KY Louisville LA Lake Charles LA New Orleans LA Shreveport MA Boston MD Baltimore ME Portland MI Detroit MI Grand Rapids MI Houghton MN Duluth MN Minneapolis MO Kansas City MO St. Louis MS Jackson MT Billings MT Great Falls NC Raleigh ND Bismarck NE Omaha NH Concord NJ Atlantic City NM Albuquerque NV Las Vegas NV Reno NY Albany NY Buffalo NY New York OH Cleveland OH Dayton OK Oklahoma City OR Medford OR Portland PA Philadelphia PA Pittsburgh PA Williamsport RI Providence SC Charleston SC Greenville SD Pierre TN Memphis TN Nashville TX Brownsville TX El Paso TX Fort Worth TX Houston TX Lubbock TX San Antonio UT Cedar City UT Salt Lake City VA Richmond VT Burlington WA Seattle WA Spokane WI Madison WV Charleston WY Cheyenne AB Edmonton MB Winnipeg ON Toronto PQ Montreal SELECT HOUSE TYPE:

184

~txF74.ptx  

Broader source: Energy.gov (indexed) [DOE]

WEDNESDAY WEDNESDAY OCTOBER 19, 2011 + + + + + The Electricity Advisory Committee met in the Conference Center of the National Rural Electric Cooperative Association Headquarters, 4301 Wilson Boulevard, Arlington, Virginia, at 2:00 p.m., Richard Cowart, Chair, presiding. MEMBERS PRESENT RICHARD COWART, Regulatory Assistance Project, Chair THE HONORABLE ROBERT CURRY, New York State Public Service Commission JOSE DELGADO, American Transmission Company (Ret.) ROGER DUNCAN, Austin Energy (Ret.) ROBERT GRAMLICH, American Wind Energy Association MICHAEL HEYECK, American Electric Power JOSEPH KELLIHER, NextEra Energy, Inc. EDWARD KRAPELS, Anbaric Holdings RALPH MASIELLO, KEMA RICH MEYER, National Rural Electric

185

~tx22C0.ptx  

Broader source: Energy.gov (indexed) [DOE]

+ + + + + STUDYING THE COMMUNICATIONS REQUIREMENTS OF ELECTRIC UTILITIES TO INFORM FEDERAL SMART GRID POLICIES + + + + + PUBLIC MEETING + + + + + THURSDAY, JUNE 17, 2010 + + + + + The Public Meeting was held in Room 8E069 at the Department of Energy, Forrestal Building, 1000 Independence Avenue, S.W., Washington, D.C., at 10:00 a.m., Scott Blake Harris, Chair, presiding. PRESENT: BECKY BLALOCK SHERMAN J. ELLIOTT LYNNE ELLYN SCOTT BLAKE HARRIS JIM INGRAHAM JIM L. JONES MICHAEL LANMAN KYLE McSLARROW ROY PERRY 202-234-4433 Neal R. Gross & Co., Inc. Page 2

186

College TX 71843-25000  

E-Print Network [OSTI]

C L S F A 5 P F E m. N .n. m m w. F u .H II. A, m m mu" ..... 59. (1973) 5003. [ll] BACRI, J. C. et RAJAONARISON, R., A paraitre. [12] KAWASAKI, K., Ann. Phys.

187

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

,833 ,833 35 Egypt Figure 13. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2009 (Million Cubic Feet) Norway Trinidad/ Tobago Trinidad/ Tobago Egypt Interstate Movements Not Shown on Map From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 111,144 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates

188

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 (Million Cubic Feet) Supplemental Data From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 42,411 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Algeria Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and the Office of Fossil Energy, Natural Gas Imports and Exports. Energy Information Administration / Natural Gas Annual 2006 253,214 690,780 634,185 658,523 134,764 63,063 526,726 121,049 34,531 492,655 101,101 23,154 40,113 1,496,283 68,601

189

DOE/EIA-0131(96) Distribution Category/UC-960 Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

ID ID OR WY ND SD CA NV UT CO NE KS AZ NM OK TX MN WI MI IA IL IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Japan Mexico Mexico Algeria Canada Canada Canada Canada Canada Canada Canada Algeria Canada United Arab Emirates Interstate Movements of Natural Gas in the United States, 1996 (Volumes Reported in Million Cubic Feet) Supplemental Data From Volume To From Volume To (T) AL KY (T) MA ME (T) AL LA MA NH (T) AL MO (T) MA NJ (T) AL SC MD DC CT RI RI MA DE MD VA DC MA CT (T) Trucked Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." E I A NERGY NFORMATION DMINISTRATION 906,407 355,260 243,866 220 384,311 576,420 823,799 842,114 27,271 126,012 133 602,841 266 579,598 16,837 268,138 48,442 182,511 219,242 86,897 643,401 619,703 8,157 937,806 292,711 869,951 12,316 590,493 118,256

190

Microsoft Word - figure_14.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 14. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2010 (Million Cubic Feet) Norway India Trinidad/ Tobago Egypt Yemen Japan Interstate Movements Not Shown on Map From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 53,122 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Canada Canada Gulf of Mexico Canada Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates based on historical data. Energy Information

191

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

WA WA MT ID OR WY ND SD CA NV UT CO NE KS AZ NM OK TX MN WI MI IA IL IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Japan Mexico Mexico Algeria Canada Canada Canada Canada Canada Canada Canada Algeria Mexico Trinidad Canada Canada Nigeria Oman Qatar Trinidad Gulf of Mexico Gulf of Mexico Gulf of Mexico Canada Trinidad Trinidad Gulf of Mexico Malaysia 13,623 Figure 8. Interstate Movements of Natural Gas in the United States, 2003 (Million Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Energy Information Administration / Natural Gas Annual 2003 Supplemental Data From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 366,224 655,731 666,614 633,960 144,284 43,869 536,776 63,133 36,848

192

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 13. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2008 (Million Cubic Feet) Norway Trinidad/ Tobago Interstate Movements Not Shown on Map From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 45,772 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates.

193

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 (Million Cubic Feet) 24,891 2,895 Nigeria WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico Algeria C a n a d a C a n a d a Canada Canada Canada Canada Canada Algeria Canada Canada N i g e r i a O m a n Qatar Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Malaysia 2,986 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and the Office of Fossil Energy, Natural Gas Imports and Exports. Energy Information Administration / Natural Gas Annual 2005 Supplemental Data From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 335,380 634,982 664,318 612,297 125,202 33,223 531,868 103,624

194

U.S. Energy Information Administration | Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

1 1 Regional maps Figure F6. Coal supply regions Figure F6. Coal Supply Regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin Wyoming, Southern Powder River Basin Western Wyoming OTHER WEST Rocky Mountain Southwest Northwest KY AK 1000 0 SCALE IN MILES Source: U.S. Energy Information Administration, Office

195

Wind Program: Stakeholder Engagement and Outreach  

Wind Powering America (EERE)

Outreach Outreach Printable Version Bookmark and Share The Stakeholder Engagement and Outreach initiative of the U.S. Department of Energy's Wind Program is designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Highlights Resources Wind Resource Maps State Activities What activities are happening in my state? AK AL AR AZ CA CO CT DC DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY Installed wind capacity maps. Features A image of a house with a residential-scale small wind turbine. Small Wind for Homeowners, Farmers, and Businesses Stakeholder Engagement & Outreach Projects

196

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

2 2 Source: U.S. Energy Information Administration, Office of Energy Analysis. U.S. Energy Information Administration / Annual Energy Outlook 2010 213 Appendix F Regional Maps Figure F1. United States Census Divisions Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Source: U.S. Energy Information Administration, Office of Integrated Analysis and Forecasting. Appendix F Regional Maps Figure F1. United States Census Divisions U.S. Energy Information Administration | Annual Energy Outlook 2012

197

Assumptions to the Annual Energy Outlook 2007 Report  

Gasoline and Diesel Fuel Update (EIA)

clothes drying, ceiling fans, coffee makers, spas, home security clothes drying, ceiling fans, coffee makers, spas, home security systems, microwave ovens, set-top boxes, home audio equipment, rechargeable electronics, and VCR/DVDs. In addition to the major equipment-driven end-uses, the average energy consumption per household is projected for other electric and nonelectric appliances. The module's output includes number Energy Information Administration/Assumptions to the Annual Energy Outlook 2007 19 Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central

198

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 13. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2007 (Million Cubic Feet) Nigeria Algeria 37,483 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Algeria Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and the Office of Fossil Energy, Natural Gas Imports and Exports.

199

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

2 2 Regional maps Figure F7. Coal demand regions Figure F7. Coal Demand Regions CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT 16. PC 15. ZN 12. WS 11. C2 9. AM 5. GF 8. KT 4. S2 7. EN 6. OH 2. YP 1. NE 3. S1 10. C1 KY,TN 8. KT 16. PC AK,HI,WA,OR,CA 10. C1 CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT

200

U.S. Energy Information Administration | Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

4 4 Regional maps Figure F7. Coal demand regions Figure F7. Coal Demand Regions CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT 16. PC 15. ZN 12. WS 11. C2 9. AM 5. GF 8. KT 4. S2 7. EN 6. OH 2. YP 1. NE 3. S1 10. C1 KY,TN 8. KT 16. PC AK,HI,WA,OR,CA 10. C1 CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

For questions, contact the Rice Alliance at 713.348.3443 Submit form with payment details via fax at 713.348.3110 or mail to: Rice Alliance for Technology and Entrepreneurship Rice University MS-531 P.O. Box 2932 Houston, TX 77252-2932  

E-Print Network [OSTI]

For questions, contact the Rice Alliance at 713.348.3443 · Submit form with payment details via fax at 713.348.3110 or mail to: Rice Alliance for Technology and Entrepreneurship · Rice University · MS-531 · P.O. Box 2932 · Houston, TX · 77252-2932 Rice Alliance Annual Corporate Underwriter Program 2012

202

Windows Mobile LiveSD Forensics  

Science Journals Connector (OSTI)

More and more often, smartphones are relevant targets of civil and criminal investigations. Currently, there are several tools available to acquire forensic evidence from smartphones. Unfortunately, most of these tools require to connect the smartphone ... Keywords: Data acquisition, Mobile device forensics, PocketPC forensics, Window CE forensics, Windows Mobile Forensics

EyP S. Canlar; Mauro Conti; Bruno Crispo; Roberto Di Pietro

2013-03-01T23:59:59.000Z

203

Field demonstration of aviation turbine fuel MIL-T-83133C, grade JP-8 (NATO code F-34) at Fort Bliss, TX. Interim report 1 Feb 89-31 Jul 90  

SciTech Connect (OSTI)

A JP-8 fuel demonstration was initiated at Ft. Bliss, TX, to demonstrate the impact of using aviation turbine fuel MIL-T-83133C, grade JP-8 in all military diesel fuel-consuming ground vehicles and equipment. Three major organizations, one ordnance battalion and two activities with a total of 2807 vehicles/equipment (V/E), were identified as participants in the demonstration program, which is authorized to continue through 30 September 1991. No fuel storage tank or V/E fuel cells were drained and flushed prior to introduction of JP-8 fuel. This procedure resulted in a commingling of JP-8 fuel with existing diesel fuel. As of 31 July 1990 approximately 4,700,000 gallons of JP-8 fuel had been dispensed to user units at Ft. Bliss and at Ft. Irwin National Training Center (NTC) in California. Three areas of concern arose from the beginning of the program: (1) plugging of fuel filters, (2) loss of power, and (3) overheating. The use of JP-8 fuel did not cause or exacerbate any V/E fuel filter plugging. Where power loss was apparent, generally it was commensurate with the difference in heating values between JP-8 and diesel fuel. The V/E at Ft. Bliss operated satisfactorily with the JP-8 fuel with no alterations, mechanical or otherwise, having to be made to any engines or fuel systems. There were no major differences in fuel procurement costs, V/E fuel consumption, AOAP-directed oil changes, and fuel-wetted component replacements.

Butler, W.E.; Alvarez, R.A.; Yost, D.M.; Westbrook, S.R.; Buckingham, J.P.

1990-12-01T23:59:59.000Z

204

&RQFHSWXDO 0RGHOLQJ DQG &RPSRVLWLRQ RI  

E-Print Network [OSTI]

efficiently. Organizational processes cover business processes and work processes. Organizational resources providing organizational UHVRXUFHV to organizational SURFHVVHV in order to have them performed more comprise human beings as organizational actors, but also information, tools and representations

205

PCCF RI 1101 Geant4 simulations of +  

E-Print Network [OSTI]

profile from 12 6 C6+ at 200 MeV/u in water equivalent material for different densities. Even a small)] . . . . . . . . . . . . . . . . . . . . . . . 21 2.1 Diagram of the nuclear radiative transition. . . . . . . . . . . . . . . . . . . . . 29 3 to handle the deexcitation chain

Paris-Sud XI, Université de

206

Ya ri a bsod Collection 4  

E-Print Network [OSTI]

????????????????????????? Genre or type (i.e. epic, song, ritual) Persuade Song ??? ??????????????? Name of recorder (if different from collector) Date of recording February 2007 ????? ?????????????????????????? Place of recording A skyid Village, A skyid Township... of performer(s) E kho, 72, female, A skyid Township, Mdzo dge County, Rnga ba Tibetan and Qiang Autonomous Prefecture, Sichuan Province. ??,?????????????????????????? ?? ?????? ???? ??? ??????????????????????????????????...

Sha bo don 'grub rdo rje; Skal dbang skyid

207

Ya ri a bsod Collection 6  

E-Print Network [OSTI]

?????????????????????????????????? ?????????? Genre or type (i.e. epic, song, ritual) Paean ?? ?????? Name of recorder (if different from collector) Date of recording February 2007 ????? ?????????????????????????? Place of recording...

Sha bo don 'grub rdo rje; Skal dbang skyid

208

Ya ri a bsod Collection 7  

E-Print Network [OSTI]

??????????????? ???????????? ????????????????????????????????????????????????????????????????????????? ?????????????????????????????????????????????????????? Genre or type (i.e. epic, song, ritual) Paean ?? ?????? Name...

Sha bo don 'grub rdo rje; Skal dbang skyid

209

Slide 1  

Broader source: Energy.gov (indexed) [DOE]

Inventory map reflects the non-federally owned SNF and HLW covered by the Nuclear Waste Policy Act Inventory map reflects the non-federally owned SNF and HLW covered by the Nuclear Waste Policy Act 2 Metric Tons Heavy Metal (MTHM) 3 Based on actual data through 2002 , as provided in the RW-859, and projected discharges for 2003-2010 which are rounded to two significant digits. Reflects trans-shipments as of end-2002. End of Year 2010 SNF & HLW Inventories 1 Approximately 64,000 MTHM 2 of Spent Nuclear Fuel (SNF) 3 & 275 High-Level Radioactive Waste (HLW) Canisters CT 1,900 TX 2,000 MD 1,200 VT 610 RI MT WY NE 790 SD ND OK KS 600 TX 2,000 LA 1,200 AR 1,200 IA 480 MN 1,100 WI 1,300 KY TN 1,500 MS 780 AL 3,000 GA 2,400 FL 2,900 NC 3,400 VA 2,400 WV OH 1,100 PA 5,800 ME 540 NJ 2,400 DE MI 2,500 MA 650 NH 480 IN SC 3,900 CO MO 670 IL 8,400 NY 3,300 CA 2,800 AZ 1,900 NM OR 360 NV UT WA 600 ID < 1 Commercial HLW 275 Canisters (~640 MTHM)

210

~txF7D.ptx  

Broader source: Energy.gov (indexed) [DOE]

THURSDAY THURSDAY OCTOBER 20, 2011 + + + + + The Electricity Advisory Committee met, in the Conference Center of the National Rural Electric Cooperative Association Headquarters, 4301 Wilson Boulevard, Arlington, Virginia, at 8:00 a.m., Richard Cowart, Chair, presiding. MEMBERS PRESENT RICHARD COWART, Regulatory Assistance Project, Chair RICK BOWEN, Alcoa RALPH CAVANAGH, Natural Resources Defense Council THE HONORABLE ROBERT CURRY, New York State Public Service Commission JOSE DELGADO, American Transmission Company (Ret.) ROGER DUNCAN, Austin Energy (Ret.) ROBERT GRAMLICH, American Wind Energy Association MICHAEL HEYECK, American Electric Power JOSEPH KELLIHER, NextEra Energy, Inc. EDWARD KRAPELS, Anbaric Holdings

211

SSA annual Meeting Announcement - Austin, TX  

Science Journals Connector (OSTI)

...reported here were obtained assuming an average radiation factor of G.6. Characteristic frequencies (boatwTIght, 1981) were usec to calculate relative estimates of fault size. All three moment estimates resulted in approximate linear increases of log...

212

,"TX, State Offshore Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

2R9911RTXSF1","RNGR9908RTXSF1","RNGR9909RTXSF1","RNGR9910RTXSF1" "Date","Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Texas--State...

213

Micro-Grids for Colonias (TX)  

SciTech Connect (OSTI)

This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.

Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

2012-07-31T23:59:59.000Z

214

SSA annual Meeting Announcement - Austin, TX  

Science Journals Connector (OSTI)

...Murphy, Earth Sciences Branch, Office of Nuclear Regulatory Research, U. S. Nuclear Regu- latory Commision, Mail Stop 113055, Washington, D...P-coda and LG waves from underground nuclear explosions in Eurasia W. Mitronovas...

215

University of Texas, Austin Austin, TX 78712  

E-Print Network [OSTI]

to this problem including; toxic materials, waste and wastewater, emissions and greenhouse gases, energy usage industrial activities in the US, the contribution of manu- facturing to various environmental impacts waste, 3 energy, and 4 carbon emissions. Manufacturing is also a heavy user of water, and there have

Gutowski, Timothy

216

Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection  

E-Print Network [OSTI]

analysis was conducted using Stata Version 9 (Stata Corp., College Station, TX). Cognitive/behavioral assessments were summarized as mean SD unless other- wise noted. For comparisons between infected/uninfected mice, the Wilcoxon rank-sum test, Kruskal-Wallis... ., College Station, TX). Histopathological data were summarized as mean SD unless otherwise noted. For comparisons between infected/uninfected or treated/ untreated mice, the Wilcoxon rank-sum test, Kruskal-Wal- lis test, or Fisher's exact test, was used...

