National Library of Energy BETA

Sample records for rhodes marsh geothermal

  1. Rhodes Marsh Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy| Open Energyfault andRhodeRhodes Marsh

  2. Rhodes Marsh Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEast Jump to: navigation,ReportVelho EnergRhodes Marsh

  3. Structural Data for the Columbus Salt Marsh Geothermal Area - GIS Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    - Columbus Marsh therefore corresponds to an area of enhanced extension and contains a nexus of fault intersections, both conducive for geothermal activity.

  4. Structural Data for the Columbus Salt Marsh Geothermal Area - GIS Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2011-12-31

    - Columbus Marsh therefore corresponds to an area of enhanced extension and contains a nexus of fault intersections, both conducive for geothermal activity.

  5. Teels Marsh Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ Automation Jump to: navigation,ElectrificationTecmedTeels Marsh

  6. Geothermometry At Rhodes Marsh Area (Coolbaugh, Et Al., 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant < Geothermal(Redirected2008) |

  7. Geothermometry At Rhodes Marsh Area (Shevenell, Et Al., 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant < Geothermal(Redirected2008)

  8. Multispectral Imaging At Columbus Salt Marsh Area (Shevenell...

    Open Energy Info (EERE)

    Multispectral Imaging At Columbus Salt Marsh Area (Shevenell, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging...

  9. Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: EnergyOpenReykjanes Geothermal PowerRezacRhode Island:

  10. Rhode Island/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook...

  11. Scituate, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,SageScheuco International JumpSchuylkillScio,Rhode Island: Energy

  12. Rhodes 801-A Rhodes 801-B Group 1: Group 1

    E-Print Network [OSTI]

    Cahay, Marc

    Marie Group 3: Group 3: Bennett, Christopher Paul Davenport, Austin Lovell Creech, Nathan Alan Colburn Worcester, Austin Thomas Group 8: Group 8: TableATableBTableCTableD TableATableBTableCTableD #12;Rhodes 801

  13. Smithfield, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH JumpSlough Heat andCreek GeothermalRhode Island:

  14. Teels Marsh Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)ModelTalbottsInformationOpen

  15. Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...

  16. Clean Waters of Rhode Island Primary Investigators

    E-Print Network [OSTI]

    Rhode Island, University of

    Clean Waters of Rhode Island Primary Investigators Harold Knickle Donald Gray #12;Final Report Clean Waters of Rhode Island By Harold Knickle and Donald Gray Department of Chemical Engineering professionals in the clean water field as well as to educate graduate and undergraduate student in the scope

  17. Salt marsh geomorphology: Physical and ecological effects on landform Keywords: salt marsh geomorphology; AGU Chapman Conference

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    Editorial Salt marsh geomorphology: Physical and ecological effects on landform Keywords: salt marsh geomorphology; AGU Chapman Conference Evidence that the three-dimensional structure of salt marsh, and the ratio of marsh edge:marsh interior have all been shown to affect the distribution and density of salt

  18. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  19. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  20. TBU-0058- In the Matter of Donald R. Rhodes

    Broader source: Energy.gov [DOE]

    Donald R. Rhodes (Rhodes or the complainant) appeals the dismissal of his August 25, 2006 complaint of retaliation filed under 10 C.F.R. Part 708, the Department of Energy (DOE) Contractor Employee...

  1. Geothermal Energy Association Recognizes the National Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

  2. Foster-Glocester Regional School District (Rhode Island) - Financing Profile

    SciTech Connect (OSTI)

    none,

    2008-12-01

    This document is an EnergySmart Schools Financing Profile of Foster-Glocester Regional School District in Rhode Island

  3. ames Kroes University of Rhode Island

    E-Print Network [OSTI]

    Rhode Island, University of

    and Transportation Systems for Sustainable Communities. What can we learn and how can it be applied in Rhode Island of completed page authorized (art. 5/94) Researching Design and Transportation Systems for Sustainable Island, Dept. of Landscape Architecture, address, Rodman Hall Rm 201, Kingston, RI 02881 (401) 874

  4. Water Sampling At Rhodes Marsh Area (Coolbaugh, Et Al., 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History View NewOpen| OpenInformation

  5. 2-M Probe At Rhodes Marsh Area (Shevenell, Et Al., 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo NewYanbu, Saudideveloperft Wave

  6. Multispectral Imaging At Rhodes Marsh Area (Kratt, Et Al., 2006) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsourceEnergy Information Martin, Et

  7. Multispectral Imaging At Rhodes Marsh Area (Shevenell, Et Al., 2008) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsourceEnergy Information Martin, EtEnergy

  8. 2-M Probe At Rhodes Marsh Area (Kratt, Et Al., 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)data bookresult formatswindMarketSize Home

  9. Sediments in marsh ponds of the Gulf Coast Chenier Plain: effects of structural marsh management and salinity

    E-Print Network [OSTI]

    Afton, Alan D.

    Sediments in marsh ponds of the Gulf Coast Chenier Plain: effects of structural marsh management: impoundments, marsh sediments, ponds, salinity Abstract Physical characteristics of sediments in coastal marsh compositions of waterbird communities. Sediments in marsh ponds of the Gulf Coast Chenier Plain potentially

  10. FOREST MONITORING AT THE MARSH-BILLINGS-ROCKEFELLER

    E-Print Network [OSTI]

    Keeton, William S.

    FOREST MONITORING AT THE MARSH-BILLINGS-ROCKEFELLER NATIONAL HISTORICAL PARK. of the Interior, University of Vermont, National Park Service, Rubenstein School of Environment Marsh-Billings-Rockefeller and Natural Resources National Historical Park #12;Forest Monitoring at the Marsh

  11. development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL...

    Office of Scientific and Technical Information (OSTI)

    field Leyte, Philippines. Report on exploration and development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL FIELD; GEOTHERMAL EXPLORATION; GEOTHERMAL POWER...

  12. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Farhar, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  13. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Rafferty, 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  14. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Witcher, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  15. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Sammel, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  16. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  17. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Callender, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  18. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  19. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  20. Review: The World of the Salt Marsh: Appreciating and Protecting the Tidal Marshes of the Southeastern Atlantic Coast

    E-Print Network [OSTI]

    Miller, Ryder W.

    2013-01-01

    Review: The World of the Salt Marsh: Appreciating andCharles. The World of the Salt Marsh: Appreciating andseafood movement. World of the Salt Marsh can be a “Silent

  1. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Broader source: Energy.gov (indexed) [DOE]

    by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013. stanford2013hollett.pdf More Documents & Publications Geothermal...

  2. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Fiscal Year...

  3. ,"Rhode Island Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    ies","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  4. ,"Rhode Island Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  5. ,"Rhode Island Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  6. Rhode Island High Resolution Wind Resource - Datasets - OpenEI...

    Open Energy Info (EERE)

    Detailed license and usage information for this dataset Preview Download 50m GIS NREL Rhode Island energy high resoltuion renewable shapefile wind wind data wind...

  7. Columbus Salt Marsh Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColorado ParksKentucky:County, NorthColumbus Salt

  8. Columbus Salt Marsh Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to:Information9176632°, -76.2521521° Show

  9. Culturing a plant microbiome community at the cross-Rhodes

    E-Print Network [OSTI]

    Dangl, Jeff

    Meetings Culturing a plant microbiome community at the cross-Rhodes 28th New Phytologist Symposium: Functions and ecology of the plant microbiome, Rhodes, Greece, May 2012 Plants live in close association ofthismicrobiotacancontributetoplantgrowthanddevelopment, plant productivity and phytoremediation (Weyens et al., 2009). These microbes prosper in close

  10. University of Rhode Island Dept. of Electrical and Computer Engineering

    E-Print Network [OSTI]

    Uht, Augustus K.

    University of Rhode Island Dept. of Electrical and Computer Engineering Kelley Hall 4 East Alumni in Synchronous Systems via Timing Error Toleration Augustus K. Uht Department of Electrical and Computer Engineering University of Rhode Island Email: uht@ele.uri.edu Web: www.ele.uri.edu/¸uht March 10, 2000

  11. University of Rhode Island | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZ ClimateFeed JumpAlbertaUniversity ofRhode Island

  12. Distribution and Invasion Potential of Limonium ramosissimum subsp. provinciale in San Francisco Estuary Salt Marshes

    E-Print Network [OSTI]

    Archbald, Gavin; Boyer, Katharyn E.

    2014-01-01

    of southern California coastal salt marshes: a communitygrowth and cation uptake of salt marsh plants. New Phytolof vegetation patterns in salt marshes of central Argentina.

  13. Geothermal Basics

    Broader source: Energy.gov [DOE]

    Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

  14. Geothermal energy

    SciTech Connect (OSTI)

    Renner, J.L. [Idaho National Engineering Laboratory, Idaho Fall, ID (United States); Reed, M.J. [Dept. of Energy, Washington, DC (United States)

    1993-12-31

    Use of geothermal energy (heat from the earth) has a small impact on the environmental relative to other energy sources; avoiding the problems of acid rain and greenhouse emissions. Geothermal resources have been utilized for centuries. US electrical generation began at The Geysers, California in 1960 and is now about 2300 MW. The direct use of geothermal heat for industrial processes and space conditioning in the US is about 1700 MW of thermal energy. Electrical production occurs in the western US and direct uses are found throughout the US. Typical geothermal power plants produce less than 5% of the CO{sub 2} released by fossil plants. Geothermal plants can now be configured so that no gaseous emissions are released. Sulfurous gases are effectively removed by existing scrubber technology. Potentially hazardous elements produced in geothermal brines are injected back into the producing reservoir. Land use for geothermal wells, pipelines, and power plants is small compared to land use for other extractive energy sources like oil, gas, coal, and nuclear. Per megawatt produced, geothermal uses less than one eighth the land that is used by a typical coal mine and power plant system. Geothermal development sites often co-exist with agricultural land uses like crop production or grazing.

  15. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  16. Rhode Island to Build First Offshore Wind Farm

    Office of Energy Efficiency and Renewable Energy (EERE)

    Block Island, a small town with only 1,000 full-time, residents, is the site for a big project, when it will become home to Rhode Island’s first offshore wind farm.

  17. Rhode Island Natural Gas Underground Storage Injections All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0...

  18. Rules and Regulations for Sewage Sludge Management (Rhode Island)

    Broader source: Energy.gov [DOE]

    The purpose of these rules and regulations is to ensure that sewage sludge that is treated, land applied, disposed, distributed, stockpiled or transported in the State of Rhode Island is done so in...

  19. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association hosts its annual National Geothermal Summit in Reno, Nevada, June 3-4, 2015.

  20. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Stone, Et Al., 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  1. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  2. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Dahal, Et Al., 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  3. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Elston, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  4. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  5. National Geothermal Data System - DOE Geothermal Data Repository...

    Energy Savers [EERE]

    - DOE Geothermal Data Repository Presentation National Geothermal Data System - DOE Geothermal Data Repository Presentation Overview of the National Geothermal Data System (NGDS)...

  6. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Clemons, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  7. track 3: enhanced geothermal systems (EGS) | geothermal 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: enhanced geothermal systems (EGS) | geothermal 2015 peer review track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review EGS technologies utilize directional...

  8. Geothermal Data Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

  9. Hydrodynamics and sediment transport in natural and beneficial use marshes 

    E-Print Network [OSTI]

    Kushwaha, Vaishali

    2006-10-30

    or siltation. The research reported here applies an engineering approach to analysis of tidal creeks in natural and beneficial use marshes of Galveston Bay. The hydrodynamic numerical model, DYNLET, was used to assess circulation in marsh channels. A...

  10. Sediment Supply and Marsh Development in the San Francisco Estuary

    E-Print Network [OSTI]

    Malamud-Roam, Frances

    2006-01-01

    3: 9.1.2003–8.31.2006 Sediment Supply and Marsh Developmentsources of inorganic sediments that maintain the marshes’activities have altered sediment transport in the delta and

  11. Geomorphic structure of tidal hydrodynamics in salt marsh creeks

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    .1029/2007WR006289. 1. Introduction [2] Salt marshes are important transitional areas between terrestrial providing preferen- tial pathways for marsh flooding and drainage during the tidal cycle. Because

  12. Marsh Collapse Does Not Require Sea Level Rise

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    Salt marshes are among the most productive ecosystems on Earth, providing nurseries for fish species and shelter and food for endangered birds. Salt marshes also mitigate the impacts of hurricanes and tsunamis, and sequester ...

  13. Iceland Geothermal Conference 2013 - Geothermal Policies and...

    Broader source: Energy.gov (indexed) [DOE]

    Iceland Geothermal Conference presentation on March 7, 2013 by Chief Engineer Jay Nathwani of the U.S. Department of Energys Geothermal Technologies Office. icelandgeothermalco...

  14. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Geothermal Technologies Program presentation at the SMU Geothermal Conference in June 2011. gtpsmuconferencereinhardt2011.pdf More Documents & Publications Low Temperature...

  15. Geothermal Energy Association Recognizes the National Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Development and Demonstration Projects for up to 78 Million to Promote Enhanced Geothermal Systems Geothermal energy, traditionally a baseload power source among renewables,...

  16. New York State Salt Marsh Restoration and Monitoring Guidelines

    E-Print Network [OSTI]

    #12;New York State Salt Marsh Restoration and Monitoring Guidelines prepared by: Nancy L. Niedowski;The Salt Marsh Restoration and Monitoring Guidelines were prepared under the National OceanicState,Division of CoastalResources,41 State Street,Albany, New York 12231. December 2000 #12;PREFACE All salt marsh

  17. Geothermal Technologies Program Overview Presentation at Stanford...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

  18. Sandia Energy - Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Energy & Drilling Technology Home Stationary Power Energy Conversion Efficiency Geothermal Geothermal Energy & Drilling Technology Geothermal Energy & Drilling...

  19. Session: Geopressured-Geothermal

    SciTech Connect (OSTI)

    Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

  20. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  1. JGI's Carbon Cycling Studies on Restored Marshes

    SciTech Connect (OSTI)

    Tringe, Susannah; Theroux, Susanna

    2015-06-02

    DOE Joint Genome Institute Metagenome Program Head, Susannah Tringe, and postdoc, Susie Theroux, discuss the lessons to be learned from studying the microbial diversity of marshes that have been converted to other uses, and are now being restored, as well as the potential impacts on the global carbon cycle.

  2. Indiana/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation...

  3. National Geothermal Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Geothermal Energy Association (GEA) will be holding it’s fifth annual National Geothermal Summit on June 3-4 at the Grand Sierra Resort and Casino in Reno, NV. The National Geothermal Summit is...

  4. Geothermal tomorrow 2008

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  5. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  6. Snake River Plain Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH JumpSlough Heat andCreek GeothermalRhodeWind

  7. Timing of Late Pliocene to Middle Pleistocene tectonic events in Rhodes (Greece) inferred from magneto-biostratigraphy and

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Timing of Late Pliocene to Middle Pleistocene tectonic events in Rhodes (Greece) inferred from sequences on the island of Rhodes (Aegean fore-arc, Greece). Here, we present an integrated isotopic; Pliocene; Pleistocene; Rhodes; Greece; Mediterranean Sea 1. Introduction The island of Rhodes (Greece

  8. Invasive Spartina densiflora Brongn. Reduces Primary Productivity in a Northern California Salt Marsh

    E-Print Network [OSTI]

    Lagarde, Luc A.

