National Library of Energy BETA

Sample records for rg zn cd

  1. Photoluminescence study of the substitution of Cd by Zn during the growth by atomic layer epitaxy of alternate CdSe and ZnSe monolayers

    SciTech Connect (OSTI)

    Hernndez-Caldern, I.; Salcedo-Reyes, J. C.

    2014-05-15

    We present a study of the substitution of Cd atoms by Zn atoms during the growth of alternate ZnSe and CdSe compound monolayers (ML) by atomic layer epitaxy (ALE) as a function of substrate temperature. Samples contained two quantum wells (QWs), each one made of alternate CdSe and ZnSe monolayers with total thickness of 12 ML but different growth parameters. The QWs were studied by low temperature photoluminescence (PL) spectroscopy. We show that the Cd content of underlying CdSe layers is affected by the exposure of the quantum well film to the Zn flux during the growth of ZnSe monolayers. The amount of Cd of the quantum well film decreases with higher exposures to the Zn flux. A brief discussion about the difficulties to grow the Zn{sub 0.5}Cd{sub 0.5}Se ordered alloy (CuAu-I type) by ALE is presented.

  2. CdS and CdS/CdSe sensitized ZnO nanorod array solar cells prepared by a solution ions exchange process

    SciTech Connect (OSTI)

    Chen, Ling; Gong, Haibo; Zheng, Xiaopeng; Zhu, Min; Zhang, Jun; Yang, Shikuan; Cao, Bingqiang

    2013-10-15

    Graphical abstract: - Highlights: CdS and CdS/CdSe quantum dots are assembled on ZnO nanorods by ion exchange process. The CdS/CdSe sensitization of ZnO effectively extends the absorption spectrum. The performance of ZnO/CdS/CdSe cell is improved by extending absorption spectrum. - Abstract: In this paper, cadmium sulfide (CdS) and cadmium sulfide/cadmium selenide (CdS/CdSe) quantum dots (QDs) are assembled onto ZnO nanorod arrays by a solution ion exchange process for QD-sensitized solar cell application. The morphology, composition and absorption properties of different photoanodes were characterized with scanning electron microscope, transmission electron microscope, energy-dispersive X-ray spectrum and Raman spectrum in detail. It is shown that conformal and uniform CdS and CdS/CdSe shells can grow on ZnO nanorod cores. Quantum dot sensitized solar cells based on ZnO/CdS and ZnO/CdS/CdSe nanocable arrays were assembled with gold counter electrode and polysulfide electrolyte solution. The CdS/CdSe sensitization of ZnO can effectively extend the absorption spectrum up to 650 nm, which has a remarkable impact on the performance of a photovoltaic device by extending the absorption spectrum. Preliminary results show one fourth improvement in solar cell efficiency.

  3. Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Radiation Detectors Citation Details In-Document Search Title: Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals for Room-temperature Nuclear ...

  4. Core-shell ITO/ZnO/CdS/CdTe nanowire solar cells

    SciTech Connect (OSTI)

    Williams, B. L.; Phillips, L.; Major, J. D.; Durose, K.; Taylor, A. A.; Mendis, B. G.; Bowen, L.

    2014-02-03

    Radial p-n junction nanowire (NW) solar cells with high densities of CdTe NWs coated with indium tin oxide (ITO)/ZnO/CdS triple shells were grown with excellent heterointerfaces. The optical reflectance of the devices was lower than for equivalent planar films by a factor of 100. The best efficiency for the NW solar cells was ??=?2.49%, with current transport being dominated by recombination, and the conversion efficiencies being limited by a back contact barrier (?{sub B}?=?0.52?eV) and low shunt resistances (R{sub SH}?

  5. Analysis of Surface Chemistry and Detector Performance of Chemically Process CdZnTe crystals

    SciTech Connect (OSTI)

    HOSSAIN A.; Yang, G.; Sutton, J.; Zergaw, T.; Babalola, O. S.; Bolotnikov, A. E.; Camarda. ZG. S.; Gul, R.; Roy, U. N., and James, R. B.

    2015-10-05

    The goal is to produce non-conductive smooth surfaces for fabricating low-noise and high-efficiency CdZnTe devices.

  6. Purification of CdZnTe by Electromigration

    SciTech Connect (OSTI)

    Kim, K.; Kim, Sangsu; Hong, Jinki; Lee, Jinseo; Hong, Taekwon; Bolotnikov, A. E.; Camarda, G. S.; James, R. B.

    2015-04-14

    Electro-migration of ionized/electrically active impurities in CdZnTe (CZT) was successfully demonstrated at elevated temperature with an electric field of 20 V/mm. Copper, which exists in positively charged states, electro-migrated at a speed of 15 lm/h in an electric field of 20 V/mm. A notable variation in impurity concentration along the growth direction with the segregation tendency of the impurities was observed in an electro-migrated CZT boule. Notably, both Ga and Fe, which exist in positively charged states, exhibited the opposite distribution to that of their segregation tendency in Cd(Zn)Te. Furthermore, a CZT detector fabricated from the middle portion of the electromigrated CZT boule showed an improved mobility-lifetime product of 0.91 10-2 cm2 /V, compared to that of 1.4 10-3 cm2 /V, observed in an as-grown (non-electro-migrated) CZT detector. The optimum radiation detector material would have minimum concentration of deep traps required for compensation.

  7. Purification of CdZnTe by Electromigration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, K.; Kim, Sangsu; Hong, Jinki; Lee, Jinseo; Hong, Taekwon; Bolotnikov, A. E.; Camarda, G. S.; James, R. B.

    2015-04-14

    Electro-migration of ionized/electrically active impurities in CdZnTe (CZT) was successfully demonstrated at elevated temperature with an electric field of 20 V/mm. Copper, which exists in positively charged states, electro-migrated at a speed of 15 lm/h in an electric field of 20 V/mm. A notable variation in impurity concentration along the growth direction with the segregation tendency of the impurities was observed in an electro-migrated CZT boule. Notably, both Ga and Fe, which exist in positively charged states, exhibited the opposite distribution to that of their segregation tendency in Cd(Zn)Te. Furthermore, a CZT detector fabricated from the middle portion of themore » electromigrated CZT boule showed an improved mobility-lifetime product of 0.91 10-2 cm2 /V, compared to that of 1.4 10-3 cm2 /V, observed in an as-grown (non-electro-migrated) CZT detector. The optimum radiation detector material would have minimum concentration of deep traps required for compensation.« less

  8. CdSe/ZnSe quantum dot structures grown by molecular beam epitaxy with a CdTe submonolayer stressor

    SciTech Connect (OSTI)

    Sedova, I. V. Lyublinskaya, O. G.; Sorokin, S. V.; Sitnikova, A. A.; Toropov, A. A.; Donatini, F.; Dang, Si Le; Ivanov, S. V.

