Sample records for ri remedial investigation

  1. Remedial Investigation/Feasibility Study (RI/FS) process, elements and techniques guidance

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    This manual provides detailed guidance on Remedial Investigation/Feasibility Studies (RI/FSs) conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) at Department of Energy (DOE) facilities. The purpose of the RI/FS, to assess the risk posed by a hazardous waste site and to determine the best way to reduce that risk, and its structure (site characterization, risk assessment, screening and detailed analysis of alternatives, etc.) is defined in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) and further explained in the Environmental Protection Agency`s (EPA`s) Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (Interim Final) 540/G-89/004, OSWER Directive 9355.3-01, October 1988. Though issued in 1988, the EPA guidance remains an excellent source of information on the conduct and structure of an RI/FS. This document makes use of supplemental RI/FS-related guidance that EPA has developed since its initial document was issued in 1988, incorporates practical lessons learned in more than 12 years of experience in CERCLA hazardous site remediation, and drawing on those lessons, introduces the Streamlined Approach For Environmental Restoration (SAFER), developed by DOE as a way to proceed quickly and efficiently through the RI/FS process at DOE facilities. Thus as its title implies, this guidance is intended to describe in detail the process and component elements of an RI/FS, as well as techniques to manage the RI/FS effectively.

  2. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    SciTech Connect (OSTI)

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-03-14T23:59:59.000Z

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

  3. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Fire Department Hose Training Facility (904-113G)

    SciTech Connect (OSTI)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-04-01T23:59:59.000Z

    This report documents the Resource Conservation and Recovery Act (RCRA) Facility Investigation/Remedial Investigation/Baseline Risk Assessment (RFI/RI/BRA) for the Fire Department Hose Training Facility (FDTF) (904-113G).

  4. Remedial Investigation Work Plan for J-Field, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Benioff, P.; Biang, R.; Dolak, D.; Dunn, C.; Haffenden, R.; Martino, L.; Patton, T.; Wang, Y.; Yuen, C.

    1995-03-01T23:59:59.000Z

    The purpose of an RI/FS is to characterize the nature and extent of the risks posed by contaminants present at a site and to develop and evaluate options for remedial actions. The overall objective of the RI is to provide a comprehensive evaluation of site conditions, types and quantities of contaminants present, release mechanisms and migration pathways, target populations, and risks to human health and the environment. The information developed during the RI provides the basis for the design and implementation of remedial actions during the FS. The purpose of this RI Work Plan is to define the tasks that will direct the remedial investigation of the J-Field site at APG.

  5. Incorporating ecological risk assessment into remedial investigation/feasibility study work plans

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and RI/FS work plan will have to be developed as part of the site-remediation scoping process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites.

  6. Waste Management Plan for the Oak Ridge National Remedial Investigation/Feasibility Study

    SciTech Connect (OSTI)

    Not Available

    1988-04-01T23:59:59.000Z

    In accordance with the requirements of the Remedial Investigation/Feasibility Study (RI/FS) Project Quality Assurance Plan, this Waste Management Plan establishes clear lines of responsibility and authority, documentation requirements, and operational guidance for the collection, identification, segregation, classification, packaging, certification, and storage/disposal of wastes. These subjects are discussed in the subsequent sections of this document.

  7. Summary of remedial investigations at the 307 retention basins and 307 trenches (316-3), 300-FF-2 Operable Unit

    SciTech Connect (OSTI)

    Hulstrom, L.C.

    1994-06-30T23:59:59.000Z

    Remedial investigations at the 307 retention basins and 307 trenches (316-3) in the 300 Area of the Hanford Site were conducted as part of the 300-FF-1 operable unit Phase 1 remedial investigation (RI) in accordance with the approved RI work plan. During the RI, the southwestern boundary of the 300-FF-1 operable unit was modified by all signatories to the Hanford Federal Facility Agreement and Consent Order, which shifted the 307 retention basins and 307 trenches to the 300-FF-3 operable unit. As a consequence, the RI results from these waste management units were not included in the Phase 1 Remedial Investigation Report for the 300-FF-1 Operable Unit. As a results of recent Hanford Federal Facility Agreement and Consent Order negotiations, the 300-FF-2 operable unit now consists of the remaining 300 Area operable units within the 300 Area National Priorities List (NPL), which includes the former 300-FF-3 operable unit. Therefore, this document summarizes the RI results from the 307 retention basins and 307 trenches in the 300-FF-2 operable unit. Analysis and evaluation of these results well be included in the 300-FF-2 RI report.

  8. Ecological risk assessment guidance for preparation of remedial investigation/feasibility study work plans

    SciTech Connect (OSTI)

    Pentecost, E.D.; Vinikour, W.S. [Argonne National Lab., IL (United States)

    1993-08-01T23:59:59.000Z

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial assessment investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfired Amendments and Reauthorization Act of 1986 (SARA), an RI/FS work plan win have to be developed as part of the site-remediation scoping the process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites. An overview analysis of early ecological risk assessment methods (i.e., in the 1980s) at Superfund sites was conducted by the EPA (1989a). That review provided a perspective of attention given to ecological issues in some of the first RI/FS studies. By itself, that reference is of somewhat limited value; it does, however, establish a basis for comparison of past practices in ecological risk with current, more refined methods.

  9. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 3: Ecological risk assessment

    SciTech Connect (OSTI)

    Hlohowskyj, I.; Hayse, J.; Kuperman, R.; Van Lonkhuyzen, R.

    2000-02-25T23:59:59.000Z

    The Environmental Management Division of the U.S. Army Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation (RI) and feasibility study (FS) of the J-Field area at APG, pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. As part of that activity, Argonne National Laboratory (ANL) conducted an ecological risk assessment (ERA) of the J-Field site. This report presents the results of that assessment.

  10. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  11. Health and safety plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Cofer, G.H.; Holt, V.L.; Roupe, G.W.

    1993-11-01T23:59:59.000Z

    This health and safety plan (HASP) was developed by the members of the Measurement Applications and Development Group of the Health Science Research Division at the Oak Ridge National Laboratory (ORNL). This plan was prepared to ensure that health and safety related items for the Waste Area Grouping (WAG) 2 Remedial Investigation (RI)/Feasibility Study and Site Investigation projects conform with the requirements of 29 CFR 1910.120 (April 18, 1992). The RI Plan calls for the characterization, monitoring, risk assessment, and identification of remedial needs and alternatives that have been structured and staged with short-term and long-term objectives. In early FY 1992, the WAG 2 RI was integrated with the ORNL Environmental Restoration (ER) Site Investigations program in order to achieve the complimentary objectives of the projects more effectively by providing an integrated basis of support. The combined effort was named the WAG 2 Remedial Investigation and Site Investigations Program (WAG 2 RI&SI). The Site Investigation activities are a series of monitoring efforts and directed investigations that support other ER activities by providing information about (1) watershed hydrogeology; (2) contaminants, pathways, and fluxes for groundwater at ORNL; (3) shallow subsurface areas that can act as secondary sources of contaminants; and (4) biological populations and contaminants in biota, in addition to other support and coordination activities.

  12. Salmon Site Remedial Investigation Report, Appendix C

    SciTech Connect (OSTI)

    US DOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  13. Salmon Site Remediation Investigation Report, Appendix A

    SciTech Connect (OSTI)

    US DOE /Nevada Operations Office

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  14. Salmon Site Remedial Investigation Report, Appendix D

    SciTech Connect (OSTI)

    US DOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  15. Salmon Site Remedial Investigation Report, Exhibit 5

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  16. Salmon Site Remedial Investigation Report, Exhibit 4

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  17. Salmon Site Remedial Investigation Report, Exhibit 3

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  18. Salmon Site Remedial Investigation Report, Exhibit 2

    SciTech Connect (OSTI)

    USDOE NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  19. Salmon Site Remedial Investigation Report, Exhibit 1

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  20. Salmon Site Remedial Investigation Report, Main Body

    SciTech Connect (OSTI)

    US DOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  1. Phase 1 remedial investigation report for 200-BP-1 operable unit. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The US Department of Energy (DOE) Hanford Site, in Washington State is organized into numerically designated operational areas including the 100, 200, 300, 400, 600, and 1100 Areas. The US Environmental Protection Agency (EPA), in November 1989 included the 200 Areas of the Hanford Site on the National Priority List (NPL) under the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). Inclusion on the NPL initiated the remedial investigation (RD process for the 200-BP-1 operable unit. These efforts are being addressed through the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989) which was negotiated and approved by the DOE, the EPA, and the State of Washington Department of Ecology (Ecology) in May 1989. This agreement, known as the Tri-Party Agreement, governs all CERCLA efforts at Hanford. In March of 1990, the Department of Energy, Richland Operations (DOE-RL) issued a Remedial Investigation/Feasibility Study (RI/FS) work plan (DOE-RL 1990a) for the 200-BP-1 operable unit. The work plan initiated the first phase of site characterization activities associated with the 200-BP-1 operable unit. The purpose of the 200-BP-1 operable unit RI is to gather and develop the necessary information to adequately understand the risks to human health and the environment posed by the site and to support the development and analysis of remedial alternatives during the FS. The RI analysis will, in turn, be used by Tri-Party Agreement signatories to make a risk-management-based selection of remedies for the releases of hazardous substances that have occurred from the 200-BP-1 operable unit.

  2. WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the sediment transport modeling task

    SciTech Connect (OSTI)

    Holt, V.L.; Baron, L.A.

    1994-05-01T23:59:59.000Z

    This site-specific Work Plan/Health and Safety Checklist (WP/HSC) is a supplement to the general health and safety plan (HASP) for Waste Area Grouping (WAG) 2 remedial investigation and site investigation (WAG 2 RI&SI) activities [Health and Safety Plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (ORNL/ER-169)] and provides specific details and requirements for the WAG 2 RI&SI Sediment Transport Modeling Task. This WP/HSC identifies specific site operations, site hazards, and any recommendations by Oak Ridge National Laboratory (ORNL) health and safety organizations [i.e., Industrial Hygiene (IH), Health Physics (HP), and/or Industrial Safety] that would contribute to the safe completion of the WAG 2 RI&SI. Together, the general HASP for the WAG 2 RI&SI (ORNL/ER-169) and the completed site-specific WP/HSC meet the health and safety planning requirements specified by 29 CFR 1910.120 and the ORNL Hazardous Waste Operations and Emergency Response (HAZWOPER) Program Manual. In addition to the health and safety information provided in the general HASP for the WAG 2 RI&SI, details concerning the site-specific task are elaborated in this site-specific WP/HSC, and both documents, as well as all pertinent procedures referenced therein, will be reviewed by all field personnel prior to beginning operations.

  3. Work plan addendum for the remedial investigation and feasibility study of the Salmon Site

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This document is intended as an addendum to the Remedial Investigation and Feasibility Study (RI/FS) Work Plan for the Salmon Site (SS) (formerly the Tatum Dome Test Site) Lamar County, Mississippi. The original work plan - Remedial Investigation and Feasibility Study of the Tatum Dome Test Site, Lamar County, Mississippi (herein after called the Work Plan) was approved by the state of Mississippi in 1992 and was intended as the operative document for investigative activities at the Tatum Dome Test Site. Subsequent to the approval of the document a series of activities were undertaken under the auspices of the work plan. This document is organized in the same manner as the original work plan: (1) Introduction; (2) Site Background and History; (3) Initial Evaluation; (4) Data Quality Objectives; (5) RI/FS Tasks; (6) Project Schedule; (7) Project Management; and (8) Reference. This addendum will identify changes to the original work plan that are necessary because of additional information acquired at the SS. This document is not intended to replace the work plan, rather, it is intended to focus the remaining work in the context of additional site knowledge gained since the development of the original work plan. The U.S. Department of Energy (DOE) is conducting a focused and phased site characterization as a part, of the RI/FS. The RI/FS is the methodology under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) for evaluating hazardous waste sites on the National Priorities List (NPL). The SS is not listed on the NPL, but DOE has voluntarily elected to conduct the evaluation of the SS in accordance with CERCLA.

  4. Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    Crow, N.B.; Lamarre, A.L.

    1990-08-01T23:59:59.000Z

    This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

  5. Phase I remedial investigation report for the 300-FF-5 operable unit, Volume 1

    SciTech Connect (OSTI)

    NONE

    1994-01-01T23:59:59.000Z

    The focus of this remedial investigation (RI) is the 300-FF-5 operable unit, one of five operable units associated with the 300 Area aggregate of the U.S. Department of Energy`s (DOE`s) Hanford Site. The 300-FF-5 operable unit is a groundwater operable unit beneath the 300-FF-1, 300-FF-2, and 300-FF-3 source operable units. This operable unit was designated to include all contamination detected in the groundwater and sediments below the water table that emanates from the 300-FF-1, 300-FF-2, and 300-FF-3 operable units (DOE-RL 1990a). In November 1989, the U.S. Environmental Protection Agency (EPA) placed the 300 Area on the National Priorities List (NPL) contained within Appendix B of the National Oil and Hazardous Substance Pollution Contingency Plan (NCP, 53 FR 51391 et seq.). The EPA took this action pursuant to their authority under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA, 42 USC 9601 et seq.). The DOE Richland Operations Office (DOE-RL), the EPA and Washington Department of Ecology (Ecology) issued the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), in May 1989 (Ecology et al. 1992, Rev. 2). This agreement, among other matters, governs all CERCLA efforts at the Hanford Site. In June 1990, a remedial investigation/feasibility study (RI/FS) workplan for the 300-FF-5 operable unit was issued pursuant to the Tri-Party Agreement.

  6. Responses to comments on the remedial investigation/feasibility study-environmental impact statement for remedial action at the Chemical Plant area of the Weldon Spring site (November 1992)

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The US Department of Energy (DOE) is responsible for cleanup activities at the Weldon Spring site in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry; both areas are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced by the US Army at the chemical plant in the 1940s, and uranium and thorium materials were processed by DOE`s predecessor agency in the 1950s and 1960s. During that time, various wastes were disposed of at both areas of the site. The DOE is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The integrated remedial investigation/feasibility study-environmental impact statement (RI/FS-EIS) documents for the chemical plant area were issued to the public in November 1992 as the draft RI/FS-EIS. (The CERCLA RI/FS is considered final when issued to the public, whereas per the NEPA process, an EIS is initially issued as a draft and is finalized after substantive public comments have been addressed.) Four documents made up the draft RI/FS-EIS, which is hereafter referred to as the RI/FS-EIS: (1) the RI (DOE 1992d), which presents general information on the site environment and the nature and extent of contamination; (2) the baseline assessment (BA) (DOE 1992a), which evaluates human health and environmental effects that might occur if no cleanup actions were taken; (3) the FS (DOE 1992b), which develops and evaluates alternatives for site cleanup; and (4) the proposed plan (PP) (DOE 1992c), which summarizes key information from the RI, BA, and FS reports and identifies DOE`s preferred alternative for remedial action. This comment response document combined with those four documents constitutes the final RI/FS-EIS for the chemical plant area.

  7. WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the soil and sediment task. Environmental Restoration Program

    SciTech Connect (OSTI)

    Holt, V.L.; Burgoa, B.B.

    1993-12-01T23:59:59.000Z

    This document is a site-specific work plan/health and safety checklist (WP/HSC) for a task of the Waste Area Grouping 2 Remedial Investigation and Site Investigation (WAG 2 RI&SI). Title 29 CFR Part 1910.120 requires that a health and safety program plan that includes site- and task-specific information be completed to ensure conformance with health- and safety-related requirements. To meet this requirement, the health and safety program plan for each WAG 2 RI&SI field task must include (1) the general health and safety program plan for all WAG 2 RI&SI field activities and (2) a WP/HSC for that particular field task. These two components, along with all applicable referenced procedures, must be kept together at the work site and distributed to field personnel as required. The general health and safety program plan is the Health and Safety Plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (ORNL/ER-169). The WP/HSCs are being issued as supplements to ORNL/ER-169.

  8. Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

    1993-07-01T23:59:59.000Z

    This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan).

  9. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    This Remedial Investigation (RI) Work Plan specifically addresses Chestnut Ridge Operable Unit 1, (OU1) which consists of the Chestnut Ridge Security Pits (CRSP). The CRSP are located {approximately}800 ft southeast of the central portion of the Y-12 Plant atop Chestnut Ridge, which is bounded to the northwest by Bear Creek Valley and to the southeast by Bethel Valley. Operated from 1973 to 1988, the CRSP consisted of a series of trenches used for the disposal of classified hazardous and nonhazardous waste materials. Disposal of hazardous waste materials was discontinued in December 1984, while nonhazardous waste disposal ended on November 8, 1988. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern (COC), support an ecological risk assessment (ERA) and a human health risk assessment (HHRA), support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this Work Plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU1. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the overall risk posed to human health and the environment by OU1.

  10. Work plan for the remedial investigation/feasibility study-environmental assessment for the Colonie site, Colonie, New York

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    This work plan has been prepared to document the scoping and planning process performed by the US Department of Energy (DOE) to support remedial action activities at the Colonie site. The site is located in eastern New York State in the town of Colonie near the city of Albany. Remedial action of the Colonie site is being planned as part of DOE's Formerly Utilized Sites Remedial Action Program. The DOE is responsible for controlling the release of all radioactive and chemical contaminants from the site. Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation/feasibility study (RI/FS) must be prepared to support the decision-making process for evaluating remedial action alternatives. This work plan contains a summary of information known about the site as of January 1988, presents a conceptual site model that identifies potential routes of human exposure to site containments, identifies data gaps, and summarizes the process and proposed studies that will be used to fill the data gaps. In addition, DOE activities must be conducted in compliance with the National Environmental Policy Act (NEPA), which requires consideration of the environmental consequences of a proposed action as part of its decision-making process. This work also describes the approach that will be used to evaluate potential remedial action alternatives and includes a description of the organization, project controls, and task schedules that will be employed to fulfill the requirements of both CERCLA and NEPA. 48 refs., 18 figs., 25 tabs.

  11. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1, main text

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This document is the combined Remedial Investigation/Feasibility Study (RI/FS) Report for the Clinch River/Poplar Creek Operable Unit (CR/PC OU), an off-site OU associated with environmental restoration activities at the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). As a result of past, present, and potential future releases of hazardous substances into the environment, the ORR was placed on the National Priorities List in December 1989 (54 FR 48184). Sites on this list must be investigated for possible remedial action, as required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 42 U.S.C. 9601, et seq.). This report documents the findings of the remedial investigation of this OU and the feasibility of potential remedial action alternatives. These studies are authorized by Sect. 117 of CERCLA and were conducted in accordance with the requirements of the National Contingency Plan (40 CFR Part 300). DOE, the U.S. Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC) have entered into a Federal Facility Agreement (FFA), as authorized by Sect. 120 of CERCLA and Sects. 3008(h) and 6001 of the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. 6901, et seq.). The purpose of this agreement is to ensure a coordinated and effective response for all environmental restoration activities occurring at the ORR. In addition to other responsibilities, the FFA parties mutually define the OU boundaries, set remediation priorities, establish remedial investigation priorities and strategies, and identify and select remedial actions. A copy of this FFA is available from the DOE Information Resource Center in Oak Ridge, Tennessee.

  12. Remedial Investigation of Hanford Site Releases to the Columbia River - 13603

    SciTech Connect (OSTI)

    Lerch, J.A.; Hulstrom, L.C. [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States)] [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States); Sands, J.P. [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)] [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)

    2013-07-01T23:59:59.000Z

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation/feasibility study (RI/FS) reports developed for upland areas, riparian areas, and groundwater in the Hanford Site River Corridor. The RI/FS reports will evaluate the impacts to soil, groundwater, and river sediments and lead to proposed cleanup actions and records of decision to address releases from the Hanford Site reactor operations. (authors)

  13. Remedial investigation work plan for Chestnut Ridge Operable Unit 4 (Rogers Quarry/Lower McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Oak Ridge Y-12 Plant includes - 800 acres near the northeast comer of the reservation and adjacent to the city of Oak Ridge (Fig. 1-1). The plant is a manufacturing and developmental engineering facility that produced components for various nuclear weapons systems and provides engineering support to other Energy Systems facilities. More than 200 contaminated sites have been identified at the Y-12 Plant that resulted from past waste management practices. Many of the sites have operable units (OUs) based on priority and on investigative and remediation requirements. This Remedial Investigation RI work plan specifically addresses Chestnut Ridge OU 4. Chestnut Ridge OU 4 consists of Rogers Quarry and Lower McCoy Branch (MCB). Rogers Quarry, which is also known as Old Rogers Quarry or Bethel Valley Quarry was used for quarrying from the late 1940s or early 1950s until about 1960. Since that time, the quarry has been used for disposal of coal ash and materials from Y-12 production operations, including classified materials. Disposal of coal ash ended in July 1993. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern, support an Ecological Risk Assessment and a Human Health Risk Assessment, support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this work plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU 4. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the risk posed to human health and the environment by OU 4.

  14. RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)

    SciTech Connect (OSTI)

    Palmer, E.

    1998-10-02T23:59:59.000Z

    This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina.

  15. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately, develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI.

  16. Speech enhancement using STFT of real and imaginary parts of modulation This paper investigates an alternate modulation (RI-

    E-Print Network [OSTI]

    Speech enhancement using STFT of real and imaginary parts of modulation signals Abstract This paper investigates an alternate modulation (RI- modulation) AMS-based framework for speech enhancement, in which real subtraction. Experiments presented also show that while this framework is suited to speech enhancement

  17. Recommendation 170: Remedial Investigation/Feasibility Study for East Tennessee Technology Park

    Broader source: Energy.gov [DOE]

    The ORSSAB Recommendation to DOE on a Remedial Investigation/Feasibility Study for East Tennessee Technology Park.

  18. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 6: Appendix G -- Baseline ecological risk assessment report

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix G contains ecological risks for fish, benthic invertebrates, soil invertebrates, plants, small mammals, deer, and predator/scavengers (hawks and fox). This risk assessment identified significant ecological risks from chemicals in water, sediment, soil, and shallow ground water. Metals and PCBs are the primary contaminants of concern.

  19. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV.

  20. Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2.

  1. Scoping Document: Quarry Residuals Remedial Investigation/Feasibility Study (RI/FS) Scoping Document.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A'Salmon,

  2. Salmon Site Remedial Investigation Report, Appendix B (Part 1)

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  3. Salmon Site Remedial Investigation Report, Appendix B (Part 2)

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  4. Addendum to the East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    SAIC

    2011-04-01T23:59:59.000Z

    The East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan (DOE 2004) describes the planned fieldwork to support the remedial investigation (RI) for residual contamination at the East Tennessee Technology Park (ETTP) not addressed in previous Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) decisions. This Addendum describes activities that will be conducted to gather additional information in Zone 1 of the ETTP for groundwater, surface water, and sediments. This Addendum has been developed from agreements reached in meetings held on June 23, 2010, August 25, 2010, October 13, 2010, November 13, 2010, December 1, 2010, and January 13, 2011, with representatives of the U. S. Department of Energy (DOE), U. S. Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC). Based on historical to recent groundwater data for ETTP and the previously completed Sitewide Remedial Investigation for the ETTP (DOE 2007a), the following six areas of concern have been identified that exhibit groundwater contamination downgradient of these areas above state of Tennessee and EPA drinking water maximum contaminant levels (MCLs): (1) K-720 Fly Ash Pile, (2) K-770 Scrap Yard, (3) Duct Island, (4) K-1085 Firehouse Burn/J.A. Jones Maintenance Area, (5) Contractor's Spoil Area (CSA), and (6) Former K-1070-A Burial Ground. The paper presents a brief summary of the history of the areas, the general conceptual models for the observed groundwater contamination, and the data gaps identified.

  5. RFI/RI work plan for the Road A Chemical Basin 904-111G

    SciTech Connect (OSTI)

    Kmetz, T.F.

    2000-03-07T23:59:59.000Z

    This Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI)/Remedial Investigation (RI) Work Plan has been prepared for the Road A Chemical Basin Operable Unit (RdACB OU) (904-111G). This unit is subject to the requirements of both RCRA and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This Work Plan presents the initial evaluation of existing unit data, applicable background data, the regulatory framework for the unit investigation, and the evaluations and decisions made during the determination of the scope and objectives of the planned Remedial Investigation/Feasibility Study (RI/FS) activities.

  6. Environmental Restoration Program pollution prevention performance measures for FY 1993 and 1994 remedial investigations

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    The Martin Marietta Energy Systems, Inc., Environmental Restoration (ER) Program adopted a Pollution Prevention Program in March 1991. The program`s mission is to minimize waste and prevent pollution in remedial investigations (RI), feasibility studies (FS), decontamination and decommissioning (D&D), and surveillance and maintenance (S&M) site program activities. Mission success will result in volume and/or toxicity reduction of generated waste. Energy Systems is producing a fully developed a Numerical Scoring System (NSS) and actually scoring the generators of Investigation Derived Waste (IDW) at six ER sites: Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant, the Oak Ridge K-25 site, Paducah Gaseous Diffusion Plant (Paducah), and Portsmouth Uranium Enrichment Complex (Portsmouth). This report summarizes the findings of this initial numerical scoring evaluation and shows where improvements in the overall ER Pollution prevention program may be required. This report identifies a number of recommendations that, if implemented, would help to improve site-performance measures. The continued development of the NSS will support generators in maximizing their Pollution Prevention/Waste Minimization efforts. Further refinements of the NSS, as applicable suggest comments and/or recommendations for improvement.

  7. Environmental Restoration Program pollution prevention performance measures for FY 1993 and 1994 remedial investigations

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    The Martin Marietta Energy Systems, Inc., Environmental Restoration (ER) Program adopted a Pollution Prevention Program in March 1991. The program's mission is to minimize waste and prevent pollution in remedial investigations (RI), feasibility studies (FS), decontamination and decommissioning (D D), and surveillance and maintenance (S M) site program activities. Mission success will result in volume and/or toxicity reduction of generated waste. Energy Systems is producing a fully developed a Numerical Scoring System (NSS) and actually scoring the generators of Investigation Derived Waste (IDW) at six ER sites: Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant, the Oak Ridge K-25 site, Paducah Gaseous Diffusion Plant (Paducah), and Portsmouth Uranium Enrichment Complex (Portsmouth). This report summarizes the findings of this initial numerical scoring evaluation and shows where improvements in the overall ER Pollution prevention program may be required. This report identifies a number of recommendations that, if implemented, would help to improve site-performance measures. The continued development of the NSS will support generators in maximizing their Pollution Prevention/Waste Minimization efforts. Further refinements of the NSS, as applicable suggest comments and/or recommendations for improvement.

  8. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

  9. RCRA Facility Investigation/Remedial Investigation Report with the Baseline Risk Assessment for the 716-A Motor Shops Seepage Basin

    SciTech Connect (OSTI)

    Palmer, E.

    1997-08-25T23:59:59.000Z

    This document describes the RCRA Facility Investigation/Remedial Investigation/Baseline Risk Assessment of the 716-A Motor Shops Seepage Basin.

  10. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    NONE

    1999-07-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented.

  11. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

  12. Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination.

  13. Waste Management Plan for the Remedial Investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This Waste Management Plan (WMP) supplements the Remedial Investigation/Feasibility Study (RI/FS) Project WMP and defines the criteria and methods to be used for managing and characterizing waste generated during activities associated with the RI of 23 wells near the Old Hydrofracture Facility (OHF). These wells are within the Waste Area Grouping (WAG) 5 area of contamination (AOC) at Oak Ridge National Laboratory (ORNL). Field activities for the limited RI of Operable Unit (OU) 3 of WAG 10 will involve sampling and measurement of various environmental media (e.g., liquids and gases). Many of these activities will occur in areas known to be contaminated with radioactive materials or hazardous chemical substances, and it is anticipated that contaminated solid and liquid wastes and noncontaminated wastes will be generated as a result of these activities. On a project-wide basis, handling of these waste materials will be accomplished in accordance with the RI/FS Project WMP and the procedures referenced throughout the plan.

  14. Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations establish procedures for the investigation and remediation of contamination resulting from the unpermitted release of hazardous materials. The regulations aim to protect water...

  15. area remedial investigation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 104 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  16. Environmental, Safety, and Health Plan for the remedial investigation of the liquid low-level waste tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The Environmental, Safety, and Health (ES&H) Plan presents the concepts and methodologies to be used during the Oak Ridge National Laboratory (ORNL) RI/FS project to protect the health and safety of employees, the public, and the environment. The ES&H Plan acts as a management extension for ORNL and Energy Systems to direct and control implementation of the project ES&H program. This report describes the program philosophy, requirements, quality assurance measures, and methods for applying the ES&H program to individual task remedial investigations, project facilities, and other major tasks assigned to the project.

  17. Environmental, Safety, and Health Plan for the remedial investigation of the liquid low-level waste tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    DeFalco, S.; Kaiser, L. L.; May, L. E.

    1991-09-01T23:59:59.000Z

    The Environmental, Safety, and Health (ES H) Plan presents the concepts and methodologies to be used during the Oak Ridge National Laboratory (ORNL) RI/FS project to protect the health and safety of employees, the public, and the environment. The ES H Plan acts as a management extension for ORNL and Energy Systems to direct and control implementation of the project ES H program. This report describes the program philosophy, requirements, quality assurance measures, and methods for applying the ES H program to individual task remedial investigations, project facilities, and other major tasks assigned to the project.

  18. Environmental, Safety, and Health Plan for the remedial investigation/feasibility study at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Revision 1, Environmental Restoration Program

    SciTech Connect (OSTI)

    Davis, C. M.; El-Messidi, O. E.; Cowser, D. K.; Kannard, J. R.; Carvin, R. T.; Will, III, A. S.; Clark, Jr., C.; Garland, S. B.

    1993-05-01T23:59:59.000Z

    This Environmental, Safety, and Health (ES&H) Plan presents the concepts and methodologies to be followed during the remedial investigation/feasibility study (RI/FS) for Oak Ridge National Laboratory (ORNL) to protect the health and safety of employees, the public, and the environment. This ES&H Plan acts as a management extension for ORNL and Martin Marietta Energy Systems, Inc. (Energy Systems) to direct and control implementation of the project ES&H program. The subsections that follow describe the program philosophy, requirements, quality assurance measures, and methods for applying the ES&H program to individual waste area grouping (WAG) remedial investigations. Hazardous work permits (HWPs) will be used to provide task-specific health and safety requirements.

  19. RI-mode investigations in the DIII-D tokamak with neon and argon induced radiating mantles

    SciTech Connect (OSTI)

    Jackson, G.L.; Staebler, G.M. [General Atomics, San Diego, CA (United States); Murakami, M. [Oak Ridge National Lab., TN (United States)] [and others

    1998-07-01T23:59:59.000Z

    The RI-mode regime, with high radiating power fractions from 0.5 to 0.9, energy confinement enhancements, H{sub 89P}, over ITER89-P L-mode scaling greater than 1.6, and operation at or above the Greenwald density limit (n{sub GW}) is an attractive operating scenario for future fusion burning plasma devices. The TEXTOR tokamak has demonstrated this scenario in a limiter device with steady state conditions, {Delta}t{sub RI-mode}/{tau}{sub E} > 100. Studies have been initiated on the DIII-D tokamak with the goals of: (a) extending these results to a larger non circular machine (providing size and shape scaling), (b) investigating the underlying physical mechanisms of RI-mode with a complementary diagnostic set to that on TEXTOR, and (c) using non-intrinsic impurities, e.g., neon and argon, to obtain high performance diverted discharges, ({beta}{sub N}H{sub 89P} > 6) in support of the DIII-D advanced tokamak (AT) program, where {beta}{sub N} = {beta}{sub T}/(I{sub p}/aB{sub T}) and {beta}{sub T}, I{sub p}, a, and B{sub T} are toroidal beta (in %), plasma current (MA), minor radius (m), and toroidal magnetic field (T) respectively. The authors define P{sub radLCFS} as the radiated power inside the LCFS and note that nearly all of this radiation occurs in the mantle region 0.6 < {rho} < 1.0, i.e., P{sub mantle} {approx} P{sub radLCFS}. Three types of DIII-D discharges where mantle radiation plays a significant role are discussed in this paper: (i) ELMing H-mode puff and pump, (ii) limiter L-mode, and (III) high performance.

  20. Minnesota Pollution Control Agency Public Meeting -5/19/2011 Remedial Investigation of UMore Park East

    E-Print Network [OSTI]

    Netoff, Theoden

    Minnesota Pollution Control Agency Public Meeting - 5/19/2011 Remedial Investigation of UMore Park MINNESOTA POLLUTION CONTROL AGENCY University of Minnesota Remedial Investigation of UMore Park East Dakota Trail Rosemount, Minnesota Speakers: Gary Krueger Minnesota Pollution Control Agency Janet Dalgleish

  1. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3 -- Appendix B: Technical findings and conclusions

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This document provides the Environmental Restoration Program with information about the results of investigations performed at Waste Area Grouping (WAG) 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding the need for subsequent remediation work at WAG 5. Sections B1.1 through B1.4 present an overview of the environmental setting of WAG 5, including location, population, land uses, ecology, and climate, and Sects. B1.5 through B1.7 give site-specific details (e.g., topography, soils, geology, and hydrology). The remediation investigation (RI) of WAG 5 did not entail en exhaustive characterization of all physical attributes of the site; the information presented here focuses on those most relevant to the development and verification of the WAG 5 conceptual model. Most of the information presented in this appendix was derived from the RI field investigation, which was designed to complement the existing data base from earlier, site-specific studies of Solid Waste Storage Area (SWSA) 5 and related areas.

  2. Field sampling and analysis plan for the remedial investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Boston, H.L.; Ashwood, T.L.; Borders, D.M.; Chidambariah, V.; Downing, D.J.; Fontaine, T.A.; Ketelle, R.H.; Lee, S.Y.; Miller, D.E.; Moore, G.K.; Suter, G.W.; Tardiff, M.F.; Watts, J.A.; Wickliff, D.S.

    1992-02-01T23:59:59.000Z

    This field sampling and analysis (S & A) plan has been developed as part of the Department of Energy`s (DOE`s) remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) located in Oak Ridge, Tennessee. The S & A plan has been written in support of the remedial investigation (RI) plan for WAG 2 (ORNL 1990). WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake (WOL), White Oak Creek embayment (WOCE) on the Clinch River, and the associated floodplain and subsurface environment (Fig. 1.1). The WOC system is the surface drainage for the major ORNL WAGs and has been exposed to a diversity of contaminants from operations and waste disposal activities in the WOC watershed. WAG 2 acts as a conduit through which hydrologic fluxes carry contaminants from upgradient areas to the Clinch River. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This document describes the following: an overview of the RI plan, background information for the WAG 2 system, and objectives of the S & A plan; the scope and implementation of the first 2 years of effort of the S & A plan and includes recent information about contaminants of concern, organization of S & A activities, interactions with other programs, and quality assurance specific to the S & A activities; provides details of the field sampling plans for sediment, surface water, groundwater, and biota, respectively; and describes the sample tracking and records management plan.

  3. Quarry residuals RI/FS scoping document. [Weldon Spring quarry

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The purpose of this document is to serve as a planning tool for the implementation of the Quarry Residual Remedial Investigation/Feasibility Study (RI/FS) process and to provide direct input to revising and updating the 1988 Work Plan for the Weldon Spring Site Remedial Action Project (WSSRAP) Remedial Investigation/Feasibility Study-Environmental Impact Statement for the Weldon Spring Site (RI/FS-EIS) (Peterson et al. 1988) for this effort. The scoping process is intended to outline the tasks necessary to develop and implement activities in compliance with the Comprehensive Environmental Response, Compensation and Liability Act-National Environmental Policy Act (CERCLA-NEPA) process from detailed planning through the appropriate decision document. In addition to scoping the entire process, this document will serve as the primary tool for planning and accomplishing all activities to be developed in the Quarry Residual RI/FS Work Plan. Subsequent tasks are difficult to plan at this time. 10 refs., 5 figs., 5 tabs.

  4. Work plan for the remedial investigation/feasibility study-environmental assessment for the quarry residuals operable unit at the Weldon Spring Site

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The US Department of Energy (DOE) is conducting cleanup activities at the Weldon Spring site, which is located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis. The Weldon Spring site consists of two noncontiguous areas -- the chemical plant area, which includes four raffinate pits, and the quarry. Cleanup activities at the Weldon Spring site are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, incorporating the values of the National Environmental Policy Act (NEPA). The contents of the documents prepared for the project are not intended to represent a statement regarding the legal applicability of NEPA to remedial actions conducted under CERCLA. In accordance with the integrated CERCLA/NEPA approach, a remedial investigation/feasibility study-environmental assessment (RI/FS-EA) is being conducted to evaluate conditions and potential responses for the quarry residuals operable unit (QROU). This operable unit consists of the following areas and/or media: the residual material remaining at the Weldon Spring quarry after removal of the pond water and bulk waste; underlying groundwater; and other media located in the surrounding vicinity of the quarry, including adjacent soil, surface water, and sediment in Femme Osage Slough. This work plan identifies the activities within the RI/FS-EA process that are being proposed to address contamination remaining at the quarry area.

  5. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 3: Appendix D -- Nature and extent of contamination report

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix D describes the nature and extent of contamination in environmental media and wastes.

  6. 100-D/H Remedial Investigation/ Feasibility Study /Proposed Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less is more:culturingProtonAPRIL/MAY9 OFEnergyOctober Remedial

  7. Investigation and remediation of a 1,2-dichloroethane spill. Part 1: Short and long-term remediation strategies

    SciTech Connect (OSTI)

    Sehayek, L.; Vandell, T.D.; Sleep, B.E.; Lee, M.D.; Chien, C.

    1999-06-30T23:59:59.000Z

    Release of an estimated 150,000 gallons of 1,2-dichloroethane (EDC) from a buried pipeline into a ditch and surrounding soil resulted in shallow subsurface contamination of a Gulf Coast site. Short-term remediation included removal of EDC DNAPL (dense nonaqueous phase liquid) by dredging and vacuuming the ditch, and by dredging the river where the ditch discharged. EDC saturation in shallow impacted sediments located beneath the ditch was at or below residual saturation and these sediments were therefore left in place. The ditch was lined, backfilled, and capped. Long-term remediation includes EDC DNAPL recovery and hydraulic containment from the shallow zone with long-term monitoring of the shallow, intermediate, and deep aquifers. Ground water, DNAPL, and dissolved phase models were used to guide field investigations and the selection of an effective remedial action strategy. The DNAPL modeling was conducted for a two-dimensional vertical cross section of the site, and included the three aquifers separated by two aquitards with microfractures. These aquitards were modeled using a dual porosity approach. Matrix and fracture properties of the aquitards used for DNAPL modeling were determined from small-scale laboratory properties. These properties were consistent with effective hydraulic conductivity determined from ground water flow modeling. A sensitivity analysis demonstrated that the vertical migration of EDC was attenuated by dissolution of EDC into the matrix of the upper aquitard. When the organic/water entry pressure of the aquitard matrix, or the solubility of EDC were decreased to unrealistically low values, EDC DNAPL accumulated in the aquifer below the upper aquitard. EDC DNAPL did not reach the regional (deepest) aquifer in any of the cases modeled. The limited extent of vertical EDC migration predicted is supported by ground water monitoring conducted over the four years since the spill.