    2012-01-01

    and Distichlis spicata in salt marshes at Humboldt Bay,Carolina Spartina alterniflora salt marsh. Estuaries 4:97-die-off of southern U.S. salt marshes. Science 310:1803-

  9. A MESSAGE TO VETERANS The University of Rhode Island

    E-Print Network [OSTI]

    Rhode Island, University of

    , be entitled to classification as a Rhode Island resident for the purposes of determining tuition and fees. #12 needs. The office will also assist with post-deployment transition issues and transfer credits. The FAFSA is available on-line at www.fafsa.ed.gov or at post offices and libraries. Students may apply (or

  10. University of Rhode Island inAdvance March 30, 2006

    E-Print Network [OSTI]

    Rhode Island, University of

    . More... University Library wins national award for information forum series The University of Rhode with high-tech training The traditional Narragansett Indian culture plays a vital role in Wanda Hopkins Island Library has been selected to receive the 2006 Association of College and Research Libraries

  11. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    At Lightning Dock Geothermal Area (Witcher, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At...

  12. National Geothermal Data System (NGDS) Geothermal Data Domain...

    Open Energy Info (EERE)

    National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  13. Geothermal Literature Review At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Long Valley Caldera Geothermal Area (Goldstein & Flexser, 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  14. Geothermal Tomorrow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergy GeothermalDemonstration2008

  15. Geothermal Today: 2005 Geothermal Technologies Program Highlights

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

  16. Invasive Spartina densiflora Brongn. Reduces Primary Productivity in a Northern California Salt Marsh

    E-Print Network [OSTI]

    Lagarde, Luc A.

    2012-01-01

    alterniflora and benthic microalgae in salt marsh food webs:dynamics of benthic microalgae in salt marshes. Pages 81-106primary productivity of microalgae and cyanobacteria (Geider

  17. Levels of metals from salt marsh plants from Southern California, USA

    E-Print Network [OSTI]

    Hoyt, Kimberly Ann

    2009-01-01

    alterniflora and benthic microalgae in salt marsh foodalterniflora and benthic microalgae in salt marsh foodSpartina, but feed on microalgae (Currin,1990). Isotope

  18. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01

    the division of Geothermal Energy. TASK 1 Identify Areas forLaboratory, NSF Geothermal Energy Conference, Pasadena,associated with geothermal energy development. These g o a l

  19. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01

    of Subsiding Areas and Geothermal Subsidence Potential25 Project 2-Geothermal Subsidence Potential Maps . . . . .Subsidence Caused by a Geothermal Project and Subsidence Due

  20. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01

    Liquid Dominated Geothermal Systems," Second Intern. Symp.behavior related to geothermal systems and their potentialsetting of most geothermal systems is such that natural

  1. Video Resources on Geothermal Technologies

    Broader source: Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  2. Geothermal Technologies Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC)— a tax-exempt, non-profit, geothermal educational association — publishes quarterly as an insert in its GRC Bulletin.

  3. Geothermal Tomorrow 2008

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

  4. Stanford Geothermal Program Final Report

    E-Print Network [OSTI]

    Stanford University

    1 Stanford Geothermal Program Final Report July 1990 - June 1996 Stanford Geothermal Program. THE EFFECTS OF ADSORPTION ON VAPOR-DOMINATED GEOTHERMAL FIELDS.1 1.1 SUMMARY? ..............................................................................................2 1.4 ADSORPTION IN GEOTHERMAL RESERVOIRS ........................................................3

  5. EIS-0006: Wind Turbine Generator System, Block Island, Rhode Island

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this EIS to evaluate the environmental impacts of installing and operating a large experimental wind turbine, designated the MOD-OA, which is proposed to be installed on a knoll in Rhode Island's New Meadow Hill Swamp, integrated with the adjacent Block Island Power Company power plant and operated to supply electricity to the existing utility network.

  6. Harrisville, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts: EnergySoftwareMississippi:Harrisville, New York:Rhode

  7. Rhode Island Schools Teach Energy Essentials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvesting inServicesRecoveryRhode Island Schools Teach

  8. Geothermal Literature Review At Cascades Region (Ingebritsen...

    Open Energy Info (EERE)

    Geothermal Literature Review At Cascades Region (Ingebritsen & Mariner, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  9. Dominica Grants Geothermal Exploration and Development License...

    Energy Savers [EERE]

    Energy Needs Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Resources Low-Temperature & Coproduced Resources Systems...

  10. Wyoming/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    (MW) Number of Plants Owners Geothermal Region Huckleberry Hot Springs Geothermal Area Yellowstone Caldera Geothermal Region Seven Mile Hole Geothermal Area Yellowstone Caldera...

  11. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    induced seismicity in geothermal systems. In: Proceedings ofThe deep EGS (Enhanced Geothermal System) project at Soultz-with enhanced geothermal systems. Geothermal Resources

  12. Guidebook to Geothermal Finance

    SciTech Connect (OSTI)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  13. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  14. GEOTHERMAL POWER GENERATION PLANT

    Broader source: Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  15. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  16. Summer 2012 National Geothermal Academy: Applications Due February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Course modules include: Introduction to Geothermal Energy Utilization Geothermal Geology and Geochemistry Geothermal Field Trips Geothermal Geophysics Drilling Engineering...

  17. Doug Hollett Gives Keynote Presentation at Stanford Geothermal...

    Energy Savers [EERE]

    Geothermal Energy Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Resources Low-Temperature & Coproduced Resources Systems...

  18. Geothermal | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applying advanced materials to improve well construction technologies Development of harsh environment sensors for reservoir characterization DOE Geothermal Technologies Office...

  19. South Dakota geothermal handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  20. Other Geothermal Energy Publications

    Broader source: Energy.gov [DOE]

    Here you'll find links to other organization's publications — including technical reports, newsletters, brochures, and more — about geothermal energy.

  1. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  2. Warren, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park, Indiana: Energy Resources JumpNewRhode

  3. Washington County, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park, Indiana:OpenIowa:New York:Pennsylvania:Rhode

  4. Tiverton, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open EnergyTinoxOpenStatutes Jump to:b NationalTiverton, Rhode

  5. Recent marine podocopid Ostracoda of Narragansett Bay, Rhode Island

    E-Print Network [OSTI]

    Williams, R. B.

    1966-11-23

    major factors: ( I) inadequate collecting station location density; (2) lack of en- vironmental data obtained at time of sampling; and (3), loss of portions of the sample attributable to leakage of the sampling apparatus. It may be that the third factor... ni. FM 6. Propontocypris edwardsi ( CusHmAN), a-c, RV int., LV hinge, both valves dorsal, X 90. Williams-Podocopid Ostracoda of Narragansett Bay 13 Material.-Specimens 34, of which 29 were articulated. Distribution.-Narragansett Bay, Rhode Island...

  6. Greenville, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to: navigation,Capital AdvisorsSteamMaine:Rhode

  7. East Providence, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence, Rhode Island: Energy Resources Jump to:

  8. Energy Incentive Programs, Rhode Island | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment ofArizona EnergyHampshire EnergyOregon EnergyRhode Island

  9. Johnston, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills, Pennsylvania:HuayangIllinois:Texas:JohnstonIowa:Rhode

  10. Providence, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to:SpatialResolutionWidth (m)Power PtyProvidence, Rhode

  11. Microsoft Word - Rhode Island EA - FINAL EA.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OFDetection of Hydrates onRHUBCAeronetCustomerTHE RHODE

  12. Liberty Power Corp. (Rhode Island) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLiberty Power Corp. Place: Rhode Island Website:

  13. Rhode Island/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy| Open Energyfault andRhode Island/Wind

  14. Bristol, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy ResourcesCounty,Wisconsin: EnergyCounty,Rhode Island: Energy

  15. Central Falls, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPIDCavallo EnergyOhio: EnergyFalls, Rhode Island:

  16. Categorical Exclusion Determinations: Rhode Island | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectric powerMeasuresEnergyNewEnergyRhode Island.

  17. Narragansett, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsourceEnergyTexas:NGEN8 JumpNarragansett, Rhode

  18. O. E. Rhodes, Jr. | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 surveyNuclear andTwo-Phase Flow And HeatRhodes

  19. Spatial and Temporal Dynamics of Salt Marsh Vegetation across Scales 

    E-Print Network [OSTI]

    Kim, Daehyun

    2010-10-12

    of submergence and, hence, waterlogging of marsh soils and plants, which has retarded ecological succession. At the mid-scale, spatial patterns of vegetation and environmental factors were examined across tidal creeks. Sites closer to tidal creeks, compared...

  20. GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY

    E-Print Network [OSTI]

    Bresee, J. C.

    2011-01-01

    B. Direct Application of Geothermal Energy . . . . . . . . .Reservoir Assessment: Geothermal Fluid Injection, ReservoirD. E. Appendix Small Geothermal Power Plants . . . . . . .

  1. The Future of Geothermal Energy

    E-Print Network [OSTI]

    Ito, Garrett

    The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

  2. Reference book on geothermal direct use

    SciTech Connect (OSTI)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  3. Abraham Hot Springs Geothermal Area Northern Basin and Range...

    Open Energy Info (EERE)

    Basin and Range Geothermal Region Medical Hot Springs Geothermal Area Idaho Batholith Medicine Lake Geothermal Area Cascades Melozi Hot Springs Geothermal Area Alaska Geothermal...

  4. FRACTURE STIMULATION IN ENHANCED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY (Principal Advisor) #12;#12;v Abstract Enhanced Geothermal Systems (EGS) are geothermal reservoirs formed

  5. Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2006-04-06

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  6. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Area Central Nevada Seismic Zone Pull Apart in Strike Slip Fault Zone Ordovician shale quartzite MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest...

  7. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Area Exploration Technique Geothermal Literature Review Activity Date Usefulness useful DOE-funding Unknown Exploration Basis examining known geothermal sites in New Mexico Notes...

  8. Modeling Tidal Freshwater Marsh Sustainability in the Sacramento–San Joaquin Delta Under a Broad Suite of Potential Future Scenarios

    E-Print Network [OSTI]

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01

    Tidal Freshwater Marsh Sustainability in the Sacramento–Sanof pulsing events to sustainability. Estuaries Coasts 18:Evaluating tidal marsh sustainability in the face of sea-

  9. Modeling Tidal Freshwater Marsh Sustainability in the Sacramento–San Joaquin Delta Under a Broad Suite of Potential Future Scenarios

    E-Print Network [OSTI]

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01

    Francisco region. California Energy Commission. Publicationfour marshes in high and low energy fluvial environments asMarshes situated in high-energy zones were margin- ally more

  10. Geothermal Technologies Program: Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    This general publication describes enhanced geothermal systems (EGS) and the principles of operation. It also describes the DOE program R&D efforts in this area, and summarizes several projects using EGS technology.

  11. Oil bioremediation in salt marsh mesocosms as influenced by nitrogen, phosphorus, and bacterial seeding 

    E-Print Network [OSTI]

    Wright, Alan Lee

    1995-01-01

    Glasshouse experiments were conducted to determine the effects of N and P fertilization and bacterial seeding on crude oil degradation in salt marsh mesocosms containing marsh soil and Spartina alterniflora. Fertilization with urea, NH4, and N03...

  12. Impact of bioaugmentation on crude oil degradation in salt-marsh-sediment microcosms 

    E-Print Network [OSTI]

    Neralla, Srinivasan

    1994-01-01

    Bioremediation is the method of choice for eliminating oil from marshes and is dependent on microorganisms capable of mineralizing oil. Because populations of oil degrading microorganisms are low in marshes there is a potential for increasing...

  13. Biophysical properties of salt marsh canopies — Quantifying plant stem flexibility and above ground biomass

    E-Print Network [OSTI]

    Rupprecht, F.; Möller, I.; Evans, B.; Spencer, T.; Jensen, K.

    2015-04-19

    the contribution of vegetation to the tidal flow and wave energy dissipation potential of marshes. However detailed information on these two key biophysical properties of salt marsh canopies is scarce. In this paper we present biophysical properties of four...

  14. Coastal Marsh Vegetation Dynamics of the East Bay of Galveston Bay, Texas 

    E-Print Network [OSTI]

    Johnson, Jeremy Scott

    2012-10-19

    The structure and function of coastal marshes results from a complex interaction of biotic and abiotic processes that continually influence the characteristics of marsh vegetation. A great deal of research has focused on how tidal processes...

  15. The Role of Population-based Diversity on Productivity: Considerations for Restored Spartina alterniflora Salt Marshes 

    E-Print Network [OSTI]

    Lee, Courtney T

    2014-08-13

    Plant genetic diversity can augment ecosystem functions in habitats with low plant species diversity. Salt marshes are typically species-depauperate, a condition that is exacerbated when marshes are restored with a single species such as Spartina...

  16. An experimental method to increase sediment supply to a salt marsh in subsidence dominated environments 

    E-Print Network [OSTI]

    Thomas, Robert C.

    2007-09-17

    of wave induced erosion and direct replacement of marsh substrate through terracing. The restoration project did not address the potential for marsh lost to submergence. As an alternative to geotubes or more permanent breakwater methods, a submerged...

  17. Geothermal Today - 2001

    SciTech Connect (OSTI)

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  18. Geothermal Today - 1999

    SciTech Connect (OSTI)

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  19. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  20. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  1. National Laboratory Geothermal Publications

    Broader source: Energy.gov [DOE]

    You can find publications, including technical papers and reports, about geothermal technologies, research, and development at the following U.S. Department of Energy national laboratories.

  2. Geothermal Outreach Publications

    Broader source: Energy.gov [DOE]

    Here you'll find the U.S. Department of Energy's (DOE) most recent outreach publications about geothermal technologies, research, and development.

  3. Geothermal Reservoir Dynamics - TOUGHREACT

    E-Print Network [OSTI]

    2005-01-01

    enhanced geothermal systems (EGS) and hot dry rock (HDR),deformation, to demonstrate new EGS technology through fieldsystems, primarily focusing on EGS and HDR systems and on

  4. Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Find out if one is right for your home.

  5. Infaunal abundance in restored and reference marshes of the northwestern Gulf of Mexico 

    E-Print Network [OSTI]

    Davis, Brittney

    2011-05-04

    Creation Efforts. Estuaries and Coasts 14: 1-16 Sacco JN, Seneca ED, Wentworth TR (1994) Infaunal Community Development of Artificially Established Salt Marshes in North Carolina. Estuaries 17:489. Sandnes J,Forbes T, Hansen R, Rygg B (2000) Bioturbation... half of the salt and brackish marshes in the northern Gulf of Mexico (GOM) have been reduced to open water. A widely accepted approach to mitigate the loss of valuable ecological services is the construction of new marsh habitat. Marsh construction...

  6. Flow, Sedimentation, and Biomass Production on a Vegetated Salt Marsh in South Carolina

    E-Print Network [OSTI]

    Mudd, Simon Marius

    . Introduction Vegetated salt marshes are a common feature along tectonically quiescent coastal mar- gins9 Flow, Sedimentation, and Biomass Production on a Vegetated Salt Marsh in South Carolina: Toward, sedimentation, and plant community evolution on a salt marsh populated by Spartina alterniflora is deve- loped

  7. A potential mechanism for disturbance-mediated channel migration in a southeastern United States salt marsh

    E-Print Network [OSTI]

    Lottig, Noah R.

    salt marsh Noah R. Lottig, Justin M. Fox University of Wisconsin-Madison Center for Limnology 680 North September 2006; accepted 8 September 2006 Available online 27 October 2006 Abstract Coastal salt marsh tidal Elsevier B.V. All rights reserved. Keywords: Wrack; Disturbance; Salt marsh tidal creek; Channel migration

  8. Assessing Functional Equivalency of Nekton Habitat in Enhanced Habitats: Comparison of Terraced and Unterraced Marsh Ponds

    E-Print Network [OSTI]

    Nyman, John

    and Unterraced Marsh Ponds MEGAN K. LA PEYRE1, *, BRYAN GOSSMAN2 , and JOHN A. NYMAN2 1 U.S. Geological Survey and quality. Using shallow water ponds rehabilitated with a technique called marsh terracing, we examined quality. We examined three paired terraced and unterraced marsh ponds in southwest Louisiana. Nekton

  9. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Rhode Island

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Rhode Island.