Hermes, Gretchen; Ajioka, James W; Kelly, Krystyna A; Mui, Ernest; Roberts, Fiona; Kasza, Kristen; Mayr, Thomas; Kirisits, Michael J; Wollman, Robert; Ferguson, David J P; Roberts, Craig W; Hwang, Jong-Hee; Trendler, Toria; Kennan, Richard P; Suzuki, Yasuhiro; Reardon, Catherine; Hickey, Adam William; Chen, Lieping; McLeod, Rima

2008-10-23T23:59:59.000Z

217

RESEARCH Open Access Exploiting Issatchenkia orientalis SD108 for  

E-Print Network [OSTI]

draft genome sequence and use the sequencing information to guide pathway design. As proof of concept, an engineered four-gene expression cassette related to the reductive TCA cycle was assembled and integrated

Zhao, Huimin

218

Microsoft Word - SD243-1_Clean_20140429  

National Nuclear Security Administration (NNSA)

Training delivery methods will also vary to include classroom (exercisesinstructor led), video teleconference, computer-based training, webinars, pamphlets, and slide-show...

219

The State of the CDM & its Contribution to SD  

E-Print Network [OSTI]

Welfare Learning Employment Growth Energy Balance of Payment Sustainability tax Corporate social 34% Transport 0,2% #12;Sectoral distribution of CDM projects Sectors behind: · Demand-side Energy,43 Number 2012 kCERs All CDM Projects in the Pipeline in Brazil + Mexico + India + China as a fraction

220

CEC-400-2013-004-SD CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

NONRESIDENTIAL ALTERNATIVE CALCULATION METHOD REFERENCE MANUAL FOR THE 2013 BUILDING ENERGY EFFICIENCY STANDARDS and Renewable Energy Division Bill Pennington Deputy Division Chief Efficiency and Renewable Energy Division.E. Martha Brook, P.E. High Performance Buildings Office #12;Acknowledgments The Building Energy

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Microsoft Word - SD 351-1 FINAL.doc  

National Nuclear Security Administration (NNSA)

andor determination of benefit for long- and short-term disability NO YES The Contracting Officer may approve, on a case-by-case basis, with the concurrence of the...

222

CEC-400-2013-003-SD CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

RESIDENTIAL ALTERNATIVE CALCULATION METHOD REFERENCE MANUAL FOR THE 2013 BUILDING ENERGY EFFICIENCY STANDARDS Building Energy Efficiency Standards for LowRise Residential Buildings allow compliance by either a building model, describing how the proposed design (energy use) is defined, how the standard design

223

The COSI Framework -Carbon Offsets with SD Impacts (COSI)  

E-Print Network [OSTI]

· Choice of scale & approach (quantitative and/or qualitative assessment of impacts and processes are interrelated but possible to differentiate) #12;Scope of assessment · Direct vs indirect impacts: Impacts need

224

HNF-SD-WM-TI-740, Rev. OA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EW3120074 Total Pages: )47-r 4t-74 f- Key Words: global, inventory, best-basis, waste Abstract: T his report presents work performed to date to establish standard global and...

225

AEOSup ltr to Dear Customer  

Gasoline and Diesel Fuel Update (EIA)

WA WA OR CA ID NV UT AZ NM CO WY MT ND SD NE KS OK TX MN IA MO AR LA WI IL KY IN OH WV TN MS AL GA SC NC VA PA NY VT ME NH MA RI CT NJ DE MD D.C. FL MI Electricity Supply Regions 1 ECAR 2 ERCOT 3 MAAC 4 MAIN 5 MAPP 6 NY 7 NE 8 FL 9 STV 10 SPP 11 NWP 12 RA 13 CNV 13 11 12 2 10 5 9 8 1 6 7 3 AK 15 14 H I 14 AK 15 H I Figure 2. Electricity Market Module (EMM) Regions 1. ECAR = East Central Area Reliability Coordination Agreement 2. ERCOT = Electric Reliability Council of Texas 3. MACC = Mid-Atlantic Area Council 4. MAIN = Mid-America Interconnected Network 5. MAPP = Mid-Continent Area Power Pool 6. NY = Northeast Power Coordinating Council/ New York 7. NE = Northeast Power Coordinating Council/ New England 8. FL = Southeastern Electric Reliability Council/ Florida 9. STV = Southeastern Electric Reliability Council /excluding Florida 10. SPP

226

regionalmaps  

Gasoline and Diesel Fuel Update (EIA)

Specific LNG Terminals Specific LNG Terminals Generic LNG Terminals Pacifi c (9) Moun tain (8) CA (12) AZ/N M (11) W. North Centr al (4) W. South Centr al (7) E. South Centr al (6) E. North Centr al (3) S. Atlan tic (5) FL (10) Mid. Atlan tic (2) New Engl. (1) W. Cana da E. Cana da MacK enzie Alask a Cana da Offsh ore and LNG Mexic o Baha mas Primary Flows Secondary Flows Pipeline Border Crossing Specific LNG Terminals Generic LNG Terminals Figure 6. Coal Supply Regions Source: Energy Information Administration. Office of Integrated Analysis and Forecasting WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana

227

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2013 Annual Energy Outlook 2013 Source: U.S. Energy Information Administration, Office of Energy Analysis. U.S. Energy Information Administration / Annual Energy Outlook 2010 213 Appendix F Regional Maps Figure F1. United States Census Divisions Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Source: U.S. Energy Information Administration, Office of Integrated Analysis and Forecasting. Appendix F Regional Maps Figure F1. United States Census Divisions U.S. Energy Information Administration | Annual Energy Outlook 2013

228

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

Energy Energy Information Administration / Natural Gas Annual 1999 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001 and over 4. Marketed Production of Natural Gas in the United States, 1999 (Million Cubic Feet) Figure 5. Marketed Production of Natural Gas in Selected States, 1995-1999 Figure T e x a s L o u i s i a n a O k l a h o m a N e w M e x i c o W y o m i n g C o l o r a d o K a n s a s A l a b a m a A l a s k a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 6 7 Trillion Cubic Feet Billion Cubic Meters 95 96 97 98 99 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value

229

Microsoft Word - Figure_14_15.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DC NC SC GA AL MS LA FL HI AK DE 0 2 4 6 8 10 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 Dollars per Thousand Cubic Feet 0 40 80 120 160 200 240 280 320 360 Dollars per Thousand Cubic Meters Constant Dollars Nominal Dollars Figure 14. Average Price of Natural Gas Delivered to Residential Consumers, 1980-2004 Figure 15. Average City Gate Price of Natural Gas in the United States, 2004 (Dollars per Thousand Cubic Feet) Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey." Constant dollars: Prices were converted to 2004 dollars using the chain-type price indexes for Gross Domestic Product

230

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Gasoline and Diesel Fuel Update (EIA)

0.00-1.99 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1996 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1996 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: In 1996, consumption of natural gas for agricultural use

231

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

18 18 Energy Information Administration / Natural Gas Annual 2001 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. 0 1 2 3 4 5 6 7 T e x a s L o u i s i a n a N e w M e x i c o O k l a h o m a W y o m i n g C o l o r a d o A l a b a m a K a n s a s A l a s k a C a l i f o r n i a A l l O t h e r S t a t e s Trillion Cubic Feet 0 30 60 90 120 150 180 Billion Cubic Meters 1997 1998 1999 2000 2001 2001 16. Marketed Production of Natural Gas in Selected States, 1997-2001 Figure Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001-and over WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI

232

Buildings Energy Data Book: 3.9 Educational Facilities  

Buildings Energy Data Book [EERE]

6 6 2010 Regional New Construction and Renovations Expenditures for Public K-12 Schools ($Million) Region New Schools Additions Renovation Total Region 1 (CT, MA, ME, NH, RI, VT) Region 2 (NJ, NY, PA) Region 3 (DE, MD, VA, WV) Region 4 (KY, NC, SC, TN) Region 5 (AL, FL, GA, MS) Region 6 (IN, MI, OH) Region 7 (IL, MN, WI) Region 8 (IA, KS, MO, NE) Region 9 (AR, LA, OK, TX) Region 10 (CO, MT, ND, NM, SD, UT, WY) Region 11 (AZ, CA, HI, NV) Region 12 (AK, ID, OR, WA) Total Source(s): School Planning & Management, 16th Annual School Construction Report, Feb. 2011 p. CR3 8,669.5 3,074.1 2,796.8 14,540.4 1,605.4 407.3 275.2 2,287.9 258.2 181.8 158.1 598.1 1,653.9 479.6 387.8 2,521.2 548.2 130.9 93.3 772.4 309.3 206.1 135.3 650.7 217.6 231.4 187.8 636.8 1,338.0 327.6 175.9 1,841.4 359.6 286.3 278.9 924.8

233

regionalmaps  

Gasoline and Diesel Fuel Update (EIA)

LNG Imports LNG Imports Pacifi c (9) Moun tain (8) CA (12) AZ/N M (11) W. North Centr al (4) W. South Centr al (7) E. South Centr al (6) E. North Centr al (3) S. Atlan tic (5) FL (10) Mid. Atlan tic (2) New Engl. (1) W. Cana da E. Cana da MacK enzie Alask a Cana da Offsh ore and LNG Mexic o Baha mas Primary Flows Secondary Flows Pipeline Border Crossing Figure 6. Coal Supply Regions Source: Energy Information Administration. Office of Integrated Analysis and Forecasting WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin Wyoming, Southern Powder River Basin Western Wyoming

234

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 27. Average City Gate Price of Natural Gas in the United States, 2001 (Dollars per Thousand Cubic Feet) Figure Sources: Energy Information Administration (EIA), Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to Consumers." 0 2 4 6 8 10 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 Dollars per Thousand Cubic Feet 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Meters Constant Dollars Nominal Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 2001 dollars using the chain-type

235

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

and clothes drying. In addition to the major equipment-driven and clothes drying. In addition to the major equipment-driven end-uses, the average energy consumption per household is projected for other electric and nonelectric Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 19 Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Figure 5. United States Census Divisions Source:Energy Information Administration,Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

236

Green Power Network: Can I Buy Green Power in My State?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Can I Buy Green Power in my State? Community Renewable Energy Development Consumer Protection Large Purchasers of Green Power Can I Buy Green Power in My State? Click on your state below to find out which organizations offer green power in your state. The results will include utility green pricing programs, retail green power products offered in competitive electricity markets, and renewable energy certificate (REC) products sold separate from electricity. For additional information about these distinct products, see our Overview of Green Power Markets. Map of the United States. AK AL AR AZ CA CO CT DC DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY Alabama Alaska Arizona Arkansas California Colorado Connecticut Connecticut Delaware Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Maryland Massachusetts Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Hampshire New Jersey New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Vermont Virginia Washington West Virginia Wisconsin Wyoming Washington, DC

237

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

Supply Supply 17 Energy Information Administration / Natural Gas Annual 1999 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001 and over 4. Marketed Production of Natural Gas in the United States, 1999 (Million Cubic Feet) Figure 5. Marketed Production of Natural Gas in Selected States, 1995-1999 Figure T e x a s L o u i s i a n a O k l a h o m a N e w M e x i c o W y o m i n g C o l o r a d o K a n s a s A l a b a m a A l a s k a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 6 7 Trillion Cubic Feet Billion Cubic Meters 95 96 97 98 99 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity

238

GeneEnvironment Interaction Involving Recently Identified Colorectal Cancer Susceptibility Loci  

Science Journals Connector (OSTI)

...NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, and WY. PLCO: The...lung datasets were accessed from the dbGaP website ( http://www.ncbi.nlm.nih.gov...Brenner H, Buchanan D, et alGenome-wide search for gene-gene interactions in colorectal...

Elizabeth D. Kantor; Carolyn M. Hutter; Jessica Minnier; Sonja I. Berndt; Hermann Brenner; Bette J. Caan; Peter T. Campbell; Christopher S. Carlson; Graham Casey; Andrew T. Chan; Jenny Chang-Claude; Stephen J. Chanock; Michelle Cotterchio; Mengmeng Du; David Duggan; Charles S. Fuchs; Edward L. Giovannucci; Jian Gong; Tabitha A. Harrison; Richard B. Hayes; Brian E. Henderson; Michael Hoffmeister; John L. Hopper; Mark A. Jenkins; Shuo Jiao; Laurence N. Kolonel; Loic Le Marchand; Mathieu Lemire; Jing Ma; Polly A. Newcomb; Heather M. Ochs-Balcom; Bethann M. Pflugeisen; John D. Potter; Anja Rudolph; Robert E. Schoen; Daniela Seminara; Martha L. Slattery; Deanna L. Stelling; Fridtjof Thomas; Mark Thornquist; Cornelia M. Ulrich; Greg S. Warnick; Brent W. Zanke; Ulrike Peters; Li Hsu; and Emily White

2014-09-01T23:59:59.000Z

239

PAHs And Parking Lots: A Field Study on PAHs Exported From Sealed and Unsealed Parking  

E-Print Network [OSTI]

Hampshire Stormwater Center EWRI World and Water Resources Conference 2010 Providence, RI 18 May 2010 #12 #12;Why do we care? Coal tar - High PAHs (polycyclic aromatic hydrocarbons) Asphalt sealant 50 mg in Austin, TX 1,400,000 gallons annually NY/NJ watershed #12;Polycyclic Aromatic Hydrocarbons (PAHs) EPA

240

SUPERCONDUCTING RING CYCLOTRON FOR RIKEN RI BEAM FACTORY IN JAPAN  

SciTech Connect (OSTI)

Since 1997, RIKEN Nishina Center has been constructing the Radioactive Isotope Beam Factory (RIBF) and succeeded in beam commissioning of its accelerator complex at the end of 2006. The world's first superconducting ring cyclotron (SRC) is the final booster in the RIBF accelerator complex which is able to accelerate all-element heavy ions to a speed of about 70% of the velocity of light. The ring cyclotron consists of 6 major superconducting sector magnets with a maximum field of 3.8 T. The total stored energy is 235 MJ, and its overall sizes are 19 m diameter, 8 m height and 8,300 tons. The magnet system assembly was completed in August 2005, and successfully reached the maximum field in November 2005. The first beam was extracted at the end of 2006 and the first uranium beam was extracted in March 2007. However operation of the helium refrigerator was not satisfactory although the commissioning of SRC was successful. Operation was stopped every two month due to degradation of its cooling power. In February 2008 the reason of the degradation was revealed to be oil contamination. Operation of the cryogenic system was restarted from August 2008 after hard task to clean up the helium refrigerator and to add oil separators to the compressor. After restoration long-term steady operation to keep the magnet superconducting continued for about 8 months with no sign of degradation of cooling capacity.

Okuno, H.; Dantsuka, T.; Yamada, K.; Kase, M.; Maie, T.; Kamigaito, O. [RIKEN Nishina Center, Wako, Saitama, 351-0198 (Japan)

2010-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Ri so-M-|fe>44 LIBRARY August 1973  

E-Print Network [OSTI]

OF * RADIOACTIVE WASTE DUMPS. EUROPEAN COMMUNITIES; F U E L REPROCESSING PLANTS; RADIOACTIVE WASTE DISPOSAL; SITE SELECTION; WASTE STORAGE; BT: INTERNATIONAL ORGANIZATIONS; WASTE DISPOSAL; WASTE MANAGEMENT; E52. EURO

242

RiS-M-2401 DOSIMETRY FOR ELECTRON BEAM APPLICATIONS  

E-Print Network [OSTI]

; ELECTRON BEAMS; HUMIDITY; IONIZING RADIATIONS; LINEAR ACCELERATORS; RADIATION DOSES; THIN FILMS. UDC 539 are developed. The wide range of energy of such accelerators (- 150 keV - 10 MeV) and their high dose rates-descriptors: ACCURACY; CALIBRATION; CALORIMETERS; CALORIMETRIC DOSEMETERS; DoSE-RESPONSE RELATIONSHIPS; DOSE RATES; DYES

243

QER Public Meeting in Providence, RI & Hartford, CT: New England...  

Office of Environmental Management (EM)

& Local Affairs - New England Dominion Resources, Inc. Remarks of Joe Rose, President, Propane Gas Association of New England Remarks of Michael Trunzo, President & CEO, New...

244

$ 6WXG\\ RI 0DJQR[ :DVWH *ODVV 8QGHU &RQGLWLRQV RI +LJK 7HPSHUDWXUH 9HU\\ 'HHS *HRORJLFDO 'LVSRVDO  

E-Print Network [OSTI]

boreholes drilled into suitable rock (e.g. granite) to depths in excess of 4km. HLW packages are lowered repository concept for the disposal of High Level nuclear Waste (HLW) [1, 2]. This scheme uses large diameter into the borehole which is then backfilled with host rock and sealed. The composition and quantity of HLW in each

Sheffield, University of

245

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL R&D Tackles Technological NETL R&D Tackles Technological Challenges of the Williston Basin's Bakken Formation Recent development of the Bakken Formation in the Williston Basin of western North Dakota and eastern Montana is a good example of persistent analysis of geologic data and adaptation of new completion technologies overcoming the challenges posed by unconventional reservoirs. However, as with most unconventional plays, as Bakken development continues, questions regarding

246

RAPID/Roadmap/3-TX-e | Open Energy Information  

Open Energy Info (EERE)

session of the legislature, the commissioner must report on the status of the exploration, development, and production of geothermal energy and associated resources under...

247

RAPID/Roadmap/13-TX-a | Open Energy Information  

Open Energy Info (EERE)

Dune Rules Sec. 15.3(d)). Note: Under the Beach Dune Rules Sec. 15.3(s)(2)(a) the exploration for and production of oil and gas is exempted from the Dune Protection permit...

248

RAPID/Roadmap/3-TX-f | Open Energy Information  

Open Energy Info (EERE)

session of the legislature, the commissioner must report on the status of the exploration, development, and production of geothermal energy and associated resources under...

249

Freeport, TX Liquefied Natural Gas Exports Price to Brazil (Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 12.74 11.19 --...

250

Freeport, TX Liquefied Natural Gas Exports to Brazil (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 2,581 8,142 0...