  8. Remedial investigation/feasibility study work plan for the 100-BC-2 operable unit, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This work plan and attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) for the 100-BC-2 operable unit in the 100 Area of the Hanford Site. The 100 Area is one of four areas at the Hanford Site that are on the US Environmental Protection Agency`s (EPA) National Priorities List under CERCLA. The 100-BC-2 operable unit is one of two source operable units in the 100-B/C Area (Figure ES-1). Source operable units are those that contain facilities and unplanned release sites that are potential sources of hazardous substance contamination. The 100-BC-2 source operable unit contains waste sites that were formerly in the 100-BC-2, 100-BC-3, and 100-BC-4 operable units. Because of their size and geographic location, the waste sites from these two operable units were added to 100-BC-2. This allows for a more efficient and effective investigation of the remaining 100-B/C Reactor area waste sites. The investigative approach to waste sites associated with the 100-BC-2 operable unit are listed in Table ES-1. The waste sites fall into three general categories: high priority liquid waste disposal sites, low priority liquid waste disposal sites, and solid waste burial grounds. Several sites have been identified as candidates for conducting an IRM. Two sites have been identified as warranting additional limited field sampling. The two sites are the 116-C-2A pluto crib, and the 116-C-2C sand filter.

  9. University Responses to MPCA's Preliminary Written Comments to the UMore East Remedial Investigation Report

    E-Print Network [OSTI]

    Netoff, Theoden

    Remedial Investigation Report (July 12, 2012) Shortly before a meeting at the Minnesota Pollution Control Agency (MPCA) on June 6, 2012, MPCA Superfund Program staff members Gary Krueger and Dave Scheer provided the presence of asbestos-containing materials (ACMs), and implements the tree clearing procedures plan approved

  10. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2 -- Appendix A: Characterization methods and data summary

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This document provides the Environmental Restoration Program with information about the results of investigations performed at Waste Area Grouping (WAG) 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding the need for subsequent remediation work at WAG 5. This appendix presents background regulatory and technical information regarding the solid waste management units (SWMUs) at WAG 5 to address requirements established by the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). The US Department of Energy (DOE) agreed to conduct remedial investigations (RIs) under the FFA at various sites at Oak Ridge National Laboratory (ORNL), including SWMUs and other areas of concern on WAG 5. The appendix gives an overview of the regulatory background to provide the context in which the WAG 5 RI was planned and implemented and documents how historical sources of data, many of which are SWMU-specific, were evaluated and used.

  11. Addendum to the remedial investigation report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant Oak Ridge, Tennessee. Volume 1: Main text

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    This addendum to the Remedial Investigation (RI) Report on Bear Creek Valley Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. This addendum is a supplement to a document that was previously issued in January 1995 and that provided the Environmental Restoration Program with information about the results of the 1993 investigation performed at OU 2. The January 1995 D2 version of the RI Report on Bear Creek Valley OU 2 included information on risk assessments that have evaluated impacts to human health and the environment. Information provided in the document formed the basis for the development of the Feasibility Study Report. This addendum includes revisions to four chapters of information that were a part of the document issued in January 1995. Specifically, it includes revisions to Chaps. 2, 3, 4, and 9. Volume 1 of this document is not being reissued in its entirety as a D3 version because only the four chapters just mentioned have been affected by requested changes. Note also that Volume 2 of this RI Report on Bear Creek Valley OU 2 is not being reissued in conjunction with Volume 1 of this document because there have been no changes requested or made to the previously issued version of Volume 2 of this document.

  12. Remedial investigation/feasibility study report for Lower Watts Bar Reservoir Operable Unit

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This document is the combined Remedial Investigation and Feasibility Study Report for the lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch river. This area has received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received contaminants, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. There is little data regarding the quantities of most contaminants potentially released from the ORR to the Clinch River, particularly for the early years of ORR operations. Estimates of the quantities released during this period are available for most radionuclides and some inorganic contaminants, indicating that releases 30 to 50 years ago were much higher than today. Since the early 1970s, the release of potential contaminants has been monitored for compliance with environmental law and reported in the annual environmental monitoring reports for the ORR.

  13. Abandoned deep mine subsidence investigation and remedial design, Interstate 70, Guernsey County, Ohio

    SciTech Connect (OSTI)

    Hoffmann, A.G.; Clark, D.M.; Bechtel, T.D.

    1999-07-01T23:59:59.000Z

    A two thousand linear foot, undermined section of Interstate 70 in Guernsey County, Ohio experienced settlements due to pothole type subsidence events within the travel lanes, shoulders and adjacent right-of-way areas. Potholes measured approximately ten feet in depth and width. The subsidence occurred after the dewatering of the abandoned deep mine during auger mining operations west of the site. A two-phase emergency investigation was undertaken by the Ohio Department of Transportation (ODOT) and Gannett Fleming Cord dry and Carpenter (GF). The purpose of the investigation was to assess the immediate danger of potholes occurring in the traveled lanes and paved shoulders, to identify the subsidence mechanisms, and to design a remediation program. Phase one investigations involved the review of existing subsurface data, the advancement of shallow borings and the performance of multiple geophysical surveys including ground penetrating radar, seismic refraction and electromagnetic terrain conductivity. The Phase one investigations did not reveal the presence of subsidence voids. Phase two investigations included borings to the mine level and videotaping of mine conditions. The mine was found to be completely flooded. Based upon the collected data, two mechanisms of failure, localized roof fall and piping of overburden soils into the mine void, were identified. Two remedial alternatives, (1) the filling of the mine void, and (2) the reinforcement of the highway using geotextiles, were evaluated, Filling of the mined interval and grouting of overburden bedrock fractures and voids, within a limited area, were selected. Construction plans, specifications and cost estimates were prepared for bidding and award. During the bidding process, a catastrophic, pothole type failure of the I-70 travel lanes occurred. The interstate was closed and the planned remediation activities were performed as an emergency project. The mine interval was grouted and portions of the highway pavement were replaced. The highway was reopened within 180 calendar days of the failure.

  14. WSSRAP chemical plant geotechnical investigations for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    This document has been prepared for the United states Department of Energy (DOE) Weldon Spring Site Remedial Action Project (WSSRAP) by the Project Management Contractor (PMC), which consists of MK-Ferguson Company (MKF) and Morrison Knudsen Corporation Environmental Services Group (MKES) with Jacobs Engineering Group (JEG) as MKF's predesignated subcontractor. This report presents the results of site geotechnical investigations conducted by the PMC in the vicinity of the Weldon Spring chemical plant and raffinate pits (WSCP/RP) and in potential on-site and off-site clayey material borrow sources. The WSCP/RP is the proposed disposal cell (DC) site. 39 refs., 24 figs., 12 tabs.

  15. Remedial investigation/feasibility study for the David Witherspoon, Inc., 901 Site, Knoxville, Tennessee: Volume 2, Appendixes

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This document contains the appendixes for the remedial investigation and feasibility study for the David Witherspoon, Inc., 901 site in Knoxville, Tennessee. The following topics are covered in the appendixes: (A) David Witherspoon, Inc., 901 Site Historical Data, (B) Fieldwork Plans for the David Witherspoon, Inc., 901 Site, (C) Risk Assessment, (D) Remediation Technology Discussion, (E) Engineering Support Documentation, (F) Applicable or Relevant and Appropriate Requirements, and (G) Cost Estimate Documentation.

  16. Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill 1, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The intent and scope of the work plan are to assemble all data necessary to facilitate selection of remediation alternatives for the sites in Bear Creek Valley Operable Unit 1 (BCV OU 1) such that the risk to human health and the environment is reduced to acceptable levels based on agreements with regulators. The ultimate goal is to develop a final Record Of Decision (ROD) for all of the OUs in BCV, including the integrator OU. However, the initial aim of the source OUs is to develop a ROD for interim measures. For source OUs such as BCV OU 1, data acquisition will not be carried out in a single event, but will be carried out in three stages that accommodate the schedule for developing a ROD for interim measures and the final site-wide ROD. The three stages are as follows: Stage 1, Assemble sufficient data to support decisions such as the need for removal actions, whether to continue with the remedial investigation (RI) process, or whether no further action is required. If the decision is made to continue the RI/FS process, then: Stage 2, Assemble sufficient data to allow for a ROD for interim measures that reduce risks to the human health and the environment. Stage 3, Provide input from the source OU that allows a final ROD to be issued for all OUs in the BCV hydrologic regime. One goal of the RI work plan will be to ensure that sampling operations required for the initial stage are not repeated at later stages. The overall goals of this RI are to define the nature and extent of contamination so that the impact of leachate, surface water runoff, and sediment from the OU I sites on the integrator OU can be evaluated, the risk to human health and the environment can be defined, and the general physical characteristics of the subsurface can be determined such that remedial alternatives can be screened.

  17. Operable Unit 1 remedial investigation report, Eielson Air Force Base, Alaska

    SciTech Connect (OSTI)

    Gilmore, T.J.; Fruland, R.M.; Liikala, T.L. [and others

    1994-06-01T23:59:59.000Z

    This remedial investigation report for operable Unit 1 (OU-1) at Eielson Air Force Base presents data, calculations, and conclusions as to the nature and extent of surface and subsurface contamination at the eight source areas that make up OU-1. The information is based on the 1993 field investigation result and previous investigations. This report is the first in a set of three for OU-1. The other reports are the baseline risk assessment and feasibility study. The information in these reports will lead to a Record of Decision that will guide and conclude the environmental restoration effort for OU-1 at Eielson Air Force Base. The primary contaminants of concern include fuels and fuel-related contaminants (diesel; benzene, toluene, ethylbenzene, and xylene; total petroleum hydrocarbon; polycyclic aromatic hydrocarbons), maintenance-related solvents and cleaners (volatile chlorinated hydrocarbons such as trichloroothylene), polychlorinated biphenyls, and dichlorodiphenyltrichloroethane (DDT). The origins of contaminants of concern include leaks from storage tanks, drums and piping, and spills. Ongoing operations and past sitewide practices also contribute to contaminants of concern at OU-1 source areas. These include spraying mixed oil and solvent wastes on unpaved roads and aerial spraying of DDT.

  18. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-08-11T23:59:59.000Z

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  19. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Coumbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-11-10T23:59:59.000Z

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  20. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A -- Waste sites, source terms, and waste inventory report; Appendix B -- Description of the field activities and report database; Appendix C -- Characterization of hydrogeologic setting report

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV.

  1. Work Plan: Work Plan for the Remedial Investigation/Feasibility Study - Environmental Assessment (RI/FS-EA) for the Quarry Residuals Operable Unit at the Weldon Spring Site.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj:'I,\ W C -hSinceSite

  2. QROU Questions Fax: Fax transmits questions on the Quarry Residuals Operable Unit - Remedial Investigation Report (QROU - RI) for technical meeting set for August 14, 1997.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A' 3 ct : -. . . .~.Q

  3. Overview of technology modeling in the Remedial Action Assessment System (RAAS)

    SciTech Connect (OSTI)

    Johnson, C.D.; Bagaasen, L.M.; Chan, T.C.; Lamar, D.A.; Buelt, J.L.; Freeman, C.J.; Skeen, R.S.

    1994-08-01T23:59:59.000Z

    There are numerous hazardous waste sites under the jurisdiction of the US Department of Energy (DOE). To assist the cleanup of these sites in a more consistent, timely, and cost-effective manner, the Remedial Action Assessment System (RAAS) is being developed by the Pacific Northwest Laboratory (PNL). RAAS is a software tool designed to automate the initial technology selection within the remedial investigation/feasibility study (RI/FS) process. The software does several things for the user: (1) provides information about available remedial technologies, (2) sorts possible technologies to recommend a list of technologies applicable to a given site, (3) points out technical issues that may prevent the implementation of a technology, and (4) provides an estimate of the effectiveness of a given technology at a particular site. Information from RAAS can be used to compare remediation options and guide selection of technologies for further study.

  4. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1: Main text

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  5. ?? / Kagaku / ?? /Ky?ri: Science

    E-Print Network [OSTI]

    Tsukahara, T?go

    2012-01-01T23:59:59.000Z

    question when considering science and technology in Japanese?? /Kagaku / ?? /Ky?ri: Science Tsukahara T?go Translationto incorporate and develop science and technology from the

  6. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 3. Appendix E

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This document contains Appendix E: Toxicity Information and Uncertainty Analysis, description of methods, from the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  7. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 1. Main text

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This is the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  8. REVIEW REPORT: BUILDING C-400 THERMAL TREATMENT 90 PERCENT REMEDIAL DESIGN REPORT AND SITE INVESTIGATION, PGDP, PADUCAH, KENTUCKY

    SciTech Connect (OSTI)

    Looney, B; Jed Costanza, J; Eva Davis, E; Joe Rossabi, J; Lloyd (Bo) Stewart, L; Hans Stroo, H

    2007-08-15T23:59:59.000Z

    On 9 April 2007, the U.S. Department of Energy (DOE) Headquarters, Office of Soil and Groundwater Remediation (EM-22) initiated an Independent Technical Review (ITR) of the 90% Remedial Design Report (RDR) and Site Investigation (RDSI) for thermal treatment of trichloroethylene (TCE) in the soil and groundwater in the vicinity of Building C-400 at the Paducah Gaseous Diffusion Plant (PGDP). The general ITR goals were to assess the technical adequacy of the 90% RDSI and provide recommendations sufficient for DOE to determine if modifications are warranted pertaining to the design, schedule, or cost of implementing the proposed design. The ultimate goal of the effort was to assist the DOE Paducah/Portsmouth Project Office (PPPO) and their contractor team in ''removing'' the TCE source zone located near the C-400 Building. This report provides the ITR findings and recommendations and supporting evaluations as needed to facilitate use of the recommendations. The ITR team supports the remedial action objective (RAO) at C-400 to reduce the TCE source area via subsurface Electrical Resistance Heating (ERH). Further, the ITR team commends PPPO, their contractor team, regulators, and stakeholders for the significant efforts taken in preparing the 90% RDR. To maximize TCE removal at the target source area, several themes emerge from the review which the ITR team believes should be considered and addressed before implementing the thermal treatment. These themes include the need for: (1) Accurate and site-specific models as the basis to verify the ERH design for full-scale implementation for this challenging hydrogeologic setting; (2) Flexible project implementation and operation to allow the project team to respond to observations and data collected during construction and operation; (3) Defensible performance metrics and monitoring, appropriate for ERH, to ensure sufficient and efficient clean-up; and (4) Comprehensive (creative and diverse) contingencies to address the potential for system underperformance, and other unforeseen conditions These themes weave through the ITR report and the various analyses and recommendations. The ITR team recognizes that a number of technologies are available for treatment of TCE sources. Further, the team supports the regulatory process through which the selected remedy is being implemented, and concurs that ERH is a potentially viable remedial technology to meet the RAOs adjacent to C-400. Nonetheless, the ITR team concluded that additional efforts are needed to provide an adequate basis for the planned ERH design, particularly in the highly permeable Regional Gravel Aquifer (RGA), where sustaining target temperatures present a challenge. The ERH design modeling in the 90% RDR does not fully substantiate that heating in the deep RGA, at the interface with the McNairy formation, will meet the design goals; specifically the target temperatures. Full-scale implementation of ERH to meet the RAOs is a challenge in the complex hydrogeologic setting at PGDP. Where possible, risks to the project identified in this ITR report as ''issues'' and ''recommendations'' should be mitigated as part of the final design process to increase the likelihood of remedial success. The ITR efforts were organized into five lines of inquiry (LOIs): (1) Site investigation and target zone delineation; (2) Performance objectives; (3) Project and design topics; (4) Health and safety; and (5) Cross cutting and independent cost evaluation. Within each of these LOIs, the ITR team identified a series of unresolved issues--topics that have remaining uncertainties or potential project risks. These issues were analyzed and one or more recommendations were developed for each. In the end, the ITR team identified 27 issues and provided 50 recommendations. The issues and recommendations are briefly summarized below, developed in Section 5, and consolidated into a single list in Section 6. The ITR team concluded that there are substantive unresolved issues and system design uncertainties, resulting in technical and financial risks to DOE.

  9. RCRA Facility Investigation/Remedial Investigation Report for Gunsite 720 Rubble Pit Unit (631-16G) - March 1996

    SciTech Connect (OSTI)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1996-03-01T23:59:59.000Z

    Gunsite 720 Rubble Pit Unit is located on the west side of SRS. In the early to mid 1980`s, while work was being performed in this area, nine empty, partially buried drums, labeled `du Pont Freon 11`, were found. As a result, Gunsite 720 became one of the original waste units specified in the SRS RCRA Facility Assessment (RFA). The drums were excavated on July 30, 1987 and placed on a pallet at the unit. Both the drums and pallet were removed and disposed of in October 1989. The area around the drums was screened during the excavation and the liquid (rainwater) that collected in the excavated drums was sampled prior to disposal. No evidence of hazardous materials was found. Based on the review of the analytical data and screening techniques used to evaluate all the chemicals of potential concern at Gunsite 720 Rubble Pit Unit, it is recommended that no further remedial action be performed at this unit.

  10. RCRA Facility Investigation/Remedial Investigation Report for the Gunsite 113 Access Road Unit (631-24G) - March 1996

    SciTech Connect (OSTI)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1996-03-01T23:59:59.000Z

    Gunsite 113 Access Road Unit is located in the northeast corner of SRS. In the mid 1980`s, sparse vegetation, dead trees, and small mounds of soil were discovered on a portion of the road leading to Gunsite 113. This area became the Gunsite 113 Access Road Unit (Gunsite 113). The unit appears to have been used as a spoil dirt and / or road construction debris disposal area. There is no documentation or record of any hazardous substance management, disposal, or any type of waste disposal at this unit. Based upon the available evidence, there are no potential contaminants of concern available for evaluation by a CERCLA baseline risk assessment. Therefore, there is no determinable health risk associated with Gunsite 113. In addition, it is also reasonable to conclude that, since contamination is below risk-based levels, the unit presents no significant ecological risk. It is recommended that no further remedial action be performed at this unit.

  11. Proposed plan for remedial action for the Groundwater Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    NONE

    1999-08-10T23:59:59.000Z

    This Proposed Plan addresses the remediation of groundwater contamination at the chemical plant area of the Weldon Spring site in Weldon Spring, Missouri. The site is located approximately 48 km (30 mi) west of St. Louis in St. Charles County . Remedial activities at the site will be conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The U.S. Department of Energy (DOE), in conjunction with the U.S. Department of the Army (DA), conducted a joint remedial investigation/feasibility study (RI/FS) to allow for a comprehensive evaluation of groundwater conditions at the Weldon Spring chemical plant area and the Weldon Spring ordnance works area, which is an Army site adjacent to the chemical plant area. Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. That is, the analysis conducted and presented in the RVFS reports included an evaluation of environmental impacts that is comparable to that performed under NEPA. This Proposed Plan summarizes information about chemical plant area groundwater that is presented in the following documents: (1) The Remedial Investigation (RI), which presents information on the nature and extent of contamination; (2) The Baseline Risk Assessment (BRA), which evaluates impacts to human health and the environment that could occur if no cleanup action of the groundwater were taken (DOE and DA 1997a); and (3) The Feasibility Study (FS) and the Supplemental FS, which develop and evaluate remedial action alternatives for groundwater remediation.

  12. Year 6 Post-Remediation Biomonitoring and Phase II Source Investigation at the United Heckathorn Superfund Site, Richmond, California

    SciTech Connect (OSTI)

    Kohn, Nancy P.; Evans, Nathan R.

    2004-04-02T23:59:59.000Z

    The Heckathorn Superfund Site in Richmond, California, encompasses the property of the former United Heckathorn pesticide packaging plant and the adjacent waterway, Lauritzen Channel. The site was used from 1945 to 1966 by several operators to produce various agricultural chemicals. The site was placed on the National Priorities List of Superfund sites in 1990, which resulted in the removal of pesticide-contaminated soil from the upland portion of the site and dredging the marine portion of the site. Post-remediation marine monitoring and associated studies conducted through 2002 indicate that the contamination in the channel continues to pose a significant risk to biota and human health. This report documents continued marine monitoring and source investigation studies conducted in 2003.

  13. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3: Appendix C

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin.

  14. WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the ecological assessment task, Kingfisher Study

    SciTech Connect (OSTI)

    Holt, V.L.; Baron, L.A.

    1994-05-01T23:59:59.000Z

    This report provides specific details and requirements for the WAG 2 remedial investigation and site investigation Ecological Assessment Task, Kingfisher Study, including information that will contribute to safe completion of the project. The report includes historical background; a site map; project organization; task descriptions and hazard evaluations; controls; and monitoring, personal protective equipment, decontamination, and medical surveillance program requirements. The report also includes descriptions of site personnel and their certifications as well as suspected WAG 2 contaminants and their characteristics. The primary objective of the WAG 2 Kingfisher Study is to assess the feasibility of using kingfishers as biological monitors of contaminants on the Oak Ridge Reservation (ORR). Kingfisher sample collection will be used to determine the levels of contaminants and degree of bioaccumulation within a common piscivorous bird feeding on contaminated fish from streams on the ORR.

  15. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington, Collection of Surface Water, River Sediments, and Island Soils

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2009-09-28T23:59:59.000Z

    This report has been prepared in support of the remedial investigation of Hanford Site Releases to the Columbia River and describes the 2008/2009 data collection efforts. This report documents field activities associated with collection of sediment, river water, and soil in and adjacent to the Columbia River near the Hanford Site and in nearby tributaries.

  16. Remedial Action Assessment System (RAAS): Evaluation of selected feasibility studies of CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) hazardous waste sites

    SciTech Connect (OSTI)

    Whelan, G. (Pacific Northwest Lab., Richland, WA (USA)); Hartz, K.E.; Hilliard, N.D. (Beck (R.W.) and Associates, Seattle, WA (USA))

    1990-04-01T23:59:59.000Z

    Congress and the public have mandated much closer scrutiny of the management of chemically hazardous and radioactive mixed wastes. Legislative language, regulatory intent, and prudent technical judgment, call for using scientifically based studies to assess current conditions and to evaluate and select costeffective strategies for mitigating unacceptable situations. The NCP requires that a Remedial Investigation (RI) and a Feasibility Study (FS) be conducted at each site targeted for remedial response action. The goal of the RI is to obtain the site data needed so that the potential impacts on public health or welfare or on the environment can be evaluated and so that the remedial alternatives can be identified and selected. The goal of the FS is to identify and evaluate alternative remedial actions (including a no-action alternative) in terms of their cost, effectiveness, and engineering feasibility. The NCP also requires the analysis of impacts on public health and welfare and on the environment; this analysis is the endangerment assessment (EA). In summary, the RI, EA, and FS processes require assessment of the contamination at a site, of the potential impacts in public health or the environment from that contamination, and of alternative RAs that could address potential impacts to the environment. 35 refs., 7 figs., 1 tab.

  17. Remedial investigation report on the abandoned nitric acid pipeline at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    Upper East Fork Poplar Creek OU-2 consists of the Abandoned Nitric Acid Pipeline. This pipeline was installed in 1951 to transport liquid wastes {approximately} 4,800 ft from Buildings 9212, 9215, and 9206 to the S-3 Ponds. Materials known to have been discharged through the pipeline include nitric acid, depleted and enriched uranium, various metal nitrates, salts, and lead skimmings. A total of nineteen locations were chosen to be investigated along the pipeline for the first phase of this Remedial Investigation. Sampling consisted of drilling down to obtain a soil sample at a depth immediately below the pipeline. Additional samples were obtained deeper in the subsurface depending upon the depth of the pipeline, the depth of the water table, and the point of auger refusal. The nineteen samples collected below the pipeline were analyzed by the Y-12 Plant laboratory for metals, nitrate/nitrite, and isotopic uranium. Samples collected from three boreholes were also analyzed for volatile organic compounds because these samples produced a response with organic vapor monitoring equipment. The results of the baseline human health risk assessment for the Abandoned Nitric Acid Pipeline contaminants of potential concern show no unacceptable risks to human health via incidental ingestion of soil, inhalation of dust, dermal contact with the soil, or external exposure to radionuclides in the ANAP soils, under the construction worker and/or the residential land-use scenarios.

  18. Remedidal investigation and feasibility study report for the Environmental Restoration Disposal Facility

    SciTech Connect (OSTI)

    Roeck, F.V.

    1994-06-01T23:59:59.000Z

    The purpose of the remedial investigation (RI) is to collect data necessary to adequately characterize the site for the purpose of developing and evaluating effective remedial alternatives. To characterize the site, the lead agency shall, as appropriate, conduct field investigations, including treatability studies, and conduct a baseline risk assessment. The RI provides information to assess the risks to human health and the environment and to support the development, evaluation, and selection of appropriate response alternatives. The primary objective of the feasibility study (FS) is to ensure that appropriate remedial alternatives are developed and evaluated such that relevant information concerning the remedial action options can be presented to a decision-maker and an appropriate remedy selected. The lead agency may develop a feasibility study to address a specific site problem or the entire site. The development and evaluation of alternatives shall reflect the scope and complexity of the remedial action under consideration and the site problems being addressed. Development of alternatives shall be fully integrated with the site characterization activities of the remedial investigation described in paragraph (d) of this section. The lead agency shall include an alternatives screening step, when needed, to select a reasonable number of alternatives for detailed analysis.

  19. Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime`s, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives.

  20. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives.

  1. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendix B, Technical findings and conclusions

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This Remedial Investigation Report on Waste Area Grouping, (NVAG) 5 at Oak Ridge National Laboratory was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting, the results of a site chacterization for public review. This work was performed under Work Breakdown Structure 1.4.12.6.1.05.40.02 (Activity Data Sheet 3305, ``WAG 5``). Publication of this document meets a Federal Facility Agreement milestone of March 31, 1995. This document provides the Environmental Restoration Program with information about the results of investigations performed at WAG 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding, the need for subsequent remediation work at WAG 5.

  2. Remedial investigation report on the Melton Valley Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Evaluation, interpretation, and data summary

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions.

  3. Technical change to the work plan for the remedial investigation of the Salmon Site, Lamar County, Mississippi: Sampling and analysis plan background soil and groundwater study

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The Salmon Site, formerly known as the Tatum Dome Test Site, is located in south-central Mississippi, southwest of the city of Hattiesburg, in Lamar County. Between 1964 and 1970, two nuclear and two non-nuclear gas explosions were conducted deep underground in the Tatum Salt Dome beneath the site. The tests were performed as part of the former US Atomic Energy Commission`s Vela Uniform Program which was conducted to improve the United States` capability to detect underground nuclear explosions. This document details technical changes to the existing work plan for the remedial investigation of the Salmon Site. A previously conducted Remedial Investigation for the Salmon Site involved the preparation of ecological and human health risk assessments. These risk assessments, which are incorporated into the Remedial Investigation Report, identified several constituents of potential concern (COPC) that could potentially have a negative impact on ecological and human health. These COPC are the primary risk drivers for the Salmon Site; they include arsenic and naturally occurring, gamma-emitting radionuclides. If it can be demonstrated that similar concentrations of these COPCs occur naturally in surrounding areas, they can be removed from consideration in the risk assessments. The purpose of this sampling effort is to collect enough data to prove that the COPCs are naturally occurring and are not a result of the explosives testing activities conducted at the site. This will be accomplished by collecting enough soil samples to have a statistically valid population that can be used to produce defensible comparisons that prove the concentrations identified on site are the same as the background concentrations in surrounding areas.

  4. White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    This document contains Appendixes A ``Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed`` and B ``Human Health Risk Assessment for White Oak Creek / Melton Valley Area`` for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites.

  5. Waste Area Group 10, Operable Unit 10-08, Remedial Investigation/Feasibility Study Annual Status Report for Fiscal Year 2006

    SciTech Connect (OSTI)

    R. P. Wells

    2007-05-09T23:59:59.000Z

    This report provides a status of the progress made in Fiscal Year 2006 on tasks identified in the Waste Area Group 10, Operable Unit 10-08, Remedial Investigation/Feasibility Study Work Plan. Major accomplishments include: (1) groundwater sampling and review of the groundwater monitoring data, (2) installation of a Sitewide groundwater-level monitoring network, (3) update of the Groundwater Monitoring and Field Sampling Plan of Operable Unit 10-08, (4) re-evaluation of the risk at Site TSF-08, (5) progress on the Operable Unit 10-08 Sitewide Groundwater Model.

  6. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 4. Information related to the feasibility study and ARARs. Appendixes G, H, I

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  7. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 2. Biota and representative concentrations of contaminants. Appendixes A, B, C, D

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OU`s). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  8. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 3: Appendixes E and F -- Risk assessment information

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  9. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 3. Risk assessment information. Appendixes E, F

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 3 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  10. Remedial Investigation Report on Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1. Main Text

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This document is a report on the remedial investigation (RI) of Chestnut Ridge Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant. Chestnut Ridge OU 2 consists of Upper McCoy Branch (UMB), the Filled Coal Ash Pond (FCAP), and the area surrounding the Sluice Channel formerly associated with coal ash disposal in the FCAP. Chestnut Ridge OU 2 is located within the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation in Anderson County, Tennessee, approximately 24 miles west of Knoxville. The pond is an 8.5-acre area on the southern slope of Chestnut Ridge, 0.5 mile south of the main Y-12 Plant and geographically separated from the Y-12 Plant by Chestnut Ridge. The elevation of the FCAP is {approximately} 950 ft above mean sea level (msl), and it is relatively flat and largely vegetated. Two small ponds are usually present at the northeast and northwest comers of the FCAP. The Sluice Channel Area extends {approximately}1000 ft from the northern margin of the FCAP to the crest of Chestnut Ridge, which has an elevation of {approximately}1100 ft above msl. The Sluice Channel Area is largely vegetated also. McCoy Branch runs from the top of Chestnut Ridge across the FCAP into Rogers Quarry and out of the quarry where it runs a short distance into Milton Hill Lake at McCoy Embayment, termed UMB. The portion south of Rogers Quarry, within Chestnut Ridge OU 4, is termed Lower McCoy Branch. The DOE Oak Ridge Y-12 Plant disposed of coal ash from its steam plant operations as a slurry that was discharged into an ash retention impoundment; this impoundment is the FCAP. The FCAP was built in 1955 to serve as a settling basin after coal ash slurried over Chestnut Ridge from the Y-12 Plant. The FCAP was constructed by building an earthen dam across the northern tributary of McCoy Branch. The dam was designed to hold 20 years of Y-12 steam plant ash. By July 1967, ash had filled up the impoundment storage behind the dam to within 4 ft of the top.

  11. Feasibility study for remedial action for the Quarry Residuals Operable Unit at the Weldon Spring Site, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is conducting cleanup activities at the Weldon Spring site, which is located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis (Figure 1.1). Cleanup of the Weldon Spring site consists of several integrated components. The quarry residuals operable unit (QROU) is one of four operable units being evaluated. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, a remedial investigation/feasibility study (RI/FS) is being conducted to evaluate conditions and potential responses for the following areas and/or media that constitute the QROU: (1) the residual material (soil and sediment) remaining at the Weldon Spring quarry after removal of the bulk waste (about 11 million L [3 million gal] of uranium-contaminated ponded water was also addressed previous to bulk waste removal); (2) other media located in the surrounding vicinity of the quarry, including adjacent soil, surface water, and sediment in Femme Osage Slough and several creeks; and (3) quarry groundwater located primarily north of Femme Osage Slough. Potential impacts to the St. Charles County well field downgradient of the quarry area are also being addressed as part of QROU RI/FS evaluations. For remedial action sites, it is DOE policy to integrate values associated with the National Environmental Policy Act (NEPA) into the CERCLA decision-making process. The analyses contained herein address NEPA values as appropriate to the actions being considered for the QROU. A work plan summarizing initial site conditions and providing conceptual site hydrogeological and exposure models was published in January 1994. The RI and baseline risk assessment (BRA) reports have been completed. The RI discusses in detail the nature and extent and the fate and transport of contamination at the quarry area.

  12. Toxic remediation

    DOE Patents [OSTI]

    Matthews, Stephen M. (Alamed County, CA); Schonberg, Russell G. (Santa Clara County, CA); Fadness, David R. (Santa Clara County, CA)

    1994-01-01T23:59:59.000Z

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  13. Preliminary data report of investigations conducted at the Salmon Site, Lamar County, Mississippi. Nevada Environmental Restoration Project

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The US Department of Energy (DOE) conducted ecological studies at the Salmon Site (SS), Lamar County, Mississippi, from the middle of June 1992 to the end of April 1993. The studies are part of the Remedial Investigation and Feasibility Study (RI/FS) being conducted by the DOE. The RI/FS is the methodology under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended by the Superfund Amendments and Reauthorization Act of 1986 (CERCLA/SARA) for evaluating hazardous waste sites on the National Priorities List (NPL). The Salmon Site is not listed on the NPL but DOE has voluntarily elected to conduct the evaluation of the SS in accordance with CERCLA/SARA. As part of the remedial investigation, baseline human health and ecological risk assessments will be conducted. These baseline risk assessments will evaluate the potential impact on human health and the environment if remedial actions are not conducted, identify locations where additional information needs to be collected, help determine whether remedial actions are necessary, and provide justification for performing remedial actions. This report describes the sampling activities conducted between February and April 1993 to aid in evaluating the possible environmental impacts at the SS tailored to the specific circumstances and conditions found there. The initial investigations included identification of the flora and fauna in and around the SS, with particular emphasis on identifying sensitive environments, endangered species and their habitats, and those species consumed by humans or found in human food chains.

  14. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 5. Appendixes G, H, I, J

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Quality Assurance/Quality Control (QA/QC) Program for Phase 2 of the Clinch River Remedial Investigation (CRRI) was designed to comply with both Department of Energy (DOE) Order 5700.6C and Environmental Protection Agency (EPA) QAMS-005/80 (EPA 1980a) guidelines. QA requirements and the general QA objectives for Phase 2 data were defined in the Phase 2 Sampling and Analysis Plan (SAP)-Quality Assurance Project Plan, and scope changes noted in the Phase 2 Sampling and Analysis Plan Addendum. The QA objectives for Phase 2 data were the following: (1) Scientific data generated will withstand scientific and legal scrutiny. (2) Data will be gathered using appropriate procedures for sample collection, sample handling and security, chain of custody (COC), laboratory analyses, and data reporting. (3) Data will be of known precision and accuracy. (4) Data will meet data quality objectives (DQOs) defined in the Phase 2 SAP.

  15. Environmental, safety, and health plan for the remedial investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This document outlines the environmental, safety, and health (ES&H) approach to be followed for the remedial investigation of Waste Area Grouping (WAG) 10 at Oak at Ridge National Laboratory. This ES&H Plan addresses hazards associated with upcoming Operable Unit 3 field work activities and provides the program elements required to maintain minimal personnel exposures and to reduce the potential for environmental impacts during field operations. The hazards evaluation for WAG 10 is presented in Sect. 3. This section includes the potential radiological, chemical, and physical hazards that may be encountered. Previous sampling results suggest that the primary contaminants of concern will be radiological (cobalt-60, europium-154, americium-241, strontium-90, plutonium-238, plutonium-239, cesium-134, cesium-137, and curium-244). External and internal exposures to radioactive materials will be minimized through engineering controls (e.g., ventilation, containment, isolation) and administrative controls (e.g., procedures, training, postings, protective clothing).

  16. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2: Appendixes A and B

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin.

  17. Ya ri a bsod Collection 7

    E-Print Network [OSTI]

    Sha bo don 'grub rdo rje; Skal dbang skyid

    This collection contains fourteen songs collected in the grasslands of Amdo (northeast Tibet) in the area where Sichuan, Gansu, and Qinghai provinces meet. The songs represent various genres, and were all composed by Ya ri a bsod, an itinerant bard...

  18. Ya ri a bsod Collection 13

    E-Print Network [OSTI]

    Sha bo don 'grub rdo rje; Skal dbang skyid

    This collection contains fourteen songs collected in the grasslands of Amdo (northeast Tibet) in the area where Sichuan, Gansu, and Qinghai provinces meet. The songs represent various genres, and were all composed by Ya ri a bsod, an itinerant bard...

  19. Ya ri a bsod Collection 4

    E-Print Network [OSTI]

    Sha bo don 'grub rdo rje; Skal dbang skyid

    This collection contains fourteen songs collected in the grasslands of Amdo (northeast Tibet) in the area where Sichuan, Gansu, and Qinghai provinces meet. The songs represent various genres, and were all composed by Ya ri a bsod, an itinerant bard...

  20. Ya ri a bsod Collection 6

    E-Print Network [OSTI]

    Sha bo don 'grub rdo rje; Skal dbang skyid

    This collection contains fourteen songs collected in the grasslands of Amdo (northeast Tibet) in the area where Sichuan, Gansu, and Qinghai provinces meet. The songs represent various genres, and were all composed by Ya ri a bsod, an itinerant bard...

  1. Remedial Investigation Work Plan for Upper East Fork Poplar Creek Operable Unit 3 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    Upper East Fork Popular Creek Operable Unit 3 (UEFPC OU 3) is a source term OU composed of seven sites, and is located in the western portion of the Y-12 Plant. For the most part, the UEFPC OU 3 sites served unrelated purposes and are geographically removed from one another. The seven sites include the following: Building 81-10, the S-2 Site, Salvage Yard oil storage tanks, the Salvage Yard oil/solvent drum storage area, Tank Site 2063-U, the Salvage Yard drum deheader, and the Salvage Yard scrap metal storage area. All of these sites are contaminated with at least one or more hazardous and/or radioactive chemicals. All sites have had some previous investigation under the Y-12 Plant RCRA Program. The work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to each OU 3 site. The potential for release of contaminants to receptors through various media is addressed, and a sampling and analysis plan is presented to obtain objectives for the remedial investigation. Proposed sampling activities are contingent upon the screening level risk assessment, which includes shallow soil sampling, soil borings, monitoring well installation, groundwater sampling, and surface water sampling. Data from the site characterization activities will be used to meet the above objectives. A Field Sampling Investigation Plan, Health and Safety Plan, and Waste Management Plan are also included in this work plan.