  10. A Technical Databook for Geothermal Energy Utilization

    E-Print Network [OSTI]

    Phillips, S.L.

    1981-01-01

    A TECHNICAL DATABOOK FOR GEOTHERMAL ENERGY UTILIZATION S.L.Technical Databook for Geothermal Energy Utilization* s. L.Survey, Menlo Park, CA. Geothermal Energy Development, CA.

  11. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01

    the potential use of geothermal energy for power generation47. Boldizsar, T. , 1970, "Geothermal energy production fromCoast Geopressure Geothermal Energy Conference, M.H. Dorfman

  12. NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977

    E-Print Network [OSTI]

    Phillips, Sidney L.

    2012-01-01

    an International Geothermal Energy Comnuni ty", J .C.environmental aspects of geothermal energy which provide theby GRID for geothermal energy have wider applications. In

  13. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    I 2nd Geopressured Geothermal Energy Conference. UniversityExperiment t o Extract Geothermal Energy From Hot Dry Rock."2nd Geo- pressured Geothermal Energy Conference, Austin,

  14. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    Cooper Basin, Australia. Geothermal Resources Council Trans.a hot fractured rock geothermal project. Engineering Geologyseismicity in The Geysers geothermal area, California. J.

  15. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01

    on the Cerro Prieto Geothermal Field, Baja California,monitoring at the Geysers Geothermal Field, California,~~W. and Faust, C. R. , 1979, Geothermal resource simulation:

  16. NORTHERN NEVADA GEOTHERMAL EXPLORATION STRATEGY ANALYSIS

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01

    School of Mines Nevada Geothermal Study: Report No. 4, Feb.J. , 1976, Assessing the geothermal resource base of the1977, Microseisms in geothermal Studies in Grass Valley,

  17. ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Zais, E.J.; Bodvarsson, G.

    2008-01-01

    Petroleum Reservoirs. Geothermal Reservoirs IV. DATA1970, Superheating of Geothermal Steam, Proc. of the U.N.the Development & Utilization of Geothermal Resources, Pisa.

  18. GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79

    E-Print Network [OSTI]

    Pruess, Karsten

    2012-01-01

    that well blocks must geothermal reservoir s·tudies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

  19. Nevada/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Confirmation Silver Peak Geothermal Area Walker-Lane Transition Zone Geothermal Region Smith Creek Geothermal Project Ormat Phase I - Resource Procurement and Identification Smith...

  20. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    characteristics of geothermal boreholes are studied.Maini, Tidu. "Geothermal Energy From a Borehole i n H o t28 (1967): Borehole Temperature Survey Analysis Geothermal

  1. SEISMOLOGICAL INVESTIGATIONS AT THE GEYSERS GEOTHERMAL FIELD

    E-Print Network [OSTI]

    Majer, E. L.

    2011-01-01

    of the Salton Sea Geothermal System. pp. 129-166. Hubbert,and Lardarello: Geothermal Power Systems New Zealand Journalthe western edge of the geothermal system. Attenuation In

  2. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01

    is a vapor dominated geothermal system and is the largestin liquid-dominated geothermal systems, 11 Proceedings,histories relating to geothermal systems from around the

  3. 2015 Peer Review Presentations | Geothermal Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Peer Review Presentations | Geothermal Energy 2015 Peer Review Presentations | Geothermal Energy The Energy Department featured Play Fairway Analysis at the 2015 Geothermal...

  4. Oregon/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I -...

  5. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Geothermal Food Processors Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Geothermal Food Processors Agricultural Drying Low Temperature...

  6. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    The deep EGS (Enhanced Geothermal System) project at Soultz-associated with enhanced geothermal systems. Geothermalfor a long-lived enhanced geothermal system (EGS) in the

  7. Temperature, Temperature, Earth, geotherm for

    E-Print Network [OSTI]

    Treiman, Allan H.

    Temperature, Temperature, Earth, geotherm for total global heat flow Venus, geotherm for total global heat flow, 500 Ma #12;Temperature, Temperature, #12;Earth's modern regional continental geotherms Venusian Geotherms, 500 Ma Temperature, Temperature, After Blatt, Tracy, and Owens Petrology #12;Ca2Mg5Si8

  8. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 34105 Stanford Geothermal, California SGP-TR-72 A RESERVOIR ENGINEERING ANALYSIS OF A VAPOR-DOMINATED GEOTHERMAL FIELD BY John Forrest Dee June 1983 Financial support was provided through the Stanford Geothermal Program under Department

  9. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY Stanford Geothermal Program Interdisciplinary was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 heat sweep model for estimating energy recovery from fractured geothermal reservoirs based on early

  10. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    through September 30, 1982. The Stanford Geothermal Program conducts interdisciplinary research in the geothermal industry. In the first 10 years of the Program about 50 graduates have been trained in geotherSTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94105 SGP-TR- 61 GEOTHERMAL

  11. Geothermal Financing Workbook

    SciTech Connect (OSTI)

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  12. Wave attenuation over coastal salt marshes under storm surge conditions

    E-Print Network [OSTI]

    Möller, Iris; Kudella, Matthias; Rupprecht, Franziska; Spencer, Tom; Paul, Maike; van Wesenbeeck, Bregje K.; Wolters, Guido; Jensen, Kai; Bouma, Tjeerd J.; Miranda-Lange, Martin; Schimmels, Stefan

    2014-09-29

    in geotextile at a 157 distance of 108m from the wave paddle and illuminated to prevent plant deterioration when 158 exposed. Adjacent to the front and rear end of the vegetated test section, a flat concrete surface 159 and ramped concrete slope allowed... geotextile. The experiment could not be scheduled prior to autumn 2013 and marsh blocks were 331 stored outdoors in appropriate temperature/moisture conditions and with fences to control for 332 herbivory for 14 months. For marsh construction in the flume...

  13. Advanced Geothermal Turbodrill

    SciTech Connect (OSTI)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  14. Updating the Classification of Geothermal Resources- Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  15. Ionic Liquids for Utilization of Geothermal Energy

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications.

  16. National Geothermal Resource Assessment and Classification |...

    Office of Environmental Management (EM)

    Resource Assessment and Classification National Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification presentation at the...

  17. Rural Cooperative Geothermal Development Electric & Agriculture...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Southwest Alaska Regional Geothermal Energy Project District Wide Geothermal Heating Conversion Blaine County School District Novel Energy...

  18. Updating the Classification of Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  19. Navy Geothermal Plan

    SciTech Connect (OSTI)

    Not Available

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  20. Geothermal Literature Review At Teels Marsh Area (Shevenell, Et Al., 2008)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore Technologies IncEnergy2002) |Energy InformationEt|

  1. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01

    in  The  Geysers.   Geothermal Resources Council A  planned  Enhanced  Geothermal  System  demonstration project.   Geothermal  Resources  Council  Transactions 33, 

  2. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01

    2 Mission of Division of Geothermal Energy . . . . .Coordination with Other Geothermal Programs . . . . . . 6the Behavior of Geothermal Systems . . . . . . . . . 1 6

  3. Microhole arrays for improved heat mining from enhanced geothermal systems

    E-Print Network [OSTI]

    Finsterle, S.

    2014-01-01

    from enhanced geothermal systems. Transactions Geothermalapproach to enhanced geothermal systems. Transactionsof the enhanced geothermal system demonstration reservoir in

  4. National Geothermal Academy Underway at University of Nevada...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aspects of geothermal energy development and utilization. Modules include Geothermal Geology and Geochemistry, Geothermal Geophysics, Reservoir Engineering, and more. The...

  5. Exploring the Raft River geothermal area, Idaho, with the dc...

    Open Energy Info (EERE)

    the dc resistivity method (Abstract) Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY;...

  6. Geothermal Energy Production with Co-produced and Geopressured...

    Energy Savers [EERE]

    Projects Poster Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Resources Low-Temperature & Coproduced Resources Systems...

  7. Microhole arrays for improved heat mining from enhanced geothermal systems

    E-Print Network [OSTI]

    Finsterle, S.

    2014-01-01

    prospects from enhanced geothermal systems. Transactionsapproach to enhanced geothermal systems. Transactionsexperiment of the enhanced geothermal system demonstration

  8. Hot Springs Point Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Point Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hot Springs Point Geothermal Project Project Location Information...

  9. Geothermal Energy Summary

    SciTech Connect (OSTI)

    J. L. Renner

    2007-08-01

    Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75°C water from shallow wells. Power production is assisted by the availability of gravity fed, 7°C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earth’s crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88°C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

  10. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01

    into  sustainable  geothermal  energy:  The  S.E.   Geysers seismicity and geothermal  energy.  Geothermal Resources into  sustainable  geothermal  energy:  The  S.E.   Geysers 

  11. 3D Magnetotelluic characterization of the Coso Geothermal Field

    E-Print Network [OSTI]

    Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

    2008-01-01

    of the Coso Geothermal System, Geothermal Resources Councileast flank of the Coso geothermal system, Proceedings 28 thCreation of an enhanced geothermal system through hydraulic

  12. How an Enhanced Geothermal System Works | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an Enhanced Geothermal System Works How an Enhanced Geothermal System Works The Potential Enhanced Geothermal Systems (EGS), also sometimes called engineered geothermal systems,...

  13. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01

    A  planned  Enhanced  Geothermal  System  demonstration associated  with Enhanced  Geothermal Systems.  Geothermics Section 3).   5. Enhanced Geothermal Systems (EGS)  Brown, 

  14. Geothermal Energy: Current abstracts

    SciTech Connect (OSTI)

    Ringe, A.C. (ed.)

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  15. Geothermal Case Studies

    SciTech Connect (OSTI)

    Young, Katherine

    2014-09-30

    The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  16. Geothermal Energy Retrofit

    SciTech Connect (OSTI)

    Bachman, Gary

    2015-07-28

    The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.

  17. Geothermal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S.Job VacanciesGeothermal Geothermal EERE

  18. Geothermal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancial Opportunities FinancialofInformation Geothermal Geothermal

  19. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01

    Geothermal Field, Monograph on The Geysers GeothermalField, Geothermal Resources Council, Special Report no. 17,Subsidence at The Geysers geothermal field, N. California

  20. The Krafla Geothermal System. A Review of Geothermal Research...

    Open Energy Info (EERE)

    The Krafla Geothermal System. A Review of Geothermal Research and Revision of the Conceptual Model Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: The...

  1. The National Geothermal Collaborative, EERE-Geothermal Program, Final Report

    SciTech Connect (OSTI)

    Jody Erikson

    2006-05-26

    Summary of the work conducted by the National Geothermal Collaborative (a consensus organization) to identify impediments to geothermal development and catalyze events and dialogues among stakeholders to over those impediments.

  2. Why geothermal energy? Geothermal utilization in the Philippines

    SciTech Connect (OSTI)

    Gazo, F.M.

    1997-12-31

    This paper discusses the advantages of choosing geothermal energy as a resource option in the Philippine energy program. The government mandates the full-scale development of geothermal energy resources to meet increased power demand brought by rapid industrialization and economic growth, and to reduce fossil fuel importation. It also aims to realize these additional geothermal capacities by tapping private sector investments in the exploration, development, exploitation, construction, operation and management of various geothermal areas in the country.

  3. track 4: enhanced geothermal systems (EGS) | geothermal 2015...

    Broader source: Energy.gov (indexed) [DOE]

    Office portfolio presented fifty three technical project presentations on enhanced geothermal systems technologies (EGS). EGS technologies utilize directional drilling and...

  4. Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

  5. Tectonic and climatic controls on coastal sedimentation: The Late PlioceneMiddle Pleistocene of northeastern Rhodes, Greece

    E-Print Network [OSTI]

    Utrecht, Universiteit

    of northeastern Rhodes, Greece Jean-Jacques Cornée a,, Pierre Moissette a , Sébastien Joannin a , Jean-Pierre Suc Athens, Greece e FRE 2761 Géologie des Systèmes Carbonatés, Université de Provence, case 67, 3 place of northeastern Rhodes (Greece) were deposited in an active tectonic setting. They provide an excellent

  6. Middle to Late Holocene Fluctuations of C3 and C4 Vegetation in a Northern New England Salt Marsh, Sprague Marsh, Phippsburg Maine

    SciTech Connect (OSTI)

    Johnson, B J; Moore, K A; Lehmann, C; Bohlen, C; Brown, T A

    2006-05-26

    A 3.1 meter sediment core was analyzed for stable carbon isotope composition of organic matter and higher plant leaf wax (HPLW) lipid biomarkers to determine Holocene shifts in C{sub 3} (higher high marsh) and C{sub 4} (low and/or high marsh) plant deposition at the Sprague River Salt Marsh, Phippsburg, Maine. The carbon isotope composition of the bulk sediment and the HPLW parallel each other throughout most of the core, suggesting that terrestrial plants are an important source of organic matter to the sediments, and diagenetic alteration of the bulk sediments is minimal. The current salt marsh began to form 2500 cal yr BP. Low and/or high C{sub 4} marsh plants dominated deposition at 2000 cal yr BP, 700 cal yr BP, and for the last 200 cal yr BP. Expansion of higher high marsh C{sub 3} plants occurred at 1300 and 600 cal yr BP. These major vegetation shifts result from a combination of changes in relative sea-level rise and sediment accumulation rates. Average annual carbon sequestration rates for the last 2500 years approximate 40 g C yr{sup -1} m{sup -2}, and are in strong agreement with other values published for the Gulf of Maine. Given that Maine salt marshes cover an area of {approx}79 km{sup 2}, they represent an important component of the terrestrial carbon sink. More detailed isotopic and age records from a network of sediment cores at Sprague Marsh are needed to truly evaluate the long term changes in salt marsh plant communities and the impact of more recent human activity, including global warming, on salt marsh vegetation.

  7. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01

    of Subsiding Areas and Geothermal Subsidence Potential25 Project l-Subsidence Case Histories . . . . . . . . . .8 . Subsidence Models . . . . . . . . . . . . . . . .

  8. Accelerating Geothermal Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  9. SMU Geothermal Conference 2011 - Geothermal Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Robertseere.energy.gov Timothy Reinhardt Geothermal

  10. HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Schroeder, R.C.

    2009-01-01

    on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

  11. Postgraduate Certificate in Geothermal Energy

    E-Print Network [OSTI]

    Auckland, University of

    Postgraduate Certificate in Geothermal Energy Technology The University of Auckland The University for development of geothermal fields is large and many countries are seeking to move away from fossil fuel power generation for both economic and environmental reasons. Global revenues for geothermal power were estimated

  12. GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger

    E-Print Network [OSTI]

    Stanford University

    SGP-TR 9 * GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger C i v i l Engineering Department Stanford on an aggressive program t o develop its indigenous resources of geothermal energy. For more than a decade, geothermal energy has been heralded as one of the more promising forms of energy a l t e r n a t e t o o i l

  13. DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-186 DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL WELLS WITH FIBER OPTICS Nilufer Atalay June 2008 Financial support was provided through the Stanford Geothermal Program under Idaho National University Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD

  14. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 SGP-TR-42 PROCEEDINGS SPECIAL PANEL ON GEOTHERMAL MODEL INTERCOMPARISON STUDY held in conjunction with The Code Comparison Contracts issued by Department of Energy Division of Geothermal Energy San Francisco Operations Office

  15. Stanford Geothermal Program Tnterdisciplinary Research

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Tnterdisciplinary Research in Engineering and Earth Sciences Stanford University Stanford, California A LABORATORY MODEL OF STWLATED GEOTHERMAL RESERVOIRS by A. Hunsbedt P. Kruger created by artificial stimulation of geothermal reservoirs has been con- structed. The model has been used

  16. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 SGP-TR-35 SECOND ANNUAL #12;INTRODUCTION The research e f f o r t of t h e Stanford Geothermal Program is focused on geothermal reservoir engineering. The major o b j e c t i v e of t h e protiram is t o develop techniques f o

  17. Stanford Geothermal Program Stanford University

    E-Print Network [OSTI]

    Stanford University

    s Stanford Geothermal Program Stanford University Stanford, California RADON MEASUEMENTS I N GEOTHERMAL SYSTEMS ? d by * ** Alan K. Stoker and Paul Kruger SGP-TR-4 January 1975 :: raw at Lcs Alams S c i and water, o i l and n a t u r a l gas wells. with radon i n geothermal reservoirs. Its presence i n

  18. Stanford Geothermal Program Final Report

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Final Report July 1996 - June 1999 Funded by the U.S. Department of Energy under grant number DE-FG07-95ID13370 Stanford Geothermal Program Department of Petroleum ....................................................................................................................6 2. THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS

  19. EA-1676: U.S. Geothermal's Neal Hot Springs Geothermal Facility...

    Office of Environmental Management (EM)

    76: U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, OR EA-1676: U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, OR December 1, 2009 EA-1676: Final...

