Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Rhode Island/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rhode Island Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Rhode Island No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Rhode Island No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Rhode Island No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Rhode Island Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

2

Hess Retail Natural Gas and Elec. Acctg. (Rhode Island) | Open...  

Open Energy Info (EERE)

Rhode Island) Jump to: navigation, search Name Hess Retail Natural Gas and Elec. Acctg. Place Rhode Island Utility Id 22509 References EIA Form EIA-861 Final Data File for 2010 -...

3

Rhode Island.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

4

Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island: Energy Resources Rhode Island: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5800945,"lon":-71.4774291,"alt":0,"address":"Rhode

5

Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island) The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and...

6

,"Rhode Island Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

7

Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) Facilities which compost putrescible waste andor leaf and yard waste are subject to these regulations. The...

8

Bluewater Wind Rhode Island | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search Name Bluewater Wind Rhode Island Facility Bluewater Wind Rhode Island Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner NRG Bluewater Wind Developer NRG Bluewater Wind Location Atlantic Ocean RI Coordinates 41.357°, -71.152° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.357,"lon":-71.152,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

University of Rhode Island | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Rhode Island Address Department of Ocean Engineering, Sheets Building, Bay Campus Place Narragansett, Rhode Island Zip 02882 Sector Hydro Phone number (401) 874-6139 Website http://www.oce.uri.edu/baycamp Coordinates 41.3983403°, -71.4893013° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3983403,"lon":-71.4893013,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

10

Small-Scale Solar Grants (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The Rhode Island Economic Development Corporation (RIEDC) provides incentives for renewable-energy projects. Incentive programs are funded by the Rhode Island Renewable Energy Fund (RIREF) and...

11

Rhode Island Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Rhode Island Quick Facts. Rhode Island had the lowest per capita total energy consumption, the third-lowest per capita petroleum consumption, and the ...

12

Rhode Island Stormwater Design and Installation Standards Manual (Rhode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Stormwater Design and Installation Standards Manual Rhode Island Stormwater Design and Installation Standards Manual (Rhode Island) Rhode Island Stormwater Design and Installation Standards Manual (Rhode Island) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Environmental Regulations

13

Interconnection Guidelines (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interconnection Guidelines (Rhode Island) Interconnection Guidelines (Rhode Island) Interconnection Guidelines (Rhode Island) < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Rhode Island Program Type Interconnection Provider Rhode Island Public Utilities Commission Rhode Island enacted legislation (HB 6222) in June 2011 to standardize the application process for the interconnection of customer-sited renewable-energy systems to the state's distribution grid. Rhode Island's interconnection policy is not nearly as comprehensive as

14

Alternative Fuels Data Center: Rhode Island Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rhode Island Rhode Island Information to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Information on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Information on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Information on Google Bookmark Alternative Fuels Data Center: Rhode Island Information on Delicious Rank Alternative Fuels Data Center: Rhode Island Information on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Information on AddThis.com... Rhode Island Information This state page compiles information related to alternative fuels and advanced vehicles in Rhode Island and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact.

15

Climate Action Plan (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

In the fall of 2001, the Department of Environmental Management (DEM), the RI State Energy Office (SEO), and the Governor's office convened the Rhode Island Greenhouse Gas Stakeholder Project in...

16

Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island enacted legislation (H.B. 6104) in June 2011 establishing a feed-in tariff for new distributed renewable energy generators up to three megawatts (MW) in...

17

Rhode Island Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

18

Water Quality Regulations (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulations (Rhode Island) Water Quality Regulations (Rhode Island) Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public...

19

Rhode Island Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... including hydroelectric power, municipal solid waste, and landfill gas. Rhode Island has potential wind energy generation from offshore wind farms.

20

Rhode Island | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island Last updated on 2013-11-05 Current News 2012 IECC adopted July 1, 2013 Commercial Residential Code Change Current Code 2012 IECC Amendments / Additional State Code Information The Rhode Island commercial code is the 2012 IECC with reference to ASHRAE 90.1-2010. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Rhode Island (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2012 IECC Effective Date 07/01/2013 Adoption Date 07/01/2013 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes Rhode Island DOE Determination Letter, May 31, 2013 Rhode Island State Certification of Commercial and Residential Building Energy Codes

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Appliance and Equipment Efficiency Standards (Rhode Island) ...  

Open Energy Info (EERE)

increased efficiency standards for the products currently covered may be adopted Test Methods Specified in standards or State Building Code of Rhode Island Date added to...

22

Rhode Island/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island/Wind Resources Rhode Island/Wind Resources < Rhode Island Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Rhode Island Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

23

Rhode Island Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

(Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Rhode Island Gas Prices (Ciudades Selectas) - GasBuddy.com Rhode Island Gas Prices (Organizado por Condado) -...

24

Rhode Island/EZ Policies | Open Energy Information  

Open Energy Info (EERE)

are included in National Grid's tariffs, which are accessible via the PUC's web site. Job Creation Guaranty Program (Rhode Island) Rhode Island Loan Program Yes StateProvince...

25

Job Training Tax Credit (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Job Training Tax Credit (Rhode Island) Job Training Tax Credit (Rhode Island) Eligibility Agricultural Commercial Construction Developer Industrial InstallerContractor Savings For...

26

Microsoft Word - rhode_island.doc  

Gasoline and Diesel Fuel Update (EIA)

Rhode Island Rhode Island NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 1,782 49 Electric Utilities ...................................................................................................... 7 50 Independent Power Producers & Combined Heat and Power ................................ 1,775 37 Net Generation (megawatthours) ........................................................................... 7,738,719 47

27

Alternative Fuels Data Center: Rhode Island Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rhode Island Points of Rhode Island Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Points of Contact on Google Bookmark Alternative Fuels Data Center: Rhode Island Points of Contact on Delicious Rank Alternative Fuels Data Center: Rhode Island Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Points of Contact The following people or agencies can help you find more information about Rhode Island's clean transportation laws, incentives, and funding

28

Job Creation Guaranty Program (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

RIEDCs Job Creation Guaranty Program provides businesses looking to expand or relocate in Rhode Island with access to capital and credit. RIEDC guarantees loans by private lenders or guarantees...

29

Recovery Act State Memos Rhode Island  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Rhode Island For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

30

Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 19, 2010 CX-000940: Categorical Exclusion Determination Distributed Generation Wind Power at Navy Sites - Second Meteorological tower at Naval Station Newport, Rhode...

31

Alternative Fuels Data Center: Rhode Island Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rhode Island Laws and Rhode Island Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives Listed below are incentives, laws, and regulations related to alternative

32

Rhode Island - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Solar Energy in Brief. ... US Virgin Islands: Overview; Data; Economy; ... Rhode Islands energy resources include fuelwood in the south and wind power on and ...

33

Rhode Island Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Island Offshore Wind Farm Island Offshore Wind Farm Jump to: navigation, search Name Rhode Island Offshore Wind Farm Facility Rhode Island Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Deepwater Wind Location Offshore from Sakonnet RI Coordinates 40.96°, -71.44° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.96,"lon":-71.44,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Rhode Island Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Recovery Act State Memo Rhode Island Recovery Act State Memo Rhode Island Recovery Act State Memo Rhode Island has substantial natural resources, including wind and biomass. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Rhode Island are supporting a broad range of clean energy projects, from weatherization to smart grid workforce training. Through these investments, Rhode Island's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Rhode Island to play an important role in the new energy economy of the future. Rhode Island Recovery Act State Memo More Documents & Publications Slide 1 Guam Recovery Act State Memo

35

Rhode Island Renewable Energy Fund (RIREF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Renewable Energy Fund (RIREF) Rhode Island Renewable Energy Fund (RIREF) Rhode Island Renewable Energy Fund (RIREF) < Back Eligibility Commercial Industrial Institutional Residential Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Wind Program Info State Rhode Island Program Type Public Benefits Fund Provider Rhode Island Economic Development Corporation Rhode Island's Public Utilities Restructuring Act of 1996 created the nation's first public benefits fund (PBF) for renewable energy and demand-side management (DSM). The Rhode Island Renewable Energy Fund's (RIREF) renewable-energy component is administered by the Rhode Island Economic Development Corporation (RIEDC), and the fund's demand-side

36

Alternative Fuels Data Center: Rhode Island Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives Listed below are the summaries of all current Rhode Island laws, incentives, regulations, funding opportunities, and other initiatives

37

The Rhode Island Statewide Lighting Program  

SciTech Connect

This report summarizes the implementation and initial evaluation of the nation's first statewide conservation and load management program, the Rhode Island Statewide Lighting Program (RISLP). Rhode Island's program is unique because it is a voluntary collaborative effort and because three utilities use a single delivery mechanism for their programs. The Rhode Island Statewide Lighting Program is a unique attempt to improve the efficiency of electricity use in the commercial/industrial sector on a statewide basis. The cooperative nature of program design and implementation has strengthened communication among the participants. The process evaluation showed that both the participants and the customers are satisfied with the program. The program has had a significant effect on customer behavior.

Pierce, B.; Bjoerkqvist, O.

1992-02-01T23:59:59.000Z

38

Energy Crossroads: Utility Energy Efficiency Programs Rhode Island...  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing National Grid (formerly Narragansett Electric...

39

Alternative Fuels Data Center: Rhode Island Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Biodiesel

40

Rhode Island/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Rhode Island/Wind Resources/Full Version Rhode Island/Wind Resources/Full Version < Rhode Island‎ | Wind Resources Jump to: navigation, search Print PDF Rhode Island Wind Resources RhodeIslandMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Narragansett, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Narragansett, Rhode Island: Energy Resources Narragansett, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4501021°, -71.4495005° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4501021,"lon":-71.4495005,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

42

Providence County, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Providence County, Rhode Island: Energy Resources Providence County, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8881582°, -71.4774291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8881582,"lon":-71.4774291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

Cumberland Hill, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island: Energy Resources Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9745431°, -71.4670043° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9745431,"lon":-71.4670043,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Burrillville, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Burrillville, Rhode Island: Energy Resources Burrillville, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9810947°, -71.691066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9810947,"lon":-71.691066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Harrisville, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harrisville, Rhode Island: Energy Resources Harrisville, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9656539°, -71.6745112° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9656539,"lon":-71.6745112,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

Pascoag, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pascoag, Rhode Island: Energy Resources Pascoag, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9556539°, -71.7022899° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9556539,"lon":-71.7022899,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

47

Tiverton, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tiverton, Rhode Island: Energy Resources Tiverton, Rhode Island: Energy Resources (Redirected from Tiverton, RI) Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6259357°, -71.2133801° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6259357,"lon":-71.2133801,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

Glocester, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glocester, Rhode Island: Energy Resources Glocester, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9043113°, -71.691066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9043113,"lon":-71.691066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Central Falls, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island: Energy Resources Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8906553°, -71.3922785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8906553,"lon":-71.3922785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

East Providence, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Providence, Rhode Island: Energy Resources Providence, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8137116°, -71.3700545° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8137116,"lon":-71.3700545,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Woonsocket, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woonsocket, Rhode Island: Energy Resources Woonsocket, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0028761°, -71.5147839° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0028761,"lon":-71.5147839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Valley Falls, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island: Energy Resources Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9067663°, -71.3906119° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9067663,"lon":-71.3906119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

Pawtucket, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pawtucket, Rhode Island: Energy Resources Pawtucket, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.878711°, -71.3825558° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.878711,"lon":-71.3825558,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Cranston, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cranston, Rhode Island: Energy Resources Cranston, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7798226°, -71.4372796° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7798226,"lon":-71.4372796,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

Alternative Fuels Data Center: Rhode Island Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

56

Alternative Fuels Data Center: Rhode Island Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State

57

Categorical Exclusion Determinations: Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Rhode Island Categorical Exclusion Determinations: Rhode Island Location Categorical Exclusion Determinations issued for actions in Rhode Island. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2013 CX-010757: Categorical Exclusion Determination The New England Solar cost-Reduction Challenge Partnership CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Vermont, New Hampshire, Rhode Island, Massachusetts, Connecticut Offices(s): Golden Field Office February 4, 2013 CX-010572: Categorical Exclusion Determination Brown University - Marine Hydro-Kinetic Energy Harvesting Using Cyber-Physical Systems CX(s) Applied: B3.6 Date: 02/04/2013 Location(s): Rhode Island Offices(s): Advanced Research Projects Agency-Energy October 18, 2012 CX-009518: Categorical Exclusion Determination

58

The Jobs Development Act (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jobs Development Act (Rhode Island) Jobs Development Act (Rhode Island) The Jobs Development Act (Rhode Island) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Retail Supplier Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Corporate Tax Incentive Provider Rhode Island Economic Development Corporation The Jobs Development Act provides an incremental reduction in the corporate income tax rate (9%) to companies creating jobs in Rhode Island. For every ten new jobs created for companies with fewer than 100 employees, companies can reduce the tax by a quarter percentage point. For companies with more

59

Alternative Fuels Data Center: Rhode Island Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Producer to someone by E-mail Producer to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on AddThis.com... More in this section... Federal State

60

Climate Action Plan (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island) Rhode Island) Climate Action Plan (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Climate Policies Provider Department of Environmental Management In the fall of 2001, the Department of Environmental Management (DEM), the

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

,"Rhode Island Natural Gas Pipeline and Distribution Use Price...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005...

62

Rhode Island Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas into Underground Storage - All Operators Rhode Island Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage (Annual Supply &...

63

Rhode Island Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas from Underground Storage - All Operators Rhode Island Underground Natural Gas Storage - All Operators Net Withdrawals of Natural Gas from Underground Storage...

64

Rhode Island Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas from Underground Storage - All Operators Rhode Island Underground Natural Gas Storage - All Operators Natural Gas Withdrawals from Underground Storage (Annual Supply...

65

,"Rhode Island Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

66

Fuel Mix and Emissions Disclosure (Rhode Island) | Open Energy...  

Open Energy Info (EERE)

DSIRE1 Summary Rhode Island requires all entities that sell electricity in the state to disclose details regarding the fuel mix and emissions of their electric generation...

67

Qualifying RPS State Export Markets (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island) Rhode Island) Qualifying RPS State Export Markets (Rhode Island) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Rhode Island as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

68

FINAL ENVIRONMENTAL ASSESSMENT FOR THE RHODE ISLAND LFG GENCO, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RHODE ISLAND LFG GENCO, LLC RHODE ISLAND LFG GENCO, LLC COMBINED CYCLE ELECTRICITY GENERATION PLANT FUELED BY LANDFILL GAS JOHNSTON, RHODE ISLAND U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1742 FINAL ENVIRONMENTAL ASSESSMENT FOR THE RHODE ISLAND LFG GENCO, LLC COMBINED CYCLE ELECTRICITY GENERATION PLANT FUELED BY LANDFILL GAS JOHNSTON, RHODE ISLAND U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1742 ACRONYMS AND ABBREVIATIONS CFR Code of Federal Regulations CHP combined heat and power dBA A-weighted decibel DOE U.S. Department of Energy (also called the Department) EA environmental assessment EPA U.S. Environmental Protection Agency MW megawatt NAAQS National Ambient Air Quality Standards

69

US hydropower resource assessment for Rhode Island  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Rhode Island.

Francfort, J.E.; Rinehart, B.N.

1995-07-01T23:59:59.000Z

70

Energy Incentive Programs, Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Rhode Island Energy Incentive Programs, Rhode Island October 29, 2013 - 1:19pm Addthis Updated October 2012 What public-purpose-funded energy efficiency programs are available in my state? Rhode Island's restructuring law includes a system benefits charge of 2 mill/kWh for energy efficiency programs, and 0.3 mills/kWh for renewable energy programs, through 2012. Over $35 million was budgeted for energy efficiency across all program types (including low-income and residential) in 2010; figures for 2011 are not available. The programs are administered by the local utilities. Rebates are available state-wide through the Cool Choice program, which provides rebates for high-efficiency HVAC equipment, including split system and single packaged air conditions and heat pumps. Dual enthalpy economizer

71

ISO New England Forward Capacity Market (Rhode Island) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) < Back Eligibility Developer Industrial State/Provincial Govt Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Generating Facility Rate-Making Under the Forward Capacity Market (FCM), ISO New England projects the capacity needs of the region's power system three years in advance and then holds an annual auction to purchase the power resources that will satisfy those future regional requirements. Resources that clear in the auction are obligated to provide power or curtail demand when called upon by the ISO. The Forward Capacity Market was developed by ISO New England, the six New

72

FUPWG Meeting Agenda - Providence, Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Providence, Rhode Island Providence, Rhode Island FUPWG Meeting Agenda - Providence, Rhode Island October 7, 2013 - 2:51pm Addthis Image of the FUPWG logo which displays an illustration of a sailboat on water. The logo reads Efficiency Promotion by the Ocean; FUPWG April 14-15, 2010; Providence, Rhode Island. April 14-15, 2010 Hosted by National Grid The following outlines sessions and presentations held during the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Tuesday, April 13, 2010 FUPWG held a utility energy service contract (UESC) workshop prior to the Spring 2010 meeting. The workshop materials are available (PDF 5.0 MB) Wednesday, April 14, 2010 8:30 am Welcome

73

Rhode Island Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) Rhode Island Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

74

Green Power Purchase Commitment (Rhode Island) | Open Energy...  

Open Energy Info (EERE)

commitment will begin in the first quarter of 2005. The incremental cost of green power for the State House will be covered by the Rhode Island Renewable Energy Fund....

75

Bristol County, Rhode Island: Energy Resources | Open Energy...  

Open Energy Info (EERE)

County is a county in Rhode Island. Its FIPS County Code is 001. It is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype A. Registered Energy Companies in...

76

Rhode Island Natural Gas LNG Storage Additions (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Additions (Million Cubic Feet) Rhode Island Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

77

Rhode Island Natural Gas LNG Storage Net Withdrawals (Million...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Rhode Island Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

78

Rules and Regulations for Sewage Sludge Management (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of these rules and regulations is to ensure that sewage sludge that is treated, land applied, disposed, distributed, stockpiled or transported in the State of Rhode Island is done so in...

79

Rules and Regulations for Groundwater Quality (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations provide standards for groundwater quality in the state of Rhode Island. The rules are intended to protect and restore the quality of the state's groundwater resources for use as...

80

Local Option - Property-Assessed Clean Energy Financing (Rhode Island) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property-Assessed Clean Energy Financing (Rhode Property-Assessed Clean Energy Financing (Rhode Island) Local Option - Property-Assessed Clean Energy Financing (Rhode Island) < Back Eligibility Residential Savings Category Other Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Program Info State Rhode Island Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a statement in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been suspended until further clarification is provided. ''''' Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment on the property over a period

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Siting and Permitting Provider Department of Environmental Management Permits are required to construct, install, or modify any stationary source which has the potential to increase emissions of a listed toxic air contaminant by an amount greater than the minimum quantity for that contaminant. Minimum quantities are specified in Table III of these regulations. Permits will be granted based in part on the impact of the projected emissions of the stationary source on acceptable ambient levels

82

Air Pollution Control Regulations: No. 5 - Fugitive Dust (Rhode Island) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 - Fugitive Dust (Rhode 5 - Fugitive Dust (Rhode Island) Air Pollution Control Regulations: No. 5 - Fugitive Dust (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations aim to prevent the release of fugitive dust by forbidding

83

Impacts of Standard 90.1-2007 for Commercial Buildings at State Level - Rhode Island  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN RHODE ISLAND BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN RHODE ISLAND Rhode Island Summary Standard 90.1-2007 contains improvements in energy efficiency over the current state code, the 2006 International Energy Conservation Code (IECC) with amendments. Standard 90.1-2007 would improve energy efficiency in commercial buildings in Rhode Island. The analysis of the impact of Standard 90.1-2007 resulted

84

The Rhode Island Statewide Lighting Program. Summary report  

SciTech Connect

This report summarizes the implementation and initial evaluation of the nation`s first statewide conservation and load management program, the Rhode Island Statewide Lighting Program (RISLP). Rhode Island`s program is unique because it is a voluntary collaborative effort and because three utilities use a single delivery mechanism for their programs. The Rhode Island Statewide Lighting Program is a unique attempt to improve the efficiency of electricity use in the commercial/industrial sector on a statewide basis. The cooperative nature of program design and implementation has strengthened communication among the participants. The process evaluation showed that both the participants and the customers are satisfied with the program. The program has had a significant effect on customer behavior.

Pierce, B.; Bjoerkqvist, O.

1992-02-01T23:59:59.000Z

85

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Other The list below contains summaries of all Rhode Island laws and incentives

86

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Other The list below contains summaries of all Rhode Island laws and incentives

87

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Ethanol The list below contains summaries of all Rhode Island laws and incentives

88

Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for EVs The list below contains summaries of all Rhode Island laws and incentives

89

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Other The list below contains summaries of all Rhode Island laws and incentives

90

State of Rhode Island and Providence Plantations State House  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island and Providence Plantations Rhode Island and Providence Plantations State House Providence, Rhode Island 02903-1 196 401 -222-2080 Donald L. Carcieri Governor February 26,2009 The Honorable Steven Chu Secretary U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585 Re: State Energy Program Assurances Dear Secretary Chu: As a condition of receiving our State's share of the 53.1 billion funding for the State Energy Program (SEP) under the American Recovery and Renewal Act of 2009 (H.R.l) (ARRA), 1 am providing the following assurances. I have written to our public utilities commission and requested that they consider additional actions to promote energy efficiency, consistent with the Federal statutory language contained in H.R. 1 and their obligations to maintain just and reasonable

91

Rhode Island to Build First Offshore Wind Farm | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island to Build First Offshore Wind Farm Rhode Island to Build First Offshore Wind Farm Rhode Island to Build First Offshore Wind Farm March 15, 2010 - 6:38pm Addthis Rhode Island’s first offshore wind farm will be built in Block Island. | File photo Rhode Island's first offshore wind farm will be built in Block Island. | File photo Block Island, a small town with only 1,000 full-time, residents, is the site for a big project, when it will become home to Rhode Island's first offshore wind farm. Powerful ocean winds lie right off Block Island's south shore. That's the benefit of offshore wind farms - they can take advantage of the harder, stronger winds found a few miles off the coast Deepwater Wind LLC is leading the effort with plans to construct up to eight wind turbines three miles off of Block Island's shore.