  2. Feasibility study for remedial action for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    NONE

    1999-07-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Department of Army (DA) are conducting an evaluation to identify the appropriate response action to address groundwater contamination at the Weldon Spring Chemical Plant (WSCP) and the Weldon Spring Ordnance Works (WSOW), respectively. The two areas are located in St. Charles County, about 48 km (30 rni) west of St. Louis. The groundwater operable unit (GWOU) at the WSCP is one of four operable units being evaluated by DOE as part of the Weldon Spring Site Remedial Action Project (WSSRAP). The groundwater operable unit at the WSOW is being evaluated by the DA as Operable Unit 2 (OU2); soil and pipeline contamination are being managed under Operable Unit 1 (OU1). Remedial activities at the WSCP and the WSOW are being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. A remedial investigation/feasibility study (RI/FS) work plan summarizing initial site conditions and providing site hydrogeological and exposure models was published in August of 1995 (DOE 1995). The remedial investigation (RI) and baseline risk assessment (BRA) have also recently been completed. The RI (DOE and DA 1998b) discusses in detail the nature, extent, fate, and transport of groundwater and spring water contamination. The BRA (DOE and DA 1998a) is a combined baseline assessment of potential human health and ecological impacts and provides the estimated potential health risks and ecological impacts associated with groundwater and springwater contamination if no remedial action were taken. This feasibility study (FS) has been prepared to evaluate potential options for addressing groundwater contamination at the WSCP and the WSOW. A brief description of the history and environmental setting of the sites is presented in Section 1.1, key information relative to the nature and extent of contamination is presented in Section 1.2, and the results of the BRA are summarized in Section 1.3. The objective of this FS is discussed in Section 1.4, and preliminary remediation goals are identified in Section 1.5. The organization of the remaining chapters of this FS is outlined in Section 1.6.

  3. iU/riA ii riA Background and Technical Information for Collectors

    E-Print Network [OSTI]

    m^ m im^Hii iU/riA ii riA Background and Technical Information for Collectors mmBiological Laboial Circular 111 #12;#12;DUCK STAMP DATA Background and Technical Information for Collectors By Edna N. Sater and conservationists, it aroused widespread interest among stamp collectors, many of whom had not previously collected

  4. Selecting Mold Remediation Contractors

    E-Print Network [OSTI]

    Renchie, Don L.

    2005-10-05T23:59:59.000Z

    Texas has strict regulations that govern mold remediation companies. Before contracting for mold remediation work, consumers should know what the law requires of remediation companies and what such contracts should contain....

  5. Data Quality Assessment Report for the Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-08-10T23:59:59.000Z

    This report summarizes the results of the data quality assessment that was performed on the analytical data generated in connection with the 2008/2009 surface water, sediment, and soil data collection; groundwater upwelling investigation sample collection; and fish tissue sample collection.

  6. Data Quality Assessment Report for the Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-09-21T23:59:59.000Z

    This report summarizes the results of the data quality assessment that was performed on the analytical data generated in connection with the 2008/2009 surface water, sediment, and soil data collection; groundwater upwelling investigation sample collection; and fish tissue sample collection.

  7. Data Summary Report for teh Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    Hulstrom, L.

    2011-02-07T23:59:59.000Z

    This data summary report summarizes the investigation results to evaluate the nature and distribution of Hanford Site-related contaminants present in the Columbia River. As detailed in DOE/RL-2008-11, more than 2,000 environmental samples were collected from the Columbia River between 2008 and 2010. These samples consisted of island soil, sediment, surface water, groundwater upwelling (pore water, surface water, and sediment), and fish tissue.

  8. Formerly Used Sites Remedial Action Program (FUSRAP) W. R. Grace Building 23 Remedial Action-Challenges and Successes - 12247

    SciTech Connect (OSTI)

    Barber, Brenda; Honerlah, Hans [U.S. Army Corps of Engineers - Baltimore District, 10 S. Howard St., Baltimore, Maryland, 21201 (United States); O'Neill, Mike [EA Engineering, Science, and Technology, 15 Loveton Circle, Baltimore, Maryland, 21152 (United States); Young, Carl [Cabrera Services, Inc., 1106 N. Charles St., Suite 300, Baltimore, MD 21201 (United States)

    2012-07-01T23:59:59.000Z

    Monazite sand processing was conducted at the W. R. Grace Curtis Bay Facility (Baltimore, Maryland) from mid-May 1956 through the spring of 1957 under license to the Atomic Energy Commission (AEC), for the extraction of source material in the form of thorium, as well as rare earth elements. The processing was conducted in the southwest quadrant of a ca. 100 year old, five-story, building (Building 23) in the active manufacturing portion of the facility. Building components and equipment in the southwest quadrant of Building 23 exhibited residual radiological activity remaining from the monazite sand processing. U.S. Army Corps of Engineers (USACE) conducted a remedial investigation (RI) and feasibility study (FS) and prepared a Record of Decision (ROD) to address residual radioactivity on building components and equipment in the southwest quadrant of Building 23. The remedy selected for the southwest quadrant of Building 23, which was documented in the ROD (dated May 2005), was identified as 'Alternative 2: Decontamination With Removal to Industrial Use Levels'. The selected remedy provided for either decontaminating or removing areas of radioactivity to meet the RGs. Demonstration of compliance with the selected ARAR was performed using the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) and other appropriate guidance, as well as appropriate dose modeling codes where necessary. USACE-Baltimore District along with its private industry partner worked together under the terms of a 2008 Settlement Agreement to implement the remedial action (RA) for the southwest quadrant of Building 23. The RA was conducted in two phases: Phase 1 was completed to improve the building condition for support of subsequent remedial action and decrease scope uncertainty of the remedial action, and Phase 2 included decontamination and removal activities to meet the RGs and demonstration of compliance with the selected ARAR. Challenges encountered during the RA include: coordination with stakeholders, coordination between multiple RA contractors, addressing unique structural challenges for Building 23, nonradiological hazards associated with the RA, weather issues, and complex final status survey (FSS) coordination. The challenges during the Phase 1 RA were handled successfully. The challenges for the Phase 2 RA, which is anticipated to be complete by late-summer of 2012, have been handled successfully so far. By fall of 2012, USACE is expecting to finalize a robust RA Closure Report, including the Final Status Survey Report, which summarizes the RA activities and documents compliance with the ROD. During the ongoing RA at Building 23, there have been and still are many challenges both technically and from a project management perspective, due in part to the nature and extent of impact at the site (residual radioactivity within an active processing building), dual oversight by the property owner and USACE, and site-specific challenges associated with a complex RA and multiple contractors. Currently, USACE and its industry partner are overseeing the completion of RA field activities. RA closure documentation for the remediation of Building 23 to address residual contamination in building materials will be reviewed/approved by USACE and its industry partner upon completion of the field activities. USACE and its industry partner are working well together, through the Settlement Agreement, to conduct a cost-efficient and effective remedial action to address the legacy issues at Building 23. This cooperative effort has set a firm foundation for achieving a successful RA at the RWDA using a 'forward think' approach, and it is a case study for other sites where an industry partner is involved. The collaborative effort led to implementation of an RA which is acceptable to the site owner, the regulators, and the public, thus allowing USACE to move this project forward successfully in the FUSRAP program. (authors)

  9. Responsiveness summary for the remedial investigation/feasibility study for management of the bulk wastes at the Weldon Spring quarry, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Peterson, J.M.; MacDonell, M.M.

    1990-08-01T23:59:59.000Z

    The US Department of Energy (DOE) is responsible for conducting remedial actions at the Weldon Spring site in St. Charles County, Missouri, under its Surplus Facilities Management Program. The site consists of a quarry and a chemical plant area located about 6.4 km (4 mi) northeast of the quarry. The quarry is surrounded by the Weldon Spring Wildfire Area and is near an alluvial well field that constitutes a major source of potable water for St. Charles County; the nearest supply well is located about 0.8 km (0.5 mi) southeast of the quarry. From 1942 to 1969, the quarry was used for the disposal of various radioactively and chemically contaminated materials. Bulk wastes in the quarry consist of contaminated soils and sediments, rubble, metal debris, and equipment. As part of overall site remediation, DOE is proposing to conduct an interim remedial action at the quarry to manage the radioactively and chemically contaminated bulk wastes contained therein. Potential remedial action alternatives for managing the quarry bulk wastes have been evaluated consistent with US Environmental Protection Agency (EPA) guidance for conducting remedial actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. The contents of these documents were developed in consultation with EPA Region VII and the state of Missouri and reflect the focused scope defined for this interim remedial action. 9 refs.

  10. COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY

    E-Print Network [OSTI]

    COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY May 15, 2007 · The Colorado School of Mines Research Institute Site (the "Site) has been undergoing additional investigation RESEARCH INSTITUTE REMEDIATION PROJECT SUMMARY Page Two May 15, 2007 · The revised Remedial Investigation

  11. assess remediation performance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    object of this project was to investigate the long time effectiveness of different radon remedial methods. The ten years project started 1991. From start the investigation...

  12. WA_02_015_AIR_PRODUCTS_AND_CHEMICALS_INC_Waiver_of_Patent_Ri...

    Broader source: Energy.gov (indexed) [DOE]

    15AIRPRODUCTSANDCHEMICALSINCWaiverofPatentRi.pdf WA02015AIRPRODUCTSANDCHEMICALSINCWaiverofPatentRi.pdf WA02015AIRPRODUCTSANDCHEMICALSINCWaiverofPatent...

  13. Category:Providence, RI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo Back toFL"projectsOR Jump to:2RI

  14. QER- Comment of RI Office of Energy Resources

    Broader source: Energy.gov [DOE]

    Hi Matt, Please find additional materials from the RI Office of Energy Resources for the DOE QER. The documents attached include: 1) A powerpoint providing an overview of the RI State Energy Plan - the plan will be officially released in Fall, 2014; 2) Testimony to the RI Senate which outlines the need for coordinated work on the gas and electric infrastructure in New England; 3) A powerpoint version of the written testimony; 4) The 2013 Annual Report on the RI Energy Efficiency Program.

  15. aca ri tetranychidae: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Year The University of Rhode Island Transportation Center selected Steven Humphrey of Tiverton, RI as its Geosciences Websites Summary: as a spokesperson in URI's supply chain...

  16. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 4. Appendixes G, H, and I and information related to the feasibility study and ARARs

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 4 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  17. Evaluation of the Eological Management and Enhancement Alernative for Remediation of the K1007-P1 Pond

    SciTech Connect (OSTI)

    Peterson, M.J.

    2005-10-31T23:59:59.000Z

    An evaluation of the human and ecological risks associated with the P1 Pond and surrounding environs was conducted as part of the ETTP Site-Wide Remedial Investigation. The RI provides the basis for the focus on PCBs as the most important unacceptable risk to human and ecological health in the pond. Other P1 contaminants, media, or pathways of risk to receptors are identified in the RI, but are not addressed as a major risk reduction goal for the ETTP Site-Wide Feasibility Study. Therefore, the goal of the Ecological Management alternative is to reduce unacceptable risks associated with PCBs in fish. Many of the actions proposed for this alternative, however, are likely to reduce risks associated with other contaminants and their pathways. The high PCB concentrations in fish from the P1 Pond are most certainly due in part to the current ecological condition of the pond that maximizes PCB biomagnification. This basic assumption and the factors contributing to it were evaluated by conducting an intensive field study of the P1 Pond in the summer of 2004 (for a thorough presentation of current P1 Pond biological conditions, see Peterson et al. 2005). Major hypotheses regarding the P1 Pond's current fish community, PCB fate and transport processes, pond vegetation, and limnological conditions that contribute to the high PCB levels in fish were validated by the study (Appendix A), The results of the 2004 ecological assessment, in concert with long-term datasets obtained as part of the ETTP Biological Monitoring and Abatement Program (BMAP) and recent abiotic sampling for the RI, provide the basis for the assessment of current conditions.

  18. Remediation of oil field wastes

    SciTech Connect (OSTI)

    Peters, R.W.; Wentz, C.A.

    1990-01-01T23:59:59.000Z

    Treatment and disposal of drilling muds and hazardous wastes has become a growing concern in the oil and gas industry. Further, past practices involving improper disposal require considerable research and cost to effectively remediate contaminated soils. This paper investigates two case histories describing the treatments employed to handle the liquid wastes involved. Both case histories describe the environmentally safe cleanup operations that were employed. 1 ref., 1 fig., 3 tabs.

  19. SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines Presentation given at the...

  20. WA_00_018_PRAXAIR_Waive_of_Domestic_and_Foreign_Invention_Ri...

    Broader source: Energy.gov (indexed) [DOE]

    18PRAXAIRWaiveofDomesticandForeignInventionRi.pdf WA00018PRAXAIRWaiveofDomesticandForeignInventionRi.pdf WA00018PRAXAIRWaiveofDomesticandForeignInvention...

  1. Remedial investigation report, site 2-Pesticide Pit Burial Area, Stewart Air National Guard Base, Newburgh, New York. Volume 2. Final report

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    Site 2-Pesticide Pit Burial Area was investigated under the Installation Restoration Program. A removal action was conducted in 1988, when pesticide containers and contaminated soil were excavated from the pit. The pit covered an area of approximately 1000 square feet and was approximately 12 feet deep. The report recommends no further action based on study results.

  2. Remedial investigation report, site 2-Pesticide Pit Burial Area, Stewart Air National Guard Base, Newburgh, New York. Volume 1. Final report

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    Site 2-Pesticide Pit Burial Area was investigated under the Installation Restoration Program. A removal action was conducted in 1988, when pesticide containers and contaminated soil were excavated from the pit. The pit covered an area of approximately 1000 square feet and was approximately 12 feet deep. The report recommends no further action based on study results.

  3. ICDF Complex Remedial Action Work Plan

    SciTech Connect (OSTI)

    W. M. Heileson

    2006-12-01T23:59:59.000Z

    This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

  4. Interstate Technology & Regulatory Council (ITRC) Remediation...

    Office of Environmental Management (EM)

    Technology & Regulatory Council (ITRC) Remediation Management of Complex Sites: Case Studies and Guidance Interstate Technology & Regulatory Council (ITRC) Remediation...

  5. CLOSEOUT REPORT REMEDIAL ACTION

    E-Print Network [OSTI]

    FINAL CLOSEOUT REPORT REMEDIAL ACTION AREA OF CONCERN 6 BUILDING 650 RECLAMATION FACILITY SUMP York 11973 REGISTERED TO ISO 14001 #12;AOC 6 BUILDING 650 RECLAMATION FACILITY SUMP AND SUMP OUTFALL .................................................................................9 2.6.1 Final Radiological Status Survey Design

  6. Ri* Report No. 139 Danish Atomic Energy Commission

    E-Print Network [OSTI]

    I 3 Ri* Report No. 139 Danish Atomic Energy Commission Research Establishment Riso Metallurgy Energy Commission Research Establishment Riso METALLURGY DEPARTMENT ANNUAL PROGRESS REPORT for th* Period, the Central Welding Institution and the Metallurgy Department has begun an evaluation of what research

  7. CENTRAL PLATEAU REMEDIATION

    SciTech Connect (OSTI)

    ROMINE, L.D.

    2006-02-01T23:59:59.000Z

    A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.

  8. Remediating MGP brownfields

    SciTech Connect (OSTI)

    Larsen, B.R.

    1997-05-01T23:59:59.000Z

    Before natural gas pipelines became widespread in this country, gas fuel was produced locally in more than 5,000 manufactured gas plants (MGPs). The toxic wastes from these processes often were disposed onsite and have since seeped into the surrounding soil and groundwater. Although the MGPs--commonly called gas plants, gas-works or town gas plants--have closed and most have been demolished, they have left a legacy of environmental contamination. At many MGP sites, underground storage tanks were constructed of wood or brick, with process piping and equipment which frequently leaked. Waste materials often were disposed onsite. Releases of coal tars, oils and condensates produced within the plants contributed to a wide range of contamination from polycyclic aromatic hydrocarbons, phenols, benzene and cyanide. Remediation of selected MGP sites has been sporadic. Unless the site has been identified as a Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Superfund site, the regulatory initiative to remediate often remains with the state in which the MGP is located. A number of factors are working to change that picture and to create a renewed interest in MGP site remediation. The recent Brownfield Initiative by the US Environmental Protection Agency (EPA) is such an example.

  9. Salmon Site Remedial Investigation Report - Volume I

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A'

  10. REMEDIAL INVESTIGATION, FEASIBILITY STUDY, & PROPOSED PLAN

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 +NewAugustr* R $ s- 0a \n aR

  11. Environmental remediation of contamination sites at the Hanford Site

    SciTech Connect (OSTI)

    Wittreich, C.D.; Johnson, W.L. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-12-31T23:59:59.000Z

    Efforts currently are under way to remediate the 200 Areas of the US Department of Energy`s (DOE) Hanford Site in Washington State. Because of the complexity and extent of environmental contamination that has resulted from decades of hazardous and radioactive waste disposal practices, an innovative approach to remediating the site was required. A comprehensive study of waste disposal and environmental monitoring data with field investigations, referred to as the 200 Aggregate Area Management Study (AAMS) program, was conducted in 1992 to assess the scope of the remediation effort and to develop a plan to expedite the cleanup progress.

  12. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    SciTech Connect (OSTI)

    BERGMAN, T. B.; STEFANSKI, L. D.; SEELEY, P. N.; ZINSLI, L. C.; CUSACK, L. J.

    2012-09-19T23:59:59.000Z

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  13. Atelier " i l ti ri e e l i e e ilie lli i el " e re er t ire e ri

    E-Print Network [OSTI]

    Passot, Thierry

    Atelier " i l ti ri e e l i e e ilie lli i el " e re er t ire e ri A r e i ti e A r e l i e ti l i e et le r l e e l er et re l i " le i ti e" i i t er e i i e r le l r e elle ti te relle t et r r el t li #12; Atelier " i l ti ri e e l i e e ilie lli i el " e re er t ire e ri

  14. Brownfield landfill remediation under the Illinois EPA site remediation program

    SciTech Connect (OSTI)

    Beck, J.; Bruce, B.; Miller, J.; Wey, T.

    1999-07-01T23:59:59.000Z

    Brownfield type landfill remediation was completed at the Ft. Sheridan Historic Landmark District, a former Army Base Realignment and Closure Facility, in conjunction with the future development of 551 historic and new homes at this site. The project was completed during 1998 under the Illinois Environmental Protection Agency (Illinois EPA) Site Remediation Program. This paper highlights the Illinois EPA's Site Remediation Program and the remediation of Landfills 3 and 4 at Fort Sheridan. The project involved removal of about 200,000 cubic yards of landfill waste, comprised of industrial and domestic refuse and demolition debris, and post-removal confirmation sampling of soils, sediment, surface water, and groundwater. The sample results were compared to the Illinois Risk-Based Cleanup levels for residential scenarios. The goal of the removal project was to obtain a No Further Remediation letter from the Illinois EPA to allow residential development of the landfill areas.

  15. Remedial Investigation Report on the Abandoned Nitric Acid Pipeline at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Energy Systems Environmental Restoration Program; Y-12 Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    Upper East Fork Poplar Creek Operable Unit 2 consists of the Abandoned Nitric Acid pipeline (ANAP). This pipeline was installed in 1951 to transport liquid wastes {approximately}4800 ft from Buildings 9212, 9215, and 9206 to the S-3 Ponds. Materials known to have been discharged through the pipeline include nitric acid, depleted and enriched uranium, various metal nitrates, salts, and lead skimmings. During the mid-1980s, sections of the pipeline were removed during various construction projects. A total of 19 locations were chosen to be investigated along the pipeline for the first phase of this Remedial Investigation. Sampling consisted of drilling down to obtain a soil sample at a depth immediately below the pipeline. Additional samples were obtained deeper in the subsurface depending upon the depth of the pipeline, the depth of the water table, and the point of auger refusal. The 19 samples collected below the pipeline were analyzed by the Oak Ridge Y-12 Plant`s laboratory for metals, nitrate/nitrite, and isotopic uranium. Samples collected from three boreholes were also analyzed for volatile organic compounds because these samples produced a response with organic vapor monitoring equipment. Uranium activities in the soil samples ranged from 0.53 to 13.0 pCi/g for {sup 238}U, from 0.075 to 0.75 pCi/g for {sup 235}U, and from 0.71 to 5.0 pCi/g for {sup 238}U. Maximum total values for lead, chromium, and nickel were 75.1 mg/kg, 56.3 mg/kg, and 53.0 mg/kg, respectively. The maximum nitrate/nitrite value detected was 32.0 mg-N/kg. One sample obtained adjacent to a sewer line contained various organic compounds, at least some of which were tentatively identified as fragrance chemicals commonly associated with soaps and cleaning solutions. The results of the baseline human health risk assessment for the ANAP contaminants of potential concern show no unacceptable risks to human health.

  16. Soil Remediation Test

    SciTech Connect (OSTI)

    Manlapig, D. M.; Williamsws

    2002-04-01T23:59:59.000Z

    Soils contaminated with petroleum by-products can now be effectively remediated using a variety of technologies. Among these are in-situ bioremediation, land farming, and landfill/replacing of soil. The range of efficiencies and cost effectiveness of these technologies has been well documented. Exsorbet Plus is showing promise as an in-situ bioremediation agent. It is made of naturally grown Spaghnum Peat Moss which has been activated for encapsulation and blended with nitrogen-rich fertilizer. In its initial field test in Caracas, Venezuela, it was able to remediate crude oil-contaminated soil in 90 days at less than half of the cost of competing technologies. Waste Solutions, Corp and the US Department of Energy signed a Cooperative Research and Development Agreement to test Exsorbet Plus at the Rocky Mountain Oilfield Testing Center near Casper, Wyoming. As part of the test, soil contaminated with crude oil was treated with Exsorbet Plus to aid the in-situ bioremediation process. Quantitative total petroleum hydrocarbon (TPH) measurements were acquired comparing the performance of Exsorbet Plus with an adjacent plot undergoing unaided in-situ bioremediation.

  17. REMEDIAL ACTION PLAN

    E-Print Network [OSTI]

    Inactive Uranium; Mill Tailings Site; Uranium Mill Tremedial

    1990-01-01T23:59:59.000Z

    designated site consists of the 111-acre tailings pile, the mill yard, and piles of demolition rubble awaiting burial. The site contains 2.659 million cubic yards of tailings including 277,000 cubic yards of contaminated material in the mill yard, ore storage area, and Ann Lee Mine area; 151,000 cubic yards in the protore storage and leach pad areas; and 664,000 cubic yards of windblown contaminated soil, including excess soil that would result from excavation. Remedial action The remedial action will start with the excavation of windblown contaminated material and placement around the west, south, and east sides of the pile to buttress the slopes for increased stability. Most of the demolition rubble will be placed in the southern part of the pile and be covered with tailings. The northern part of the tailings pile (one million cubic yards) will then be excavated and placed on the south part of the pile to reduce the size of the disposal cell footprint. Demolition rubble that

  18. Comments on Draft Final Remedial Investigation (RI) for the Quarry Residuals Operable Unit, and Draft Final Baseline Risk Assessment (BRA) for the Quarry Residuals Operable Unit of the Weldon Spring Site, Both Dated April 1997. QY-500-501-1.03.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertowni5W 95.5x-L* d! CT.J>?j 1.29

  19. Remedial design through effective electronic associations

    SciTech Connect (OSTI)

    Deis, J.L.; Wankum, R.D.

    1999-07-01T23:59:59.000Z

    Black and Veatch Special Projects Corp. (BVSPC) used an environmental data management system (EDMS) to consolidate x-ray fluorescence (XRF), global positioning system (GPS), and laboratory analytical data into a unique and flexible electronic database. Cost savings were acknowledged in all phases of the remedial design due to the development and use of the EDMS and its distinct associations with various electronic software packages. The EDMS allowed effective and efficient completion of the remedial design investigation of the Oronogo-Duenweg Mining Belt Site. The Site is a 125-year old mining community in Jasper County, Missouri. Approximately 6,500 residences are now located within the 60 square-mile Superfund Site where lead and zinc were mined. Smelting and mining activities were conducted in several areas throughout the community. These operations left approximately 9 million tons of mine wastes at the Site upon completion of the mining activities. The purpose of the remedial design investigation was to quantify and identify the residential yards that were adversely affected by these activities.

  20. Geophysical investigation, Salmon Site, Lamar County, Mississippi

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    Geophysical surveys were conducted in 1992 and 1993 on 21 sites at the Salmon Site (SS) located in Lamar County, Mississippi. The studies are part of the Remedial Investigation/Feasibility Study (RI/FS) being conducted by IT Corporation for the U.S. Department of Energy (DOE). During the 1960s, two nuclear devices and two chemical tests were detonated 826 meters (in) (2710 feet [ft]) below the ground surface in the salt dome underlying the SS. These tests were part of the Vela Uniform Program conducted to improve the United States capability to detect, identify, and locate underground nuclear detonations. The RI/FS is being conducted to determine if any contamination is migrating from the underground shot cavity in the salt dome and if there is any residual contamination in the near surface mud and debris disposal pits used during the testing activities. The objective of the surface geophysical surveys was to locate buried debris, disposal pits, and abandoned mud pits that may be present at the site. This information will then be used to identify the locations for test pits, cone penetrometer tests, and drill hole/monitor well installation. The disposal pits were used during the operation of the test site in the 1960s. Vertical magnetic gradient (magnetic gradient), electromagnetic (EM) conductivity, and ground-penetrating radar (GPR) surveys were used to accomplish these objectives. A description of the equipment used and a theoretical discussion of the geophysical methods are presented Appendix A. Because of the large number of figures relative to the number of pages of text, the geophysical grid-location maps, the contour maps of the magnetic-gradient data, the contour maps of the EM conductivity data, and the GPR traverse location maps are located in Appendix B, Tabs I through 22. In addition, selected GPR records are located in Appendix C.

  1. Remedial investigation report on Chestnut Ridge Operable Unit 2 (filled coal ash pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendixes

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This report comprises appendices A--J which support the Y-12 Plant`s remedial action report involving Chestnut Ridge Operable Unit 2 (filled coal ash pond/Upper McCoy Branch). The appendices cover the following: Sampling fish from McCoy Branch; well and piezometer logs; ecological effects of contaminants in McCoy Branch 1989-1990; heavy metal bioaccumulation data; microbes in polluted sediments; and baseline human health risk assessment data.

  2. ICDF Complex Remedial Action Report

    SciTech Connect (OSTI)

    W. M. Heileson

    2007-09-26T23:59:59.000Z

    This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

  3. Remedial Action Contacts Directory - 1997

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    This document, which was prepared for the US Department of Energy (DOE) Office of Environmental Restoration (ER), is a directory of 2628 individuals interested or involved in environmental restoration and/or remedial actions at radioactively contaminated sites. This directory contains a list of mailing addresses and phone numbers of DOE operations, area, site, project, and contractor offices; an index of DOE operations, area, site, project, and contractor office sorted by state; a list of individuals, presented by last name, facsimile number, and e-mail address; an index of affiliations presented alphabetically, with individual contacts appearing below each affiliation name; and an index of foreign contacta sorted by country and affiliation. This document was generated from the Remedial Action Contacts Database, which is maintained by the Remedial Action Program Information Center (RAPIC).

  4. Streamline simulation of Surfactant Enhanced Aquifer Remediation 

    E-Print Network [OSTI]

    Tunison, Douglas Irvin

    1996-01-01T23:59:59.000Z

    Nonaqueous Phase Liquids (NAPLS) are a recognized source of groundwater contamination. Surfactant Enhanced Aquifer Remediation (SEAR) shows promise in increasing the efficiency and effectiveness over traditional "pump and treat" NAPL remediation...

  5. Toxic Remediation System And Method

    DOE Patents [OSTI]

    Matthews, Stephen M. (Alameda County, CA); Schonberg, Russell G. (Santa Clara County, CA); Fadness, David R. (Santa Clara County, CA)

    1996-07-23T23:59:59.000Z

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  6. GROUNDWATER REMEDIATION DESIGN USING SIMULATED

    E-Print Network [OSTI]

    Mays, Larry W.

    CHAPTER 8 GROUNDWATER REMEDIATION DESIGN USING SIMULATED ANNEALING Richard L. Skaggs Pacific? There has been an emergence in the use of combinatorial methods such as simulated annealing in groundwater for groundwater management applications. The algorithm incor- porates "directional search" and "memory

  7. Type B Accident Investigation Board Report Employee Puncture...

    Broader source: Energy.gov (indexed) [DOE]

    F-TRU Waste Remediation Facility at the Savannah River Site on June 14, 2010 Type B Accident Investigation Board Report Employee Puncture Wound at the F-TRU Waste Remediation...

  8. Smouldering Combustion of Organic Liquids in Porous Media for Remediating NAPL-contaminated Soils 

    E-Print Network [OSTI]

    Pironi, Paolo

    2010-01-01T23:59:59.000Z

    This research investigated the potential of smouldering combustion to be employed as a remediation approach for soil contaminated by non-aqueous phase liquids (NAPLs). Small-scale (~15 cm), proof-of-concept experiments ...

  9. Consequences of propene and propane on plasma remediation of NOx Rajesh Doraia)

    E-Print Network [OSTI]

    Kushner, Mark

    Consequences of propene and propane on plasma remediation of NOx Rajesh Doraia) Department exhausts with hydrocarbons propane (C3H8) and propene (C3H6) has been investigated. In general

  10. Remediation of Petroleum-Contaminated Groundwater Using High Carbon Content Fly Ash

    E-Print Network [OSTI]

    Aydilek, Ahmet

    investigations. Recycled materials, such as tire chips (Kim et al 1997) and foundry sand (Lee et al. 2004) have in the utilization of recycled materials for remediation of contaminated groundwater as a part of sorptive barrier

  11. Remedies for sediment buildup

    SciTech Connect (OSTI)

    Singh, K.P.; Durgunoglu, A. (Illinois State Water Survey, Champaign, IL (United States))

    1991-12-01T23:59:59.000Z

    An important issue in the design, construction, and operation of dams is reducing sedimentation in the reservoir to maintain maximum available water storage. Mitigative measures can be incorporated in dam design and reservoir operation to substantially reduce sediment entrapment, and to improve dissolved oxygen levels by releasing hypolimnetic waters (cold bottom waters) from the reservoir. These measures may also greatly reduce stream bed degradation downstream of the dam and consequent initiation of a new erosion cycle in the tributaries. The Illinois State Water Survey (a division of the Illinois Department of Energy and Natural Resources) investigated the advantages and disadvantages of various storage maintenance measures. In an economic analyses of the methods, the State Water Survey considered and compared the reduction in initial reservoir design storage capacity, cost of installation of sediment entrapment reduction measures, and cost of any dredging operations. The analysis indicates that the cost of incorporating sediment entrapment reduction measures in the design of a dam and reservoir can be justified by a decrease in capital and present worth costs due to the need for smaller initial storage capacity and an absence of dredging costs.

  12. Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program -12184

    SciTech Connect (OSTI)

    Clayton, Christopher [U.S Department of Energy Office of Legacy Management, Washington, DC; Kothari, Vijendra [U.S Department of Energy Office of Legacy Management, Morgantown, West Virginia; Starr, Ken [U.S Department of Energy Office of Legacy Management, Westminster, Colorado; Widdop, Michael; Gillespie, Joey [SM Stoller Corporation, Grand Junction, Colorado

    2012-02-26T23:59:59.000Z

    The U. S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequately described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS&M) program: ? Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. ? DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. ? DOE must continue to maintain constructive relationships with the U.S. Army Corps of Engineers and state and federal regulators.

  13. Environmental summary of the F- and H-area seepage basins groundwater remediation project, Savannah River site

    SciTech Connect (OSTI)

    Friday, G.P.

    1997-12-31T23:59:59.000Z

    This report summarizes the results of nearly 70 investigations of the baseline environment, describes the remedial action, and identifies constituents of interest that pose potential risk to human health and the environment. It also proposes an approach for evaluating the effectiveness of the remedial action.

  14. Summary - Mitigation and Remediation of Mercury Contamination...

    Office of Environmental Management (EM)

    and surface water Hg remediation strategy for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve cost and technical improvements andor to...

  15. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01T23:59:59.000Z

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  16. Tank waste remediation system (TWRS) mission analysis

    SciTech Connect (OSTI)

    Rieck, R.H.

    1996-10-03T23:59:59.000Z

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  17. Recommendation 192: Comments on Remediation Effectiveness Report

    Broader source: Energy.gov [DOE]

    The ORSSAB Recommendations and Comments on the Draft 2010 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation.

  18. Tank Waste Remediation System Guide

    SciTech Connect (OSTI)

    Robershotte, M.A.; Dirks, L.L.; Seaver, D.A.; Bothers, A.J.; Madden, M.S.

    1995-06-01T23:59:59.000Z

    The scope, number and complexity of Tank Waste Remediation System (TWRS) decisions require an integrated, consistent, and logical approach to decision making. TWRS has adopted a seven-step decision process applicable to all decisions. Not all decisions, however, require the same degree of rigor/detail. The decision impact will dictate the appropriate required detail. In the entire process, values, both from the public as well as from the decision makers, play a key role. This document concludes with a general discussion of the implementation process that includes the roles of concerned parties.

  19. POST-REMEDIAL ACTION REPORT

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc. No.GS05:orPOST-REMEDIAL ACTION

  20. Groundwater Remediation Strategy Using Global Optimization Algorithms

    E-Print Network [OSTI]

    Neumaier, Arnold

    Groundwater Remediation Strategy Using Global Optimization Algorithms Shreedhar Maskey1 ; Andreja Jonoski2 ; and Dimitri P. Solomatine3 Abstract: The remediation of groundwater contamination by pumping as decision variables. Groundwater flow and particle-tracking models MODFLOW and MODPATH and a GO tool GLOBE

  1. The Formerly Utilized Sites Remedial Action Program (FUSRAP) was initiated in 1974 to identify, investigate, and clean up or control sites throughout the United States that were part of the Nation's early atomic weapons and energy programs during the 1940

    E-Print Network [OSTI]

    US Army Corps of Engineers

    , investigate, and clean up or control sites throughout the United States that were part of the Nation's early atomic weapons and energy programs during the 1940s, 1950s, and 1960s. Activities at the sites were performed by the Manhattan Engineer District or under the Atomic Energy Commission. Both were predecessors

  2. Savannah River Remediation Donates $10,000 to South Carolina...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Remediation Donates 10,000 to South Carolina State Nuclear Engineering Program Savannah River Remediation Donates 10,000 to South Carolina State Nuclear...

  3. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Terminal Waste Disposal and Remedial Action, Division of Remedial Action Projects (andor...

  4. Summary - Remedial System Performance Improvement for the 200...

    Office of Environmental Management (EM)

    primary remedial technology for groundwater. The remedial strategy should emphasize hydraulic containment for the most impacted portion of the groundwater plume, with compliance...

  5. acoustically enhanced remediation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detailed procedures for site assessment, remedial system design, and optimization of the remedial action operation (RAO) for the petroleum-hydrocarbons contaminated sites. In...

  6. Recovery Act Workers Remediate and Restore Former Waste Sites...

    Office of Environmental Management (EM)

    Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War...

  7. Preliminary Notice of Violation, Rocky Mountain Remediation Services...

    Broader source: Energy.gov (indexed) [DOE]

    June 6, 1997 Issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site,...

  8. Innovative technology for expedited site remediation of extensive surface and subsurface contamination

    SciTech Connect (OSTI)

    Audibert, J.M.E.; Lew, L.R.

    1994-12-31T23:59:59.000Z

    Large scale surface and subsurface contamination resulted from numerous releases of feed stock, process streams, waste streams, and final product at a major chemical plant. Soil and groundwater was contaminated by numerous compounds including lead, tetraethyl lead, ethylene dibromide, ethylene dichloride, and toluene. The state administrative order dictated that the site be investigated fully, that remedial alternative be evaluated, and that the site be remediated within a year period. Because of the acute toxicity and extreme volatility of tetraethyl lead and other organic compounds present at the site and the short time frame ordered by the regulators, innovative approaches were needed to carry out the remediation while protecting plant workers, remediation workers, and the public.

  9. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hart, J.G.

    1995-12-01T23:59:59.000Z

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

  10. Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This report on the BCV OU 2 at the Y-12 Plant, was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. It provides the Environmental Restoration Program with information about the results of the 1993 investigation. It includes information on risk assessments that have evaluated impacts to human health and the environment. Field activities included collection of subsurface soil samples, groundwater and surface water samples, and sediments and seep at the Rust Spoil Area (RSA), SY-200 Yard, and SA-1.

  11. Remediation of inactive mining and milling sites

    SciTech Connect (OSTI)

    Mao, H.; Pan, Y.; Li, R.

    1993-12-31T23:59:59.000Z

    The presentation introduces relevant environment remediation standards and describes some measures of engineering remedied for inactive mines and mills. Since 1990, the remediation of decommissioned nuclear facilities has obtained fixed financial aid from state government, part of which is offered to inactive mines and mills. Considering the environmental characteristics of Chinese uranium mines and mills, the major task of decommissioning is to prevent radon release, and keep surface water and underground water from contamination. In order to control the rate of radon release effectively, the authors` research institutes conducted a series of experiments on the covers of tailings with two kinds of different material, clay and concrete.

  12. From Bad to Worse: Senior economic inSecurity on the riSe

    E-Print Network [OSTI]

    Snider, Barry B.

    From Bad to Worse: Senior economic inSecurity on the riSe Tatjana Meschede Laura Sullivan Thomas the Senior Financial Stability Index, economic insecurity among senior households increased by one demographic groups, economic security of seniors has deteriorated further. Contrary to the popular belief

  13. Honda Research Institute USA, Inc. http://www.honda-ri.com

    E-Print Network [OSTI]

    Thrun, Sebastian

    Honda Research Institute USA, Inc. http://www.honda-ri.com Call For 2006 Summer Interns The computer science research section of Honda Research Institute USA (HRI-US), located in Mountain View internship will produce working concepts as well as publications, under close collaboration with Honda

  14. EUTROPHICATION A J Gold, University of Rhode Island, Kingston, RI, USA

    E-Print Network [OSTI]

    Gold, Art

    EUTROPHICATION A J Gold, University of Rhode Island, Kingston, RI, USA J T Sims, University of Delaware, Newark, DE, USA Ã? 2005, Elsevier Ltd. All Rights Reserved. Introduction Eutrophication describes in nutrient inputs. Phosphorus (P) and nitrogen (N) are the nutrients that drive most eutrophication processes

  15. SwRI Patents Southwest Research Institute -Page 1 of 85

    E-Print Network [OSTI]

    Chapman, Clark R.