251

Freeport, TX LNG Imports (Price) from Yemen (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 10.30...

252

txH20; Volume 6, Number 1 (Complete)  

E-Print Network [OSTI]

impaired water bodies with stakeholder-driven WPPs 18 I A watershed blueprint Partners work together to restore Arroyo Colorado?s health 20 I The battle of bacteria Agencies, stakeholders focusing on restoring water quality 22 I Lone Star Healthy... contami- nation of water and the presence of pathogens. These E. coli sources can be from sewage overflows, polluted stormwater runoff, or malfunctioning septic systems. Toxic golden algae blooms have killed fish in Lake Granbury and Lake Whitney...

Wythe, Kathy

2010-01-01T23:59:59.000Z

253

txH2O: Volume 6, Number 1 (Complete)  

E-Print Network [OSTI]

impaired water bodies with stakeholder-driven WPPs 18 I A watershed blueprint Partners work together to restore Arroyo Colorado?s health 20 I The battle of bacteria Agencies, stakeholders focusing on restoring water quality 22 I Lone Star Healthy... contami- nation of water and the presence of pathogens. These E. coli sources can be from sewage overflows, polluted stormwater runoff, or malfunctioning septic systems. Toxic golden algae blooms have killed fish in Lake Granbury and Lake Whitney...

Texas Water Resources Institute

2010-01-01T23:59:59.000Z

254

T>x Qoooo&>9 m Ris-M-2733  

E-Print Network [OSTI]

at the Desy synchroton in Hamburg. This report describes a new instrumentation based on a personal computer

255

RAPID/Roadmap/12-TX-a | Open Energy Information  

Open Energy Info (EERE)

take, or kill, or attempt to capture, trap, take, or kill, endangered or threatened fish or wildlife. (Texas Parks and Wildlife Code 68). "Take" means collect, hook, hunt,...

256

DOE - Office of Legacy Management -- Falls City Mill Site - TX...  

Office of Legacy Management (LM)

Control Act Title I Disposal Sites-Falls City, Texas, Disposal Site. LMSS10631. March 2014 Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings...

257

txH2O: Volume 5, Number 2 (Complete)  

E-Print Network [OSTI]

water use in the land- scape, and capture and reuse water,? Harris said. ?We want families to learn how to use water wisely and efficiently.? For more information about water conserva- tion and rainwater harvesting, visit http://fcs. tamu... optional with drip irrigation), and 7) distribu- tion to plants, wildlife, birds, livestock, or in-home uses. Incentives such as no sales tax on supplies encourage rainwater harvesting. In January 2007, the Texas Commission on Environmental Quality...

Texas Water Resources Institute

2009-01-01T23:59:59.000Z

258

txH20: Volume 8, Number 3 (Complete)  

E-Print Network [OSTI]

in the Metroplex are looking at spending millions of dollars to build water and wastewater treatment plants because of population growth. ?If many people would harvest rainwater and use that for irrigation, that would be a huge savings, so cities might be able... tolerance, water reclamation and water e#23;ciency. ? Six new campus buildings are using harvested rainwater and air conditioner condensate to water their landscapes. I hope you enjoying reading this issue about a timely topic. As always, let?s continue...

Wythe, Kathy

2013-01-01T23:59:59.000Z

259

RAPID/Roadmap/18-TX-a | Open Energy Information  

Open Energy Info (EERE)

that could result from the release of harmful substances stored in underground storage tanks (USTs) and provides for the protection of human health and safety as well as...

260

txH2O: Volume 3, Number 1 (Complete)  

E-Print Network [OSTI]

deposits?remnants of the shallow Permian Sea that once covered the area?in soils and rocks. The reduced quality and quantity has also harmed the river basin?s biodiversity. These problems have per- sisted for many years and have only been intensified... be increased.? According to Dr. Charles Hart, project director, the project?s first objective is establishing a research baseline for the watershed by identifying and evaluating the river basin?s physical features, from both a historical view as well...

Texas Water Resources Institute

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

txH2O: Volume 2, Number 2 (Complete)  

E-Print Network [OSTI]

Summerlin Message from the DirectorDr. C. Allan Jones A n important component of restoring and maintaining water quality is the Total Maximum Daily Load (TMDL) Program, authorized by and created to fulfill the requirements of Section 303(d) of the federal...

Texas Water Resources Institute

2006-01-01T23:59:59.000Z

262

txH2O: Volume 2, Number 1 (Complete)  

E-Print Network [OSTI]

help control nonpoint source pollution in Texas Got Manure? Technologies reducing phosphorus in dairy wastes West Texas Rain Rainwater harvesting demonstration sites save water and money Investing in the Future TWRI awards Mills Scholarships... loading, logging, and agricultural and residential development, the consen- sus of the workshop participants was that some restoration of the timing, magnitude and duration of flows in Big Cypress Creek is critical to the sustain- ability of the lake...

Texas Water Resources Institute

2006-01-01T23:59:59.000Z

263

txH20: Volume 6, Number 2 (Complete)  

E-Print Network [OSTI]

participation matters and stories from a few folks who?ve proved it 20 I Deep in the forests Program works to protect water quality through forestry practices 23 I Rainwater for the future Rainwater harvesting increases in popularity across the state... ecosystem there has adapted to it. Naturally occurring microbes thrive on those small amounts of crude, and acres of deep coral forests live o#15; of the seeps, McKinney said. However, massive amounts of oil released in a short amount of time...

Wythe, Kathy

2011-01-01T23:59:59.000Z

264

txH2O: Volume 6, Number 2 (Complete)  

E-Print Network [OSTI]

participation matters and stories from a few folks who?ve proved it 20 I Deep in the forests Program works to protect water quality through forestry practices 23 I Rainwater for the future Rainwater harvesting increases in popularity across the state... ecosystem there has adapted to it. Naturally occurring microbes thrive on those small amounts of crude, and acres of deep coral forests live o#15; of the seeps, McKinney said. However, massive amounts of oil released in a short amount of time...

Texas Water Resources Institute

2011-01-01T23:59:59.000Z

265

August 15, 2013 RX/TX BARGAINING UPDATE 11  

E-Print Network [OSTI]

years. In addition, UPTE has yet to meaningfully negotiate over UC's pension reforms that will protect reform designed to preserve the long-term viability of the retirement programs, so that UC can continue already agreed to these pension reforms, which also apply to non- represented faculty and staff. · Good

Leistikow, Bruce N.

266

txH2O: Volume 4, Number 3 (Complete)  

E-Print Network [OSTI]

. In this position, I will focus on improving urban and suburban water management. I have enjoyed my 20 years in administration positions with Texas AgriLife Research (Texas Agricultural Experiment Station). I am proud of the accomplishments of the institute..., the utility can reverse the process and withdraw the same water out of the Carrizo, into its water delivery system, and on to its customers. This type of water management system is called aquifer storage and recovery (ASR). Although definitions vary, ASR...

Texas Water Resources Institute

2008-01-01T23:59:59.000Z

267

RAPID/Roadmap/14-TX-d | Open Energy Information  

Open Energy Info (EERE)

Texas (RRC) or the Texas Commission on Environmental Quality (TCEQ) reviews and issues Water Quality Certificates. Under the Memorandum of Understanding between the Railroad...

268

txH20: Volume 7, Number 3 (Complete)  

E-Print Network [OSTI]

Texas A&M AgriLife Research Texas A&M AgriLife Extension Service Texas A&M University College of Agriculture and Life Sciences In this issue: ReLevant research: ensuring water supplies Vadose zone modeling, desalination technology...-based technology. In South Texas, scientists tested an innovative technology for desalinating brackish water, learning much about what worked and what didn?t. Technology transfer#24;that critical last step of ge#26;ing science out to the public#24;is...

Wythe, Kathy

2012-01-01T23:59:59.000Z

269

txH2O: Volume 3, Number 2 (Complete)  

E-Print Network [OSTI]

the state to become involved. Through other bills, the Legislature created seven new groundwater districts, addressed flooding and desalination, dealt with rainwater harvesting and irrigation and provided significant appropriations to implement various water... budgets, monitoring research and ensuring that deadlines are met. One of the project managers? primary functions is to align interested research scientists from the Texas Agricultural Experiment Station and other universi- ties and Texas Cooperative...

Texas Water Resources Institute

2007-01-01T23:59:59.000Z

270

RAPID/Roadmap/7-TX-c | Open Energy Information  

Open Energy Info (EERE)

utility and a "retail electric utility". A "retail electric utility" means a person, political subdivision, electric cooperative, or agency that operates, maintains, or controls...

271

Depositional systems distribution of the lower Oligocene Vicksburg Formation, TX  

SciTech Connect (OSTI)

The lower Oligocene Vicksburg Formation of Texas is situated between the upper Eocene Jackson Group and the upper Oligocene Frio Formation. The paleogeography of the Texas Gulf coastal plain during the early Oligocene is typical of a progradational passive continental margin. However, a detailed regional depositional systems analysis of stratigraphic units, such as the Vicksburg, within a mature petroleum basin can yield results beneficial in both exploration and development. Stratigraphic plays are determined from the distribution of depositional systems, and reservoir characteristics are heavily influenced by conditions of sedimentation. Two primary depocenters (and exploration fairways) of the Texas Vicksburg were the Houston Embayment and the Rio Grande Embayment; they were separated by a deep-rooted structural nose in central Texas: the San Marcos arch. Within the embayments, deltaic depositional systems merged along strike with barrier/strand plain systems. Updip, fluvial systems traversed coastal plain units. On the seaward edge of the paralic systems, sand and mud deposits prograded across, and built up over, the relict Jackson shelf and shelf margin. Contemporaneous growth faulting controlled deltaic depositional patterns in the Rio Grande Embayment and, to a lesser degree, in the Houston Embayment. A barrier/strand plain system within an interdeltaic coastal bight extended across the northern flank of the San Marcos arch. Several minor wave-dominated delta complexes were interspersed within this regional setting. The southern flank of the arch was influenced by the fluvial systems of the Rio Grande Embayment that established another wave-dominated delta. Deposition of the Vicksburg progradational paralic sediments was initiated seaward of the Jackson coastal position. A brief, minor transgression interrupted the progradational pattern during middle Vicksburg deposition.

Coleman, J.; Galloway, W.E. (Univ. of Texas, Austin (USA))

1990-05-01T23:59:59.000Z

272

txH20: Volume 7, Number 2 (Complete)  

E-Print Network [OSTI]

to come from,? Mace said. According to Dr. Michael Hightower of Sandia National Laboratories in Albuquerque, NM, desalination use is growing by #23;#24; percent a year and water reuse by #23;#20; percent in the United States. #31;at diversi#28...;cation is important, he said, because the country is ?stressing its surface water and groundwater sources.? Although cost is a hindrance to desalination, he said, that cost is decreasing while the cost of fresh water production is increasing. Robert...

Wythe, Kathy

2012-01-01T23:59:59.000Z

273

txH2O: Volume 9, Number 1 (Complete)  

E-Print Network [OSTI]

Runoff Water Table Unsaturated Soil Lake Infiltration Kevin Wagner Message from the Director Groundwater is the largest source of water in Texas, comprising almost 60 percent of water use in the state. The Ogallala Aquifer alone supplies 40 percent... will provide additional drinking water for thirsty communities. Storage of water supplies underground where the water will not be subject to evaporation through aquifer storage and recovery is yet another important tool for helping Texans meet future water...

Wythe, Kathy

2014-01-01T23:59:59.000Z

274

RAPID/Roadmap/8-TX-f | Open Energy Information  

Open Energy Info (EERE)

to the utility system using pre-certified equipment, the protective settings and operations shall be those specified by the utility; Developer is responsible for...

275

RAPID/Roadmap/5-TX-a | Open Energy Information  

Open Energy Info (EERE)

Units: Contiguity of Acreage and Exception 16 TAC 3.33: Geothermal Resource Production Test Forms Required Resources SET VARIABLES FOR USE WITH RESOURCE QUERY Well Field Texas...

276

Acoustic characteristics of bay bottom sediments in Lavaca Bay, TX  

E-Print Network [OSTI]

METHODS An Edgetech X-Star chirp sonar was used to gather subbottom acoustic profile data from Lavaca Bay. The sonar fish was towed on a short line next to the side of the boat, about 0.5 m below the water surface. The data were recorded onto 4 mm... middle Lavaca Bay (just above Chocolate Bay) and Keller bay, which have lines running southwest to northeast (Fig. 1). The subbottom data were plotted and examined on a computer using SonarWeb, a seismic processing program from Chesapeake...

Patch, Mary Catherine

2005-08-29T23:59:59.000Z

277

txH20: Volume 7, Number 1 (Complete)  

E-Print Network [OSTI]

companies and other interests. #31;e bill also required the TWDB to publish a compre- hensive state water plan every #30;ve years and base its projections on a #21;#24;-year planning horizon. Mace said the drought in #23;#22;#22;#19; served as a wake...Texas AgriLife Research Texas AgriLife Extension Service Texas A&M University College of Agriculture and Life Sciences Fall 2011 Texas drought: Now and then Also in this issue . . . A timeline of drought in Texas, Re-water, Drought detective...

Wythe, Kathy

2011-01-01T23:59:59.000Z

278

txH2O: Volume 2, Number 3 (Complete)  

E-Print Network [OSTI]

the Trinity River. This initiative will bring together the talents and knowledge of these organizations and others to improve rural and urban streams, reservoirs and watersheds; to enhance wildlife habitat; and to expand ecotourism opportu- nities...

Texas Water Resources Institute

2006-01-01T23:59:59.000Z

279

Houston-Galveston, TX Alternative Fuel Vehicle (AFV) Incentives  

Broader source: Energy.gov [DOE]

The Houston-Galveston Area Council provides Congestion Mitigation and Air Quality (CMAQ) program grants through the Greater Houston Clean Cities Coalition for 33% of the cost of a new original...

280

RAPID/Roadmap/8-TX-b | Open Energy Information  

Open Energy Info (EERE)

of its intention to pursue the project by proceeding to the Full Interconnection Study (FIS). After 180 days, the results of the Screening Study will expire, and the GINR will be...

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

8 7 2005-2013 Adjustments 0 0 0 9 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

282

TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

71 47 2005-2013 Adjustments 0 0 0 81 -17 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

283

,"TX, RRC District 2 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

284

,"TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

285

,"TX, RRC District 4 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

286

,"TX, RRC District 3 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

287

Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 252 1,324 824 1,017 871 770 354 155 916 331 57 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld...

288

Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

8,489 2,977 1,206 NA 2000's NA NA 5,100 3,036 718 0 0 0 18,923 4,262 2010's 1,371 6,871 0 0 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld to...

289

txH20: Volume 6, Number 3 (Complete)  

E-Print Network [OSTI]

and drought. For example, angelonia, petunia, vinca, ornamental peppers, and blue plumbago are moderately tolerant to salt stress. #29;ey can be safely irrigated with municipal reclaimed water without any foliar damage, although plants would become a li... Dr. Genhua Niu of El Paso is identifying drought, salt, and heat-tolerant landscape plants more suitable for El Paso?s environment in her research. The hot, dry climate and saltier water of El Paso can be a landscaper?s nightmare...

Wythe, Kathy

2011-01-01T23:59:59.000Z

290

,"TX, RRC District 3 Onshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Excel File Name:","ngenradngdcurtx03a.xls" ,"Available from Web Page:","http:www.eia.govdnavngngenradngdcurtx03a.htm" ,"Source:","Energy Information...

291

RAPID/Roadmap/7-TX-a | Open Energy Information  

Open Energy Info (EERE)

with the Federal Energy Regulatory Commission (FERC) after the effective date of this section, copies of any information, excluding responses to interrogatories, that was filed...

292

RAPID/Roadmap/15-TX-a | Open Energy Information  

Open Energy Info (EERE)

of such notice and any affidavit to the EPA regional administrator in Dallas, all local air pollution control agencies with jurisdiction in the county in which the construction...

293

Energy Engineering Analysis Program, Fort Bliss, TX. Executive summary  

SciTech Connect (OSTI)

The CRS Group, Inc. is pleased to submit this report on the Energy Engineering Analysis Program (EEAP) for Fort Bliss, Texas. This work summarizes the present completion of the increments of the Fort Bliss EEAP where: (1) Data gathering and field inspections; (2) Analysis, project identification, technical feasibility and economic evaluations; (3) Preparation of DD Forms 1391 and POB`s where applicable and final documentation of results and recommendations.

NONE

1983-01-01T23:59:59.000Z

294

Energy Engineering Analysis Program, Fort Bliss, TX. Executive summary  

SciTech Connect (OSTI)

This is a brief overview of a report which consists of nine volumes and a set of appendices in which the EEAP results are presented. All calculational routines for the analyzed Energy Conserving Measures (ECM`s) are either explicitly presented or the computer code employed is referenced. The purpose of the presentation is to allow others to follow the procedures in a straight-forward manner. Costs of implementing an ECM are also shown, broken out by labor and material where applicable, referenced and adjusted to the Fort Bliss market. Where appropriate, applicability lists have been prepared identifying where the ECM`s are to be implemented. Additionally, ECIP Economic Analysis Summary Sheets, Detailed Cost Estimates and Life Cycle Cost Analysis Summary Sheets are included where appropriate. A brief overview of each volume is presented below.

NONE

1984-04-01T23:59:59.000Z

295

Dallas-Fort Worth, TX Clean Taxi Replacement Incentive  

Broader source: Energy.gov [DOE]

The North Central Texas Council of Governments has partnered with the U.S. Environmental Protection Agency and the City of Dallas to develop the North Texas Green & Go Clean Taxi Partnership as...

296

Energy Engineering Analysis Program, Fort Bliss, TX. Executive summary  

SciTech Connect (OSTI)

This summary provides a brief overview of a report which consists of nine volumes and a set of appendices in which the EEAP results to date are presented. All calculational routines for the analyzed Energy Conserving Measures (ECM`s) are either explicitly presented or the computer code employed is referenced. The purpose of the presentation is to allow others to follow the procedures in a straight-forward manner. Costs of implementing an ECM are also shown, broken out by labor and material where applicable, referenced and adjusted to the Fort Bliss market. Where appropriate, applicability lists have been prepared identifying where the ECM1s are to be implemented. Additionally, ECIP Economic Analysis Summary Sheets, Detailed Cost Estimates, and Life Cycle Cost Analysis Summary Sheets are included where appropriate. A brief overview of each volume is presented below.