92

renewable energy from waste 1730 RHODE ISLAND AVENUE, NW  

E-Print Network (OSTI)

renewable energy from waste 1730 RHODE ISLAND AVENUE, NW SUITE 700 WASHINGTON, DC 20036 WWW on Energy and Commerce Committee on Energy and Commerce U.S. House of Representatives U.S. House of Representatives Washington, DC 20515 Washington, DC 20515 Dear Chairman Waxman and Ranking Member Barton

93

1730 RHODE ISLAND AVENUE, NW WASHINGTON, DC 20036  

E-Print Network (OSTI)

1730 RHODE ISLAND AVENUE, NW SUITE 700 WASHINGTON, DC 20036 WWW.ENERGYRECOVERYCOUNCIL.ORG renewable energy from waste Testimony of Ted Michaels President, Energy Recovery Council Before the Connecticut the reclassification of trash-to-energy facilities as Class 1 renewable energy sources. Chairman Meyer, Chairman Roy

Columbia University

94

Commercial-Scale Renewable-Energy Grants (Rhode Island) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial-Scale Renewable-Energy Grants (Rhode Island) Commercial-Scale Renewable-Energy Grants (Rhode Island) Commercial-Scale Renewable-Energy Grants (Rhode Island) < Back Eligibility Commercial Institutional Local Government Low-Income Residential Nonprofit Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Solar Home Weatherization Water Maximum Rebate $75,000 Program Info Funding Source Rhode Island Renewable Energy Fund (RIREF); Alternative Compliance Payments (ACPs) Start Date 01/01/2013 Expiration Date 12/31/2013 State Rhode Island Program Type State Grant Program Rebate Amount 20% of project funding Provider Rhode Island Economic Development Corporation The Rhode Island Economic Development Corporation (RIEDC) provides

95

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Propane (LPG)

96

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Natural Gas

97

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Idle Reduction

98

MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project | Open Energy  

Open Energy Info (EERE)

Greenwave Rhode Island Ocean Wave Energy Project Greenwave Rhode Island Ocean Wave Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4501,"lon":-71.4495,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

99

Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 257 951 718 594 102 130 182 109 391 219 1990's 51 92 155 126 0 27 42 18 1 1 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Rhode Island Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

100

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Impacts of the 2009 IECC for Residential Buildings at State Level - Rhode Island  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN RHODE ISLAND BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN RHODE ISLAND Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Rhode Island Summary Rhode Island has adopted the 2009 International Energy Conservation Code (IECC). Overview of the 2009 IECC The IECC scope includes residential single-family housing and multifamily housing three stories or less above- grade intended for permanent living (hotel/motel is not "residential"). The code applies to new buildings and

102

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Climate Change / Energy Initiatives to someone by E-mail Climate Change / Energy Initiatives to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on

103

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal

104

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search

105

Alternative Fuels Data Center: Rhode Island Laws and Incentives for AFV  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

AFV Manufacturer/Retrofitter to someone by E-mail AFV Manufacturer/Retrofitter to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for AFV Manufacturer/Retrofitter on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for AFV Manufacturer/Retrofitter on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for AFV Manufacturer/Retrofitter on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for AFV Manufacturer/Retrofitter on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for AFV Manufacturer/Retrofitter on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for AFV Manufacturer/Retrofitter on AddThis.com...

106

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

107

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal

108

Rhode Island Energy and Cost Savings for New Single- and Multifamily Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC BUILDING TECHNOLOGIES PROGRAM 2 2012 IECC AS COMPARED TO THE 2009 IECC Rhode Island Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC The 2012 International Energy Conservation Code (IECC) yields positive benefits for Rhode Island homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Rhode Island homeowners will save $11,011 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should

109

Rhode Island Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Rhode Island Regions Rhode Island Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Rhode Island Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Rhode Island Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

110

Rhode Island Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Rhode Island Regions Rhode Island Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Rhode Island Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Rhode Island Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

111

,"Rhode Island Natural Gas LNG Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Rhode...

112

Rhode Island/EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

Gas Nuclear Photovoltaics Tidal Energy Wave Energy Wind energy StateProvince RIEDC's Job Creation Guaranty Program provides businesses looking to expand or relocate in Rhode...

113

New School Year Means New Energy Systems for Two Rhode Island Schools |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

School Year Means New Energy Systems for Two Rhode Island School Year Means New Energy Systems for Two Rhode Island Schools New School Year Means New Energy Systems for Two Rhode Island Schools August 16, 2010 - 4:00pm Addthis New energy recovery systems and occupancy sensors are greatly reducing energy costs at Woonsocket Middle School at Hamlet. | Photo courtesy of Woonsocket Education Department New energy recovery systems and occupancy sensors are greatly reducing energy costs at Woonsocket Middle School at Hamlet. | Photo courtesy of Woonsocket Education Department Kevin Craft What are the key facts? Systems and occupancy sensors save 172,365 kWh and $26,000 annually $181,000 Recovery Act grant funded installation Systems also monitor CO2 levels to provide optimal indoor air quality When city officials in Woonsocket, R.I. were planning the construction of

114

New School Year Means New Energy Systems for Two Rhode Island Schools |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New School Year Means New Energy Systems for Two Rhode Island New School Year Means New Energy Systems for Two Rhode Island Schools New School Year Means New Energy Systems for Two Rhode Island Schools August 16, 2010 - 4:00pm Addthis New energy recovery systems and occupancy sensors are greatly reducing energy costs at Woonsocket Middle School at Hamlet. | Photo courtesy of Woonsocket Education Department New energy recovery systems and occupancy sensors are greatly reducing energy costs at Woonsocket Middle School at Hamlet. | Photo courtesy of Woonsocket Education Department Kevin Craft What are the key facts? Systems and occupancy sensors save 172,365 kWh and $26,000 annually $181,000 Recovery Act grant funded installation Systems also monitor CO2 levels to provide optimal indoor air quality When city officials in Woonsocket, R.I. were planning the construction of

115

Rules for the Discharge of Non-Sanitary Wastewater and Other Fluids To or Below the Ground Surface (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of these rules to protect and preserve the quality of the groundwater of the State of Rhode Island (the State) and to prevent contamination of groundwater resources from the discharge...

116

Rhode Island - State Energy Profile Overview - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... Puerto Rico US Virgin Islands: Overview; Data; Economy; Prices; Reserves ...

117

" Electric Utilities",602076,"Florida","Rhode Island"  

U.S. Energy Information Administration (EIA) Indexed Site

Highest","Lowest" Highest","Lowest" "United States" "Primary Energy Source","Coal" "Net Summer Capacity (megawatts)",1039062,"Texas","District of Columbia" " Electric Utilities",602076,"Florida","Rhode Island" " Independent Power Producers & Combined Heat and Power",436986,"Texas","Alaska" "Net Generation (megawatthours)",4125059899,"Texas","District of Columbia" " Electric Utilities",2471632103,"Florida","New Jersey" " Independent Power Producers & Combined Heat and Power",1653427796,"Texas","District of Columbia" "Emissions (thousand metric tons)"

118

Rhode Island Disaster Recovery Business Alliance CEO and Business Needs Assessment  

Science Conference Proceedings (OSTI)

Natural and person-caused disasters are increasing in frequency and magnitude, and these disasters are taking an ever-increasing economic and personal toll. This report describes the early steps of a statewide project in Rhode Island to offset the effects of these catastrophic events. The project involves the efforts of EPRI, the Institute for Business and Home Safety (IBHS), and many other public and private organizations.

1998-12-19T23:59:59.000Z

119

"1. Rhode Island State Energy Partners","Gas","FPL Energy Operating Serv Inc",528  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "1. Rhode Island State Energy Partners","Gas","FPL Energy Operating Serv Inc",528 "2. Manchester Street","Gas","Dominion Energy New England, LLC",447 "3. Tiverton Power Plant","Gas","Tiverton Power Inc",250 "4. Ocean State Power II","Gas","Ocean State Power II",219 "4. Ocean State Power","Gas","Ocean State Power Co",219 "6. Pawtucket Power Associates","Gas","Pawtucket Power Associates LP",63 "7. Ridgewood Providence Power","Other Renewables","Ridgewood Power Management LLC",24 "8. Central Power Plant","Gas","State of Rhode Island",10

120

,"Rhode Island Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sri_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sri_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:55 AM"

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Environmental Assessment for the Partial Funding of a Proposed Life Sciences Building at Brown University, Providence, Rhode Island  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment for the Partial Funding of a Environmental Assessment for the Partial Funding of a Proposed Life Sciences Building at Brown University, Providence, Rhode Island FINAL July 2003 National Aeronautics and Space Administration Washington, D.C. 20546-0001 U.S. Department of Energy, Chicago Operations Office Argonne, Illinois 60439 Environmental Assessment for the Partial Funding of a Proposed Life Sciences Building at Brown University, Providence, Rhode Island Environmental Assessment for the Partial Funding of a Proposed Life Sciences Building at Brown University, Providence, Rhode Island FINAL Lead Agency: National Aeronautics and Space Administration Cooperating Agency: U.S. Department of Energy Proposed Action: Partial funding for a new Life Sciences Building at Brown

122

Rhode Island Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC  

SciTech Connect

The 2012 International Energy Conservation Code (IECC) yields positive benefits for Rhode Island homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Rhode Island homeowners will save $11,011 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $629 for the 2012 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-04-01T23:59:59.000Z

123

Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.73 0.33 0.39 1970's 0.33 0.38 0.38 0.42 0.41 0.55 0.75 1.67 2.08 2.06 1980's 2.92 4.74 4.53 4.74 4.05 4.53 3.55 2.87 2.20 4.19 1990's 3.74 3.41 2.94 3.31 2.69 2.21 3.35 3.15 3.00 2.53 2000's 4.67 5.20 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Rhode Island Natural Gas Prices

124

Residential market for fuelwood in Rhode Island: demand, supply, and policy implications  

Science Conference Proceedings (OSTI)

Fuelwood consumption in Rhode Island has tripled since the 1973 oil shortage as a result of household substitution of wood for relatively more expensive heating fuels. A telephone survey of 515 randomly selected households in Rhode Island determined the incidence of wood-burning (25%), the quantities of wood households consumed, their reasons for burning wood, the manner in which they obtained the wood, etc. Households were hypothesized to behave like cost-minimizing firms in producing heat from the lowest-cost combination of inputs (wood and stove efficiency). It was further hypothesized that households process their own firewood as an alternative to purchasing it where the opportunity cost of household labor is less than the commercial value added, thus freeing household income for other uses. These hypotheses were put into testable form as a four-level econometric model containing (1) the discrete household decision to participate in wood heat production, (2) the determination of the cost-minimizing vector of inputs given heat output and relative input prices, (3) the discrete household decision to harvest its own wood and, (4) the determination of how much wood to harvest, how much household labor to invest in wood processing, and the implicit price of fuelwood. Both these hypotheses were well validated via econometric testing.

Mackenzie, J.

1985-01-01T23:59:59.000Z

125

Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

2013-04-01T23:59:59.000Z

126

Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area  

SciTech Connect

The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

2013-04-01T23:59:59.000Z

127

Rhode Island Natural Gas Delivered to Commercial Consumers for the Account  

Gasoline and Diesel Fuel Update (EIA)

Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Rhode Island Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,742 1,080 1,411 1990's 330 0 0 0 0 0 1,010 2,405 4,679 5,524 2000's 6,070 5,380 3,912 3,176 3,015 2,834 2,673 3,764 3,663 3,430 2010's 4,062 4,669 4,503 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Delivered to Commercial Consumers for the Account of Others Rhode Island Natural Gas Delivered for the Account of Others

128

Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Offshore Wind Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area W. Musial, D. Elliott, J. Fields, Z. Parker, and G. Scott Produced under direction of the Bureau of Ocean Energy Management (BOEM) by the National Renewable Energy Laboratory (NREL) under Interagency Agreement M13PG00002 and Task No WFS3.1000. Technical Report NREL/TP-5000-58091 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Analysis of Offshore Wind

129

The Rhode Island Nuclear Science Center conversion from HEU to LEU fuel  

SciTech Connect

The 2-MW Rhode Island Nuclear Science Center (RINSC) open pool reactor was converted from 93% UAL-High Enriched Uranium (HEU) fuel to 20% enrichment U3Si2-AL Low Enriched Uranium (LEU) fuel. The conversion included redesign of the core to a more compact size and the addition of beryllium reflectors and a beryllium flux trap. A significant increase in thermal flux level was achieved due to greater neutron leakage in the new compact core configuration. Following the conversion, a second cooling loop and an emergency core cooling system were installed to permit operation at 5 MW. After re-licensing at 2 MW, a power upgrade request will be submitted to the NRC.

Tehan, Terry

2000-09-27T23:59:59.000Z

130

The conversion of the 2 MW reactor at the Rhode Island Nuclear Science Center  

Science Conference Proceedings (OSTI)

The 2 MW Rhode Island Atomic Energy Commission reactor is required to convert from the use of High Enriched Uranium (HEU) fuel to the use of Low Enriched Uranium (LEU) fuel using a standard LEU fuel plate which is thinner and contains more U-235 than the current HEU plate. These differences, coupled with a desire to upgrade the characteristics and capability of the reactor, have resulted in core design studies and thermal hydraulic studies not only at the current 2 MW but also at the maximum power level of the reactor, 5 MW. In addition, during 23 years of operation, it has become clear that the main uses of the reactor have been neutron scattering and neutron activation analysis. The requirement to convert to LEU presents and opportunity to optimize the core for the utilization and to restudy the thermal hydraulics using modern techniques. This paper presents the current conclusions of both aspects. 2 refs., 9 figs.

DiMeglio, A.F.; Matos, J.E.; Freese, K.E.; Spring, E.F. (Rhode Island Atomic Energy Commission, Narragansett, RI (USA). Rhode Island Nuclear Science Center; Argonne National Lab., IL (USA); Rhode Island Atomic Energy Commission, Narragansett, RI (USA). Rhode Island Nuclear Science Center)

1989-01-01T23:59:59.000Z

131

Microsoft Word - DOE-ID-11-013 Rhode Island EC.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 SECTION A. Project Title: Reactor Upgrade Grant - Rhode Island Atomic Energy Commission SECTION B. Project Description The objectives of this project are to upgrade the Area Radiation Monitoring System and Confinement Air Handling System I&C with Opto-22 systems, add a Reactor Power Level Trend display that shows power trend data from each of the power level channels, and to replace the Control Rod Magnet Power Supplies and the Control Room Instrumentation Master Switch with new components. Each of these displays will make reactor system data more observable to reactor operators, reactor operator trainees, and laboratory students that are taking data in the control room. The replacement of the Control Rod Magnet Power Supplies and the Control Room

132

Field Performance of Heat Pump Water Heaters in the Northeast, Massachusetts and Rhode Island (Fact Sheet)  

SciTech Connect

Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring, A.O. Smith Voltex, and Stiebel Eltron Accelera 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

Not Available

2013-12-01T23:59:59.000Z

133

Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2013-06-30T23:59:59.000Z

134

Installation Restoration Program. Site inspection report. Volume 3. 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island. Final report  

Science Conference Proceedings (OSTI)

Site Inspection Report, 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island, Volume III of III. This is the third volume of a three volume site inspection report. Three areas of concern (AOCs) were investigated under the Installation Restoration Program. A passive soil gas survey was conducted of the entire station. Soil and groundwater samples were collected and analyzed. Low level contamination of fuel-related compounds were detected below state action levels. No further action was recommended.

NONE

1995-09-01T23:59:59.000Z

135

Installation Restoration Program. Site inspection report. Volume 2. 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island. Final report  

SciTech Connect

Site Inspection Report, 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island, Volume II of III. This is the second volume of a three volume site inspection report. Three areas of concern (AOCs) were investigated under the Installation Restoration Program. A passive soil gas survey was conducted of the entire station. Soil and groundwater samples were collected and analyzed. Low level contamination of fuel-related compounds were detected below state action levels. No further action was recommended.

NONE

1995-09-01T23:59:59.000Z

136

Installation Restoration Program. Site inspection report. Volume 1. 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island. Final report  

Science Conference Proceedings (OSTI)

Site Inspection Report, 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island, Volume I of III. This is the first volume of a three volume site inspection report. Three areas of concern (AOCs) were investigated under the Installation Restoration Program. A passive soil gas survey was conducted of the entire station. Soil and groundwater samples were collected and analyzed. Low level contamination of fuel-related compounds were detected below state action levels. No further action was recommended.

NONE

1995-09-01T23:59:59.000Z

137

Rhode Island Pretreatment Regulations (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations set standards for water pretreatment prior to release to Publicly Owned Treatment Works (POTWs), and require effluent data including the identity, amount, frequency, concentration...

138

Field verification program for small wind turbines, Block Island, Rhode Island. Quarterly report for the period October to December 1999  

SciTech Connect

The proposal is to install and monitor five 10-kW residential wind turbines on 25-meter towers on Block Island, which has excellent wind resources and high electricity costs. The harsh environment will provide an opportunity for accelerated reliability testing of an enhanced wind turbine and other equipment.

Henry G. duPont

2000-01-01T23:59:59.000Z

139

Rhode Island.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

lets you compare window performance options by calculating performance based on utility rates for your climate, house design options, and window design options. 5. Ensure...

140

Census Snapshot: Rhode Island  

E-Print Network (OSTI)

The presence of a senior or disabled partner in a couple mayleast one partner who is disabled: 33% of same-sex couples,partner over 65 Percent disabled Average household income

Romero, Adam P; Baumle, Amanda; Badgett, M.V. Lee; Gates, Gary J

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Air Pollution Control Regulations: No. 5 - Fugitive Dust (Rhode...  

Open Energy Info (EERE)

Yes Implementing Sector StateProvince Program Administrator Rhode Island Department of Environmental Management Primary Website http:www.dem.ri.govpubsregsregsair...

142

Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode...  

Open Energy Info (EERE)

Yes Implementing Sector StateProvince Program Administrator Rhode Island Department of Environmental Management Primary Website http:www.dem.ri.govpubsregsregsair...

143

Rules and Regulations Governing the Establishment of Various Fees (Rhode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Establishment of Various Fees the Establishment of Various Fees (Rhode Island) Rules and Regulations Governing the Establishment of Various Fees (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Rhode Island Program Type Siting and Permitting Provider Department of Environmental Management These regulations describe the fees associated with several Department of Environmental Management regulatory programs, including programs pertaining

144

Rhode Island Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Pipeline and Distribution Use Price 1967-2005 Citygate Price 10.62 10.07 6.70 10.05 8.22 4.11 1984-2012 Residential Price 16.66 16.89 17.06 16.48 15.33 14.29 1967-2012 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2012 Commercial Price 14.91 15.53 15.14 14.46 13.33 12.31 1967-2012 Percentage of Total Commercial Deliveries included in Prices 66.5 66.2 68.0 61.2 56.9 55.4 1990-2012 Industrial Price 12.58 13.26 12.58 12.13 10.98 9.78 1997-2012 Percentage of Total Industrial Deliveries included in Prices 11.6 11.7 9.2 6.5 6.0 6.3 1997-2012 Vehicle Fuel Price 10.96 12.62 10.72 11.71 8.61 16.32 1990-2012 Electric Power Price

145

Rhode Island Natural Gas Summary  

Gasoline and Diesel Fuel Update (EIA)

10.62 10.07 6.70 10.05 8.22 4.11 1984-2012 10.62 10.07 6.70 10.05 8.22 4.11 1984-2012 Residential 16.66 16.89 17.06 16.48 15.33 14.29 1967-2012 Commercial 14.91 15.53 15.14 14.46 13.33 12.31 1967-2012 Industrial 12.58 13.26 12.58 12.13 10.98 9.78 1997-2012 Vehicle Fuel 10.96 12.62 10.72 11.71 8.61 16.32 1990-2012 Electric Power 8.06 10.50 4.98 5.45 5.10 3.98 1997-2012 Underground Storage (Million Cubic Feet) Injections 1973-1996 Withdrawals 1973-1996 Net Withdrawals 1973-1996 Liquefied Natural Gas Storage (Million Cubic Feet) Additions 1,093 656 698 468 430 517 1980-2012 Withdrawals 1,089 730 954 698 436 457 1980-2012 Net Withdrawals 4 -74 -256 -230 -7 60 1980-2012 Consumption (Million Cubic Feet) Total Consumption 87,972 89,256 92,743 94,110 100,455 95,477 1997-2012

146

Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 11, 2010 CX-000939: Categorical Exclusion Determination Ponaganet Alternative Energy Laboratory and Biomass Facilities Project CX(s) Applied: B5.1 Date: 02112010...

147

Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

up to 100% of the electricity that a home or other facility uses. Systems that generate electricity using solar energy, wind energy, ocean-thermal energy, geothermal energy,...