    2007-11-15

    A procedure for formation of CdSe quantum dots (QDs) in a ZnSe matrix is suggested. The procedure is based on the introduction of a CdTe submonolayer stressor deposited on the matrix surface just before deposition of the material of the QDs. (For CdTe/ZnSe structure, the relative lattice mismatch is {delta}a/a {approx} 14%.) The stressor forms small strained islands at the ZnSe surface, thus producing local fields of high elastic stresses controlling the process of the self-assembling of the QDs. According to the data of transmission electron microscopy, this procedure allows a considerable increase in the surface density of QDs, with a certain decrease in their lateral dimensions (down to 4.5 {+-} 1.5 nm). In the photoluminescence spectra, a noticeable ({approx}150 meV) shift of the peak to longer wavelengths from the position of the reference CdSe/ZnSe QD structure is observed. The shift is due to some transformation of the morphology of the QDs and an increase in the Cd content in the QDs. Comprehensive studies of the nanostructures by recording and analyzing the excitation spectra of photoluminescence, the time-resolved photoluminescence spectra, and the cathodoluminescence spectra show that the emission spectra involve two types of optical transitions, namely, the type-I transitions in the CdSeTe/ZnSe QDs and the type-II transitions caused mainly by the low cadmium content (Zn,Cd)(Se,Te)/ZnSe layer formed between the QDs.

  9. CdSe self-assembled quantum dots with ZnCdMgSe barriers emitting throughout the visible spectrum

    SciTech Connect (OSTI)

    Perez-Paz, M. Noemi; Zhou Xuecong; Munoz, Martin; Lu Hong; Sohel, Mohammad; Tamargo, Maria C.; Jean-Mary, Fleumingue; Akins, Daniel L.

    2004-12-27

    Self-assembled quantum dots of CdSe with ZnCdMgSe barriers have been grown by molecular beam epitaxy on InP substrates. The optical and microstructural properties were investigated using photoluminescence (PL) and atomic force microscopy (AFM) measurements. Control and reproducibility of the quantum dot (QD) size leading to light emission throughout the entire visible spectrum range has been obtained by varying the CdSe deposition time. Longer CdSe deposition times result in a redshift of the PL peaks as a consequence of an increase of QD size. AFM studies demonstrate the presence of QDs in uncapped structures. A comparison of this QD system with CdSe/ZnSe shows that not only the strain but also the chemical properties of the system play an important role in QD formation.

  10. Luminescence of CdSe/ZnS quantum dots infiltrated into an opal matrix

    SciTech Connect (OSTI)

    Gruzintsev, A. N. Emelchenko, G. A.; Masalov, V. M.; Yakimov, E. E.; Barthou, C.; Maitre, A.

    2009-02-15

    The effect of the photonic band gap in the photonic crystal, the synthesized SiO{sub 2} opal with embedded CdSe/ZnS quantum dots, on its luminescence in the visible spectral region is studied. It is shown that the position of the photonic band gap in the luminescence and reflectance spectra for the infiltrated opal depends on the diameter of the constituent nanospheres and on the angle of recording the signal. The optimal conditions for embedding the CdSe/ZnS quantum dots from the solution into the opal matrix are determined. It is found that, for the opal-CdSe/ZnS nanocomposites, the emission intensity decreases and the luminescence decay time increases in the spatial directions, in which the spectral positions of the photonic band gap and the luminescence peak of the quantum dots coincide.

  11. Synthesis and optical study of green light emitting polymer coated CdSe/ZnSe core/shell nanocrystals

    SciTech Connect (OSTI)

    Tripathi, S.K.; Sharma, Mamta

    2013-05-15

    Highlights: ► Synthesis of Polymer coated core CdSe and CdSe/ZnSe core/shell NCs. ► From TEM image, the spherical nature of CdSe and CdSe/ZnSe is obtained. ► Exhibiting green band photoemission peak at 541 nm and 549 nm for CdSe core and CdSe/ZnSe core/shell NCs. ► The shell thickness has been calculated by using superposition of quantum confinement energy model. - Abstract: CdSe/ZnSe Core/Shell NCs dispersed in PVA are synthesized by chemical method at room temperature. This is characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV/Vis spectra and photoluminescence spectroscopy (PL). TEM image shows the spherical nature of CdSe/ZnSe core/shell NCs. The red shift of absorption and emission peak of CdSe/ZnSe core/shell NCs as compared to CdSe core confirmed the formation of core/shell. The superposition of quantum confinement energy model is used for calculation of thickness of ZnSe shell.

  12. Effects of Cu Diffusion from ZnTe:Cu/Ti Contacts on Carrier Lifetime of CdS/CdTe Thin Film Solar Cells: Preprint

    SciTech Connect (OSTI)

    Gessert, T. A.; Metzger, W. K.; Asher, S. E.; Young, M. R.; Johnston, S.; Dhere, R. G.; Duda, A.

    2008-05-01

    We study the performance of CdS/CdTe thin film PV devices processed with a ZnTe:Cu/Ti contact to investigate how carrier lifetime in the CdTe layer is affected by Cu diffusion from the contact.

  13. Influence of deep level defects on carrier lifetime in CdZnTe:In

    SciTech Connect (OSTI)

    Guo, Rongrong; Jie, Wanqi Wang, Ning; Zha, Gangqiang; Xu, Yadong; Wang, Tao; Fu, Xu

    2015-03-07

    The defect levels and carrier lifetime in CdZnTe:In crystal were characterized with photoluminescence, thermally stimulated current measurements, as well as contactless microwave photoconductivity decay (MWPCD) technique. An evaluation equation to extract the recombination lifetime and the reemission time from MWPCD signal is developed based on Hornbeck-Haynes trapping model. An excellent agreement between defect level distribution and carrier reemission time in MWPCD signal reveals the tail of the photoconductivity decay is controlled by the defect level reemission effect. Combining {sup 241}Am gamma ray radiation response measurement and laser beam induced transient current measurement, it predicted that defect level with the reemission time shorter than the collection time could lead to better charge collection efficiency of CdZnTe detector.