NONE

1983-09-01T23:59:59.000Z

297

C:\Annual\VENTCHAP.V8\NGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 Energy Information Administration / Natural Gas Annual 2002 0 1 2 3 4 5 6 7 T e x a s G u l f o f M e x i c o N e w M e x i c o O k l a h o m a W y o m i n g L o u i s i a n a C o l o r a d o A l a s k a K a n s a s C a l i f o r n i a A l l O t h e r S t a t e s Trillion Cubic Feet 0 30 60 90 120 150 180 Billion Cubic Meters 2001 2002 2001 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. 4. Marketed Production of Natural Gas in Selected States and the Gulf of Mexico, 2001-2002 Figure None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001-and over WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK GOM 3. Marketed Production of Natural Gas in the United States and the Gulf of Mexico, 2002 (Million Cubic Feet) Figure GOM = Gulf of Mexico Sources:

298

C:\Annual\VENTCHAP.V8\NGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

Energy Energy Information Administration / Natural Gas Annual 2002 0 1 2 3 4 5 6 7 T e x a s G u l f o f M e x i c o N e w M e x i c o O k l a h o m a W y o m i n g L o u i s i a n a C o l o r a d o A l a s k a K a n s a s C a l i f o r n i a A l l O t h e r S t a t e s Trillion Cubic Feet 0 30 60 90 120 150 180 Billion Cubic Meters 2001 2002 2001 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. 4. Marketed Production of Natural Gas in Selected States and the Gulf of Mexico, 2001-2002 Figure None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001-and over WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK GOM 3. Marketed Production of Natural Gas in the United States and the Gulf of Mexico, 2002 (Million Cubic Feet) Figure GOM = Gulf of Mexico Sources:

299

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

0 0 Energy Information Administration / Natural Gas Annual 2000 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001 and over 4. Marketed Production of Natural Gas in the United States, 2000 (Million Cubic Feet) Figure 5. Marketed Production of Natural Gas in Selected States, 1996-2000 Figure T e x a s L o u i s i a n a N e w M e x i c o O k l a h o m a W y o m i n g C o l o r a d o K a n s a s A l a b a m a A l a s k a C a l i f o r n i a O t h e r S t a t e s 0 1 2 3 4 5 6 7 0 30 60 90 120 150 180 Trillion Cubic Feet Billion Cubic Meters 1996 1997 1998 1999 2000 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly

300

Microsoft Word - Figure_3_4.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001-and over WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK GOM 0 1 2 3 4 5 6 7 T e x a s G u l f o f M e x i c o N e w M e x i c o O k l a h o m a W y o m i n g L o u i s i a n a C o l o r a d o A l a s k a K a n s a s A l a b a m a A l l O t h e r S t a t e s Trillion Cubic Feet 0 30 60 90 120 150 180 Billion Cubic Meters 2002 2003 2002 Figure 4. Marketed Production of Natural Gas in Selected States and the Gulf of Mexico, 2002-2003 Figure 3. Marketed Production of Natural Gas in the United States and the Gulf of Mexico, 2003 (Million Cubic Feet) GOM = Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly and Annual Quantity and Value of Natural Gas Report," and the United States Mineral Management

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The University of Iowa College of Engineering Engineering Professional Development  

E-Print Network [OSTI]

Naperville, IL City of Rock Island Rock Island, IL City of St. Charles St. Charles, IL City of W. Des Moines and Marshall Grapevine, TX Great Lakes Dredge and Dock Chicago, IL Habitat for Humanity Iowa City, IA Hall MidAmerican Energy Sioux Falls, SD MNTAP: Valley Craft Lake City, MN Moffat and Nichol Long Beach, CA

Casavant, Tom

302

Word Pro - Untitled1  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Review 2011 TX CA FL LA IL OH PA NY GA IN MI NC VA NJ TN WA KY AL MO MN WI SC OK CO IA MD AZ MA MS KS AR OR NE UT CT WV NM NV AK WY ID ND ME MT SD NH HI...

303

Microsoft Word - RedSeal_Smart Grid Policy Logistics RFI-sd.docx  

Broader source: Energy.gov (indexed) [DOE]

on Smart Grid RFI on Smart Grid RFI RedSeal Systems, Inc. 1 October 29, 2010 Office of Electricity Delivery and Energy Reliability US Department of Energy Room 8H033 1000 Independence Avenue, SW Washington, DC 20585 Re: Comments on "Smart Grid RFI: Addressing Policy and Logistical Challenges" 75 FR 57006 [FR Doc. 2010-23251] From: Steve Dauber Vice-President, Marketing RedSeal Systems 2121 South El Camino Real, Suite 300 San Mateo, CA 94403 Ph: 650-645-6209 sdauber@redseal.net www.redseal.net RedSeal Systems is a leading developer of security posture management software for large organizations and has provided their software to several major utilities for complex network security applications. RedSeal software - in use by more than 150 industry and

304

Microsoft PowerPoint - 2010_07_27_SECA_SD Vora F.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gy gy g July 27, 2010 Dr. Shailesh D. Vora Technology Manager, Fuel Cells National Energy Technology Laboratory United States Department of Energy SECA Mission * Enable the generation of efficient, cost-effective l t i it f d ti l ith t h i electricity from domestic coal with near-zero atmospheric emissions of CO 2 and air pollutants (99% CO 2 capture) and minimal use of water in central power generation applications. * Provide the technology base to permit grid-independent distributed generation applications. g pp 60% Environmental: Low Cost, Fuel-Flexible: S NG ≥ 99% CO Modular Efficiency (Coal HHV) <0.5ppm NOx, low H 2 O use similar footprint to IGCC Syngas, NG, H 2 , Diesel, etc. ≥ 99% CO 2 Capture Modular Technology 2 SECA Program Structure Program Management Industry Input Project M t Research Topics Needs Management Core Industry

305

The Pulsating sdB+M Eclipsing System NY Virginis and its Circumbinary Planets  

E-Print Network [OSTI]

We searched for circumbinary planets orbiting NY Vir in historical eclipse times including our long-term CCD data. Sixty-eight times of minimum light with accuracies better than 10 s were used for the ephemeris computations. The best fit to those timings indicated that the orbital period of NY Vir has varied due to a combination of two sinusoids with periods of $P_3$=8.2 yr and $P_4$=27.0 yr and semi-amplitudes of $K_3$=6.9 s and $K_4$=27.3 s, respectively. The periodic variations most likely arise from a pair of light-time effects due to the presence of third and fourth bodies that are gravitationally bound to the eclipsing pair. We have derived the orbital parameters and the minimum masses, $M_3 \\sin i_3$ = 2.8 M$\\rm_{Jup}$ and $M_4 \\sin i_4$ = 4.5 M$\\rm_{Jup}$, of both objects. A dynamical analysis suggests that the outer companion is less likely to orbit the binary on a circular orbit. Instead we show that future timing data might push its eccentricity to moderate values for which the system exhibits long...

Lee, Jae Woo; Youn, Jae-Hyuck; Han, Wonyong

2014-01-01T23:59:59.000Z

306

Free-Energy Shift of Conduction Electrons Due to the s-d Exchange Interaction  

Science Journals Connector (OSTI)

......1968 research-article Articles Free-Energy Shift of Conduction Electrons...Laboratory, Tanashi, Tokyo The free-energy shift of the conduction electrons...usual procedure to obtain the free-energy shift at finite temperature by......

Jun Kondo

1968-10-01T23:59:59.000Z

307

Pwoc. Nat. Acad. Sd. USA Vol. 73, No. 4, pp. 1196-119&, April 1976  

E-Print Network [OSTI]

of the oxygen-evolving system is the excitation of the re- action center chlorophyll molecule P680, which to monitor the charge-accumulating states as postu- lated by Kok and coworkers for the oxygen-evolving mecha, the yield of oxygen evolved from isolated chloroplasts or intact algal cells shows a damped oscillatory

Govindjee

308

Evolution of the proton sd states in neutron-rich Ca isotopes  

E-Print Network [OSTI]

We analyze the evolution with increasing isospin asymmetry of the proton single-particle states 2s1/2 and 1d3/2 in Ca isotopes, using non-relativistic and relativistic mean field approaches. Both models give similar trends and it is shown that this evolution is sensitive to the neutron shell structure, the two states becoming more or less close depending on the neutron orbitals which are filled. In the regions where the states get closer some parametrizations predict an inversion between them. This inversion occurs near $^{48}$Ca as well as very far from stability where the two states systematically cross each other if the drip line predicted in the model is located far enough. We study in detail the modification of the two single-particle energies by using the equivalent potential in the Schroedinger-like Skyrme-Hartree-Fock equations. The role played by central, kinetic and spin-orbit contributions is discussed. We finally show that the effect of a tensor component in the effective interaction considerably favors the inversion of the two proton states in $^{48}$Ca.

M. Grasso; Z. Y. Ma; E. Khan; J. Margueron; N. Van Giai

2007-06-22T23:59:59.000Z

309

Empirical effective interactions in the lower fp shell and upper sd shell  

Science Journals Connector (OSTI)

Average values of matrix elements of the effective nucleon-nucleon interaction can be extracted from measured binding energies and spectra using a variety of simple techniques. Such techniques are applied to data in the mass range A=2864 to yield information about the interaction energy of nucleons occupying the 2s1/2, 1d3/2, 1f7/2, and 2p3/2 shell-model orbits. The resulting interaction centroids are compared with values provided by other methods, such as shell-model fits to experimental energy levels, calculation of the G matrix from free nucleon-nucleon potentials, and extraction of interaction matrix elements directly from the spectra of nuclei with two nucleons relative to a closed shell. The empirical centroids are shown to be surprisingly accurate.

B. J. Cole

1991-07-01T23:59:59.000Z

310

ADMINISTRATIVE CHANGE TO NNSA SD G-1027, "GUIDANCE ON USING RELEASE...  

National Nuclear Security Administration (NNSA)

needed based on consideration of the physical and chemical form and available dispersive energy sources. For Hazard Category 2 thresholds, the adjustment is performed by...

311

IPNO DR-01-010 PAO/SD/PMT/Bases/Design  

E-Print Network [OSTI]

consumption (less than 100 µA at 2 kV), a stability of the gain and of the base line during the whole period the PMTs have to be supplied with a positive high voltage. The maximum high voltage will be 2 kV and has). In order to ensure a good signal to noise ratio after the transmission through the cables to the front

Paris-Sud XI, Université de

312

Session Name: Data Transfer (session D2SD) Co-Chairs: Andrew...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

metrics used for forecasting o Network usage o storage usage o User input o Proposal process HPCOR 2014, June 18-19, Oakland, CA 10 What opportunities exist for productive...

313

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1994 January ........................... 89.6 91.0 90.2 83.8 88.4 80.4 87.3 88.8 92.1 102.5 February ......................... 92.9 94.6 93.8 90.4 91.3 86.6 91.4 92.3 91.5 105.5 March .............................. 91.4 92.5 92.1 85.9 88.3 83.6 89.4 91.0 91.2 102.0 April ................................ 88.2 89.0 89.4 80.8 86.0 78.2 85.1 88.3 89.2 93.7 May ................................. 86.1 86.6 85.4 76.8 85.1 75.4 83.3 86.7 84.4 83.1 June ................................ 85.2 85.6 86.1 75.6 83.7 73.1 82.3 84.6 82.0 W July ................................. 82.7 83.1 84.2 75.6 82.1 71.8 81.6 83.0 80.5 W August ............................ 82.1 82.4 79.7 78.0 78.7 72.8 84.0 83.8 82.3 81.9 September ...................... 83.2 83.7 80.5 78.5 81.1 72.9 84.7 83.3 83.1 86.2 October ........................... 84.7

314

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1993 January ........................... 94.3 95.7 94.9 85.2 94.0 87.1 91.7 93.4 91.2 105.2 February ......................... 94.6 95.9 96.2 85.4 94.4 86.9 91.8 93.3 90.8 106.8 March .............................. 95.4 96.5 96.7 86.4 94.8 86.6 92.4 93.7 92.4 108.5 April ................................ 92.6 93.4 93.6 83.0 91.5 84.5 90.4 91.2 91.6 106.7 May ................................. 91.1 91.7 91.6 81.7 91.1 83.9 90.7 91.3 89.4 104.3 June ................................ 88.9 89.4 88.6 81.1 88.6 82.4 87.6 89.7 90.6 100.4 July ................................. 85.6 85.9 86.5 78.5 83.9 78.3 85.2 85.5 86.4 100.2 August ............................ 84.1 84.6 84.0 77.4 83.4 76.0 82.7 85.6 83.5 96.1 September ...................... 85.5 85.8 84.2 78.3 83.8 74.9 84.8 86.6 84.6 95.5 October ...........................

315

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1995 January ........................... 86.9 87.6 86.7 77.8 84.8 78.4 87.3 85.7 88.4 102.4 February ......................... 87.4 88.2 87.8 77.4 84.9 78.5 87.3 85.9 88.5 103.4 March .............................. 86.6 87.3 87.0 76.3 82.5 77.7 87.0 85.6 87.6 103.3 April ................................ 85.4 85.8 85.2 76.7 81.9 76.6 86.5 84.8 87.0 100.0 May ................................. 86.4 86.9 86.5 78.7 84.7 75.8 86.1 84.5 85.2 93.2 June ................................ 84.6 85.2 84.2 78.1 82.5 74.5 83.2 83.9 83.0 NA July ................................. 82.0 82.4 79.4 76.9 80.6 72.9 81.7 81.7 80.0 85.1 August ............................ 80.7 81.1 77.4 76.7 80.9 73.0 85.3 81.7 82.1 W September ...................... 82.3 82.7 79.2 76.2 81.7 73.8 84.9 82.5 82.4 86.1 October ...........................

316

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1997 January ........................... 107.9 109.0 108.6 105.2 106.5 102.1 107.0 104.4 106.5 130.4 February ......................... 105.1 106.0 105.2 102.2 103.4 101.0 104.5 103.5 104.2 127.0 March .............................. 101.6 102.5 99.3 94.3 97.7 98.6 100.4 103.1 100.7 121.4 April ................................ 99.2 100.3 97.6 90.9 95.9 95.2 99.4 100.4 100.1 116.3 May ................................. 96.4 97.1 93.4 90.6 93.0 91.9 97.3 97.7 96.4 108.6 June ................................ 92.3 92.9 89.9 88.1 89.1 89.1 93.3 92.9 90.8 99.9 July ................................. 88.3 88.7 83.7 86.7 87.5 85.6 91.6 91.1 88.8 W August ............................ 86.9 86.8 84.2 85.8 84.7 85.3 91.0 92.7 89.2 W September ...................... 88.7 89.0 85.5 87.0 87.0 86.3 91.2 91.7 88.5 NA October ...........................

317

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1996 January ........................... 94.6 96.1 94.5 93.0 92.0 89.1 94.9 92.6 94.7 111.7 February ......................... 95.9 97.5 96.2 93.2 93.8 90.8 95.6 93.7 94.4 112.9 March .............................. 99.1 100.6 99.6 96.7 99.3 93.8 99.7 97.3 96.1 117.7 April ................................ 101.5 102.7 102.1 98.7 101.5 96.5 98.8 100.3 100.7 115.9 May ................................. 97.8 98.1 96.8 95.4 95.9 93.6 94.9 98.8 98.0 109.7 June ................................ 91.0 91.3 88.8 90.1 87.9 87.2 88.7 92.2 91.9 102.5 July ................................. 87.9 88.0 84.9 87.5 87.5 83.6 87.7 88.5 91.0 97.3 August ............................ 88.1 88.2 84.0 89.5 89.0 85.1 88.3 89.0 91.0 99.2 September ...................... 94.5 94.4 92.5 96.4 93.1 91.9 96.6 94.4 95.3 106.2 October ...........................

318

This article was downloaded by: [Lib4RI] On: 26 August 2011, At: 01:47  

E-Print Network [OSTI]

, Switzerland b Landscape Ecology Group, Department of Ecology and Environmental Science, Umeå University, SE not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever-natural references) or to avoid (degraded references). We studied the extent to which investigators' conclusions

319

E-Print Network 3.0 - aca ri tetranychidae Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cost allocation given... coincides, for a wide class of cost games, with the alternate cost avoided (ACA) allocation proposed... , the egalitarian nonseparable contribution and...

320

Herpes simplex virus mRNA species mapping in EcoRI fragment I.  

Science Journals Connector (OSTI)

...formed when fragment W (0.689-0.707) was used; same size band seen when DNA fragment F-I (0.698-0.721) was usec mRNA was hybridized with DNA fragment B-I (0.712-0.721) 5' end-la site at 0.712 (tracks iv and v) or the (tracks...

L M Hall; K G Draper; R J Frink; R H Costa; E K Wagner

1982-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Developments in High Efficiency Engine Technologies and an Introduction to SwRI's Dedicated EGR Concept  

Broader source: Energy.gov [DOE]

Provides overview of high efficiency engine technologies and introduces a dedicated exhaust gas recirculation concept where EGR production and gas stream is separate from the rest of the exhaust

322

For more than 50 years, Southwest Research Institute (SwRI) has sup-  

E-Print Network [OSTI]

For more than 50 years, Southwest Research Institute® (SwRI®) has sup- ported the oil and gas testing Oil & Gas Industry Support Design, Fabrication and Testing D017944 KEYWORDS Topsides Downhole laboratory n Tension and compression load frames n Torsion tower n Water tank n Deep ocean simulation

Chapman, Clark R.

323

UBV(RI)C photometry of the open clusters Be 15, Be 80 and NGC 2192  

Science Journals Connector (OSTI)

......photometry have been used for handling the standard-star...the various CC and CM diagrams. This macro defines...use only a single CM diagram (V, BV) to estimate...parameters, that is no CC diagram for the interstellar...functionality of any supporting materials supplied by the authors......