    ,720,184 5/13/2014 Use of Braking Energy to Augment Exhaust Heat for Improved Operation of Exhaust Aftertreatment Devices Cynthia C. Webb, Karl J Kreder III SwRI 8,714,121 5/6/2014 Split-Cycle Air Hybrid V

  16. Type B Accident Investigation Board Report on the November 1...

    Office of Environmental Management (EM)

    B Accident Investigation Board Report on the November 1, 1999, Construction Injury at the Monticello Mill Tailings Remedial Action Site, Monticello, Utah Type B Accident...

  17. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan

    SciTech Connect (OSTI)

    D. E. Shanklin

    2006-06-01T23:59:59.000Z

    This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

  18. Electrolytic remediation of chromated copper arsenate wastes

    E-Print Network [OSTI]

    Stern, Heather A. G. (Heather Ann Ganung)

    2006-01-01T23:59:59.000Z

    While chromated copper arsenate (CCA) has proven to be exceptionally effective in protecting wood from rot and infestation, its toxic nature has led to the problem of disposal of CCA-treated lumber and remediation of waters ...

  19. REAL TIME DATA FOR REMEDIATION ACTIVITIES [11505

    SciTech Connect (OSTI)

    BROCK CT

    2011-01-13T23:59:59.000Z

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  20. List of Contractors to Support Anthrax Remediation

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Lesperance, Ann M.

    2010-05-14T23:59:59.000Z

    This document responds to a need identified by private sector businesses for information on contractors that may be qualified to support building remediation efforts following a wide-area anthrax release.

  1. Screening of Potential Remediation Methods for the 200-ZP-1 Operable Unit at the Hanford Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Nimmons, Michael J.; Johnson, Christian D.; Dresel, P EVAN.; Murray, Christopher J.

    2006-08-07T23:59:59.000Z

    A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-ZP-1 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final. The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers). COC with similar properties were grouped for the screening evaluation. The screening evaluation was conducted in two primary steps. The initial screening step evaluated potential remediation methods based on whether they can be effectively applied within the environmental setting of the 200-ZP-1 Operable Unit for the specified contaminants. In the second step, potential remediation methods were screened using scoping calculations to estimate the scale of infrastructure, overall quantities of reagents, and conceptual approach for applying the method for each defined grouping of COC. Based on these estimates, each method was screened with respect to effectiveness, implementability, and relative cost categories of the CERCLA feasibility study screening process defined in EPA guidance.

  2. Steven Humphrey Named 2009 URITC Student of the Year The University of Rhode Island Transportation Center selected Steven Humphrey of Tiverton, RI as its

    E-Print Network [OSTI]

    Rhode Island, University of

    Transportation Center selected Steven Humphrey of Tiverton, RI as its 2009 Student of the Year in recognition

  3. Water as a Reagent for Soil Remediation

    SciTech Connect (OSTI)

    Jayaweera, Indira S.; Marti-Perez, Montserrat; Diaz-Ferrero, Jordi; Sanjurjo, Angel

    2003-03-06T23:59:59.000Z

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, for remediating petroleum-contaminated soils. The bench-scale demonstration of the process has shown great promise, and the implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and provide a standalone technology for removal of both volatile and heavy components from contaminated soil.

  4. Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

    SciTech Connect (OSTI)

    Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z. F.; Freedman, Vicky L.; Ankeny, Mark; Hull, Laurence; Oostrom, Martinus; Freshley, Mark D.; Wellman, Dawn M.

    2009-01-16T23:59:59.000Z

    Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, “Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,” submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to 1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, 2) study the sediment air permeability influence on injection pressure, 3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, 4) test amendment distance (and mass) delivery by foam from the injection point, 5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and 6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate-scale tests will be used to bridge the gap between the small-scale foam transport studies and the field-scale demonstration. Numerical simulation studies on foam delivery under vadose conditions will be performed to simulate observed foam transport behavior under vadose zone conditions and predict the foam delivery performance at field-scale.

  5. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)

    1995-10-01T23:59:59.000Z

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase I consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  6. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01T23:59:59.000Z

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  7. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14T23:59:59.000Z

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

  8. Overview of Green and Sustainable Remediation for Soil and Groundwater Remediation - 12545

    SciTech Connect (OSTI)

    Simpkin, Thomas J. [CH2M HILL, Denver, Colorado (United States); Favara, Paul [CH2M HILL, Gainesville, Florida (United States)

    2012-07-01T23:59:59.000Z

    Making remediation efforts more 'sustainable' or 'green' is a topic of great interest in the remediation community. It has been spurred on by Executive Orders from the White House, as well as Department of Energy (DOE) sustainability plans. In private industry, it is motivated by corporate sustainability goals and corporate social responsibility. It has spawned new organizations, areas of discussion, tools and practices, and guidance documents around sustainable remediation or green remediation. Green remediation can be thought of as a subset of sustainable remediation and is mostly focused on reducing the environmental footprint of cleanup efforts. Sustainable remediation includes both social and economic considerations, in addition to environmental. Application of both green and sustainable remediation (GSR) may involve two primary activities. The first is to develop technologies and alternatives that are greener or more sustainable. This can also include making existing remediation approaches greener or more sustainable. The second is to include GSR criteria in the evaluation of remediation alternatives and strategies. In other words, to include these GSR criteria in the evaluation of alternatives in a feasibility study. In some cases, regulatory frameworks allow the flexibility to include GSR criteria into the evaluation process (e.g., state cleanup programs). In other cases, regulations allow less flexibility to include the evaluation of GSR criteria (e.g., Comprehensive Environmental Response Compensation, and Liability Act (CERCLA)). New regulatory guidance and tools will be required to include these criteria in typical feasibility studies. GSR provides a number of challenges for remediation professionals performing soil and groundwater remediation projects. Probably the most significant is just trying to stay on top of the ever changing landscape of products, tools, and guidance documents coming out of various groups, the US EPA, and states. However, this process also provides new opportunities to think differently and look at the bigger picture of the overall benefit we are providing with our remediation projects. The opportunities from the move towards GSR are very real. They will help us make remedial actions truly more beneficial to the environment and to society. They will also allow (or force) remediation practitioners to think outside of the usual realm of approaches to find newer and more beneficial technologies. (authors)

  9. SUSTAINABLE REMEDIATION SOFTWARE TOOL EXERCISE AND EVALUATION

    SciTech Connect (OSTI)

    Kohn, J.; Nichols, R.; Looney, B.

    2011-05-12T23:59:59.000Z

    The goal of this study was to examine two different software tools designed to account for the environmental impacts of remediation projects. Three case studies from the Savannah River Site (SRS) near Aiken, SC were used to exercise SiteWise (SW) and Sustainable Remediation Tool (SRT) by including both traditional and novel remediation techniques, contaminants, and contaminated media. This study combined retrospective analysis of implemented projects with prospective analysis of options that were not implemented. Input data were derived from engineering plans, project reports, and planning documents with a few factors supplied from calculations based on Life Cycle Assessment (LCA). Conclusions drawn from software output were generally consistent within a tool; both tools identified the same remediation options as the 'best' for a given site. Magnitudes of impacts varied between the two tools, and it was not always possible to identify the source of the disagreement. The tools differed in their quantitative approaches: SRT based impacts on specific contaminants, media, and site geometry and modeled contaminant removal. SW based impacts on processes and equipment instead of chemical modeling. While SW was able to handle greater variety in remediation scenarios, it did not include a measure of the effectiveness of the scenario.

  10. Incorporating Sustainability into Brownfield Remediation and Redevelopment in Mega-project: Experience and Lessons Learnt at the London Olympic Park

    E-Print Network [OSTI]

    Hou, Deyi; Al-Tabbaa, Abir; Hellings, Jan

    2014-01-01T23:59:59.000Z

    sustainability issues. The third source of information is qualitative interview with two anonymous decision makers who worked on the remediation at the Olympic Park site. The interviewees were assured anonymity and confidentiality, and that no business... sensitive information would be released. This source of information was used to identify challenges and lessons learned during the course of the remediation process. This study uses a single, exploratory case study to investigate how sustainability...

  11. Tank waste remediation system operational scenario

    SciTech Connect (OSTI)

    Johnson, M.E.

    1995-05-01T23:59:59.000Z

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.

  12. Confirmatory radiological survey of the Grand Junction Projects Office Remedial Action Project exterior portions, 1989-1995

    SciTech Connect (OSTI)

    Forbes, G.H.; Egidi, P.V.

    1997-04-01T23:59:59.000Z

    The purpose of this independent assessment was to provide the U.S. Department of Energy (DOE) with an independent verification (IV) that the soil at the Grand Junction Projects Office (GJPO) complies with applicable DOE guidelines. Oak Ridge National Laboratory/ Environmental Technology Section (ORNL/ETS) which is also located at the GJPO, was assigned by DOE as the Independent Verification Contractor (IVC). The assessment included reviews of the decontamination and decommissioning plan, annual environmental monitoring reports, data in the pre- and post-remedial action reports, reassessment reports and IV surveys. Procedures and field methods used during the remediation were reviewed, commented on, and amended as needed. The IV surveys included beta-gamma and gamma radiation scans, soil sampling and analyses. Based on the data presented in the post-remedial action report and the results of the IV surveys, the remediation of the outdoor portions of the GJPO has achieved the objectives. Residual deposits of uranium contamination may exist under asphalt because the original characterization was not designed to identify uranium and subsequent investigations were limited. The IVC recommends that this be addressed with the additional remediation. The IVC is working with the remedial action contractor (RAC) to assure that final documentation WM be sufficient for certification. The IVC will address additional remediation of buildings, associated utilities, and groundwater in separate reports. Therefore, this is considered a partial verification.

  13. How to accelerate the Fernald remediation

    SciTech Connect (OSTI)

    Yates, M.K. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States). Fernald Environmental Management Project; Reising, J. [USDOE Cincinnati, OH (United States)

    1996-01-10T23:59:59.000Z

    The Fernald Environmental Management Project is unique among Department of Energy (DOE) sites by virtue of successful efforts by the Fernald Environmental Restoration Management Corporation (FERMCO) and DOE-Fernald Area Office (FN) in securing a stak-eholder-assisted final site closure vision and all Record of Decisions (ROD) or Interim RODs required to set the stage for final remediation. DOE and FERMCO have agreed in principle on a Ten Year Plan which accelerates all activities to remediate the site in approximately half the target schedule. This paper presents the path that led to the current Ten Year Plan, the key elements of the plan and the implementation strategies.

  14. Remediation of Uranium-contaminated Groundwater by Sorption onto Hydroxyapatite Derived

    E-Print Network [OSTI]

    Clement, Prabhakar

    of CFHA to remove uranium (U(VI)) from aqueous phase was investigated using both batch and column experiRemediation of Uranium-contaminated Groundwater by Sorption onto Hydroxyapatite Derived from, with maximum surface area, exhibited significant U (VI) removal efficiency. Column experiments were conducted

  15. Audit of Selected Hazardous Waste Remedial Actions Program Costs...

    Office of Environmental Management (EM)

    of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous...

  16. MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION

    E-Print Network [OSTI]

    MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION April 13, 2004 Prepared for. Wright Street Littleton, CO 80127 #12;MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI Site Remediation By: Date: Robert Krumberger Project Manager New Horizons Environmental Consultants, Inc. Approved By

  17. Groundwater remediation at a former oil service site

    E-Print Network [OSTI]

    Han, Liping

    2005-08-29T23:59:59.000Z

    for computer modeling and remediation strategy evaluation. Computer models were used to simulate site conditions and assist in remedy design for the site. Current pump-and-treat systems were evaluated by the model under various scenarios. Recommendations were...

  18. Acoustically enhanced remediation of contaminated soils and ground water. Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The Phase 1 laboratory bench-scale investigation results have shown that acoustically enhanced remediation (AER) technology can significantly accelerate the ground water remediation of non-aqueous phase liquids (NAPLs) in unconsolidated soils. The testing also determined some of the acoustic parameters which maximize fluid and contaminant extraction rates. A technology merit and trade analysis identified the conditions under which AER could be successfully deployed in the field, and an analysis of existing acoustical sources and varying methods for their deployment found that AER technology can be successfully deployed in-situ. Current estimates of deployability indicate that a NAPL plume 150 ft in diameter can be readily remediated. This program focused on unconsolidated soils because of the large number of remediation sites located in this type of hydrogeologic setting throughout the nation. It also focused on NAPLs and low permeability soil because of the inherent difficult in the remediation of NAPLs and the significant time and cost impact caused by contaminated low permeability soils. This overall program is recommended for Phase 2 which will address the technology scaling requirements for a field scale test.

  19. Sitewide soil and debris management program for a DOE site under remediation

    SciTech Connect (OSTI)

    Harvey, B.F. [Parsons Environmental Services, Inc., Fairfield, OH (United States)

    1993-11-01T23:59:59.000Z

    In 1986, the United States Department of Energy (DOE) and the United States Environmental Protection Agency (US EPA) entered into a Federal Facility Compliance Agreement (FFCA). The agreement included provisions to investigate and define the nature and extent of contamination and to determine the necessity for remediation at the Fernald Environmental Management Project (FEMP) near Cincinnati, Ohio. The agreement is also pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Uranium enrichment production activities at the facility ceased in 1989. The FEMP mission is now environmental clean-up and remediation under the management of the Fernald Environmental Restoration Management Corporation. This report describes objectives and activities of remediation efforts at FEMP.

  20. IMPROVING THE EFFICIENCY OF AN EXISTING GROUNDWATER REMEDIATION SYSTEM

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    , Environmental Remediation Aimee Zack ­ Manager, Environmental Remediation #12;CORPORATE SUSTAINABILITY CREATES and sustainability of environmental remedies 2 #12;SITE BACKGROUND The Shoreham Facility 230 acres Northeast Took advantage of available rebates to install solar panels ­ Southern Solar Array: 60 panel system (11

  1. Tank waste remediation system program plan

    SciTech Connect (OSTI)

    Powell, R.W.

    1998-01-05T23:59:59.000Z

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  2. BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION

    E-Print Network [OSTI]

    OU III BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION FINAL Prepared by: Brookhaven FOR U.S. Department of Energy March 2009 #12;i OU III BUILDING 96 RECOMMENDATION FOR SOURCE AREA..................................................................................................................4 4.0 Building 96 ­ Operational Background

  3. Procurement under Superfund remedial cooperative agreements

    SciTech Connect (OSTI)

    Not Available

    1988-06-01T23:59:59.000Z

    This document provides guidance on procuring services during remedial-response activities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), or Superfund, as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA). The topics covered in the guidance include procurement requirements; procurement of engineering services, including types of services provided; procurement of construction contractors; and subagreement administration.

  4. groundwater nitrogen source identification and remediation

    E-Print Network [OSTI]

    groundwater nitrogen source identification and remediation The Seymour Aquifer is a shallow aquifer, the Seymour Aquifer has the highest groundwater pollution potential of all the major aqui- fers in Texas drinking water standards. Potential sources of nitrate in groundwater include atmospheric deposi- tion

  5. Remediation of Hylebos Waterway (Tacoma, WA): A common sense approach to determining contaminated sediment volumes

    SciTech Connect (OSTI)

    Fuglevand, P. [Dalton, Olmsted and Fuglevand, Inc., Bothell, WA (United States); Revelas, G.; Striplin, B.; Striplin, P. [Striplin Environmental Associates, Inc., Olympia, WA (United States)

    1995-12-31T23:59:59.000Z

    Hylebos Waterway is a three mile long industrial waterway located in Commencement Bay, Washington. A CERCLA program RI/FS, conducted in the mid-1980`s, found that surface sediments (0--2 cm) were contaminated with chlorinated organics, PAHs, and metals. An ongoing pre-remedial design effort, initiated in 1993, is evaluating natural recovery and four sediment confinement options for sediments that exceed programmatic sediment quality objectives: confined aquatic disposal, near-shore disposal, upland disposal, and in-place capping. The first three confinement options require dredging of contaminated sediments which, in turn, requires accurate determination of the three dimensional distribution of contaminated sediments. To place a maximum depth boundary on the sediment sampling approach, isopach maps were created by contouring the difference between the deepest historic dredging depth and current depth along the entire waterway. These isopach maps revealed the pattern of post-industrial sediment deposition in the waterway. For example, in some areas, little or no sediment accumulation had occurred in the navigation channel. Conversely, significant accumulation had occurred along some channel edges and in near-shore areas as the result of deposition, bank sloughing and historic dredging/filling activities. The isopach maps were used to place a lower depth boundary on waterway-wide sediment contamination and to establish the maximum core sampling depth required to reach ``native`` sediments, i.e., those below the deepest historic dredging depth and believed to be uncontaminated. Subsequent geo-technical and chemical analyses of the core samples confirmed the accuracy of the isopach approach. The data generated from this sampling effort are being used to estimate the areas and volumes of subtidal sediments requiring remedial action.

  6. Life-cycle framework for assessment of site remediation options: Method and generic survey

    SciTech Connect (OSTI)

    Diamond, M.L.; Page, C.A. [Univ. of Toronto, Ontario (Canada). Dept. of Geography; Campbell, M. [Toronto Public Health, North York, Ontario (Canada); McKenna, S. [City of Toronto, Ontario (Canada). Community and Neighbourhood Services; Lall, R. [R. Addison Lall and Associates, Toronto, Ontario (Canada)

    1999-04-01T23:59:59.000Z

    To address burdens associated with contaminated sites and issuing from remediation activities, a life-cycle framework (LCF) was developed, including an approach based on life-cycle management (LCM) and an adaptation of life-cycle assessment (LCA). Intended for application to a wide range of remediation options, the objective of the LCF is to broaden consideration of potential impacts beyond the contaminated site and over a prolonged time frame. The LCM approach is a qualitative method for investigating remediation activities from a life-cycle perspective. This adaptation of the more rigorous, quantitative LCA method has involved specifying appropriate life-cycle stages, a long-term time horizon, a spatial boundary encompassing the contaminated site and other affected locations, a process boundary containing the contaminated soil, and an impact assessment method that considers site- and process-related metrics. To assess the suitability of LCM as a decision-making tool, six generic site remediation options were investigated: no action, encapsulation, excavation and disposal, vapor extraction, in situ bioremediation, and soil washing. The analysis exemplified tradeoffs between the streamlined LCM, and comprehensive, quantitative LCA approaches, and highlighted potential environmental and human health impacts arising from the six technologies investigated.

  7. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III

    SciTech Connect (OSTI)

    R. P. Wells

    2006-09-19T23:59:59.000Z

    The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

  8. Experimental Approach to Stellar Reactions with RI Beams - Overview of Experiments on Hydrogen Burning -

    E-Print Network [OSTI]

    S. Kubono

    2007-05-28T23:59:59.000Z

    After a short review on resent developments achieved in astrophysics in the past years since last NN conference, experimental efforts in nuclear astrophysics primarily with RI beams were revisited, especially on the works relevant to neutron-deficient nuclei, the other half of the nuclear chart reviewed by Rehm in this conference. A new interesting recognition discussed in the past years is the important role of explosive hydrogen burning process in the very early stage of type II supernovae. A new broadening research field related to the first generation stars both from observations as well as from nuclear astrophysics was also discussed.

  9. Streamlining the OU3 RI/FS process to accommodate decontamination and dismantlement at Fernald

    SciTech Connect (OSTI)

    Hampshire, L.H.; Dalga, D.G.; Clark, T.R.; Throckmorton, J.D. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Janke, R.J. [USDOE Fernald Field Office, OH (United States)

    1993-12-01T23:59:59.000Z

    The importance of a proper and complete assessment of data needs, relative to the characterization of a site, can never be understated. Not only will this assessment assure that the appropriate types, levels, and numbers of samples are taken, but as evidenced by the subject project, can lead to significant time and cost savings. The Fernald Environmental Management Project (FEMP), formerly known as the Feed Materials Production Center (FMPC), covers an area measuring 4.25 square kilometers (1,050 acres) and is located in a rural agricultural area about 28 kilometers (17 miles) northwest of downtown Cincinnati, Ohio. The site is near the villages of Fernald, New Haven, Ross, and Shandon, Ohio. After providing some general background information on the site, and the subject RI/FS, the remainder of this presentation will focus on how the sampling approach was changed to reflect a reassessment of data needs, and the resultant benefits of that change. Specifically, discussion will be provided relative to the initial approach proposed for characterizing the contamination at the site, the revised, improved sampling approach contained in the approved RI/FS Work Plan Addendum, and the benefits derived from this change in the sampling approach.

  10. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  11. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.

  12. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C.

    1997-02-01T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.

  13. SRS Burial Ground Complex: Remediation in Progress

    SciTech Connect (OSTI)

    Griffin, M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Crapse, B.; Cowan, S.

    1998-01-21T23:59:59.000Z

    Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities.

  14. Thixotropic gel for vadose zone remediation

    DOE Patents [OSTI]

    Rhia, Brian D. (Augusta, GA)

    2011-03-01T23:59:59.000Z

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  15. Thixotropic gel for vadose zone remediation

    DOE Patents [OSTI]

    Riha, Brian D.

    2012-07-03T23:59:59.000Z

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  16. Remediation and Recycling of Linde FUSRAP Materials

    SciTech Connect (OSTI)

    Coutts, P. W.; Franz, J. P.; Rehmann, M. R.

    2002-02-27T23:59:59.000Z

    During World War II, the Manhattan Engineering District (MED) utilized facilities in the Buffalo, New York area to extract natural uranium from uranium-bearing ores. The Linde property is one of several properties within the Tonawanda, New York Formerly Utilized Sites Remedial Action Program (FUSRAP) site, which includes Linde, Ashland 1, Ashland 2, and Seaway. Union Carbide Corporation's Linde Division was placed under contract with the Manhattan Engineering District (MED) from 1942 to 1946 to extract uranium from seven different ore sources: four African pitchblende ores and three domestic ores. Over the years, erosion and weathering have spread contamination from the residuals handled and disposed of at Linde to adjacent soils. The U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) negotiated a Federal Facilities Agreement (FFA) governing remediation of the Linde property. In Fiscal Year (FY) 1998, Congress transferred cleanup management responsibility for the sites in the FUSRAP program, including the Linde Site, from the DOE to the U.S. Army Corps of Engineers (USACE), with the charge to commence cleanup promptly. All actions by the USACE at the Linde Site are being conducted subject to the administrative, procedural, and regulatory provisions of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the existing FFA. USACE issued a Proposed Plan for the Linde Property in 1999 and a Final Record of Decision (ROD) in 2000. USACE worked with the local community near the Tonawanda site, and after considering public comment, selected the remedy calling for removing soils that exceed the site-specific cleanup standard, and transporting the contaminated material to off-site locations. The selected remedy is protective of human health and the environment, complies with Federal and State requirements, and meets commitments to the community.

  17. Laboratory/industry partnerships for environmental remediation

    SciTech Connect (OSTI)

    Beskid, N.J.; Zussman, S.K.

    1994-09-01T23:59:59.000Z

    There are two measures of ``successful`` technology transfer in DOE`s environmental restoration and waste management program. The first is remediation of DOE sites, and the second is commercialization of an environmental remediation process or product. The ideal case merges these two in laboratory/industry partnerships for environmental remediation. The elements to be discussed in terms of their effectiveness in aiding technology transfer include: a decision-making champion; timely and sufficient funding; well organized technology transfer function; well defined DOE and commercial markets; and industry/commercial partnering. Several case studies are presented, including the successful commercialization of a process for vitrification of low-level radioactive waste, the commercial marketing of software for hazardous waste characterization, and the application of a monitoring technique that has won a prestigious technical award. Case studies will include: vitrification of low-level radioactive waste (GTS Duratek, Columbia, MD); borehole liner for emplacing instrumentation and sampling groundwater (Science and Engineering Associates, Inc., Santa Fe, NM); electronic cone penetrometer (Applied Research Associates, Inc., South Royalton, VT); and software for hazardous waste monitoring ConSolve, Inc. (Lexington, MA). The roles of the Department of Energy and Argonne National Laboratory in these successes will be characterized.

  18. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  19. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Remedial Action Selection Report. Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This proposed remedial action plan incorporates the results of detailed investigation of geologic, geomorphic, and seismic conditions at the proposed disposal site. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/waterborne materials to a permanent repository at the proposed Burro Canyon disposal cell. The proposed disposal site will be geomorphically stable. Seismic design parameters were developed for the geotechnical analyses of the proposed cell. Cell stability was analyzed to ensure long-term performance of the disposal cell in meeting design standards, including slope stability, settlement, and liquefaction potential. The proposed cell cover and erosion protection features were also analyzed and designed to protect the RRM (residual radioactive materials) against surface water and wind erosion. The location of the proposed cell precludes the need for permanent drainage or interceptor ditches. Rock to be used on the cell top-, side-, and toeslopes was sized to withstand probable maximum precipitation events.

  20. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and...

  1. Utah Division of Environmental Response and Remediation Underground...

    Open Energy Info (EERE)

    Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Division of...

  2. Mitigation and Remediation of Mercury Contamination at the Y...

    Office of Environmental Management (EM)

    and surface water Hg remediation strategy for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve cost and technical improvements andor to...

  3. Economical Remediation of Plastic Waste into Advanced Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economical Remediation of Plastic Waste into Advanced Materials with Coatings Technology available for licensing: An autogenic pyrolysis process to convert plastic waste into...

  4. Recovery Act Workers Remediate and Restore Former Waste Sites...

    Office of Environmental Management (EM)

    Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint RICHLAND, Wash. - The Hanford Site is looking greener these days after American...

  5. Attenuation-Based Remedies in the Subsurface Applied Field Research...

    Office of Environmental Management (EM)

    to support research activities and remedial decision making. Led by the Savannah River National Laboratory (SRNL), the initiative is a collaborative effort that leverages...

  6. Environmental Remediation program to perform slope-side cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perform slope-side cleanup Environmental Remediation program to perform slope-side cleanup near Smith's Marketplace Los Alamos National Laboratory is performing a high-angle...

  7. Iowa Land Recycling and Environmental Remediation Standards Act (Iowa)

    Broader source: Energy.gov [DOE]

    This chapter establishes remediation standards for land, other than standards for water quality, hazardous conditions, underground storage tanks, and groundwater protection, which are discussed in...

  8. Different Strategies for Biological Remediation of Perchlorate Contaminated Groundwater

    E-Print Network [OSTI]

    Wang, Yue

    2012-01-01T23:59:59.000Z

    Respiring Microorganisms. Bioremediation 1998. 2(2): p. 69-Analysis and Remediation. Bioremediation Journal, 1998. 2(of in situ perchlorate bioremediation at the Indian Head

  9. act cercla remedial: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 86 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  10. accelerated remedial strategy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 151 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  11. area remediation case: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 112 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  12. antimalarial herbal remedies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 105 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  13. aquifer remediation design: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 207 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  14. active chemical remediation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 142 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  15. antimalarial phytotherapy remedies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 65 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  16. area including remediation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 117 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  17. Final Environmental Impact Statement for the Tank Waste Remediation...

    Broader source: Energy.gov (indexed) [DOE]

    to radioactive sources. They would occur while managing the tank farms and performing remedial activities. Exposures are closely monitored, and the radiation dose a worker may...

  18. advanced remediation technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 374 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  19. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) hpwgwembrittlementsteelssofronis.pdf More Documents & Publications Webinar: I2CNER: An...

  20. Historical hydronuclear testing: Characterization and remediation technologies

    SciTech Connect (OSTI)

    Shaulis, L.; Wilson, G.; Jacobson, R.

    1997-09-01T23:59:59.000Z

    This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer{trademark}, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made.

  1. Novel application of foam for in-situ soil remediation. Topical report, April 1992-September 1993

    SciTech Connect (OSTI)

    Kilbane, J.J.; Liu, B.Y.; Conrad, J.R.; Srivastava, V.J.

    1997-08-01T23:59:59.000Z

    The objective of the task is to evaluate the use of foams to deliver surfactants, bacteria, solvents, and/or nutrients to promote in-situ bioremediation of soils contaminated with polynuclear aromatic hydrocarbons (PAHs) or to evaluate the use of foams to render contaminants available for physical collection and subsequent degradation. This task consists of two subtasks: (1) Literature Survey of Related Technologies and (2) Preliminary Experimental Investigations of Interfacial Phenomenon and the Use of Foams to Remediate Contaminated Sites. An extensive literature review was completed in which abstracts of more than one hundred technical articles were prepared. Laboratory studies to investigate the use of foams to remediate PAH-contaminated soil were performed with several Manufactured Gas Plant (MGP) soils as well as with model experimental systems.

  2. On Maximum Available Feedback and PID Control -1 IEEE SMC UK&RI Applied Cybernetics Dr Richard Mitchell 2005

    E-Print Network [OSTI]

    Mitchell, Richard

    On Maximum Available Feedback and PID Control - 1 IEEE SMC UK&RI Applied Cybernetics © Dr Richard Mitchell 2005 ON MAXIMUM AVAILABLE FEEDBACK AND PID CONTROL Dr Richard Mitchell, Cybernetics, University frequencies A recent IEEE SMC Paper describes a robust PID controller whose phase is flat at key frequencies

  3. Portsmouth Remedial Actions Documents | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T enAmount forDecontamination and DecommissioningRemedial

  4. Portsmouth Remediation Scope | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth Site » Portsmouth Community Outreach » PortsmouthRemediation Scope

  5. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    D. Vandel

    2003-09-01T23:59:59.000Z

    This remedial action work plan identifies the approach and requirements for implementing the medical zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Engineering and Environmental Laboratory (INEEL). This plan details management approach for the construction and operation of the New Pump and Treat Facility. As identified in the remedial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action. This work plan was originally prepared as an early implementation of the final Phase C remediation. At that time, The Phase C implementation strategy was to use this document as the overall Phase C Work Plan and was to be revised to include the remedial actions for the other remedial zones (hotspot and distal zones). After the completion of Record of Decision Amendment: Technical Support Facility Injection Well (TSF-05) and Surrounding Groundwater Contamination (TSF-23) and Miscellaneous No Action Sites, Final Remedial Action, it was determined that each remedial zone would have it own stand-alone remedial action work plan. Revision 1 of this document converts this document to a stand-alone remedial action plan specific to the implementation of the New Pump and Treat Facility used for plume remediation within the medical zone of the OU 1-07B contaminated plume.

  6. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    SciTech Connect (OSTI)

    Lewis, BE

    2003-10-07T23:59:59.000Z

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on the various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  7. New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    Nelson, L. O.

    2007-06-12T23:59:59.000Z

    This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

  8. Installation of an innovative remedial technology

    SciTech Connect (OSTI)

    Hines, B. [CDM Federal Programs Corp., Kevil, KY (United States)

    1995-12-31T23:59:59.000Z

    The major goal of the Lasagna{trademark} project was to design, construct, install, and operate an in situ remediation system in low-permeability soil. A new technology--the Lasagna process--uses electro-osmosis to move contaminated groundwater through treatment zones. The treatment zones are installed in contaminated soils, thereby forming an integrated in situ remedial process. Electro-osmosis, well known for its effectiveness and extremely low power consumption, uses a direct current to cause Groundwater to travel through low-permeability soil. When a bench-scale version of the technology was 98 percent effective in removing contamination, an actual field test was the next step. The site chosen for this first field effort was the DOE-owned Paducah Gaseous Diffusion Plant located in Paducah, Kentucky. The target contaminant for this project was trichloroethylene (TCE) because it is found at many sites across the country and is present at approximately 60 percent of DOE`s sites.

  9. SIMULATION OF REMEDIATION ALTERNATIVES FOR A 137Cs CONTAMINATED SOIL.

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    SIMULATION OF REMEDIATION ALTERNATIVES FOR A 137Cs CONTAMINATED SOIL. THE NUMERICAL MODELING analyze remediation alternatives for a soil contaminated with 137Cs, which sorbs strongly onto the clayey. The mobile portion of the soil (macropores) retains little water and cesium. The natural attenuation option

  10. Chapter 2. Assessment and Remediation of Residential Lead Exposure

    E-Print Network [OSTI]

    Chapter 2. Assessment and Remediation of Residential Lead Exposure Prepared by Thomas D. Matte, MD of Residential Lead Exposure Table 2.1. Summary of Recommendations for Assessment and Remediation of Residential Lead Exposure Make prompt and effective environmental management for children with EBLLs the highest

  11. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  12. Optimal Groundwater Remediation Network Design using Selective Membranes

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Optimal Groundwater Remediation Network Design using Selective Membranes Eugenio Bringasa with the optimal synthesis of groundwater remediation networks for the valorization of anionic pollutants by means possible design alternatives are proposed. The aim of this work is to obtain a minimum cost groundwater

  13. DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION

    SciTech Connect (OSTI)

    Barry L. Burks

    2002-12-01T23:59:59.000Z

    The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

  14. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

  15. Analyzing remediation technologies for Department of Energy sites contaminated with DNAPL pollutants. Master`s thesis

    SciTech Connect (OSTI)

    Papatyi, A.F.

    1997-03-01T23:59:59.000Z

    The Department of Energy is in the process of conducting a Remedial Investigation/Feasibility Study for a site contaminated with Dense Non-Aqueous Phase Liquid (DNAPL) pollutants at their Paducah Kentucky facility. This thesis effort focuses on acquiring insight into a number of remediation technology trains that are candidates for the Paducah site. This insight is used to recommend and justify the screening of candidate technology trains. The research makes use of two decision analysis models (one is deterministic, the other is probabilistic) built to provide a quantitative assessment of the candidate technology trains. Dominance considerations and multi-attribute utility theory are utilized to make the quantitative assessments and to gain insight into each candidate technology train. The results of the analysis provide the DOE with a rational justification for screening 55 of the 58 candidate technology trains from further consideration.

  16. Regulatory strategies for remediation of contaminated sediments

    SciTech Connect (OSTI)

    Zar, H. [Environmental Protection Agency, Chicago, IL (United States)

    1995-12-31T23:59:59.000Z

    A number of federal and state laws may be used to obtain remediation of contaminated sediments in the US. Until recently, the most prominent approaches at the federal level were the use of Superfund authorities for sites on the National priority List and navigational dredging activity by the Corps of Engineers. However, with the increasing concern about contaminated sediments, regional offices of the US Environmental Protection Agency (EPA) and state agencies have begun to use a greater variety of regulatory approaches, both individually and in combination. These efforts have been particularly evident in the Great Lakes and are now being extended nationwide, as embodied in the EPA`s Contaminated Sediment Management Strategy. This paper will describe some of the regulatory approaches being applied, case examples in the Great Lakes area, and the expected directions of these efforts, as embodied in the national strategy.

  17. Environmental remediation and waste management information systems

    SciTech Connect (OSTI)

    Harrington, M.W.; Harlan, C.P.

    1993-12-31T23:59:59.000Z

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

  18. DWPF SMECT PVV SAMPLE CHARACTERIZATION AND REMEDIATION

    SciTech Connect (OSTI)

    Bannochie, C.; Crawford, C.

    2013-06-18T23:59:59.000Z

    On April 2, 2013, a solid sample of material collected from the Defense Waste Processing Facility’s Process Vessel Vent (PVV) jumper for the Slurry Mix Evaporator Condensate Tank (SMECT) was received at the Savannah River National Laboratory (SRNL). DWPF has experienced pressure spikes within the SMECT and other process vessels which have resulted in processing delays while a vacuum was re-established. Work on this sample was requested in a Technical Assistance Request (TAR). This document reports the results of chemical and physical property measurements made on the sample, as well as insights into the possible impact to the material using DWPF’s proposed remediation methods. DWPF was interested in what the facility could expect when the material was exposed to either 8M nitric acid or 90% formic acid, the two materials they have the ability to flush through the PVV line in addition to process water once the line is capped off during a facility outage.

  19. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    SciTech Connect (OSTI)

    Lewis, BE

    2003-10-07T23:59:59.000Z

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach to waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435,000 below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  20. Uranium Mill Tailings Remedial Action 1993 Roadmap

    SciTech Connect (OSTI)

    Not Available

    1993-10-18T23:59:59.000Z

    The 1993 Roadmap for the Uranium Mill Tailings Remedial Action (UMTRA) Project office is a tool to assess and resolve issues. The US Department of Energy (DOE) UMTRA Project Office uses the nine-step roadmapping process as a basis for Surface and Groundwater Project planning. This is the second year the Roadmap document has been used to identify key issues and assumptions, develop logic diagrams, and outline milestones. This document is a key element of the DOE planning process. A multi-interest group used the nine-step process to focus on issues, root cause analysis and resolutions. This core group updated and incorporated comments on the basic assumptions, then used these assumptions to identify issues. The list of assumptions was categorized into the following areas: institutional, regulatory compliance, project management, human resource requirements, and other site-specific assumptions. The group identified 10 issues in the analysis phase. All of the issues are ranked according to importance. The number one issue from the 1992 Roadmap, ``Lack of sufficient human resources,`` remained the number one issue in 1993. The issues and their ranking are as follows: Lack of sufficient human resources; increasing regulatory requirements; unresolved groundwater issues; extension of UMTRCA through September 30, 1998; lack of post-UMTRA and post-cell closure policies; unpredictable amounts and timing of Federal funding; lack of regulatory compliance agreements; problem with states providing their share of remedial action costs; different interests and priorities among participants; and technology development/transfer. The issues are outlined and analyzed in detail in Section 8.0, with a schedule for resolution of these issues in Section 9.0.

  1. Effects of remediation amendments on vadose zone microorganisms

    SciTech Connect (OSTI)

    Miller, Hannah M.; Tilton, Fred A.

    2012-08-10T23:59:59.000Z

    Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had no affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.

  2. Almost remediation of saltwater spills at E and P sites

    SciTech Connect (OSTI)

    Carty, D.J. [K. W. Brown Environmental Services, College Station, TX (United States)

    1995-12-31T23:59:59.000Z

    At exploration and production (E and P) sites crude spills restricted to topsoil are often self-remediating, but salt spills rarely are. Most soils naturally biodegrade crude. Without appropriate human intervention, brine spills can result in decades of barren land and seriously degrade surface water and aquifers. Servicing the E and P industry are remediation practitioners with a limited array of often expensive remediation concepts and materials which they hope will work, and sometimes do. Unfortunately, many remediation practitioners are unfamiliar with, or disregard, the natural physical, chemical, and biotic complexity of the soil and aquatic media. All too often this results in exacerbating injury to an already damaged ecosystem. Likewise, important cultural factors such as public relations, environmental regulations, property rights, and water rights are also overlooked until after implementation of an ill-advised or illegal remediation design has been initiated. A major issue is determining what constitutes ``successful`` remediation of a brine spill. Environmental managers have long sought one or two universally applicable fast and cheap amendment/treatment protocols for all their diverse multi-state salt affected spill scenarios. This presentation describes aspects of common spill-affected ecosystems which must be considered to achieve ``successful`` remediation.