  14. The effects of deep level traps on the electrical properties of semi-insulating CdZnTe

    SciTech Connect (OSTI)

    Zha, Gangqiang; Yang, Jian; Xu, Lingyan; Feng, Tao; Wang, Ning; Jie, Wanqi

    2014-01-28

    Deep level traps have considerable effects on the electrical properties and radiation detection performance of high resistivity CdZnTe. A deep-trap model for high resistivity CdZnTe was proposed in this paper. The high resistivity mechanism and the electrical properties were analyzed based on this model. High resistivity CdZnTe with high trap ionization energy E{sub t} can withstand high bias voltages. The leakage current is dependent on both the deep traps and the shallow impurities. The performance of a CdZnTe radiation detector will deteriorate at low temperatures, and the way in which sub-bandgap light excitation could improve the low temperature performance can be explained using the deep trap model.

  15. Removal of Zn or Cd and cyanide from cyanide electroplating wastes

    DOE Patents [OSTI]

    Moore, Fletcher L.

    1977-05-31

    A method is described for the efficient stripping of stable complexes of a selected quaternary amine and a cyanide of Zn or Cd. An alkali metal hydroxide solution such as NaOH or KOH will quantitatively strip a pregnant extract of the quaternary ammonium complex of its metal and cyanide content and regenerate a quaternary ammonium hydroxide salt which can be used for extracting further metal cyanide values.

  16. New acceptor centers of the background impurities in p-CdZnTe

    SciTech Connect (OSTI)

    Plyatsko, S. V. Rashkovetskyi, L. V.

    2013-07-15

    Low-temperature photoluminescence data are used to study the redistribution of the background impurities and host components of p-CdZnTe single crystals with a resistivity of 1-50 {Omega} cm upon their interaction with infrared laser radiation. The effect of widening of the band gap and the formation of new acceptor centers in response to laser-stimulated changes in the system of intrinsic defects are established. The activation energy of the new acceptor centers is determined.

  17. Spectral photoresponse of ZnSe/GaAs(001) heterostructures with CdSe ultra-thin quantum well insertions

    SciTech Connect (OSTI)

    Valverde-Chvez, D. A.; Sutara, F.; Hernndez-Caldern, I.

    2014-05-15

    We present a study of the spectral photoresponse (SPR) of ZnSe/GaAs(001) heterostructures for different ZnSe film thickness with and without CdSe ultra-thin quantum well (UTQW) insertions. We observe a significant increase of the SPR of heterostructures containing 3 monolayer thick CdSe UTQW insertions; these results encourage their use in photodetectors and solar cells.

  18. Impact of annealing on the chemical structure and morphology of the thin-film CdTe/ZnO interface

    SciTech Connect (OSTI)

    Horsley, K. Hanks, D. A.; Weir, M. G.; Beal, R. J.; Wilks, R. G.; Blum, M.; Häming, M.; Hofmann, T.; Weinhardt, L.; and others

    2014-07-14

    To enable an understanding and optimization of the optoelectronic behavior of CdTe-ZnO nanocomposites, the morphological and chemical properties of annealed CdTe/ZnO interface structures were studied. For that purpose, CdTe layers of varying thickness (4–24 nm) were sputter-deposited on 100 nm-thick ZnO films on surface-oxidized Si(100) substrates. The morphological and chemical effects of annealing at 525 °C were investigated using X-ray Photoelectron Spectroscopy (XPS), X-ray-excited Auger electron spectroscopy, energy dispersive X-ray spectroscopy, scanning electron microscopy, and atomic force microscopy. We find a decrease of the Cd and Te surface concentration after annealing, parallel to an increase in Zn and O signals. While the as-deposited film surfaces show small grains (100 nm diameter) of CdTe on the ZnO surface, annealing induces a significant growth of these grains and separation into islands (with diameters as large as 1 μm). The compositional change at the surface is more pronounced for Cd than for Te, as evidenced using component peak fitting of the Cd and Te 3d XPS peaks. The modified Auger parameters of Cd and Te are also calculated to further elucidate the local chemical environment before and after annealing. Together, these results suggest the formation of tellurium and cadmium oxide species at the CdTe/ZnO interface upon annealing, which can create a barrier for charge carrier transport, and might allow for a deliberate modification of interface properties with suitably chosen thermal treatment parameters.

  19. Intersubband absorption in CdSe/Zn{sub x}Cd{sub y}Mg{sub 1-x-y}Se self-assembled quantum dot multilayers

    SciTech Connect (OSTI)

    Shen, A.; Lu, H.; Charles, W.; Yokomizo, I.; Tamargo, M. C.; Franz, K. J.; Gmachl, C.; Zhang, S. K.; Zhou, X.; Alfano, R. R.; Liu, H. C.

    2007-02-12

    The authors report the observation of intersubband absorption in multilayers of CdSe/Zn{sub x}Cd{sub y}Mg{sub 1-x-y}Se self-assembled quantum dots. The samples were grown by molecular beam epitaxy on InP substrates. For samples with the CdSe dot layers doped with Cl and with the deposited CdSe equivalent layer thickness between 5.2 and 6.9 ML, peak absorption between 2.5 and 3.5 {mu}m was observed. These materials are promising for intersubband devices operating in the mid- and near-infrared ranges.

  20. Reduction of surface leakage current by surface passivation of CdZn Te and other materials using hyperthermal oxygen atoms

    DOE Patents [OSTI]

    Hoffbauer, Mark A.; Prettyman, Thomas H.

    2001-01-01

    Reduction of surface leakage current by surface passivation of Cd.sub.1-x Zn.sub.x Te and other materials using hyperthermal oxygen atoms. Surface effects are important in the performance of CdZnTe room-temperature radiation detectors used as spectrometers since the dark current is often dominated by surface leakage. A process using high-kinetic-energy, neutral oxygen atoms (.about.3 eV) to treat the surface of CdZnTe detectors at or near ambient temperatures is described. Improvements in detector performance include significantly reduced leakage current which results in lower detector noise and greater energy resolution for radiation measurements of gamma- and X-rays, thereby increasing the accuracy and sensitivity of measurements of radionuclides having complex gamma-ray spectra, including special nuclear materials.