148

Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mid-Sized Business Program is for business customers with an average demand of 200 kilowatts or less per month. The program aids qualifying business customers in installing...

149

The Enterprise Zone (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The Enterprise Zone offers tax incentives to business expanding their workforce by 5% at facilities in designated enterprise zones. The tax credit is equal to 50% of the annual wages paid to a new...

150

,"Rhode Island Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

5,"Monthly","92013","1151989" ,"Data 2","Underground Storage",1,"Monthly","121996","1151994" ,"Data 3","Consumption",6,"Monthly","92013","1151989" ,"Release Date:","1212...

151

WHAT'S NEWS @ Rhode Island College  

E-Print Network (OSTI)

over 52,000 Little East Champions! Continued on page 6 Kinsey Durgin drives for a layup in class 3, Portrait of a Plant in Cultivation. She received third prize in class 4, Rock Garden Scene on a sophomore guard Tirrell Hill layup. Keene State threatened with 5:29 left to go, cutting the lead down

Rhode Island, University of

152

Rhode Island Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

17.45 NA 20.88 NA 1989-2013 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2013 Commercial Price 12.43 13.23 15.54 NA...

153

Rhode Island Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

17.06 16.48 15.33 NA 1967-2012 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2012 Commercial Price 14.91 15.53 15.14 14.46...

154

Rhode Island Natural Gas Prices  

Annual Energy Outlook 2012 (EIA)

4.07 NA 1989-2013 Residential Price 12.09 12.58 13.85 14.59 18.74 17.45 1989-2013 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0...

155

Department of Energy - Rhode Island  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

class"field-item even" property"content:encoded">

Facilities which compost putrescible waste andor leaf and yard waste are subject to these regulations. The...

156

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rhodes Marsh Geothermal Area (Redirected from Rhodes Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase:

157

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Rhodes Marsh Geothermal Area Rhodes Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

158

Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation No. 8 - Solid Waste Composting Facilities Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management Facilities which compost putrescible waste and/or leaf and yard waste are subject to these regulations. The regulations establish permitting, registration, and operational requirements for composting facilities. Operational requirements for putrescible waste facilities include siting, distance, and buffer requirements, as well as standards for avoiding harm to endangered species and contamination of air and water sources. Specific

159

Block Island Power Co | Open Energy Information  

Open Energy Info (EERE)

Block Island Power Co Block Island Power Co Jump to: navigation, search Name Block Island Power Co Place Rhode Island Utility Id 1857 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.4450/kWh Commercial: $0.4670/kWh The following table contains monthly sales and revenue data for Block Island Power Co (Rhode Island). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

160

Multispectral Imaging At Rhodes Marsh Area (Kratt, Et Al., 2006) | Open  

Open Energy Info (EERE)

Multispectral Imaging At Rhodes Marsh Area (Kratt, Et Al., 2006) Multispectral Imaging At Rhodes Marsh Area (Kratt, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Rhodes Marsh Area (Kratt, Et Al., 2006) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Mapped present-day borate evaporites in Teels and Rhodes Marsh with ASTER satellite imagery References C. Kratt, M. Coolbaugh, Wendy Calvin (2006) Remote Detection Of Quaternary Borate Deposits With Aster Satellite Imagery As A Geothermal Exploration Tool Retrieved from "http://en.openei.org/w/index.php?title=Multispectral_Imaging_At_Rhodes_Marsh_Area_(Kratt,_Et_Al.,_2006)&oldid=511014"

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Jumping fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Jumping fish Name: Roy Bates Age: NA Location: NA Country: NA Date: NA Question: Why do fish jump more in the summer than in the fall? Replies: One reason may be the number of...

162

2-M Probe At Rhodes Marsh Area (Kratt, Et Al., 2008) | Open Energy  

Open Energy Info (EERE)

Rhodes Marsh Area (Kratt, Et Al., 2008) Rhodes Marsh Area (Kratt, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Rhodes Marsh Area (Kratt, Et Al., 2008) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique 2-M Probe Activity Date Usefulness useful DOE-funding Unknown Notes Two-meter survey work at Rhodes Marsh began in December of 2007 followed by more recent activity in May of 2008. More than 65 2-meter-deep temperatures have been measured over a distance of 7 km (Figure 4). At the foot of the Pilot Mountains these data roughly parallel the southern end of Benton Springs fault. Anomalous temperatures up to 26.7°C occur adjacent to opalized sands and reveal a significant NW elongate temperature anomaly more than 5 km long. Cold shallow groundwater at the playa's eastern margin

163

Multispectral Imaging At Rhodes Marsh Area (Shevenell, Et Al., 2008) | Open  

Open Energy Info (EERE)

Rhodes Marsh Area (Shevenell, Et Al., 2008) Rhodes Marsh Area (Shevenell, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Rhodes Marsh Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Kratt et al. (2006) demonstrate the effectiveness of using a field-portable ASD Fieldspec spectroradiometer and satellite-based Advanced Spaceborne Thermal and emitted Reflectance Radiometer (ASTER) imagery for mapping borate minerals in the field. Borate crusts that were partially mined during the 1800s were identified and mapped at Rhodes, Teels, and Columbus Marshes (playas), all in western Nevada (Figure 1).

164

Water Sampling At Rhodes Marsh Area (Coolbaugh, Et Al., 2006) | Open Energy  

Open Energy Info (EERE)

Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Follow up (to ASTER satellite imaging) analysis of spring and well waters yielded geothermometer reservoir estimates up to 162°C References Mark F. Coolbaugh, Chris Kraft, Chris Sladek, Richard E. Zehner, Lisa Shevenell (2006) Quaternary Borate Deposits As A Geothermal Exploration Tool In The Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Rhodes_Marsh_Area_(Coolbaugh,_Et_Al.,_2006)&oldid=387552"

165

200607 Catalog University of Rhode Island  

E-Print Network (OSTI)

, 72, 4408-4414. (11) Phongikaroon, S.; Judd, K. P.; Smith, G. B.; Handler, R. A. Exp. Fluids 2004, 37, 153-158. (12) Judd, K. P.; Phongikaroon, S.; Smith, G. B.; Handler, R. A. Exp. Fluids 2005, 38, 99. In Marine and Estuarine Geochemistry; Sigleo, A. C., Hattori, A., Eds.; Lewis Publishing: Chelsea, MI, 1985

Rhode Island, University of

166

Kodiak Island Wind Farm | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Kodiak Island Wind Farm Jump to: navigation, search Name Kodiak Island Wind Farm Facility Kodiak Island...

167

Regulations for the Rhode Island Pollutant Discharge Elimination System (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations aim to protect surface water from pollutant discharges. They describe allowable discharges in the state that are subject to permits, discharges which may be made without permits,...

168

Geothermometry At Rhodes Marsh Area (Coolbaugh, Et Al., 2006...  

Open Energy Info (EERE)

At Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique Geothermometry Activity Date Usefulness useful...

169

Hainan Green Islands Power | Open Energy Information  

Open Energy Info (EERE)

Islands Power Jump to: navigation, search Name Hainan Green Islands Power Place Hainan Province, China Sector Solar Product China-based JV developing on-grid solar projects....

170

Offshore Islands Ltd | Open Energy Information  

Open Energy Info (EERE)

Islands Ltd Jump to: navigation, search Name Offshore Islands Ltd Sector Marine and Hydrokinetic Website http:http:www.offshoreisla Region United States LinkedIn Connections...

171

Newport County, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

969°, -71.2399037° 969°, -71.2399037° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5016969,"lon":-71.2399037,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Johnston, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

268401°, -71.5130445° 268401°, -71.5130445° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8268401,"lon":-71.5130445,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

North Providence, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

00997°, -71.4661703° 00997°, -71.4661703° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8500997,"lon":-71.4661703,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

North Smithfield, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

2°, -71.5495071° 2°, -71.5495071° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9667652,"lon":-71.5495071,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

175

Kent County, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

7°, -71.7147951° 7°, -71.7147951° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6579147,"lon":-71.7147951,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

Scituate, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

964495°, -71.6198686° 964495°, -71.6198686° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7964495,"lon":-71.6198686,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Cumberland, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

6°, -71.4328363° 6°, -71.4328363° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9667656,"lon":-71.4328363,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

Greenville, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

712103°, -71.5520069° 712103°, -71.5520069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8712103,"lon":-71.5520069,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

Foster, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

37098°, -71.7581249° 37098°, -71.7581249° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8537098,"lon":-71.7581249,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

180

Rhode Island Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Rhode Island Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 382 444 601 437 443 474 553 565 550 606 468 604 2002 122 149 283 367 306 359 379 481 502 578 588 342 2003 550 448 438 396 309 462 239 278 284 249 445 354 2004 649 651 584 511 321 451 329 332 382 322 648 350 2005 573 587 605 736 417 423 397 389 368 457 436 503 2006 472 485 598 560 533 536 559 449 606 461 642 496 2007 591 514 588 606 628 385 546 603 327 605 654 660 2008 429 630 491 895 705 470 420 704 473 749 480 328 2009 651 651 708 721 540 725 580 590 492 669 635 778 2010 964 747 735 624 588 568 544 556 537 651 685 835 2011 752 725 781 665 554 551 509 563 549 584 696 533

182

Barrington, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

740657°, -71.3086618° 740657°, -71.3086618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.740657,"lon":-71.3086618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

,"Rhode Island Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

7,"Annual",2012,"6/30/1967" 7,"Annual",2012,"6/30/1967" ,"Data 2","Underground Storage",3,"Annual",1996,"6/30/1973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2012,"6/30/1980" ,"Data 4","Consumption",9,"Annual",2012,"6/30/1967" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_sum_lsum_dcu_sri_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_sum_lsum_dcu_sri_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/19/2013 6:44:27 AM"

184

Rhode Island Natural Gas Deliveries to Electric Power Consumers (Million  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3,422 3,534 4,521 3,613 5,102 4,790 5,482 6,056 5,945 5,793 4,362 5,797 2002 5,753 4,458 3,904 3,575 3,920 4,095 4,617 4,444 4,282 3,985 5,812 5,121 2003 3,879 4,020 4,001 1,997 1,848 3,167 4,808 4,397 3,931 3,356 3,882 2,724 2004 3,264 2,652 1,896 2,316 3,763 3,842 3,174 3,864 2,516 2,312 3,179 3,181 2005 2,862 2,953 2,483 3,586 3,821 4,611 4,807 4,964 3,729 3,765 3,101 3,231 2006 3,153 2,496 2,376 1,840 3,537 3,934 5,664 4,426 4,347 5,415 2,975 2,871 2007 3,726 4,014 2,752 3,177 3,514 3,376 5,743 6,326 5,379 4,792 3,504 5,093 2008 4,888 3,652 3,459 5,405 3,502 5,135 5,684 4,745 4,365 4,804 3,337 4,006

185

Providence, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

9891°, -71.4128343° 9891°, -71.4128343° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8239891,"lon":-71.4128343,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

Washington County, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

°, -71.6673352° °, -71.6673352° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4568113,"lon":-71.6673352,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Rhode Island Natural Gas Total Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-7 Year-8 Year-9 1990's 117,707 130,751 118,001 2000's 88,419 95,607 87,805 78,456 72,609 80,764 77,204 87,972 89,256 92,743 2010's 94,110 100,467 - No Data Reported;...

188

Rhode Island Natural Gas Interstate Deliveries (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-8 Year-9 1980's 111,986 1990's 103,518 110,202 132,486 96,034 125,766 151,700 136,456 123,040 106,096 84,335 2000's 83,200 78,416 75,321 104,882 75,750 82,314 100,658...

189

,"Rhode Island Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

190

Rhode Island Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 4.46 4.00 4.25 4.44 4.98 5.06 4.70 4.20 4.50 4.86 W W 2003 7.62 8.68 W W W 6.89 6.42 6.22 5.57 5.19 W 6.50 2004 9.27 7.07...

191

Rhode Island Natural Gas Price Sold to Electric Power Consumers...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.35 3.38 2000's 2.69 4.70 6.72 7.04 9.68 7.58 8.06 10.50 4.98 2010's 5.45 5.10 3.98...

192

Underground Injection Control Program Rules and Regulations (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to preserve the quality of the groundwater of the State and thereby protect groundwater contamination from contamination by discharge from injection wells and...

193

University of Rhode Island 2011 Water Quality Report  

E-Print Network (OSTI)

chlorination and adjust pH. The wells and associated pump stations pump treated water into the distribution or domestic wastewater discharges, oil and gas production, mining, or farming. PESTICIDES & HERBICIDES - which, and septic systems. RADIOACTIVE - which can be nat- urally occurring or the result of oil and gas production

Rhode Island, University of

194

Rhode Island - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum prices, supply and demand information from the Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government

195

Rhode Island Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

196

Climate Action Plan (Rhode Island) | Open Energy Information  

Open Energy Info (EERE)

http:www.dem.ri.govclimateindex.htm Summary In the fall of 2001, the Department of Environmental Management (DEM), the RI State Energy Office (SEO), and the Governor's...

197

Rules and Regulations for Hazardous Waste Management (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish permitting and operational requirements for hazardous waste facilities. They are designed to minimize...

198

Residential Renewable Energy Tax Credit (Corporate) (Rhode Island...  

Open Energy Info (EERE)

credit for photovoltaic systems (on-grid and off-grid), solar hot-water systems, active solar-heating systems, wind-energy systems and geothermal-energy systems installed on...

199

Residential Renewable Energy Tax Credit (Personal) (Rhode Island...  

Open Energy Info (EERE)

credit for photovoltaic systems (on-grid and off-grid), solar hot-water systems, active solar-heating systems, wind-energy systems and geothermal-energy systems. The tax credit...

200

DOE Solar Decathlon: 2005 Teams - Rhode Island School of Design  

NLE Websites -- All DOE Office Websites (Extended Search)

low-tech sides." The high-tech north side has the convertible home-officebedroom, the solar panels-which still manage to face south-and the utility systems. The low-tech south...

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alternative Fuels Data Center: Rhode Island Laws and Incentives...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

related to HEVs PHEVs. Laws and Regulations Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements To reduce fuel consumption and...

202

Hydroelectric power potential, Woonsocket Falls Dam, Woonsocket, Rhode Island  

DOE Green Energy (OSTI)

The feasibility of developing a hydroelectric power plant at an existing flood control dam of the city of Woonsocket, RI was examined considering environmental, economic, technical and engineering factors. It was concluded that the City should proceed with plans to develop a hydro plant. (LCL)

Daly, J C; Dowdell, R B; Kelly, W E; Koveos, P E; Krikorian, Jr, J S; Lengyel, G; Prince, M J; Seely, S; Tromp, L; Urish, D W

1979-01-01T23:59:59.000Z

203

Rhode Island - Compare - U.S. Energy Information Administration...  

U.S. Energy Information Administration (EIA) Indexed Site

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

204

Annual Report FY2012 University of Rhode Island  

E-Print Network (OSTI)

(CSMNS) AS NOVEL NAN $433,605 $433,605 NARAYANAN, RADHA SURFACE EXTINCTION SPECTROSCOPY AS NOVEL METHOD 127 31 15 23 6 78 46 5 1 3 4 3 4 New category (as of FY2006): US Dept. of Defense excluding funds from Army, Navy and Air Force. New category (as of FY2006): University funds other than URI. FY2007 660 14 5

Rhode Island, University of

205

Annual Report FY2012 University of Rhode Island  

E-Print Network (OSTI)

2006 5 4 New category (as of FY2006): US Dept. of Defense excluding funds from Army, Navy and Air Force. 1 5 6 New category (as of FY2006): University funds other than URI. 2 1 FY2007 FY2008 1 FY2009 1 FY DEVELOPMENT OF NEW ELECTROLYTE SYSTEMS LITHIUM ION BATTERY S $674,769 $674,769 LUCHT, BRETT INVESTIGATION

Rhode Island, University of

206

NIST Rhode Island Nightclub Fire Investigation Team Calls for ...  

Science Conference Proceedings (OSTI)

... materials as a finish product (such as a wall covering) and further ... the location and conditions of doors, windows and ventilation; the installed fire ...

2013-02-18T23:59:59.000Z

207

Commerce's NIST Asks Public for Information on Rhode Island ...  

Science Conference Proceedings (OSTI)

... doors and windows, and details about ceiling height; the conducting of laboratory fire tests on three common types of foam wall covering to provide ...

2012-10-02T23:59:59.000Z

208

Rules and Regulations for Dam Safety (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These rules and regulations seek to provide for the safety of dams to protect the public, real property, and natural resources by establishing reasonable standards and creating a public record for...

209

Alternative Fuels Data Center: Rhode Island Laws and Incentives...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

For the purpose of this regulation, a low-speed vehicle is defined as a self-propelled, electric or gas powered motor vehicle that is designed to carry no more than four...

210

Rhode Island - Seds - U.S. Energy Information Administration...  

U.S. Energy Information Administration (EIA) Indexed Site

forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & Finance Financial market analysis and financial data for major energy companies....

211

DOE Solar Decathlon: Rhode Island School of Design: Finding the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cornell Crowder Florida International Madrid Maryland Michigan NYIT Pittsburgh Synergy Puerto Rico RISD Rolla Texas U Mass Dartmouth Virginia Tech Washington Quick Links Solar...

212

Rhode Island Natural Gas Delivered for the Account of Others  

Annual Energy Outlook 2012 (EIA)

Gas Delivered for the Account of Others (Million Cubic Feet) Area: U.S. Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida...

213

Rhode Island Natural Gas Consumption by End Use  

Annual Energy Outlook 2012 (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

214

University of Rhode Island inAdvance June 22, 2006  

E-Print Network (OSTI)

Scholarship Endowment The third annual Rhody the Ram Charity Yard Sale, held on June 11, raised more than $1,500 for the Rhody the Ram Endowment. The Rhody Endowment now stands at more than $20,000, and the Alumni Association hopes to award its first Rhody the Ram scholarship in July. Thanks to all who participated in this year

Rhode Island, University of

215

Commercial-Scale Renewable-Energy Grants (Rhode Island) | Open...  

Open Energy Info (EERE)

stated in the program guidelines Manufacturer's specifications for panels and inverter to be installed. A photo of the project location taken from the south looking...

216

Energy Efficiency Resource Standard (Rhode Island) | Open Energy...  

Open Energy Info (EERE)

by the statute, for electricity and gas delivery. In July 2011, the PUC approved energy savings targets for National Grid for 2012, 2013 and 2014. Specifically, National...

217

Rhode Island - U.S. Energy Information Administration (EIA ...  

U.S. Energy Information Administration (EIA)

Petroleum prices, supply and demand information from the Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government

218

Rhode Island Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... Residential Propane: 3.540: 3.534: 3.540: 3.515: 3.511: 3.514: 1990-2013

219

Final NIST Rhode Island Nightclub Fire Report Urges Strict ...  

Science Conference Proceedings (OSTI)

... our investigation findings and the comments received on our draft report, we are today making 10 recommendations in our final report for increased ...

2012-11-07T23:59:59.000Z

220

Air Pollution Control Regulations: No. 1- Visible Emissions (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The regulations state that no person shall emit into the atmosphere from any source any air contaminant for a period or periods aggregating more than three minutes in any one hour which is greater...

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Rhode Island - State Energy Profile Overview - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Idaho Illinois Indiana Iowa Kansas: Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri: Montana Nebraska Nevada ...

222

Rhode Island Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial NA 1,695 1,177 433 NA 203 1989-2013 Industrial 792 738 NA NA NA NA 2001-2013 Vehicle Fuel 8 8 8 8 8 8 2010-2013 Electric Power 1,554 2,474 4,028 5,311 4,535 6,033...

223

Lincoln, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

110123°, -71.4418101° 110123°, -71.4418101° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9110123,"lon":-71.4418101,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

224

Warren, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

303793°, -71.2825493° 303793°, -71.2825493° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7303793,"lon":-71.2825493,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

Smithfield, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

0433°, -71.549507° 0433°, -71.549507° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9220433,"lon":-71.549507,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Northern Mariana Islands - Search - U.S. Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Northern Mariana Islands Northern Mariana Islands Profile Northern Mariana Islands Northern Mariana Islands Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports

227

US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project  

Open Energy Info (EERE)

US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project Jump to: navigation, search Logo: US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project Name US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project Agency/Company /Organization National Renewable Energy Laboratory, United States Department of Energy Partner EDIN Initiative Partners Sector Energy Focus Area Energy Efficiency Topics Background analysis, Low emission development planning Website http://www.edinenergy.org/usvi Country US Virgin Islands Latin America and the Caribbean References National Renewable Energy Laboratory, EERE Supported International Activities FY 2009 Annual Operating Plan (August 25, 2009 Abstract The purpose of the EDIN pilot is to have a meaningful impact in a short duration by developing clean energy technologies, policies, and financing mechanisms for the pilot island with projects whose elements can be repeated on other islands.

228

Hydraulic jumps on an incline  

E-Print Network (OSTI)

When a fluid jet strikes an inclined solid surface at normal incidence, gravity creates a flow pattern with a thick outer rim resembling a parabola and reminiscent of a hydraulic jump. There appears to be little theory or experiments describing simple aspects of this phenomenon, such as the maximum rise height of the fluid above the impact point, and its dependence on jet velocity and inclination angle. We address this with experiments, and present a simple theory based on horizontal hydraulic jumps which accounts for the rise height and its scaling, though without describing the shape of the parabolic envelope.