  3. Final audit report of remedial action construction at the UMTRA project site Rifle, Colorado. Rev. 1

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This final audit report summarizes the assessments performed by the U.S. Department of Energy (DOE) Environmental Restoration Division (ERD) and its Technical Assistance Contractor (TAC) of remedial action compliance with approved plans, specifications, standards, and 40 CFR Part 192 at the Rifle, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. Remedial action construction was directed by the Remedial Action Contractor (RAC).

  4. Mobile water treatment plant special study. Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Characterization of the level and extent of groundwater contamination in the vicinity of Title I mill sites began during the surface remedial action stage (Phase 1) of the Uranium Mill Tailings Remedial Action (UMTRA) Project. Some of the contamination in the aquifer(s) at the abandoned sites is attributable to milling activities during the years the mills were in operation. To begin implementation of Phase 11 groundwater remediation, the US Department of Energy (DOE) requested that (1) the Technical Assistance Contractor (TAC) conduct a study to provide for the design of a mobile water treatment plant to treat groundwater extracted during site characterization studies at completed Phase I UMTRA sites, and (2) the results of the TAC investigations be documented in a special study report. This special study develops the design criteria for a water treatment plant that can be readily transported from one UMTRA site to another and operated as a complete treatment system. The 1991 study provides the basis for selecting a mobile water treatment system to meet the operating requirements recommended in this special study. The scope of work includes the following: Determining contaminants, flows, and loadings. Setting effluent quality criteria. Sizing water treatment unit(s). Evaluating non-monetary aspects of alternate treatment processes. Comparing costs of alternate treatment processes. Recommending the mobile water treatment plant design criteria.

  5. In Situ Iron Oxide Emplacement for Groundwater Arsenic Remediation 

    E-Print Network [OSTI]

    Abia, Thomas Sunday

    2012-02-14T23:59:59.000Z

    Iron oxide-bearing minerals have long been recognized as an effective reactive media for arsenic-contaminated groundwater remediation. This research aimed to develop a technique that could facilitate in situ oxidative precipitation of Fe3+ in a soil...

  6. army environmental remediation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: ER 200-1-4 29 August 2014 ENVIRONMENTAL QUALITY FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM.C. 20314-1000 CECC-E Regulation No. 200-1-4 29 August 2014...

  7. Containment remedies: Minimizing hazard, not just exposure, cuts liabilities

    SciTech Connect (OSTI)

    Hirschhorn, J.S. [Hirschhorn and Associates, Wheaton, MD (United States)

    1996-12-31T23:59:59.000Z

    An important consequence of the trend to reduce Superfund cleanup costs has been a definite shift away from treatment to pure containment remedies. The issue that merits more attention, however, is whether reductions in short term costs may be offset by longer term liabilities. Containment remedies that focus entirely on reducing exposures and hence risk are vulnerable to various failures of key components that may not necessarily be prevented by operation and maintenance programs. A sensible alternative is to also include some hazard reduction, especially by in situ technology. By doing so, longer term liabilities associated with various failure modes of containment remedies can be greatly reduced. Corporate accounting systems ignore such liabilities. The insurance industry, large companies, brownfield developers, and the government are currently ignoring liabilities that inevitably will become all too real, because pure containment remedies are not permanently effective.

  8. Environmental Remediation Strategic Planning of Fukushima Nuclear Accident

    SciTech Connect (OSTI)

    Onishi, Yasuo

    2011-12-01T23:59:59.000Z

    Environmntal Remediation Assessment and other respons decision making on Environmental monitoring, experiments and assessment. Preliminary assessment to grasp the overall picture and determine critical locations, phenomena, people, etc. Using simple methods and models.

  9. SURFACE REMEDIATION IN THE ALEUTIAN ISLANDS: A CASE STUDY OF AMCHITKA ISLAND, ALASKA

    SciTech Connect (OSTI)

    Giblin, M. O.; Stahl, D. C.; Bechtel, J. A.

    2002-02-25T23:59:59.000Z

    Amchitka Island, Alaska, was at one time an integral player in the nation's defense program. Located in the North Pacific Ocean in the Aleutian Island archipelago, the island was intermittently inhabited by several key government agencies, including the U.S. Army, the U.S. Atomic Energy Commission (predecessor agency to the U.S. Department of Energy), and the U.S. Navy. Since 1993, the U.S. Department of Energy (DOE) has conducted extensive investigations on Amchitka to determine the nature and extent of contamination resulting from historic nuclear testing. The uninhabited island was the site of three high-yield nuclear tests from 1965 to 1971. These test locations are now part of the DOE's National Nuclear Security Administration Nevada Operations Office's Environmental Management Program. In the summer of 2001, the DOE launched a large-scale remediation effort on Amchitka to perform agreed-upon corrective actions to the surface of the island. Due to the lack of resources available on Amchitka and logistical difficulties with conducting work at such a remote location, the DOE partnered with the Navy and U.S. Army Corps of Engineers (USACE) to share certain specified costs and resources. Attempting to negotiate the partnerships while organizing and implementing the surface remediation on Amchitka proved to be a challenging endeavor. The DOE was faced with unexpected changes in Navy and USACE scope of work, accelerations in schedules, and risks associated with construction costs at such a remote location. Unfavorable weather conditions also proved to be a constant factor, often slowing the progress of work. The Amchitka Island remediation project experience has allowed the DOE to gain valuable insights into how to anticipate and mitigate potential problems associated with future remediation projects. These lessons learned will help the DOE in conducting future work more efficiently, and can also serve as a guide for other agencies performing similar work.

  10. K basins interim remedial action health and safety plan

    SciTech Connect (OSTI)

    DAY, P.T.

    1999-09-14T23:59:59.000Z

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  11. Remedial Action and Waste Disposal Conduct of OperationsMatrix

    SciTech Connect (OSTI)

    M. A. Casbon.

    1999-05-24T23:59:59.000Z

    This Conduct of Operations (CONOPS) matrix incorporates the Environmental Restoration Disposal Facility (ERDF) CONOPS matrix (BHI-00746, Rev. 0). The ERDF CONOPS matrix has been expanded to cover all aspects of the RAWD project. All remedial action and waste disposal (RAWD) operations, including waste remediation, transportation, and disposal at the ERDF consist of construction-type activities as opposed to nuclear power plant-like operations. In keeping with this distinction, the graded approach has been applied to the developmentof this matrix.

  12. The 100-C-7 Remediation Project. An Overview of One of DOE's Largest Remediation Projects - 13260

    SciTech Connect (OSTI)

    Post, Thomas C. [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States)] [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States); Strom, Dean [Washington Closure Hanford LLC, 2620 Fermi Avenue, Richland, WA 99354 (United States)] [Washington Closure Hanford LLC, 2620 Fermi Avenue, Richland, WA 99354 (United States); Beulow, Laura [U.S. Environmental Protection Agency, 309 Bradley Boulevard, Suite 115, Richland, WA 99352 (United States)] [U.S. Environmental Protection Agency, 309 Bradley Boulevard, Suite 115, Richland, WA 99352 (United States)

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy Richland Operations Office (RL), U.S. Environmental Protection Agency (EPA) and Washington Closure Hanford LLC (WCH) completed remediation of one of the largest waste sites in the U.S. Department of Energy complex. The waste site, 100-C-7, covers approximately 15 football fields and was excavated to a depth of 85 feet (groundwater). The project team removed a total of 2.3 million tons of clean and contaminated soil, concrete debris, and scrap metal. 100-C-7 lies in Hanford's 100 B/C Area, home to historic B and C Reactors. The waste site was excavated in two parts as 100-C-7 and 100-C-7:1. The pair of excavations appear like pit mines. Mining engineers were hired to design their tiered sides, with safety benches every 17 feet and service ramps which allowed equipment access to the bottom of the excavations. The overall cleanup project was conducted over a span of almost 10 years. A variety of site characterization, excavation, load-out and sampling methodologies were employed at various stages of remediation. Alternative technologies were screened and evaluated during the project. A new method for cost effectively treating soils was implemented - resulting in significant cost savings. Additional opportunities for minimizing waste streams and recycling were identified and effectively implemented by the project team. During the final phase of cleanup the project team applied lessons learned throughout the entire project to address the final, remaining source of chromium contamination. The C-7 cleanup now serves as a model for remediating extensive deep zone contamination sites at Hanford. (authors)

  13. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

    2001-11-12T23:59:59.000Z

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, to separate petroleum-related contaminants and other hazardous pollutants from soil and sediments. In this process, water with added electrolytes (inexpensive and environmentally friendly) is used as the extracting solvent under subcritical conditions (150-300 C). The use of electrolytes allows us to operate reactors under mild conditions and to obtain high separation efficiencies that were hitherto impossible. Unlike common organic solvents, water under subcritical conditions dissolves both organics and inorganics, thus allowing opportunities for separation of both organic and inorganic material from soil. In developing this technology, our systematic approach was to (1) establish fundamental solubility data, (2) conduct treatability studies with industrial soils, and (3) perform a bench-scale demonstration using a highly contaminated soil. The bench-scale demonstration of the process has shown great promise. The next step of the development process is the successful pilot demonstration of this technology. Once pilot tested, this technology can be implemented quite easily, since most of the basic components are readily available from mature technologies (e.g., steam stripping, soil washing, thermal desorption). The implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and will provide a stand-alone technology for removal of both volatile and heavy components from contaminated soil.

  14. Use of a permeable biological reaction barrier for groundwater remediation at a uranium mill tailings remedial action (UMTRA) site

    SciTech Connect (OSTI)

    Thombre, M.S.; Thomson, B.M.; Barton, L.L. [Univ. of New Mexico, Albuquerque, NM (United States)

    1997-12-31T23:59:59.000Z

    Previous work at the University of New Mexico and elsewhere has shown that sulfate reducing bacteria are capable of reducing uranium from the soluble +6 oxidation state to the insoluble +4 oxidation state. This chemistry forms the basis of a proposed groundwater remediation strategy in which microbial reduction would be used to immobilize soluble uranium. One such system would consist of a subsurface permeable barrier which would stimulate microbial growth resulting in the reduction of sulfate and nitrate and immobilization of metals while permitting the unhindered flow of ground water through it. This research investigated some of the engineering considerations associated with a microbial reducing barrier such as identifying an appropriate biological substrate, estimating the rate of substrate utilization, and identifying the final fate of the contaminants concentrated in the barrier matrix. The performance of batch reactors and column systems that treated simulated plume water was evaluated using cellulose, wheat straw, alfalfa hay, sawdust, and soluble starch as substrates. The concentrations of sulfate, nitrate, and U(VI) were monitored over time. Precipitates from each system were collected and the precipitated U(IV) was determined to be crystalline UO{sub 2}(s) by X-ray Diffraction. The results of this study support the proposed use of cellulosic substrates as candidate barrier materials.

  15. An Overview of Public Domain Tools for Measuring the Sustainability of Environmental Remediation - 12060

    SciTech Connect (OSTI)

    Claypool, John E.; Rogers, Scott [AECOM, Denver, Colorado, 80202 (United States)

    2012-07-01T23:59:59.000Z

    The application of sustainability principles to the investigation and remediation of contaminated sites is an area of rapid development within the environmental profession, with new business practices, tools, and performance standards for identifying, evaluating, and managing the 'collateral' impacts of cleanup projects to the environment, economy and society coming from many organizations. Guidelines, frameworks, and standards of practice for 'green and sustainable remediation' (GSR) have been released and are under development by the Sustainable Remediation Forum (SURF), the American Society for Testing Materials (ASTM), the Interstate Technology Roundtable Commission (ITRC) and other organizations in the U.S. and internationally. In response to Executive Orders from the President, Federal government agencies have developed policies, procedures and guidelines for evaluating and reporting the sustainability of their environmental restoration projects. Private sector companies in the petroleum, utility, manufacturing, defense, and other sectors are developing their own corporate GSR programs to improve day-to-day management of contaminated sites and to support external reporting as part of their corporate social responsibility (CSR) efforts. The explosion of mandates, policy, procedures and guidance raises the question of how to determine whether a remediation technology or cleanup approach is green and/or sustainable. The environmental profession has responded to this question by designing, developing and deploying a wide array of tools, calculators, and databases that enable regulatory agencies, site managers and environmental professionals to calculate the collateral impacts of their remediation projects in the environmental, social, and economic domains. Many of these tools are proprietary ones developed by environmental engineering/consulting firms for use in their consulting engagements and/or tailored specifically to meet the needs of their clients. When it comes to the public domain, Federal government agencies are spearheading the development of software tools to measure and report emissions of air pollutants (e.g., carbon dioxide, other greenhouse gases, criteria air pollutants); consumption of energy, water and natural resources; accident and safety risks; project costs and other economic metrics. Most of the tools developed for the Government are available to environmental practitioners without charge, so they are growing in usage and popularity. The key features and metrics calculated by the available public-domain tools for measuring the sustainability of environmental remediation projects share some commonalities but there are differences amongst the tools. The SiteWise{sup TM} sustainability tool developed for the Navy and US Army will be compared with the Sustainable Remediation Tool (SRT{sup TM}) developed for the US Air Force (USAF). In addition, the USAF's Clean Solar and Wind Energy in Environmental Programs (CleanSWEEP), a soon-to-be-released tool for evaluating the economic feasibility of utilizing renewal energy for powering remediation systems will be described in the paper. (authors)

  16. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1987-05-01T23:59:59.000Z

    This appendix assesses the present conditions and data for the inactive uranium mill site near Tuba City, Arizona. It consolidates available engineering, radiological, geotechnical, hydrological, meterological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill and tailings site so that the Remedial Action Contractor (RAC) may complete final designs of the remedial actions.

  17. Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation, and carbon sequestration

    E-Print Network [OSTI]

    Bernard, S.

    2009-01-01T23:59:59.000Z

    Remediation, and Carbon Sequestration References Anderson,Remediation, and Carbon Sequestration rhizosphere byRemediation, and Carbon Sequestration Figure 1. Examples of

  18. Low-energy RI beam technology and nuclear clusters in the explosive pp-chain breakout process

    SciTech Connect (OSTI)

    Kubono, S. [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 73000 (China); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0 (Japan); Yamaguchi, H.; Kahl, D. M.; Ohshiro, Y.; Watanabe, S.; Yamazaki, N. [Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-858 (Japan); Yanagisawa, Y.; Wakabayashi, Y.; Kase, M. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hayakawa, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95125 Catania (Italy); Kwon, Y. K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-81 (Korea, Republic of); Hashimoto, T.; Fukuda, Y. [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); He, J. J. [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 73000 (China); Goto, A. [Faculty of Medcine, Yamagata University, Yamagata 990-2331 (Japan); Muto, H. [Center of General Education, Tokyo University of Science at Suwa, Chino, Nagano 391-0292 (Japan)

    2014-05-09T23:59:59.000Z

    The lecture includes two parts: One is a discussion on the technology for developing RIB beam facility based on the in-flight method and relevant experimental technology. The second part is a discussion on experimental efforts for studying the breakout process from the pp-chain region based on recent works with low energy RI beams. The discussion of the second part specifically covers the problem of the vp-process in type II supernovae in terms of alpha cluster nature for the reactions.

  19. Radioactive Tank Waste Remediation Focus Area. Technology summary

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

  20. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01T23:59:59.000Z

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  1. Phosphate-Mediated Remediation of Metals and Radionuclides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martinez, Robert J.; Beazley, Melanie J.; Sobecky, Patricia A.

    2014-01-01T23:59:59.000Z

    Worldwide industrialization activities create vast amounts of organic and inorganic waste streams that frequently result in significant soil and groundwater contamination. Metals and radionuclides are of particular concern due to their mobility and long-term persistence in aquatic and terrestrial environments. As the global population increases, the demand for safe, contaminant-free soil and groundwater will increase as will the need for effective and inexpensive remediation strategies. Remediation strategies that include physical and chemical methods (i.e., abiotic) or biological activities have been shown to impede the migration of radionuclide and metal contaminants within soil and groundwater. However, abiotic remediation methods are oftenmore »too costly owing to the quantities and volumes of soils and/or groundwater requiring treatment. Thein situsequestration of metals and radionuclides mediated by biological activities associated with microbial phosphorus metabolism is a promising and less costly addition to our existing remediation methods. This review highlights the current strategies for abiotic and microbial phosphate-mediated techniques for uranium and metal remediation.« less

  2. Preliminary remediation goals for use at the US Department of Energy Oak Ridge Operations Office. Revision 1

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This technical memorandum presents Preliminary Remediation Goals (PRGs) for use in human health risk assessment efforts under the United States Department of Energy, Oak Ridge Operations Office Environmental Restoration (ER) Division. This document provides the ER Division with standardized PRGs which are integral to the Remedial Investigation/Feasibility Study process. They are used during project scooping (Data Quality Objectives development), in screening level risk assessments to support early action or No Further Investigation decisions, and in the baselines risk assessment where they are employed in the selection of chemicals of potential concern. The primary objective of this document is to standardize these values and eliminate any duplication of effort by providing PRGs to all contractors involved in risk activities. In addition, by managing the assumptions and systems used in PRG derivation, the ER Risk Assessment Program will be able to control the level of quality assurance associated with these risk-based guideline values.

  3. Electrochemical arsenic remediation for rural Bangladesh

    SciTech Connect (OSTI)

    Addy, Susan Amrose

    2009-01-01T23:59:59.000Z

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water collected from three regions to below the WHO limit of 10 mu g=L. Prototype fabrication and field testing are currently underway.

  4. Application of a World Wide Web technology to environmental remediation

    SciTech Connect (OSTI)

    Johnson, R.; Durham, L. A.

    2000-03-09T23:59:59.000Z

    As part of the Formerly Utilized Site Remedial Action Program (FUSRAP), the United States Army Corps of Engineers (USACE), Buffalo District, is responsible for overseeing the remediation of several sites within its jurisdiction. FUSRAP sites are largely privately held facilities that were contaminated by activities associated with the nuclear weapons program in the 1940s, 50s, and 60s. The presence of soils and structures contaminated with low levels of radionuclides is a common problem at these sites. Typically, contaminated materials must be disposed of off-site at considerable expense (up to several hundred dollars per cubic yard of waste material). FUSRAP is on an aggressive schedule, with most sites scheduled for close-out in the next couple of years. Among the multitude of tasks involved in a typical remediation project is the need to inform and coordinate with active stakeholder communities, including local, state, and federal regulators.

  5. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    SciTech Connect (OSTI)

    Beres, Christopher M.; Fort, E. Joseph [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States)] [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States); Boyle, James D. [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)] [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)

    2013-07-01T23:59:59.000Z

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  6. 100-N Area Decision Unit Target Analyte List Development for Soil

    SciTech Connect (OSTI)

    Ovink, R.

    2012-09-18T23:59:59.000Z

    This report documents the process used to identify source area target analytes in support of the 100-N Area remedial investigation/feasibility study (RI/FS) addendum to the Integrated 100 Area Remedial Investigation/Feasibility Study Work Plan (DOE/RL-2008-46, Rev. 0).

  7. 100-F Target Analyte List Development for Soil

    SciTech Connect (OSTI)

    Ovink, R.

    2012-09-18T23:59:59.000Z

    This report documents the process used to identify source area target analytes in support of the 100-F Area remedial investigation/feasibility study (RI/FS) addendum to the Integrated 100 Area Remedial Investigation/Feasibility Study Work Plan (DOE/RL-2008-46, Rev. 0).

  8. Tank SY-102 remediation project summary report: ASPEN modeling

    SciTech Connect (OSTI)

    Punjak, W.A.; Schreiber, S.B.; Yarbro, S.L.

    1995-05-01T23:59:59.000Z

    The U.S. Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. As a part of this program, personnel at Los Alamos National Laboratory (LANL) have developed and demonstrated a flow sheet to remediate tank SY-102, which is located in the 200 West Area and contains high-level radioactive waste. In the conceptual design report issued earlier, an ASPEN plus{trademark} computer model of the flow sheet was presented. This report documents improvements in the flow sheet model after additional thermodynamic data for the actinide species were incorporated.

  9. Evaluation of the effectiveness of using alfalfa and buffalo grass for remediation of trichloroethylene from groundwater

    E-Print Network [OSTI]

    Caravello, Victor

    1998-01-01T23:59:59.000Z

    if buffalo grass would enhance the remediation of groundwater contaminated with trichloroethylene (TCE). A mass-balance experiment was designed and executed to determine the extent of TCE remediation/degradation occurring through buffalo grass. Measurements...

  10. The Effects of Behaviorist and Constructivist Instruction on Student Performance in College-level Remedial Mathematics

    E-Print Network [OSTI]

    Cox, Murray William

    2011-10-21T23:59:59.000Z

    for quality remedial mathematics classes is also growing. Institutions that place learners into remedial classes must also fund these same programs and are increasingly faced with disgruntled students, the appearance of having lower standards, and a...

  11. Selection of water treatment processes special study. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    Characterization of the level and extent of groundwater contamination in the vicinity of Title I mill sites began during the surface remedial action stage (Phase 1) of the Uranium Mill Tailings Remedial Action (UMTRA) Project. Some of the contamination in the aquifer(s) at the abandoned sites is attributable to milling activities during the years the mills were in operation. The restoration of contaminated aquifers is to be undertaken in Phase II of the UMTRA Project. To begin implementation of Phase II, DOE requested that groundwater restoration methods and technologies be investigated by the Technical Assistance Contractor (TAC). and that the results of the TAC investigations be documented in special study reports. Many active and passive methods are available to clean up contaminated groundwater. Passive groundwater treatment includes natural flushing, geochemical barriers, and gradient manipulation by stream diversion or slurry walls. Active groundwater.cleanup techniques include gradient manipulation by well extraction or injection. in-situ biological or chemical reclamation, and extraction and treatment. Although some or all of the methods listed above may play a role in the groundwater cleanup phase of the UMTRA Project, the extraction and treatment (pump and treat) option is the only restoration alternative discussed in this report. Hence, all sections of this report relate either directly or indirectly to the technical discipline of process engineering.

  12. Aquifer characterization and groundwater modeling in support of remedial actions at the Weldon Spring Site

    SciTech Connect (OSTI)

    Durham, L.A. [Argonne National Lab., IL (United States); Carman, J.D. [Jacobs Engineering Group, Inc., St. Charles, MO (United States)

    1993-10-01T23:59:59.000Z

    Aquifer characterization studies were performed to develop a hydrogeologic understanding of an unconfined shallow aquifer at the Weldon Spring site west of St. Louis, Missouri. The 88-ha site became contaminated because of uranium and thorium processing and disposal activities that took place from the 1940s through the 1960s. Slug and pumping tests provided valuable information on the lateral distribution of hydraulic conductivities, and packer tests and lithologic information were used to determine zones of contrasting hydrologic properties within the aquifer. A three-dimensional, finite- element groundwater flow model was developed and used to simulate the shallow groundwater flow system at the site. The results of this study show that groundwater flow through the system is predominantly controlled by a zone of fracturing and weathering in the upper portion of the limestone aquifer. The groundwater flow model, developed and calibrated from field investigations, improved the understanding of the hydrogeology and supported decisions regarding remedial actions at the site. The results of this study illustrate the value, in support of remedial actions, of combining field investigations with numerical modeling to develop an improved understanding of the hydrogeology at the site.

  13. Interface control document between the Tank Waste Remediation System and the Solid Waste Disposal Division

    SciTech Connect (OSTI)

    Duncan, D.R.

    1995-04-01T23:59:59.000Z

    This document discusses the interface between the Tank Waste Remediation System (TWRS) and the Solid Waste Division (SWD).

  14. Voluntary Protection Program Onsite Review, Soil and Groundwater Remediation Project- March 2007

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Soil and Groundwater Remediation Project is performing at a level deserving DOE-VPP recognition.

  15. Independent Activity Report, CH2M Hill Plateau Remediation Company- January 2011

    Broader source: Energy.gov [DOE]

    Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003

  16. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    SciTech Connect (OSTI)

    T. M. Blakley; W. D. Schofield

    2007-09-10T23:59:59.000Z

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  17. Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont

    E-Print Network [OSTI]

    Fleskes, Joe

    Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Reconnaissance soil geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont County.....................................................................................................................................................link Figures Figure 1. Location of 19 soil samples collected from the Riverton Uranium Mill Tailings Remedial

  18. Managing site remediation using pathway analysis, application to a semi-arid site

    SciTech Connect (OSTI)

    Rutz, E.E.; Ijaz, T.; Wood, R.P.; Eckart, R.E. [Univ. of Cincinnati, OH (United States). Dept. of Mechanical, Industrial and Nuclear Engineering

    1993-12-31T23:59:59.000Z

    This paper discusses the application of pathway analysis methodology to evaluate alternatives associated with remediation of a semi-arid site. Significant aspects of remediation include potential land uses, soil cleaning techniques and restoration alternatives. Important environmental transport pathways and dominant radionuclides are identified using pathway analysis. The remediation strategy is optimized based on results of the analysis.

  19. Remediation of arsenic-contaminated soils and groundwaters

    DOE Patents [OSTI]

    Peters, R.W.; Frank, J.R.; Feng, X.

    1998-06-23T23:59:59.000Z

    An in situ method is described for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal. 8 figs.

  20. In-situ remediation system for groundwater and soils

    DOE Patents [OSTI]

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1991-01-01T23:59:59.000Z

    The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  1. National conference on environmental remediation science and technology: Abstracts

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

  2. Biogeochemical Considerations Related To The Remediation Of I-129 Plumes

    SciTech Connect (OSTI)

    Kaplan, D. I. [Savannah River Site (SRS), Aiken, SC (United States); Yeager, C. [Los Alamos National Laboratory , Los Alamos, NM (United States); Denham, M. E. [Savannah River Site (SRS), Aiken, SC (United States); Zhang, S. [Texas A& amp; M University, Galveston, TX (United States); Xu, C. [Texas A& amp; M University, Galveston, TX (United States); Schwehr, K. A. [Texas A& amp; M University, Galveston, TX (United States); Li, H. P. [Texas A& amp; M University, Galveston, TX (United States); Brinkmeyer, R. [Texas A& amp; M University, Galveston, TX (United States); Santschi, P. H. [Texas A& amp; M University, Galveston, TX (United States)

    2012-09-24T23:59:59.000Z

    The objectives of this report were to: provide a current state of the science of radioiodine biogeochemistry relevant to its fate and transport at the Hanford Site; conduct a review of Hanford Site data dealing with groundwater {sup 129}I; and identify critical knowledge gaps necessary for successful selection, implementation, and technical defensibility in support of remediation decisions.

  3. Managing Complex Environmental Remediation amidst Aggressive Facility Revitalization Milestones

    SciTech Connect (OSTI)

    Richter Pack, S. [PMP Science Applications International Corporation, Oak Ridge, TN (United States)

    2008-07-01T23:59:59.000Z

    Unlike the final closure projects at Rocky Flats and Fernald, many of the Department of Energy's future CERCLA and RCRA closure challenges will take place at active facilities, such as the Oak Ridge National Laboratory (ORNL) central campus. ORNL has aggressive growth plans for a Research Technology Park and cleanup must address and integrate D and D, soil and groundwater remediation, and on-going and future business plans for the Park. Different planning and tracking tools are needed to support closures at active facilities. To support some large Airport redevelopment efforts, we created tools that allowed the Airline lease-holder to perform environmental remediation on the same schedule as building D and D and new building construction, which in turn allowed them to migrate real estate from unusable to usable within an aggressive schedule. In summary: The FIM and OpenGate{sup TM} spatial analysis system were two primary tools developed to support simultaneous environmental remediation, D and D, and construction efforts at an operating facility. These tools helped redevelopers to deal with environmental remediation on the same schedule as building D and D and construction, thereby meeting their goals of opening gates, restarting their revenue streams, at the same time complying with all environmental regulations. (authors)

  4. REMEDIATION Autumn 2007 A Deterministic Approach to Evaluate

    E-Print Network [OSTI]

    Clement, Prabhakar

    Corrective Action, and Underground Storage Tank Sites." This OSWER directive identifies three lines by an existing remediation technology (e.g., pump-and-treat) make evaluation of MNA using only field data of a hydraulic containment system operated at the site for six years, direct field measurements could not be used

  5. Activated Peroxygens for Remediation of Contaminated Soil and Groundwater

    E-Print Network [OSTI]

    Hansen, René Rydhof

    of Doctor of Philosophy Department of Chemistry, Biotechnology and Environmental Engineering Section, Biotechnology and Environmental Engineering Section of Chemical Engineering CIChem Research Group Aalborg May 2011 #12;ii Activated Peroxygens for Remediation of Contaminated Soil and Groundwater Ph.D. thesis

  6. FY-95 technology catalog. Technology development for buried waste remediation

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  7. In-Situ Thermal Remediation of Contaminated Soil1

    E-Print Network [OSTI]

    Lapin, Sergey

    Chapter 1 In-Situ Thermal Remediation of Contaminated Soil1 Written by Huaxiong Huang,2 Serguei Lapin and Rex Westbrook 1.1 Background Recently, a method for removing contaminants from soil (several as follows. Over a period of several weeks, electrical energy is introduced to the contaminated soil using

  8. Remediation of arsenic-contaminated soils and groundwaters

    DOE Patents [OSTI]

    Peters, Robert W. (Naperville, IL); Frank, James R. (Glen Ellyn, IL); Feng, Xiandong (West Richland, WA)

    1998-01-01T23:59:59.000Z

    An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

  9. Uranium Mill Tailings Remedial Action Project surface project management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  10. IH Report # 04-011 April 2004 Mold Remediation

    E-Print Network [OSTI]

    during remediation. 5. Non-porous (metals, glass, hard plastics) and semi-porous (wood and concrete and Semi-Porous Materials (e.g., wood/concrete) 1. Remove and discard. Attempts should be made to minimize) materials can be cleaned and re-used. 6. Contaminated porous materials such as wallboards and ceiling tiles

  11. Remediation of Abandoned Mines Using Coal Combustion By-Products

    E-Print Network [OSTI]

    Aydilek, Ahmet

    . Maryland has about 450 coal mines out of which only 50 are active and about 150 mines produce AMD RafalkoRemediation of Abandoned Mines Using Coal Combustion By-Products Sowmya Bulusu1 ; Ahmet H. Aydilek that occurs when pyrite that is present in abandoned coal mines comes in contact with oxygen and water, which

  12. Description of the Formerly Utilized Sites Remedial Action Program

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    The background and the results to date of the Department of Energy program to identify and evaluate the radiological conditions at sites formerly utilized by the Corps of Engineers' Manhattan Engineer District (MED) and the US Atomic Energy Commission (AEC) are summarized. The sites of concern were federally, privately, and institutionally owned and were used primarily for research, processing, and storage of uranium and thorium ores, concentrates, or residues. Some sites were subsequently released for other purposes without radiological restriction. Surveys have been conducted since 1974 to document radiological conditions at such sites. Based on radiological surveys, sites are identified in this document that require, or are projected to require, remedial action to remove potential restrictions on the use of the property due to the presence of residual low-level radioactive contamination. Specific recommendations for each site will result from more detailed environmental and engineering surveys to be conducted at those sites and, if necessary, an environmental impact assessment or environmental impact statement will be prepared. Section 3.0 describes the current standards and guidelines now being used to conduct remedial actions. Current authority of the US Department of Energy (DOE) to proceed with remedial actions and the new authority required are summarized. A plan to implement the Formerly Utilized Sites Remedial Action Program (FUSRAP) in accordance with the new authority is presented, including the objectives, scope, general approach, and a summary schedule. Key issues affecting schedule and cost are discussed.

  13. In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268

    SciTech Connect (OSTI)

    Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike [Cabrera Services (United States); Matthews, Brian [Nuclear Safety Associates (United States)

    2012-07-01T23:59:59.000Z

    Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to allow for the safe exhumation of the Special Nuclear Material in existing SLDA trenches. (authors)

  14. Preliminary remediation goals for use at the U.S. Department of Energy Oak Ridge Operations Office

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This report presents Preliminary Remediation Goals (PRGs) for use in human health risk assessment efforts under the United States Department of Energy, Oak Ridge Operations Office Environmental Restoration (ER) Division. Chemical-specific PRGs are concentration goals for individual chemicals for specific medium and land use combinations. The PRGs are referred to as risk-based because they have been calculated using risk assessment procedures. Risk-based calculations set concentration limits using both carcinogenic or noncarcinogenic toxicity values under specific exposure pathways. The PRG is a concentration that is derived from a specified excess cancer risk level or hazard quotient. This report provides the ER Division with standardized PRGs which are integral to the Remedial Investigation/Feasibility Study process. By managing the assumptions and systems used in PRG derivation, the Environmental Restoration Risk Assessment Program will be able to control the level of quality assurance associated with these risk-based guideline values.

  15. IMPROVED NATURAL GAS STORAGE WELL REMEDIATION

    SciTech Connect (OSTI)

    James C. Furness; Donald O. Johnson; Michael L. Wilkey; Lynn Furness; Keith Vanderlee; P. David Paulsen

    2001-12-01T23:59:59.000Z

    This report summarizes the research conducted during Budget Period One on the project ''Improved Natural Gas Storage Well Remediation''. The project team consisted of Furness-Newburge, Inc., the technology developer; TechSavants, Inc., the technology validator; and Nicor Technologies, Inc., the technology user. The overall objectives for the project were: (1) To develop, fabricate and test prototype laboratory devices using sonication and underwater plasma to remove scale from natural gas storage well piping and perforations; (2) To modify the laboratory devices into units capable of being used downhole; (3) To test the capability of the downhole units to remove scale in an observation well at a natural gas storage field; (4) To modify (if necessary) and field harden the units and then test the units in two pressurized injection/withdrawal gas storage wells; and (5) To prepare the project's final report. This report covers activities addressing objectives 1-3. Prototype laboratory units were developed, fabricated, and tested. Laboratory testing of the sonication technology indicated that low-frequency sonication was more effective than high-frequency (ultrasonication) at removing scale and rust from pipe sections and tubing. Use of a finned horn instead of a smooth horn improves energy dispersal and increases the efficiency of removal. The chemical data confirmed that rust and scale were removed from the pipe. The sonication technology showed significant potential and technical maturity to warrant a field test. The underwater plasma technology showed a potential for more effective scale and rust removal than the sonication technology. Chemical data from these tests also confirmed the removal of rust and scale from pipe sections and tubing. Focusing of the underwater plasma's energy field through the design and fabrication of a parabolic shield will increase the technology's efficiency. Power delivered to the underwater plasma unit by a sparkplug repeatedly was interrupted by sparkplug failure. The lifecycle for the plugs was less than 10 hours. An electrode feed system for delivering continuous power needs to be designed and developed. As a result, further work on the underwater plasma technology was terminated. It needs development of a new sparking system and a redesign of the pulsed power supply system to enable the unit to operate within a well diameter of less than three inches. Both of these needs were beyond the scope of the project. Meanwhile, the laboratory sonication unit was waterproofed and hardened, enabling the unit to be used as a field prototype, operating at temperatures to 350 F and depths of 15,000 feet. The field prototype was extensively tested at a field service company's test facility before taking it to the field site. The field test was run in August 2001 in a Nicor Gas storage field observation well at Pontiac, Illinois. Segmented bond logs, gamma ray neutron logs, water level measurements and water chemistry samples were obtained before and after the downhole demonstration. Fifteen tests were completed in the field. Results from the water chemistry analysis showed an increase in the range of calcium from 1755-1984 mg/l before testing to 3400-4028 mg/l after testing. For magnesium, the range increased from 285-296 mg/l to 461-480 mg/l. The change in pH from a range of 3.11-3.25 to 8.23-8.45 indicated a buffering of the acidic well water, probably due to the increased calcium available for buffering. The segmented bond logs showed no damage to the cement bond in the well and the gamma ray neutron log showed no increase in the amount of hydrocarbons present in the formation where the testing took place. Thus, the gas storage bubble in the aquifer was not compromised. A review of all the field test data collected documents the fact that the application of low-frequency sonication technology definitely removes scale from well pipe. Phase One of this project took sonication technology from the concept stage through a successful ''proof-of-concept'' downhole application in a natural gas storage field

  16. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase IV

    SciTech Connect (OSTI)

    R. P. Wells

    2006-11-14T23:59:59.000Z

    This Phase IV Remedial Design/Remedial Action Work Plan addresses the remediation of areas with the potential for UXO at the Idaho National Laboratory. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. Five areas within the Naval Proving Ground that are known to contain UXO include the Naval Ordnance Disposal Area, the Mass Detonation Area, the Experimental Field Station, The Rail Car Explosion Area, and the Land Mine Fuze Burn Area. The Phase IV remedial action will be concentrated in these five areas. For other areas, such as the Arco High-Altitude Bombing Range and the Twin Buttes Bombing Range, ordnance has largely consisted of sand-filled practice bombs that do not pose an explosion risk. Ordnance encountered in these areas will be addressed under the Phase I Operations and Maintenance Plan that allows for the recovery and disposal of ordnance that poses an imminent risk to human health or the environment.

  17. Apparatus and method for extraction of chemicals from aquifer remediation effluent water

    DOE Patents [OSTI]

    McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Moses, John M. (Dedham, MA); Barker, Donna L. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    An apparatus and method for extraction of chemicals from an aquifer remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating aquifers contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

  18. Method and system for extraction of chemicals from aquifer remediation effluent water

    DOE Patents [OSTI]

    McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Barker, Donna L. (Idaho Falls, ID)

    2003-01-01T23:59:59.000Z

    A method and system for extraction of chemicals from an groundwater remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating groundwater contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

  19. R.I. Borja (Ed.): Multiscal and Multiphysics Processes in Geomechanics, SSGG, pp 149-152. EARTHQUAKE SEQUENCE CALCULATIONS WITH DYNAMIC

    E-Print Network [OSTI]

    R.I. Borja (Ed.): Multiscal and Multiphysics Processes in Geomechanics, SSGG, pp 149 and Multiphysics Processes in Geomechanics (results of a workshop at Stanford University, 23-25 June, 2010), Springer Series in Geomechanics and Geoengineering, edited by Ronaldo I. Borja, ISBN 978

  20. AMERICAN JOURNAL OF HYPERTENSION | VOLUME 23 NUMBER 4 | 393-398 | apRiL 2010 393 original contributionsnature publishing group

    E-Print Network [OSTI]

    Konofagou, Elisa E.