  20. Updated distribution and reintroduction of the Lower Keys marsh rabbit 

    E-Print Network [OSTI]

    Faulhaber, Craig Alan

    2005-02-17

    , for their advice and interest in the project. Kim Rohrs of the Monroe County Department of Planning and Environmental Resources provided valuable spatial and tabular data on land ownership and land-use planning in the Keys. My interns, Josh Harris, Kyle........................ 29 3.1 The number of individual Lower Keys marsh rabbits captured in 13 occupied populations on 4 keys from October 2001?August 2002. Data are arranged according to sex and age class...

  1. THE GEOMETRY OF BRAUER GRAPH ALGEBRAS AND CLUSTER ROBERT J. MARSH AND SIBYLLE SCHROLL

    E-Print Network [OSTI]

    Marsh, Robert J.

    author. 1 #12;2 MARSH AND SCHROLL sense. We may also consider the dual graph of the m-angulation, which

  2. Regulation of benthic algal and animal communities by salt marsh plants: Impact of shading

    E-Print Network [OSTI]

    Whitcraft, Christine R.; Levin, Lisa A.

    2007-01-01

    of marine wetland microalgae and photosyn- thetic bacteria:concentrating mechanisms in microalgae. Canadian Journal ofalterni?ora and benthic microalgae in salt marsh food webs:

  3. Drought legacies influence the long-term carbon balance of a freshwater marsh

    E-Print Network [OSTI]

    Rocha, Adrian V.; Goulden, Michael L.

    2010-01-01

    photosynthetic carbon sequestration, primarily by inhibitingof the maximum annual carbon sequestration observed over aimpact on marsh carbon sequestration. Citation: Rocha, A.

  4. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01

    DOE), Division of Geothermal Energy (DGE) proposed thatof Energy, Division of Geothermal Energy, through Lawrence

  5. State Geothermal Resource Assessment and Data Collection Efforts

    Office of Energy Efficiency and Renewable Energy (EERE)

    HawaiiNational Geothermal Data System Aids in Discovering Hawaii's Geothermal Resource (November 20, 2012)

  6. Geothermal energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

  7. Enhanced Geothermal Systems Technologies

    Broader source: Energy.gov [DOE]

    Geothermal Energy an?d the Enhanced Geothermal Systems Concept The Navy 1 geothermal power plant near Coso Hot Springs, California, is applying EGS technology. Heat is naturally present everywhere in the earth. For all intents and purposes, heat from the earth is inexhaustible. Water is not nearly as ubiquitous in the earth as heat. Most aqueous fluids are derived from surface waters that have percolated into the earth along permeable pathways such as faults. Permeability is a measure of the ease of fluid flow through rock. The permeability of rock results from pores, fractures, joints, faults, and other openings which allow fluids to move. High permeability implies that fluids can flow rapidly through the rock. Permeability and, subsequently, the amount of fluids tend to decrease with depth as openings in the rocks compress from the weight of the overburden.

  8. Geothermal Plant Capacity Factors

    SciTech Connect (OSTI)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  9. GEOTHERMAL HEAT PUMPS Jack DiEnna

    E-Print Network [OSTI]

    GEOTHERMAL HEAT PUMPS THE "PLAYBOOK" Jack DiEnna Executive Director The Geothermal National What do we call it... Geothermal, Ground Source, GeoExchange. The feds call it geothermal heat pumps IS GEOTHERMAL HEAT PUMP TECHNOLOGY ??? Answer: It is a 60 year old technology! #12;FACT GHP's were first written

  10. 2008 Geothermal Technologies Market Report

    SciTech Connect (OSTI)

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  11. Geothermal Energy; (USA)

    SciTech Connect (OSTI)

    Raridon, M.H.; Hicks, S.C. (eds.)

    1991-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  12. Potential Water Use Conflicts Generated by Irrigated Agriculture in Rhode Island

    E-Print Network [OSTI]

    Gold, Art

    with current residential water prices in the area. In addition, substantial demand for irrigation water the potential for conflict among residential and agricultural users of water in southern Rhode Island. The model is projected. Given current rates of growth in turf acreage and residential water use, there appears

  13. Modeling Tidal Freshwater Marsh Sustainability in the Sacramento–San Joaquin Delta Under a Broad Suite of Potential Future Scenarios

    E-Print Network [OSTI]

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01

    tidal freshwater marsh sites in the Delta Site name Coordinates Area (ha) Elevation above MSL (cm) Salinity regime Energy

  14. Modeling Tidal Freshwater Marsh Sustainability in the Sacramento–San Joaquin Delta Under a Broad Suite of Potential Future Scenarios

    E-Print Network [OSTI]

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01

    Table 1 Location and basic characteristics of tidal freshwater marsh sites in the Delta Site name Coordinates

  15. Using Marker Horizons and Cryogenic Coring to Monitor Sediment Deposition in Salt Marshes of the Bay of Fundy

    E-Print Network [OSTI]

    Chmura, Gail L.

    marsh samples has advantages over other coring methods. By freezing the salt marsh soil in CryogenicUsing Marker Horizons and Cryogenic Coring to Monitor Sediment Deposition in Salt Marshes that has accumulated over the marker horizon is measured. Cryogenic coring is one method of extracting

  16. Nekton of New Seagrass Habitats Colonizing a Subsided Salt Marsh in Galveston Bay, Texas

    E-Print Network [OSTI]

    Nekton of New Seagrass Habitats Colonizing a Subsided Salt Marsh in Galveston Bay, Texas SETH P Delwood Beach Road, Panama City, Florida 32408 ABSTRACT: Subsidence and erosion of intertidal salt marsh on this system is the extrac- tion of subsurface oil, gas, and water resources that has caused land subsidence

  17. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes Sergio by the Editorial Board April 14, 2006 (received for review September 25, 2005) Shallow tidal basins are characterized by extensive tidal flats and salt marshes that lie within specific ranges of elevation, whereas

  18. MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION

    E-Print Network [OSTI]

    Lippmann, M.J.

    2011-01-01

    Applications o f Geothermal Energy and t h e i r Place i n tcompaction, computers, geothermal energy, pore-waterf o r developing geothermal energy i n the United States (

  19. MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES

    E-Print Network [OSTI]

    Pope, W.L.

    2011-01-01

    and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.and J. W. Tester, Geothermal Energy as a Source of Electric

  20. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    Hill hot dry rock geothermal energy site, New Mexico. Int J.No. 1. In: Geopressured-Geothermal Energy, 105, Proc. 5thCoast Geopressured-Geothermal Energy Conf. (Bebout, D.G. ,

  1. SEISMOLOGICAL INVESTIGATIONS AT THE GEYSERS GEOTHERMAL FIELD

    E-Print Network [OSTI]

    Majer, E. L.

    2011-01-01

    P. Muffler, 1972. The Geysers Geothermal Area, California.B. C. Hearn, 1977. ~n Geothermal Prospecting Geology, TheC. , 1968. of the Salton Sea Geothermal System. pp. 129-166.

  2. NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977

    E-Print Network [OSTI]

    Phillips, Sidney L.

    2012-01-01

    Schwartz, Oct: 1977. "Geothermal Aspects o f Hydrogen Sul 4.S.R. Schwartz, "Review o f Geothermal Subsidence", LBL-3220,k i l e d to over 200 geothermal specialists i n 1977. Over

  3. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01

    of Geothermal Resources, Pisa, v. 2, p. 99-109. Browne,of Geothermal Resources, Pisa, v. 2, p. 287-294. Sageev,Use of Geothermal Resources, Pisa, 1970, v. 2, p. 564-570.

  4. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    i o n o f Geothermal Resources. Pisa, Sept. 22-Oct. 1, 1970:n o f Geothermal Resources. Pisa, Sept. 22-Oct. 1 1970: 516-o f Geothermal Resources, Pisa, Sept. 22-Oct. 1 1970: .1440-

  5. MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION

    E-Print Network [OSTI]

    Lippmann, M.J.

    2011-01-01

    t al. , "Modeling Geothermal Systems," A t t i dei Convegnio f L i q u i d Geothermal Systems," Open-File Report 75-i q u i d Dominated Geothermal Systems," Proceedings o f t h

  6. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    Phenomena i n Geothermal Systems. I' U.N. Symposium on theModeling o f Geothermal Systems." 2nd U.N. Symposium on theassociations of geothermal systems and postulates on a

  7. Geothermal Regulatory Roadmap | OpenEI Community

    Open Energy Info (EERE)

    geothermal Type Term Title Author Replies Last Post sort icon Blog entry geothermal Geothermal Regulatory Roadmap featured on NREL Now Graham7781 5 Aug 2013 - 14:18 Blog entry...

  8. Potential of geothermal energy in China

    E-Print Network [OSTI]

    Sung, Peter On

    2010-01-01

    This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in the earth's crust and currently the only ubiquitously ...

  9. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    Broader source: Energy.gov [DOE]

    This report describes the recommendations of the Geothermal Blue Ribbon Panel, a panel of geothermal experts assembled in March 2011 for a discussion on the future of geothermal energy in the U.S.

  10. Geothermal Technologies Office Hosts Collegiate Competition

    Office of Energy Efficiency and Renewable Energy (EERE)

    To further accelerate the adoption of geothermal energy, the United States Department of Energy is sponsoring a Geothermal Case Study Challenge (CSC) to aggregate geothermal data that can help us...

  11. Selling Geothermal Systems The "Average" Contractor

    E-Print Network [OSTI]

    Selling Geothermal Systems #12;The "Average" Contractor · History of sales procedures · Manufacturer Driven Procedures · What makes geothermal technology any harder to sell? #12;"It's difficult to sell a geothermal system." · It should

  12. THERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Seminario del Grupo de Hidrologìa Subterrànea - UPC, Barcelona #12;INTRODUCTION Enhanced geothermal systems Geothermal gradient ~ 33 °C/Km Hydraulic stimulation enhances fracture permeability (energyTHERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL RESERVOIR STIMULATIONRESERVOIR STIMULATION Silvia

  13. National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.

  14. Tracing Geothermal Fluids

    SciTech Connect (OSTI)

    Michael C. Adams Greg Nash

    2004-03-31

    Chemical compounds have been designed under this contract that can be used to trace water that has been injected into vapor-dominated and two-phase geothermal fields. Increased knowledge of the injection flow is provided by the tracers, and this augments the power that can be produced. Details on the stability and use of these tracers are included in this report.

  15. Energy 101: Geothermal Energy

    ScienceCinema (OSTI)

    None

    2014-06-23

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  16. Geothermal Heat Pump Basics

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes—from scorching heat in the summer to sub-zero cold in the winter—the ground a few feet below the earth's surface remains at a relatively constant temperature.

  17. Reinjection into geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  18. Energy 101: Geothermal Energy

    SciTech Connect (OSTI)

    2014-05-27

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  19. Funding Mechanisms for Federal Geothermal Permitting (Presentation)

    SciTech Connect (OSTI)

    Witherbee, K.

    2014-03-01

    This presentation is about the GRC paper, which discusses federal agency revenues received for geothermal projects and potential federal agency budget sources for processing geothermal applications.

  20. 2014 Geothermal Resources Council Annual Meeting

    Broader source: Energy.gov [DOE]

    The Annual Meeting attracts geothermal industry stakeholders worldwide and provides opportunity to participate in presentations on geothermal research, exploration, development, and utilization.

  1. Geothermal Reconnaissance From Quantitative Analysis Of Thermal...

    Open Energy Info (EERE)

    Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Imagery Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Geothermal...

  2. The Energy Department's Geothermal Technologies Office Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report February 7,...

  3. Geothermal Exploration Best Practices Webinar Presentation Now...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy DOE Projects Receive Honors for Best Geothermal Presentations Workshop to Examine Outlook for State and Federal Policies to Promote Geothermal Energy in the West...

  4. NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977

    E-Print Network [OSTI]

    Phillips, Sidney L.

    2012-01-01

    Review o f Geothermal Subsidence", LBL-3220, Sept. 1975. 5.bles emissions; (3) subsidence; and (4) boron. Generally,Review of Geothermal Subsidence", LBL-3220, September 1975.

  5. Geothermal Technologies Program Annual Peer Review Presentation...

    Broader source: Energy.gov (indexed) [DOE]

    2012 Peer Review presentation by Doug Hollett, Program Manager, Geothermal Technologies Program gtp2012peerreviewdhollett.pdf More Documents & Publications Stanford Geothermal...

  6. Geothermal Technologies Office 2015 Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | US DOE Geothermal Office eere.energy.gov Geothermal Technologies Office 2015 Peer Review Sustainability of Shear-Induced Permeability for EGS Reservoirs - A Laboratory...

  7. Digital Mapping Of Structurally Controlled Geothermal Features...

    Open Energy Info (EERE)

    (PCs) were used to map surface geothermal features at the Bradys Hot Springs and Salt Wells geothermal systems, Churchill County, Nevada, in less time and with greater...

  8. Integrated Geoscience Investigation and Geothermal Exploration...

    Open Energy Info (EERE)

    Al., 2006) Isotopic Analysis At Chena Geothermal Area (Holdmann, Et Al., 2006) Micro-Earthquake At Chena Geothermal Area (Holdmann, Et Al., 2006) Pressure Temperature Log At Chena...

  9. Strategic Planning, Analysis, and Geothermal Informatics Subprogram...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategic Planning, Analysis, and Geothermal Informatics Subprogram Overview Strategic Planning, Analysis, and Geothermal Informatics Subprogram Overview This is an overview of...

  10. Geothermal Direct Use Technology and the Marketplace

    Broader source: Energy.gov [DOE]

    Geothermal energy applications are emerging across a much wider spectrum of cascaded uses, from lower temperature geothermal energy production to direct heating and cooling, to agricultural uses.

  11. Innovative Exploration Techniques for Geothermal Assessment at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration...

  12. Modeling of Geothermal Reservoirs: Fundamental Processes, Computer...

    Open Energy Info (EERE)

    Abstract This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir...

  13. Google Archives by Fiscal Year — Geothermal

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Geothermal Technologies Office, retired Google Analytics profiles for the Geothermal Technologies Blog for FY12-FY13.

  14. North Carolina/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon North CarolinaGeothermal < North Carolina Jump to: navigation, search GEOTHERMAL...

  15. Geothermal Energy Production from Low Temperature Resources,...

    Open Energy Info (EERE)

    Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA...