M. T. Tapia; W. J. Schuster; R. Michel; C. Chavarra-K.; W. S. Dias; R. Vzquez; A. Moitinho

2010-01-01T23:59:59.000Z

324

/l/riNCj 1/5 FILIPPO SALVIATI: A BAROQUE VIRTUOSO  

E-Print Network [OSTI]

Filippo Salviati. Si mostra che) .contrariamente a quanta creduto, la partenza di Filippo cia Firenze nel

325

AF RI CAN AM ERICAN R E S O URCE GUIDE  

E-Print Network [OSTI]

're truly delighted to be able to share our excitement about University of California, Irvine's vibrant campus life with you. Our incomparable Southern California location in the coastal foothills of Orange County is only one of UC Irvine's many advantages. Students quickly learn that at UC Irvine the world

Rose, Michael R.

326

4.4 Nanoscale: Mineral Weathering Boundary RI Dorn, Arizona State University, Tempe, AZ, USA  

E-Print Network [OSTI]

of more intense dissolution are seen as pits on the scale of micrometers. Heavy metal scavenging Iron and manganese oxides and hydroxides scavenge heavy metals such as zinc, copper, and lead. High in mineral weathering, silt production, rock coating behavior, geochemical pollution, thermal weathering from

Dorn, Ron

327

UC BERKELEY COLLEGE OF NATURAL RESOURCES l SpRiNG 2013 Confronting the  

E-Print Network [OSTI]

hazards like air pollution. Climate change will turn up the heat. Story on page 10. PHOTO: Jim Block #12 Center for Weight and Health gears up for its cosponsorship of the biennial Childhood Obesity Conference in Cleansing Salton Sea Toxins ... and more 6 ON the GrOuNd CNR Research in Obesity 8 Campus Briefs Hawaii

Wildermuth, Mary C

328

DOE Zero Energy Ready Home Case Study, Caldwell and Johnson, Exeter, RI, Custom Home  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready Home in Exeter, Rhode Island, that scored HERS 43 without PV. This 2,000 ft2 custom home has a spray- foamed attic and walls, plus rigid foam sheathing, ducted mini-split heat pumps, and an HRV.

329

QuRiNet: Quail Ridge Natural Reserve Wireless Mesh [Extended Abstract  

E-Print Network [OSTI]

video cam- eras and a few audio sensors. We plan to deploy five more nodes in the near future in collecting data from the sensors deployed in the reserve. Currently, the network is being utilized]. AP Status Neighbor Count Power Src fldstn Active 1 wired dfghill1 Active 2 solar dfghill2 Active 4

California at Davis, University of

330

Solution Structures of Fc?RI ?-Chain Mimics:? A ?-Hairpin Peptide and Its Retroenantiomer  

Science Journals Connector (OSTI)

NOE-derived distance constraints, 3J(HN?H?) couplings constants, and hydrogen bonds implied by amide protection studies were input as restraints in the distance geometry program DIANA with the REDAC procedure. ...

James M. McDonnell; David Fushman; Sean M. Cahill; Brian J. Sutton; David Cowburn

1997-06-11T23:59:59.000Z

331

http://www.hss.energy.gov/csa/analysis/rems/rems/ri.htm  

National Nuclear Security Administration (NNSA)

2nd 3rd 4th 5th 6th 7th 8th 9th Year 2010 2009 2008 2007 2006 2005 Program Office All Energy Efficiency and Renewable Energy National Nuclear Security Administration Office of...

332

2>K SSOOOJ3L RiS-M-267I  

E-Print Network [OSTI]

extracted1 by carbon tetrachloride from aqueous sol- ution at pH»4. S. Foti et al.2 determined technetium

333

466 RI/IR, 2007, vol. 62, no 3 --ISSN 0034-379X  

E-Print Network [OSTI]

to face the challenges of globalization (Fairbrother and Hammer, 2005; Sobczak and Havard, 2006). TABLE 1

Paris-Sud XI, Université de

334

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines  

Broader source: Energy.gov [DOE]

Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

335

QER Public Meeting in Providence, RI & Hartford, CT: New England Regional Infrastructure Constraints  

Broader source: Energy.gov [DOE]

Meeting Files: Meeting Agenda, Meeting Briefing Memo, Federal Register Notice, Meeting Summary, Transcript of Meeting, and Panelist Remarks

336

Final RFI/RI Report Burma Road Rubble Pit (231-4F). Volume 1  

SciTech Connect (OSTI)

The Savannah River Site is located in Aiken, Barnwell, and Allendale counties, in South Carolina. Certain activities at the SRS require operating or post closure permits issued in accordance with Resource Conservation and Recovery Act.

Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1995-09-01T23:59:59.000Z

337

Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe  

E-Print Network [OSTI]

(OWSCs) are an efficient way of extracting power from ocean waves. OSWCs are in general large buoyant with OpenMP for the first time, enabling the code to be executed on multi-core and many-core shared memory flaps, hinged at the bottom of the ocean and oscillating back and forth under the action of incoming

Paris-Sud XI, Université de

338

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on Local and Regional Air on Local and Regional Air Quality Impacts of Oil and Natural Gas Development Goal The NETL research effort in improving the assessment of impacts to air quality from oil and gas exploration and production activities has the following goals: (1) using NETL's mobile air monitoring laboratory, conduct targeted on-site measurements of emissions from oil and gas production activities that may impact the environment and (2) use collected data in atmospheric chemistry and transport models to further understanding of local and regional air quality impacts. Background The development of shale gas and shale oil resources requires horizontal drilling and multi-stage hydraulic fracturing, two processes that have been known for many years but have only recently become common practice. In addition, fugitive atmospheric

339

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of the Carbon Sequestration Evaluation of the Carbon Sequestration Potential of the Cambro Ordovician Strata of the Illinois and Michigan Basins Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

340

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air Products and Chemicals, Inc.: Air Products and Chemicals, Inc.: Demonstration of CO2 Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production Background Carbon dioxide (CO2) emissions from industrial processes, among other sources, are linked to global climate change. Advancing development of technologies that capture and store or beneficially reuse CO2 that would otherwise reside in the atmosphere for extended periods is of great importance. Advanced carbon capture, utilization and storage (CCUS) technologies offer significant potential for reducing CO2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. Under the Industrial Carbon Capture and Storage (ICCS) program, the U.S. Department

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Filtration to Improve Single Filtration to Improve Single Crystal Casting Yield-Mikro Systems Background Single crystal (SX) nickel superalloys are a primary material choice for gas turbine hot gas path component castings because of their high resistance to deformation at elevated temperatures. However, the casting yields of these components need to be improved in order to reduce costs and encourage more widespread use within the gas turbine industry. Low yields have been associated with a number of process-related defects common to the conventional casting of SX components. One innovative improvement, advanced casting filter designs, has been identified as a potential path toward increasing the yield rates of SX castings for high-temperature gas turbine applications. Mikro Systems, Inc. (Mikro) proposes to increase SX casting yields by developing

342

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Siemens Energy Siemens Energy Background Siemens Energy, along with numerous partners, has an ongoing U.S. Department of Energy (DOE) program to develop hydrogen turbines for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). Siemens Energy is expanding this program for industrial applications such as cement, chemical, steel, and aluminum plants, refineries, manufacturing facilities, etc., under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines for industrial CCS. ARRA industrial technology acceleration,

343

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Design of Advanced Engineering Design of Advanced Hydrogen-Carbon Dioxide Palladium and Palladium/Alloy Composite Membrane Separations and Process Intensification Background Technologies for pre-combustion carbon dioxide (CO2) capture and economical hydrogen (H2) production will contribute to the development of a stable and sustainable U.S. energy sector. The integrated gasification combined cycle (IGCC) system can produce synthesis gas (syngas) that can be used to produce electricity, hydrogen, fuels, and/or chemicals from coal and coal/biomass-mixtures in an environmentally responsible manner. The water-gas shift (WGS) reaction is a key part of this process for production of H2. The application of H2 separation technology can facilitate the production of high-purity H2 from gasification-based systems, as well as allow for process

344

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhancement of SOFC Cathode Electro- Enhancement of SOFC Cathode Electro- chemical Performance Using Multi-Phase Interfaces- University of Wisconsin Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. The electrochemical performance of SOFCs can be substantially influenced by

345

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computational Materials Design of Computational Materials Design of Castable SX Ni-based Superalloys for IGT Blade Components-QuesTek Innovations Background Higher inlet gas temperatures in industrial gas turbines (IGTs) enable improved thermal efficiencies, but creep-the tendency of materials to deform gradually under stress-becomes more pronounced with increasing temperature. In order to raise inlet temperatures of IGTs, turbine blade materials are required to have superior creep rupture resistance. Nickel (Ni)-based single crystal (SX) blades have higher creep strength in comparison with directionally solidified blades and are widely used in aerospace engines. However, their use in IGTs, which require larger-size castings (two to three times the size needed in aerospace applications), is limited

346

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maira Reidpath Maira Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Steven S.C. Chuang Principal Investigator The University of Akron Department of Chemical and Biomolecular Engineering 230 E. Buchtel Commons Akron, OH 44325 330-972-6993 schuang@uakron.edu PARTNERS None PROJECT DURATION Start Date End Date 09/01/2009 08/31/2013 COST Total Project Value $1,713,961 DOE/Non-DOE Share $1,370,977/$342,984 AWARD NUMBER Techno-Economic Analysis of Scalable Coal-Based Fuel Cells-University of Akron Background In this congressionally directed project, the University of Akron (UA) will develop a scalable coal fuel cell manufacturing process to a megawatt scale. UA has demonstrated the

347

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combined Pressure, Temperature Combined Pressure, Temperature Contrast, and Surface-Enhanced Separation of Carbon Dioxide (CO 2 ) for Post-Combustion Carbon Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control tech- nologies and CO 2 compression is focused on advancing technological options for new and existing coal-fired

348

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Conductivity, High Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments-University of Connecticut Background Improved turbine materials are needed to withstand higher component surface temperatures and water vapor content for successful development and deployment of integrated gasification combined cycle (IGCC) power plants. Thermal barrier coatings (TBCs) in particular are required to have higher surface temperature capability, lower thermal conductivity, and resistance to attack at high temperature by contaminants such as calcium-magnesium-alumina-silicate (CMAS) and water vapor. There is also a concurrent need to address cost and availability issues associated with rare earth elements used in all low thermal conductivity TBCs.

349

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reducing Uncertainties in Model Reducing Uncertainties in Model Predictions via History Matching of CO2 Migration and Reactive Transport Modeling of CO2 Fate at the Sleipner Project, Norwegian North Sea Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is todevelop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations

350

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molecular Separations Using Micro- Molecular Separations Using Micro- Defect Free Ultra-Thin Films Background Current methods for separating carbon dioxide (CO 2 ) from methane (CH 4 ) in fuel gas streams are energy and cost-intensive. Molecular sieve membrane development for carbon capture has been pursued for several decades because of the potential these membranes have for high selectivity while using less energy than cryogenic separation methods and greater flux (permselectivity) than is possible from polymeric membranes. However, the adoption of molecular sieve membrane technology has been hindered by high production costs and the micro-defect fissures that always accompany this type of membrane when fabricated using conventional techniques. The Department of Energy's (DOE) National Energy Technology Laboratory (NETL), has

351

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization of the South Characterization of the South Georgia Rift Basin for Source Proximal CO 2 Storage Background Carbon capture, utilization and storage (CCUS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional

352

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-0906 joshua.hull@netl.doe.gov Erik Westman Principal Investigator Virginia Polytechnic Institute and State University 100 Holden Hall Blacksburg, VA 24061 540-0231-7510 Fax: 540-231-4070 ewestman@vt.edu PROJECT DURATION Start Date End Date 12/01/2009 12/31/2012 COST Total Project Value $257,818 DOE/Non-DOE Share $248,441 / $9,377 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. P R OJ E C T FAC T

353

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Scale Liquids Production Laboratory Scale Liquids Production and Assessment: Coal and Biomass to Drop-In Fuels Background A major problem with the production of liquid fuels from coal is that the production process and subsequent combustion of the fuel generate excessive greenhouse gases over the entire production and usage lifecycle. Adding lignocellulosic biomass (as a raw feed material) along with coal has the potential to reduce lifecycle greenhouse gas emissions to below those of petroleum products. Altex Technologies Corporation (Altex) has developed an innovative thermo-chemical process capable of converting coal and biomass to transportation fuel ready for blending. The Department of Energy (DOE) National Energy Technology Laboratory (NETL) has partnered with Altex to

354

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Capture and Storage Training Carbon Capture and Storage Training Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification, and accounting (MVA); geology-related

355

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Technology Program Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Dawn Deel Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4133 dawn.deel@netl.doe.gov Sherry Mediati Business Contact California Energy Commission 1516 9th Street, MS 1 Sacramento, CA 95814 916-654-4204 smediati@energy.state.ca.us Mike Gravely Principal Investigator California Energy Commission 1516 Ninth Street, MS 43 Sacramento, CA 95814 916-327-1370 mgravely@energy.state.ca.us Elizabeth Burton Technical Director Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 90-1116 Berkeley, CA 94720 925-899-6397 eburton@lbl.gov West Coast Regional Carbon

356

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Andrea Dunn Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Marte Gutierrez Principal Investigator Colorado School of Mines 1600 Illinois Street Golden, CO 80401 303-273-3468 Fax: 303-273-3602 mgutierr@mines.edu PROJECT DURATION Start Date 12/01/2009 End Date 5/31/2013 COST Total Project Value $297,505 DOE/Non-DOE Share $297,505 / $0 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

357

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency Efficiency Molten Bed Oxy- Coal Combustion with Low Flue Gas Recirculation Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO 2 ) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO 2 capture. Additionally, the program looks to accomplish this while maintaining near

358

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification Characteristics of Gasification Characteristics of Coal/Biomass Mixed Fuels Background Domestically abundant coal is a primary energy source and when mixed with optimum levels of biomass during the production of liquid fuels may have lower carbon footprints compared to petroleum fuel baselines. Coal and biomass mixtures are converted via gasification into synthesis gas (syngas), a mixture of predominantly carbon monoxide and hydrogen, which can be subsequently converted to liquid fuels by Fischer-Tropsch chemistry. The Department of Energy (DOE) is supporting research focused on using coal and biomass to produce clean and affordable power, fuels and chemicals. The DOE's National Energy Technology Laboratory (NETL) is partnering with Leland Stanford Junior

359

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbonaceous Chemistry for Carbonaceous Chemistry for Computational Modeling (C3M) Description C3M is chemistry management software focused on computational modeling of reacting systems. The primary function of C3M is to provide direct links between r e l i a b l e s o u r c e s o f k i n e t i c information (kinetic modeling soft- ware, databases, and literature) and commonly used CFD software su ch as M FIX , FLUEN T, an d BARRACUDA with minimal effort from the user. C3M also acts as a virtual kinetic laboratory to allow a CFD practitioner or researcher to evaluate complex, large sets of kinetic expressions for reliability and suitability and can interact with spreadsheet and process models. Once the chemical model is built within C3M, the software also allows the user to directly export

360

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase III Xlerator Program: Electro-deposited Phase III Xlerator Program: Electro-deposited Mn-Co Alloy Coating for Solid Oxide Fuel Cell Interconnects-Faraday Technology Background Based on preliminary cost analysis estimates, Faraday Technology has shown that its FARADAYIC TM electrodeposition process for coating interconnects is cost competitive. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed toward developing, optimizing, and validating the FARADAYIC process as an effective and economical manufacturing method for coating interconnect materials with a manganese-cobalt (Mn-Co) alloy for use in solid oxide fuel cell (SOFC) stacks. This project is managed by the U.S. Department of Energy (DOE) National Energy

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology to Mitigate Syngas Technology to Mitigate Syngas Cooler Fouling Background Coal gasification, in conjunction with integrated gasification combined cycle (IGCC) power production, is under development to increase efficiency and reduce greenhouse gas emissions associated with coal-based power production. However, coal gasification plants have not achieved their full potential for superior performance and economics due to challenges with reliability and availability. In particular, performance of the syngas cooler located downstream of the gasifier has been an issue. The syngas cooler is a fire tube heat exchanger located between the gasifier and the gas turbine. The purpose of the syngas cooler is to cool the raw syngas from the gasifier and recover heat. Although

362

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Processing and Evaluation of Next Processing and Evaluation of Next Generation Oxygen Carrier Materials for Chemical Looping Combustion Background The Department of Energy (DOE) supports research towards the development of efficient and inexpensive CO 2 capture technologies for fossil fuel based power generation. The Department of Energy Crosscutting Research Program (CCR) serves as a bridge between basic and applied research. Projects supported by the Crosscutting Research Program conduct a range of pre-competitive research focused on opening new avenues to gains in power plant efficiency, reliability, and environmental quality by research in materials and processes, coal utilization science, sensors and controls, and computational energy science. Within the CCR, the University Coal Research (UCR) Program sponsors

363

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Studies to Enable Robust, Studies to Enable Robust, Reliable, Low Emission Gas Turbine Combustion of High Hydrogen Content Fuels-University of Michigan Background The University of Michigan will perform experimental and computational studies which can provide an improved and robust understanding of the reaction kinetics and other fundamental characteristics of combustion of high hydrogen content (HHC) fuels that are vital to advancing HHC turbine design and to making coal gasification power plants environmentally sustainable and cost- competitive. The scope of work includes Rapid Compression Facility (RCF) studies of HHC ignition delay times and hydroxyl radical (OH) time-histories, flame speeds, and flammability limits. A range of temperatures, pressures, and test gas mixture compositions will

364

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maria Reidpath Maria Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Bogdan Gurau Principal Investigator NuVant Systems, Inc. 130 N West Street Crown Point, IN 46307 219-644-3232 b.gurau@nuvant.com PARTNERS None PROJECT DURATION Start Date End Date 08/01/2009 05/31/2013 COST Total Project Value $1,142,481 DOE/Non-DOE Share $913,985 / $228,496 AWARD NUMBER Improved Flow-field Structures for Direct Methanol Fuel Cells-NuVant Systems, Inc. Background In this congressionally directed project, NuVant Systems, Inc. (NuVant) will improve the performance of direct methanol fuel cells (DMFCs) by designing anode flow-fields specifically for the delivery of liquid methanol. The goal is to deliver concentrated