    AMERICAN JOURNAL OF HYPERTENSION | VOLUME 23 NUMBER 4 | 393-398 | apRiL 2010 393 original to be an inde- pendent predictor of all-cause and cardiovascular mortalities,1 especially in hypertensive events3 and of fatal stroke4 in hypertensive patients, an independent risk factor for recurrent acute

  1. ANALYSIS OF SOIL REMEDIATION REQUIREMENTS OF ABANDONED CENTRALIZED AND COMMERCIAL DRILLING

    SciTech Connect (OSTI)

    H. Seay Nance; Alan R. Dutton; Jerry Mullican

    2002-08-24T23:59:59.000Z

    During this reporting period our project focused on (1) review of case studies of remediation of centralized and commercial drilling fluid disposal (CCDD) sites in Texas, and (2) information transfer with preparation of a proceedings paper and a workshop/short course. Texas remediation of certain drilling-fluid disposal sites includes examples at CCDD sites as well as commercial oil reclamation sites and saltwater disposal sites that also disposed of drilling fluids in pits. Site investigations range from qualitative visual inspection and assessment to comprehensive hydrodynamic, chemical, and geophysical analyses of wastes and groundwater. A range of techniques has been used to evaluate waste material, soil, groundwater, and surface water for potential contamination with hydrocarbons, chemicals, saltwater, and naturally occurring radioactive materials (NORM). Most constituents of concern measured in these studies are below regulatory action levels and established guidelines. A proceedings paper summarizes results presented in this and previous semi-annual progress reports will be part of the Transactions of the Gulf Coast Association of Geological Societies (GCAGS). A technology transfer workshop also was prepared as part of that Annual Meeting of the GCAGS to be held in November 2002.

  2. Data base management activities for the Remedial Action Program at Oak Ridge National Laboratories (ORNL)

    SciTech Connect (OSTI)

    Hook, L.A.; Voorhees, L.D.; Gentry, M.J.; Faulkner, M.A.; Shaakir-Ali, J.A.; Newman, K.A.; McCord, R.A.; Goins, L.F.; Owen, P.T.

    1990-07-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP) was established in 1985 in response to state and federal regulations requiring comprehensive control over facility discharges and cleanup of contaminated sites. A computerized Data and Information Management System (DIMS) was developed for RAP to (1) provide a centralized repository for data pertinent to RAP and (2) provide support for the investigations and assessments leading to the long-term remediation of contaminated facilities and sites. The current status of DIMS and its role in supporting RAP during 1989 are described. The DIMS consists of three components: (1) the Numeric Data Base, (2) the Bibliographic Data Base, and (3) the Records Control Data Base. This report addresses all three data bases, but focuses on the contents of the Numeric Data Base. Significant progress was made last year with the geographic information system (GIS) and ARC/INFO, which can be interfaced with SAS/GRAPH to provide combined mapping and statistical graphic products. Several thematic layers of GIS data for the Oak Ridge Reservation are now available. 18 refs., 8 figs., 19 tabs.

  3. Improving Remedial Planning Performance: The Rattlesnake Creek Experience

    SciTech Connect (OSTI)

    Rieman, C.R.; Spector, H.L.; Andrews, S.M. [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Durham, L. A.; Johnson, R. L. [Argonne National Laboratory, 9700 S. Cass Ave., EVS 900, Argonne, IL 60439 (United States); Racino, R. R. [Cabrera Services, Inc., 29 Railroad Avenue, Middletown, NY 10940 (United States)

    2006-07-01T23:59:59.000Z

    The U.S. Army Corps of Engineers (USACE), Buffalo District, has responsibility for characterizing and remediating radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Most of these FUSRAP sites include radionuclide contamination in soils where excavation and offsite disposal is the selected remedial action. For many FUSRAP soil remediation projects completed to date, the excavated contaminated soil volumes have significantly exceeded the pre-excavation volume estimates that were developed for project planning purposes. The exceedances are often attributed to limited and sparse datasets that are used to calculate the initial volume estimates. These volume exceedances complicate project budgeting and planning. Building on these experiences, the USACE took a different approach in the remediation of Rattlesnake Creek, located adjacent to the Ashland 2 site, in Tonawanda, New York. This approach included a more extensive pre-design data collection effort to improve and reduce the uncertainty in the pre-excavation volume estimates, in addition to formalizing final status survey data collection strategies prior to excavation. The final status survey sampling was fully integrated with the pre-design data collection, allowing dual use of the pre-design data that was collected (i.e., using the data to close out areas where contamination was not found, and feeding the data into volume estimates when contamination was encountered). The use of real-time measurement techniques (e.g., X-ray fluorescence [XRF] and gamma walkover surveys) during pre-excavation data collection allowed the USACE to identify and respond to unexpected contamination by allocating additional data collection to characterizing new areas of concern. The final result was an estimated soil volume and excavation footprint with a firm technical foundation and a reduction in uncertainty. However, even with extensive pre-design data collection, additional contamination was found during the excavation that led to an increase in the soil volume requiring offsite disposal. This paper describes the lessons learned regarding improving remedial planning performance from the Rattlesnake Creek experience and evaluates the level of project uncertainty reduction achieved through pre-design data collection. (authors)

  4. Executive summary: Weldon Spring Site Environmental Report for calendar year 1992. Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    This report has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project. The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. The scope of the environmental monitoring program at the Weldon Spring site has changed since it was initiated. Previously, the program focused on investigations of the extent and level of contaminants in the groundwater, surface waters, buildings, and air at the site. In 1992, the level of remedial activities required monitoring for potential impacts of those activities, particularly on surface water runoff and airborne effluents. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site; estimates of effluent releases; and trends in groundwater contaminant levels. Also, applicable compliance requirements, quality assurance programs, and special studies conducted in 1992 to support environmental protection programs are reviewed.

  5. Decommissioning of the remediation systems at Waverly, Nebraska, in 2011-2012.

    SciTech Connect (OSTI)

    LaFreniere, L. M. (Environmental Science Division)

    2012-06-29T23:59:59.000Z

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility in Waverly, Nebraska, from 1952 to 1974. During this time, the grain fumigant '80/20' (carbon tetrachloride/carbon disulfide) was used to preserve stored grain. In 1982, sampling by the U.S. Environmental Protection Agency (EPA) found carbon tetrachloride contamination in the town's groundwater. After an investigation of the contaminant distribution, the site was placed on the National Priority List (NPL) in 1986, and the CCC/USDA accepted responsibility for the contamination. An Interagency Compliance Agreement between the EPA and the CCC/USDA was finalized in May 1988 (EPA 1990). The EPA (Woodward-Clyde Consultants, contractor) started immediate cleanup efforts in 1987 with the installation of an air stripper, a soil vapor extraction system, a groundwater extraction well, and groundwater and soil gas monitoring wells (Woodward-Clyde 1986, 1988a,b). After the EPA issued its Record of Decision (ROD; EPA 1990), the CCC/USDA (Argonne National Laboratory, contractor) took over operation of the treatment systems. The CCC/USDA conducted a site investigation (Argonne 1991, 1992a,b), during which a carbon tetrachloride plume in groundwater was discovered northeast of the former facility. This plume was not being captured by the existing groundwater extraction system. The remediation system was modified in 1994 (Argonne 1993) with the installation of a second groundwater extraction well to contain the contamination further. Subsequently, a detailed evaluation of the system resulted in a recommendation to pump only the second well to conserve water in the aquifer (Argonne 1995). Sampling and analysis after implementation of this recommendation showed continued decreases in the extent and concentrations of the contamination with only one well pumping (Argonne 1999). The CCC/USDA issued quarterly monitoring reports from 1988 to 2009. Complete documentation of the CCC/USDA characterization and remediation efforts, including the quarterly monitoring reports, is on the compact disc inside the back cover of this report. The EPA reported on the progress of the remediation systems in a series of five-year reviews (EPA 1993, 1999, 2004, 2009). These reports and other EPA documentation are also on the compact disc inside the back cover of this report, along with the Woodward-Clyde (1986, 1988a,b) documentation cited. Starting in 2006, the analytical results for groundwater (the only medium still being monitored) showed no carbon tetrachloride concentrations above the maximum contaminant level (MCL) of 5.0 g/L. Because the cleanup goals specified in the ROD (EPA 1990) had been met, the EPA removed the site from the NPL in November 2006 (Appendix A). In 2008 the National Pollutant Discharge Elimination System (NPDES) permit for the remediation system was deactivated, and a year later the EPA released its fourth and final five-year report (EPA 2009), indicating that no further action was required for the site and that the site was ready for unlimited use. In 2011-2012, the CCC/USDA decommissioned the remediation systems at Waverly. This report documents the decommission process and closure of the site.

  6. Hazardous Waste Remedial Actions Program annual progress report, FY 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

  7. Decontamination formulation with additive for enhanced mold remediation

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuquerque, NM); Irvine, Kevin (Huntsville, AL); Berger, Paul (Rome, NY); Comstock, Robert (Bel Air, MD)

    2010-02-16T23:59:59.000Z

    Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.

  8. In-situ groundwater remediation by selective colloid mobilization

    DOE Patents [OSTI]

    Seaman, J.C.; Bertch, P.M.

    1998-12-08T23:59:59.000Z

    An in-situ groundwater remediation pump and treat technique is described which is effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, and which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment. 3 figs.

  9. In-situ groundwater remediation by selective colloid mobilization

    DOE Patents [OSTI]

    Seaman, John C. (New Ellenton, SC); Bertch, Paul M. (Aiken, SC)

    1998-01-01T23:59:59.000Z

    An in-situ groundwater remediation pump and treat technique effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment.

  10. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect (OSTI)

    none,

    1981-02-27T23:59:59.000Z

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  11. Environmental Restoration Strategic Plan. Remediating the nuclear weapons complex

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    With the end of the cold war, the US has a reduced need for nuclear weapons production. In response, the Department of Energy has redirected resources from weapons production to weapons dismantlement and environmental remediation. To this end, in November 1989, the US Department of Energy (DOE) established the Office of Environmental Restoration and Waste Management (renamed the Office of Environmental Management in 1994). It was created to bring under a central authority the management of radioactive and hazardous wastes at DOE sites and inactive or shut down facilities. The Environmental Restoration Program, a major component of DOE`s Environmental Management Program, is responsible for the remediation and management of contaminated environmental media (e.g., soil, groundwater, sediments) and the decommissioning of facilities and structures at 130 sites in over 30 states and territories.

  12. Using GIS to Identify Remediation Areas in Landfills

    SciTech Connect (OSTI)

    Linda A.Tedrow

    2004-08-01T23:59:59.000Z

    This paper reports the use of GIS mapping software—ArcMap and ArcInfo Workstation—by the Idaho National Engineering and Environmental Laboratory (INEEL) as a non-intrusive method of locating and characterizing radioactive waste in a 97-acre landfill to aid in planning cleanup efforts. The fine-scale techniques and methods used offer potential application for other burial sites for which hazards indicate a non-intrusive approach. By converting many boxes of paper shipping records in multiple formats into a relational database linked to spatial data, the INEEL has related the paper history to our current GIS technologies and spatial data layers. The wide breadth of GIS techniques and tools quickly display areas in need of remediation as well as evaluate methods of remediation for specific areas as the site characterization is better understood and early assumptions are refined.

  13. Remedial Action Work Plan Amchitka Island Mud Pit Closures

    SciTech Connect (OSTI)

    DOE/NV

    2001-04-05T23:59:59.000Z

    This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

  14. Hanford site tank waste remediation system programmatic environmental review report

    SciTech Connect (OSTI)

    Haass, C.C.

    1998-09-03T23:59:59.000Z

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE`s plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations.

  15. SEQUESTERING AGENTS FOR ACTIVE CAPS - REMEDIATION OF METALS AND ORGANICS

    SciTech Connect (OSTI)

    Knox, A; Michael Paller, M; Danny D. Reible, D; Xingmao Ma, X; Ioana G. Petrisor, I

    2007-05-10T23:59:59.000Z

    This research evaluated organoclays, zeolites, phosphates, and a biopolymer as sequestering agents for inorganic and organic contaminants. Batch experiments were conducted to identify amendments and mixtures of amendments for metal and organic contaminants removal and retention. Contaminant removal was evaluated by calculating partitioning coefficients. Metal retention was evaluated by desorption studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays, and the biopolymer, chitosan, were very effective sequestering agents for metals in fresh and salt water. Organoclays were very effective sorbents for phenanthrene, pyrene, and benzo(a)pyrene. Partitioning coefficients for the organoclays were 3000-3500 ml g{sup -1} for benzo(a)pyrene, 400-450 ml g{sup -1} for pyrene, and 50-70 ml g{sup -1} for phenanthrene. Remediation of sites with a mixture of contaminants is more difficult than sites with a single contaminant because metals and organic contaminants have different fate and transport mechanisms in sediment and water. Mixtures of amendments (e.g., organoclay and rock phosphate) have high potential for remediating both organic and inorganic contaminants under a broad range of environmental conditions, and have promise as components in active caps for sediment remediation.

  16. In Situ Remediation Integrated Program: FY 1994 program summary

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials.

  17. Uranium Mill Tailings Remedial Action fiscal year 1992 roadmap

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project is funded and managed as two separate projects: Surface remediation (UMTRA-S) and Groundwater compliance (UMTRA-G). Surface remediation is a Major System Acquisition and has been completed at 10 sites, 7 sites are under construction, and 7 sites are in the planning stage. The planning stages of the UMTRA-G Project, a major project, began in April 1991. A programmatic environmental impact statement (PEIS) has been started. Site characterization work and baseline risk assessment will begin FY 1993. Thus, the UMTRA-S Project is a mature and ongoing program with the roles of various organizations well defined, while the UMTRA-G Project is still being formulated and the interfaces between the DOE, states and tribes, and the EPA are being established. The Office of Environmental Restoration and Waste Management (EM) directed that all projects under its authority develop roadmaps for their activities. The UMTRA Project Roadmap was developed by the UMTRA Project Office with input from the TAC, RAC, the GJPO, and assistance from SAIC. A single roadmap has been prepared for both the UMTRA-S and UMTRA-G Projects. This was deemed appropriate due to the close relationship between the projects and to the fact that the same Government and contractor personnel are preparing the roadmaps. Roadmap development is a planning process that focuses on issue identification, root-cause analysis, and issues resolution. The methodology is divided into three phases: assessment, analysis, and issues resolution.

  18. Uranium Mill Tailings Remedial Action (UMTRA) Project. [UMTRA project

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, hereinafter referred to as the Act.'' Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial action at designated inactive uranium processing sites (Attachment 1 and 2) and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing site. The purpose of the remedial actions is to stabilize and control such uranium mill tailings and other residual radioactive materials in a safe and environmentally sound manner to minimize radiation health hazards to the public. The principal health hazards and environmental concerns are: the inhalation of air particulates contaminated as a result of the emanation of radon from the tailings piles and the subsequent decay of radon daughters; and the contamination of surface and groundwaters with radionuclides or other chemically toxic materials. This UMTRA Project Plan identifies the mission and objectives of the project, outlines the technical and managerial approach for achieving them, and summarizes the performance, cost, and schedule baselines which have been established to guide operational activity. Estimated cost increases by 15 percent, or if the schedule slips by six months. 4 refs.

  19. The UMTRA PEIS: A strategy for groundwater remediation

    SciTech Connect (OSTI)

    Burt, C.; Ulland, L.; Weston, R.F.; Metzler, D. (DOE, Albuquerque, NM (United States))

    1993-01-01T23:59:59.000Z

    A programmatic environmental impact statement (PEIS) was initiated in 1992 for the uranium mill tailings remedial action (UMTRA) program. The PEIS kicked off the groundwater restoration phase of UMTRA, a project involving remediation of 24 sites in ten states and tribal lands contaminated with tailings from uranium mining and milling operations. The U.S. Department of Energy (DOE) agreed, in early 1992, that a PEIS was an appropriate strategy to comply with the National Environmental Policy Act (NEPA) for this second, groundwater phase of the project. This decision recognized that although a parallel effort was being undertaken in preparing a PEIS for DOE's Environmental Restoration/Waste Management (ER/WM) program, characteristics and the maturity of the UMTRA project made it more appropriate to prepare a separate PEIS. The ER/WM PEIS is intended to examine environmental restoration and waste management issues from a very broad perspective. For UMTRA, with surface remediation completed or well under way at 18 of the 24 sites, a more focused programmatic approach for groundwater restoration is more effective than including the UMTRA project within the ER/WM environmental impact statements. A separate document allows a more focused and detailed analysis necessary to efficiently tier site-specific environmental assessments for groundwater restoration at each of the 24 UMTRA former processing sites.

  20. UMTRA -- The US Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Lightner, R. [Dept. of Energy, Washington, DC (United States); Cormier, C. [Department of Energy, Albuquerque, NM (United States); Bierley, D. [Roy F. Weston, Inc., Albuquerque, NM (United States)

    1995-12-31T23:59:59.000Z

    In the late 1970s, the United States (US) established the first comprehensive regulatory structure for the management, disposal, and long-term care of wastes produced from its domestic uranium processing industry. This regulatory framework was established through the passage of the Uranium Mill Tailings Radiation Control Act of 1978, often referred to as UMTRCA. This legislation created the Uranium Mill Tailings Remedial Action (UMTRA) Project and assigned the US Department of Energy (DOE) the lead in conducting the required remedial action at 24 designated inactive uranium ore processing sites. With the majority of these 22 sites complete, the DOE`s UMTRA Project has established a distinguished reputation for safely and effectively remediating these low-level waste sites in a complex regulatory and socioeconomic environment. This paper describes the past accomplishments and current status of the UMTRA Project and discusses the DOE`s plans for addressing ground water contamination associated with these sites and its commitment to continuing the long-term care and management of these disposal cells.

  1. UMTRA (Uranium Mill Tailings Remedial Action) Project site management manual

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    The purpose of this manual is to summarize the organizational interfaces and the technical approach used to manage the planning, design development, National Environmental Policy Act (NEPA) compliance, engineering, and remedial action required to stabilize and control the designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites. This manual describes the Project's objective, participants' roles and responsibilities, technical approach for accomplishing the objective, and planning and managerial controls to be used in performing the site work. The narrative follows the flow of activities depicted in Figure 1.1, which provides the typical sequence of key Project activities. A list of acronyms used is presented at the end of the manual. The comparable manual for UMTRA Project vicinity properties is the Vicinity Properties Management and Implementation Manual'' (VPMIM) (UMTRA-DOE/AL-050601). Together, the two manuals cover the remedial action activities associated with UMTRA Project sites. The UMTRA Project's objective is to stabilize and control the uranium mill tailings, vicinity property materials, and other residual radioactive materials at the designated sites (Figure 1.2) in a safe and environmentally sound manner in order to minimize radiation health hazards to the public. 26 figs., 6 tabs.

  2. Remediation cleanup options for the Hoe Creek UCG site

    SciTech Connect (OSTI)

    Nordin, J.; Griffin, W.; Chatwin, T.; Lindblom, S.; Crader, S.

    1990-03-01T23:59:59.000Z

    The US Department of Energy must restore groundwater quality at the Hoe Creek, Wyoming, underground coal gasification site using the best proven practicable technology. Six alternative remediation methods are evaluated in this project: (1) excavation, (2) three variations of groundwater plume containment, (3) in situ vacuum extraction, (4) pump and treat using a defined pattern of pumping wells to obtain an effective matrix sweep, (5) in situ flushing using a surfactant, and (6) in situ bioremediation. Available site characterization data is insufficient to accurately project the cost of remediation. Several alternative hypothetical examples and associated costs are described in the text and in the appendices. However, not enough information is available to use these examples as a basis for comparison purposes. Before a cleanup method is selected, core borings should be taken to define the areal extent and depth of contaminated matrix material. Segments of these core borings should be analyzed for organic contaminants in the soil (e.g., benzene) and their relationship to the groundwater contamination. These analyses and subsequent treatability studies will show whether or not the contaminants can be effectively removed by surface on in situ volatilization, leached from the matrix using washing solutions, or removed by bioremediation. After this information is obtained, each technology should be evaluated with respect to cost and probability of success. A decision tree for implementing remediation cleanup at the Hoe Creek site is presented in this report. 26 refs., 11 figs., 3 tabs.

  3. Remediating pesticide contaminated soils using solvent extraction

    SciTech Connect (OSTI)

    Sahle-Demessie, E.; Meckes, M.C.; Richardson, T.L. [National Management Research Lab., Cincinnati, OH (United States)

    1996-12-31T23:59:59.000Z

    Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p{prime}-DDT, p,p{prime}-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as solvents over a wide range of operating conditions. It was demonstrated that a six-stage methanol extraction using a solvent-to-soil ratio of 1.6 can decrease pesticide levels in the soil by more than 99% and reduce the volume of material requiring further treatment by 25 times or more. The high solubility of the pesticides in methanol resulted in rapid extraction rates, with the system reaching quasi-equilibrium state in 30 minutes. The extraction efficiency was influenced by the number of extraction stages, the solvent-to-soil ratio, and the soil moisture content. Various methods were investigated to regenerate and recycle the solvent. Evaporation and solvent stripping are low cost and reliable methods for removing high pesticide concentrations from the solvent. For low concentrations, GAC adsorption may be used. Precipitating and filtering pesticides by adding water to the methanol/pesticide solution was not successful when tested with soil extracts. 26 refs., 10 figs., 6 tabs.

  4. Remediation progress at the Iron Mountain Mine Superfund site, California. Information Circular/1991

    SciTech Connect (OSTI)

    Biggs, F.R.

    1991-01-01T23:59:59.000Z

    The report was prepared by the U.S. Bureau of Mines to present a brief history of the listing of Iron Mountain Mine as a Superfund site on the National Priorities List (NPL) and subsequent remedial actions. The mine area is located on 4,400 acres near Redding, CA, and includes underground workings, an open pit area, waste rock dumps, and tailings piles. The property involves multiple sources of acid mine drainage (AMD) that are high in copper, zinc, and cadmium. The selected remedial actions, based on the Record of Decision of 1986, would partially cap the richmond mineralized zone to reduce infiltration of clean water, divert clean surface waters away from contaminated areas, fill surface subsidence areas, and enlarge the Spring Creek debris dam to provide increased surge capacity. Site remediation efforts at Iron Mountain are well into the remedial design-remedial action phase. Details of activities and designs of remedial elements are presented, and future activities, discussed.

  5. Remediation of Deep Vadose Zone Radionuclide and Metal Contamination: Status and Issues

    SciTech Connect (OSTI)

    Dresel, P. Evan; Truex, Michael J.; Cantrell, Keri

    2008-12-30T23:59:59.000Z

    This report documents the results of a PNNL literature review to report on the state of maturity of deep vadose zone remediation technologies for metal contaminants including some radionuclides. Its recommendations feed into decisionmakers need for scientific information and cost-effective in situ remediation technlogies needed under DOE's Environmental Management initiative Enhanced Remediation Methods: Scientific & Technical Basis for In Stu Treatment Systems for Metals and Radionuclides.

  6. 100 Areas CERCLA ecological investigations

    SciTech Connect (OSTI)

    Landeen, D.S.; Sackschewsky, M.R.; Weiss, S.

    1993-09-01T23:59:59.000Z

    This document reports the results of the field terrestrial ecological investigations conducted by Westinghouse Hanford Company during fiscal years 1991 and 1992 at operable units 100-FR-3, 100-HR-3, 100-NR-2, 100-KR-4, and 100-BC-5. The tasks reported here are part of the Remedial Investigations conducted in support of the Comprehensive Environmental Response, compensation, and Liability Act of 1980 studies for the 100 Areas. These ecological investigations provide (1) a description of the flora and fauna associated with the 100 Areas operable units, emphasizing potential pathways for contaminants and species that have been given special status under existing state and/or federal laws, and (2) an evaluation of existing concentrations of heavy metals and radionuclides in biota associated with the 100 Areas operable units.

  7. USE OF THE AERIAL MEASUREMENT SYSTEM HELICOPTER EMERGENCY RESPONSE ACQUISITION SYSTEMS WITH GEOGRAPHIC INFORMATION SYSTEM FOR RADIOACTIVE SOIL REMEDIATION - [11504

    SciTech Connect (OSTI)

    BROCK CT

    2011-02-15T23:59:59.000Z

    The Aerial Measurement System (AMS) Helicopter Emergency Response Acquisition System provides a thorough and economical means to identify and characterize the contaminants for large area radiological surveys. The helicopter system can provide a 100-percent survey of an area that qualifies as a scoping survey under the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) methodology. If the sensitivity is adequate when compared to the clean up values, it may also be used for the characterization survey. The data from the helicopter survey can be displayed and manipulated to provide invaluable data during remediation activities.

  8. Draft Level 1 Remedial Investigation Work Plan: 316-3 waste disposal trenches

    SciTech Connect (OSTI)

    Not Available

    1987-09-01T23:59:59.000Z

    This work plan describes the work to be performed for the initial level of site characterization for the 316.3 Trenches at the Hanford Site. This initial site characterization effort will include a review of existing environmental contamination data for the 300 Area as well as collection and analysis of environmental samples to better characterize subsurface contamination at the site. 7 refs., 10 figs., 7 tabs.

  9. Remedial investigation for the chemical plant area of the Weldon Spring Site. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    This volume contains figures such as charts and maps identifying areas of contamination, and tables of compiled data on the types and amount of contamination.

  10. Phase 1 remedial investigation report for 200-BP-1 operable unit. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    Volume two contains appendices for the following: crib soil sample reference table; crib soil analytical data; and crib soil quality control data.

  11. DRAFT HAB Advice: Remedial Investigation/Feasibility Study and Proposed Plan for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OFSupplemental Technology Testing DownselectCarbonJ.D.HAB

  12. Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville Energy ResearchAchievingHydraulicSolution CenterRelease of427

  13. 300 Area Remedial Investigation/Feasibility Study and Proposed Plan Deconstruct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014Energy,FNeed more4 3.2S. Hudson Page

  14. Remedial Investigations for Quarry Bulk Wastes. Revision 1. DOE/OR/21548-066.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A' 3 ct' RIDGEGeneral

  15. Monticello Mill Tailings Site Operable Unit I11 Remedial Investigation Addendum1

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourth Five-Year38Report

  16. Summary - Building C-400 Thermal Treatment Remedial Design Report and Investigation, Paducah, Kentucky

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the Passing of AdmiraltheOil and Less CO2

  17. Record of Decision/Remedial Alternative Selection for the Motor Shops Seepage Basin (716-A)

    SciTech Connect (OSTI)

    Palmer, E.

    1999-02-03T23:59:59.000Z

    This decision document presents the selected remedial alternative for the Motor Shops Seepage Basin located at the Savannah River Site in Aiken, South Carolina

  18. Savannah River Remediation Donates $10,000 to South Carolina State Nuclear Engineering Program

    Broader source: Energy.gov [DOE]

    *Editor's note: This article is cross-posted from Savannah River Remediation's website, where it was posted on September 28, 2012.

  19. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE`s overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program.

  20. Voluntary Protection Program Onsite Review, CHPlateau Remediation Contract Hanford Site- March 2011

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Plateau Remediation Contract Hanford Site is continuing to perform at a level deserving DOE-VPP Star recognition.

  1. animal-based folk remedies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 143 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  2. EIS-0195: Remedial Actions at Operable Unit 4, Fernald Environmental Management Project, Fernald, Ohio

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to conduct remedial action at Operable Unit 4 at the Fernald Environmental Management Project.

  3. Versatile microbial surface-display for environmental remediation and biofuels production

    E-Print Network [OSTI]

    Hawkes, Daniel S

    2008-01-01T23:59:59.000Z

    engineering microbes for biofuels production. Science 315,xenobiotics remediation and biofuels production. TargetP. putida JS444 E. coli Biofuels Production Cellobiose

  4. 2011 Organometallic Chemistry (July 10-15, 2011, Salve Regina University, Newport, RI)

    SciTech Connect (OSTI)

    Dr. Emilio Bunel

    2011-07-15T23:59:59.000Z

    Organometallic chemistry has played and will continue to play a significant role in helping us understand the way bonds are made or broken in the presence of a transition metal complex. Current challenges range from the efficient exploitation of energy resources to the creative use of natural and artificial enzymes. Most of the new advances in the area are due to our extended understanding of processes at a molecular level due to new mechanistic studies, techniques to detect reaction intermediates and theory. The conference will bring the most recent advances in the field including nanocatalysis, surface organometallic chemistry, characterization techniques, new chemical reactivity and theoretical approaches along with applications to organic synthesis and the discovery of new materials. The Conference will bring together a collection of investigators who are at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. Six outstanding posters will be selected for short talks. The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to brainstorm and promotes cross-disciplinary collaborations in the various research areas represented. Graduate students and postdoctoral fellows should also consider participating in the Gordon Research Seminar on Organometallic Chemistry (July 9-10, same location) which is specially designed to promote interaction and discussion between junior scientists.

  5. INDEPENDENT TECHNICAL REVIEW OF THE C-400 INTERIM REMEDIAL PROJECT PHASE I RESULTS, PADUCAH, KENTUCKY

    SciTech Connect (OSTI)

    Looney, B.; Rossabi, J.; Stewart,L.; Richards, W.

    2010-10-29T23:59:59.000Z

    The groundwater and soil in the vicinity of the C-400 Building at the Paducah Gaseous Diffusion Plant (PGDP), is contaminated with substantial quantities of industrial solvents, primarily trichoroethene (TCE). This solvent 'source' is recognized as a significant challenge and an important remediation target in the overall environmental cleanup strategy for PGDP. Thus, the cleanup of the C-400 TCE Source is a principal focus for the Department of Energy (DOE) and its contractors, and for PGDP regulators and stakeholders. Using a formal investigation, feasibility study and decision process, Electrical Resistance Heating (ERH) was selected for the treatment of the soil and groundwater in the vicinity of C-400. ERH was selected as an interim action to remove 'a significant portion of the contaminant mass of TCE at the C-400 Cleaning Building area through treatment' with the longer term goal of reducing 'the period the TCE concentration in groundwater remains above its Maximum Contaminant Level (MCL).' ERH is a thermal treatment that enhances the removal of TCE and related solvents from soil and groundwater. The heterogeneous conditions at PGDP, particularly the high permeability regional gravel aquifer (RGA), are challenging to ERH. Thus, a phased approach is being followed to implement this relatively expensive and complex remediation technology. Conceptually, the phased approach encourages safety and efficiency by providing a 'lessons learned' process and allowing appropriate adjustments to be identified and implemented prior to follow-on phase(s) of treatment. More specifically, early deployment targeted portions of the challenging RGA treatment zone with relatively little contamination reducing the risk of adverse collateral impacts from underperformance in terms of heating and capture. Because of the importance and scope of the C-400 TCE source remediation activities, DOE chartered an Independent Technical Review (ITR) in 2007 to assess the C-400 ERH plans prior to deployment and a second ITR to evaluate Phase I performance in September 2010. In this report, these ITR efforts are referenced as the '2007 ITR' and the 'current ITR', respectively. The 2007 ITR document (Looney et al., 2007) provided a detailed technical evaluation that remains relevant and this report builds on that analysis. The primary objective of the current ITR is to provide an expedited assessment of the available Phase I data to assist the PGDP team as they develop the lessons learned from Phase I and prepare plans for Phase II.

  6. ENVIRONMENTAL REMEDIAL ACTION – ARE WE DOING MORE HARM THAN GOOD?

    E-Print Network [OSTI]

    Bruce W. Church

    The International Commission on Radiological Protection (ICRP) (1) has stated that interventions i.e., remedial actions should do more good than harm. This paper examines completed cleanup projects to answer the question posed in the title. Various researchers have published that toxins in the environment only cause a small percentage of cancers i.e., 1-3 percent (2,3). Estimates of hypothetical fatal cancers are inflated because primarily it is assumed that people will change their living habits and move onto or near uncontrolled waste sites. An occupancy factor of 100 % is used and by using large populations exposed to miniscule levels of radiation (4) unreal levels of fatal cancers are predicted. What we observe are technically indefensible numbers of cancers being calculated for these hypothetical people. This and other maximizing assumptions inflate the risk. The inflated risk, along with very conservative criteria, drives the removal of large volumes of soil and debris. An unintended consequence of these costly well-intentioned (5) remedial actions is the real fatalities and injuries that occur to workers doing the construction and to members of the public through transportation activities. Even though some analysis include the estimates of worker risk, there is little or no discussion which highlights the fact that real risk is being traded for hypothetical risk. This paper is an attempt to review this situation and through cited literature and case studies, come to a better understanding of what if any good is really being done. Maybe it is time to consider this transfer of risk from hypothetical victims to the real victims in remedial action decision-making.

  7. Tank waste remediation system dangerous waste training plan

    SciTech Connect (OSTI)

    POHTO, R.E.

    1999-05-13T23:59:59.000Z

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench.

  8. Activities of HPS standards committee in environmental remediation

    SciTech Connect (OSTI)

    Stencel, J.R. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Chen, S.Y. [Argonne National Lab., IL (United States)

    1994-12-31T23:59:59.000Z

    The Health Physics Society (HPS) develops American National Standards in the area of radiation protection using methods approved by the American National Standards Institute (ANSI). Two of its sections, Environmental Health Physics and Contamination Limits, have ongoing standards development which are important to some environmental remediation efforts. This paper describes the role of the HPS standards process and indicates particular standards under development which will be of interest to the reader. In addition, the authors solicit readers to participate in the voluntary standards process by either joining active working groups (WG) or suggesting appropriate and relevant topics which should be placed into the standards process.

  9. Modelling of Remediation Technologies at the Performance Assessment Level

    SciTech Connect (OSTI)

    Parton, N.J.; Paksy, A.; Eden, L.; Trivedi, D.P. [Nexia Solutions Limited, Hinton House, Risley, Warrington, Cheshire, UK, WA (United States)

    2008-07-01T23:59:59.000Z

    This paper presents approaches to modelling three different remediation technologies that are designed to support site operators during their assessment of remediation options for the management of radioactively contaminated land on nuclear licensed sites in the UK. The three selected technologies were soil washing, permeable reactive barrier and in-situ stabilisation. The potential exists to represent electrokinetics in the future. These technologies were chosen because it was considered that enough information already existed for site operators to assess mature technologies such as soil dig and disposal and groundwater pump and treat. Using the software code GoldSim, the models have been designed to allow site operators to make both a reasonable scoping level assessment of the viability of treatment and understand the cost-benefits of each technology. For soil washing, a standard soil leaching technique was simulated whereby the soil is separated into fines and oversize particles, and subsequently a chemical reagent is used to strip contamination off the soil. The cost benefit of this technology in terms of capital costs for the plant and materials, operational costs and waste disposal costs can also be assessed. The permeable reactive barrier (PRB) model can represent either a continuous wall or a funnel and gate system. The model simulates the transport of contaminants through the reactive material contained in the PRB. The outputs from the model include concentration of contaminants in the groundwater flow downstream of the PRB, mass of contaminants retained by the PRB, total mass and volume of waste and the various costs associated with the PRB remediation technology. The in-situ stabilisation (ISS) model has the capability to represent remediation by the addition of reagents that immobilise contaminated soil. The model simulates the release of contaminants from the treated soil over time. Performance is evaluated by comparison of the mass of contaminants retained and released to the area outside the treatment zone. Other outputs include amount of spoil generated (to be treated as waste) and the costs associated with the application of the ISS technology. These models are aimed to help users select a technology or technologies that are potentially suitable for a particular site. It is anticipated that they will prompt the user to undertake more detailed assessments to tailor the selected technology to their site specific circumstances and contaminated land conditions. (author)

  10. Enhancement of in situ microbial remediation of aquifers

    DOE Patents [OSTI]

    Fredrickson, James K. (Kennewick, WA); Brockman, Fred J. (Kennewick, WA); Streile, Gary P. (both or Richland, WA); Cary, John W. (both or Richland, WA); McBride, John F. (Carrboro, NC)

    1993-01-01T23:59:59.000Z

    Methods are provided for remediating subsurface areas contaminated by toxic organic compounds. An innocuous oil, such as vegetable oil, mineral oil, or other immiscible organic liquid, is introduced into the contaminated area and permitted to move therethrough. The oil concentrates or strips the organic contaminants, such that the concentration of the contaminants is reduced and such contaminants are available to be either pumped out of the subsurface area or metabolized by microorganisms. Microorganisms may be introduced into the contaminated area to effect bioremediation of the contamination. The methods may be adapted to deliver microorganisms, enzymes, nutrients and electron donors to subsurface zones contaminated by nitrate in order to stimulate or enhance denitrification.

  11. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The Uranium Mill Tallings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1 (Chapter 3, paragraph 2). The UMTRA EPIP covers the time period of November 9, 1992, through November 8, 1993. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  12. Uranium Mill Tailings Remedial Action Project environmental protection implementation plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  13. Uranium Mill Tailings Remedial Action Project. 1995 Environmental Report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    In accordance with U.S. Department of Energy (DOE) Order 23 1. 1, Environment, Safety and Health Reporting, the DOE prepares an annual report to document the activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring program. This monitoring must comply with appropriate laws, regulations, and standards, and it must identify apparent and meaningful trends in monitoring results. The results of all monitoring activities must be communicated to the public. The UMTRA Project has prepared annual environmental reports to the public since 1989.

  14. Adaptive management: a paradigm for remediation of public facilities

    SciTech Connect (OSTI)

    Janecky, David R [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory; Doerr, Ted B [NON LANL

    2009-01-01T23:59:59.000Z

    Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simUltaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area(s) after a disruptive event suggest numerous advantages over preset linearly-structured plans by incorporating the flexibility and overlap of processes inherent in effective facility restoration. We discuss three restoration case studies (e.g., the Hart Senate Office Building anthrax restoration, Rocky Flats actinide remediation, and hurricane destruction restoration), that implement aspects of adaptive management but not a formal approach. We propose that more formal adoption of adaptive management principles could be a basis for more flexible standards to improve site-specific remediation plans under conditions of high uncertainty.

  15. DVZ_Remediation_Technology_Tables_Info_Exchange.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OFSupplemental TechnologySummary of DSO 216 -Remediation

  16. Prioritization and accelerated remediation of groundwater contamination in the 200 Areas of the Hanford Site, Washington

    SciTech Connect (OSTI)

    Wittreich, C.D.; Ford, B.H.