  1. Effects of hydrogen on the optical properties of ZnCdO/ZnO quantum wells grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Buyanova, I. A.; Wang, X. J.; Chen, W. M.; Pozina, G.; Lim, W.; Norton, D. P.; Pearton, S. J.; Osinsky, A.; Dong, J. W.; Hertog, B.

    2008-06-30

    Temperature-dependent cw- and time-resolved photoluminescence (PL), as well as optically detected magnetic resonance (ODMR) measurements are employed to evaluate effects of deuterium (2H) doping on optical properties of ZnCdO/ZnO quantum well structures grown by molecular beam epitaxy. It is shown that incorporation of {sup 2}H from a remote plasma causes a substantial improvement in radiative efficiency of the investigated structures. Based on transient PL measurements, the observed improvements are attributed to efficient passivation by hydrogen of competing nonradiative recombination centers via defects. This conclusion is confirmed from the ODMR studies.

  2. Photoluminescence Enhancement in CdSe/ZnSDNA linkedAu Nanoparticle Heterodimers Probed by Single Molecule Spectroscopy

    SciTech Connect (OSTI)

    Cotlet, M.; Maye, M.M.; Gang, O.

    2010-07-26

    Photoluminescence enhancement of up to 20 fold is demonstrated at the single molecule level for heterodimers composed of a core/shell CdSe/ZnS semiconductive quantum dot and a gold nanoparticle of 60 nm size separated by a 32 nm-long dsDNA linker when employing optical excitation at wavelengths near the surface plasmon resonance of the gold nanoparticle.

  3. Photo-instability of CdSe/ZnS quantum dots in poly(methylmethacrylate) film

    SciTech Connect (OSTI)

    Zhang, Hongyi; Liu, Yu; Ye, Xiaoling; Chen, Yonghai

    2013-12-28

    The photo-instability of CdSe/ZnS quantum dots (QDs) has been studied under varied conditions. We discussed the main features of the evolution of photoluminescence (PL) intensity and energy at different laser powers, which showed critical dependences on the environment. The PL red shift in a vacuum showed strong temperature dependence, from which we concluded that the thermal activation energy for trapping states of the charge carriers was about 14.7 meV. Furthermore, the PL spectra showed asymmetric evolution during the laser irradiation, for which two possible explanations were discussed. Those results provided a comprehensive picture for the photo-instability of the colloidal QDs under different conditions.

  4. Synthesis and Optical Properties of Thiol Functionalized CdSe/ZnS (Core/Shell) Quantum Dots by Ligand Exchange

    SciTech Connect (OSTI)

    Zhu, Huaping; Hu, Michael Z.; Shao, Lei; Yu, Kui; Dabestani, Reza T; Zaman, Md. Badruz; Liao, Dr. Shijun

    2014-03-20

    The colloidal photoluminescent quantum dots (QDs) of CdSe (core) and CdSe/ZnS (core/shell) were synthesized at different temperatures with different growth periods. The optical properties (i.e., UV/Vis spectra and photoluminescent emission spectra) of the resulting QDs were investigated. The CdSe/ZnS QDs exhibited higher photoluminescent (PL) efficiency and stability than their corresponding CdSe core QDs. Ligand exchange with various thiol molecules was performed to replace the initial surface passivation ligands, that is, trioctylphosphine oxide (TOPO) and trioctylphosphine (TOP), and the optical properties of the surface-modified QDs were studied. The thiol ligand molecules used included 1,4-benzenedimethanethiol, 1,16-hexadecanedithiol, 1,11-undecanedithiol, 11-mercapto-1-undecanol, and 1,8 octanedithiol. After the thiol functionalization, the CdSe/ZnS QDs exhibited significantly enhanced PL efficiency and storage stability. Besides surface passivation effect, such enhanced performance of thiol-functionalized QDs could be due to self-assembly formation of dimer/trimer clusters, in which QDs are linked by dithiol molecules. Effects of ligand concentration, type of ligand, and heating on the thiol stabilization of QDs were also discussed.

  5. Use of separate ZnTe interface layers to form OHMIC contacts to p-CdTe films

    DOE Patents [OSTI]

    Gessert, Timothy A.

    1999-01-01

    A method of improving electrical contact to a thin film of a p-type tellurium-containing II-VI semiconductor comprising: depositing a first undoped layer of ZnTe on a thin film of p-type tellurium containing II-VI semiconductor with material properties selected to limit the formation of potential barriers at the interface between the p-CdTe and the undoped layer, to a thickness sufficient to control diffusion of the metallic-doped ZnTe into the p-type tellurim-containing II-VI semiconductor, but thin enough to minimize affects of series resistance; depositing a second heavy doped p-type ZnTe layer to the first layer using an appropriate dopant; and depositing an appropriate metal onto the outer-most surface of the doped ZnTe layer for connecting an external electrical conductor to an ohmic contact.

  6. Use of separate ZnTe interface layers to form ohmic contacts to p-CdTe films

    DOE Patents [OSTI]

    Gessert, T.A.

    1999-06-01

    A method of is disclosed improving electrical contact to a thin film of a p-type tellurium-containing II-VI semiconductor comprising: depositing a first undoped layer of ZnTe on a thin film of p-type tellurium containing II-VI semiconductor with material properties selected to limit the formation of potential barriers at the interface between the p-CdTe and the undoped layer, to a thickness sufficient to control diffusion of the metallic-doped ZnTe into the p-type tellurium-containing II-VI semiconductor, but thin enough to minimize affects of series resistance; depositing a second heavy doped p-type ZnTe layer to the first layer using an appropriate dopant; and depositing an appropriate metal onto the outer-most surface of the doped ZnTe layer for connecting an external electrical conductor to an ohmic contact. 11 figs.

  7. Investigation of the Effect of I-ZnO Window Layer on the Device Performance of the Cd-Free CIGS Based Solar Cells: Preprint

    SciTech Connect (OSTI)

    Hasoon, F. S.; Al-Thani, H. A.; Li, X.; Kanevce, A.; Perkins, C.; Asher, S.