365

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Considerations and Environmental Considerations and Cooling Strategies for Vane Leading Edges in a Syngas Environment- University of North Dakota Background Cooling airfoil leading edges of modern first stage gas turbine vanes presents a con- siderable challenge due to the aggressive heat transfer environment and efficiency penalties related to turbine hot gas path cooling. This environment is made more complex when natural gas is replaced by high hydrogen fuels (HHF) such as synthesis gas (syngas) derived from coal gasification with higher expected levels of impurities. In this project the University of North Dakota (UND) and The Ohio State University (OSU) will explore technology opportunities to improve the reliability of HHF gas turbines by analyzing the effects

366

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternative Low-Cost Process for Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications-Tennessee Technological University Background One of the material needs for the advancement of integrated gasification combined cycle (IGCC) power plants is the development of low-cost effective manufacturing processes for application of coating architectures with enhanced performance and durability in coal derived synthesis gas (syngas)/hydrogen environments. Thermal spray technologies such as air plasma spray (APS) and high-velocity oxy-fuel (HVOF) are currently used to fabricate thermal barrier coating (TBC) systems for large land- based turbine components. In this research Tennessee Technological University (TTU) will develop metal chromium-aluminum-yttrium (MCrAlY; where M = nickel [Ni], cobalt

367

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid-Fueled Pressurized Chemical Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO2 Capture Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while

368

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hafnia-Based Nanostructured Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology- University of Texas at El Paso Background Thermal barrier coatings (TBCs) are protective layers of low thermal conductivity ceramic refractory material that protect gas turbine components from high temperature exposure. TBCs improve efficiency by allowing gas turbine components to operate at higher temperatures and are critical to future advanced coal-based power generation systems. Next generation gas turbine engines must tolerate fuel compositions ranging from natural gas to a broad range of coal-derived synthesis gasses (syngas) with high hydrogen content. This will require TBCs to withstand surface temperatures much higher than those currently experienced by standard materials. In this project the University of Texas at El Paso (UTEP)

369

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Utilization of Coal Syngas in High Direct Utilization of Coal Syngas in High Temperature Fuel Cells-West Virginia University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. West Virginia University's (WVU) project will establish the tolerance limits of contaminant

370

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO2 Rich Flue Gas Direct Injection and Storage Facility in an Underground Mine in the Keweenaw Basalts Background Fundamental and applied research on carbon capture, utilization and storage (CCUS) technologies is necessary in preparation for future commercial deployment. These technologies offer great potential for mitigating carbon dioxide (CO2) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCUS technical and non-technical disciplines that are currently under-represented in the United States. Education and training

371

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Risk Assessment Partnership National Risk Assessment Partnership The Need for Quantitative Risk Assessment for Carbon Utilization and Storage Carbon utilization and storage-the injection of carbon dioxide (CO2) into permanent underground and terrestrial storage sites-is an important part of our nation's strategy for managing CO2 emissions. Several pilot- to intermediate-scale carbon storage projects have been performed in the U.S. and across the world. However, some hurdles still exist before carbon storage becomes a reality in the U.S. at a large scale. From a technical point of view, carbon storage risk analysis is complicated by the fact that all geologic storage sites are not created equally. Every potential site comes with an individual set of characteristics, including type of storage formation, mineral make-

372

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FACTS FACTS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Joseph Labuz Principal Investigator University of Minnesota 500 Pillsbury Drive SE Room 122 CivE 0851 Minneapolis, MN 55455 612-625-9060 jlabuz@umn.edu PARTNERS None PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,568 DOE/Non-DOE Share $299,568 / $0 PROJECT NUMBER DE-FE0002020 Government funding for this project is provided in whole or in part through the

373

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Model Development-LG Fuel Model Development-LG Fuel Cell Systems Background In this congressionally directed project, LG Fuel Cell Systems Inc. (LGFCS), formerly known as Rolls-Royce Fuel Cell Systems (US) Inc., is developing a solid oxide fuel cell (SOFC) multi-physics code (MPC) for performance calculations of their fuel cell structure to support product design and development. The MPC is based in the computational fluid dynamics software package STAR-CCM+ (from CD-adapco) which has been enhanced with new models that allow for coupled simulations of fluid flow, porous flow, heat transfer, chemical, electrochemical and current flow processes in SOFCs. Simulations of single cell, five-cell, substrate and bundle models have been successfully validated against experimental data obtained by LGFCS. The MPC is being

374

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Highest- of the Highest- Priority Geologic Formations for CO 2 Storage in Wyoming Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

375

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessment of Factors Influencing Assessment of Factors Influencing Effective CO2 Storage Capacity and Injectivity in Eastern Gas Shales Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

376

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reflection Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

377

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dry Sorbent Technology Dry Sorbent Technology for Pre-Combustion CO 2 Capture Background An important component of the Department of Energy (DOE) Carbon Capture Program is the development of carbon capture technologies for power systems. Capturing carbon dioxide (CO 2 ) from mixed-gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and practical CO 2 loading volumes. Current technologies that are effective at separating CO 2 from typical CO 2 -containing gas mixtures, such as coal-derived shifted synthesis gas (syngas), are both capital and energy intensive. Research and development is being conducted to identify technologies that will provide improved economics and

378

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Turbine Thermal Gas Turbine Thermal Performance-Ames Laboratory Background Developing turbine technologies to operate on coal-derived synthesis gas (syngas), hydrogen fuels, and oxy-fuels is critical to the development of advanced power gener-ation technologies such as integrated gasification combined cycle and the deployment of near-zero-emission type power plants with capture and separation of carbon dioxide (CO 2 ). Turbine efficiency and service life are strongly affected by the turbine expansion process, where the working fluid's high thermal energy gas is converted into mechanical energy to drive the compressor and the electric generator. The most effective way to increase the efficiency of the expansion process is to raise the temperature of the turbine's

379

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Turbines Hydrogen Turbines CONTACTS Richard A. Dennis Technology Manager, Turbines National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4515 richard.dennis@netl.doe.gov Travis Shultz Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507-0880 304-285-1370 travis.shultz@netl.doe.gov Jacob A. Mills Principal Investigator Florida Turbine Technologies, Inc 1701 Military Trail Suite 110 Jupiter, FL 33458-7887 561-427-6349 jmills@fttinc.com PARTNERS None PROJECT DURATION Start Date End Date 06/28/2012 08/13/2015 COST Total Project Value $1,149,847 DOE/Non-DOE Share $1,149,847 / $0 AWARD NUMBER SC0008218 Air-Riding Seal Technology for Advanced Gas Turbine Engines-Florida Turbine

380

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rodosta Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Vivak Malhotra Principal Investigator Southern Illinois University Neckers 483A Mailcode: 4401 Carbondale, IL 62901 618-453-2643 Fax: 618-453-1056 vmalhotra@physics.siu.edu PARTNERS None Risk Assessment and Monitoring of Stored CO2 in Organic Rock under Non-Equilibrium Conditions Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Statistical Analysis of CO2 Exposed Wells Statistical Analysis of CO2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural-Genetic Algorithm Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

382

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geological Sequestration Geological Sequestration Consortium-Development Phase Illinois Basin - Decatur Project Site Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO2) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and nonprofit organizations. These partnerships are the core of a nationwide network helping to establish the most suitable technologies, regulations, and infrastructure needs for carbon storage. The partnerships include more than 400 distinct organizations, spanning 43 states

383

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CONTACT CONTACT Cathy Summers Director, Process Development Division National Energy Technology Laboratory 1450 Queen Ave., SW Albany, OR 97321-2198 541-967-5844 cathy.summers@netl.doe.gov An Integrated Approach To Materials Development Traditional trial-and-error method in materials development is time consuming and costly. In order to speed up materials discovery for a variety of energy applications, an integrated approach for multi-scale materials simulations and materials design has

384

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Scale Simulations of the Large Scale Simulations of the Mechanical Properties of Layered Transition Metal Ternary Compounds for FE Power Systems Background The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE's National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. The goal of

385

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigations and Investigations and Rational Design of Durable High- Performance SOFC Cathodes- Georgia Institute of Technology Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration of solid SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Cathode durability is critical to long-term SOFC performance for commercial deployment.

386

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen Carriers for Coal-Fueled Oxygen Carriers for Coal-Fueled Chemical Looping Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

387

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Supercritical Carbon Dioxide Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-combustion in Conjunction with Cryogenic Compression Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near

388

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PO Box 880 PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Charles D. Gorecki Technical Contact Senior Research Manager Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5355 cgorecki@undeerc.org Edward N. Steadman Deputy Associate Director for Research Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5279 esteadman@undeerc.org John A. Harju Associate Director for Research Energy & Environmental Research Center University of North Dakota

389

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geological & Environmental Sciences Geological & Environmental Sciences Subsurface Experimental Laboratories Autoclave and Core Flow Test Facilities Description Researchers at NETL study subsurface systems in order to better characterize and understand gas-fluid-rock and material interactions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging tools and techniques. As a result, NETL's Experimental Laboratory encompasses multi-functional, state-of-the-art facilities that perform a wide spectrum of geological studies providing an experimental basis for modeling of various subsurface phenomena and processes. This includes, but is not

390

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improving Durability of Turbine Components through Trenched Film Cooling and Contoured Endwalls-University of Texas at Austin Background Gas turbine operation utilizing coal-derived high hydrogen fuels (synthesis gas, or syngas) requires new cooling configurations for turbine components. The use of syngas is likely to lead to degraded cooling performance resulting from rougher surfaces and partial blockage of film cooling holes. In this project the University of Texas at Austin (UT) in cooperation with The Pennsylvania State University (Penn State) will investigate the development of new film cooling and endwall cooling designs for maximum performance when subjected to high levels of contaminant depositions. This project was competitively selected under the University Turbine Systems Research

391

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single-Crystal Sapphire Optical Fiber Single-Crystal Sapphire Optical Fiber Sensor Instrumentation for Coal Gasifiers Background Accurate temperature measurement inside a coal gasifier is essential for safe, efficient, and cost-effective operation. However, current sensors are prone to inaccurate readings and premature failure due to harsh operating conditions including high temperatures (1,200-1,600 degrees Celsius [°C]), high pressures (up to 1000 pounds per square inch gauge [psig]), chemical corrosiveness, and high flow rates, all of which lead to corrosion, erosion, embrittlement, and cracking of gasifier components as well as sensor failure. Temperature measurement is a critical gasifier control parameter because temperature is a critical factor influencing the gasification and it leads to impacts in efficiency and

392

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unraveling the Role of Transport, Unraveling the Role of Transport, Electrocatalysis, and Surface Science in the SOFC Cathode Oxygen Reduction Reaction-Boston University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture The electrochemical performance of SOFCs can be substantially influenced by

393

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-Swirl Injectors for Hydrogen Gas Low-Swirl Injectors for Hydrogen Gas Turbines in Near-Zero Emissions Coal Power Plants-Lawrence Berkeley National Laboratory Background The U.S. Department of Energy Hy(DOE) Lawrence Berkeley National Laboratory (LBNL) is leading a project in partnership with gas turbine manufacturers and universities to develop a robust ultra-low emission combustor for gas turbines that burn high hydrogen content (HHC) fuels derived from gasification of coal. A high efficiency and ultra-low emissions HHC fueled gas turbine is a key component of a near-zero emis- sions integrated gasification combined cycle (IGCC) clean coal power plant. This project is managed by the DOE National Energy Technology Laboratory (NETL). NETL is researching advanced turbine technology with the goal of producing reliable,

394

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstration of a Coal-Based Demonstration of a Coal-Based Transport Gasifier Background Coal is an abundant and indigenous energy resource and currently supplies almost 38 percent of the United States' electric power. Demand for electricity, vital to the nation's economy and global competitiveness, is projected to increase by almost 28 percent by 2040. The continued use of coal is essential for providing an energy supply that supports sustainable economic growth. Unfortunately, nearly half of the nation's electric power generating infrastructure is more than 30 years old and in need of substantial refurbishment or replacement. Additional capacity must also be put in service to keep pace with the nation's ever-growing demand for electricity. It is in the public interest

395

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Foamed Wellbore Cement Foamed Wellbore Cement Stability under Deep Water Conditions Background Foamed cement is a gas-liquid dispersion that is produced when an inert gas, typically nitrogen, is injected into a conventional cement slurry to form microscopic bubbles. Foamed cements are ultralow-density systems typically employed in formations that are unable to support annular hydrostatic pressure exerted by conventional cement slurries. More recently, the use of foamed cement has expanded into regions with high-stress environments, for example, isolating problem formations typical in the Gulf of Mexico. In addition to its light-weight application, foamed cement has a unique resistance to temperature and pressure-induced stresses. Foamed cement exhibits superior fluid

396

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scale Computational Design and Scale Computational Design and Synthesis of Protective Smart Coatings for Refractory Metal Alloys Background The goal of the University Coal Research (UCR) Program within the Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to further the understanding of coal utilization. Since the program's inception in 1979, its primary objectives have been to (1) improve understanding of the chemical and physical processes involved in the conversion and utilization of coal so it can be used in an environmentally acceptable manner, (2) maintain and upgrade the coal research capabilities of and facilities at U.S. colleges and universities, and (3) support the education of students in the area of coal science. The National Energy Technology Laboratory's Office of Coal and Power Systems supports

397

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of CO2 in Commercial Conversion of CO2 in Commercial Materials using Carbon Feedstocks Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

398

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Experimental and Chemical Kinetics Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels- Pennsylvania State University Background Pennsylvania State University is teaming with Princeton University to enhance scientific understanding of the underlying factors affecting combustion for turbines in integrated gasification combined cycle (IGCC) plants operating on synthesis gas (syngas). The team is using this knowledge to develop detailed, validated combustion kinetics models that are useful to support the design and future research and development needed to transition to fuel flexible operations, including high hydrogen content (HHC) fuels derived from coal syngas, the product of gasification of coal. This project also funda- mentally seeks to resolve previously reported discrepancies between published ex-

399

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coating Issues in Coal-Derived Synthesis Coating Issues in Coal-Derived Synthesis Gas/Hydrogen-Fired Turbines-Oak Ridge National Laboratory Background The Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) is leading research on the reliable operation of gas turbines when fired with synthesis gas (syngas) and hydrogen-enriched fuel gases with respect to firing temperature and fuel impurity levels (water vapor, sulfur, and condensable species). Because syngas is derived from coal, it contains more carbon and more impurities than natural gas. In order to achieve the desired efficiency, syngas-fired systems need to operate at very high temperatures but under combustion conditions necessary to reduce nitrogen oxide (NO X ) emissions. ORNL's current project is focused on understanding the performance of high-

400

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diode Laser Cladding of High Diode Laser Cladding of High Temperature Alloys Used in USC Coal- Fired Boilers Background The Advanced Research (AR) Materials Program addresses materials requirements for all fossil energy systems, including materials for advanced power generation and coal fuels technologies. Examples of these technologies include coal gasification, heat engines such as turbines, combustion systems, fuel cells, hydrogen production, and carbon capture

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Processes Electrochemical Processes for CO2 Capture and Conversion to Commodity Chemicals Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the

402

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Preparation and Testing of Corrosion- Preparation and Testing of Corrosion- and Spallation-Resistant Coatings- University of North Dakota Background The life of turbine components is a significant issue in gas fired turbine power systems. In this project the University of North Dakota (UND) will advance the maturity of a process capable of bonding oxide-dispersion strengthened alloy coatings onto nickel-based superalloy turbine parts. This will substantially improve the lifetimes and maximum use temperatures of parts with and without thermal barrier coatings (TBCs). This project is laboratory research and development and will be performed by UND at their Energy & Environmental Research Center (EERC) facility and the Department of Mechanical Engineering. Some thermal cycle testing will occur at Siemens Energy

403

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Assessment Model for Predicting Integrated Assessment Model for Predicting Potential Risks to Groundwater and Surface Water Associated with Shale Gas Development Background The EPAct Subtitle J, Section 999A-999H established a research and development (R&D) program for ultra-deepwater and unconventional natural gas and other petroleum resources. This legislation identified three program elements to be administered by a consortium under contract to the U.S. Department of Energy. Complementary research performed by the National Energy Technology Laboratory's (NETL) Office of Research and Development (ORD) is a fourth program element of this cost-shared program. NETL was also tasked with managing the consortium: Research Partnership to Secure Energy for America (RPSEA). Historically, the Complementary R&D Program being carried out by NETL's ORD has focused

404

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstration of Enabling Spar-Shell Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines - Florida Turbine Technologies Background The Florida Turbine Technologies (FTT) spar-shell gas turbine airfoil concept has an internal structural support (the spar) and an external covering (the shell). This concept allows the thermal-mechanical and aerodynamic requirements of the airfoil design to be considered separately, thereby enabling the overall design to be optimized for the harsh environment these parts are exposed to during operation. Such optimization is one of the major advantages of the spar-shell approach that is not possible with today's conventional monolithic turbine components. The proposed design integrates a novel cooling approach based on Advanced Recircu-

405

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Alamos National Laboratory - Los Alamos National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization and Pre-Combustion Capture Goals Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to aid in reducing greenhouse gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestration (CCS) - the capture of CO 2 from large point sources and subsequent injection into deep geologic formations for permanent storage - is one option that is receiving considerable attention. NETL is devoted to improving geologic carbon sequestration technology by funding research projects aimed at removing barriers to commercial-scale

406

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid Oxide Fuel Cell Cathodes: Solid Oxide Fuel Cell Cathodes: Unraveling the Relationship among Structure, Surface Chemistry, and Oxygen Reduction-Boston University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture The Boston University (BU) project was competitively selected to acquire the fundamental

407

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials for Robust Repair Materials for Robust Repair of Leaky Wellbores in CO2 Storage Formations Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

408

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-fired Pressurized Fluidized Bed Oxy-fired Pressurized Fluidized Bed Combustor Development and Scale-up for New and Retrofit Coal-fired Power Plants Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy-combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to

409

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantification Quantification of Wellbore Leakage Risk Using Non-Destructive Borehole Logging Techniques Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the

410

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Research Storage Research Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emissions reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO 2 . NETL's Carbon Storage Program is readying CCS technologies for widespread commercial deployment by 2020. The program's goals are:

411

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration Sequestration Training and Research Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO2). Carbon capture and storage (CCS) technologies offer great potential for reducing CO2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the skills required for implementing and deploying CCS technologies.