Jean-Luc Thiffeault; Andrew Belmonte

2010-09-01T23:59:59.000Z

229

Hydraulic jumps on an incline  

E-Print Network (OSTI)

When a fluid jet strikes an inclined solid surface at normal incidence, gravity creates a flow pattern with a thick outer rim resembling a parabola and reminiscent of a hydraulic jump. There appears to be little theory or experiments describing simple aspects of this phenomenon, such as the maximum rise height of the fluid above the impact point, and its dependence on jet velocity and inclination angle. We address this with experiments, and present a simple theory based on horizontal hydraulic jumps which accounts for the rise height and its scaling, though without describing the shape of the parabolic envelope.

Thiffeault, Jean-Luc

2010-01-01T23:59:59.000Z

230

Definition: Automated Islanding And Reconnection | Open Energy Information  

Open Energy Info (EERE)

Islanding And Reconnection Islanding And Reconnection Jump to: navigation, search Dictionary.png Automated Islanding And Reconnection Automated Islanding and Reconnection Automated islanding and reconnection is achieved by automated separation and subsequent reconnection (autonomous synchronization) of an independently operated portion of the T&D system (i.e., microgrid) from the interconnected electric grid. A microgrid is an integrated energy system consisting of interconnected loads and distributed energy resources which, as an integrated system, can operate in parallel with the grid or as an island.[1] View on Wikipedia Wikipedia Definition Islanding refers to the condition in which a distributed (DG) generator continues to power a location even though electrical grid power

231

TBU-0058 - In the Matter of Donald R. Rhodes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TBU-0058 - In the Matter of Donald R. Rhodes TBU-0058 - In the Matter of Donald R. Rhodes TBU-0058 - In the Matter of Donald R. Rhodes Donald R. Rhodes (Rhodes or the complainant) appeals the dismissal of his August 25, 2006 complaint of retaliation filed under 10 C.F.R. Part 708, the Department of Energy (DOE) Contractor Employee Protection Program. He filed the complaint with the Whistleblower Program Manager (WP Manager) of the DOE's National Nuclear Security Administration Service Center (NNSA/SC), located in Albuquerque, New Mexico. As explained below, the WP Manager's November 16, 2006 dismissal of the complaint should be upheld, and the appeal denied. tbu0058.pdf More Documents & Publications TBU-0052 - In the Matter of John Merwin TBU-0071 - In the Matter of Jeffrey R. Burnette TBU-0114 - In the Matter of Dennis Rehmeier

232

Northern Mariana Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mariana Islands: Energy Resources Mariana Islands: Energy Resources Jump to: navigation, search Name Northern Mariana Islands 2-letter ISO code MP 3-letter ISO code MNP Numeric ISO code 580 Equivalent URI DBpedia GeoNames ID 4041468 Advanced Economy[1] No References CIA World Factbook, Appendix D[2] Wikipedia[3] Geonames[4] This article is a stub. You can help OpenEI by expanding it. The Northern Mariana Islands is a commonwealth in political union with the United States of America. Energy Incentives for Northern Mariana Islands N. Mariana Islands - Building Energy Code (N. Mariana Islands) N. Mariana Islands - Energy Star Rebate Program (N. Mariana Islands) N. Mariana Islands - Renewables Portfolio Standard (N. Mariana Islands) References ↑ IMF World Economic Outlook Database April 2009 -- WEO Groups and

233

U.S. Virgin Islands - Search - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

US Virgin Islands US Virgin Islands Profile US Virgin Islands US Virgin Islands Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports

234

MWRA Deer Island Wind | Open Energy Information  

Open Energy Info (EERE)

MWRA Deer Island Wind MWRA Deer Island Wind Jump to: navigation, search Name MWRA Deer Island Wind Facility MWRA Deer Island Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MWRA Deer Island Energy Purchaser MWRA Deer Island Location Deer Island MA Coordinates 42.346751°, -70.957006° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.346751,"lon":-70.957006,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Monhegan Island | Open Energy Information  

Open Energy Info (EERE)

Monhegan Island Monhegan Island Jump to: navigation, search Name Monhegan Island Facility Monhegan Island Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Maine State Dept of Conservation Developer DeepCWind Consortium Location Atlantic Ocean ME Coordinates 43.713°, -69.317° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.713,"lon":-69.317,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Percent of Industrial Natural Gas Deliveries in Rhode Island Represented by  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 41.4 29.5 26.1 37.6 29.0 29.3 26.0 26.2 22.4 26.8 29.3 13.6 2002 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 2003 15.7 18.9 21.5 19.6 26.7 11.7 16.8 18.8 18.6 22.1 18.5 22.3 2004 13.9 16.7 14.5 16.8 21.1 11.7 16.7 15.3 16.0 19.4 10.5 23.0 2005 17.8 14.7 15.9 11.0 16.3 16.5 12.9 13.8 16.3 13.2 16.5 19.7 2006 18.6 18.7 16.4 15.0 12.5 13.3 8.8 10.5 11.4 12.8 10.5 15.7 2007 13.0 19.0 15.1 12.7 10.1 14.3 8.0 6.3 17.1 8.3 9.0 10.9 2008 19.9 14.2 16.6 7.2 8.2 9.5 10.7 7.0 13.2 8.2 15.2 23.1 2009 12.2 14.7 8.0 12.3 9.5 7.8 6.7 9.5 10.8 3.5 8.6 7.0 2010 7.3 6.2 5.2 3.8 3.8 6.3 5.5 4.2 5.7 9.3 7.7 10.4

237

Natural Gas Delivered to Consumers in Rhode Island (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9,425 8,875 9,886 7,566 7,317 6,419 6,971 7,536 7,493 7,652 6,918 9,231 2002 10,511 8,745 7,848 6,823 6,244 5,757 5,873 5,748 5,630 5,720 8,981 9,553 2003 9,510 10,141 9,429 5,721 4,332 4,902 5,830 5,423 4,891 4,709 6,468 6,670 2004 9,122 9,552 6,607 6,373 5,874 5,299 4,296 4,885 3,594 3,675 6,015 6,955 2005 8,403 8,917 7,847 7,729 6,062 6,293 5,990 6,010 4,836 5,169 5,246 7,434 2006 8,207 6,737 7,405 5,579 5,935 5,619 6,982 5,512 5,724 6,845 5,472 6,230 2007 7,988 9,766 8,374 7,190 6,533 4,869 7,009 7,571 6,437 6,185 5,880 9,217 2008 10,073 9,216 8,387 9,366 6,092 6,760 7,028 6,288 5,544 6,433 5,614 7,492

238

Rhode Island Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.06 8.02 7.44 7.27 7.13 6.24 5.24 5.91 5.76 4.85 5.65 6.48 2002 4.76 4.46 4.16 4.65 4.75 4.09 4.55 4.44 4.31 5.33 5.39 6.62 2003 7.22 7.30 7.18 8.70 7.88 8.59 7.80 8.62 8.64 9.10 8.92 9.18 2004 9.08 9.01 9.15 9.19 9.31 9.92 10.11 10.32 9.93 9.97 10.23 10.38 2005 10.29 10.34 10.29 10.43 10.86 11.24 11.49 12.26 11.38 11.18 12.25 13.32 2006 13.48 13.31 13.34 13.64 13.61 13.21 13.76 13.31 13.51 13.52 12.95 12.38 2007 12.42 12.43 12.33 12.45 12.53 12.64 12.96 12.95 12.72 12.81 12.70 12.65 2008 12.62 12.50 12.49 12.75 12.99 13.09 13.23 14.14 14.05 14.14 14.45 13.37 2009 12.38 12.68 12.47 11.64 11.44 12.39 13.40 12.89 13.09 13.94 13.30 12.96

239

Rhode Island Price of Natural Gas Sold to Commercial Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6.38 6.77 6.51 6.32 6.63 7.31 6.91 7.11 7.00 5.15 5.83 6.42 1990 6.63 6.74 6.81 5.75 5.65 7.09 4.85 5.20 5.50 5.53 6.06 6.98 1991 6.70 6.77 6.97 7.18 5.25 5.04 4.30 4.34 4.22 5.47 7.26 6.60 1992 7.01 7.05 6.74 6.01 5.73 5.67 5.31 5.07 5.15 5.49 6.99 6.95 1993 7.17 6.91 6.90 6.97 7.44 7.51 7.22 6.60 6.96 6.58 7.33 7.47 1994 7.88 8.13 8.14 8.17 7.80 7.59 6.85 6.09 7.83 6.77 6.41 7.01 1995 6.25 7.79 4.88 7.23 6.07 6.51 6.02 6.32 5.99 6.35 5.94 6.94 1996 6.80 7.43 7.46 7.55 7.29 7.71 8.11 7.95 7.95 8.23 7.78 7.89 1997 7.88 8.20 8.17 8.46 8.07 8.77 8.96 9.12 8.77 8.00 8.02 7.98 1998 7.75 7.78 7.88 8.10 8.37 8.88 8.98 9.35 9.14 8.65 8.11 8.02

240

Rhode Island Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 77,882: 61,856: 59,789: 65,067: 65,295: 62,041: 1984-2012: Residual ...

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Potential Job Creation in Rhode Island as a Result of Adopting New Residential Building Energy Codes  

Science Conference Proceedings (OSTI)

Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

Scott, Michael J.; Niemeyer, Jackie M.

2013-09-01T23:59:59.000Z

242

Rhode Island No. 2 Diesel, Ultra Low-Sulfur Refiner Sales Volumes  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values shown for the ...

243

Air Pollution Control Regulations: No. 6- Continuous Emissions Monitors and Opacity Monitors (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

Stationary sources, including fossil fuel fired steam or hot water generating units, may be required to install and operate a continuous emissions monitoring system equipped with an opacity monitor...

244

Air Pollution Control Regulations: No. 46 & 47- CO2 Budget Trading Program & Allowance Distribution (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

For the purposes of these regulations, CO2 budget units are defined as units that serve an electricity generator with nameplate capacity greater than or equal to 25 MWe. The regulations describe...

245

Rhode Island - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Petroleum prices, supply and demand information from the Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government

246

Rhode Island - State Energy Profile Data - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum prices, supply and demand information from the Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government

247

This perspective aerial view of Newport, Rhode Island, drawn and published by  

E-Print Network (OSTI)

, Exxon Research, IBM Research Laboratories, International Paper, NYNEX, and many other major compa- nies

Acton, Scott

248

catalogUndergraduate and Graduate Catalog of the University of Rhode Island  

E-Print Network (OSTI)

," by stieg larsson 04. "mockingjay," by suzanne Collins 05. "Chelsea Chelsea bang bang," by Chelsea handler 06. "are you there, vodka? it's me, Chelsea," by Chelsea handler 07. "the girl Who Kicked the hornet

Rhode Island, University of

249

catalogUndergraduate and Graduate Catalog of the University of Rhode Island  

E-Print Network (OSTI)

Highly Scalable Distributed Dataflow Analysis Joseph L. Greathouse, Chelsea LeBlanc, Todd Austin- visor's page fault handler then checks the page number against a list of pages that contain shadowed timekeeping code in the timer interrupt handler and the scheduler code of dom0 and the hypervisor. We

Rhode Island, University of

250

Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish procedures for the investigation and remediation of contamination resulting from the unpermitted release of hazardous materials. The regulations aim to protect water...

251

Air Pollution Control Regulations: No. 9- Air Pollution Control Permits (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations describe permitting procedures and requirements for minor and major sources of emissions.

252

Air Pollution Control Regulations: No. 3- Particulate Emissions from Industrial Processes (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations limit particulate emissions into the atmosphere by process weight per hour, where process weight is the total weight of all materials introduced into any specific process which...

253

Percent of Commercial Natural Gas Deliveries in Rhode Island Represented by  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 87.1 83.9 47.7 48.9 40.4 44.6 82.7 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 75.5 80.2 97.3 91.1 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1995 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1996 100.0 99.3 98.4 98.2 97.8 92.0 84.1 86.8 49.9 66.5 87.3 89.1 1997 89.6 91.7 82.2 88.5 80.8 72.4 71.1 67.9 68.7 71.1 80.7 64.1

254

Natural Gas Citygate Price in Rhode Island (Dollars per Thousand Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3.47 3.47 3.36 3.22 3.91 4.85 5.42 4.91 4.63 3.55 3.51 3.49 1990 3.68 3.71 3.61 3.32 3.79 4.07 4.21 3.84 3.59 3.44 3.74 3.91 1991 3.74 3.66 3.35 3.55 3.62 3.73 3.95 3.57 3.67 3.95 3.88 3.60 1992 3.52 3.40 3.06 3.38 3.99 4.21 4.26 4.87 4.58 4.45 4.49 3.67 1993 3.57 3.12 3.34 4.09 6.59 6.17 7.73 6.64 7.37 4.78 4.75 3.93 1994 3.50 3.67 4.00 4.59 6.30 5.40 6.27 6.17 5.39 3.98 3.36 3.16 1995 3.04 2.71 2.76 3.25 4.20 5.53 6.46 5.85 5.28 4.54 3.13 3.34 1996 3.28 3.92 3.85 3.53 5.06 6.42 7.46 6.51 5.94 3.91 4.04 5.20 1997 4.85 4.26 3.16 3.46 4.81 6.42 7.53 6.64 5.71 4.53 4.46 4.02 1998 3.93 4.03 4.05 4.26 4.68 4.69 4.82 4.66 4.30 4.07 4.05 1.26

255

Microsoft PowerPoint - TA-21_LASO_Rhodes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Use Case Study for Technical Area Land Use Case Study for Technical Area Land Use Case Study for Technical Area- -21 at 21 at Los Alamos National Laboratory Los Alamos National Laboratory Residential or Industrial Cleanup Standards Residential or Industrial Cleanup Standards Los Alamos Site Office 1 David S. Rhodes, Supervisory Federal Project Director Environmental Restoration Projects and Decontamination and Decommissioning Team Los Alamos Site Office Regulations Regulations Public Law 105-119, Title VI, Section 632 - Authorizes and directs transfer of land to the County of Los Alamos and to Department Of the Interior, in trust for the Pueblo of San Ildefonso 40 CFR 264, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (RCRA) and 10 CFR 1021, National Environmental Policy Act

256

Geothermometry At Rhodes Marsh Area (Shevenell, Et Al., 2008) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Rhodes Marsh Area (Shevenell, Et Geothermometry At Rhodes Marsh Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Borate crusts that were partially mined during the 1800s were identified and mapped at Rhodes, Teels, and Columbus Marshes (playas), all in western Nevada (Figure 1). Subsequent field verification and chemical analyses of well, spring and groundwater samples indicated the presence of hidden subsurface geothermal reservoirs. Cation and quartz geothermometry indicate subsurface reservoir temperatures between 118°C and 162°C at all three areas based on results from waters sampled proximal to borate crusts. References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris

257

2-M Probe At Rhodes Marsh Area (Shevenell, Et Al., 2008) | Open Energy  

Open Energy Info (EERE)

2-M Probe At Rhodes Marsh Area (Shevenell, Et Al., 2-M Probe At Rhodes Marsh Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique 2-M Probe Activity Date Usefulness useful DOE-funding Unknown Notes Coolbaugh et al. (2007), Sladek et al. (2007), and Kratt, et al. (2008, this volume) describe a shallow temperature survey system in which temperatures can be measured quickly and inexpensively at 2 m depths. This system was tested at Desert Queen based on its structural setting and availability of thermal gradient well data obtained in the 1970's from which to make thermal anomaly comparisons. The system was subsequently used at Tungsten Mountain and Teels and Rhodes Marshes to help locate blind geothermal systems. References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris

258

Fire Island Wind Project | Open Energy Information  

Open Energy Info (EERE)

Island Wind Project Island Wind Project Jump to: navigation, search Name Fire Island Wind Project Facility Fire Island Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner CIRI Developer Fire Island Wind LLC Energy Purchaser Chugach Location Fire Island AK Coordinates 61.144146°, -150.217652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.144146,"lon":-150.217652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Bubble visualization in a simulated hydraulic jump  

E-Print Network (OSTI)

This is a fluid dynamics video of two- and three-dimensional computational fluid dynamics simulations carried out at St. Anthony Falls Laboratory. A transient hydraulic jump is simulated using OpenFOAM, an open source numerical solver. A Volume of Fluid numerical method is employed with a realizable k-epsilon turbulence model. The goal of this research is to model the void fraction and bubble size in a transient hydraulic jump. This fluid dynamics video depicts the air entrainment characteristics and bubble behavior within a hydraulic jump of Froude number 4.82.

Witt, Adam; Shen, Lian

2013-01-01T23:59:59.000Z

260

Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations  

Open Energy Info (EERE)

Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations During And After The Volcanic Crisis Of Spring 1990, And Monitoring Prior To The May 2003 Eruption Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations During And After The Volcanic Crisis Of Spring 1990, And Monitoring Prior To The May 2003 Eruption Details Activities (0) Areas (0) Regions (0) Abstract: Anatahan island is 9.5 km east-west by 3.5 km north-south and truncated by an elongate caldera 5 km east-west by 2.5 km north-south. A steep-walled pit crater ~1 km across and ~200 m deep occupies the eastern part of the caldera. The island is the summit region of a mostly submarine stratovolcano. The oldest subaerial rocks (stage 1) are exposed low on the

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Block Island Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Block Island Wind Farm Block Island Wind Farm Jump to: navigation, search Name Block Island Wind Farm Facility Block Island Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Deepwater Wind Location Offshore from Block Island RI Coordinates 41.1°, -71.53° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1,"lon":-71.53,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

PERFORMANCE OF THE AGS TRANSITION JUMP SYSTEM.  

SciTech Connect

The transition jump system has been indispensable to the high intensity proton operation of the AGS complex. Nevertheless, transition crossing remains one of the major hurdles as the accelerator complex intensity is pushed upward. To enhance the performance of the system ''quadrupole pumping'' in the Booster is used to minimize the necessary longitudinal dilution of the beam on the AGS injection porch. During the transition jump sextupole correctors at strategic locations are pulsed to minimize the effects of the chromatic non-linearity of the jump system. The available instrumentation for diagnosing the performance of the system will be described, along with installed hardware to counter the non-linear effects of the transition jump system.

AHRENS,L.A.; BRENNAN,J.M.; GLENN,J.W.; ROSER,T.; VAN ASSELT,W.K.

1999-03-29T23:59:59.000Z

263

Dynamics of the West African Monsoon Jump  

Science Conference Proceedings (OSTI)

The observed abrupt latitudinal shift of maximum precipitation from the Guinean coast into the Sahel region in June, known as the West African monsoon jump, is studied using a regional climate model. Moisture, momentum, and energy budget analyses ...

Samson M. Hagos; Kerry H. Cook

2007-11-01T23:59:59.000Z

264

The hydraulic jump as a white hole  

E-Print Network (OSTI)

In the geometry of the circular hydraulic jump, the velocity of the liquid in the interior region exceeds the speed of capillary-gravity waves (ripplons), whose spectrum is `relativistic' in the shallow water limit. The velocity flow is radial and outward, and thus the relativistic ripplons cannot propagating into the interior region. In terms of the effective 2+1 dimensional Painleve-Gullstrand metric appropriate for the propagating ripplons, the interior region imitates the white hole. The hydraulic jump represents the physical singularity at the white-hole horizon. The instability of the vacuum in the ergoregion inside the circular hydraulic jump and its observation in recent experiments on superfluid 4He by E. Rolley, C. Guthmann, M.S. Pettersen and C. Chevallier in physics/0508200 are discussed.

G. E. Volovik

2005-08-30T23:59:59.000Z

265

Island Energy Solutions | Open Energy Information  

Open Energy Info (EERE)

Island Energy Solutions Island Energy Solutions Jump to: navigation, search Name Island Energy Solutions Place Kailua, Hawaii Zip 96734 Product Island Energy Solutions, Inc. is an electrical contracting company, based out of Kailua, Oahu, Hawaii. Coordinates 21.396572°, -157.740068° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.396572,"lon":-157.740068,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Jumping ant routing algorithm for sensor networks  

Science Conference Proceedings (OSTI)

Enterprises that may rely on critical equipments which are constantly moving around, for example, hospitals - need to ensure they can know the current location of vital but mobile assets. Besides, the sensor node on each device should inform us whether ... Keywords: ARAMA (Ant Routing Algorithm for Mobile Ad-hoc Networks), Ad-hoc, JARA (Jumping Ant Routing Algorithm), MANET

Wei-Ming Chen; Chung-Sheng Li; Fu-Yu Chiang; Han-Chieh Chao

2007-10-01T23:59:59.000Z

267

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agricultural Commercial Construction Industrial Utility Department of Environmental Management Rhode Island Stormwater Design and Installation Standards Manual (Rhode Island)...

268

Cayman Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cayman Islands: Energy Resources Cayman Islands: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.5,"lon":-80.66667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Marshall Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Marshall Islands: Energy Resources Marshall Islands: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":10,"lon":167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Solomon Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Solomon Islands: Energy Resources Solomon Islands: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-8,"lon":159,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Hydraulic/Shock-Jumps in Protoplanetary Disks  

E-Print Network (OSTI)

In this paper, we describe the nonlinear outcome of spiral shocks in protoplanetary disks. Spiral shocks, for most protoplanetary disk conditions, create a loss of vertical force balance in the post-shock region and result in rapid expansion of the gas perpendicular to the disk midplane. This expansion has characteristics similar to hydraulic jumps, which occur in incompressible fluids. We present a theory to describe the behavior of these hybrids between shocks and hydraulic jumps (shock bores) and then compare the theory to three-dimensional hydrodynamics simulations. We discuss the fully three-dimensional shock structures that shock bores produce and discuss possible consequences for disk mixing, turbulence, and evolution of solids.