    2008-05-01

    This paper focuses on preparing Cd-free, CIGS-based solar cells with intrinsic high resistivity ZnO (I-ZnO) films deposited by metal-organic chemical vapor deposition (MOCVD) technique at different deposition substrate temperature and I-ZnO film thickness, and the effect of the prior treatment of CIGS films by ammonium hydroxide (NH4OH) diluted solution on the device performance.

  8. Co-sensitization of ZnO by CdS quantum dots in natural dye-sensitized solar cells with polymeric electrolytes to improve the cell stability

    SciTech Connect (OSTI)

    Junhom, W.; Magaraphan, R.

    2015-05-22

    The CdS quantum dots (QDs) were deposited on ZnO layer by chemical bath deposition method to absorb light in the shorter wavelength region and used as photoanode in the dye sensitized solar cell (DSSCs) with natural dye extracted from Noni leaves. Microstructures of CdS-ZnO from various dipping time were characterized by XRD, FE-SEM and EDX. The results showed that the CdS is hexagonal structure and the amount of CdS increases when the dipping time increases. The maximal conversion efficiency of 0.292% was achieved by the DSSCs based on CdS QDs-sensitized ZnO film obtained from 9 min-dipping time. Furthermore, the stability of DSSCs was improved by using polymeric electrolyte. Poly (acrylic acid) (PAA) and Polyacrylamide (PAM) were introduced to CdS QDs-sensitized ZnO film from 9 min-dipping time. Each polymeric electrolyte was prepared by swelling from 0.1-2.0 %w in H2O. The maximal conversion efficiency of 0.207% was achieved for DSSCs based on CdS QDs-sensitized ZnO film with PAM 1.0% and the conversion efficiency was decreased 25% when it was left for1 hr.

  9. Sulfur L{sub 2,3} soft-x-ray fluorescence of CdS and ZnS

    SciTech Connect (OSTI)

    Zhou, L.; Callcott, T.A.; Jia, J.J.

    1997-04-01

    The II-VI sulfur compounds CdS and ZnS have important electro-optics applications. In addition, they have well characterized and relatively simple structures so that they are good candidates for theoretical model development in solid-state physics. Some experimental results on density of states have been reported, mostly determined from photoemission measurements, and theoretical calculations are available for both materials. Nevertheless the electronic properties of these elements are still not completely understood. It has been established that the d-bands, derived from Cd or Zn, lie in a subband gap between a lower valence band (LVB) derived from the S 3s orbital and an upper valence band (UVB) derived from the 3p states of S and the 4(3)s states of Cd(Zn). The locations of these bands within the gap disagree with the best available calculations, however. The principal problem is that experimental photoemission measurements locate the d-bands about 2 eV lower in the band gap than the best available calculations. Some authors argue that the hole in the d-band in the final state of the photoemission process increases the binding of the d-electrons. In any case, band gaps, band widths and the precise location of d-bands are important parameters for comparing experiment and theory, and no current calculations give good agreement with all of these parameters. Moreover, photoemission data does not adequately define all of these experimental parameters, because the d-state photoemission dominates that from s and p states and sample charging effects can modify the energy of emitted electrons. The authors report photon excited soft x-ray fluorescence (SXF) S L{sub 2,3} spectra from CdS and ZnS. Using excitation between the L{sub 2} and L{sub 3} thresholds, the L{sub 2} spectrum is suppressed, which permits the authors to accurately determine features of the UVB and LVB as well as the placement of the Cd(Zn) d-bands between the UVB and LVB.

  10. Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals...

    Office of Scientific and Technical Information (OSTI)

    temperature gradient, we observed the migration of Te inclusions from a low-temperature ... These results show that the migration, diffusion, and reaction of Te with Cd in the matrix ...

  11. Atomic arrangement at ZnTe/CdSe interfaces determined by high resolution scanning transmission electron microscopy and atom probe tomography

    SciTech Connect (OSTI)

    Bonef, Bastien; Rouvire, Jean-Luc; Jouneau, Pierre-Henri; Bellet-Amalric, Edith; Grard, Lionel; Mariette, Henri; Andr, Rgis; Bougerol, Catherine; Grenier, Adeline

    2015-02-02

    High resolution scanning transmission electron microscopy and atom probe tomography experiments reveal the presence of an intermediate layer at the interface between two binary compounds with no common atom, namely, ZnTe and CdSe for samples grown by Molecular Beam Epitaxy under standard conditions. This thin transition layer, of the order of 1 to 3 atomic planes, contains typically one monolayer of ZnSe. Even if it occurs at each interface, the direct interface, i.e., ZnTe on CdSe, is sharper than the reverse one, where the ZnSe layer is likely surrounded by alloyed layers. On the other hand, a CdTe-like interface was never observed. This interface knowledge is crucial to properly design superlattices for optoelectronic applications and to master band-gap engineering.

  12. Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals for Room-temperature Nuclear Radiation Detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander; Okwechime, Ifechukwude O.; Gray, Justin; Hales, Zaveon M.; Hossain, Anwar; Camarda, Guiseppe S.; Bolotnikov, Aleksey E.; James, Ralph B.

    2015-02-11

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an ordermore » of 102. During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10-5 mbar, we observed the diffusion of Te from the sample, causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10-5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 µm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on certain conditions.« less

  13. Electrically driven single photon emission from a CdSe/ZnSSe single quantum dot at 200?K

    SciTech Connect (OSTI)

    Quitsch, Wolf; Kmmell, Tilmar; Bacher, Gerd; Gust, Arne; Kruse, Carsten; Hommel, Detlef

    2014-09-01

    High temperature operation of an electrically driven single photon emitter based on a single epitaxial quantum dot is reported. CdSe/ZnSSe/MgS quantum dots are embedded into a p-i-n diode architecture providing almost background free excitonic and biexcitonic electroluminescence from individual quantum dots through apertures in the top contacts. Clear antibunching with g{sup 2}(??=?0)?=?0.28??0.20 can be tracked up to T?=?200?K, representing the highest temperature for electrically triggered single photon emission from a single quantum dot device.