412

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R& R& D FAC T S Natural Gas & Oil R&D CONTACTS George Guthrie Focus Area Lead Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator Office of Research and Development National Energy Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2152 541-967-5883 kelly.rose@netl.doe.gov PARTNERS Carnegie Mellon University Pittsburgh, PA Oregon State University Corvallis, OR Pennsylvania State University State College, PA University of Pittsburgh Pittsburgh, PA URS Corporation Pittsburgh, PA Virginia Tech Blacksburg, VA West Virginia University Morgantown, WV

413

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gulf of Mexico Miocene CO Gulf of Mexico Miocene CO 2 Site Characterization Mega Transect Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional storage types are porous permeable clastic or carbonate rocks that have

414

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Leads Collaborative Effort DOE Leads Collaborative Effort to Quantify Environmental Changes that Coincide with Shale Gas Development Background DOE's National Energy Technology Laboratory (NETL) is leading a joint industry/ government research project to document environmental changes that occur during the lifecycle of shale gas development. The research plan calls for one year of environmental monitoring before development takes place to establish baseline conditions and account for seasonal variations. Monitoring then will continue through the different stages of unconventional shale gas development including: road and pad construction, drilling, and hydraulic fracturing, and for at least one year of subsequent production operations. The study will take place at a Range Resources-Appalachia

415

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

General Electric General Electric Background GE Power & Water, along with GE Global Research Center, has an ongoing U.S. Depart- ment of Energy (DOE) program to develop gas turbine technology for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). GE is broadening this development effort, along with expanding applicability to industrial applications such as refineries and steel mills under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines with industrial CCS. ARRA industrial technology acceleration,

416

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Livermore National Laboratory Livermore National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop carbon capture and storage (CCS) technologies to capture, separate, and store carbon dioxide (CO 2 ) in order to reduce green-house gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO 2 by injecting and permanently storing it in underground geologic formations. NETL is working to advance geologic carbon sequestration technology by funding research projects that aim to accelerate deployment and remove barriers to commercial-scale carbon sequestration. Lawrence Livermore National Laboratory

417

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

r r oj e c t Fac t s Advanced Research Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments Background Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is central to the mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensors that can function under the

418

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-Fuel Turbo Machinery Oxy-Fuel Turbo Machinery Development for Energy Intensive Industrial Applications-Clean Energy Systems Background Clean Energy Systems (CES), with support from Siemens Energy and Florida Turbine Technologies (FTT), has an ongoing U.S. Department of Energy (DOE) program to develop an oxy-fuel combustor for highly efficient near zero emission power plants. CES is expanding this development for an industrial-scale, oxy-fuel reheat combustor- equipped intermediate-pressure oxy-fuel turbine (IP-OFT) under the American Recovery and Reinvestment Act (ARRA). Through the design, analysis, and testing of a modified Siemens SGT-900 gas turbine, the team will demonstrate a simple-cycle oxy-fuel system. ARRA funding is accelerating advancement in OFT technology for

419

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Passive Wireless Acoustic Wave Sensors Passive Wireless Acoustic Wave Sensors for Monitoring CO 2 Emissions for Geological Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

420

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Criteria for Flame- Criteria for Flame- holding Tendencies within Premixer Passages for High Hydrogen Content Fuels-University of California, Irvine Background The gas turbine community must develop low emissions systems while increasing overall efficiency for a widening source of fuels. In this work, the University of California, Irvine (UCI) will acquire the fundamental knowledge and understanding to facilitate the development of robust, reliable, and low emissions combustion systems with expanded high hydrogen content (HHC) fuel flexibility. Specifically, understanding flashback and the subsequent flameholding tendencies associated with geometric features found within combustor fuel/air premixers will enable the development of design guides to estimate flame holding tendencies for lean, premixed emission combustion systems

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combining Space Geodesy, Seismology, Combining Space Geodesy, Seismology, and Geochemistry for MVA of CO2 in Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO2) leakage at CO2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO2, with a high level of confidence that the CO2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

422

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Analytical Simulation Tool for Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

423

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactive Transport Models with Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

424

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Prototype Commercial a Prototype Commercial Gasifier Sensor Background Integrated gasification combined cycle (IGCC) technology has the potential to improve the efficiency and environmental performance of fossil fuel based electric power production. During the IGCC process, coal and/or biomass is gasified at high temperature and pressure to form synthesis gas (syngas), a mixture of hydrogen, carbon monoxide, carbon dioxide, and small amounts of contaminants such as hydrogen sulfide. The syngas can be used to produce power, chemicals, and/or fuels. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Gasification Technologies Program is focused on enhancing the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of

425

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase III Xlerator Program: Rapid Phase III Xlerator Program: Rapid Commercialization of Advanced Turbine Blades for IGCC Power Plants-Mikro Systems Background Mikro Systems, Inc. is developing their proprietary TOMO SM manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that are beyond current manufacturing state-of-the-art, thus enabling higher operating temperatures. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed towards accelerating commercial adoption of TOMO SM technology by leading turbine manufacturers through the demonstration of superior manufacturability, cost, and performance. Ultimately, this technology will lead to improved efficiency

426

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Non-Thermal Plasma for Fossil Energy Non-Thermal Plasma for Fossil Energy Related Applications Background The U.S. Department of Energy is investigating various non-thermal plasma tech- nologies for their catalytic properties related to fossil energy conversion and carbon dioxide decomposition. Non-thermal plasma is an ionized gas comprised of a mixture of charged particles (electrons, ions), active chemical radicals (O 3 , O, OH), and highly excited species that are known to accelerate reforming reactions in

427

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PROJEC PROJEC T FAC TS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Gordon Bierwagen Principal Investigator North Dakota State University P.O. Box 6050 Department 2760 Fargo, ND 58108-6050 701-231-8294 gordon.bierwagen@ndsu.edu PARTNERS None PROJECT DURATION Start Date 12/01/2009 End Date 11/30/2011 COST Total Project Value $298,949 DOE/Non-DOE Share $298,949 / $0 PROJECT NUMBER DE-FE0002054 Government funding for this project is provided in whole or in part through the

428

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training Toward Advanced 3-D Seismic Training Toward Advanced 3-D Seismic Methods for CO 2 Monitoring, Verification, and Accounting Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effective- ness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely af fecting energy use or hindering economic grow th. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

429

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cathode Surface Chemistry and Cathode Surface Chemistry and Optimization Studies-Carnegie Mellon University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Carnegie Mellon University's (CMU) project was selected to acquire the fundamental knowledge and understanding that will facilitate research and development to enhance

430

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Jose Castillo Principal Investigator San Diego State University 5500 Campanile Drive San Diego, CA 92122 619-594-7205 castillo@myth.sdsu.edu PARTNERS Sienna Geodynamics and Consulting, Inc. PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,993 DOE/Non-DOE Share $299,993 / $0 PROJECT NUMBER DE-FE0002069 Government funding for this project is provided in whole or in part through the

431

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Coal-Biomass to Liquids a Coal-Biomass to Liquids Plant in Southern West Virginia Background Concerns regarding global supplies of oil, energy security, and climate change have generated renewed interest in alternative energy sources. The production of liquid fuels from coal provides an option for reducing petroleum use in the U.S. transportation sector and enhancing national and economic security by decreasing the nation's reliance on foreign oil. Two basic methods can be employed to produce liquid fuels

432

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Creep-Fatigue-Environment Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultrasupercritical Coal Power Plants Background The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE's National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. One goal of the AR Materials Program is to conduct research leading to a scientific understanding of high-performance materials capable of service in the hostile environments associated with advanced ultrasupercritical (A-USC) coal-fired power plants. A-USC plants will increase coal-fired power plant efficiency by allowing operation

433

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL's Fluid Chemistry Analysis NETL's Fluid Chemistry Analysis Capacity Background Establishing the geochemistry of surface and ground waters requires an arsenal of techniques devoted to determining the constituents these waters contain and the environment in which they exist. Many standard techniques have been developed over the years, and new ones continue to be explored as more complex matrices and harsher environments are encountered. Deep geologic storage of carbon dioxide and the development of unconventional oil and gas resourses are two areas of current concern where the study of geochemical processes is challenging due to the complex nature of the natural samples, and where routine analytical techniques are being pushed to their limits. The facilities at NETL include both conventional and cutting-edge instrumentation

434

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

29,759 29,759 PROJECT NUMBER FWP-2012.03.03 Task 3 Conversion and Fouling Background Coal and biomass gasification is an approach to cleaner power generation and other uses of these resources. Currently, the service life of gasifiers does not meet the performance needs of users. Gasifiers fail to achieve on-line availability of 85-95 percent in utility applications and 95 percent in applications such as chemical production. The inability to meet these goals has created a potential roadblock to widespread acceptance and commercialization of advanced gasification technologies. Gasifier output is a hot gas mixture consisting primarily of hydrogen and carbon monoxide (CO), known as synthesis gas (syngas). The syngas cooler is one of the key components identified as negatively impacting gasifier availability. Ash originating from impurities

435

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compact Eye-safe Scanning Differential Compact Eye-safe Scanning Differential Absorption LIDAR (DIAL) for Spatial Mapping of Carbon Dioxide for MVA at Geologic Carbon Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that

436

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Energy California Project Hydrogen Energy California Project Background A need exists to further develop carbon management technologies that capture and store or beneficially reuse carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. Under the Clean Coal Power Initiative (CCPI) Round 3 program, the U.S. Department of Energy (DOE) is providing financial assistance, including funding under the American Recovery and Reinvestment Act (ARRA) of 2009, to industry to demonstrate the commercial viability of technologies that will capture CO

437

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulation of CO Simulation of CO 2 Leakage and Caprock Remediation Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the environment, and can provide the basis for establishing carbon credit trading markets

438

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pressure Membrane Contactors for Pressure Membrane Contactors for CO 2 Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control technologies and CO 2 compression is focused on advancing technological options for new and existing coal- fired power plants in the event of carbon constraints. Post-combustion separation and capture of CO

439

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CONTACTS Joseph Stoffa Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-0285 joseph.stoffa@netl.doe.gov Xingbo Liu Principal Investigator Dept. MechanaWest Virginia University P.O. Box 6106 Morgantown, WV 26506-6106 304-293-3339 xingbo.liu@mail.wvu.edu Shailesh D. Vora Technology Manager, Fuel Cells National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-7515 shailesh.vora@netl.doe.gov PARTNERS None PROJECT DURATION Start Date End Date 08/31/2012 09/30/2015 COST Total Project Value $634,839 DOE/Non-DOE Share $499,953 / $134,886 AWARD NUMBER FE0009675 Fundamental Understanding of Oxygen Reduction and Reaction Behavior and Developing High Performance and Stable

440

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shizhong Yang Shizhong Yang Principal Investigator Department of computer science/LoNI southern University and a&M college Baton rouge, Louisiana 70813 225-771-2060 shizhong_yang@subr.edu PROJECT DURATION Start Date End Date 06/01/2012 05/31/2015 COST Total Project Value $200,000 DOE/Non-DOE Share $200,000 / $0 Novel Nano-Size Oxide Dispersion Strengthened Steels Development through Computational and Experimental Study Background Ferritic oxide dispersion strengthened (oDs) steel alloys show promise for use at higher temperatures than conventional alloys due to their high-temperature oxidation resistance and dislocation creep properties. the development of oDs alloys with nanoscale powders of transition metal oxides (yttrium and chromium) dispersed in

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Coal Power Initiative (CCPI 3) Clean Coal Power Initiative (CCPI 3) NRG Energy: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project Background Additional development and demonstration is needed to improve the cost and efficiency of carbon management technologies that capture and store carbon dioxide (CO 2 ) that would otherwise be emitted from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. The U.S. Department of Energy (DOE) is providing financial assistance through the Clean Coal Power Initiative (CCPI) Round 3, which includes funding from the American Recovery and Reinvestment Act (ARRA), to demonstrate the commercial viability

442

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiocarbon as a Reactive Tracer for Radiocarbon as a Reactive Tracer for Tracking Permanent CO2 Storage in Basaltic Rocks Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

443

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Degradation of TBC Systems in Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems- University of Pittsburgh Background The conditions inside integrated gasification combined cycle (IGCC) systems, such as high steam levels from hydrogen firing, high carbon dioxide steam mixtures in oxy- fired systems, and different types of contaminants, introduce complexities associated with thermal barrier coating (TBC) durability that are currently unresolved. In this work the University of Pittsburgh will team with Praxair Surface Technologies (PST) to deter- mine the degradation mechanisms of current state-of-the-art TBCs in environments consisting of deposits and gas mixtures that are representative of gas turbines using coal-derived synthesis gas (syngas).

444

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-Cost Alloys for High-Temperature Low-Cost Alloys for High-Temperature SOFC Systems Components - QuesTek Innovations Background One of the key opportunities for cost reduction in a solid oxide fuel cell (SOFC) system is the set of balance of plant (BOP) components supporting the fuel cell itself, including the heat exchanger and air/fuel piping. These represent about half of the overall cost of the system. A major enabling technological breakthrough is to replace incumbent nickel-based superalloys in high-temperature BOP components with low-cost ferritic stainless steel. However, the ferritic alloys are unsuitable for SOFC application without additional coatings due to the inherent volatile nature of the alloy's chromium oxide (Cr2O3) element, which tends to poison the fuel cell's cathode

445

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Southwestern United States Carbon Southwestern United States Carbon Sequestration Training Center Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification,

446

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beneficial Use of CO2 in Precast Beneficial Use of CO2 in Precast Concrete Products Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

447

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Barrier Coatings for Thermal Barrier Coatings for Operation in High Hydrogen Content Fueled Gas Turbines-Stony Brook University Background Traditional thermal barrier coatings (TBCs) based on yttria-stabilized zirconia (YSZ) will likely not be suitable in gas turbines used in integrated gasification combined cycle (IGCC) power plants. This is due to higher operating temperatures that will not only affect phase stability and sintering but will accelerate corrosive degradation phenomena. Coatings provide a framework to combat degradation issues and provide performance improvements needed for higher temperature environments. The Center for Thermal Spray Research (CTSR) at Stony Brook University, in partnership with its industrial Consortium for Thermal Spray Technology, is investigating science and

448

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cooling for IGCC Turbine Cooling for IGCC Turbine Blades-Mikro Systems Background Turbine blade and vane survivability at higher operating temperatures is the key to improving turbine engine performance for integrated gasification combined cycle (IGCC) power plants. Innovative cooling approaches are a critical enabling technology to meet this need. Mikro Systems, Inc. is applying their patented Tomo-Lithographic Molding (TOMO) manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that go beyond the current manufacturing state-of-the-art to enable higher operating temperatures. This project addresses two important aspects. First is the need to increase the quality and reliability of the core manufacturing process capability to

449

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Dynamics in Multi-Nozzle Combustion Dynamics in Multi-Nozzle Combustors Operating on High- Hydrogen Fuels-Pennsylvania State University Background Combustion dynamics is a major technical challenge to the development of efficient, low emission gas turbines. Current information is limited to single-nozzle combustors operating on natural gas and neglects combustors with configurations expected to meet operability requirements using a range of gaseous fuels such as coal derived synthesis gas (syngas). In this project, Pennsylvania State University (Penn State) in collaboration with Georgia Institute of Technology (Georgia Tech) will use multiple-nozzle research facilities to recreate flow conditions in an actual gas turbine to study complicated interactions between flames that can aggravate the combustion dynamics in syngas-

450

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summit Texas Clean Energy, LLC: Texas Summit Texas Clean Energy, LLC: Texas Clean Energy Project: Pre-Combustion CO 2 Capture and Sequestration Background A need exists to further develop carbon management technologies that capture and store, or beneficially reuse, carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer the potential to significantly reduce CO 2 emissions and mitigate the anthropogenic contribution to global climate change, while substantially reducing or minimizing the economic impacts of the solution. Under Round 3 of the Clean Coal Power Initiative (CCPI), the U.S. Department of Energy (DOE) is providing up to $450 million in co-funded financial assistance to industry,

451

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency Solar-Based Catalytic Efficiency Solar-Based Catalytic Structure for CO2 Reforming Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

452

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE-WRI Cooperative Research and DOE-WRI Cooperative Research and Development Program for Fossil Energy- Related Resources Background Our nation's demand for cleaner and more efficient fossil energy production will increase during the coming decades, necessitating the development of new energy technologies to achieve energy independence in an environmentally responsible manner. The University of Wyoming (UW) Research Corporation's Western Research Institute (WRI) has been supporting the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) and its mission of developing fossil energy and related environmental technologies for over two decades. Federal funding for these research efforts has usually been provided through congressionally mandated cooperative agreements, with cost share

453

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unconventional Resources Unconventional Resources Background Natural gas and crude oil provide two-thirds of our Nation's primary energy supply and will continue to do so for at least the next several decades, as the Nation transitions to a more sustainable energy future. The natural gas resource estimated to exist within the United States has expanded significantly, but because this resource is increasingly harder to locate and produce, new technologies are required to extract it. Under the Energy Policy Act of 2005, the National Energy Technology Laboratory is charged with developing a complementary research program supportive of improving safety and minimizing the environmental impacts of activities related to unconventional natural gas and other petroleum resource exploration and production technology

454

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Romanosky Romanosky Crosscutting Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4721 robert.romanosky@netl.doe.gov Richard Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Shizhong Yang Principal Investigator Southern University

455

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Staged, High-Pressure Oxy-Combustion Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-up Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available CO2 capture and storage significantly reduces efficiency of the power cycle. The aim of the ACS program is to develop advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near zero emissions of other flue gas pollutants.