A. C. Boley; R. H. Durisen

2005-10-11T23:59:59.000Z

272

Nonclassical Phase Space Jumps and Optimal Spawning  

Science Conference Proceedings (OSTI)

Significant attempts have been made toward the intuitive understanding of nonclassical Franck-Condon factors that govern many important molecular processes from radiationless transitions to electronic spectroscopy. In the classical picture, i.e., Condon approximation, nuclear motion is assumed frozen throughout the duration of electronic transitions. However, as is demonstrated in this chapter, position and momentum jumps can compete in determining the Franck-Condon factor such that the conventional propensity rule can be misleading. We present a new method in this chapter where both position and momenta are simultaneously altered to achieve an improved description of nonadiabatic events. This optimal spawning procedure reduces to simpler approaches such as the strict momentum jump in appropriate limits, but is sufficiently flexible to describe cases where both position and momentum adjustments are important.

Yang, S; Yang, Sandy; Martinez, Todd J.

2010-06-18T23:59:59.000Z

273

Tomorrow BioFuels LLC | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Tomorrow BioFuels LLC Jump to: navigation, search Name Tomorrow BioFuels LLC Place Cranston, Rhode Island Zip 2921 Product...

274

Bell's Jump Process in Discrete Time  

E-Print Network (OSTI)

The jump process introduced by J. S. Bell in 1986, for defining a quantum field theory without observers, presupposes that space is discrete whereas time is continuous. In this letter, our interest is to find an analogous process in discrete time. We argue that a genuine analog does not exist, but provide examples of processes in discrete time that could be used as a replacement.

Jonathan Barrett; Matthew Leifer; Roderich Tumulka

2005-06-08T23:59:59.000Z

275

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Zone (Rhode Island) Rhode Island Commercial Industrial Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Rhode...

276

Dominica Island-NREL Cooperation | Open Energy Information  

Open Energy Info (EERE)

Dominica Island-NREL Cooperation Dominica Island-NREL Cooperation Jump to: navigation, search Logo: Dominica Island-NREL Cooperation Name Dominica Island-NREL Cooperation Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Wind Topics Background analysis Website http://www.nrel.gov/internatio Country Dominica Caribbean References NREL International Program[1] Abstract The National Renewable Energy Laboratory is cooperating with Dominica Island to develop small wind generation as part of the Low Carbon Communities of the Americas program The National Renewable Energy Laboratory is cooperating with Dominica Island to develop small wind generation as part of the Low Carbon Communities of the Americas program. References ↑ "NREL International Program"

277

US Virgin Islands EDIN Pilot Project | Open Energy Information  

Open Energy Info (EERE)

Islands EDIN Pilot Project Islands EDIN Pilot Project Jump to: navigation, search Logo: EDIN US Virgin Islands Pilot Project Name EDIN US Virgin Islands Pilot Project Agency/Company /Organization National Renewable Energy Laboratory, United States Department of Energy Partner EDIN Initiative Partners Sector Energy Focus Area Energy Efficiency Topics Low emission development planning, Background analysis Website http://www.edinenergy.org/usvi Country United States Northern America References National Renewable Energy Laboratory, EERE Supported International Activities FY 2009 Annual Operating Plan (August 25, 2009 Abstract The purpose of the EDIN pilot is to have a meaningful impact in a short duration by developing clean energy technologies, policies, and financing mechanisms for the pilot island with projects whose elements can be repeated on other islands.

278

Kauai Island Utility Cooperative | Open Energy Information  

Open Energy Info (EERE)

Island Utility Cooperative Island Utility Cooperative Jump to: navigation, search Name Kauai Island Utility Cooperative Place Hawaii Utility Id 10071 Utility Location Yes Ownership C NERC Location HICC Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png D Residential Service Residential General Light and Power Service Schedule G Commercial General Light and Power Service Schedule J Commercial Large Power Secondary Schedule P Industrial Large Power Service Schedule L Industrial

279

Air Pollution Control Regulations: No. 46 and 47- CO2 Budget Trading Program and Allowance Distribution (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

For the purposes of these regulations, CO2 budget units are defined as units that serve an electricity generator with nameplate capacity greater than or equal to 25 MWe. The regulations describe...

280

Air Pollution Control Regulations: No. 7- Emission of Air Contaminants Detrimental to Person or Property (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

No person shall emit any contaminant which either alone or in connection with other emissions, by reason of their concentration or duration, may be injurious to human, plant or animal life, or...

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

2011 Dynamics at Surfaces Gordon Research Conference (August 7-12, 2011, Salve Regina University, Newport, Rhode Island)  

SciTech Connect

The 2011 Gordon Conference on Dynamics at Surfaces is the 32nd anniversary of a meeting held every two years that is attended by leading researchers in the area of experimental and theoretical dynamics at liquid and solid surfaces. The conference focuses on the dynamics of the interaction of molecules with either liquid or solid surfaces, the dynamics of the outermost layer of liquid and solid surfaces and the dynamics at the liquid-solid interface. Specific topics that are featured include state-to-state scattering dynamics, chemical reaction dynamics, non-adiabatic effects in reactive and inelastic scattering of molecules from surfaces, single molecule dynamics at surfaces, surface photochemistry, ultrafast dynamics at surfaces, and dynamics at water interfaces. The conference brings together investigators from a variety of scientific disciplines including chemistry, physics, materials science, geology, biophysics, and astronomy.

Greg Sitz

2011-08-12T23:59:59.000Z

282

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

283

Air Pollution Control Regulations: No. 43- General Permits for Smaller-Scale Electric Generation Facilities (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

This rule applies to any generator that: (a) has a heat input capacity of 350,000 Btus or more per hour or, in the case of internal combustion engines, is 50 HP or larger; and, (b) is not subject...

284

Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP  

SciTech Connect

Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

McClanahan, Janice

2001-04-01T23:59:59.000Z

285

Aeromagnetic Survey And Interpretation, Ascention Island, South Atlantic  

Open Energy Info (EERE)

And Interpretation, Ascention Island, South Atlantic And Interpretation, Ascention Island, South Atlantic Ocean Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aeromagnetic Survey And Interpretation, Ascention Island, South Atlantic Ocean Details Activities (0) Areas (0) Regions (0) Abstract: A detailed aeromagnetic survey of Ascension Island, which was completed in February and March of 1983 as part of an evaluation of the geothermal potential of the island, is described. The aeromagnetic map represents a basic data set useful for the interpretation of subsurface geology. An in situ magnetic susceptibility survey was also carried out to assist in understanding the magnetic properties of Ascension rocks and to aid in the interpretation of the aeromagnetic data. The aeromagnetic survey

286

Saint Paul Island Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Island Wind Farm Island Wind Farm Jump to: navigation, search Name Saint Paul Island Wind Farm Facility Saint Paul Island Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Tanadgusix Corp. Developer Tanadgusix Corp. Energy Purchaser Tanadgusix Corp. Location St. Paul Island AK Coordinates 57.1761°, -170.269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.1761,"lon":-170.269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Mustang Island Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mustang Island Offshore Wind Farm Mustang Island Offshore Wind Farm Jump to: navigation, search Name Mustang Island Offshore Wind Farm Facility Mustang Island Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Offshore from Mustang Island TX Coordinates 27.66°, -97.01° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.66,"lon":-97.01,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

CO2 Emissions - Ryukyu Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Ryukyu Islands Graphics CO2 Emissions from the Ryukyu Islands Data graphic Data CO2 Emissions from the Ryukyu Islands image...

289

CO2 Emissions - Leeward Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

Central America, South America, and the Caribbean Nations Leeward Islands Graphics CO2 Emissions from Leeward Islands Data graphic Data CO2 Emissions from Leeward Islands image...

290

Arctic ice islands  

SciTech Connect

The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

1988-01-01T23:59:59.000Z

291

Monomoscoy Island, Massachusetts: Energy Resources | Open Energy  

Open Energy Info (EERE)

Monomoscoy Island, Massachusetts: Energy Resources Monomoscoy Island, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5698322°, -70.505028° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5698322,"lon":-70.505028,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Cook Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cook Islands: Energy Resources Cook Islands: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-22.26876,"lon":-158.20312,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Popponesset Island, Massachusetts: Energy Resources | Open Energy  

Open Energy Info (EERE)

Popponesset Island, Massachusetts: Energy Resources Popponesset Island, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.584277°, -70.4591932° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.584277,"lon":-70.4591932,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Long Island Power Authority Solar Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search Name Long Island Power Authority Solar Project Facility Long Island Power Authority Solar Project Sector Solar Facility Type Roof-mount Owner EnXco Developer EnXco Energy Purchaser Long Island Power Authority Location Long Island, New York Coordinates 40.8168025°, -73.0661493° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8168025,"lon":-73.0661493,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Cool Roofs and Heat Islands | Open Energy Information  

Open Energy Info (EERE)

Cool Roofs and Heat Islands Cool Roofs and Heat Islands Jump to: navigation, search Tool Summary Name: Cool Roofs Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency Topics: Resource assessment Website: eetd.lbl.gov/r-bldgsee-crhi.html References: [1] Logo: Cool Roofs "On warm summer days, a city can be 6 to 8°F warmer than its surrounding areas. This effect is called the urban heat island. Cool roof materials, pavements, and vegetation can reduce the heat island effect, save energy and reduce smog formation. The goal of this research is to develop cool materials to save energy and money." [1] The Cool Roof Calculator developed at the Oak Ridge National Laboratory is a useful tool for exploring the benefits of cool materials.

296

An Audio-Magnetotelluric Investigation In Terceira Island (Azores) | Open  

Open Energy Info (EERE)

Audio-Magnetotelluric Investigation In Terceira Island (Azores) Audio-Magnetotelluric Investigation In Terceira Island (Azores) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Audio-Magnetotelluric Investigation In Terceira Island (Azores) Details Activities (0) Areas (0) Regions (0) Abstract: Ten audio-magnetotelluric soundings have been carried out along a profile crossing the Serra do Cume caldera in the eastern part of the Terceira Island (Azores). The main objectives of this investigation were to detect geoelectrical features related with tectonic structures and to characterize regional hydrological and hydrothermal aspects mainly those related to geothermal fluid dynamics. Three-dimensional numerical investigation showed that the data acquired at periods shorter than 1 s are not significantly affected by ocean effect. The data was analysed using the

297

United States Virgin Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Islands: Energy Resources Islands: Energy Resources (Redirected from Virgin Islands) Jump to: navigation, search Name United States Virgin Islands 2-letter ISO code VI 3-letter ISO code VIR Numeric ISO code 850 Equivalent URI DBpedia GeoNames ID 4796775 UN Region[1] Latin America and the Caribbean Coordinates 18.34829°, -64.98348° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":18.34829,"lon":-64.98348,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Security of jump controlled sequence generators for stream ciphers  

Science Conference Proceedings (OSTI)

The use of jump control technique provides efficient and secure ways for generating key-stream for stream ciphers. This design approach was recently implemented in some algorithms submitted to eSTREAM, the ECRYPT Stream Cipher Project. However, inappropriately ... Keywords: Pomaranch, cryptanalysis, jump register, key-stream generator, linear relations, stream cipher

Tor Helleseth; Cees J. A. Jansen; Shahram Khazaei; Alexander Kholosha

2006-09-01T23:59:59.000Z

299

Jump Steady Resort Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Jump Steady Resort Space Heating Low Temperature Geothermal Facility Jump Steady Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jump Steady Resort Space Heating Low Temperature Geothermal Facility Facility Jump Steady Resort Sector Geothermal energy Type Space Heating Location Buena Vista, Colorado Coordinates 38.8422178°, -106.1311288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

300

Jumping Out of the Light-Higgs Conformal Window  

E-Print Network (OSTI)

We investigate generic properties of the conformal phase transition in gauge theories featuring Higgs-like fundamental particles. These theories provide an excellent arena to properly investigate conformal dynamics and discover novel features. We show that the phase transition at the boundary of the Higgs conformal window is not smooth but a jumping one for the known perturbative examples. In addition the general conditions under which the transition is either jumping or smooth are provided. Jumping implies that the massive spectrum of the theory will jump at the phase transition. It, however, still allows for one of the states, the would be dilaton of the theory, to be lighter than the heaviest states in the broken phase. Finally we exhibit a calculable Higgs model in which we can, in perturbation theory, determine the Higgs conformal window, the spectrum in the conformally broken phase and demonstrate it to possess a jumping type conformal phase transition.

Oleg Antipin; Matin Mojaza; Francesco Sannino

2012-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MHK Projects/Vidal Island | Open Energy Information  

Open Energy Info (EERE)

Vidal Island Vidal Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

302

CO2 Emissions - Wake Island  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions Regional Oceania Wake Island Graphics CO2 Emissions from Wake Island Data graphic Data CO2 Emissions from Wake Island image Per capita CO2...

303

SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology Co Ltd |  

Open Energy Info (EERE)

SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology Co Ltd SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology Co Ltd Jump to: navigation, search Name SolarIsland (aka Yinghua, Taian Dazheng Hengyuan Solar Technology Co Ltd) Place Nanguan, Shandong Province, China Zip 271000 Sector Solar Product Manufacturer and exporter of solar passive water heating systems and PV-powered solar road lighting, torches and lamps. References SolarIsland (aka Yinghua, Taian Dazheng Hengyuan Solar Technology Co Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SolarIsland (aka Yinghua, Taian Dazheng Hengyuan Solar Technology Co Ltd) is a company located in Nanguan, Shandong Province, China . References ↑ "[ SolarIsland (aka Yinghua, Taian Dazheng Hengyuan Solar

304

Shelf Wave Scattering due to Longshore Jump in Topography  

Science Conference Proceedings (OSTI)

The scattering of barotropic shelf waves by an abrupt jump in longshore topography is examined for unbounded and bounded exponential shelves by matching modal representations for longshore transport and sea level. Estimates of the ratio of ...

John F. Middleton; Daniel G. Wright

1988-02-01T23:59:59.000Z

305

Gravity-free hydraulic jumps and metal femtocups  

E-Print Network (OSTI)

Hydraulic jumps created by gravity are seen every day in the kitchen sink. We show that at small scales a circular hydraulic jump can be created in the absence of gravity, by surface tension. The theory is motivated by our experimental finding of a height discontinuity in spreading submicron molten metal droplets created by pulsed-laser ablation. By careful control of initial conditions, we show that this leads to solid femtolitre cups of gold, silver, copper, niobium and tin.

Rama Govindarajan; Manikandan Mathur; Ratul DasGupta; N. R. Selvi; Neena Susan John; G. U. Kulkarni

2006-10-03T23:59:59.000Z

306

Chemical Potential Jump during Evaporation of a Quantum Bose Gas  

E-Print Network (OSTI)

The dependence of the chemical potential jump coefficient on the evaporation coefficient is analyzed for the case in which the evaporating component is a Bose gas. The concentration of the evaporating component is assumed to be much lower than the concentration of the carrier gas. The expression for the chemical potential jump is derived from the analytic solution of the problem for the case in which the collision frequency of molecules of the evaporating component is constant.

E. A. Bedrikova; A. V. Latyshev

2013-01-07T23:59:59.000Z

307

Circular hydraulic jump in generalized-Newtonian fluids  

E-Print Network (OSTI)

We carry out an analytical study of laminar circular hydraulic jumps, in generalized-Newtonian fluids obeying the two-parametric power-law model of Ostwald-de Waele. Under the boundary-layer approximation we obtained exact expressions determining the flow, an implicit relation for the jump radius is derived. Corresponding results for Newtonian fluids can be retrieved as a limiting case for the flow behavior index n=1, predictions are made for fluids deviating from Newtonian behavior.

Rai, Ashutosh; Poria, Swarup

2008-01-01T23:59:59.000Z

308

Conservation Strategy for Sable Island  

E-Print Network (OSTI)

Towards a Conservation Strategy for Sable Island Environment Canada, Canadian Wildlife Service, Atlantic Region #12;SABLE ISLAND CONSERVATION STRATEGY page - i March, 1998 A CONSERVATION STRATEGY FOR SABLE ISLAND PREPARED BY This Conservation Strategy for Sable Island was prepared for Environment Canada

Jones, Ian L.

309

AMCHITICA ISLAND, ALASKA  

Office of Legacy Management (LM)

Environment o Environment o f AMCHITICA ISLAND, ALASKA hlelvin L. hlerritt Sandia Laboratories Albuquerque, New Mexico Editors R. Glen Fuller Battelle Colu~nbus Laboratories Columbus, Ohio Prepared for Division of Military Application Energy Research and Development Administration Published by Technical Infor~nation Center Energy Research and Development Administration Library of Congress Cataloging in Pt~blication Data hlain entry under title: The Environment of Amchitka Island, Alaska "TlD-26712." Bibliography: p. Includrs indcx. 1. Eeology-Alarka-Amchirka Island. 2. Underground nuclear explorions-lIsland. 3. Cannikin Projcct. I. hlerritt, hlelvin Leroy, 1921- 11. Fuiler, Rtxeben Glen, 1910- 111. United Stater. Energy Research and Development

310

Islands in Zonal Flow  

Science Conference Proceedings (OSTI)

The impact of a meridional gradient in sea surface temperature (warm toward the equator, cold toward the pole) on the circulation around an island is investigated. The upper-ocean eastward geostrophic flow that balances such a meridional gradient ...

Michael A. Spall

2003-12-01T23:59:59.000Z

311

Designing and Communicating Low Carbon Energy Roadmaps for Small Island  

Open Energy Info (EERE)

Designing and Communicating Low Carbon Energy Roadmaps for Small Island Designing and Communicating Low Carbon Energy Roadmaps for Small Island States of the Caribbean Jump to: navigation, search Name Designing and Communicating Low Carbon Energy Roadmaps for Small Island States of the Caribbean Agency/Company /Organization World Watch Institute Partner International Climate Initiative Sector Climate, Energy Focus Area Renewable Energy, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, People and Policy, Solar, Wind Topics Co-benefits assessment, - Macroeconomic, Finance, GHG inventory, Low emission development planning, -LEDS, -Roadmap, Policies/deployment programs, Resource assessment Website http://www.worldwatch.org/ener Program Start 2011 Program End 2013 Country Dominican Republic, Haiti, Jamaica

312

Adventive Hydrothermal Circulation On Stromboli Volcano (Aeolian Islands,  

Open Energy Info (EERE)

Adventive Hydrothermal Circulation On Stromboli Volcano (Aeolian Islands, Adventive Hydrothermal Circulation On Stromboli Volcano (Aeolian Islands, Italy) Revealed By Geophysical And Geochemical Approaches- Implications For General Fluid Flow Models On Volcanoes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Adventive Hydrothermal Circulation On Stromboli Volcano (Aeolian Islands, Italy) Revealed By Geophysical And Geochemical Approaches- Implications For General Fluid Flow Models On Volcanoes Details Activities (0) Areas (0) Regions (0) Abstract: On March 15th 2007 a paroxysmal explosion occurred at the Stromboli volcano. This event generated a large amount of products, mostly lithic blocks, some of which impacted the ground as far as down to 200 m a.s.l., about 1.5 km far away from the active vents. Two days after the

313

Prince Edward Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Island: Energy Resources Island: Energy Resources Jump to: navigation, search Name Prince Edward Island, Canada Equivalent URI DBpedia GeoNames ID 6113358 Coordinates 46.333333°, -63.5° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.333333,"lon":-63.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

United States Virgin Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Virgin Islands: Energy Resources Virgin Islands: Energy Resources Jump to: navigation, search Name United States Virgin Islands 2-letter ISO code VI 3-letter ISO code VIR Numeric ISO code 850 Equivalent URI DBpedia GeoNames ID 4796775 UN Region[1] Latin America and the Caribbean Coordinates 18.34829°, -64.98348° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":18.34829,"lon":-64.98348,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

A Miocene Island-Arc Volcanic Seamount- The Takashibiyama Formation,  

Open Energy Info (EERE)

Island-Arc Volcanic Seamount- The Takashibiyama Formation, Island-Arc Volcanic Seamount- The Takashibiyama Formation, Shimane Peninsula, Sw Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Miocene Island-Arc Volcanic Seamount- The Takashibiyama Formation, Shimane Peninsula, Sw Japan Details Activities (0) Areas (0) Regions (0) Abstract: The Miocene volcanic complex of the Takashibiyama Formation consists largely of subalkali, subaqueous basalt to andesite lavas and andesite to dacite subaqueous volcaniclastic flow deposits. Most of subaqueous lavas are moderately to intensely brecciated with rugged rough surfaces and ramp structures similar to subaerial block lava. Volcaniclastic flow deposits commonly include basalt to andesite lava fragments and/or pyroclastic materials, and are similar in internal

316

The Geyser Bight Geothermal Area, Umnak Island, Alaska | Open Energy  

Open Energy Info (EERE)

Geyser Bight Geothermal Area, Umnak Island, Alaska Geyser Bight Geothermal Area, Umnak Island, Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Geyser Bight Geothermal Area, Umnak Island, Alaska Details Activities (2) Areas (1) Regions (0) Abstract: The Geyser Bight geothermal area contains one of the hottest and most extensive areas of thermal springs in Alaska, and is the only site in the state with geysers. Heat for the geothermal system is derived from crustal magma associated with Mt. Recheshnoi volcano. Successive injections of magma have probably heated the crust to near its minimum melting point and produced the only high-SiO2 rhyolites in the oceanic part of the Aleutian arc. At least two hydrothermal reservoirs are postulated to underlie the geothermal area and have temperatures of 165° and 200°C,

317

DOE Provides $30 Million to Jump Start Bioenergy Research Centers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30 Million to Jump Start Bioenergy Research Centers 30 Million to Jump Start Bioenergy Research Centers DOE Provides $30 Million to Jump Start Bioenergy Research Centers October 1, 2007 - 2:49pm Addthis DOE Bioenergy Research Center Investment Tops $400 Million WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced it has invested nearly $30 million in end-of-fiscal-year (2007) funds to accelerate the start-up of its three new Bioenergy Research Centers, bringing total DOE Bioenergy Research Center investment to over $400 million. The three DOE Bioenergy Research Centers-located in Oak Ridge, Tennessee; Madison, Wisconsin; and near Berkeley, California-selected by DOE this June, bring together multidisciplinary teams of leading scientists to advance research needed to make cellulosic ethanol and other biofuels

318

Condensation and jumping relay of droplets on lotus leaf  

E-Print Network (OSTI)

Dynamic behavior of micro water droplet condensed on a lotus leaf with two-tier roughness is studied. Under laboratory environment, the contact angle of the micro droplet on single micro papilla increases smoothly from 80 deg to 160 deg during the growth of condensed water. The best-known "self-clean" phenomenon, will be lost. A striking observation is the out-of-plane jumping relay of condensed droplets triggered by falling droplets, as well as its sustained speed obtained in continuous jumping relays, enhance the automatic removal of dropwise condensation without the help from any external force. The surface tension energy dissipation is the main reason controlling the critical size of jumping droplet and its onset velocity of rebounding.