  14. Effect of charge trapping on effective carrier lifetime in compound semiconductors: High resistivity CdZnTe

    SciTech Connect (OSTI)

    Kamieniecki, Emil

    2014-11-21

    The dominant problem limiting the energy resolution of compound semiconductor based radiation detectors is the trapping of charge carriers. The charge trapping affects energy resolution through the carrier lifetime more than through the mobility. Conventionally, the effective carrier lifetime is determined using a 2-step process based on measurement of the mobility-lifetime product (μτ) and determining drift mobility using time-of-flight measurements. This approach requires fabrication of contacts on the sample. A new RF-based pulse rise-time method, which replaces this 2-step process with a single non-contact direct measurement, is discussed. The application of the RF method is illustrated with high-resistivity detector-grade CdZnTe crystals. The carrier lifetime in the measured CdZnTe, depending on the quality of the crystals, was between about 5 μs and 8 μs. These values are in good agreement with the results obtained using conventional 2-step approach. While the effective carrier lifetime determined from the initial portion of the photoresponse transient combines both recombination and trapping in a manner similar to the conventional 2-step approach, both the conventional and the non-contact RF methods offer only indirect evaluation of the effect of charge trapping in the semiconductors used in radiation detectors. Since degradation of detector resolution is associated not with trapping but essentially with detrapping of carriers, and, in particular, detrapping of holes in n-type semiconductors, it is concluded that evaluation of recombination and detrapping during photoresponse decay is better suited for evaluation of compound semiconductors used in radiation detectors. Furthermore, based on previously reported data, it is concluded that photoresponse decay in high resistivity CdZnTe at room temperature is dominated by detrapping of carriers from the states associated with one type of point defect and by recombination of carriers at one type of

  15. Influence of the thickness of a crystal on the electrical characteristics of Cd(Zn)Te detectors

    SciTech Connect (OSTI)

    Sklyarchuk, V.; Fochuk, p.; Rarenko, I.; Zakharuk, Z.; Sklyarchuk, O. F.; Bolotnikov, A. E.; James, R. B.

    2015-08-01

    We studied the electrical characteristics of Cd(Zn)Te detectors with rectifying contacts and varying thicknesses, and established that their geometrical dimensions affect the measured electrical properties. We found that the maximum value of the operating-bias voltage and the electric field in the detector for acceptable values of the dark current can be achieved when the crystal has an optimum thickness. This finding is due to the combined effect of generation-recombination in the space-charge region and space-charge limited currents (SCLC).

  16. Study of asymmetries of Cd(Zn)Te devices investigated using photo-induced current transient spectroscopy, Rutherford backscattering, surface photo-voltage spectroscopy, and gamma ray spectroscopies

    SciTech Connect (OSTI)

    Crocco, J.; Bensalah, H.; Zheng, Q.; Dieguez, E.; Corregidor, V.; Avles, E.; Castaldini, A.; Fraboni, B.; Cavalcoli, D.; Cavallini, A.; Vela, O.

    2012-10-01

    Despite these recent advancements in preparing the surface of Cd(Zn)Te devices for detector applications, large asymmetries in the electronic properties of planar Cd(Zn)Te detectors are common. Furthermore, for the development of patterned electrode geometries, selection of each electrode surface is crucial for minimizing dark current in the device. This investigation presented here has been carried out with three objectives. Each objective is oriented towards establishing reliable methods for the selection of the anode and cathode surfaces independent of the crystallographic orientation. The objectives of this study are (i) investigate how the asymmetry in I-V characteristics of Cd(Zn)Te devices may be associated with the TeO2 interfacial layer using Rutherford backscattering to study the structure at the Au-Cd(Zn)Te interface, (ii) develop an understanding of how the concentration of the active traps in Cd(Zn)Te varies with the external bias, and (iii) propose non-destructive methods for selection of the anode and cathode which are independent of crystallographic orientation. The spectroscopic methods employed in this investigation include Rutherford backscattering spectroscopy, photo-induced current transient spectroscopy, and surface photo-voltage spectroscopy, as well as gamma ray spectroscopy to demonstrate the influence on detector properties.

  17. Voltage-induced electroluminescence characteristics of hybrid light-emitting diodes with CdSe/Cd/ZnS core-shell nanoparticles embedded in a conducting polymer on plastic substrates

    SciTech Connect (OSTI)

    Kwak, Kiyeol; Cho, Kyoungah, E-mail: chochem@korea.ac.kr, E-mail: sangsig@korea.ac.kr; Kim, Sangsig, E-mail: chochem@korea.ac.kr, E-mail: sangsig@korea.ac.kr [Department of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)] [Department of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2014-03-10

    We investigate the electroluminescence (EL) characteristics of a hybrid light-emitting diode (HyLED) with an emissive layer comprised of CdSe/Cd/ZnS core-shell nanoparticles (NPs) embedded in poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) on a plastic substrate. The EL characteristics change dramatically with increasing of the biased voltage. At low voltages, recombination of electrons and holes occurs only in the PFO film because of poor charge transfer in the PFO-CdSe/Cd/ZnS NPs composite film, while the color of the light-emitting from the HyLED changes from blue to red as the biased voltage increases from 7.5 to 17.5?V. We examine and discuss the mechanism of this color tunability.

  18. TiO2 Nanotubes with a ZnO Thin Energy Barrier for Improved Current Efficiency of CdSe Quantum-Dot-Sensitized Solar Cells

    SciTech Connect (OSTI)

    Lee, W.; Kang, S. H.; Kim, J. Y.; Kolekar, G. B.; Sung, Y. E.; Han, S. H.

    2009-01-01

    This paper reports the formation of a thin ZnO energy barrier between a CdSe quantum dot (Q dots) sensitizer and TiO{sub 2} nanotubes (TONTs) for improved current efficiency of Q dot-sensitized solar cells. The formation of a ZnO barrier between TONTs and the Q dot sensitizer increased the short-circuit current under illumination and also reduced the dark current in a dark environment. The power conversion efficiency of Q dot-sensitized TONT solar cells increased by 25.9% in the presence of the ZnO thin layer due to improved charge-collecting efficiency and reduced recombination.

  19. Effects of chemo-mechanical polishing on CdZnTe X-ray and gamma-ray detectors

    SciTech Connect (OSTI)

    Egarievwe, Stephen E.; Hossain, Anwar; Okwechime, Ifechukwude O.; Gul, Rubi; James, Ralph B.