  16. Sustainable Energy Resources for Consumers (SERC) -Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps...

  17. Cuttings Analysis At International Geothermal Area, Indonesia...

    Open Energy Info (EERE)

    Cuttings Analysis At International Geothermal Area, Indonesia (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At...

  18. The Geothermal Technologies Office Congratulates this Year's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to bring new geothermal power online. Surprise Valley Electrification Corporation, in Paisley, Oregon, (in the image left) seeks to develop geothermal electric power from an...

  19. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

  20. Daemen Alternative Energy/Geothermal Technologies Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

  1. GETEM -Geothermal Electricity Technology Evaluation Model | Department...

    Broader source: Energy.gov (indexed) [DOE]

    guide to providing input to GETEM, the Geothermal Electricity Technology Evaluation Model. GETEM is designed to help the Geothermal Technologies Program of the U.S. Department of...

  2. 2012 Geothermal Webinar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This Office of Indian Energy webinar provides information on developing geothermal resources on tribal lands with an overview of: geothermal resources by region; technology...

  3. An Evaluation of Enhanced Geothermal Systems Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Evaluation of Enhanced Geothermal Systems Technology Geothermal Technologies Program 2008 Foreword This document presents the results of an eight-month study by the Department...

  4. Analysis of Geothermal Reservoir Stimulation Using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Microseismic Study...

  5. Employment Impacts of Geothermal Electric Projects (Technical...

    Office of Scientific and Technical Information (OSTI)

    Employment Impacts of Geothermal Electric Projects Citation Details In-Document Search Title: Employment Impacts of Geothermal Electric Projects You are accessing a document...

  6. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    around the state at over 50 temperature anomalies. Examined correlations between structures and thermal anomalies. Made recommendations for future geothermal use. Much of the...

  7. BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL...

    Open Energy Info (EERE)

    to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A finite element model was developed for the fully...

  8. Geothermal Site Assessment Using the National Geothermal Data...

    Open Energy Info (EERE)

    Company Organization: University of Nevada-Reno Sector: Energy Focus Area: Renewable Energy, Geothermal Topics: Resource assessment Resource Type: Case studiesexamples,...

  9. Chemical logging of geothermal wells

    DOE Patents [OSTI]

    Allen, Charles A. (Idaho Falls, ID); McAtee, Richard E. (Idaho Falls, ID)

    1981-01-01

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  10. NREL SBV Pilot Geothermal Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of experimental data, high-resolution 3-D visual imagery and large-scale simulation data. For more information, contact: Craig.Turchi@nrel.gov (Geothermal Technical Questions)...

  11. Direct application of geothermal energy

    SciTech Connect (OSTI)

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  12. Geothermal Research and Development Programs

    Broader source: Energy.gov [DOE]

    Here you'll find links to laboratories, universities, and colleges conducting research and development (R&D) in geothermal energy technologies.

  13. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    SciTech Connect (OSTI)

    Anderson, Arlene; Blackwell, David; Chickering, Cathy; Boyd, Toni; Horne, Roland; MacKenzie, Matthew; Moore, Joseph; Nickull, Duane; Richard, Stephen; Shevenell, Lisa A.

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  14. Hawaii's Geothermal Development

    SciTech Connect (OSTI)

    Uemura, Roy T.

    1980-12-01

    On July 2, 1976, an event took place in the desolate area of Puna, on the island of Hawaii, which showed great promise of reducing Hawaii's dependence on fuel oil. This great event was the flashing of Hawaii's first geothermal well which was named HGP-A. The discovery of geothermal energy was a blessing to Hawaii since the electric utilities are dependent upon fuel oil for its own electric generating units. Over 50% of their revenues pay for imported fuel oil. Last year (1979) about $167.1 million left the state to pay for this precious oil. The HGP-A well was drilled to a depth of 6450 feet and the temperature at the bottom of the hole was measured at 676 F, making it one of the hottest wells in the world.

  15. Geothermal Progress Monitor 12

    SciTech Connect (OSTI)

    1990-12-01

    Some of the more interesting articles in this GPM are: DOE supporting research on problems at The Geysers; Long-term flow test of Hot Dry Rock system (at Fenton Hill, NM) to begin in Fiscal Year 1992; Significant milestones reached in prediction of behavior of injected fluids; Geopressured power generation experiment yields good results. A number of industry-oriented events and successes are reported, and in that regard it is noteworthy that this report comes near the end of the most active decade of geothermal power development in the U.S. There is a table of all operating U.S. geothermal power projects. The bibliography of research reports at the end of this GPM is useful. (DJE 2005)

  16. SILICA FOULING BY GEOTHERMAL PART III SILICA FOULING BY GEOTHERMAL WATERS

    E-Print Network [OSTI]

    Gudmundsson, Jon Steinar

    PART III SILICA FOULING BY GEOTHERMAL WATERS #12;- 49 - PART III SILICA FOULING BY GEOTHERMAL WATERS 1. INTRODUCTION In recent years the world-wide interest in geothermal energy has been stimulated in geothermal engineering; that of deposition and fouling. Presently, geothermal waters containing useful energy

  17. Geothermal resources of Montana

    SciTech Connect (OSTI)

    Metesh, J.

    1994-06-01

    The Montana Bureau of Mines and Geology has updated its inventory of low and moderate temperature resources for the state and has assisted the Oregon Institute of Technology - GeoHeat Center and the University of Utah Research Institute in prioritizing and collocating important geothermal resource areas. The database compiled for this assessment contains information on location, flow, water chemistry, and estimated reservoir temperatures for 267 geothermal well and springs in Montana. For this assessment, the minimum temperature for low-temperature resource is defined as 10{degree} C above the mean annual air temperature at the surface. The maximum temperature for a moderate-temperature resource is defined as greater than 50{degree} C. Approximately 12% of the wells and springs in the database have temperatures above 50{degree} C, 17% are between 30{degree} and 50{degree} C, 29% are between 20{degree} and 30{degree}C, and 42% are between 10{degree} and 20{degree} C. Low and moderate temperature wells and springs can be found in nearly all areas of Montana, but most are in the western third of the state. Information sources for the current database include the MBMG Ground Water Information Center, the USGS statewide database, the USGS GEOTHERM database, and new information collected as part of this program. Five areas of Montana were identified for consideration in future investigations of geothermal development. The areas identified are those near Bozeman, Ennis, Butte, Boulder, and Camas Prairie. These areas were chosen based on the potential of the resource and its proximity to population centers.

  18. Federal Interagency Geothermal Activities

    SciTech Connect (OSTI)

    Anderson, Arlene; Prencipe, Loretta; Todaro, Richard M.; Cuyler, David; Eide, Elizabeth

    2011-06-01

    This collaborative document describes the roles and responsibilities of key Federal agencies in the development of geothermal technologies including the U.S. Department of Energy (DOE); the U.S. Department of Agriculture (USDA), including the U.S. Forest Service; the U.S. Department of Interior (DOI), including the United States Geological Survey (USGS) and Bureau of Land Management (BLM); the Environmental Protection Agency (EPA); and the Department of Defense (DOD).

  19. Geothermal Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information1 Geothermal Success Stories en Percussive

  20. Geothermal Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information1 Geothermal Success Stories ennear-term 8

  1. Geothermal Technologies Office: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information1 Geothermal SuccessInformation Resources

  2. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  3. Earthquake and Geothermal Energy

    E-Print Network [OSTI]

    Kapoor, Surya Prakash

    2013-01-01

    The origin of earthquake has long been recognized as resulting from strike-slip instability of plate tectonics along the fault lines. Several events of earthquake around the globe have happened which cannot be explained by this theory. In this work we investigated the earthquake data along with other observed facts like heat flow profiles etc... of the Indian subcontinent. In our studies we found a high-quality correlation between the earthquake events, seismic prone zones, heat flow regions and the geothermal hot springs. As a consequence, we proposed a hypothesis which can adequately explain all the earthquake events around the globe as well as the overall geo-dynamics. It is basically the geothermal power, which makes the plates to stand still, strike and slip over. The plates are merely a working solid while the driving force is the geothermal energy. The violent flow and enormous pressure of this power shake the earth along the plate boundaries and also triggers the intra-plate seismicity. In the light o...

  4. Conceptual Model At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Area (Gardner, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Redondo Geothermal Area...

  5. Conceptual Model At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Geothermal Area (Gardner, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Sulphur Springs Geothermal...

  6. Ground Gravity Survey At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    Ground Gravity Survey At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground...

  7. Reconnaissance geothermal exploration at Raft River, Idaho from...

    Open Energy Info (EERE)

    library Journal Article: Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; INFRARED SURVEYS;...

  8. Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  9. INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.

    2012-01-01

    Applications & Operations, Geothermal Energy Division of theP. , and Otte, C. , Geothermal energy: Stanford, California,Applications & Operations, Geothermal Energy Division of the

  10. VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA

    E-Print Network [OSTI]

    Churchman, C.W.

    2011-01-01

    Eleven: Lake County Geothermal Energy Resource. . . .of Susanville, Susanville Geothermal Energy Project Workshopparts of the state. Geothermal energy is only one of Lake

  11. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01

    2 Mission of Division of Geothermal Energy . . . . .Milora and J . W. Tester, Geothermal Energy as a Source o fNations Symposium on Geothermal Energy, San Francisco, May

  12. Low-Temperature, Coproduced, and Geopressured Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature, Coproduced, and Geopressured Geothermal Power Low-Temperature, Coproduced, and Geopressured Geothermal Power The Geothermal Technology Program (GTP)...

  13. LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014...

    Broader source: Energy.gov (indexed) [DOE]

    mineral-webinar.pdf More Documents & Publications LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM Geothermal Play Fairway Analysis Geothermal Play Fairway Analysis...

  14. 3D Magnetotelluic characterization of the Coso Geothermal Field

    E-Print Network [OSTI]

    Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

    2008-01-01

    130, 475-496. the Coso Geothermal Field, Proc.28 th Workshop on Geothermal Reservoir Engineering, Stanfords ratio and porosity at Coso geothermal area, California: J.

  15. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01

    the characteristics of a geothermal reservoir: Items 2, 6,new data important to geothermal reservoir engineering prac-forecast performance of the geothermal reservoir and bore

  16. Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  17. Seismic triggering by rectified diffusion in geothermal systems

    E-Print Network [OSTI]

    Sturtevant, Bradford; Kanamori, Hiroo; Brodsky, Emily E.

    1996-01-01

    diffusion in geothermal systems Bradford Sturtevant Graduateof pressure In geothermal systems, fluid flow throughsystems. The modeled geothermal system consists of fractured

  18. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01

    are applicable to geothermal systems, and esta- blish aof an unexploited geothermal system has been constructed inment methods for geothermal well system param- eters,

  19. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01

    In: Active Geothermal Systems and  Gold?Mercury Deposits in 1993.  Active geothermal systems and gold mercury deposits A  planned  Enhanced  Geothermal  System  demonstration 

  20. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01

    the Behavior of Geothermal Systems . . . . . . . . . 1 6energy transport in geothermal systems. Analysis o f shortthe Behavior of Geothermal Systems B. Numerical Model i ng

  1. Seismic methods for resource exploration in enhanced geothermal systems

    E-Print Network [OSTI]

    Gritto, Roland; Majer, Ernest L.

    2002-01-01

    Exploration in Enhanced Geothermal Systems Roland Gritto andestablished an Enhanced Geothermal Systems Program (EGSP) toartificially created geothermal systems. The challenges in

  2. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  3. Geothermal Literature Review At General Us Region (Williams ...

    Open Energy Info (EERE)

    Geothermal Literature Review At General Us Region (Williams & Reed, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature...

  4. Geothermal Literature Review At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lake City Hot Springs Area (Benoit, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  5. Geothermal Literature Review At General Us Region (Blackwell...

    Open Energy Info (EERE)

    Geothermal Literature Review At General Us Region (Blackwell, Et Al., 2000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature...

  6. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources Purchase and Installation of a Geothermal Power Plant to Generate...

  7. DOE Offers $15 Million Geothermal Heat Recovery Opportunity ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15 Million Geothermal Heat Recovery Opportunity DOE Offers 15 Million Geothermal Heat Recovery Opportunity August 25, 2010 - 11:11am Addthis Photo of geothermal power plant....

  8. NREL: Awards and Honors - Geothermal Energy Association Honors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy Geothermal Technologies Office, the Geothermal Prospector, a mapping tool that provides a data resource for visual exploration of geothermal resources....

  9. First Commercial Success for Enhanced Geothermal Systems (EGS...

    Energy Savers [EERE]

    First Commercial Success for Enhanced Geothermal Systems (EGS) Spells Exponential Growth for Geothermal Energy First Commercial Success for Enhanced Geothermal Systems (EGS) Spells...

  10. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluids and Their Effect on Geothermal Turbines Tailored Working Fluids for Enhanced Binary Geothermal Power Plants Metal Organic Heat Carriers for Enhanced Geothermal Systems...

  11. 3D Magnetotelluic characterization of the Coso Geothermal Field

    E-Print Network [OSTI]

    Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

    2008-01-01

    Creation of an enhanced geothermal system through hydraulicTechnologies, Enhanced Geothermal Systems Program, also seesupport of the enhanced geothermal systems concept: survey

  12. Seismic methods for resource exploration in enhanced geothermal systems

    E-Print Network [OSTI]

    Gritto, Roland; Majer, Ernest L.

    2002-01-01

    Exploration in Enhanced Geothermal Systems Roland Gritto andestablished an Enhanced Geothermal Systems Program (EGSP) toin developing Enhanced Geothermal Systems (EGS) include,

  13. Geothermal Industry Ends 2012 on a High Note | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    additional highlights of geothermal industry development in 2012 were: The first hybrid solar-geothermal project was commissioned by Enel Green Power at its Stillwater Geothermal...

  14. Raft River Geothermal Area Data Models - Conceptual, Logical...

    Open Energy Info (EERE)

    Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx,...

  15. Webtrends Archives by Fiscal Year — Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Geothermal Technologies Office, Webtrends archives by fiscal year.

  16. Proceedings 23rd NZ Geothermal Workshop 2001

    E-Print Network [OSTI]

    Benning, Liane G.

    Proceedings 23rd NZ Geothermal Workshop 2001 BIOMINERALIZATION IN NEW ZEALAND GEOTHERMAL AREAS B deposits at New Zealand geothermal areas,. Preliminary results are presented from three areas: Wairakei Zealand geothermal areas are well known for their spectacular surface features. The overall distribution

  17. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    data base from which general management procedures , interpretive techniques , and conceptual models for producin geothermal systems

  18. Geothermal direct-heat utilization assistance

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Progress on technical assistance, R D activities, technology transfer, and geothermal progress monitoring is summarized.

  19. 2013 National Geothermal Student Competition Background

    E-Print Network [OSTI]

    Carrington, Emily

    1 2013 National Geothermal Student Competition Background: The 2013 National Geothermal Student, is designed to advance the understanding of geothermal energy as a valued resource by promoting innovation to engage students in a collaborative exercise to develop a business plan for developing a geothermal

  20. Livingston Campus Geothermal Project The Project

    E-Print Network [OSTI]

    Delgado, Mauricio

    Livingston Campus Geothermal Project The Project: Geothermal power is a cost effective, reliable is a Closed Loop Geothermal System involving the removal and storage of approximately four feet of dirt from the entire Geothermal Field and the boring of 321 vertical holes reaching a depth of 500 feet. These holes

  1. Geothermal resource evaluation of the Yuma area

    SciTech Connect (OSTI)

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  2. New River Geothermal Research Program

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation: Project objectives: Demonstration of an innovative blend of modern tectonic research applied to the Imperial Valley with a proprietary compilation of existing thermal and drilling data. The developed geologic model will guide the targeting of two test wells and the identification of permeable zones capable of commercial geothermal power production.