Cunjing Lv; Pengfei Hao; Zhaohui Yao; Yu Song; Xiwen Zhang; Feng He

2013-05-09T23:59:59.000Z

319

The Inevitable Universe---Parker-Rhodes' peculiar mixture of ontology and physics  

Science Conference Proceedings (OSTI)

When asked to give a lecture on Parker-Rhodes' physics, I was somewhat non-plused. I almost replied What physics '' --- a point of view that Frederick expresses himself more than once in the book he was working on when he died. But that would be unjust. Whatever his view, I assert that the discovery of the Combinational Hierarchy is one of the most important discoveries'' --- or whatever you want to call it --- in physics made in this century. His calculation of the proton-electron mass ratio is also a fantastic result that we are still trying to come to grips with. And his insight into early cosmology --- what he called a cold big bang'' --- which appeared in an early version of the Theory of Indistinguishables, also had merit. His early universe is a lot closer to my own views now than I realized when I first encountered it. We will mention other insights as I go along. But his views are so different from those of anyone I know or knew, that I have decided to let him speak for himself by reading passages from his manuscript The Inevitable Universe, or TIU, which was still unpublished at the time of his death, and add a few comments on them.

Noyes, H.P.

1989-12-01T23:59:59.000Z

320

CONSERVATION AND MANAGEMENT PLAN PREBLE'S MEADOW JUMPING MOUSE  

E-Print Network (OSTI)

dependent upon maintenance of a healthy and functioning riparian system and associated uplands. AlterationsCONSERVATION AND MANAGEMENT PLAN FOR PREBLE'S MEADOW JUMPING MOUSE ON THE U.S. AIR FORCE ACADEMY, Suite 40 USAF Academy, CO 80840-2400 October 26, 1999 #12;CONSERVATION AND MANAGEMENT PLAN FOR PREBLE

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces  

Science Conference Proceedings (OSTI)

Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.

Boreyko, Jonathan B [ORNL; Collier, Pat [ORNL

2013-01-01T23:59:59.000Z

322

Quantum Capacity Approaching Codes for the Detected-Jump Channel  

E-Print Network (OSTI)

The quantum channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasures and bit-flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.

Markus Grassl; Zhengfeng Ji; Zhaohui Wei; Bei Zeng

2010-08-19T23:59:59.000Z

323

AGS tune jump system to cross horizontal depolarization resonances overview  

SciTech Connect

Two partial snakes overcome the vertical depolarizing resonances in the AGS. But a new type of depolarizing intrinsic resonance from horizontal motion appeared. We reduce these using horizontal tune jumps timed to these resonances. We gain a factor of six in crossing rate with a tune jump of 0.05 in 100 {micro}s. Two quadrapoles, we described in 2009, pulse 42 times, the current matching beam energy. The power supplies for these quads are described in detail elsewhere in this conference. The controls for the Jump Quad system is based on a BNL designed Quad Function Generator. Two modules are used; one for timing, and one to supply reference voltages. Synchronization is provided by a proprietary serial bus, the Event Link. The AgsTuneJump application predicts the times of the resonances during the AGS cycle and calculates the power supply trigger times from externally collected tune and energy versus time data and the Low and High PS voltage functions from a voltage to current model of the power supply. The system was commissioned during runs 09 & 10 and is operational. Many beam effects are described elsewhere. The TuneJump system has worked well and has caused little trouble save for the perturbations in the lattice having such a large effect due to our need to run with the vertical tune within a few thousandths of the integer tune. As these problems were mostly sorted out by correcting the 6th harmonic orbit distortions which caused a large 18 theta beta wave. Also running with minimal chromaticity reduces emittance growth. There are still small beta waves which are being addressed. The timing of the pulses is still being investigated, but as each crossing causes minimal polarization loss, this is a lengthy process.

Glenn, J.W.; Ahrens, L.; Fu, W.; Mi, J.L.; Rosas, P.; Schoefer, V.; Theisen, C.; Altinbas, Z.

2011-03-28T23:59:59.000Z

324

A rigid cone in the truth-table degrees with jump  

E-Print Network (OSTI)

The automorphism group of the truth-table degrees with order and jump is fixed on the set of degrees above the fourth jump of 0.

Kjos-Hanssen, Bjrn

2009-01-01T23:59:59.000Z

325

Long Island Solar Farm  

SciTech Connect

The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

Anders, R.

2013-05-01T23:59:59.000Z

326

San Clemente Island Wind Farm | Open Energy Information  

Open Energy Info (EERE)

San Clemente Island Wind Farm San Clemente Island Wind Farm Jump to: navigation, search Name San Clemente Island Wind Farm Facility San Clemente Island Sector Wind energy Facility Type Community Wind Facility Status In Service Owner U.S. Navy Developer Pacific Industrial Electric Energy Purchaser U.S. Navy Location San Clemente Island CA Coordinates 32.986095°, -118.552138° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.986095,"lon":-118.552138,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Cookson Electronics | Open Energy Information  

Open Energy Info (EERE)

Place Providence, Rhode Island Zip 2903 Product Rhode Island-based materials science company. The division produces PV junction boxes. References Cookson Electronics1...

328

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

Generation Facilities (Rhode Island) + IncentiveProgAdmin Rhode Island Department of Environmental Management + IncentiveSummary This rule applies to any generator that: (...

329

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pollution Control Regulations: No. 46 & 47 - CO2 Budget Trading Program & Allowance Distribution (Rhode Island) Rhode Island Commercial Industrial Investor-Owned Utility Municipal...

330

Air Pollution Control Regulations: No.27 - Control of Nitrogen...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27 - Control of Nitrogen Oxide Emissions (Rhode Island) Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) Eligibility Commercial...

331

Air Pollution Control Regulations: No. 3 - Particulate Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 - Particulate Emissions from Industrial Processes (Rhode Island) Air Pollution Control Regulations: No. 3 - Particulate Emissions from Industrial Processes (Rhode Island)...

332

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Rhode Island LFG Genco, LLC Combined Cycle Electricity Generation Plant Fueled by Landfill Gas, Johnston, Rhode Island http:energy.govnepadownloads...

333

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island LFG Genco LLC, Combined Cycle Electricity Generation Plant Fueled By Landfill Gas Johnston, Rhode Island http:energy.govnepadownloadsea-1742-final-environ...

334

GREEN HOMES LONG ISLAND  

E-Print Network (OSTI)

developed a program that enables residents to make improvements that will decrease their home energy usage energy bill, reduce your carbon footprint... at little or no cost to you. #12;A Message From Supervisor energy-efficient and reduce our community's carbon footprint. Why do we call it Long Island Green Homes

Kammen, Daniel M.

335

The Effect of Islands on Surface Waves  

E-Print Network (OSTI)

offshore islands, e.g. , the Aleutian chain and the Orkneysare also noted in the Aleutian Island passages where "

Arthur, Robert S

1951-01-01T23:59:59.000Z

336

Renewable Energy Initiative (Prince Edward Island, Canada) |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Initiative (Prince Edward Island, Canada) Renewable Energy Initiative (Prince Edward Island, Canada) Eligibility Agricultural Savings For Buying & Making...

337

Biomass Guidelines (Prince Edward Island, Canada) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Guidelines (Prince Edward Island, Canada) Biomass Guidelines (Prince Edward Island, Canada) Eligibility Agricultural Construction Developer Industrial Investor-Owned...

338

Jump River Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

River Electric Coop Inc River Electric Coop Inc Jump to: navigation, search Name Jump River Electric Coop Inc Place Wisconsin Utility Id 9922 Utility Location Yes Ownership C NERC Location MRO Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dual Fuel Heat Commercial Dusk to Dawn Lighting- Unmetered Member Owned Lighting Dusk to Dawn Lighting- Unmetered Rental Lighting Electric Thermal Storage Heat Commercial Large Power Peak Alert- Single Phase Commercial Large Power Peak Alert- Three Phase Commercial Single Phase Residential Three Phase Small Commercial Three-Season Heat Commercial

339

Insider Models with Finite Utility in Markets with Jumps  

SciTech Connect

In this article we consider, under a Levy process model for the stock price, the utility optimization problem for an insider agent whose additional information is the final price of the stock blurred with an additional independent noise which vanishes as the final time approaches. Our main interest is establishing conditions under which the utility of the insider is finite. Mathematically, the problem entails the study of a 'progressive' enlargement of filtration with respect to random measures. We study the jump structure of the process which leads to the conclusion that in most cases the utility of the insider is finite and his optimal portfolio is bounded. This can be explained financially by the high risks involved in models with jumps.

Kohatsu-Higa, Arturo, E-mail: arturokohatsu@gmail.com [Ritsumeikan University, Department of Mathematical Sciences (Japan); Yamazato, Makoto, E-mail: yamazato@math.u-ryukyu.ac.jp [University of the Ryukyus, Department of Mathematics, Faculty of Science (Japan)

2011-10-15T23:59:59.000Z

340

Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces  

Science Conference Proceedings (OSTI)

When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.

Miljkovic, N; Enright, R; Nam, Y; Lopez, K; Dou, N; Sack, J; Wang, E

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NUCLEAR ISLANDS International Leasing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ISLANDS ISLANDS International Leasing of Nuclear Fuel Cycle Sites to Provide Enduring Assurance of Peaceful Use Christopher E. Paine and Thomas B. Cochran Current International Atomic Energy Agency safeguards do not provide adequate protection against the diversion to military use of materials or technology from certain types of sensitive nuclear fuel cycle facilities. In view of highly enriched uranium's relatively greater ease of use as a nuclear explosive material than plutonium and the significant diseconomies of commercial spent fuel reprocessing, this article focuses on the need for improved international controls over uranium enrichment facilities as the proximate justification for creation of an International Nuclear Fuel Cycle Association (INFCA). In principle, the proposal is equally applicable to alleviating the proliferation concerns provoked by nuclear fuel

342

Three Mile Island  

SciTech Connect

The Three Mile Island accident was the worst accident ever experienced by the nuclear power industry. Although the radiation exposures were extremely low, the potential for greater public exposure did exist. Fortunately, the health and safety of the public were not affected by radiation, nor was anyone killed or injured; however, thousand of lives were disrupted by fear and anxiety and by a limited evacuation. The events and actions contributing to the accident are described.

Buhl, A.R.

1980-09-01T23:59:59.000Z

343

Fringe tracking and spatial filtering: phase jumps and dropouts  

E-Print Network (OSTI)

Fringe tracking in interferometers is typically analyzed with the implicit assumption that there is a single phase associated with each telescope in the array. If the telescopes have apertures significantly larger than r0 and only partial adaptive optics correction, then the phase measured by a fringe sensor may differ significantly from the "piston" component of the aperture phase. In some cases, speckle noise will cause "branch points" in the measured phase as a function of time, causing large and sudden jumps in the phase. We present simulations showing these effects in order to understand their implications for the design of fringe tracking algorithms.

David F. Buscher; John S. Young; Fabien Baron; Christopher A. Haniff

2008-07-12T23:59:59.000Z

344

MHK Projects/Cow Island Bend | Open Energy Information  

Open Energy Info (EERE)

Island Bend Island Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0269,"lon":-90.2792,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

345

Fremd Village-Padgett Island, Florida: Energy Resources | Open Energy  

Open Energy Info (EERE)

Fremd Village-Padgett Island, Florida: Energy Resources Fremd Village-Padgett Island, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.8026363°, -80.6576623° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.8026363,"lon":-80.6576623,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

MHK Projects/Claiborne Island Project | Open Energy Information  

Open Energy Info (EERE)

Claiborne Island Project Claiborne Island Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2055,"lon":-91.0732,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

347

MHK Projects/Turnbull Island | Open Energy Information  

Open Energy Info (EERE)

Turnbull Island Turnbull Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.0652,"lon":-91.711,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

348

MHK Projects/Davis Island Bend | Open Energy Information  

Open Energy Info (EERE)

Island Bend Island Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.1299,"lon":-91.0636,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

349

Chebeague Island, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chebeague Island, Maine: Energy Resources Chebeague Island, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7409154°, -70.1081034° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7409154,"lon":-70.1081034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

Rock Island County, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Island County, Illinois: Energy Resources Island County, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3998209°, -90.563609° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3998209,"lon":-90.563609,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

MHK Projects/Willow Island | Open Energy Information  

Open Energy Info (EERE)

Island Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3584,"lon":-81.3082,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

352

Fire Island, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Island, New York: Energy Resources Island, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.6475997°, -73.1459474° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6475997,"lon":-73.1459474,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

Bethel Island, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Island, California: Energy Resources Island, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.0149216°, -121.6405085° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.0149216,"lon":-121.6405085,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

MHK Projects/Island 14 Bend | Open Energy Information  

Open Energy Info (EERE)

Island 14 Bend Island 14 Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.2837,"lon":-89.576,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

355

Fisher Island, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fisher Island, Florida: Energy Resources Fisher Island, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.7609329°, -80.1400459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.7609329,"lon":-80.1400459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

356

MHK Projects/Treat Island Tidal | Open Energy Information  

Open Energy Info (EERE)

Treat Island Tidal Treat Island Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

357

MHK Projects/Stradbroke Island | Open Energy Information  

Open Energy Info (EERE)

Stradbroke Island Stradbroke Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-27.8883,"lon":153.421,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

358

MHK Projects/Raccourci Island | Open Energy Information  

Open Energy Info (EERE)

Island Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.9122,"lon":-91.5645,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

359

MHK Projects/Island 35 Bend | Open Energy Information  

Open Energy Info (EERE)

MHK Projects/Island 35 Bend MHK Projects/Island 35 Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.5435,"lon":-89.9079,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

360

MHK Projects/CETO3 Garden Island | Open Energy Information  

Open Energy Info (EERE)

CETO3 Garden Island CETO3 Garden Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-32.2509,"lon":115.651,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Frye Island, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Frye Island, Maine: Energy Resources Frye Island, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8472979°, -70.5189444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8472979,"lon":-70.5189444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

362

Turks and Caicos Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Turks and Caicos Islands: Energy Resources Turks and Caicos Islands: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.73333,"lon":-71.58333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

Penobscot Indian Island, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Indian Island, Maine: Energy Resources Indian Island, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1218285°, -68.6290394° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1218285,"lon":-68.6290394,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

MHK Projects/Cat Island Project | Open Energy Information  

Open Energy Info (EERE)

Cat Island Project Cat Island Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.9431,"lon":-91.0932,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

365

Seconsett Island, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Seconsett Island, Massachusetts: Energy Resources Seconsett Island, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5662211°, -70.5116948° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5662211,"lon":-70.5116948,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Tiki Island, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tiki Island, Texas: Energy Resources Tiki Island, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.2957768°, -94.9169196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.2957768,"lon":-94.9169196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

MHK Projects/Pike Island | Open Energy Information  

Open Energy Info (EERE)

Island Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.3555,"lon":-81.7479,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

368

Mercer Island, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Island, Washington: Energy Resources Island, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.5706548°, -122.2220673° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.5706548,"lon":-122.2220673,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

369

Fishers Island Utility Co Inc | Open Energy Information  

Open Energy Info (EERE)

Utility Co Inc Utility Co Inc Jump to: navigation, search Name Fishers Island Utility Co Inc Place New York Utility Id 6369 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Class 5 Commercial Residential Class 1 Residential Residential Class 2 Residential Residential Class 7 Residential Average Rates Residential: $0.3290/kWh Commercial: $0.2550/kWh The following table contains monthly sales and revenue data for Fishers Island Utility Co Inc (New York).

370

Kelleys Island, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kelleys Island, Ohio: Energy Resources Kelleys Island, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5969932°, -82.7101823° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5969932,"lon":-82.7101823,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

Shelter Island, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Shelter Island, NY) (Redirected from Shelter Island, NY) Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0681549°, -72.3386939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0681549,"lon":-72.3386939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

Turks and Caicos Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Turks and Caicos Islands: Energy Resources (Redirected from Turks & Caicos Islands) Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.73333,"lon":-71.58333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

373

MHK Projects/Turkey Island | Open Energy Information  

Open Energy Info (EERE)

Island Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.8081,"lon":-91.3778,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

374

Long Island Power Authority LIPA | Open Energy Information  

Open Energy Info (EERE)

LIPA LIPA Jump to: navigation, search Name Long Island Power Authority (LIPA) Place Uniondale, New York Zip NY 11553 Product Long Island is a non-profit electric utility company. Coordinates 40.717935°, -73.593544° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.717935,"lon":-73.593544,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

MHK Projects/Tiger Island | Open Energy Information  

Open Energy Info (EERE)

Tiger Island Tiger Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.0297,"lon":-91.4933,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

376

Bay Harbor Islands, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harbor Islands, Florida: Energy Resources Harbor Islands, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.8875948°, -80.1311564° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.8875948,"lon":-80.1311564,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

Bell Island Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bell Island Space Heating Low Temperature Geothermal Facility Facility Bell Island Sector Geothermal energy Type Space Heating Location Ketchikan, Alaska Coordinates 55.3422222°, -131.6461111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

378

H2RES: Energy Planning of Islands and Isolated Regions Website | Open  

Open Energy Info (EERE)

H2RES: Energy Planning of Islands and Isolated Regions Website H2RES: Energy Planning of Islands and Isolated Regions Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: H2RES: Energy Planning of Islands and Isolated Regions Website Focus Area: Crosscutting Topics: System & Application Design Website: www.powerlab.fsb.hr/h2RES/index.html Equivalent URI: cleanenergysolutions.org/content/h2res-energy-planning-islands-and-iso Language: English Policies: Regulations Regulations: "Net Metering & Interconnection,Resource Integration Planning" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

379

Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii  

Open Energy Info (EERE)

Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii Abstract During the drilling of injection well KS-13 in 2005 at the Puna Geothermal Venture (PGV) well field, on the island of Hawaii, a 75-meter interval of diorite containing brown glass inclusions was penetrated at a depth of 2415 m. At a depth of 2488 m a melt of dacitic composition was encountered. The melt flowed up the well bore and was repeatedly re-drilled over a depth interval of 8 m, producing several kilograms of clear, colorless vitric cuttings at the surface. The dacitic glass cuttings have a perlitic texture, a silica content of 67 wgt.%, are enriched in alkalis and nearly

380

A Coordinated Exploration Program for Geothermal Sources on the Island of  

Open Energy Info (EERE)

Exploration Program for Geothermal Sources on the Island of Exploration Program for Geothermal Sources on the Island of Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: A Coordinated Exploration Program for Geothermal Sources on the Island of Hawaii Abstract Staff members of the Hawaii Institute of Geophysics carried out an exploration program for geothermal sources on the island of Hawaii by using all relevant geophysical and geochemical methods. Infrared scanning aerial surveys followed by reconnaissance-type electrical surveys and group noise surveys narrowed down the promising area to the east rift of Kilauea. The surveys carried out over the east rift included magnetic, gravity, and electrical surveys by various methods: microearthquake, surveillance, temperature profiling of wells, and chemical analysis of water samples.

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Single Particle Jumps in a Binary Lennard-Jones System Below The Glass Transition  

E-Print Network (OSTI)

We study a binary Lennard-Jones system below the glass transition with molecular dynamics simulations. To investigate the dynamics we focus on events ("jumps") where a particle escapes the cage formed by its neighbors. Using single particle trajectories we define a jump by comparing for each particle its fluctuations with its changes in average position. We find two kinds of jumps: "reversible jumps," where a particle jumps back and forth between two or more average positions, and "irreversible jumps," where a particle does not return to any of its former average positions. For all investigated temperatures both kinds of particles jump and both irreversible and reversible jumps occur. With increasing temperature relaxation is enhanced by an increasing number of jumps, and growing jump lengths in position and potential energy. However, the waiting time between two successive jumps is independent of temperature. This temperature independence might be due to aging, which is present in our system. The ratio of irreversible to reversible jumps is also increasing with increasing temperature, which we interpret as a consequence of the increased likelihood of changes in the cages, i.e. a blocking of the "entrance" back into the previous cage. A comparison of the fluctuations of jumping particles and non-jumping particles indicates that jumping particles are more mobile even when not jumping. The jumps in energy normalized by their fluctuations are decreasing with increasing temperature, which is consistent with relaxation being increasingly driven by thermal fluctuations. In accordance with subdiffusive behavior are the distributions of waiting times and jump lengths in position.