    2015-06-23

    Here, mechanically polishing cadmium zinc telluride (CdZnTe) wafers for x-ray and gamma-ray detectors often is inadequate in removing surface defects caused by cutting them from the ingots. Fabrication-induced defects, such as surface roughness, dangling bonds, and nonstoichiometric surfaces, often are reduced through polishing and etching the surface. In our earlier studies of mechanical polishing with alumina powder, etching with hydrogen bromide in hydrogen peroxide solution, and chemomechanical polishing with bromine–methanol–ethylene glycol solution, we found that the chemomechanical polishing process produced the least surface leakage current. In this research, we focused on using two chemicals to chemomechanically polish CdZnTe wafers after mechanical polishing, viz. bromine–methanol–ethylene glycol (BME) solution, and hydrogen bromide (HBr) in a hydrogen peroxide and ethylene–glycol solution. We used x-ray photoelectron spectroscopy (XPS), current–voltage (I–V) measurements, and Am-241 spectral response measurements to characterize and compare the effects of each solution. The results show that the HBr-based solution produced lower leakage current than the BME solution. Results from using the same chemomechanical polishing solution on two samples confirmed that the surface treatment affects the measured bulk current (a combination of bulk and surface currents). XPS results indicate that the tellurium oxide to tellurium peak ratios for the mechanical polishing process were reduced significantly by chemomechanical polishing using the BME solution (78.9% for Te 3d5/2O2 and 76.7% for Te 3d3/2O2) compared with the HBr-based solution (27.6% for Te 3d5/2O2 and 35.8% for Te 3d3/2O2). Spectral response measurements showed that the 59.5-keV peak of Am-241 remained under the same channel number for all three CdZnTe samples. While the BME-based solution gave a better

  20. Effects of chemo-mechanical polishing on CdZnTe X-ray and gamma-ray detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Egarievwe, Stephen E.; Hossain, Anwar; Okwechime, Ifechukwude O.; Gul, Rubi; James, Ralph B.

    2015-06-23

    Here, mechanically polishing cadmium zinc telluride (CdZnTe) wafers for x-ray and gamma-ray detectors often is inadequate in removing surface defects caused by cutting them from the ingots. Fabrication-induced defects, such as surface roughness, dangling bonds, and nonstoichiometric surfaces, often are reduced through polishing and etching the surface. In our earlier studies of mechanical polishing with alumina powder, etching with hydrogen bromide in hydrogen peroxide solution, and chemomechanical polishing with bromine–methanol–ethylene glycol solution, we found that the chemomechanical polishing process produced the least surface leakage current. In this research, we focused on using two chemicals to chemomechanically polish CdZnTe wafers aftermore » mechanical polishing, viz. bromine–methanol–ethylene glycol (BME) solution, and hydrogen bromide (HBr) in a hydrogen peroxide and ethylene–glycol solution. We used x-ray photoelectron spectroscopy (XPS), current–voltage (I–V) measurements, and Am-241 spectral response measurements to characterize and compare the effects of each solution. The results show that the HBr-based solution produced lower leakage current than the BME solution. Results from using the same chemomechanical polishing solution on two samples confirmed that the surface treatment affects the measured bulk current (a combination of bulk and surface currents). XPS results indicate that the tellurium oxide to tellurium peak ratios for the mechanical polishing process were reduced significantly by chemomechanical polishing using the BME solution (78.9% for Te 3d5/2O2 and 76.7% for Te 3d3/2O2) compared with the HBr-based solution (27.6% for Te 3d5/2O2 and 35.8% for Te 3d3/2O2). Spectral response measurements showed that the 59.5-keV peak of Am-241 remained under the same channel number for all three CdZnTe samples. While the BME-based solution gave a better performance of 7.15% full-width at half-maximum (FWHM) compared with 7.59% FWHM

  1. Use of high-granularity position sensing to correct response non-uniformities of CdZnTe detectors

    SciTech Connect (OSTI)

    Bolotnikov, A. E. Camarda, G. S.; Cui, Y.; De Geronimo, G.; Fried, J.; Hossain, A.; Mahler, G.; Maritato, M.; Marshall, M.; Roy, U.; Vernon, E.; Yang, G.; James, R. B.; Lee, K.; Petryk, M.

    2014-06-30

    CdZnTe (CZT) is a promising medium for room-temperature gamma-ray detectors. However, the low production yield of acceptable quality crystals hampers the use of CZT detectors for gamma-ray spectroscopy. Significant efforts have been directed towards improving quality of CZT crystals to make them generally available for radiation detectors. Another way to address this problem is to implement detector designs that would allow for more accurate and predictable correction of the charge loss associated with crystal defects. In this work, we demonstrate that high-granularity position-sensitive detectors can significantly improve the performance of CZT detectors fabricated from CZT crystals with wider acceptance boundaries, leading to an increase of their availability and expected decrease in cost.

  2. Homogeneous and inhomogeneous sources of optical transition broadening in room temperature CdSe/ZnS nanocrystal quantum dots

    SciTech Connect (OSTI)

    Wolf, M.; Berezovsky, J.

    2014-10-06

    We perform photoluminescence excitation measurements on individual CdSe/ZnS nanocrystal quantum dots (NCQDs) at room temperature to study optical transition energies and broadening. The observed features in the spectra are identified and compared to calculated transition energies using an effective mass model. The observed broadening is attributed to phonon broadening, spectral diffusion, and size and shape inhomogeneity. The former two contribute to the broadening transitions in individual QDs, while the latter contributes to the QD-to-QD variation. We find that phonon broadening is often not the dominant contribution to transition line widths, even at room temperature, and that broadening does not necessarily increase with transition energy. This may be explained by differing magnitude of spectral diffusion for different quantum-confined states.

  3. Effect of large additions of Cd, Pb, Cr, Zn, to cement raw meal on the composition and the properties of the clinker and the cement

    SciTech Connect (OSTI)

    Murat, M.; Sorrentino, F.

    1996-03-01

    The utilization of hydraulic binders to solidify and to stabilize industrial wastes and municipal garbage is presently recognized as one of the solutions to the problem of environment protection. Te addition of important quantities of Cd, Pb, Cr, Zn to raw meals of Portland and calcium aluminate cement modifies the mineralogical composition and the properties of the final cement. Portland cement can absorb a large amount of Cd and Zn. This absorption leads to an increase of setting time and a decrease of strengths of the cement. It also can trap chromium with a short setting time and high strengths. Calcium aluminate cements easily trap Cd and Cr with a delayed setting and good strength but also Pb with normal setting time and strengths. Large quantities of zinc oxide have a deleterious effect on calcium aluminate strengths.