    1993-04-01T23:59:59.000Z

    The Hanford Site, operated by the US Department of Energy (DOE), occupies about 1,450 km{sup 2} (560 mi{sup 2}) of the southeastern part of Washington State north of the confluence of the Yakima and Columbia Rivers. The Hanford Site is organized into numerically designated operational areas. The 200 Areas, located near the center of the Hanford Site, encompasses the 200 West, East and North Areas and cover an area of over 40 km{sup 2}. The Hanford Site was originally designed, built, and operated to produce plutonium for nuclear weapons using production reactors and chemical reprocessing plants. Operations in the 200 Areas were mainly related to separation of special nuclear materials from spent nuclear fuel and contain related chemical and fuel processing and waste management facilities. Large quantities of chemical and radioactive waste associated with these processes were often disposed to the environment via infiltration structures such as cribs, ponds, ditches. This has resulted in over 25 chemical and radionuclide groundwater plumes, some of which have reached the Columbia River. An Aggregate Area Management Study program was implemented under the Hanford Federal Facility Agreement and Consent Order to assess source and groundwater contamination and develop a prioritized approach for managing groundwater remediation in the 200 Areas. This included a comprehensive evaluation of existing waste disposal and environmental monitoring data and the conduct of limited field investigations (DOE-RL 1992, 1993). This paper summarizes the results of groundwater portion of AAMS program focusing on high priority contaminant plume distributions and the groundwater plume prioritization process. The objectives of the study were to identify groundwater contaminants of concern, develop a conceptual model, refine groundwater contaminant plume maps, and develop a strategy to expedite the remediation of high priority contaminants through the implementation of interim actions.

  17. Interim measure conceptual design for remediation of source area contamination at Agra, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2007-07-31T23:59:59.000Z

    This document presents a conceptual design for the implementation of a non-emergency interim measure (IM) at the site of the grain storage facility formerly operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in Agra, Kansas. The IM is recommended to mitigate localized carbon tetrachloride contamination in the vadose zone soils at the former CCC/USDA facility and eliminate ongoing soil-to-groundwater contamination. The objectives of this IM conceptual design report include the following: 1. Obtain written acknowledgement from the Kansas Department of Health and the Environment (KDHE) that remediation on the former CCC/USDA property is required. 2. Provide information (IM description, justification for the IM, and project schedule) that the KDHE can include in a pending fact sheet. 3. Obtain KDHE approval for the IM conceptual design, so that the CCC/USDA can initiate a formal request for access to the privately owned property and proceed with preparation of a remedial design plan (RDP). Investigations conducted on behalf of the CCC/USDA by Argonne National Laboratory (Argonne 2006) have demonstrated that soil and groundwater at the Agra site are contaminated with carbon tetrachloride. The levels in groundwater exceed the Kansas Tier 2 Risk-Based Screening Level (RBSL) and the U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 5.0 {micro}g/L for this compound. The soil and groundwater contamination identified at the former CCC/USDA facility currently poses no unacceptable health risks.

  18. Results of the Independent Radiological Verification Survey of Remediation at Building 14, Former Linde Uranium Refinery, Tonawanda, New York (LI001V)

    SciTech Connect (OSTI)

    McKenzie, S.P.

    2000-08-21T23:59:59.000Z

    As part of the Formerly Utilized Sites Remedial Action Program, a team from Oak Ridge National Laboratory (ORNL) conducted a radiological verification survey of Building 14 at the former Linde Uranium Refinery, Tonawanda, New York. The purpose of the survey was to verify that remedial action completed by the project management contractor had reduced contamination levels to within authorized limits. Prior to remediation, fixed and removable beta-gamma emitting material was Prevalent throughout Building 14 and in some of the process piping. Decontamination consisted of removal of surface contamination from floors, floor-wall interfaces, walls, wall-ceiling interfaces, and overhead areas; decontamination or removal of process piping; excavation and removal of subsurface soil; and vacuuming of dust. This independent radiological assessment was performed to verify that the remedial action had reduced contamination levels to within authorized limits. Building 14 at the former Linde site in Tonawanda, New York, was thoroughly investigated inside for radionuclide residues. Surface residual activity levels were generally well below applicable guidelines for protection against radiation. Similarly, removable alpha and beta-gamma activity levels were below guidelines. Gamma exposure rates within the building were at typical background levels, and no elevated indoor radon concentrations were measured. However, numerous areas exceeding U.S. Department of Energy (DOE) applicable guidelines still remain inside and underneath the building. These areas were either (1) inaccessible or (2) removal was not cost-effective or (3) removal would affect the structural integrity of the building. These above-guideline areas have been listed, described, and characterized by the remediation subcontractor (Appendix A), and dose to an exposed worker during typical exposure scenarios has been calculated. Based on the remediation subcontractor's characterization data and dose assessment calculations, these areas pose insignificant risk to building inhabitants under current use scenarios. However, future renovations, repairs, or demolition of the building must require prior evaluation and consideration of the areas. Analysis of the project management contractor's post-remedial action data and results of this independent radiological verification survey by ORNL confirm that residual contamination inside the building is either below the limits prescribed by DOE applicable guidelines for protection against radiation or areas exceeding applicable guidelines have been characterized and a risk assessment completed. Building 14 can be released for unrestricted use under current use scenarios; however, arrangements must be made to inform current and future building owners of the locations of areas exceeding DOE guidelines and any associated restrictions concerning renovations, repairs, or demolition of the building.

  19. Proposed environmental remediation at Argonne National Laboratory, Argonne, Illinois

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an Environmental Assessment evaluating proposed environmental remediation activity at Argonne National Laboratory-East (ANL-E), Argonne, Illinois. The environmental remediation work would (1) reduce, eliminate, or prevent the release of contaminants from a number of Resource Conservation and Recovery Act (RCRA) Solid Waste Management Units (SWMUs) and two radiologically contaminated sites located in areas contiguous with SWMUs, and (2) decrease the potential for exposure of the public, ANL-E employees, and wildlife to such contaminants. The actions proposed for SWMUs are required to comply with the RCRA corrective action process and corrective action requirements of the Illinois Environmental Protection Agency; the actions proposed are also required to reduce the potential for continued contaminant release. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required.

  20. Contaminant plumes containment and remediation focus area. Technology summary

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs.

  1. Uranium Mill Tailings Remedial Action Project (UMTRAP) Public Participation Plan

    SciTech Connect (OSTI)

    NONE

    1981-05-01T23:59:59.000Z

    The purpose of this Public Participation Plan is to explain the Department of Energy`s plan for involving the public in the decision-making process related to the Uranium Mill Tailings Remedial Action (UMTRA) Project. This project was authorized by Congress in the Uranium Mill Tailings Radiation Control Act of 1978. The Act provides for a cooperative effort with affected states and Indian tribes for the eventual cleanup of abandoned or inactive uranium mill tailings sites, which are located in nine western states and in Pennsylvania. Section 111 of the Act states, ``in carrying out the provisions of this title, including the designation of processing sites, establishing priorities for such sites, the selection of remedial actions and the execution of cooperative agreements, the Secretary (of Energy), the Administrator (of the Environmental Protection Agency), and the (Nuclear Regulatory) Commission shall encourage public participation and, where appropriate, the Secretary shall hold public hearings relative to such matters in the States where processing sites and disposal sites are located.`` The objective of this document is to show when, where, and how the public will be involved in this project.

  2. Missouri State information handbook: formerly utilized sites remedial action program

    SciTech Connect (OSTI)

    none,

    1980-12-31T23:59:59.000Z

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the State of Missouri. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature chairmen, and a summary of recent relevant legislative action; a description of the organization and structure of local governments affected by remedial action at the St. Louis area sites; a summary of relevant local ordinances and regulations; an identification of relevant public interest groups; a list of radio stations, television stations, and newspapers that provide public information to the St. Louis area or to Jefferson City; and the full text of relevant statutes and regulations.

  3. Tank SY-102 remediation project: Flowsheet and conceptual design report

    SciTech Connect (OSTI)

    Yarbro, S.L.; Punjak, W.A.; Schreiber, S.B.; Dunn, S.L.; Jarvinen, G.D.; Marsh, S.F.; Pope, N.G.; Agnew, S.; Birnbaum, E.R.; Thomas, K.W.; Ortic, E.A.

    1994-01-01T23:59:59.000Z

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. A major program in TWRS is pretreatment which was established to process the waste prior to disposal. Pretreatment is needed to resolve tank safety issues and to separate wastes into high-level and low-level fractions for subsequent immobilization and disposal. There is a fixed inventory of actinides and fission products in the tank which must be prepared for disposal. By segregating the actinides and fission products from the bulk of the waste, the tank`s contents can be effectively managed. Due to the high public visibility and environmental sensitivity of this problem, real progress and demonstrated efforts toward addressing it must begin as soon as possible. As a part of this program, personnel at the Los Alamos National Laboratory (LANL) have developed and demonstrated a flowsheet to remediate tank SY-102 which is located in the 200 West Area and contains high-level radioactive waste. This report documents the results of the flowsheet demonstrations performed with simulated, but radioactive, wastes using an existing glovebox line at the Los Alamos Plutonium Facility. The tank waste was characterized using both a tank history approach and an exhaustive evaluation of the available core sample analyses. This report also presents a conceptual design complete with a working material flow model, a major equipment list, and cost estimates.

  4. Risk assessment in the DOE Assurance Program for Remedial Action

    SciTech Connect (OSTI)

    Marks, S.; Cross, F.T.; Denham, D.H.; Kennedy, W.E.; Stenner, R.D.

    1985-08-01T23:59:59.000Z

    This document provides information obtained during the performance of risk assessment tasks in support of the Assurance Program for Remedial Action (APRA) sponsored by the Office of Operational Safety of the Department of Energy. We have presented a method for the estimation of projected health effects at properties in the vicinity of uranium mill tailing piles due to transported tailings or emissions from the piles. Because radon and radon daughter exposure is identified as the principal factor contributing to health effects at such properties, the basis for estimating lung cancer risk as a result of such exposure is discussed in detail. Modeling of health risk due to a secondary pathway, ingestion of contaminated, home-grown food products, is also discussed since it is a potentially important additional source of exposure in certain geographic locations. Risk assessment methods used in various mill tailings reports are reviewed. The protocols for radiological surveys conducted in DOE-sponsored remedial action programs are critically reviewed with respect to their relevance to the needs of health risk estimation. The relevance of risk assessment to the APRA program is discussed briefly.

  5. Unique Construction and Social Experiences in Residential Remediation Sites - 13423

    SciTech Connect (OSTI)

    Jung, Paul; Scarborough, Rebecca [Sevenson Environmental Services, Inc. 2749 Lockport Road, Niagara Falls, NY 14305 (United States)] [Sevenson Environmental Services, Inc. 2749 Lockport Road, Niagara Falls, NY 14305 (United States)

    2013-07-01T23:59:59.000Z

    Sevenson Environmental Services, Inc., (Sevenson) has performed several radiological remediation projects located in residential urban areas. Over the course of these projects, there has been a wide variety of experiences encountered from construction related issues to unique social situations. Some of the construction related issues included the remediation of interior basements where contaminated material was located under the footers of the structure or was used in the mortar between cinder block or field stone foundations. Other issues included site security, maintaining furnaces or other utilities, underpinning, backfilling and restoration. In addition to the radiological hazards associated with this work there were occupational safety and industrial hygiene issues that had to be addressed to ensure the safety and health of neighboring properties and residents. The unique social situations at these job sites have included arson, theft/stolen property, assault/battery, prostitution, execution of arrest warrants for residents, discovery of drugs and paraphernalia, blood borne pathogens, and unexploded ordnance. Some of these situations have become a sort of comical urban legend throughout the organization. One situation had historical significance, involving the demolition of a house to save a tree older than the Declaration of Independence. All of these projects typically involve the excavation of early 20. century items such as advertisement signs, various old bottles (milk, Listerine, perfume, whisky) and other miscellaneous common trash items. (authors)

  6. Analysis of SPR salt cavern remedial leach program 2013.

    SciTech Connect (OSTI)

    Weber, Paula D.; Gutierrez, Karen A.; Lord, David L.; Rudeen, David Keith [GRAM, Inc., Albuquerque, NM

    2013-09-01T23:59:59.000Z

    The storage caverns of the US Strategic Petroleum Reserve (SPR) exhibit creep behavior resulting in reduction of storage capacity over time. Maintenance of oil storage capacity requires periodic controlled leaching named remedial leach. The 30 MMB sale in summer 2011 provided space available to facilitate leaching operations. The objective of this report is to present the results and analyses of remedial leach activity at the SPR following the 2011 sale until mid-January 2013. This report focuses on caverns BH101, BH104, WH105 and WH106. Three of the four hanging strings were damaged resulting in deviations from normal leach patterns; however, the deviations did not affect the immediate geomechanical stability of the caverns. Significant leaching occurred in the toes of the caverns likely decreasing the number of available drawdowns until P/D ratio criteria are met. SANSMIC shows good agreement with sonar data and reasonably predicted the location and size of the enhanced leaching region resulting from string breakage.

  7. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01T23:59:59.000Z

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  8. The effect of CO2 on the plasma remediation of NxOy Ann C. Gentilea)

    E-Print Network [OSTI]

    Kushner, Mark

    The effect of CO2 on the plasma remediation of NxOy Ann C. Gentilea) and Mark J. Kushnerb repetitively pulsed dielectric barrier discharges. As combustion effluents contain large percentages of CO2, in this paper we discuss the consequences of CO2 in the gas mixture on the efficiency of remediation

  9. Environmental remediation 1991: ``Cleaning up the environment for the 21st Century``. Proceedings

    SciTech Connect (OSTI)

    Wood, D.E. [ed.] [Westinghouse Hanford Co., Richland, WA (United States)

    1991-12-31T23:59:59.000Z

    This report presents discussions given at a conference on environmental remediation, September 8--11, Pasco, Washington. Topics include: public confidence; education; in-situ remediation; Hanford tank operations; risk assessments; field experiences; standards; site characterization and monitoring; technology discussions; regulatory issues; compliance; and the UMTRA project. Individual projects are processed separately for the data bases.

  10. VEGETATED ROOFS FOR URBAN ECOSYSTEM REMEDIATION: PERFORMANCE AND POLICY IN THE TANYARD BRANCH WATERSHED

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    VEGETATED ROOFS FOR URBAN ECOSYSTEM REMEDIATION: PERFORMANCE AND POLICY IN THE TANYARD BRANCH the urbanization process. This study evaluated the performance and feasibility of using vegetated or green roof systems for urban ecosystem remediation. The stormwater retention performance of a thin-layer green roof

  11. A Hydraulic Capture Application for Optimal Remediation Design K. R. Fowlera

    E-Print Network [OSTI]

    1 A Hydraulic Capture Application for Optimal Remediation Design K. R. Fowlera , C. T. Kelley b , C Carolina Chapel Hill, NC 27599-7400, USA The goal of a hydraulic capture model for remediation purposes is desirable and often influences the choice of solution method. In this paper we present two hydraulic capture

  12. The Use of Enhanced Bioremediation at the Savannah River Site to Remediate Pesticides and PCBs

    SciTech Connect (OSTI)

    Beul, R.

    2003-09-30T23:59:59.000Z

    Enhanced bioremediation is quickly developing into an economical and viable technology for the remediation of contaminated soils. Until recently, chlorinated organic compounds have proven difficult to bioremediate. This article reviews the ongoing remediation occurring at the Chemicals, Metals, and Pesticides (CMP) Pits using windrow turners to facilitate microbial degradation of certain pesticides and PCBs.

  13. Superfund state-lead remedial project-management handbook. Final report

    SciTech Connect (OSTI)

    Winter, B.

    1986-12-01T23:59:59.000Z

    The handbook defines the roles and responsibilities of the Remedial Project Officer (RPM) with regard to State-lead remedial projects at uncontrolled hazardous-waste sites. It also discusses project-management techniques and the resources available to the RPM for accomplishing his mission.

  14. Superfund federal-lead remedial project-management handbook. Final report

    SciTech Connect (OSTI)

    Hooper, S.

    1986-12-01T23:59:59.000Z

    The handbook defines the roles and responsibilities of the Remedial Project Officer (RPM) with regard to Federal-lead remedial projects at uncontrolled hazardous-waste sites. It also discusses project management techniques and the resources available to the RPM for accomplishing his mission.

  15. Water Research 38 (2004) 38693880 A reactor model for pulsed pumping groundwater remediation

    E-Print Network [OSTI]

    Lastoskie, Christian M.

    Water Research 38 (2004) 3869­3880 A reactor model for pulsed pumping groundwater remediation C; accepted 11 June 2004 Abstract A hybrid in situ bioremediation/pulsed pumping strategy has been developed to cost effectively remediate a carbon tetrachloride plume in Schoolcraft, Michigan. The pulsed pumping

  16. Fracture enhanced in-situ foam remediation. Topical report, July 1995-December 1996

    SciTech Connect (OSTI)

    Chowdiah, P.; Misra, B.R.; Conrad, J.R.; Srivastava, V.J.

    1997-06-01T23:59:59.000Z

    The objective of this project was to determine the technical feasibility of soil fracturing as an enhancement to transportation of foam and foam-assisted site remediation. This project is part of an overall effort by the Gas Research Institute (GRI) to develop technologies for cost-effective, in-situ remediation of soils.

  17. Defining groundwater remediation objectives with cost-1 benefit analysis: does it work?2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Defining groundwater remediation objectives with cost-1 benefit analysis: does it work?2 3 J at the local (site) level. This paper questions whether12 CBA is relevant for evaluating groundwater management the cost of groundwater14 protection and remediation measures at the regional (water body) level. It also

  18. Post-remediation biomonitoring of pesticides and other contaminants in marine waters and sediment near the United Heckathorn Superfund Site, Richmond, California

    SciTech Connect (OSTI)

    LD Antrim; NP Kohn

    2000-05-26T23:59:59.000Z

    Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with Year 1 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Mean dieidrin concentrations in water ranged from 0.62 rig/L to 12.5 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 14.4 ng/L to 62.3 ng/L and exceeded the remediation goal (0.59 ng/L) at all stations. The highest concentrations of both pesticides were found at the Lauritzen Canal/End station. Despite exceedence of the remediation goals, chlorinated pesticide concentrations in Lauritzen Canal water samples were notably lower in 1999 than in 1998. Tissue samples from biomonitoring organisms (mussels) provide an indication of the longer-term integrated exposure to contaminants in the water column, which overcomes the limitations of grab samples of water. Biomonitoring results indicated that the bioavailability of chlorinated pesticides has been reduced from preremediation levels both in the dredged area and throughout Richmond Harbor. Total DDT and dieldrin concentrations in mussel tissues were dramatically lower than measured levels from preremediation surveys and also lower than Year 1 levels from post-remediation biomonitoring. The lowest levels were found at the Richmond Inner Harbor Channel station (4.1 {micro}g/kg total DDT and 0.59 {micro}g/kg dieldrin, wet weight; mean of resident and transplant mussels). Mean chlorinated pesticide concentrations were highest at Lauritzen Canal/End (82 {micro}g/kg total DDT and 7.1 {micro}g/kg dieldrin, wet weight), followed by Lauritzen Canal/Mouth (22 {micro}/kg total DDT and 1.7 {micro}g/kg dieldrin, wet weight) and Santa Fe Channel/End (7.5 {micro}g/kg total DOT and 0.61 {micro}g/kg dieldrin, wet weight). These levels are 95% to 99% lower than those recorded by the California State Mussel Watch program prior to EPA's response actions. The levels of PCBs in mussel tissue were also reduced by 93% to 97% from preremediation levels. Surface sediment concentrations of dieldrin and DDT in November 1998 were highest in samples from the head or north end of Lauritzen Canal and progressively lower toward the mouth, or south end. Total DDT ranged from 130 ppm (dry weight) at the north end to 3 ppm at the south end. Dieldrin concentrations decreased from 3,270 ppb (dry weight) at the north end to 52 ppb at the south end. These results confirmed elevated pesticide concentrations in sediments collected from Lauritzen Channel by Anderson et al. (1999). The pesticide concentrations were lower than maximum concentrations found in the 1993 Remedial Investigation but comparable to the median levels measured before remediation was completed. Sediment analyses also showed the presence of elevated PCB aroclor 1254, and very high levels of polynuclear aromatic hydrocarbons (PAH) in Lauritzen Channel.

  19. Post-Remediation Biomonitoring of Pesticides in Marine Waters Near the United Heckathorn Site, Richmond, California

    SciTech Connect (OSTI)

    Antrim, Liam D.; Kohn, Nancy P.

    2000-09-05T23:59:59.000Z

    Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in January 1998 from four stations near Lauritzen Canal in Richmond, California, for the first post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and DDT were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared to pre-remediation data available from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Biomonitoring results indicated that pesticides were still bioavailable in the water column, and have not been reduced from pre-remediation levels. Annual biomonitoring will continue to assess the effectiveness of remedial actions at the United Heckathorn Site.

  20. Supervisory Investigator

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will... Assist the Investigations Division Director with oversight of CI and counterterrorism (CT) investigative activity at DOE CI Field Offices across DOE...

  1. Innovative Regulatory and Technical Approaches for the U.S. Army Corp of Engineers' Linde FUSRAP Site Remediation

    SciTech Connect (OSTI)

    Pitts, J. T.; Coutts, P. W.; Franz, J.; Boyle, J. D.; Rogers, B. C.

    2002-02-27T23:59:59.000Z

    The U.S. Department of Energy (USDOE) created the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 to identify, investigate, and cleanup or control radiological contamination at sites used by the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC) from the 1940s through the 1960s. The USDOE had identified 46 sites in the program and finished remediation at 24 of the smaller ones before the end of 1997. With the passage of the Energy and Water Resources Appropriation Act of 1998 the United States Army Corps of Engineers (USACE) was designated by Congress with responsibility to manage and execute the FUSRAP. The Linde Site located in Tonawanda, New York was operated by the MED from 1942-1946 to extract uranium from several high-grade ores. This natural uranium was subsequently enriched in U-235 elsewhere in the United States and ultimately used to produce energy or weapons. Though in the process of reviewing alternative disposal options by 1995, the USDOE had operated FUSRAP with a strategy requiring virtually all materials remediated be disposed of at only one Nuclear Regulatory Commission licensed facility. The change in management of the FUSRAP in 1997 allowed the disposal policy of low levels of radioactively contaminated materials found at the remaining sites to be reexamined. This paper presents some of the innovative regulatory and technical approaches employed at the Linde Site that are resulting in project cost savings while meeting applicable or relevant and appropriate requirements as well as fulfilling commitments made to the local community.

  2. Superfund Record of Decision (EPA Region 8): Anaconda Smelter site, (Operable Unit 11 - Flue Dust), Deer Lodge County, Anaconda, MT. (Second remedial action), September 1991

    SciTech Connect (OSTI)

    Not Available

    1991-09-23T23:59:59.000Z

    The 6,000-acre Anaconda Smelter site is a former copper and ore processing facility in Deer Lodge County, Montana. Land use in the area is predominantly residential. The site is bounded on the north and east, respectively, by the Warm Springs Creek and Mill Creek, both of which are potential sources of drinking water. From 1884 until 1980 when activities ceased, the site was used for ore processing and smelting operations. In 1988, EPA conducted an investigation to determine the nature and extent of the flue dust contamination. A 1988 ROD addressed the Mill Creek Operable Unit (OU15) and documented the relocation of residents from the community surrounding the smelter site as the selected remedial action. The Record of Decision (ROD) addresses the Flue Dust Operable Unit (OU11). The primary contaminants of concern affecting this site from the flue dust materials are metals including arsenic, cadmium, and lead. The selected remedial action for the site is included.

  3. Iowa state information handbook: formerly utilized sites remedial action program

    SciTech Connect (OSTI)

    None

    1981-02-09T23:59:59.000Z

    This volume is one of a series produced under contract with the DOE, By Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the state of Iowa. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; the full test of relevant statutes and regulations.

  4. California state information handbook: formerly utilized sites remedial action program

    SciTech Connect (OSTI)

    none,

    1981-02-09T23:59:59.000Z

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the state of California. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; the full text of relevant statutes and regulations.

  5. Pennsylvania state information handbook: formerly utilized sites remedial action program

    SciTech Connect (OSTI)

    none,

    1980-12-31T23:59:59.000Z

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and State levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the State of Pennsylvania. It contains a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; and the full text of relevant statutes and regulations.

  6. Tank waste remediation system functions and requirements document

    SciTech Connect (OSTI)

    Carpenter, K.E

    1996-10-03T23:59:59.000Z

    This is the Tank Waste Remediation System (TWRS) Functions and Requirements Document derived from the TWRS Technical Baseline. The document consists of several text sections that provide the purpose, scope, background information, and an explanation of how this document assists the application of Systems Engineering to the TWRS. The primary functions identified in the TWRS Functions and Requirements Document are identified in Figure 4.1 (Section 4.0) Currently, this document is part of the overall effort to develop the TWRS Functional Requirements Baseline, and contains the functions and requirements needed to properly define the top three TWRS function levels. TWRS Technical Baseline information (RDD-100 database) included in the appendices of the attached document contain the TWRS functions, requirements, and architecture necessary to define the TWRS Functional Requirements Baseline. Document organization and user directions are provided in the introductory text. This document will continue to be modified during the TWRS life-cycle.

  7. Massachusetts state information handbook: formerly utilized sites remedial action program

    SciTech Connect (OSTI)

    None

    1981-02-09T23:59:59.000Z

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the state of Massachusetts. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; the full text of relevant statutes and regulations.

  8. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    SciTech Connect (OSTI)

    Vollmer, A.T.

    1993-10-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references.

  9. A systematic look at Tank Waste Remediation System privatization

    SciTech Connect (OSTI)

    Holbrook, J.H.; Duffy, M.A.; Vieth, D.L.; Sohn, C.L.

    1996-01-01T23:59:59.000Z

    The mission of the Tank Waste Remediation System (TWRS) Program is to store, treat, immobilize, and dispose, or prepare for disposal, the Hanford radioactive tank waste in an environmentally sound, safe, and cost effective manner. Highly radioactive Hanford waste includes current and future tank waste plus the cesium and strontium capsules. In the TWRS program, as in other Department of Energy (DOE) clean-up activities, there is an increasing gap between the estimated funding required to enable DOE to meet all of its clean-up commitments and level of funding that is perceived to be available. Privatization is one contracting/management approach being explored by DOE as a means to achieve cost reductions and as a means to achieve a more outcome-oriented program. Privatization introduces the element of competition, a proven means of establishing true cost as well as achieving significant cost reduction.

  10. Technology needs for remediation: Hanford and other DOE sites

    SciTech Connect (OSTI)

    Stapp, D.C.

    1993-01-01T23:59:59.000Z

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy's (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL's Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  11. Enhancement of in situ microbial remediation of aquifers

    DOE Patents [OSTI]

    Fredrickson, J.K.; Brockman, F.J.; Streile, G.P.; Cary, J.W.; McBride, J.F.

    1993-11-30T23:59:59.000Z

    Methods are provided for remediating subsurface areas contaminated by toxic organic compounds. An innocuous oil, such as vegetable oil, mineral oil, or other immiscible organic liquid, is introduced into the contaminated area and permitted to move therethrough. The oil concentrates or strips the organic contaminants, such that the concentration of the contaminants is reduced and such contaminants are available to be either pumped out of the subsurface area or metabolized by microorganisms. Microorganisms may be introduced into the contaminated area to effect bioremediation of the contamination. The methods may be adapted to deliver microorganisms, enzymes, nutrients and electron donors to subsurface zones contaminated by nitrate in order to stimulate or enhance denitrification. 4 figures.

  12. MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD

    SciTech Connect (OSTI)

    KRONVALL CM

    2011-01-14T23:59:59.000Z

    In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D&D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

  13. Scientific Opportunity to Reduce Risk in Groundwater and Soil Remediation

    SciTech Connect (OSTI)

    Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.; Looney, Brian B.; Zachara, John M.; Liang, Liyuan; Lesmes, D.; Chamberlain, G. M.; Skubal, Karen L.; Adams, V.; Denham, Miles E.; Wellman, Dawn M.

    2009-08-25T23:59:59.000Z

    In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focus research efforts on addressing the problems and challenges that are causing “failure” in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EM’s applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five “crosscutting” themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.

  14. Ecological effects of contaminants and remedial actions in Bear Creek

    SciTech Connect (OSTI)

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Burris, J.A. (C. E. Environmental, Inc., Tallahassee, FL (United States))

    1992-01-01T23:59:59.000Z

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.

  15. Clean Slate Environmental Remediation DSA for 10 CFR 830 Compliance

    SciTech Connect (OSTI)

    James L. Traynor, Stephen L. Nicolosi, Michael L. Space, Louis F. Restrepo

    2006-08-01T23:59:59.000Z

    Clean Slate Sites II and III are scheduled for environmental remediation (ER) to remove elevated levels of radionuclides in soil. These sites are contaminated with legacy remains of non-nuclear yield nuclear weapons experiments at the Nevada Test Site, that involved high explosive, fissile, and related materials. The sites may also hold unexploded ordnance (UXO) from military training activities in the area over the intervening years. Regulation 10 CFR 830 (Ref. 1) identifies DOE-STD-1120-98 (Ref. 2) and 29 CFR 1910.120 (Ref. 3) as the safe harbor methodologies for performing these remediation operations. Of these methodologies, DOE-STD-1120-98 has been superseded by DOE-STD-1120-2005 (Ref. 4). The project adopted DOE-STD-1120-2005, which includes an approach for ER projects, in combination with 29 CFR 1910.120, as the basis documents for preparing the documented safety analysis (DSA). To securely implement the safe harbor methodologies, we applied DOE-STD-1027-92 (Ref. 5) and DOE-STD-3009-94 (Ref. 6), as needed, to develop a robust hazard classification and hazards analysis that addresses non-standard hazards such as radionuclides and UXO. The hazard analyses provided the basis for identifying Technical Safety Requirements (TSR) level controls. The DOE-STD-1186-2004 (Ref. 7) methodology showed that some controls warranted elevation to Specific Administrative Control (SAC) status. In addition to the Evaluation Guideline (EG) of DOE-STD-3009-94, we also applied the DOE G 420.1 (Ref. 8) annual, radiological dose, siting criterion to define a controlled area around the operation to protect the maximally exposed offsite individual (MOI).

  16. Barometric pumping with a twist: VOC containment and remediation without boreholes. Phase I

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The majority of the planned remediation sites within the DOE complex are contaminated with volatile organic compounds (VOCs). In many instances the contamination has not reached the water table, does not pose an immediate threat, and is not considered a high priority problem. These sites will ultimately require remediation of some type, either by active vapor extraction, bioremediation, or excavation and ex-situ soil treatment. The cost of remediating these sites can range from $50 K to more than $150 K, depending on site characteristics, contaminants, and remediation method. Additionally, for many remediated sites, residual contamination exists which could not practically be removed by the applied remediation technology. These circumstances result in modest sites with contamination of limited risk, but by regulation they must still be controlled. A remediation solution being developed by Science and Engineering Associates, Inc. (SEA) for the Department of Energy serves as an in-situ containment and extraction methodology for sites where most or all of the contamination resides in the vadose zone soil. The approach capitalizes on the advective soil gas movement resulting from barometric pressure oscillations.

  17. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    SciTech Connect (OSTI)

    Owen, P. T.; Webb, J. R.; Knox, N. P.; Goins, L. F.; Harrell, R. E.; Mallory, P. K.; Cravens, C. D.

    1991-09-01T23:59:59.000Z

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  18. Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program - 12189

    SciTech Connect (OSTI)

    Clayton, Christopher [U.S. Department of Energy Office of Legacy Management, Washington, DC; Kothari, Vijendra [U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia; Starr, Ken [U.S. Department of Energy Office of Legacy Management, Westminster, Colorado; Gillespie, Joey [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado; Widdop, Michael [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado; none,

    2012-02-26T23:59:59.000Z

    The U.S. Department of Energy (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP) was established in 1974 to address residual radiological contamination at sites where work was performed for the Manhattan Engineer District and U.S. Atomic Energy Commission. Initially, FUSRAP activities began with a records search for sites that had the potential to contain residual radiological contamination; 46 sites were identified that were eligible for and required remediation. Remedial action began in 1979. In 1997, Congress assigned responsibility for the remediation of FUSRAP sites to the U.S. Army Corps of Engineers (USACE). DOE retains responsibility for determining if sites are eligible for FUSRAP remediation and for providing long-term surveillance and maintenance (LTS&M) of remediated FUSRAP sites. DOE LTS&M activities are designed to ensure that FUSRAP sites remain protective of human health and the environment and to preserve knowledge regarding FUSRAP sites. Additional elements include eligibility determinations, transition of remediated sites from USACE to DOE, LTS&M operations such as inspections and institutional controls management, stakeholder support, preservation of records, and real property and reuse. DOE maintains close coordination with USACE and regulators to ensure there is no loss of protectiveness when sites transition to DOE for LTS&M.

  19. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  20. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01T23:59:59.000Z

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  1. Documenting cost and performance for environmental remediation projects: Department of Energy Office of Environmental Management

    SciTech Connect (OSTI)

    NONE

    1996-08-08T23:59:59.000Z

    The purpose of this DOE guide is to facilitate the use of consistent procedures to document cost and performance information for projects involving the remediation of media contaminated with hazardous and radioactive wastes. It provides remedial action project managers with a standardized set of data to document completed remediation projects. Standardized reporting of data will broaden the utility of the information, increase confidence in the effectiveness of future remedial technologies, and enhance the organization, storage and retrieval of relevant information for future cleanup projects. The foundation for this guide was laid down by the Federal Remediation Technologies Roundtable (FRTR) in their publication, Guide to Documenting Cost and Performance for Remediation Projects, EPA-542-B- 95-002. Member agencies of the FRTR include the US EPA, the US DOD, the US DOE, and the US DOI. All the member agencies are involved in site remediation projects and anticipate following the guidance provided in the above reference. Therefore, there is much to be gained for DOE to be consistent with the other member agencies as it will be easier to compare projects across different agencies and also to learn from the experiences of a wider spectrum of prior completed projects.

  2. Y-12 Plant Remedial Action technology logic diagram. Volume I: Technology evaluation

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Y-12 Plant Remedial Action Program addresses remediation of the contaminated groundwater, surface water and soil in the following areas located on the Oak Ridge Reservation: Chestnut Ridge, Bear Creek Valley, the Upper and Lower East Fork Popular Creek Watersheds, CAPCA 1, which includes several areas in which remediation has been completed, and CAPCA 2, which includes dense nonaqueous phase liquid wells and a storage facility. There are many facilities within these areas that are contaminated by uranium, mercury, organics, and other materials. This Technology Logic Diagram identifies possible remediation technologies that can be applied to the soil, water, and contaminants for characterization, treatment, and waste management technology options are supplemented by identification of possible robotics or automation technologies. These would facilitate the cleanup effort by improving safety, of remediation, improving the final remediation product, or decreasing the remediation cost. The Technology Logic Diagram was prepared by a diverse group of more than 35 scientists and engineers from across the Oak Ridge Reservation. Most are specialists in the areas of their contributions. 22 refs., 25 tabs.

  3. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

  4. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01T23:59:59.000Z

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  5. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.

  6. Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program - 12189

    SciTech Connect (OSTI)

    Clayton, Christopher [U.S. Department of Energy Office of Legacy Management, Washington, DC (United States); Kothari, Vijendra [U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia (United States); Starr, Ken [U.S. Department of Energy Office of Legacy Management, Westminster, Colorado (United States); Gillespie, Joey; Widdop, Michael [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado (United States)

    2012-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP) was established in 1974 to address residual radiological contamination at sites where work was performed for the Manhattan Engineer District and U.S. Atomic Energy Commission. Initially, FUSRAP activities began with a records search for sites that had the potential to contain residual radiological contamination; 46 sites were identified that were eligible for and required remediation. Remedial action began in 1979. In 1997, Congress assigned responsibility for the remediation of FUSRAP sites to the U.S. Army Corps of Engineers (USACE). DOE retains responsibility for determining if sites are eligible for FUSRAP remediation and for providing long-term surveillance and maintenance (LTS and M) of remediated FUSRAP sites. DOE LTS and M activities are designed to ensure that FUSRAP sites remain protective of human health and the environment and to preserve knowledge regarding FUSRAP sites. Additional elements include eligibility determinations, transition of remediated sites from USACE to DOE, LTS and M operations such as inspections and institutional controls management, stakeholder support, preservation of records, and real property and reuse. DOE maintains close coordination with USACE and regulators to ensure there is no loss of protectiveness when sites transition to DOE for LTS and M. Over the life of the FUSRAP program from 1974 to the present, DOE's primary mission and responsibility has been to ensure that FUSRAP sites remain protective of human health and the environment. In fulfilling this mission, the DOE program includes the following key elements: eligibility determinations, transition of remediated sites from USACE to DOE, LTS and M operations such as inspections and institutional controls management, stakeholder support, preservation of records, and real property and reuse. DOE maintains close communication stakeholders as well as state and federal regulators. DOE programs are designed to preserve and present the information that future stewards and stakeholders will need to maintain site remedies and knowledge. (authors)

  7. Superfund Record of Decision (EPA Region 2): Higgins Farm, Franklin Township, Somerset County, NJ. (First remedial action), September 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-24T23:59:59.000Z

    The 75-acre Higgins Farm site is a cattle farm in Franklin Township, Somerset County, New Jersey. The site is primarily pasture land with poor onsite drainage. Approximately 3,200 residents living within a three-mile radius of the site rely on ground water as their drinking water source. In 1985, after receiving reports of ground water contamination near the farm, the State investigated the area and found a drum burial area. In 1986, the site owner began to remove the drums from the site, and ten drums were removed, crushed and placed in a roll-off container. Later in 1986, another 50 drums were excavated, and during the excavation the drums were punctured and their contents spilled onto the ground. In late 1986, State site inspections revealed ground water and soil contamination by VOCs, pesticides, metals, and dioxins. The Record of Decision (ROD) provides a permanent safe drinking water supply source for affected residents as part of an interim remedy. A future ROD will address remediation of final ground water and all remaining onsite contamination including soil, sediment, surface water, and ground water. The primary contaminants of concern affecting the ground water are VOCs including benzene, PCE, TCE, and xylenes; other organics; and metals including lead.