K. Vollmayr-Lee

2003-08-28T23:59:59.000Z

382

Rules and Regulations Pertaining to a User Fee System for Point Source Dischargers that Discharge Pollutants into the Waters of the State (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish a user fee system for point source dischargers that discharge pollutants into the surface waters of the State. The funds from such fees are used by the Department of...

383

Minnesota Nuclear Profile - Prairie Island  

U.S. Energy Information Administration (EIA) Indexed Site

Prairie Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

384

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

385

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

Massachusetts at Amherst, University of

386

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

387

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

388

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

389

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

390

Cool Roofs and Heat Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

(510) 486-7494 Links Heat Island Group The Cool Colors Project Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and...

391

Bubbles, Jumps, and Scaling from Properly Anticipated Prices  

E-Print Network (OSTI)

Prices in financial markets exhibit extreme jumps far more often than can be accounted for by external news. Further, magnitudes of price changes are correlated over long times. These so called stylized facts are quantified by scaling laws similar to, for example, turbulent fluids. They are believed to reflect the complex interactions of heterogenous agents which give rise to irrational herding. Therefore, the stylized facts have been argued to provide evidence against the efficient market hypothesis which states that prices rapidly reflect available information and therefore are described by a martingale. Here we show, that in very simple bidding processes efficiency is not opposed to, but causative to scaling properties observed in real markets. Thereby, we link the stylized facts not only to price efficiency, but also to the economic theory of rational bubbles. We then demonstrate effects predicted from our normative model in the dynamics of groups of real human subjects playing a modified minority game. A...

Patzelt, Felix

2013-01-01T23:59:59.000Z

392

Temperature-jump 2D IR spectroscopy to study protein conformational dynamics  

E-Print Network (OSTI)

Temperature-jump (T-jump) two-dimensional infrared spectroscopy (2D IR) is developed, characterized, and applied to the study of protein folding and association. In solution, protein conformational changes span a wide range ...

Jones, Kevin C. (Kevin Chapman)

2012-01-01T23:59:59.000Z

393

CO2 Emissions - Pacific Islands (Palau)  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Pacific Islands (Palau) Graphics CO2 Emissions from the Pacific Islands (Palau) Data graphic Data CO2 Emissions from the Pacific Islands (Palau) image Per capita CO2...

394

Observations in Nonurban Heat Islands  

Science Conference Proceedings (OSTI)

The urban heat island is a well-known and well-described temperature anomaly, but other types of heat islands are also infrequently reported. A 10 km 30 km data field containing more than 100 individual winter morning air temperature ...

A. W. Hogan; M. G. Ferrick

1998-02-01T23:59:59.000Z

395

Robust Fuzzy Control Approach for a Class of Markovian Jump Nonlinear Systems  

Science Conference Proceedings (OSTI)

This paper addresses the problem of stabilizing a class of nonlinear systems subject to Markovian jump parameters using a robust stochastic fuzzy controller with Hinfin performance. The class of jump nonlinear systems considered is described ... Keywords: $H_{infty}$ controller, Coupled Lyapunov function, Markovian jump systems, fuzzy system models, stabilizing controller

N. S.D. Arrifano; V. A. Oliveira

2006-12-01T23:59:59.000Z

396

LEADERSHIP FORUM "Pragmatic Implementation of Public Policy"  

E-Print Network (OSTI)

Partners of Rhode Island where he directed CMS's national nursing home-based quality improvement effort

Paulsson, Johan

397

State Weights and Measures Law  

Science Conference Proceedings (OSTI)

... Pennsylvania Statutes. Rhode Island Statutes. South Dakota Codified Laws and Administrative Rules. Utah Statutes. Vermont Statutes. ...

2010-10-01T23:59:59.000Z

398

Good Morning, FISSEA  

Science Conference Proceedings (OSTI)

... Pennsylvania, Rhode Island, South Dakota, Tennessee, Texas, Utah, Vermont, Washington, West Virginia, Wisconsin, and Wyoming. ...

2013-04-17T23:59:59.000Z

399

Renewable Portfolio Standard (Prince Edward Island, Canada) ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portfolio Standard (Prince Edward Island, Canada) Renewable Portfolio Standard (Prince Edward Island, Canada) Eligibility StateProvincial Govt Savings For Buying & Making...

400

US Virgin Islands Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The U.S. Virgin Islands has few conventional energy ... the Virgin Islands Water and Power Authority is exploring undersea cable links with Puerto Rico ... solar ...

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NREL: Technology Deployment - Technical Assistance for Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

for Islands NREL provides technical assistance to help islands reduce dependence on fossil fuels and increase energy security by implementing energy efficiency measures and...

402

Department of Energy - Prince Edward Island  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61223 en Renewable Portfolio Standard (Prince Edward Island, Canada) http:energy.govsavingsrenewable-portfolio-standard-prince-edward-island-canada

403

US Virgin Islands Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

US Virgin Islands Quick Facts. The U.S. Virgin Islands has few conventional energy resources and depends on imported crude oil for electricity ...

404

Island Wide Management Corporation  

Office of Legacy Management (LM)

9 1986 9 1986 Island Wide Management Corporation 3000 Marcus Avenue Lake Success, New York 11042 Dear Sir or Madam: I am sending you this letter and the enclosed information as you have been identified by L. I. Trinin of Glick Construction Company as the representatives of the owners of the property that was formerly the site of the Sylvania-Corning Nuclear Corporation in Bayside, New York. The Department of Energy is evaluating the radiological condition of sites that were utilized under the Manhattan Engineer District and/or the Atomic Energy Commission in the early years of nuclear energy development to determine whether they need remedial action and whether the Department has authority to perform such action. As you may know, the former Sylvania-Corning Corporation Bayside site was identified as one such site.

405

Videos for Wind-Driven Fires: Governors Island & Laboratory ...  

Science Conference Proceedings (OSTI)

Governors Island Experiments. Governor's Island test building. (Photo credit: NIST). Together with the Fire Department of ...

2013-04-24T23:59:59.000Z

406

Register as a New User  

Science Conference Proceedings (OSTI)

... North Dakota, Northern Mariana Islands, Northwest Territories, Nova Scotia ... Rhode Island, Saskatchewan, South Carolina, South Dakota, Tennessee, Texas ...

407

Great Sitkin Island Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Sitkin Island Geothermal Area Sitkin Island Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Great Sitkin Island Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.06666667,"lon":-176.0833333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

408

Korovin - Atka Island Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Korovin - Atka Island Geothermal Area Korovin - Atka Island Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Korovin - Atka Island Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.3494,"lon":-174.2472,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

Hot Spring On Umnak Island Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Spring On Umnak Island Geothermal Area Hot Spring On Umnak Island Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Spring On Umnak Island Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.2283,"lon":-168.308,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Kluichef - Atka Island Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kluichef - Atka Island Geothermal Area Kluichef - Atka Island Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kluichef - Atka Island Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.3217,"lon":-174.1861,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Bell Island Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Island Hot Springs Geothermal Area Island Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Bell Island Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.9321,"lon":-131.5672,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Long Island New York City Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Island New York City Offshore Wind Farm Island New York City Offshore Wind Farm Jump to: navigation, search Name Long Island New York City Offshore Wind Farm Facility Long Island New York City Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Long Island-New York City Offshore Wind Collaborative Developer Long Island Power Authority (LIPA) / ConEdison (now part of LINYCOffshore Wind C Energy Purchaser New York Power Authority Location Offshore from the Rockaway Peninsula NY Coordinates 40.41°, -73.72° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.41,"lon":-73.72,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

Carribean Islands | OpenEI  

Open Energy Info (EERE)

Carribean Islands Carribean Islands Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal flat-plate collectors, for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. Source NREL Date Released January 31st, 2004 (10 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords Carribean Islands Central America GEF GHI GIS Mexico NREL solar SWERA UNEP Data text/csv icon Download Data (csv, 370.6 KiB) application/zip icon Download Shapefile (zip, 244 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

414

Long Island | OpenEI  

Open Energy Info (EERE)

Long Island Long Island Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 79, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power Long Island projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Northeast Power Coordinating Council / Long Island- Reference Case (xls, 258.6 KiB)

415

Island Wakes in Deep Water  

Science Conference Proceedings (OSTI)

Density stratification and planetary rotation distinguish three-dimensional island wakes significantly from a classical fluid dynamical flow around an obstacle. A numerical model is used to study the formation and evolution of flow around an ...

Changming Dong; James C. McWilliams; Alexander F. Shchepetkin

2007-04-01T23:59:59.000Z

416

Better Buildings Neighborhood Program: Bainbridge Island, Washington  

NLE Websites -- All DOE Office Websites (Extended Search)

Bainbridge Bainbridge Island, Washington to someone by E-mail Share Better Buildings Neighborhood Program: Bainbridge Island, Washington on Facebook Tweet about Better Buildings Neighborhood Program: Bainbridge Island, Washington on Twitter Bookmark Better Buildings Neighborhood Program: Bainbridge Island, Washington on Google Bookmark Better Buildings Neighborhood Program: Bainbridge Island, Washington on Delicious Rank Better Buildings Neighborhood Program: Bainbridge Island, Washington on Digg Find More places to share Better Buildings Neighborhood Program: Bainbridge Island, Washington on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO

417

Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island | Open  

Open Energy Info (EERE)

Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island Abstract Three geophysical research organizations, working together under the auspices of the Hawaii Geothermal Project, have used several electrical and electromagnetic exploration techniques on Kilauea volcano, Hawaii to assess its geothermal resources. This volume contains four papers detailing their methods and conclusions. Keller et al. of the Colorado School of Mines used the dipole mapping and time-domain EM sounding techniques to define low resistivity areas around the summit and flanks of Kilauea. Kauahikaua and Klein of the Hawaii Institute of Geophysics then detailed the East Rift

418

RI_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionRhodeIslandWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Rhode...

419

State Energy Program Assurances - Virgin Islands Governor de...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virgin Islands Governor de Jongh State Energy Program Assurances - Virgin Islands Governor de Jongh Letter from Virgin Islands Governor de Jongh providing Secretary Chu with the...

420

Prehistoric Exploitation of Albatross on the Southern California Channel Islands  

E-Print Network (OSTI)

J. 1959 Fauna of the Aleutian Islands and Alaska Peninsula.398. Yesner, David R. 1976 Aleutian Island Albatrosses: Aor in the more northem Aleutian Islands (Yesner 1976), these

Porcasi, Judith F.

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Long Island STEM Hub Summit  

NLE Websites -- All DOE Office Websites (Extended Search)

Questionnaire Questionnaire Event Information pulldown Registered Attendees Directions to Event Campus Map (pdf) Local Weather Visiting Brookhaven Disclaimer Event Date December 6, 2011 Event Location SUNY Farmingdale State College 2350 Broadhollow Road Farmingdale, NY 11735-1021 USA Roosevelt Hall Directions | Campus Map (pdf) Event Coordinator Ken White Bus: 631-344-7171 Fax: 631-344-5832 Email: stemhub@bnl.gov Long Island STEM Hub Summit Join us for the Launch of the Long Island Regional STEM Hub Motivation The LI Regional STEM Hub, one of ten forming in the Empire State STEM Learning Network, will focus on preparing students for the Long Island workforce through enhanced science, technology, engineering, and mathematics (STEM) experiences for students and teachers. Academic relevance will serve as the major theme by making it easy for

422

A DEVS fire jumps model and associated simulations using ForeFire  

Science Conference Proceedings (OSTI)

This paper describes a simple physical model of the phenomenon of fire jumps. The model behaviour is developed using DEVS Formalism and simulated in Discrete Event fashion. The aim of this work is to be able to simulate this phenomenon within the ForeFire ... Keywords: discrete events simulation, fire spread, firebrand model, fires jumps, forest

Bahaa Nader; Jean Baptiste Filippi; Paul Antoine Bisgambiglia

2010-07-01T23:59:59.000Z

423

Long Island Power Authority Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Demonstration Project Demonstration Project Jump to: navigation, search Project Lead Long Island Power Authority Country United States Headquarters Location Uniondale, New York Recovery Act Funding $12,496,047.00 Total Project Value $25,293,735.00 Coordinates 40.7003793°, -73.5929056° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

424

Islands and Our Renewable Energy Future (Presentation)  

DOE Green Energy (OSTI)

Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

2012-05-01T23:59:59.000Z

425

Long Island Solar Farm Project Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Island Solar Farm Island Solar Farm Project Overview The Long Island Solar Farm (LISF) is a 32-megawatt solar photovoltaic power plant built through a collaboration including BP Solar, the Long Island Power Authority (LIPA), and the Department of Energy. The LISF, located on the Brookhaven National Laboratory site, began delivering power to the LIPA grid in November 2011, and is currently the largest solar photovoltaic power plant in the Eastern United States. It is generating enough renewable

426

Fox Islands Wind Project | Open Energy Information  

Open Energy Info (EERE)

Fox Islands Wind Project Fox Islands Wind Project Facility Fox Islands Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Fox Islands Electric Cooperative Developer Fox Islands Electric Cooperative Energy Purchaser Fox Islands Electric Cooperative Location Vinalhaven Island ME Coordinates 44.088391°, -68.857802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.088391,"lon":-68.857802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

Magnetic island evolution in hot ion plasmas  

SciTech Connect

Effects of finite ion temperature on magnetic island evolution are studied by means of numerical simulations of a reduced set of two-fluid equations which include ion as well as electron diamagnetism in slab geometry. The polarization current is found to be almost an order of magnitude larger in hot than in cold ion plasmas, due to the strong shear of ion velocity around the separatrix of the magnetic islands. As a function of the island width, the propagation speed decreases from the electron drift velocity (for islands thinner than the Larmor radius) to values close to the guiding-center velocity (for islands of order 10 times the Larmor radius). In the latter regime, the polarization current is destabilizing (i.e., it drives magnetic island growth). This is in contrast to cold ion plasmas, where the polarization current is generally found to have a healing effect on freely propagating magnetic island.

Ishizawa, A.; Nakajima, N. [National Institute for Fusion Science, Toki 509-5292 (Japan); Waelbroeck, F. L.; Fitzpatrick, R.; Horton, W. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

2012-07-15T23:59:59.000Z

428

Upstream Internal Jumps in Stratified Sill Flow: Observations of Formation, Evolution, and Release  

Science Conference Proceedings (OSTI)

The time-dependent response of upstream undular bores and internal hydraulic jumps from initial formation to eventual release is documented. Two events, characterized by qualitatively different responses, are discussed. In the first case, an ...

Patrick F. Cummins; Laurence Armi

2010-06-01T23:59:59.000Z

429

The Descending Stratified Flow and Internal Hydraulic Jump in the Lee of the Sierras  

Science Conference Proceedings (OSTI)

Cross-barrier density differences and westerly flow established a descending stratified flow across the Sierra Nevada (United States) on 910 April 2006. Downslope flow and an internal hydraulic jump occurred only when the potential temperature of ...

Laurence Armi; Georg J. Mayr

2011-10-01T23:59:59.000Z

430

TWP Island Cloud Trail Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Pacific Island Cloud Trail Studies Pacific Island Cloud Trail Studies W. M. Porch Los Alamos National Laboratory Los Alamos, New Mexico S. Winiecki University of Chicago Chicago, Illinois Introduction Images and surface temperature measurements from the U.S. Department of Energy (DOE) Multi- spectral Thermal Imaging (MTI) satellite are combined with geostationary meteorological satellite (GMS) images during 2000 and 2001 to better understand cloud trail formation characteristics from the Atmospheric Radiation Measurement (ARM) Tropical Western Pacific (TWP) site. Figure 1 shows a comparison on two consecutive days in December 2000. The day for which a cloud trail developed was more moist and cooler at the altitude the cloud developed (about 600 m) and there was very little

431

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Rhode Island go to www.recovery.gov DOE Recovery Act projects in Rhode Island: 19 U.S. DEPARTMENT OF ENERGY * RHODE ISLAND RECOVERY ACT SNAPSHOT Rhode Island has substantial natural resources, including wind and biomass. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Rhode Island are supporting a broad range of clean energy projects, from weatherization to smart grid workforce training. Through these investments, Rhode Island's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Rhode Island to play an important role in the new energy economy of the future. EXAMPLES OF RHODE ISLAND FORMULA GRANTS Program Award (in millions)

432

Submit a Question to the BECP Help Desk | Building Energy Codes...  

NLE Websites -- All DOE Office Websites (Extended Search)

Islands Ohio Oklahoma Oregon Palau Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virgin Islands Virginia Washington West Virginia...

433

Status of State Energy Code Adoption | Building Energy Codes...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mariana Islands Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas U.S. Virgin Islands Utah Vermont Virginia Washington...

434

Compliance | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Mariana Islands Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas U.S. Virgin Islands Utah Vermont Virginia Washington...

435

Building Energy Codes Program | BECP  

NLE Websites -- All DOE Office Websites (Extended Search)

Mariana Islands Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas U.S. Virgin Islands Utah Vermont Virginia Washington...

436

Adoption | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Mariana Islands Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas U.S. Virgin Islands Utah Vermont Virginia Washington...

437

MHK Projects/Fishers Island Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Fishers Island Tidal Energy Project Fishers Island Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2379,"lon":-72.0599,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

438

MHK Projects/The Engineering Business Ltd Shetland Islands UK | Open Energy  

Open Energy Info (EERE)

Engineering Business Ltd Shetland Islands UK Engineering Business Ltd Shetland Islands UK < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.5303,"lon":-1.26592,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

439

MHK Projects/Ward s Island Tidal Power Project | Open Energy Information  

Open Energy Info (EERE)

Ward s Island Tidal Power Project Ward s Island Tidal Power Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7818,"lon":-73.9316,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

440

MHK Projects/Shelter Island Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Shelter Island Tidal Energy Project Shelter Island Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0453,"lon":-72.3748,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

MHK Projects/GCK Technology Shelter Island NY US | Open Energy Information  

Open Energy Info (EERE)

Shelter Island NY US Shelter Island NY US < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0682,"lon":-72.3387,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

442

MHK Projects/Roosevelt Island Tidal Energy RITE | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Island Tidal Energy RITE Roosevelt Island Tidal Energy RITE < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7639,"lon":-73.9466,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

443

MHK Projects/OpenHydro Alderney Channel Islands UK | Open Energy  

Open Energy Info (EERE)

OpenHydro Alderney Channel Islands UK OpenHydro Alderney Channel Islands UK < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.7222,"lon":-2.21003,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

444

MHK Projects/Cape Islands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Islands Tidal Energy Project Islands Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4833,"lon":-70.7578,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

445

MHK Projects/Long Island Sound Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Long Island Sound Tidal Energy Project Long Island Sound Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1674,"lon":-72.218,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

446

MHK Projects/Wavemill Energy Cape Breton Island NS CA | Open Energy  

Open Energy Info (EERE)

Energy Cape Breton Island NS CA Energy Cape Breton Island NS CA < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.2487,"lon":-60.8518,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

447

Pathogenicity island mobility and gene content.  

SciTech Connect

Key goals towards national biosecurity include methods for analyzing pathogens, predicting their emergence, and developing countermeasures. These goals are served by studying bacterial genes that promote pathogenicity and the pathogenicity islands that mobilize them. Cyberinfrastructure promoting an island database advances this field and enables deeper bioinformatic analysis that may identify novel pathogenicity genes. New automated methods and rich visualizations were developed for identifying pathogenicity islands, based on the principle that islands occur sporadically among closely related strains. The chromosomally-ordered pan-genome organizes all genes from a clade of strains; gaps in this visualization indicate islands, and decorations of the gene matrix facilitate exploration of island gene functions. A %E2%80%9Clearned phyloblocks%E2%80%9D method was developed for automated island identification, that trains on the phylogenetic patterns of islands identified by other methods. Learned phyloblocks better defined termini of previously identified islands in multidrug-resistant Klebsiella pneumoniae ATCC BAA-2146, and found its only antibiotic resistance island.

Williams, Kelly Porter

2013-10-01T23:59:59.000Z

448

Long Island Solar Farm | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Long Island Solar Farm Long Island Solar Farm Project Overview The Long Island Solar Farm (LISF) is a 32-megawatt solar photovoltaic power plant built through a collaboration including BP Solar, the Long Island Power Authority (LIPA), and the Department of Energy. The LISF, located on the Brookhaven National Laboratory site, began delivering power to the LIPA grid in November 2011, and is currently the largest solar photovoltaic power plant in the Eastern United States. It is generating enough renewable energy to power approximately 4,500 homes, and is helping New York State meet its clean energy and carbon reduction goals. Project Developer/Owner/Operator: Long Island Solar Farm, LLC (BP Solar & MetLife) Purchaser of Power: Long Island Power Authority (LIPA) purchases 100

449

Case Closed on Nauru Island Effect  

NLE Websites -- All DOE Office Websites (Extended Search)

Closed on Nauru Island Effect Closed on Nauru Island Effect For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight The tiny 4-kilometer-by-6-kilometer island of Nauru is isolated in the equatorial Pacific Ocean with naught but a few small scattered islands for thousands of kilometers around. Thus, the ARM measurements made there are intended to represent the larger surrounding oceanic area. But decades of phosphate mining have left large barren karst fields as the predominant land surface over most of the center of the island, making it much more susceptible to solar heating than typical tropical vegetated surfaces. During the Nauru99 campaign, small cumulus clouds were observed at times forming over the center of the island, advecting over the ARM site

450

Aeromagnetic Survey And Interpretation, Ascention Island, South...  