456

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid Oxide Fuel Cells Operating on Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels- Pennsylvania State University Background In this congressionally directed project, the Earth and Mineral Science (EMS) Energy Institute at Pennsylvania State University (PSU) focuses on the development of fuel processors, reforming catalysts, and chemical sorbents to support the production of electricity from anaerobic digester gas (ADG) and ultra-low sulfur diesel (ULSD) via solid-oxide fuel cells (SOFCs). PSU will use the fuel processors, reforming catalysts, and chemical sorbents developed under this work to transform and clean ADG and ULSD into a syngas stream suitable as a feedstock for SOFCs. This project is managed by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), whose mission is to advance energy options to fuel

457

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid Oxide Fuel Cell Cathode Enhancement Solid Oxide Fuel Cell Cathode Enhancement Through a Vacuum-assisted Infiltration- Materials and Systems Research, Inc. Background Solid oxide fuel cell (SOFC) technology promises to provide an efficient method to generate electricity from coal-derived synthesis gas (syngas), biofuels, and natural gas. The typical SOFC composite cathode (current source) possesses excellent performance characteristics but is subject to chemical stability issues at elevated temperatures both during manufacturing and power generation. Costs attributed to the cathode and its long-term stability issues are a current limitation of SOFC technologies. These must be addressed before commercial SOFC power generation can be realized. Materials and Systems Research, Inc. (MSRI) will develop a vacuum-assisted infiltration

458

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Study of the Durability of Doped Study of the Durability of Doped Lanthanum Manganite and Cobaltite Based Cathode Materials under "Real World" Air Exposure Atmospheres- University of Connecticut Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO

459

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Briggs White Briggs White Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-5437 briggs.white@netl.doe.gov Jeff Stevenson Principal Investigator Pacific Northwest National Laboratory P.O. Box 999, MS K2-44 Richland, WA 99352 509-372-4697 jeff.stevenson@pnl.com PARTNERS Oak Ridge National Laboratory University of Connecticut PROJECT DURATION Start Date End Date 10/01/1999 09/30/2013 (annual continuations) COST Total Project Value $52,889,667 DOE/Non-DOE Share $52,889,667 / $0 AWARD NUMBER FWP40552 PR OJ E C T FAC T S Fuel Cells Low Cost Modular SOFC Development- Pacific Northwest National Laboratory Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) has a mission to advance energy options to fuel our economy, strengthen our security,

460

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Karen Kluger Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6667 karen.kluger@netl.doe.gov Gary Mavko Principal Investigator Stanford University 397 Panama Mall Stanford, CA 94305-2215 650-723-9438 Fax: 650-723-1188 mavko@stanford.edu PROJECT DURATION Start Date 12/01/2009 End Date 06/30/2013 COST Total Project Value $385,276 DOE/Non-DOE Share $295,777/ $89,499 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Rock Physics of Geologic Carbon Sequestration/Storage

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comprehensive Comprehensive Monitoring Techniques to Verify the Integrity of Geological Storage Reservoirs Containing Carbon Dioxide Background Research aimed at monitoring the long-term storage stability and integrity of carbon dioxide (CO2) stored in geologic formations is one of the most pressing areas of need if geological storage is to become a significant factor in meeting the United States' stated objectives to reduce greenhouse gas emissions. The most promising geologic formations under consideration for CO2 storage are active and depleted oil and gas formations, brine formations, and deep, unmineable coal seams. Unfortunately, the long-term CO2 storage capabilities of these formations are not yet well understood. Primary Project Goal The goal of this effort is to develop

462

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SO SO 2 -Resistent Immobilized Amine Sorbents for CO 2 Capture Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

463

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies for Monitoring Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic

464

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monitoring and Numerical Modeling of Monitoring and Numerical Modeling of Shallow CO 2 Injection, Greene County, Missouri Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the

465

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tagging Carbon Dioxide to Enable Tagging Carbon Dioxide to Enable Quantitative Inventories of Geological Carbon Storage Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

466

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanoporous, Metal Carbide, Surface Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations Background Both coal and biomass are readily available in the U.S. and can be thermally processed to produce hydrogen and/or power. The produced hydrogen can be sent directly to a fuel cell or hydrogen turbines for efficient and environmentally clean power generation. More efficient hydrogen production processes need to be developed before coal and biomass can become economically viable sources of hydrogen. To meet this need, the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is partnering with the Colorado School of Mines and Pall Corporation to develop nanoporous metal carbide surface diffusion membranes for use in high temperature

467

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigation on Flame Characteristics Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently underrepresented in the United States. Education and training activities

468

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Object Optimization Approaches Object Optimization Approaches for the Design of Carbon Geological Sequestration Systems Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess

469

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensors and Control Sensors and Control CONTACTS Ben Chorpening Sensors & Controls Technical Team Coordinator 304-285-4673 benjamin.chorpening@netl.doe.gov Steven Woodruff Principal Investigator 304-285-4175 steven.woodruff@netl.doe.gov Michael Buric Co-Principal Investigator 304-285-2052 michael.buric@netl.doe.gov Raman Gas Composition Sensor System for Natural Gas and Syngas Applications Goal The goal of this project is to develop and test a Raman laser spectroscopy system for responsive gas composition monitoring, and to transfer the technology to industry for commercial implementation. The instrument provides state-of-the-art improvement of reduced size and increased sensitivity and sample rate to facilitate the process control

470

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Joining of Advanced Joining of Advanced High-Temperature Materials Background To remain economically competitive, the coal-fired power generation industry needs to increase system efficiency, improve component and system reliability, and meet ever tightening environmental standards. In particular, cost-effective improvements in thermal efficiency are particularly attractive because they offer two potential benefits: (1) lower variable operating cost via increased fuel utilization (fuel costs represent over 70 percent of the variable operating cost of a fossil fuel-fired power plant) and (2) an economical means of reducing carbon dioxide (CO2) and other emissions. To achieve meaningful gains, steam pressure and temperature must be increased to

471

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basin-Scale Leakage Risks from Geologic Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on Carbon Capture and Storage Energy Market Competitiveness Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the

472

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R R &D FAC T S Natural Gas & Oil R&D CONTACTS George Guthrie Focus Area Lead Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator Office of Research and Development National Energy Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2152 541-967-5883 kelly.rose@netl.doe.gov PARTNERS Carnegie Mellon University Pittsburgh, PA Oregon State University Corvallis, OR Pennsylvania State University State College, PA University of Pittsburgh Pittsburgh, PA URS Corporation Pittsburgh, PA Virginia Tech Blacksburg, VA West Virginia University Morgantown, WV

473

Interracial political coalitions: an analysis of justice for janitors campaigns in Houston, TX  

E-Print Network [OSTI]

interracial alliances but do not detail empirically supported solutions. This thesis fills the gap in the literature by analyzing two interracial political campaigns in Houston, Texas. In so doing, I use extended case method and grounded theory to define...

Bracey, Glenn Edward

2009-05-15T23:59:59.000Z

474

Price of Freeport, TX Natural Gas LNG Imports from Egypt (Nominal...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- 4.24 2010's -- 12.23 -- --...

475

Design and Optimization of a Feeder Demand Responsive Transit System in El Cenizo,TX  

E-Print Network [OSTI]

time interval of a new demand responsive transit "feeder" service within one representative colonia, El Cenizo. A comprehensive analysis of the results of a survey conducted through a questionnaire is presented to explain the existing travel patterns...

Chandra, Shailesh

2010-10-12T23:59:59.000Z

476

International Truck & Bus Meeting & Exhibition, Fort Worth, TX, November 2003. 2003-01-3369  

E-Print Network [OSTI]

a "Direct Hybrid" powertrain system [1], which integrates an advanced diesel engine, an electric traction System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck Chan-Chiao Lin, Huei Peng for a medium-duty hybrid electric truck are reported in this paper. The design procedure adopted is a model

Peng, Huei

477

Proceedings of International Thermal Treatment Technologies (IT3), San Antonio, TX, October 2013  

E-Print Network [OSTI]

). This paper examines the emergence of the circulating fluidized bed (CFB) in China. This technology is less of the 21 st century, 47 CFB plants, of total capacity of over 14.6 million ton per year of MSW, have been

478

820 Gessner Rd. -Ste. 920 Houston, TX 77024 www.energytribune.com  

E-Print Network [OSTI]

the Orinoco AMERICA: BURNING FOOD AS AUTO FUEL Argentina's Looming Energy Crunch Argentina's Looming Energy on our global strengths and the changing dynamics of the global energy and food markets." As ADM, one Production By Lucas J. Patzek and Tad W. Patzek ET Focus PalmOilFruitphotobyM.J.Silvius #12;20 Energy Tribune

Patzek, Tadeusz W.

479

820 Gessner Rd. -Ste. 920 Houston, TX 77024 www.energytribune.com  

E-Print Network [OSTI]

the Orinoco AMERICA: BURNING FOOD AS AUTO FUEL Argentina's Looming Energy Crunch Argentina's Looming Energy it comes to energy. No matter how much politicians, pundits, and politicos wish it were so, Btus cannot Correspondent ­ Renatus Nji India Correspondent ­ Kumar Amitav Chaliha Copy Editor ­ Mimi Bardagjy Energy

Patzek, Tadeusz W.

480

2013 APS-MSA Joint Meeting August 10-14 Austin, Tx  

E-Print Network [OSTI]

in annual bedding plants. M. GRABOWSKI (1), D. Malvick (2) (1) University of Minnesota, Andover, MN, U.S.A.; (2) University of Minnesota, St. Paul, MN, U.S.A. Poster Session: Molecular Plant graminis pv. tritici. C. YIN (1), X. Chen (1), M. Pumphrey (1), L. Szabo (2), A. Kleinhofs (1), S. Hulbert

Blanchette, Robert A.

Note: This page contains sample records for the topic "ri sd tx" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A Case Study - Hydraulic Fracturing Geography: The case of the Eagle Ford Shale, TX, USA.  

E-Print Network [OSTI]

??The use of horizontal drilling in conjunction with hydraulic fracturing has increased the ability of producers to extract natural gas and oil from previously non-viable (more)

Wenzel, Cortney

2012-01-01T23:59:59.000Z

482

The environment of deposition of the Dalton Coal (Upper Pennsylvanian), Palo Pinto Co., TX.  

E-Print Network [OSTI]

, dried them in an oven, and picked the fossils out of the residue under a binocular scope. Or. Thomas Yancey assisted in the identification. Coal balls and concretions - Coal balls are thought to preserve the original texture, detrital mineral... kane content. Three of the samples were sent to Core Lab to determine the B. T. U. , ash, and sulfur content of the coal. I analyzed the remaining twenty- one samples with the use of the Oceanography department's Leco Combustion Furnace...

Lowenstein, Glenn Robert

1986-01-01T23:59:59.000Z

483

A Fractal Interpretation of Controlled-Source Helicopter Electromagnetic Survey Data Seco Creek, Edwards Aquifer, TX  

E-Print Network [OSTI]

The Edwards aquifer lies in the structurally complex Balcones fault zone and supplies water to the growing city of San Antonio. To ensure that future demands for water are met, the hydrological and geophysical properties of the aquifer must be well...

Decker, Kathryn T.

2010-07-14T23:59:59.000Z

484

Characterization of atmospheric ammonia near Fort Worth, TX Part I. Dynamics of gaseous ammonia  

E-Print Network [OSTI]

May ­ 30 June) using a 10.4-µm external cavity4 quantum cascade laser-based sensor employing, biogenic (primarily vegetation and soil) emissions were major contributors to16 gas-phase NH3 levels-related activities) also was expected to be a potentially18 significant source of NH3 based on the nature

485

Sedimentary processes of the Red River between Denison Dam, TX and Alexandria, LA  

E-Print Network [OSTI]

base level. It was concluded that the suspended sediment concentration of the Red River between Index, AR and Shreveport, LA is caused by two processes: 1. ) the erosion of sediment accumulated behind the raft as the river grades to original base... Marine Regiment, Iwo Jima Col. A. F. Weirich, U. S. Army (ret. ) 1 909 - 1988 Executive Officer - Rocky Mountain Arsenal, Denver CO TABLE OF CONTENTS ABSTRACT. ACKNOWLEDGEMENTS DED ICATION . . TABLE OF CONTENTS LIST OF F IG U RES . . . . . LIST...

Weirich, Thomas Moody - Kenyon

2012-06-07T23:59:59.000Z

486

The Impact of Tropical Cyclones on the Geomorphic Evolution of Bolivar Peninsula, TX  

E-Print Network [OSTI]

Semivariogram Analysis ......................................................... 82 Fractal Scaling Range Analysis ............................................... 91 Shifting Window Analysis ...................................................... 96....25 Fractal analysis for Hurricane Ike ................................................. 92 Figure 3.26 Fractal analysis for Hurricane Rita. ............................................... 93 Figure 3.27 Fractal analysis for Tropical Storm Fay...

Hales, Billy

2012-07-16T23:59:59.000Z

487

Patrick Louchouarn, PhD 2513 Montclair Ct., League City TX, 77573  

E-Print Network [OSTI]

. Texas A&M University-Galveston. 2010-present Serve as chief academic and administrative officer of a department that offers the most service courses in sciences at Texas A&M University-Galveston. Monitor. of Marine Sciences. Texas A&M University-Galveston. 2009-2010 Coordinated the post-award research activities

Martin, Jeff

488

Visio-Tx_Comm_Proj_Integration_Roadmap_v14_102913.vsd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ST ATC Internal Automation development & Stakeholder Process ACSGen Inputs Stakeholder Process LEGEND Key MilestoneEvent Customer Mtg Conference Call PCM Hourly Assess...

489

Municipal Consortium LED Street Lighting Workshop Presentations and MaterialsDallas, TX  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Workshop held in Dallas March 1516, 2012.

490

CARLOS ALBERTO PALACIOS TENREIRO 11905 SOUTHERN TRAILS CT, PEARLAND, TX, 77584  

E-Print Network [OSTI]

Venezuela and Petrozuata (Conoco-Philips/PDVSA joint venture); Ecopetrol­ Colombia; PEMEX, Mexico ­ Colombia, Pipeline System 4 for PEMEX ­ Mexico. Have experience and background of oil/gas fields

Botte, Gerardine G.

491

Diets of Three Sunfishes in Lake Conroe, TX Before and After Grass Carp Introduction.  

E-Print Network [OSTI]

- (0.12) to post-introduction (0.05). Results imply that vegetation control by grass carp influenced the diets and feeding strategies of three cohabitating sunfish species. These findings may help fisheries biologists to plan future management actions...

Sifuentes, Matthew L.

2010-07-14T23:59:59.000Z

492

Salinization of Irrigated Urban Soils: A Case Study of El Paso, TX  

E-Print Network [OSTI]

, the Northwest, and the Upper and Lower Valleys, covering 16 fairways at seven golf courses, 37 city parks, 30 school grounds, and 13 apartment landscapes on the Westside. The highest soil salinity (6 to 11 dS m-1) was found in the clayey soils of the Upper...

Miyamoto, S.

2012-10-25T23:59:59.000Z

493

Optimal Deployment Plan of Emission Reduction Technologies for TxDOT's Construction Equipment  

E-Print Network [OSTI]

District Yoakum District Dallas District Fort Worth District Corpus Christi District 8 Therefore, the primary target pollutant in this study is NOx. Typical NOx reduction technologies are ? Selective catalytic reduction, ? Lean NOx catalysts... Repower and Rebuild Exhaust Gas Recirculation Crankcase Emission Control Fuel Technologies Low-Sulfur and Ultra Low-Sulfur Diesel Natural Gas Biodiesel Hydrogen Fuel Additive Hydrogen Enrichment 17 Exhaust Gas Aftertreatment Technologies...

Bari, Muhammad Ehsanul

2010-10-12T23:59:59.000Z

494

Application of CC at a Corporate Headquarters Facility in Dallas, TX  

E-Print Network [OSTI]

consisted of three components: traditional commissioning activities, CC measure implementation, and low cost retrofits. Various M&V strategies were also utilized to quantify the resulting energy savings in a building whose energy use is dominated...

Meline, K.; Kimla, J.

2011-01-01T23:59:59.000Z

495

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surface-Modified Electrodes: Enhancing Surface-Modified Electrodes: Enhancing Performance Guided by In-Situ Spectroscopy and Microscopy- Stanford University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. The electrochemical performance of SOFCs can be substantially influenced by mass and

496

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Eddy Simulation Modeling of Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines using a Hierarchical Validation Approach- University of Texas at Austin Background The focus of this project is the development of advanced large eddy simulation (LES)-based combustion modeling tools that can be used to design low emissions combustors burning high hydrogen content fuels. The University of Texas at Austin (UT) will develop models for two key topics: (1) flame stabilization, lift- off, and blowout when fuel-containing jets are introduced into a crossflow at high pressure, and (2) flashback dynamics of lean premixed flames with detailed description of flame propagation in turbulent core and near-wall flows. The jet- in-crossflow (JICF) configuration is widely used for rapid mixing of reactants

497

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficient Efficient Regeneration of Physical and Chemical Solvents for CO 2 Capture Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

498

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Scale CO2 Injection and Commercial Scale CO2 Injection and Optimization of Storage Capacity in the Southeastern United States Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

499

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turbine Thermal Management-NETL-RUA Turbine Thermal Management-NETL-RUA Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is researching advanced turbine technology with the goal of producing reliable, affordable, and environmentally friendly electric power in response to the nation's increasing energy challenges. With the Hydrogen Turbine Program, NETL is leading the research, development, and demonstration of technologies to achieve power production from high-hydrogen-content fuels derived from coal that is clean, efficient, and cost-effective, and minimizes carbon dioxide (CO 2 ) emissions, and will help maintain the nation's leadership in the export of gas turbine equipment. The NETL Regional University Alliance (RUA) is an applied research collaboration that

500

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scoping Studies to Evaluate the Benefits Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low Rank Coal in Integrated Gasification Combined Cycle Background Gasification of coal or other solid feedstocks (biomass, petroleum coke, etc.) produces synthesis gas (syngas), which can be cleaned and used to produce electricity and a variety of commercial products that support the U.S. economy, decrease U.S. dependence on oil imports, and meet current and future environmental emission standards. The major challenge is cost, which needs to be reduced to make integrated gasification combined cycle (IGCC) technology competitive. An IGCC plant combines a combustion turbine operating on a gasified fuel stream--syngas--with a steam turbine to capture what would otherwise be waste heat. Currently, the estimated cost of power from IGCC is higher than