  8. Environmental audit of the Maywood Site: Formerly Utilized Sites Remedial Action Program, Maywood Interim Storage Site vicinity properties

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    This report presents the results of the Environmental Audit of the Maywood Site managed by the Formerly Utilized Sites Remedial Action Program (FUSRAP). The Audit was carried out from November 7 through 16, 1990. The Audit Team found overall technical competence and knowledge of management and staff to be excellent. This applies to DOE as well as to Bechtel National, Incorporated (BNI). In particular, there was excellent knowledge of federal, state, and local environmental regulations, as well as analysis for applicability of these regulations to FUSRAP. Project management of the Maywood Site is also excellent. BNI and DOE project staff have made frequent contact with members of the community, and all removal actions and remedial investigation activities have been planned, scheduled, and accomplished with competence and attention to total quality principles. To date, all actions taken for the Maywood Site cleanup have been completed ahead of schedule and on or under budget. Weakness noted include self-assessment efforts by DOE, failure to fully implement DOE Order requirements throughout the program, and some discrepancies in formally documenting and reviewing procedures. 7 figs., 10 tabs.

  9. Superfund Record of Decision (EPA Region 2): Myers Property, Franklin Township, NJ. (First remedial action), September 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28T23:59:59.000Z

    The 7-acre Myers Property site is a former pesticide and industrial chemical manufacturing facility in Franklin Township, Hunterdon County, New Jersey. The site lies adjacent to, and in the 100-year floodplain of the Cakepoulin Creek which flows to the north of the site. The site is comprised of adjourning private lands, two acres of wetlands, and five acres of residential property with onsite residents. In 1978, State investigations identified 20 unlabeled drums of chemicals containing metals, DDT, other organic chemicals in a shed, and 24 cubic yards of asbestos material in an onsite warehouse. In addition, surface soil and debris were found to be contaminated with high levels of DDT, other organics, and metals. The Record of Decision (ROD) addresses the first of two operable units, and includes remediation of the soil, sediment, buildings, and shallow ground water aquifer. The ROD also addresses interim remedial activities for the second operable unit, the ground water in the bedrock aquifer, which will be fully addressed in a future ROD. The primary contaminants of concern affecting the soil, sediment, debris, and ground water are VOCs including benzene; other organics including PCBs, PAHs, dioxin, and pesticides such as DDT; and metals including arsenic, and lead.

  10. Operable Unit 3: Proposed Plan/Environmental Assessment for interim remedial action

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    This document presents a Proposed Plan and an Environmental Assessment for an interim remedial action to be undertaken by the US Department of Energy (DOE) within Operable Unit 3 (OU3) at the Fernald Environmental Management Project (FEMP). This proposed plan provides site background information, describes the remedial alternatives being considered, presents a comparative evaluation of the alternatives and a rationnale for the identification of DOE`s preferred alternative, evaluates the potential environmental and public health effects associated with the alternatives, and outlines the public`s role in helping DOE and the EPA to make the final decision on a remedy.

  11. Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System Remedial Action Request

    SciTech Connect (OSTI)

    L. Davison

    2009-06-30T23:59:59.000Z

    This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The site addressed in this report was defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for the site have been accomplished and is hereafter considered a No Further Action site.

  12. Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System Remedial Action Report

    SciTech Connect (OSTI)

    Lee Davison

    2009-06-30T23:59:59.000Z

    This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The site addressed in this report was defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for the site have been accomplished and is hereafter considered a No Further Action site.

  13. Fiscal Year 2010 Program of the U.S. DOE Office of Groundwater and Soil Remediation

    SciTech Connect (OSTI)

    Chamberlain, G. M.; Skubal, Karen L.; Wellman, Dawn M.

    2011-03-07T23:59:59.000Z

    The mission of the Office of Groundwater and Soil Remediation (EM-32) is to perform assessments, establish technical criteria and promote cross-site integration. The Office provides guidance for the development and implementation of plans for remediation of groundwater and is responsible for development of technologies needed to reduce risk from groundwater contamination. It is also responsible for providing technical direction and/or assistance to sites in resolving difficult technical groundwater and soil remediation problems. This paper discusses the activities funded by EM-32 for FY-2010.

  14. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Remedial action selection report. Revised final report

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    The uranium mill tailings site near Durango, Colorado, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s Remedial Action Plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which has been developed to serve a two-fold purpose. First, it describes the activities that have been conducted by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium mill processing site near Durango, Colorado. Secondly, this document and the rest of the RAP, upon concurrence and execution by the DOE, the State of Colorado, and the NRC, become Appendix B of the Cooperative Agreement between the DOE and the State of Colorado.

  15. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Remedial action selection report

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    The uranium mill tailings site near Durango, Colorado, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's Remedial Action Plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which has been developed to serve a two-fold purpose. First, it describes the activities that have been conducted by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium mill processing site near Durango, Colorado. Secondly, this document and the rest of the RAP, upon concurrence and execution by the DOE, the State of Colorado, and the NRC, become Appendix B of the Cooperative Agreement between the DOE and the State of Colorado.

  16. In-well sediment incubators to evaluate microbial community stability and dynamics following bioimmobilization of uranium

    E-Print Network [OSTI]

    Baldwin, B.R.

    2010-01-01T23:59:59.000Z

    Tailings Remedial Action (UMTRA) site. During a seven-monthMill Tailings Remedial Action (UMTRA) site have shown thatField Site The Old Ri?e UMTRA site (Ri?e, Colorado) is a

  17. Radiological Survey Results for Areas A1 North, A5A, A6, and B2 at the Molycorp Washington Remediation Project, Washington, Pennsylvania

    SciTech Connect (OSTI)

    W.C. Adams

    2007-03-13T23:59:59.000Z

    Perform radiological surveys of the Molycorp Washington Remediation Project (MWRP) facility in Washington, Pennsylvania

  18. GROUNDWATER RADIOIODINE: PREVALENCE, BIOGEOCHEMISTRY, AND POTENTIAL REMEDIAL APPROACHES

    SciTech Connect (OSTI)

    Denham, M.; Kaplan, D.; Yeager, C.

    2009-09-23T23:59:59.000Z

    Iodine-129 ({sup 129}I) has not received as much attention in basic and applied research as other contaminants associated with DOE plumes. These other contaminants, such as uranium, plutonium, strontium, and technetium are more widespread and exist at more DOE facilities. Yet, at the Hanford Site and the Savannah River Site {sup 129}I occurs in groundwater at concentrations significantly above the primary drinking water standard and there is no accepted method for treating it, other than pump-and-treat systems. With the potential arrival of a 'Nuclear Renaissance', new nuclear power facilities will be creating additional {sup 129}I waste at a rate of 1 Ci/gigawatts energy produced. If all 22 proposed nuclear power facilities in the U.S. get approved, they will produce more {sup 129}I waste in seven years than presently exists at the two facilities containing the largest {sup 129}I inventories, ({approx}146 Ci {sup 129}I at the Hanford Site and the Savannah River Site). Hence, there is an important need to fully understand {sup 129}I behavior in the environment to clean up existing plumes and to support the expected future expansion of nuclear power production. {sup 129}I is among the key risk drivers at all DOE nuclear disposal facilities where {sup 129}I is buried, because of its long half-life (16 million years), high toxicity (90% of the body's iodine accumulates in the thyroid), high inventory, and perceived high mobility in the subsurface environment. Another important reason that {sup 129}I is a key risk driver is that there is the uncertainty regarding its biogeochemical fate and transport in the environment. We typically can define {sup 129}I mass balance and flux at sites, but can not accurately predict its response to changes in the environment. This uncertainty is in part responsible for the low drinking water standard, 1 pCi/L {sup 129}I, and the low permissible inventory limits (Ci) at the Savannah River Site, Hanford Site, and the former Yucca Mountain disposal facilities. The objectives of this report are to: (1) compile the background information necessary to understand behavior of {sup 129}I in the environment, (2) discuss sustainable remediation approaches to {sup 129}I contaminated groundwater, and (3) identify areas of research that will facilitate remediation of {sup 129}I contaminated areas on DOE sites. Lines of scientific inquiry that would significantly advance the goals of basic and applied research programs for accelerating {sup 129}I environmental remediation and reducing uncertainty associated with disposal of {sup 129}I waste are: (1) Evaluation of amendments or other treatment systems that can sequester subsurface groundwater {sup 129}I. (2) Develop analytical techniques for measurement of total {sup 129}I that eliminate the necessity of collecting and shipping large samples of groundwater. (3) Develop and evaluate ways to manipulate areas with organic-rich soil, such as wetlands, to maximize {sup 129}I sorption, minimizing releases during anoxic conditions. (4) Develop analytical techniques that can identify the various {sup 129}I species in the subsurface aqueous and solid phases at ambient concentrations and under ambient conditions. (5) Identify the mechanisms and factors controlling iodine-natural organic matter interactions at appropriate environmental concentrations. (6) Understand the biological processes that transform iodine species throughout different compartments of subsurface waste sites and the role that these processes have on {sup 129}I flux.

  19. Remedial action plan for the inactive Uranium Processing Site at Naturita, Colorado. Remedial action plan: Attachment 2, Geology report, Attachment 3, Ground water hydrology report: Working draft

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section}7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the state of Colorado.

  20. Lower Three Runs Remediation Safety Preparation Strategy - 13318

    SciTech Connect (OSTI)

    Mackay, Alexander; Fryar, Scotty; Doane, Alan [United States Department of Energy, Building 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy, Building 730-B, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina that contains six primary stream/river systems. The Lower Three Runs Stream (LTR) is one of the primary streams within the site that is located in the southeast portion of the Savannah River Site. It is a large blackwater stream system that originates in the northeast portion of SRS and follows a southerly direction before it enters the Savannah River. During reactor operations, secondary reactor cooling water, storm sewer discharges, and miscellaneous wastewater was discharged and contaminated a 20 mile stretch of Lower Three Runs Stream that narrows and provides a limited buffer of US DOE property along the stream and flood-plain. Based on data collected during the years 2009 and 2010 under American Recovery and Re-investment Act funding, the stream was determined to be contaminated with cesium-137 at levels that exceeded acceptable risk based limits. In agreement with the Environmental Protection Agency and the South Carolina Department of Health and Environmental Control, three areas were identified for remediation [1] (SRNS April 2012). A comprehensive safety preparation strategy was developed for safe execution of the LTR remediation project. Contract incentives for safety encouraged the contractor to perform a complete evaluation of the work and develop an implementation plan to perform the work. The safety coverage was controlled to ensure all work was observed and assessed by one person per work area within the project. This was necessary due to the distances between the fence work and three transects being worked, approximately 20 miles. Contractor Management field observations were performed along with DOE assessments to ensure contractor focus on safe performance of the work. Dedicated ambulance coverage for remote worker work activities was provided. This effort was augmented with access to medical evacuation services. The areas where the work was performed were remote and difficult to get emergency vehicles to in a timely manner in case of an accident. Satellite phones were utilized due to intermittent phone coverage. High visibility vests were utilized to enable any hunters in the area to see the workers; due to the limited buffer areas along the stream route. An innovative approach to providing the necessary protection for workers during periods of extreme heat and humidity was also employed, which included the use of 'heat islands' with fans and crew trailers and ice vests for workers. (authors)

  1. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    SciTech Connect (OSTI)

    Heiser,J.; Sullivan, T.

    2009-06-30T23:59:59.000Z

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers during the decontamination process(es). In the case of an entire building, the value may be obvious; it's costly to replace the structure. For a smaller item such as a vehicle or painting, the cost versus benefit of decontamination needs to be evaluated. This will be determined on a case by case basis and again is beyond the scope of this report, although some thoughts on decontamination of unique, personal and high value items are given. But, this is clearly an area that starting discussions and negotiations early on will greatly benefit both the economics and timeliness of the clean up. In addition, high value assets might benefit from pre-event protection such as protective coatings or HEPA filtered rooms to prevent contaminated outside air from entering the room (e.g., an art museum).

  2. Microbial dynamics during intrinsic remediation of oil contaminated coastal wetland sediments (a microcosm study)

    E-Print Network [OSTI]

    Thornburg, Nathaniel David

    2001-01-01T23:59:59.000Z

    Arabian medium crude oil was applied to historically exposed estuarine sediments contained in a controlled laboratory environment and intrinsically remediated for 56 days. In situ microbial and petroleum dynamics were monitored via Most Probable...

  3. Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from

    E-Print Network [OSTI]

    Poldrack, Russ

    Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from dyslexia, characterized by unexplained difficulty in reading, is associated with behavioral deficits underlying phonological processing in children and adults with dyslexia. The present study examined whether

  4. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  5. Remediation Progress of the High-Risk 618-10 Burial Ground at Hanford 12427

    SciTech Connect (OSTI)

    Haass, M.J. [Washington Closure Hanford, 2620 Fermi Avenue, Richland, WA 99354 (United States); Walton, Z.P. [Vista Engineering Technologies LLC, 1355 Columbia Park Trail, Richland, WA 99352 (United States)

    2012-07-01T23:59:59.000Z

    The 618-10 Burial Ground was in operation from 1954 to 1963 and consists of 94 vertical pipe disposal units (VPUs) and 12 solid waste disposal trenches. Remediation of the trenches began in March of 2011 under the River Corridor Closure Contract (RCCC)a. This work was considered to be high risk because the trenches are known to contain a large radiological inventory and have the potential to release airborne contaminants. Remediation is being performed without a containment structure by using a combination of engineering controls and monitoring equipment. The engineering controls include storing material below grade using a surge trench, the application of soil fixatives, and applying material storage limits. The use of radiological and chemical monitoring equipment is also used to provide near real-time information to guide remediation activities and limit contact of waste until risks can be evaluated. Remediation of the trenches is progressing without any significant personnel or environmental issues. (authors)

  6. EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

  7. EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah

    Broader source: Energy.gov [DOE]

    The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energy’s (DOE’s) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project (DOE/EIS-0198, October 1996). The surface remediation alternatives analyzed in the EIS include on-site disposal of the contaminated materials and off-site disposal at one of three alternative locations in Utah using one or more transportation options: truck, rail, or slurry pipeline.

  8. Calculation of the number of cancer deaths prevented by the Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Miller, M.L.; Pomatto, C.B. (Roy F. Weston, Inc., Albuquerque, NM (United States)); Cornish, R.E. (Dept. of Energy, Albuquerque, NM (United States). Albuquerque Operations Office)

    1999-05-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action Project has completed remedial action at 22 uranium mill tailings sites and about 5,000 properties (vicinity properties) where tailings were used in construction, at a total cost of $1.45 billion. This paper uses existing data from Environmental Impact Statements and Environmental Assessments, and vicinity property calculations, to determine the total number of cancer deaths averted by the Uranium Mill Tailings Remedial Action Project. The cost-effectiveness of remediating each site, the vicinity properties, and the entire project is calculated. The cost per cancer death averted was four orders of magnitude higher at the least cost-effective site than at the most cost-effective site.

  9. Utilizing Microalgae to Remediate Nitrate-Contaminated Groundwater N. Case, M. Sommerfeld, H. Qiang

    E-Print Network [OSTI]

    Hall, Sharon J.

    Utilizing Microalgae to Remediate Nitrate-Contaminated Groundwater N. Case, M. Sommerfeld, H. Qiang or domestic animals. It can also be used as a fertilizer or converted to biofuels. The photobioreactor can

  10. Remediation by inspiration : artist-driven models for environmental clean-up

    E-Print Network [OSTI]

    Fain, Jessica (Jessica Elizabeth)

    2011-01-01T23:59:59.000Z

    While often seen as utilitarian and technical, environmental remediation efforts have significant cultural, social and physical impacts. Accordingly, they demand responses that utilize a multi-disciplinary approach to the ...

  11. Operations to be Performed in the Waste Package Dry Remediation Cell

    SciTech Connect (OSTI)

    Norman E. Cole; Randy K. Elwood

    2003-10-01T23:59:59.000Z

    Describes planned and proposed operations for remediating damaged and/or out-of-compliance waste packages, casks, DPCs, overpacks, and containers at the Yucca Mountain Dry Transfer Facility.

  12. Bacterial influence on uranium oxidation reduction reactions : implications for environmental remediation and isotopic composition

    E-Print Network [OSTI]

    Mullen, Lisa Maureen

    2007-01-01T23:59:59.000Z

    The bacterial influence on the chemistry and speciation of uranium has some important impacts on the environment, and can be exploited usefully for the purposes of environmental remediation of uranium waste contamination. ...

  13. Groundwater Nitrogen Source Identification and Remediation in the Texas High Plains and Rolling Plains Regions

    E-Print Network [OSTI]

    Delaune, P.; Scanlon, B.; Reedy, R.; Schwartz, R.; Baumhardt, L.; Gregory, L.

    2013-01-01T23:59:59.000Z

    data on potential management strategies that can remediate groundwater nitrate levels, this project was developed. The primary objective was to identify sources of groundwater nitrate in the Texas High Plains and Rolling Plains and the secondary...

  14. Geomechanical Simulation of CO{sub 2} Leakage and Cap Rock Remediation

    SciTech Connect (OSTI)

    Nygaard, Runar; Bai, Baojun; Eckert, Andreas

    2012-09-30T23:59:59.000Z

    CO{sub 2} sequestration into porous and permeable brine filled aquifers is seen as one of the most likely near-term solutions for reducing greenhouse gases. Safely storing injected CO{sub 2}, which is less dense than water, requires trapping the CO{sub 2} under an impermeable rock which would act as a seal. One of the concerns with CO{sub 2} sequestration is the generation of new fractures or reactivation of existing fractures and faults caused by CO{sub 2} injection into the sealing formation. Mitigation strategies must be developed to remediate potentially leaking faults or fractures. This project evaluated potential storage scenarios in the state of Missouri and developed coupled reservoir and geomechanic simulations to identify storage potential and leakage risks. Further, several injectable materials used to seal discontinuities were evaluated under subsurface conditions. The four sealant materials investigated were paraffin wax, silica based gel, polymer based gel, and micro-cement, which all significantly reduced the fracture permeability. However, the micro-cement was the most effective sealing agent and the only sealant able to withstand the large differential pressure caused by CO{sub 2} or brine injection and create a strong seal to prevent further fracturing.

  15. Dredging as remediation for white phosphorus contamination at Eagle River Flats, Alaska

    SciTech Connect (OSTI)

    Walsh, M.R.; Collins, C.M.

    1998-08-01T23:59:59.000Z

    The Eagle River Flats impact area is a Ft. Richardson Superfund site. It is a salt marsh that is contaminated with white phosphorus (WP), and remediation of sediments in permanently ponded areas may require dredging. A remotely piloted dredging system was designed, constructed, and deployed at the Flats as part of the overall site remediation feasibility study. Experience gained over two years of engineering study and contract operation indicates that, although feasible and effective, this alternative is slow, difficult, and very expensive.

  16. Remedy Evaluation Framework for Inorganic, Non-Volatile Contaminants in the Vadose Zone

    SciTech Connect (OSTI)

    Truex, Michael J.; Carroll, Kenneth C.

    2013-05-01T23:59:59.000Z

    Contaminants in the vadose zone may act as a potential long-term source of groundwater contamination and need to be considered in remedy evaluations. In many cases, remediation decisions for the vadose zone will need to be made all or in part based on projected impacts to groundwater. Because there are significant natural attenuation processes inherent in vadose zone contaminant transport, remediation in the vadose zone to protect groundwater is functionally a combination of natural attenuation and use of other remediation techniques, as needed, to mitigate contaminant flux to groundwater. Attenuation processes include both hydrobiogeochemical processes that serve to retain contaminants within porous media and physical processes that mitigate the rate of water flux. In particular, the physical processes controlling fluid flow in the vadose zone are quite different and generally have a more significant attenuation impact on contaminant transport relative to those within the groundwater system. A remedy evaluation framework is presented herein that uses an adaptation of the established EPA Monitored Natural Attenuation (MNA) evaluation approach and a conceptual model based approach focused on identifying and quantifying features and processes that control contaminant flux through the vadose zone. A key concept for this framework is to recognize that MNA will comprise some portion of all remedies in the vadose zone. Thus, structuring evaluation of vadose zone waste sites to use an MNA-based approach provides information necessary to either select MNA as the remedy, if appropriate, or to quantify how much additional attenuation would need to be induced by a remedial action (e.g., technologies considered in a feasibility study) to augment the natural attenuation processes and meet groundwater protection goals.

  17. Tank waste remediation system privatization infrastructure program requirements and document management process guide

    SciTech Connect (OSTI)

    ROOT, R.W.

    1999-05-18T23:59:59.000Z

    This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems.

  18. In-situ remediation system for groundwater and soils

    DOE Patents [OSTI]

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1993-11-23T23:59:59.000Z

    A method and system are presented for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants. 4 figures.

  19. Tank waste remediation system integrated technology plan. Revision 2

    SciTech Connect (OSTI)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28T23:59:59.000Z

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  20. Federal government information handbook: formerly utilized sites remedial action program

    SciTech Connect (OSTI)

    Not Available

    1980-12-31T23:59:59.000Z

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the Federal Government. It contains a summary of the organization and responsibilities of agencies within the executive branch of the Federal government which may be relevant to FUSRAP activities; a brief summary of relevant Federal statutes and regulations; a description of the structure of the US Congress, identification of the officers, relevant committees and committee chairmen; a description of the Federal legislative process; a summary of legislation enacted and considered in the recently-adjourned 96th Congress; a description of the Federal budgetary process; a summary of the Carter Administration's comprehensive radioactive waste management program; and excerpts from the text of relevant federal statutes and regulations.

  1. Permeable reactive barrier technologies for contaminant remediation. Interim report

    SciTech Connect (OSTI)

    Powell, R.M.; Puls, R.W.; Blowes, D.W.; Gillham, R.W.; Schultz, D.

    1998-09-01T23:59:59.000Z

    This document addresses the factors that have been found to be relevant for successfully implementing PRBs for contaminant remediation. Additionally, it provides sufficient background in the science of PRB technology to allow a basic understanding of the chemical reactions proposed for the contaminant transformations that have been witnessed both in the laboratory and in field settings. It contains sections on PRB-treatable contaminants and the treatment reaction mechanisms, feasibility studies for PRB implementation, site characterization for PRBs, PRB design, PRB emplacement, monitoring for both compliance and performance, and summaries of several field installations. The appendices supplement this information with a detailed table of information available in the literature through 1997, summarizing the significant findings of PRB research and field studies (Appendix A), a further examination of the physical and chemical processes important to PRBs, such as corrosion, adsorption, and precipitation (Appendix B), and a set of scoping calculations that can be used to estimate the amount of reactive media required and facilitate choosing among te possible means of emplacing the required amount of media (Appendix C). Appendix D provides a list of acronyms and Appendix E a glossary of terms that are used within this document.

  2. Tank waste remediation system process engineering instruction manual

    SciTech Connect (OSTI)

    ADAMS, M.R.

    1998-11-04T23:59:59.000Z

    The purpose of the Tank Waste Remediation System (TWRS) Process Engineering Instruction Manual is to provide guidance and direction to TWRS Process Engineering staff regarding conduct of business. The objective is to establish a disciplined and consistent approach to business such that the work processes within TWRS Process Engineering are safe, high quality, disciplined, efficient, and consistent with Lockheed Martin Hanford Corporation Policies and Procedures. The sections within this manual are of two types: for compliance and for guidance. For compliance sections are intended to be followed per-the-letter until such time as they are formally changed per Section 2.0 of this manual. For guidance sections are intended to be used by the staff for guidance in the conduct of work where technical judgment and discernment are required. The guidance sections shall also be changed per Section 2.0 of this manual. The required header for each manual section is illustrated in Section 2.0, Manual Change Control procedure. It is intended that this manual be used as a training and indoctrination resource for employees of the TWRS Process Engineering organization. The manual shall be required reading for all TWRS Process Engineering staff, matrixed, and subcontracted employees.

  3. Uranium Mill Tailings Remedial Action Program. Annual status report

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The purpose, scope, history, requirements, and management organization of the UMTRA Program are summarized in the Introduction. The remainder of the report describes progress made during the past year (F 1980) and discusses future plants and activities. Early emphasis has been on the four highest-priority sites because of their proximity to population centers. These sites are: (1) Canonsburg, Pennsylvania; (2) Salt Lake City, Utah; (3) Durango, Colorado; and (4) Shiprock, New Mexico (Navajo Reservation). To date, twenty-five vicinity properties near the Canonsburg site and two such properties near the Salt Lake City site have been designated for remedial action. A research effort was undertaken at a major vicinity property, the Mountain States Supply Company in Salt Lake City, to study the effects of heating-and-ventilating-system modification on indoor radon-daughter concentrations. A cooperative agreement was executed between DOE and the Commonwealth of Pennsylvania. A similar agreement with the State of Utah is expected to be executed in early FY 1981. Further, it is expected that additional cooperative agreements will be negotiated during FY 1981 with the States of Colorado and Wyoming and the Navajo Nation. It is expected that the processing site at Canonsburg, PA (the Canonsburg Industrial Park) will be acquired during FY 1981. Draft Environmental Impact Statements for the four highest-priority sites will be completed during FY 1981.

  4. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13T23:59:59.000Z

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  5. Electro-osmotic infusion for joule heating soil remediation techniques

    DOE Patents [OSTI]

    Carrigan, Charles R. (Tracy, CA); Nitao, John J. (Castro Valley, CA)

    1999-01-01T23:59:59.000Z

    Electro-osmotic infusion of ground water or chemically tailored electrolyte is used to enhance, maintain, or recondition electrical conductivity for the joule heating remediation technique. Induced flows can be used to infuse electrolyte with enhanced ionic conductivity into the vicinity of the electrodes, maintain the local saturation of near-electrode regions and resaturate a partially dried out zone with groundwater. Electro-osmotic infusion can also tailor the conductivity throughout the target layer by infusing chemically modified and/or heated electrolyte to improve conductivity contrast of the interior. Periodic polarity reversals will prevent large pH changes at the electrodes. Electro-osmotic infusion can be used to condition the electrical conductivity of the soil, particularly low permeability soil, before and during the heating operation. Electro-osmotic infusion is carried out by locating one or more electrodes adjacent the heating electrodes and applying a dc potential between two or more electrodes. Depending on the polarities of the electrodes, the induced flow will be toward the heating electrodes or away from the heating electrodes. In addition, electrodes carrying a dc potential may be located throughout the target area to tailor the conductivity of the target area.

  6. In-situ remediation system for groundwater and soils

    DOE Patents [OSTI]

    Corey, John C. (212 Lakeside Dr., Aiken, SC 29803); Kaback, Dawn S. (1932 Cottonwood Dr., Aiken, SC 29803); Looney, Brian B. (1135 Ridgemont Dr., Aiken, SC 29803)

    1993-01-01T23:59:59.000Z

    A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.

  7. Chalcogen-Based Aerogels as Sorbents for Radionuclide Remediation

    SciTech Connect (OSTI)

    Riley, Brian J.; Chun, Jaehun; Um, Wooyong; Lepry, William C.; Matyas, Josef; Olszta, Matthew J.; Li, Xiaohong; Polychronopoulou, Kyriaki; Kanatzidis, Mercouri G.

    2013-06-13T23:59:59.000Z

    The efficient capture of radionuclides having long half-lives such as technetium-99 (99Tc), uranium-238 (238U), and iodine-129 (129I) is pivotal to prevent their transport into groundwater and/or release into the atmosphere. While different sorbents have been considered for capturing each of them, in the current work, a new nanostructured chalcogen-based aerogel, called a chalcogel, is shown to be very effective to capture ionic forms of 99Tc and 238U, as well as nonradioactive gaseous iodine (i.e., a surrogate for 129I), irrespective of the sorbent polarity. Some of the chalcogels performed better than others but the PtGeS sorbent performed the best with capture efficiencies of 98% and 99.4% for 99Tc and 238U, respectively. All sorbents showed >99% capture efficiency for iodine over the test duration. This unified sorbent would be an attractive option in environmental remediation for various radionuclides associated with legacy wastes from nuclear weapons production, wastes from nuclear power production, or potential future nuclear fuel reprocessing.

  8. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Udell, Kent S. (Berkeley, CA); Bruton, Carol J. (Livermore, CA); Carrigan, Charles R. (Tracy, CA)

    1999-01-01T23:59:59.000Z

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  9. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado. Revision 3

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

  10. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  11. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01T23:59:59.000Z

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  12. Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado. Revision 4

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action.

  13. Accident Investigations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-03-04T23:59:59.000Z

    This Order prescribes organizational responsibilities, authorities, and requirements for conducting investigations of certain accidents occurring at DOE sites, facilities, areas, operations, and activities.

  14. Risk-Informed Monitoring, Verification and Accounting (RI-MVA). An NRAP White Paper Documenting Methods and a Demonstration Model for Risk-Informed MVA System Design and Operations in Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Sadovsky, Artyom; Sullivan, E. C.; Anderson, Richard M.

    2011-09-30T23:59:59.000Z

    This white paper accompanies a demonstration model that implements methods for the risk-informed design of monitoring, verification and accounting (RI-MVA) systems in geologic carbon sequestration projects. The intent is that this model will ultimately be integrated with, or interfaced with, the National Risk Assessment Partnership (NRAP) integrated assessment model (IAM). The RI-MVA methods described here apply optimization techniques in the analytical environment of NRAP risk profiles to allow systematic identification and comparison of the risk and cost attributes of MVA design options.

  15. Interim measure conceptual design for remediation at the former CCC/USDA grain storage facility at Centralia, Kansas : pilot test and remedy implementation.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2007-11-09T23:59:59.000Z

    This document presents an Interim Measure Work Plan/Design for the short-term, field-scale pilot testing and subsequent implementation of a non-emergency Interim Measure (IM) at the site of the former grain storage facility operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in Centralia, Kansas. The IM is recommended to mitigate both (1) localized carbon tetrachloride contamination in the vadose zone soils beneath the former facility and (2) present (and potentially future) carbon tetrachloride contamination identified in the shallow groundwater beneath and in the immediate vicinity of the former CCC/USDA facility. Investigations conducted on behalf of the CCC/USDA by Argonne National Laboratory have demonstrated that groundwater at the Centralia site is contaminated with carbon tetrachloride at levels that exceed the Kansas Tier 2 Risk-Based Screening Level (RBSL) and the U.S. Environmental Protection Agency's maximum contaminant level of 5.0 {micro}g/L for this compound. Groundwater sampling and analyses conducted by Argonne under a monitoring program approved by the Kansas Department of Health and Environment (KDHE) indicated that the carbon tetrachloride levels at several locations in the groundwater plume have increased since twice yearly monitoring of the site began in September 2005. The identified groundwater contamination currently poses no unacceptable health risks, in view of the absence of potential human receptors in the vicinity of the former CCC/USDA facility. Carbon tetrachloride contamination has also been identified at Centralia in subsurface soils at concentrations on the order of the Kansas Tier 2 RBSL of 200 {micro}g/kg in soil for the soil-to-groundwater protection pathway. Soils contaminated at this level might pose some risk as a potential source of carbon tetrachloride contamination to groundwater. To mitigate the existing contaminant levels and decrease the potential future concentrations of carbon tetrachloride in groundwater and soil, the CCC/USDA recommends initial short-term, field-scale pilot testing of a remedial approach that employs in situ chemical reduction (ISCR), in the form of a commercially available material marketed by Adventus Americas, Inc., Freeport, Illinois (http://www.adventusgroup.com). If the pilot test is successful, it will be followed by a request for KDHE authorization of full implementation of the ISCR approach. In the recommended ISCR approach, the Adventus EHC{reg_sign} material--a proprietary mixture of food-grade organic carbon and zero-valent iron--is introduced into the subsurface, where the components are released slowly into the formation. The compounds create highly reducing conditions in the saturated zone and the overlying vadose zone. These conditions foster chemical and biological reductive dechlorination of carbon tetrachloride. The anticipated effective lifetime of the EHC compounds following injection is 1-5 yr. Although ISCR is a relatively innovative remedial approach, the EHC technology has been demonstrated to be effective in the treatment of carbon tetrachloride contamination in groundwater and has been employed at a carbon tetrachloride contamination site elsewhere in Kansas (Cargill Flour Mill and Elevator, Wellington, Kansas; KDHE Project Code C209670158), with the approval of the KDHE. At Centralia, the CCC/USDA recommends use of the ISCR approach initially in a short-term pilot test addressing the elevated carbon tetrachloride levels identified in one of three persistently highly contaminated areas ('hot-spot areas') in the groundwater plume. In this test, a three-dimensional grid pattern of direct-push injection points will be used to distribute the EHC material (in slurry or aqueous form) throughout the volume of the contaminated aquifer and (in selected locations) the vadose zone in the selected hot-spot area. Injection of the EHC material will be conducted by a licensed contractor, under the supervision of Adventus and Argonne technical personnel. The contractor will be identified upon acceptanc

  16. Policy and procedures for classification of Class III groundwater at UMTRA Project sites. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The US Environmental Protection Agency (EPA) has recently proposed groundwater regulations for the US Department of Energy's )DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. These regulations allow the application of supplemental standards at UMTRA Project sites in specific situations. The designation of groundwater as Class III permits the application of supplemental standards. This document discusses a final UMTRA Project policy and procedures for identifying Class III groundwater, including identification of a review area, definition of water quality, quantification of aquifer yield, and identification of methods reasonably employed for public water supply systems. These items, either individually or collectively, need to be investigated in order to determine if groundwaters at UMTRA Project sites are Class III. This document provides a framework for the DOE to determine Class III groundwaters.

  17. Radiological assessment of residues from uranium and other ore mining and processing - A precondition for decisions on remedial measures

    SciTech Connect (OSTI)

    Ettenhuber, E; Roehnsch, W. [Bundesamt fuer Strahlenschutz, Berlin (Germany); Biesold, H. [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Colonge (Germany)

    1994-12-31T23:59:59.000Z

    In certain parts of Eastern Germany relics of uranium mining and milling as well as of traditional ore mining and processing may contribute to the environmental contamination and the radiation exposure of the public. Systematic investigations of the situation are the indispensable prerequisite for decisions upon the radiological relevance and remedial actions. In view of the large number and scattering of relics under consideration, a stepwise procedure with increasing intensity of investigation was developed to solve the task effectively and in an appropriate time. For the radiological evaluation following the steps of investigation generic criteria were derived. They are based on a primary reference dose of level (1 mSv/year) and on measureable radioactivity quantities recommend by the German Commission on Radiological Protection for unrestricted/restricted release of contaminated grounds. Applying the criteria established for the verification (gamma dose rate, volume of disposed material, area affected by waste materials) the investigations led to the result that no more than 30% of the objects of former mining have to be classified as {open_quotes}possibly relevant{close_quotes} and have to be investigated further on.

  18. Remediation of Groundwater Contaminated with Organics and Radionuclides - An Innovative Approach Eases Traditional Hurdles

    SciTech Connect (OSTI)

    Scott, J.; Case, N.; Coltman, K.

    2003-02-25T23:59:59.000Z

    Traditional approaches to the remediation of contaminated groundwater, such as pump-and-treat, have been used for many years for the treatment of groundwater contaminated with various organics. However the treatment of groundwater contaminated with organics and radionuclides has been considerably more challenging. Safety and Ecology Corporation (SEC) was recently faced with these challenges while designing a remediation system for the remediation of TCE-contaminated groundwater and soil at the RMI Extrusion Plant in Ashtabula, OH. Under contract with RMI Environmental Services (RMIES), SEC teamed with Regenesis, Inc. to design, implement, and execute a bioremediation system to remove TCE and associated organics from groundwater and soil that was also contaminated with uranium and technetium. The SEC-Regenesis system involved the injection of Hydrogen Release Compound (HRC), a natural attenuation accelerant that has been patented, designed, and produced by Regenesis, to stimulate the reductive dechlorination and remediation of chlorinated organics in subsurface environments. The compound was injected using direct-push Geoprobe rods over a specially designed grid system through the zone of contaminated groundwater. The innovative approach eliminated the need to extract contaminated groundwater and bypassed the restrictive limitations listed above. The system has been in operation for roughly six months and has begun to show considerable success at dechlorinating and remediating the TCE plume and in reducing the radionuclides into insoluble precipitants. The paper will provide an overview of the design, installation, and initial operation phase of the project, focusing on how traditional design challenges of remediating radiologically contaminated groundwater were overcome. The following topics will be specifically covered: a description of the mechanics of the HRC technology; an assessment of the applicability of the HRC technology to contaminated groundwater plumes and other potential remediation opportunities; a discussion of how the implementation of the HRC technology eased permitting issues and other challenges of remediating groundwater contaminated with radionuclides and organics; an overview of the remedial design and installation of the design including the inputs required to design the remediation system; a summary of results achieved to date and a forecast of future results; and a discussion of future needs and lessons learned.

  19. SERDP ER-1421 Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA: Final Report

    SciTech Connect (OSTI)

    Szecsody, James E.; McKinley, James P.; Crocker, Fiona H.; Breshears, Andrew T.; Devary, Brooks J.; Fredrickson, Herbert L.; Thompson, Karen T.

    2009-09-30T23:59:59.000Z

    This laboratory-scale project was initiated to investigate in situ abiotic/biotic mineralization of NDMA. Under iron-reducing conditions, aquifer sediments showed rapid abiotic NDMA degradation to dimethylamine (DMA), nitrate, formate, and finally, CO2. These are the first reported experiments of abiotic NDMA mineralization. The NDMA reactivity of these different iron phases showed that adsorbed ferrous iron was the dominant reactive phase that promoted NDMA reduction, and other ferrous phases present (siderite, iron sulfide, magnetite, structural ferrous iron in 2:1 clays) did not promote NDMA degradation. In contrast, oxic sediments that were biostimulated with propane promoted biomineralization of NDMA by a cometabolic monooxygenase enzyme process. Other monooxygenase enzyme processes were not stimulated with methane or toluene additions, and acetylene addition did not block mineralization. Although NDMA mineralization extent was the highest in oxic, biostimulated sediments (30 to 82%, compared to 10 to 26% for abiotic mineralization in reduced sediments), large 1-D column studies (high sediment/water ratio of aquifers) showed 5.6 times higher NDMA mineralization rates in reduced sediment (half-life 410 ± 147 h) than oxic biomineralization (half life 2293 ± 1866 h). Sequential reduced/oxic biostimulated sediment mineralization (half-life 3180 ± 1094 h) was also inefficient compared to reduced sediment. These promising laboratory-scale results for NDMA mineralization should be investigated at field scale. Future studies of NDMA remediation should focus on the comparison of this in situ abiotic NDMA mineralization (iron-reducing environments) to ex situ biomineralization, which has been shown successful in other studies.

  20. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Chernoff, A.R. (USDOE Albuquerque Field Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office); Lacker, D.K. (Texas State Dept. of Health, Austin, TX (United States). Bureau of Radiation Control)

    1992-09-01T23:59:59.000Z

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.