Open Energy Info (EERE)

potential of the island, is described. The aeromagnetic map represents a basic data set useful for the interpretation of subsurface geology. An in situ magnetic...

451

Ecosystem dynamics of the Aleutian Islands.  

E-Print Network (OSTI)

??Located between Asia and America and extending over a 1,000 mi., the Aleutian Islands have commonly been studied in a partial or fragmented manner. This (more)

Ortiz, Ivonne

2007-01-01T23:59:59.000Z

452

Pennsylvania Nuclear Profile - Three Mile Island  

U.S. Energy Information Administration (EIA) Indexed Site

Three Mile Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

453

WIND DATA REPORT Deer Island Outfall  

E-Print Network (OSTI)

WIND DATA REPORT Deer Island Outfall August 18, 2003 ­ December 4, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

Massachusetts at Amherst, University of

454

ANNUAL WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

ANNUAL WIND DATA REPORT Thompson Island March 1, 2002 ­ February 28, 2003 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

Massachusetts at Amherst, University of

455

WIND DATA REPORT Deer Island Parking Lot  

E-Print Network (OSTI)

WIND DATA REPORT Deer Island Parking Lot May 1, 2003 ­ July 15, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

Massachusetts at Amherst, University of

456

Prince Edward Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Municipal Affairs under the Community Development Equity Tax Credit Act and its regulations. Its objective is to facilitate local investment in Prince Edward Island...

457

Prince Edward Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Portfolio Standard (Prince Edward Island, Canada) For the calendar year beginning on January 1, 2010 and for each calendar year thereafter, every public utility shall...

458

Orbits and reversals of a drop rolling inside a horizontal circular hydraulic jump  

E-Print Network (OSTI)

We explore the complex dynamics of a non-coalescing drop of moderate size inside a circular hydraulic jump of the same liquid formed on a horizontal disk. In this situation the drop is moving along the jump and one observes two different motions: a periodic one (it orbitates at constant speed) and an irregular one involving reversals of the orbital motion. Modeling the drop as a rigid sphere exchanging friction with liquid across a thin film of air, we recover the orbital motion and the internal rotation of the drop. This internal rotation is experimentally observed.

Alexis Duchesne; Clment Savaro; Luc Lebon; Christophe Pirat; Laurent Limat

2013-01-29T23:59:59.000Z

459

Control Improvement for Jump-Diffusion Processes with Applications to Finance  

SciTech Connect

We consider stochastic control problems with jump-diffusion processes and formulate an algorithm which produces, starting from a given admissible control {pi}, a new control with a better value. If no improvement is possible, then {pi} is optimal. Such an algorithm is well-known for discrete-time Markov Decision Problems under the name Howard's policy improvement algorithm. The idea can be traced back to Bellman. Here we show with the help of martingale techniques that such an algorithm can also be formulated for stochastic control problems with jump-diffusion processes. As an application we derive some interesting results in financial portfolio optimization.

Baeuerle, Nicole, E-mail: nicole.baeuerle@kit.edu [Karlsruhe Institute of Technology, Institute for Stochastics (Germany); Rieder, Ulrich, E-mail: ulrich.rieder@uni-ulm.de [University of Ulm, Department of Optimization and Operations Research (Germany)

2012-02-15T23:59:59.000Z

460

Biofuel Feedstock Inter-Island Transportation  

E-Print Network (OSTI)

Biofuel Feedstock Inter-Island Transportation Prepared for the U.S. Department of Energy Office agency thereof. #12;A Comparison of Hawaii's Inter-Island Maritime Transportation of Solid Versus Liquid of Honolulu Advertiser ISO Tank Container, courtesy of Hawaii Intermodal Tank Transport Petroleum products

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Living on Long Island | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Careers at Brookhaven Careers at Brookhaven Home For Job Seekers Job List Life at Brookhaven Benefits Family Programs Recreation & Fitness Why Brookhaven? For New Hires For Employees Living on Long Island Stretching 118 miles from end to end and measuring no more than 20 miles at its widest point, Long Island was aptly named by Dutch traders who circum-navigated it in the early 1600s. Those early Dutchmen discovered what the native Indians had known for centuries: The temperate climate, the bountiful seas and the fertile land made Long Island a most hospitable home. Local Area Information Long Island Schools Parks Beaches Wineries New York City Today, Brookhaven National Laboratory sits in the geographical center of Long Island. To the west, New York City boasts Broadway shows, museums,

462

Electron energization during magnetic island coalescence  

SciTech Connect

Radio emission from colliding coronal mass ejection flux ropes in the interplanetary medium suggested the local generation of superthermal electrons. Inspired by those observations, a fully kinetic particle-in-cell simulation of magnetic island coalescence models the magnetic reconnection between islands as a source of energetic electrons. When the islands merge, stored magnetic energy is converted into electron kinetic energy. The simulation demonstrates that a mechanism for electron energization originally applied to open field line reconnection geometries also operates near the reconnection site of merging magnetic islands. The electron heating is highly anisotropic, and it results mainly from an electric field surrounding the reconnection site that accelerates electrons parallel to the magnetic field. A detailed theory predicts the maximum electron energies and how they depend on the plasma parameters. In addition, the global motion of the magnetic islands launches low-frequency waves in the surrounding plasma, which induce large-amplitude, anisotropic fluctuations in the electron temperature.

Le, A.; Egedal, J. [MIT, Cambridge, Massachusetts 02139 (United States); Karimabadi, H.; Roytershteyn, V. [University of California-San Diego, La Jolla, California 92093 (United States); Daughton, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-07-15T23:59:59.000Z

463

Paving materials for heat island mitigation  

NLE Websites -- All DOE Office Websites (Extended Search)

Paving materials for heat island mitigation Paving materials for heat island mitigation Title Paving materials for heat island mitigation Publication Type Report Year of Publication 1997 Authors Pomerantz, Melvin, Hashem Akbari, Allan Chen, Haider Taha, and Arthur H. Rosenfeld Keywords Cool Pavements, Heat Island Abstract This report summarizes paving materials suitable for urban streets, driveways, parking lots and walkways. The authors evaluate materials for their abilities to reflect sunlight, which will reduce their temperatures. This in turn reduces the excess air temperature of cities (the heat island effect). The report presents the compositions of the materials, their suitability for particular applications, and their approximate costs (in 1996). Both new and resurfacing are described. They conclude that, although light-colored materials may be more expensive than conventional black materials, a thin layer of light-colored pavement may produce energy savings and smog reductions whose long-term worth is greater than the extra cost.

464

Resilin and cuticle form a composite structure for energy storage in jumping by froghopper insects  

E-Print Network (OSTI)

, the movement is at least 100 ?m. Conclusion Calculations showed that the resilin itself could only store 1% to 2% of the energy required for jumping. The stiffer cuticular parts of the pleural arches could, however, easily meet all the energy storage needs...

Burrows, Malcolm; Shaw, Stephen R; Sutton, Gregory P

2008-09-30T23:59:59.000Z

465

Controlled jump Markov processes with local transitions and their fluid approximation  

Science Conference Proceedings (OSTI)

Stochastic jump processes, especially birth-and-death processes, are widely used in the queuing theory, computer networks and information transmission. The state of such process describes the instant length of the queues (numbers of packets at different ... Keywords: C-rule, birth-and-death process, continuous time Markov chain, dynamic programming, fluid model, inventory, optimal control, queuing system

Alexey Piunovskiy

2009-08-01T23:59:59.000Z

466

Vorticity Generation in the Shallow-Water Equations as Applied to Hydraulic Jumps  

Science Conference Proceedings (OSTI)

The authors attempt to find a bridge between the vorticity dynamics of a finite cross-stream length hydraulic jump implied by the Navier-Stokes equations and that given by the shallow-water approximation (SWA) with the turbulence of the hydraulic ...

Richard Rotunno; Piotr K. Smolarkiewicz

1995-02-01T23:59:59.000Z

467

Velocity-jump processes with a finite number of speeds and their asymptotically parabolic nature  

E-Print Network (OSTI)

Velocity-jump processes with a finite number of speeds and their asymptotically parabolic nature-time behavior is described by a corresponding scalar diffusive equation of parabolic type, defined, alternative to the tradi- tional parabolic heat equation, which, on the contrary, mantains the inherent

Recanati, Catherine

468

Quantum-capacity-approaching codes for the detected-jump channel  

SciTech Connect

The quantum-channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasures and bit flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity-approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.

Grassl, Markus; Wei Zhaohui [Centre for Quantum Technologies, National University of Singapore, Singapore 117543 (Singapore); Ji Zhengfeng [Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190 (China); Zeng Bei [Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Institute for Quantum Computing and Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

2010-12-15T23:59:59.000Z

469

Mass Wasting in the Western Galapagos Islands  

E-Print Network (OSTI)

Oceanic island volcanoes such as those in the Hawaiian, Canary and Galapagos Islands are known to become unstable, causing failures of the subaerial and submarine slopes of the volcanic edifices. These mass wasting events appear to be the primary source of destruction and loss of volume of many oceanic islands, but our knowledge of mass wasting is still rudimentary in many seamount and island chains. To better understand mass wasting in the western Galapagos Islands, multi-beam bathymetry and backscatter sidescan sonar images were used to examine topography and acoustic backscatter signatures that are characteristic of mass wasting. Observations show that mass wasting plays an important role in the development of Galapagos volcanoes. While volcanic activity continues to conceal the submarine terrain, the data show that four forms of mass wasting are identified including debris flows, slumps sheets, chaotic slumps, and detached blocks. A total of 23 mass wasting features were found to exist in the western Galapagos Islands, including fourteen debris flows with one that incorporated a set of detached blocks, seven slump sheets, and one chaotic slump. Some of the indentified features have obvious origination zones while the sources of others are not clearly identifiable. Approximately 73 percent of the surveyed coastlines are affected by slumping on the steep upper slopes and ~64 percent are affected by debris flows on the lower slopes. Unlike the giant landslides documented by GLORIA imagery around the Hawaiian Islands, the western Galapagos Islands appear to be characterized by small slump sheets existing along the steep shallow submarine flanks of the island and by debris flows that are flanked by rift zones and extend off the platform. This study indicates that submarine mass wasting is widespread in the western Galapagos, suggesting that the production of small-scale downslope movement is part of the erosive nature of these oceanic volcanic islands.

Hall, Hillary

2011-08-01T23:59:59.000Z

470

Prince Edward Island/EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

Island, Canada) Prince Edward Island Environmental Regulations Yes BiomassBiogas Coal with CCS Natural Gas Nuclear StateProvince Companies that operate any of the...

471

2013 Asian American & Pacific Islander Heritage Month Resources...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Asian American & Pacific Islander Heritage Month Resources and Theme 2013 Asian American & Pacific Islander Heritage Month Resources and Theme April 3, 2013 - 1:43pm Addthis...

472

Green Island Power Authority Transmission Voltage Support System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Island Power Authority Transmission Voltage Support System Project Green Island Power Authority Transmission Voltage Support System Project Power point presentation...

473

Price of Elba Island, GA Liquefied Natural Gas Total Imports...  

Annual Energy Outlook 2012 (EIA)

Elba Island, GA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Elba Island, GA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet)...

474

Renewable Energy Act (Prince Edward Island, Canada) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Act (Prince Edward Island, Canada) Renewable Energy Act (Prince Edward Island, Canada) Eligibility Commercial Developer General PublicConsumer Industrial Installer...

475

Climate Action Plan (Prince Edward Island, Canada) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Action Plan (Prince Edward Island, Canada) Climate Action Plan (Prince Edward Island, Canada) Eligibility Commercial Developer General PublicConsumer Industrial...

476

CX-009168: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Rhode Island State Energy Program CX(s) Applied: A9, A11 Date: 09/19/2012 Location(s): Rhode Island Offices(s): Golden Field Office

477

Amchitka Island, Alaska, special sampling project 1997  

Science Conference Proceedings (OSTI)

This 1997 special sampling project represents a special radiobiological sampling effort to augment the 1996 Long-Term Hydrological Monitoring Program (LTHMP) for Amchitka Island in Alaska. Lying in the western portion of the Aleutian Islands arc, near the International Date Line, Amchitka Island is one of the southernmost islands of the Rat Island Chain. Between 1965 and 1971, the U.S. Atomic Energy Commission conducted three underground nuclear tests on Amchitka Island. In 1996, Greenpeace collected biota samples and speculated that several long-lived, man-made radionuclides detected (i.e., americium-241, plutonium-239 and -240, beryllium-7, and cesium-137) leaked into the surface environment from underground cavities created during the testing. The nuclides of interest are detected at extremely low concentrations throughout the environment. The objectives of this special sampling project were to scientifically refute the Greenpeace conclusions that the underground cavities were leaking contaminants to the surface. This was achieved by first confirming the presence of these radionuclides in the Amchitka Island surface environment and, second, if the radionuclides were present, determining if the source is the underground cavity or worldwide fallout. This special sampling and analysis determined that the only nonfallout-related radionuclide detected was a low level of tritium from the Long Shot test, which had been previously documented. The tritium contamination is monitored and continues a decreasing trend due to radioactive decay and dilution.

U.S. Department of Energy, Nevada Operations Office

2000-06-28T23:59:59.000Z

478

Pennsylvania - Search - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas: Utah Vermont Virginia

479

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, ... Rhode Island Office of Energy Resources, ... RI Energy Efficiency and Resource Management Council. more. Background. Updates.

480

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(RIREF) Rhode Island Commercial Industrial Institutional Residential Utility Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating...

Note: This page contains sample records for the topic "rhode island jump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Solar Home Weatherization Water Rhode Island Economic Development Corporation...

482

July 29, 2012 Prediction of flow duration curves in ungauged basins  

E-Print Network (OSTI)

for former AFDC recipients, shall be entitled to a $250 tax credit per participant. #12;RHODE ISLAND

Vogel, Richard M.

483

NIST Mixture Interpretation Interlaboratory Study 2005 (MIX05)  

Science Conference Proceedings (OSTI)

... Clackamas, OR) Pennsylvania State Police (Greensburg, PA) Rhode Island Department of Health (Providence, RI) South Dakota State Forensic ...

2006-10-20T23:59:59.000Z

484

2012 Annual Report  

Science Conference Proceedings (OSTI)

... Rhode Island: South Dakota Manufacturing and Technology Center Center Director: Wes Kelly 2329 N. Career Ave. ... South Dakota: ...

2013-06-14T23:59:59.000Z

485

BYU Thesis  

Science Conference Proceedings (OSTI)

... New Jersey, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Rhode Island, South Dakota, Tennessee, Texas, Utah ...

2011-10-03T23:59:59.000Z

486

Hit-or-Jump: An Algorithm for Embedded Testing with Applications to in Services  

E-Print Network (OSTI)

This paper presents a new algorithm, Hit-or-Jump, for embedded testing of components of communication systems that can be modeled by communicating extended finite state machines. It constructs test sequences efficiently with a high fault coverage. It does not have state space explosion, as is often encountered in exhaustive search, and it quickly covers the system components under test without being "trapped", as is experienced by random walks. Furthermore, it is a generalization and unification of both exhaustive search and random walks; both are special cases of Hit-or-Jump. The algorithm has been implemented and applied to embedded testing of telephone services in an Intelligent Network (IN) architecture, including the Basic Call Service and five supplementary services. Keywords: conformance testing, embedded testing, communicating extended finite state machines, IN. 1.

Ana Cavalli; David Lee; Christian Rinderknecht; Fatiha Zadi

1999-01-01T23:59:59.000Z

487

Northern Mariana Islands - Territory Energy Profile Overview - U.S ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, biomass and ethanol. ... Puerto Rico US Virgin Islands: Overview; Data;

488

Northern Mariana Islands - Territory Energy Profile Analysis - U.S ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, biomass and ethanol. ... Puerto Rico US Virgin Islands: Overview; Data;

489

Recovery Act State Memos Mariana Islands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the the Northern Mariana Islands to play an important role in the new energy economy of the future. EXAMPLES OF NORTHERN MARIANA ISLANDS FORMULA GRANTS Program Award State Energy Program Weatherization Assistance Program Energy Efficiency Conservation Block Grants Energy Efficiency Appliance Rebate Program $18.7 million $29.4 million $9.6 million $0.1 million The Commonwealth of the Northern Mariana Islands has received $18.7 million in State Energy Program funds to invest in state- and territory- level energy efficiency and renewable energy priorities. The Commonwealth of the Northern Mariana Islands has received over $29.4 million in Weatherization Assistance Program funds to scale-up existing weatherization efforts in the

490

Extreme Rainfall Events in the Hawaiian Islands  

Science Conference Proceedings (OSTI)

Heavy rainfall and the associated floods occur frequently in the Hawaiian Islands and have caused huge economic losses as well as social problems. Extreme rainfall events in this study are defined by three different methods based on 1) the mean ...

Pao-Shin Chu; Xin Zhao; Ying Ruan; Melodie Grubbs

2009-03-01T23:59:59.000Z

491

A Numerical Investigation of Tropical Island Thunderstorms  

Science Conference Proceedings (OSTI)

A version of the United Kingdom Meteorological Office mesoscale weather prediction model is used to simulate cases of deep tropical convection from the Island Thunderstorm Experiment off the north coast of Australia. Selected cases contrast ...

B. W. Golding

1993-05-01T23:59:59.000Z

492

Interaction of Ekman Layers and Islands  

Science Conference Proceedings (OSTI)

The circulation induced by the interaction of surface Ekman transport with an island is considered using both numerical models and linear theory. The basic response is similar to that found for the interaction of Ekman layers and an infinite ...

Michael A. Spall; Joseph Pedlosky

2013-05-01T23:59:59.000Z

493

Metromorphosis : evolution on the urban island  

E-Print Network (OSTI)

Cities are very much alive. Like islands, they provide a natural testing ground for evolution. With more than half of the world's population living in urban areas now, the influence cities have on the planet's life is ...

Vezina, Kenrick (Kenrick Freitas)

2011-01-01T23:59:59.000Z

494

commentary / book review: Island Biogeography: Paradigm Lost?  

E-Print Network (OSTI)

America. Areviewofthisbookwillappearinafuture1948?6596 commentary/bookreview IslandBiogeography:and Wilsons 1967 book, and the earlier but less

Heaney, Lawrence R.

2011-01-01T23:59:59.000Z

495

Pennsylvania Nuclear Profile - Three Mile Island  

U.S. Energy Information Administration (EIA)

snpt3pa8011 805 6,634 94.1 PWR Three Mile Island Unit Type Data for 2010 PWR = Pressurized Light Water Reactor. Note: Totals may not equal sum of ...

496

US Virgin Islands renewable energy future  

E-Print Network (OSTI)

The US Virgin Islands must face drastic changes to its electrical system. There are two problems with electricity production in the USVI-it's dirty and it's expensive. Nearly one hundred percent of the electricity in these ...

Oldfield, Brian (Brian K.)

2013-01-01T23:59:59.000Z

497

Urban Heat Island Assessment: Metadata Are Important  

Science Conference Proceedings (OSTI)

Urban heat island (UHI) analyses for the conterminous United States were performed using three different forms of metadata: nightlights-derived metadata, map-based metadata, and gridded U.S. Census Bureau population metadata. The results ...

Thomas C. Peterson; Timothy W. Owen

2005-07-01T23:59:59.000Z

498

Southern California Channel Islands Bibliography, through 1992  

E-Print Network (OSTI)

Radiolarians in the Gulf of California; Deep Sea DrillingSanta Cruz Island, California. Howell DG, AFFL: U.S. Geol.of southern California continental borderland [abstract]. in

Channel Islands National Marine Sanctuary

1992-01-01T23:59:59.000Z

499

Neural networks letter: Delay-dependent stability analysis for continuous-time BAM neural networks with Markovian jumping parameters  

Science Conference Proceedings (OSTI)

This paper investigates the problem of stability analysis for bidirectional associative memory (BAM) neural networks with Markovian jumping parameters. Some new delay-dependent stochastic stability criteria are derived based on a novel Lyapunov-Krasovskii ... Keywords: BAM neural networks, Delay-dependence, Linear matrix inequality (LMI), Markovian jump

Hongyang Liu; Yan Ou; Jun Hu; Tingting Liu

2010-04-01T23:59:59.000Z

500

National Park Service - San Miguel Island, California | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Miguel Island, California San Miguel Island, California National Park Service - San Miguel Island, California October 7, 2013 - 10:00am Addthis Photo of Wind/Photovoltaic Power System at San Miguel Island San Miguel Island is one of five islands that make up Channel Islands National Park on the coast of southern California. The islands comprise 249,353 acres (100,910 hectares) of land and ocean that teems with terrestrial and marine life. The National Park Service (NPS) protects the pristine resources at Channel Islands National Park by conserving, recycling, using alternative fuel vehicles, applying renewable energy, and using resources wisely. It also seeks to replace conventional fuels with renewable energy wherever possible. This applies especially to diesel fuel and petroleum, which must