  3. Silica extraction from geothermal water

    DOE Patents [OSTI]

    Bourcier, William L; Bruton, Carol J

    2014-09-23

    A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.

  4. The Future of Geothermal Energy

    SciTech Connect (OSTI)

    Kubik, Michelle

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  5. Energy 101: Geothermal Heat Pumps

    SciTech Connect (OSTI)

    None

    2011-01-01

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  6. Energy 101: Geothermal Heat Pumps

    ScienceCinema (OSTI)

    None

    2013-05-29

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  7. -Injection Technology -Geothermal Reservoir Engineering

    E-Print Network [OSTI]

    Stanford University

    For the Period October 1, 1985 through September 30, 1986 DE-ASO7-84ID12529 Stanford Geothermal Program was initiated in fiscal year 1981. The report covers the period from October 1, 1985 through September 30, 1986SGP-TR-107 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

  8. Calpine geothermal visitor center upgrade project An interactive approach to geothermal outreach and education at The Geysers

    E-Print Network [OSTI]

    Dobson, P.F.

    2014-01-01

    energy: Impact of enhanced geothermal systems (EGS) on thea DOE-funded Enhanced Geothermal System field demonstrationand potential of enhanced geothermal systems (EGS). The EGS

  9. 2008 Geothermal Technologies Market Report

    SciTech Connect (OSTI)

    Jonathan Cross

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the GTP’s involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including GHPs.† The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  10. Environmental Assessment Lakeview Geothermal Project

    SciTech Connect (OSTI)

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  11. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you--the geothermal entrepreneur, small company, or project developer--step-by-step through the process needed to structure a business and financing plan for a small geothermal project; and Help you develop a financing plan that can be adapted and taken to potential financing sources. The Workbook will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

  12. GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY

    E-Print Network [OSTI]

    Bresee, J. C.

    2011-01-01

    of Geothermal Energy . . . . . . . . . INTRODUCTION. m C.A N INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY J U N E 1978 Il i c a t i o n s of Geothermal Energy Substudy Participants

  13. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY

    E-Print Network [OSTI]

    Howard, J.H.

    2011-01-01

    BY USDOE/DIVISION OF GEOTHERMAL ENERGY J J. H. Howard and W.BY USWE/DIVISION O GEOTHERMAL ENERGY F Berkeley, CaliforniaWE), Division of Geothermal Energy (mS) proposed that

  14. Geothermal Policymakers Guidebook, State-by-state Developers' Checklist, & Geothermal Developers' Financing Handbook

    Broader source: Energy.gov [DOE]

    Project objectives: Assist policymakers in identifying the niche they can fill to reduce barriers to geothermal energy development. Empower local leaders to develop policies that facilitate growth of geothermal energy and prepare the local workforce to serve geothermal industry needs.

  15. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY

    E-Print Network [OSTI]

    Howard, J.H.

    2011-01-01

    the authors. Wairakei geothermal field: Lawrence BerkeleyR. C. , Evaluation of potential geothermal well-head and17, "S"r78" for use in geothermal reservoir 25 p. (LBL-

  16. Geothermal Heat Pumps are Scoring High Marks

    SciTech Connect (OSTI)

    2000-08-01

    Geothermal Energy Program Office of Geothermal and Wind Technologies Geothermal Heat Pumps are Scoring High Marks Geothermal heat pumps, one of the clean energy technology stars Geothermal heat pumps (GHPs) are one of the most cost-effective heating, cooling, and water heating systems available for both residential and commercial buildings. GHPs extract heat from the ground during the heating season and discharge waste heat to the ground during the cooling season. The U.S. Environmental Protecti

  17. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    SciTech Connect (OSTI)

    none,

    2011-06-17

    The Geothermal Technologies Program assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States and the role of the DOE Program. The Geothermal Blue Ribbon Panel Report captures the discussions and recommendations of the experts. An addendum is available here: http://www.eere.energy.gov/geothermal/pdfs/gtp_blue_ribbon_panel_report_addendum10-2011.pdf

  18. Distribution of polycyclic aromatic hydrocarbons (PAH's) in marsh sediments, Iraq

    SciTech Connect (OSTI)

    Al-Saad, H.T.; Al-Timari, A.A. (Univ. of Basrah (Iraq))

    1989-12-01

    Recently there has been a growing concern in the release of harmful organics into the environment. Carcinogenic polycyclic aromatic hydrocarbons (PAH's) are a class of compounds of interset due to their possible harmful effects to man as well as organisms. Anthropogenic PAH's may reach aquatic environment as a result of both industrial and domestic effluents, deposition of airborne particles, surface runoff and oil spillage. Having a relatively low water solubility and high affinity to sorb to the suspended particulate matter, most of the PAH's introduced to the aquatic environment tend to accumulate in bottom sediments. Sedimentary PAH's may thus provide a record of the input and history of these pollutants. Consequently, the distribution of PAH's in aquatic sediments have received considerable attention. The purpose of the present work was to establish the distribution of PAH's in the sediments of the marsh region located in southern Iraq.

  19. Effects of Nutrient Additions on Three Coastal Salt Marsh Plants Found in Sunset Cove, Texas 

    E-Print Network [OSTI]

    Rulon, Leslie

    2012-02-14

    Eutrophication, particularly due to nitrogen (N) and phosphorus (P) input, has been massively altered by anthropogenic activities. Thus it is important to understand the impact on salt marsh plants; however studies on salt ...

  20. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls

    E-Print Network [OSTI]

    Mudd, Simon Marius

    How does vegetation affect sedimentation on tidal marshes? Investigating particle capture stems, or enhanced settling due to a reduction in turbulent kinetic energy within flows through kinetic energy in the fertilized canopy. Our newly developed models of biologically mediated sedimentation

  1. The effects of cattle grazing on Texas coastal salt marsh plants and birds 

    E-Print Network [OSTI]

    Yeargan, Catherine A

    2001-01-01

    Cattle grazing effects on plants and birds were examined in Spartina alterniflora-dominated marsh and adjacent Sporobolus virginicus-dominated hummocks within high tidal flats on Galveston Island, Texas. Grazed and ungrazed treatments were...

  2. Effects of chemical additives on hydrocarbon disappearance and biodegradation in freshwater marsh microcosms

    E-Print Network [OSTI]

    Nyman, John

    determined the concentration of four total petroleum hydrocarbon (TPH) measures and 43 target hydro- carbonsEffects of chemical additives on hydrocarbon disappearance and biodegradation in freshwater marsh 2006 Hydrocarbon disappearance and biodegradation were insensitive to common commercial additives

  3. Historical rates of salt marsh accretion on the outer Bay of Fundy

    E-Print Network [OSTI]

    Chmura, Gail L.

    on sheltered marine and estuarine coastlines. Over 33 000 ha of salt marshes are found along the coast habitats on Earth, with rates of primary productivity comparable with those of agricultural systems

  4. Quantification of Salt Marsh Carbon Stocks: Integration of Remote Sensing Data and Techniques with Field Measurements 

    E-Print Network [OSTI]

    Kulawardhana, Ranjani W

    2013-12-02

    in this study show the capability of remote sensing data for the characterization of salt marsh terrain and vegetation heights and the estimation of above-ground biomass quantities. The best biomass prediction models using lidar heights reported considerably...

  5. Vegetation and sediment characteristics of created and natural Spartina alterniflora marshes in Lower Galveston Bay, Texas 

    E-Print Network [OSTI]

    Albertson, Andrea Kai

    1998-01-01

    Five natural and ten created Spartina altemiflora marshes in the Lower Galveston Bay System, Texas, were compared to determine if there were significantly different vegetative and sediment characteristics associated with ...

  6. NREL Geothermal Policymakers' Guidebooks Web site (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This document highlights the NREL Geothermal Policymakers' Guidebooks Web site, including the five steps to effective geothermal policy development for geothermal electricity generation and geothermal heating and cooling technologies.

  7. What is an Enhanced Geothermal System (EGS)? Fact Sheet

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-09-14

    This Geothermal Technologies Office fact sheet explains how engineered geothermal reservoirs called Enhanced Geothermal Systems are used to produce energy from geothermal resources that are otherwise not economical due to a lack of fluid and/or permeability.

  8. The Lower Keys marsh rabbit and silver rice rat: steps toward recovery 

    E-Print Network [OSTI]

    Perry, Neil Desmond

    2006-10-30

    -1 LOWER KEYS MARSH RABBIT AND THE SILVER RICE RAT: STEPS TOWARDS RECOVERY A Thesis by NEIL DESMOND PERRY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 2006 Major Subject: Wildlife and Fisheries Sciences LOWER KEYS MARSH RABBIT AND THE SILVER RICE RAT: STEPS TOWARDS RECOVERY A Thesis by NEIL DESMOND PERRY Submitted to the Office...

  9. An internship with the Galveston Bay Foundation emphasizing Coastal Marsh Restoration with Spartina alterniflora 

    E-Print Network [OSTI]

    Mahmoud, Joey

    1996-01-01

    Record of Study An Internship with the Galveston Bay Foundation Emphasizing Coastal Marsh Restoration with Spartina alterrsiflora A PROFESSIONAL PAPER by Joey Mahmoud Submitted to the College of Agriculture of Texas ASM University in partial... fulfillment of the requirements for the degree of MASTER OF AGRICULTURE May 1996 Rangeland Ecology and Management An Internship with the Galveston Bay Foundation Emphasizing Coastal Marsh Restoration with Spartina alterniflora A PROFESSIONAL PAPER...

  10. Sandia Energy - Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergyGeoscience Home ClimateGeothermal

  11. Geothermal Resources Council's 36

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Low LET IonizingGeorge B.ThousandGeosciencesGeothermal

  12. Geothermal | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWindUpcomingcan I find moreGeothermal energy plant at The

  13. Geothermal initiatives in Central America

    SciTech Connect (OSTI)

    Hanold, R.J.; Loose, V.W.; Laughlin, A.W.; Wade, P.E.

    1986-01-01

    The US Agency for International Development is supporting a new project in energy and resources exploitation for Central America. One of the largest components of the project involves exploration and reservoir development investigations directed at enhancing the production of electricity from the region's geothermal resources. An assessment of the geothermal resources of Honduras is in progress, and interesting geothermal regions in the Guanacaste Province of Costa Rica are being explored. Well-logging activities are in progress in the production wells at the Miravalles geothermal field in Costa Rica, and preparations are being made for logging critical wells at Ahuachapan in El Salvador. A self-contained logging truck, complete with high-temperature logging cable and logging tools designed for geothermal service, is being fabricated and will be made available for dedicated use throughout Central America. Geochemical and isotopic analyses of water samples collected in Panama are being evaluated to select a high-priority geothermal site in that country. Application of low- and medium-enthalpy geothermal fluids for industrial and agricultural processes is being investigated in Guatemala.

  14. Tidal salt marshes of the southeast Atlantic Coast: A community profile

    SciTech Connect (OSTI)

    Wiegert, R.G.; Freeman, B.J.

    1990-09-01

    This report is part of a series of community profiles on the ecology of wetland and marine communities. This particular profile considers tidal marshes of the southeastern Atlantic coast, from North Carolina south to northern Florida. Alone among the earth's ecosystems, coastal communities are subjected to a bidirectional flooding sometimes occurring twice each day; this flooding affects successional development, species composition, stability, and productivity. In the tidally influenced salt marsh, salinity ranges from less than 1 ppt to that of seawater. Dominant plant species include cordgrasses (Spartina alterniflora and S. cynosuroides), black needlerush (Juncus romerianus), and salt marsh bulrush (Scirpus robustus). Both terrestrail and aquatic animals occur in salt marshes and include herons, egrets ospreys (Pandion haliaetus), bald eagles (Haliaeetus leucocephalus), alligators (Alligator Mississippiensis), manatees (Trichecus manatus), oysters, mussels, and fiddler crabs. Currently, the only significant direct commercial use of the tidal salt marshes is by crabbers seeking the blue crab Callinectes sapidus, but the marshes are quite important recreationally, aesthetically, and educationally. 151 refs., 45 figs., 6 tabs.

  15. Low-Temperature, Coproduced, and Geopressured Geothermal Technologies...

    Office of Environmental Management (EM)

    and Geopressured Geothermal Technologies Strategic Action Plan, September 2010 Low-Temperature, Coproduced, and Geopressured Geothermal Technologies Strategic Action...

  16. Working Fluids and Their Effect on Geothermal Turbines

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: Identify new working fluids for binary geothermal plants.

  17. Integrated seismic studies at the Rye Patch Geothermal Reservoir, Nevada

    E-Print Network [OSTI]

    Gritto, Roland; Daley, Thomas M.; Majer, Ernest L.

    2002-01-01

    most geothermal areas provide access to open boreholesand borehole experiments were conducted at the Rye Patch geothermal

  18. Compound and Elemental Analysis At International Geothermal Area...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At International Geothermal Area, Philippines (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  19. Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  20. Compound and Elemental Analysis At International Geothermal Area...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At International Geothermal Area, Indonesia (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  1. Geographic Information System At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geographic Information System At Lightning Dock Geothermal Area (Getman, 2014) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic...

  2. Geothermal Data Aggregation: Submission of Information into the

    Broader source: Energy.gov [DOE]

    Project objective: High quality information supporting geothermal research and development will be submitted to the National Geothermal Data System (NGDS).

  3. Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...

    Open Energy Info (EERE)

    Exploratory Boreholes At Blue Mountain Geothermal Area (Parr & Percival, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory...

  4. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    programmanagement.pdf More Documents & Publications Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices Geothermal Technologies...

  5. Energy Department Develops Regulatory Roadmap to Spur Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Development Energy Department Announces Project Selections for Enhanced Geothermal Systems (EGS) Subsurface Laboratory Geothermal energy, traditionally a baseload...

  6. Energy Department Announces Project Selections for Enhanced Geothermal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announces Project Selections for Enhanced Geothermal Systems (EGS) Subsurface Laboratory Energy Department Announces Project Selections for Enhanced Geothermal Systems (EGS)...

  7. MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring

    E-Print Network [OSTI]

    Wodin-Schwartz, Sarah

    2013-01-01

    Geothermal EnergyThe future of geothermal energy: Impact of enhanceddown-hole monitoring of geothermal energy systems. ASME 2011

  8. A COMPARISON OF ESTIMATED AND BACKGROUND SUBSIDENCE RATES IN TEXAS-LOUISIANA GEOPRESSURED GEOTHERMAL AREAS

    E-Print Network [OSTI]

    Lee, L.M.

    2010-01-01

    Potential geopressured geothermal-related subsidence ratesto Potential Geopressured Geothermal-RelatedSubsidence Ratesmm). Potential geopressured geothermal-related rubaidence

  9. Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs

    E-Print Network [OSTI]

    Wessling, S.

    2009-01-01

    Geothermal; Enhanced Geothermal Systems; Huff-puff process;viability of an Enhanced Geothermal System not only depends

  10. Geothermal energy abstract sets. Special report No. 14

    SciTech Connect (OSTI)

    Stone, C.

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  11. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01

    long-lived enhanced geothermal system (EGS) in the Northernis a vapor dominated geothermal reservoir system, which is

  12. You have printed the following article: Relationships between Vegetation Zonation and Altitude in a Salt-Marsh System in

    E-Print Network [OSTI]

    Medrano, Mónica

    Vegetation Zonation and Altitude in a Salt-Marsh System in Northwest Spain J. M. Sánchez; J. Izco; M. Medrano Zonation in North Carolina Salt Marshes David A. Adams Ecology, Vol. 44, No. 3. (Jul., 1963), pp. 445-0147%28199310%29142%3A4%3C718%3ACAFIMP%3E2.0.CO%3B2-6 Studies in Salt-Marsh Ecology Sections I to III V. J. Chapman

  13. PEAT ACCRETION HISTORIES DURING THE PAST 6000 YEARS IN MARSHES OF THE SACRAMENTO - SAN JOAQUIN DELTA, CALIFORNIA, USA

    SciTech Connect (OSTI)

    Drexler, J Z; de Fontaine, C S; Brown, T A

    2009-07-20

    Peat cores were collected in 4 remnant marsh islands and 4 drained, farmed islands throughout the Sacramento - San Joaquin Delta of California in order to characterize the peat accretion history of this region. Radiocarbon age determination of marsh macrofossils at both marsh and farmed islands showed that marshes in the central and western Delta started forming between 6030 and 6790 cal yr BP. Age-depth models for three marshes were constructed using cubic smooth spline regression models. The resulting spline fit models were used to estimate peat accretion histories for the marshes. Estimated accretion rates range from 0.03 to 0.49 cm yr{sup -1} for the marsh sites. The highest accretion rates are at Browns Island, a marsh at the confluence of the Sacramento and San Joaquin rivers. Porosity was examined in the peat core from Franks Wetland, one of the remnant marsh sites. Porosity was greater than 90% and changed little with depth indicating that autocompaction was not an important process in the peat column. The mean contribution of organic matter to soil volume at the marsh sites ranges from 6.15 to 9.25% with little variability. In contrast, the mean contribution of inorganic matter to soil volume ranges from 1.40 to 8.45% with much greater variability, especially in sites situated in main channels. These results suggest that marshes in the Delta can be viewed as largely autochthonous vs. allochthonous in character. Autochthonous sites are largely removed from watershed processes, such as sediment deposition and scour, and are dominated by organic production. Allochthonous sites have greater fluctuations in accretion rates due to the variability of inorganic inputs from the watershed. A comparison of estimated vertical accretion rates with 20th century rates of global sea-level rise shows that currently marshes are maintaining their positions in the tidal frame, yet this offers little assurance of sustainability under scenarios of increased sea-level rise in the future.

  14. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    SciTech Connect (OSTI)

    Swenson, Allen; Darlow, Rick; Sanchez, Angel; Pierce, Michael; Sellers, Blake

    2014-12-19

    The ThermalDrive™ Power System (“TDPS”) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLC’s TDPS offers an opportunity to change the geothermal power industry dynamics.

  15. Geothermal Data from the National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a distributed data system providing access to information resources related to geothermal energy from a network of data providers. Data are contributed by academic researchers, private industry, and state and federal agencies. Built on a scalable and open platform through the U.S. Geoscience Information Network (USGIN), NGDS respects data provenance while promoting shared resources.Since NGDS is built using a set of open protocols and standards, relying on the Open Geospatial Consortium (OGC) and International Organization for Standardization (ISO), members of the community may access the data in a variety of proprietary and open-source applications and software. In addition, developers can add functionality to the system by creating new applications based on the open protocols and standards of the NGDS. The NGDS, supported by the U.S. Department of Energy’s Geothermal Technology Program, is intended to provide access to all types of geothermal data to enable geothermal analysis and widespread public use in an effort to reduce the risk of geothermal energy development [copied from http://www.geothermaldata.org/page/about]. See the long list of data contributors at http://geothermaldata.org/page/data-types-and-contributors#data-contributors.

  16. Numerical modeling of water injection into vapor-dominated geothermal reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01

    Renewable Energy, Office of Geothermal Technologies, of theTransport in Fractured Geothermal Reservoirs, Geothermics,Depletion of Vapor-Dominated Geothermal Reservoirs, Lawrence

  17. The Impact of Injection on Seismicity at The Geyses, California Geothermal Field

    E-Print Network [OSTI]

    Majer, Ernest L.; Peterson, John E.

    2008-01-01

    long-lived enhanced geothermal system (EGS) in the NorthernGeothermal, Enhanced Geothermal Systems Abstract Waterinjection into geothermal systems has often become a

  18. Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring

    E-Print Network [OSTI]

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2004-01-01

    Mahon, Chemistry and Geothermal Systems, Academic Press, NewHidden Geothermal Systems geothermal origin. However, thesefor Detection of Hidden Geothermal Systems Figure 7.4.

  19. Best Practices for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems (EGS)

    E-Print Network [OSTI]

    Majer, E.

    2014-01-01

    associated with Enhanced Geothermal Systems. Report producedassociated with Enhanced Geothermal Systems: Geothermics, v.associated with Enhanced Geothermal Systems, DOE/EE-0662, 45

  20. The Impact of Injection on Seismicity at The Geyses, California Geothermal Field

    E-Print Network [OSTI]

    Majer, Ernest L.; Peterson, John E.

    2008-01-01

    for a long-lived enhanced geothermal system (EGS) in theGeothermal, Enhanced Geothermal Systems Abstract Wateri.e. , enhanced geothermal systems, (EGS). Presented in this

  1. Spring phytoplankton dynamics in a shallow, turbid coastal salt marsh system undergoing extreme salinity variation, South Texas 

    E-Print Network [OSTI]

    Hebert, Elizabeth Michele

    2005-08-29

    The contribution of phytoplankton productivity to higher trophic levels in salt marshes is not well understood. My study furthers our understanding of possible mechanisms controlling phytoplankton productivity, abundance, ...

  2. Modeling Tidal Freshwater Marsh Sustainability in the Sacramento–San Joaquin Delta Under a Broad Suite of Potential Future Scenarios

    E-Print Network [OSTI]

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01

    and impounded marshes for subsidence mitigation, Sacramento–Prokopovich NP. 1985. Subsidence of peat in California andelevation change from subsidence and iso- static adjustment,

  3. Modeling Tidal Freshwater Marsh Sustainability in the Sacramento–San Joaquin Delta Under a Broad Suite of Potential Future Scenarios

    E-Print Network [OSTI]

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01

    Milan CS. 2012. Carbon sequestration and sediment accretionaccre- tion and carbon sequestration in impounded marshes on2010) recorded carbon sequestration rates between 1,200 to

  4. Geothermal energy for American Samoa

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    The geothermal commercialization potential in American Samoa was investigated. With geothermal energy harnessed in American Samoa, a myriad of possibilities would arise. Existing residential and business consumers would benefit from reduced electricity costs. The tuna canneries, demanding about 76% of the island's process heat requirements, may be able to use process heat from a geothermal source. Potential new industries include health spas, aquaculture, wood products, large domestic and transhipment refrigerated warehouses, electric cars, ocean nodule processing, and a hydrogen economy. There are no territorial statutory laws of American Samoa claiming or reserving any special rights (including mineral rights) to the territorial government, or other interests adverse to a land owner, for subsurface content of real property. Technically, an investigation has revealed that American Samoa does possess a geological environment conducive to geothermal energy development. Further studies and test holes are warranted.

  5. Geothermal Program Review IV: proceedings

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    The research and development program of DOE's Geothermal Technology Division is reviewed in separate presentations according to program area. Separate abstracts have been prepared for the individual papers. (ACR)

  6. Wind and Geothermal Incentives Program

    Broader source: Energy.gov [DOE]

    The program will offer support for wind and geothermal technologies in the form of loans, grants and loan guarantees (i.e., grants to be used in the event of a financing default). The definition...

  7. Hawaii geothermal resource assessment: 1982

    SciTech Connect (OSTI)

    Thomas, D.M.; Cox, M.; Kavahikaua, J.P.; Lienert, B.R.; Mattice, M.

    1982-10-01

    The Geothermal Resource Assessment Program of the Hawaii Institute of Geophysics has conducted a series of geochemical and geophysical surveys throughout the State of Hawaii since February 1978. The results compiled during this study have been used to prepare a map of potential geothermal resource areas throughout the state. Approximately thirteen separate locations on three islands have been studied in detail. Of these, four areas are known to have direct evidence of a geothermal anomaly (Kilauea East Rift Zone, Kilauea Southwest Rift Zone, Kawaihae, and Olowalu-Ukumehame) and three others are strongly suspected of having at least a low-temperature resource (Hualalai west flank, Haleakala Southwest Rift, and Lualualei Valley). In the remainder of the areas surveyed, the data obtained either were contradictory or gave no evidence of a geothermal resource.

  8. Geothermal Heat Pump Grant Program

    Broader source: Energy.gov [DOE]

    The definition of geothermal heat pump property does not include swimming pools, hot tubs, or any other energy storage device that has a primary function other than storage. In addition, systems...

  9. Energy 101: Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe ...

  10. Geothermal Permeability Enhancement - Final Report

    SciTech Connect (OSTI)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  11. Decision analysis for geothermal energy

    E-Print Network [OSTI]

    Yost, Keith A

    2012-01-01

    One of the key impediments to the development of enhanced geothermal systems is a deficiency in the tools available to project planners and developers. Weak tool sets make it difficult to accurately estimate the cost and ...

  12. Performance Results for Massachusetts and Rhode Island Deep Energy Retrofit Pilot Community

    SciTech Connect (OSTI)

    Gates, C.; Neuhauser, K.

    2014-03-01

    Between December, 2009 and December, 2012, 42 deep energy retrofit (DER) projects were completed through a pilot program sponsored by National Grid and conducted in Massachusetts and Rhode Island. Thirty-seven of these projects were comprehensive retrofits while five were partial DERs, meaning that high performance retrofit was implemented for a single major enclosure component or a limited number of major enclosure components. Building Science Corporation developed a consistent "package" of measures in terms of the performance targeted for major building components. Based on the community experience, this DER package is expected to result in yearly source energy use near 110 MMBtu/year or approximately 40% below the Northeast regional average.

  13. Rhode Island Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011Science (SC) Redefining the LimitsRhode Island

  14. Rhode Island/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy| Open Energyfault andRhode

  15. Geothermal Money Book [Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

  16. Geothermal Resources Assessment in Hawaii

    SciTech Connect (OSTI)

    Thomas, D.M.

    1984-10-01

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program. The island of Kauai was not studied during the current phase of investigation. Geothermal field studies were not considered to be warranted due to the absence of significant geochemical or geophysical indications of a geothermal resource. The great age of volcanism on this island would further suggest that should a thermal resource be present, it would be of low temperature. The geothermal field studies conducted on Oahu focused on the caldera complexes of the two volcanic systems which form the island: Waianae volcano and Koolau volcano. The results of these studies and the interpreted probability for a resource are presented.

  17. Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska

    E-Print Network [OSTI]

    Scheel, David

    Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony Bryant Senior Project Alaska Pacific University May 5, 2010 #12;Running head: GEOTHERMAL POWER PRODUCTION January 2009. This paper researches the possibility of using geothermal energy as an alternative energy

  18. GRC Transactions, Vol. 34, 2010 Geothermal, Engineered Geothermal Systems, EGS, induced

    E-Print Network [OSTI]

    Foulger, G. R.

    GRC Transactions, Vol. 34, 2010 1213 Keywords Geothermal, Engineered Geothermal Systems, EGS during oil and gas development, enhanced oil recovery, geothermal operations, and waste disposal in deep in the geothermal, mining, petroleum and other industries must address. We present a brief review of the history

  19. Rhode Island Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Rhode Island homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Rhode Island homeowners will save $11,011 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $629 for the 2012 IECC.

  20. Geothermal innovative technologies catalog

    SciTech Connect (OSTI)

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  1. Geothermal energy geopressure subprogram

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The following are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)

  2. Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Jeanloz, R.; Stone, H.

    2013-12-31

    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labs and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.

  3. Quaternary Borate Deposits As A Geothermal Exploration Tool In...

    Open Energy Info (EERE)

    targets have been identified in west-central Nevada at Rhodes, Teels, and Columbus Salt Marhas (playas). In each of these playas, geothermometry data from springs and wells...

  4. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    f a Hawaii Geothermal Well-- HGP-A. It Geothermal ResourcesPrelimin 11 Test Results from HGP-A." Resources Counci 1and others. e s t Results Trom HGP-A." Geothermat 2 (Part 1,

  5. Geothermal Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Heat Pumps Geothermal Heat Pumps June 24, 2012 - 5:08pm Addthis An error occurred. Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in...

  6. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  7. Geothermal Energy Growth Continues, Industry Survey Reports

    Broader source: Energy.gov [DOE]

    A survey released by the Geothermal Energy Association (GEA) shows continued growth in the number of new geothermal power projects under development in the United States, a 20% increase since January of this year.

  8. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    Rummel, F. , 2006. The deep EGS (Enhanced Geothermal System)stimulation at the European EGS site Soultz-sous-Forets. In:at naturally fractured EGS sites. Geothermal Resources

  9. Geothermal Development Job Types and Impacts

    Broader source: Energy.gov [DOE]

    Development of geothermal power plants and direct-use applications creates a variety of jobs. And the resulting job creation and economic activity within the geothermal industry positively impacts...

  10. Geothermal Direct Use Technology & Marketplace Hilton Garden...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Paul Brophy) 12:00-1:30 p.m. Luncheon and Presentation on Geothermal Experience in Iceland 1:30 p.m. - Geothermal Marketplace (in the Eastern U.S.) Discussion Lead - Jay Egg,...

  11. Enhanced Geothermal Systems | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Geothermal Systems Enhanced Geothermal Systems EGS 2 Page 1.jpg Steps to Develop Power Production at an EGS Site Step 1: IdentifyCharacterize a Site Develop a geologic...

  12. An evaluation of enhanced geothermal systems technology

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    A review of the assumptions and conclusions of the DOE-sponsored 2006 MIT study on "The Future of Geothermal Energy" and an evaluation of relevant technology from the commercial geothermal industry.

  13. California/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    III - Permitting and Initial Development Geysers Geothermal Area Holocene Magmatic KeystoneMesquite Lake Geothermal Project Ram Power Brawley, NV 100 MW100,000 kW 100,000,000 W...

  14. Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

    2013-04-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

  15. Research Initiative Will Demonstrate Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids Research Initiative Will Demonstrate Low Temperature...

  16. Sustainable Energy Resources for Consumers (SERC) -Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    information on Monitoring Checklists for the installation of GeothermalGround-Source Heat Pumps. geothermalgroundsourceheatpumps.pdf More Documents & Publications...

  17. Geographic Information System At International Geothermal Area...

    Open Energy Info (EERE)

    Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Additional References Retrieved from...

  18. Geothermal Electricity Technology Evaluation Model (GETEM) Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model (GETEM) Development Geothermal Electricity Technology Evaluation Model (GETEM) Development Project objective: Provide a tool for estimating the performance and...

  19. Applied Microearthquake Techniques for Geothermal Resource Development

    E-Print Network [OSTI]

    Foulger, G. R.

    . In recent years, interest in exploiting geothermal energy has increased greatly, accompanied by interest. The microearthquake techniques currently producing the most useful results for geothermal energy production, and whichApplied Microearthquake Techniques for Geothermal Resource Development Gillian R. Foulger1 & Bruce

  20. Geothermal energy for Hawaii: a prospectus

    SciTech Connect (OSTI)

    Yen, W.W.S.; Iacofano, D.S.

    1981-01-01

    An overview of geothermal development is provided for contributors and participants in the process: developers, the financial community, consultants, government officials, and the people of Hawaii. Geothermal energy is described along with the issues, programs, and initiatives examined to date. Hawaii's future options are explored. Included in appendices are: a technical glossary, legislation and regulations, a geothermal directory, and an annotated bibliography. (MHR)

  1. . Stanford Geothermal Program Interdisciplinary Research in

    E-Print Network [OSTI]

    Stanford University

    . Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California SGP-TR- 80 DEPLETION MODELING OF LIQUID DOMINATED GEOTHERMAL RESERVOIRS BY Gudmund 01sen June 1984 Financial support was provided through the Stanford Geothermal Program under

  2. SGP-TR-32 STANFORD GEOTHERMAL PROGRAM

    E-Print Network [OSTI]

    Stanford University

    SGP- TR- 32 STANFORD GEOTHERMAL PROGRAM PROGRESS REPORT NO. 7 t o U. S. DEPARTMENT OF ENERGY Recent Radon Transient Experiments Energy Recovery from Fracture-Stimulated Geothermal Reservoirs 1 2 l e c t i o n of Summary presentations prepared by t h e Stanford Geothermal Program s t a f f

  3. Stanford Geothermal Program Interdisciplinary Research in

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California SGP-TR-81 TRACER TEST ANALYSIS OF THE KLAMATH FALLS GEOTHERMAL RESOURCE Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the Department

  4. Stanford Geothermal Program Interdisciplinary Research in

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORTI UNIVERSITY Stanford, California SGP-TR-85 ANALYSIS OF THE STANFORD GEOTHERMAL RESERVOIR MODEL EXPERIMENTS was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459

  5. Stanford Geothermal Program Interdisciplinary Research in

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the Departnent by water cir- culated in a " hot dry rock" geothermal reservoir will induce tensile thermal stresses i n

  6. The Buck Institute Turned to Geothermal

    E-Print Network [OSTI]

    The Buck Institute Turned to Geothermal Heating and Cooling for Significant Savings on Energy with the goal of sustaining the healthy years of life... #12;Geothermal Exchange #12;§ Cooling Tower: One. Other Challenges to the Original Central Plant: #12;The geothermal well field replaces the cooling tower

  7. STANFORD GEOTHERMAL PROGRAM FIRST ANNUAL REPORT

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM FIRST ANNUAL REPORT t o U.S. DEPARTMENT OF ENERGY LAWRENCE BERKELEY PRESENTATIONS & PUBLICATIONS APPENDIX A: STANDARD GEOTHERMAL PROGRAM WEEKLY SEMINAR ii 1 4 23 35 49 58 60 63 65 Geothermal Program has maintained momentum built up under the previous National Science Foundation support

  8. Book Review Geothermal Biology and Geochemis-

    E-Print Network [OSTI]

    Book Review Geothermal Biology and Geochemis- try in Yellowstone National Park. (eds WP Inskeep of life. The legacy of chemical and biologi- cal research in geothermal regimes, while short in duration geothermal areas, including Yellowstone, are largely confined to the specialty literature of geochemical

  9. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation

    E-Print Network [OSTI]

    Mudd, Simon Marius

    -surface marsh stratigraphy and carbon accumulation Simon M. Mudd a,*, Susan M. Howell b , James T. Morris c model we explore how marsh stratigraphy responds to sediment supply and the rate of sea- level rise. It is calibrated and tested using an extensive data set of both marsh stratigraphy and measurements of vegetation

  10. Maintaining a competitive geothermal industry

    SciTech Connect (OSTI)

    Zodiaco, V.P.

    1996-04-10

    I come to this geothermal business with over 30 years of experience in the power generation industry. I have earned my spurs (so to speak) in the electric utility, nuclear power, coal and the gas-fired cogeneration power businesses. I have been employed by Oxbow Power for the past seven years and for the past 18 months I have been based in Reno and responsible for the operation, maintenance and management of Oxbow`s domestic power projects which include three geothermal and two gas-fired facilities. The Oxbow Power Group (consisting principally of Oxbow Power Corporation, Oxbow Geothermal Corporation, Oxbow Power of Beowawe, Oxbow Power International and Oxbow Power Services, Inc.) is based in West Palm Beach, Florida, and has regional offices in Reno, Hong Kong and Manila to support on-line geothermal projects in Nevada, other domestic power projects and a geothermal plant under construction in the Philippines. Oxbow Power employs approximately 30 professionals in the development and management of power projects and over 100 supervisors and technicians in the operation and maintenance of power facilities. Current ownership in independent power projects total 340 MW in the United States and 47 MW under construction in the Philippines. Oxbow is currently negotiating additional projects in several Asian and Central American countries.

  11. "Assistance to States on Geothermal Energy"

    SciTech Connect (OSTI)

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the NGC. The briefs addressed: Benefits of Geothermal Energy Common Questions about Geothermal Energy Geothermal Direct Use Geothermal Energy and Economic Development Geothermal Energy: Technologies and Costs Location of Geothermal Resources Geothermal Policy Options for States Guidelines for Siting Geothermal Power Plants and Electricity Transmission Lines

  12. Geothermal Progress Monitor: Report No. 14

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This issue of the Geothermal Progress Monitor, the 14th since its inception in 1980, highlights the anticipated rapid growth in the use of geothermal heat pumps and documents the continued growth in the use of geothermal energy for power generation, both in this country and abroad. In countries with a relatively large demand for new generation capacity, geothermal, if available, is being called on as a preferable alternative to the use of domestic or imported oil. On the other hand, in this country where current demand for new capacity is less, geothermal energy is commonly being put to use in small power generation units operating on the hot water resource.

  13. The Separation of Thermal and Chemical Effects in Evaluating Geothermal Influences on Aquatic Biota

    E-Print Network [OSTI]

    Resh, Vincent H; Lamberti, Gary A; McElravy, Eric P; Wood, John R

    1983-01-01

    River (Yellowstone Park) below geothermal effluents.geothermal habitats been most intensively studied in Yellowstone

  14. MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring

    E-Print Network [OSTI]

    Wodin-Schwartz, Sarah

    2013-01-01

    Monitoring Geothermal Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . .down hole environment monitoring. Harsh environment sensorsfor Geothermal Monitoring Harsh environment MEMS sensors

  15. Six years of monitoring annual changes in a freshwater marsh with SPOT HRV data

    SciTech Connect (OSTI)

    Mackey, H.E. Jr.

    1992-12-01

    Fifteen dates of spring-time SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data from spring 1987 through spring 1992 were analyzed to monitor annual changes in a 150-hectare, southeastern floodplain marsh. The marsh underwent rapid changes during the six years from a swamp dominated by non-persistent, thermally tolerant macrophytes to persistent macrophyte and shrub-scrub communities as reactor discharges declined to Pen Branch. Savannah River flooding was also important in the timing of the shift of these wetland communities. SPOT HRV data proved to be an efficient and effective method to monitor trends in these wetland community changes.

  16. Six years of monitoring annual changes in a freshwater marsh with SPOT HRV data

    SciTech Connect (OSTI)

    Mackey, H.E. Jr.

    1992-01-01

    Fifteen dates of spring-time SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data from spring 1987 through spring 1992 were analyzed to monitor annual changes in a 150-hectare, southeastern floodplain marsh. The marsh underwent rapid changes during the six years from a swamp dominated by non-persistent, thermally tolerant macrophytes to persistent macrophyte and shrub-scrub communities as reactor discharges declined to Pen Branch. Savannah River flooding was also important in the timing of the shift of these wetland communities. SPOT HRV data proved to be an efficient and effective method to monitor trends in these wetland community changes.

  17. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  18. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  19. Colorado Potential Geothermal Pathways

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Colorado PRS Cool Fairways Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the weakened basement rocks. Isostatic gravity was utilized to identify structural basin areas, characterized by gravity low values reflecting weakened basement rocks. Together interpreted regional fault zones and basin outlines define geothermal "exploration fairways", where the potential exists for deep, superheated fluid flow in the absence of Pliocene or younger volcanic units Spatial Domain: Extent: Top: 4544698.569273 m Left: 144918.141004 m Right: 763728.391299 m Bottom: 4094070.397932 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  20. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  1. Geothermal activities in Central America

    SciTech Connect (OSTI)

    Whetten, J.T.; Hanold, R.J.

    1985-09-11

    The Agency for International Development is funding a new program in energy and minerals for Central America. Geothermal energy is an important component. A country-wide geothermal assessment has started in Honduras, and other assessment activities are in progress or planned for Costa Rica, El Salvador, Guatemala, and Panama. Instrumentation for well logging has been provided to Costa Rica, and a self-contained logging truck will be made available for use throughout Central America. An important objective of this program is to involve the private sector in resource development. 4 refs., 3 figs.

  2. Geothermal Program Review XII: proceedings. Geothermal Energy and the President's Climate Change Action Plan

    SciTech Connect (OSTI)

    Not Available

    1994-12-31

    Geothermal Program Review XII, sponsored by the Geothermal Division of US Department of Energy, was held April 25--28, 1994, in San Francisco, California. This annual conference is designed to promote effective technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal energy developers; suppliers of geothermal goods and services; representatives from federal, state, and local agencies; and others with an interest in geothermal energy. In-depth reviews of the latest technological advancements and research results are presented during the conference with emphasis on those topics considered to have the greatest potential to impact the near-term commercial development of geothermal energy.

  3. Geothermal pipeline: Progress and development update, geothermal program monitor

    SciTech Connect (OSTI)

    1995-02-01

    This paper is a progress and development update describing three projects in the U.S. which involve the use of geothermal energy and ground-source heat pumps. The first project is located at Fort Polk Army Base in Louisiana. Four thousand government housing units are being retrofitted with efficient ground-soured near Bend, Oregon.

  4. MATHEMATICAL MODELING OF THE BEHAVIOR OF GEOTHERMAL SYSTEMS UNDER EXPLOITATION

    E-Print Network [OSTI]

    Bodvarsson, G.S.

    2010-01-01

    h e Nordic Symposium on Geothermal Energy, (May 29-31) 1978.P. , and C. O t t e , Geothermal energy, Stanford Universityresources, i n Geothermal Energy, P. Kruger and C. O t t e (

  5. GUIDELINES MANUAL FOR SURFACE MONITORING OF GEOTHERMAL AREAS

    E-Print Network [OSTI]

    Til, C. J. Van

    2012-01-01

    1976, "Blowout o f a Geothermal Well", California Geology,in Rocks from Two Geothermal Areas'' , -- P1 anetary ScienceMonitoring Ground Movement in Geothermal Areas", Hydraul ic

  6. Low-Temperature and Coproduced Geothermal Projects Poster | Department...

    Office of Environmental Management (EM)

    Geothermal Projects Poster Low-Temperature and Coproduced Geothermal Projects Poster This map poster illustrates low-temperature and co-produced geothermal projects across the U.S....

  7. NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS

    E-Print Network [OSTI]

    Lippmann, M.J.

    2010-01-01

    13. modeling of liquid geothermal systems: Ph.D. thesis,of water dominated geothermal fields with large temper~of land subsidence in geothermal areas: Proc. 2nd Int. Symp.

  8. Geothermal Update NATIONAL ACADEMY OF SCIENCES / NOVEMBER 4,...

    Broader source: Energy.gov (indexed) [DOE]

    GTO-NAS.pdf More Documents & Publications GEA Geothermal Summit Presentation Lauren Boyd Geothermal R&D: The DOE Perspective U.S. Department of Energy progress in geothermal...

  9. MICROSEISMS IN GEOTHERMAL EXPLORATION: STUDIES IN GRASS VALLEY, NEVADA

    E-Print Network [OSTI]

    Liaw, A.L.C.

    2011-01-01

    period seismic noise (T>30 sec) . . . 2.5 Geothermal ground226. Clacy, G.R.T. ? 1968, Geothermal ground noise amplitudestudies at the Cos0 geothermal area, China Lake, California:

  10. Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir

    E-Print Network [OSTI]

    Feighner, Mark A.

    2010-01-01

    at Well 46-28, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,

  11. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01

    environment o f a geothermal borehole. (The problems of f ra data bank of geothermal borehole information. EvaluationBOREHOLE GEOPHYSICS IT-c MATERIALS WELL TESTING L lU-A FUNDAMENTAL STUDIES OF THE BEHAVIOR OF GEOTHERMAL

  12. DOE Webinar - Residential Geothermal Heat Pump Retrofits (Presentation)

    SciTech Connect (OSTI)

    Anderson, E. R.

    2010-12-14

    This presentation was given December 14, 2010, as part of DOE's Webinar series. The presentation discusses geothermal heat pump retrofits, technology options, and an overview of geothermal energy and geothermal heat pumps.

  13. Property:Geothermal/DOEFundingLevel | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Exploration Geothermal Project + 4,040,375 + B BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project + 5,000,000 + Base Technologies and Tools for...

  14. MATHEMATICAL MODELING OF THE BEHAVIOR OF GEOTHERMAL SYSTEMS UNDER EXPLOITATION

    E-Print Network [OSTI]

    Bodvarsson, G.S.

    2010-01-01

    Mathematical modeling and geothermal systems, Proceedngs 2nds t u d i e s of geothermal systems, and ( 3 ) f i e l d a pcomplicates modeling of geothermal systems and the i n t e r

  15. NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS

    E-Print Network [OSTI]

    Lippmann, M.J.

    2010-01-01

    modeling of liquid geothermal systems: Ph.D. thesis, Univ.IN LIQUID DOMINATED GEOTHERMAL SYSTEMS by M, J. Lippmann, T.IN LIQUID DOMINATED GEOTHERMAL SYSTEMS Marcelo J. Lippmann,

  16. OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL RESERVOIRS CONSIDERING ADSORPTION governing the behavior of vapor- dominated geothermal reservoirs. These mechanisms affect both was to determine the most effective injection strategy once these two effects are considered. Geothermal reservoir

  17. Geothermal Exploration Cost and Time

    SciTech Connect (OSTI)

    Jenne, Scott

    2013-02-13

    The Department of Energy’s Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL.

  18. Process for cementing geothermal wells

    DOE Patents [OSTI]

    Eilers, Louis H. (Inola, OK)

    1985-01-01

    A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

  19. Guide to Geothermal Heat Pumps

    SciTech Connect (OSTI)

    None

    2011-02-01

    Geothermal heat pumps, also known as ground source heat pumps, geoexchange, water-source, earth-coupled, and earth energy heat pumps, take advantage of this resource and represent one of the most efficient and durable options on the market to heat and cool your home.

  20. The IEA's role in advanced geothermal drilling.

    SciTech Connect (OSTI)

    Hoover, Eddie Ross; Jelacic, Allan; Finger, John Travis; Tyner, Craig E.

    2004-06-01

    This paper describes an 'Annex', or task, that is part of the International Energy Agency's Geothermal Implementing Agreement. Annex 7 is aimed at improving the state of the art in geothermal drilling, and has three subtasks: an international database on drilling cost and performance, a 'best practices' drilling handbook, and collaborative testing among participating countries. Drilling is an essential and expensive part of geothermal exploration, production, and maintenance. High temperature, corrosive fluids, and hard, fractured formations increase the cost of drilling, logging, and completing geothermal wells, compared to oil and gas. Cost reductions are critical because drilling and completing the production and injection well field can account for approximately half the capital cost for a geothermal power project. Geothermal drilling cost reduction can take many forms, e.g., faster drilling rates, increased bit or tool life, less trouble (twist-offs, stuck pipe, etc.), higher per-well production through multilaterals, and others. Annex 7 addresses all aspects of geothermal well construction, including developing a detailed understanding of worldwide geothermal drilling costs, understanding geothermal drilling practices and how they vary across the globe, and development of improved drilling technology. Objectives for Annex 7 include: (1) Quantitatively understand geothermal drilling costs and performance from around the world and identify ways to improve costs, performance, and productivity. (2) Identify and develop new and improved technologies for significantly reducing the cost of geothermal well construction. (3) Inform the international geothermal community about these drilling technologies. (4) Provide a vehicle for international cooperation, collaborative field tests, and data sharing toward the development and demonstration of improved geothermal drilling technology.