  4. D= DOE/RG-0067

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D= DOE/RG-0067 o y e= New England/Hydro-Quebec ± 450 kv Transmission Line Interconnection-- Phase II U.S. Department of Energy Economic Regulatory Administration Office of Fuels Programs August 1986 DClE/E I S-*0 l29D This report has been reproduced directly from the best available copy. Available from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161. Price: Printed Copy Al3 Microfiche A01 Codes are used for pricing all publications. The code

  5. Real-structure effects: Band gaps of Mg_xZn_{1-x}O, Cd_xZn_{1-x}O, and n-type ZnO from ab-initio calculations

    SciTech Connect (OSTI)

    Schleife, A; Bechstedt, F

    2012-02-15

    Many-body perturbation theory is applied to compute the quasiparticle electronic structures and the optical-absorption spectra (including excitonic effects) for several transparent conducting oxides. We discuss HSE+G{sub 0}W{sub 0} results for band structures, fundamental band gaps, and effective electron masses of MgO, ZnO, CdO, SnO{sub 2}, SnO, In{sub 2}O{sub 3}, and SiO{sub 2}. The Bethe-Salpeter equation is solved to account for excitonic effects in the calculation of the frequency-dependent absorption coefficients. We show that the HSE+G{sub 0}W{sub 0} approach and the solution of the Bethe-Salpeter equation are very well-suited to describe the electronic structure and the optical properties of various transparent conducting oxides in good agreement with experiment.

  6. MgSe/ZnSe/CdSe coupled quantum wells grown on InP substrate with intersubband absorption covering 1.55??m

    SciTech Connect (OSTI)

    Chen, Guopeng; Shen, Aidong; De Jesus, Joel; Tamargo, Maria C.

    2014-12-08

    The authors report the observation of intersubband (ISB) transitions in the optical communication wavelength region in MgSe/ZnSe/CdSe coupled quantum wells (QWs). The coupled QWs were grown on InP substrates by molecular beam epitaxy. By inserting ZnSe layers to compensate the strain, samples with high structural quality were obtained, as indicated by well resolved satellite peaks in high-resolution x-ray diffraction. The observed ISB transition energies agree well with the calculated values.

  7. CdSe/ZnSe quantum dot with a single Mn{sup 2+} ionA new system for a single spin manipulation

    SciTech Connect (OSTI)

    Smole?ski, T.

    2015-03-21

    We present a magneto-optical study of individual self-assembled CdSe/ZnSe quantum dots doped with single Mn{sup 2+} ions. Properties of the studied dots are analyzed analogously to more explored system of Mn-doped CdTe/ZnTe dots. Characteristic sixfold splitting of the neutral exciton emission line as well as its evolution in the magnetic field are described using a spin Hamiltonian model. Dynamics of both exciton recombination and Mn{sup 2+} spin relaxation are extracted from a series of time-resolved experiments. Presence of a single dopant is shown not to affect the average excitonic lifetime measured for a number of nonmagnetic and Mn-doped dots. On the other hand, non-resonant pumping is demonstrated to depolarize the Mn{sup 2+} spin in a quantum dot placed in external magnetic field. This effect is utilized to determine the ion spin relaxation time in the dark.

  8. In situ capping for size control of monochalcogenides (ZnS, CdS, and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jang, Gyoung Gug; Jacobs, Christopher B.; Ivanov, Ilia N.; Joshi, Pooran C.; Meyer, III, Harry M.; Kidder, Michelle; Armstrong, Beth L.; Datskos, Panos G.; Graham, David E.; Moon, Ji -Won

    2015-07-24

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. Furthermore, the capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.

  9. In situ capping for size control of monochalcogenides (ZnS, CdS, and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    SciTech Connect (OSTI)

    Jang, Gyoung Gug; Jacobs, Christopher B; Ivanov, Ilia N; Joshi, Pooran C; Meyer III, Harry M; Kidder, Michelle; Armstrong, Beth L; Datskos, Panos G; Graham, David E; Moon, Ji Won

    2015-01-01

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. The capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.

  10. Magnetooptical study of CdSe/ZnMnSe semimagnetic quantum-dot ensembles with n-type modulation doping

    SciTech Connect (OSTI)

    Reshina, I. I. Ivanov, S. V.

    2014-12-15

    Magnetic and polarization investigations of the photoluminescence and resonant electron spin-flip Raman scattering in ensembles of self-organized CdSe/ZnMnSe semimagnetic quantum dots with n-type modulation doping are carried out. It is demonstrated that exciton transitions contribute to the photoluminescence band intensity, along with the transitions of trions in the singlet state. In the Hanle-effect measurements, negative circular polarization in zero magnetic field is observed, which is related to the optical orientation of a trion heavy hole. The lifetime and spin-relaxation time of a heavy hole are estimated as ?3 and ?1 ps, respectively. Such short times are assumed to be due to Auger recombination with the excitation of an intrinsic transition in a Mn{sup 2+} ion. Investigations of the photoluminescence-maximum intensity and shift in a longitudinal magnetic field at the ?{sup ?}?{sup +} and ?{sup ?}?{sup ?} polarizations reveal the pronounced spin polarization of electrons. Under resonant excitation conditions, a sharp increase in the photoluminescence-band maximum intensity at ?{sup ?} excitation polarization over the ?{sup +} one is observed. The Raman scattering peak at the electron spin-flip transition is observed upon resonant excitation in a transverse magnetic field in crossed linear polarizations. This peak is shown to be a Brillouin function of a magnetic field.

  11. CdSe/ZnS quantum dots based electrochemical immunoassay for the detection of phosphorylated bovine serum albumin

    SciTech Connect (OSTI)

    Pinwattana, Kulwadee; Wang, Jun; Lin, Chiann Tso; Wu, Hong; Du, Dan; Lin, Yuehe; Chailapakul, Orawon

    2010-11-15

    A CdSe/ZnS quantum dot (QD) based electrochemical immunoassay of phosphorylated bovine serum albumin as a protein biomarker is presented. The QDs were used as labels and were conjugated with the secondary anti-phosphoserine antibody in a heterogeneous sandwich immunoassay. First, the primary BSA antibody was immobilized on polystyrene microwells, followed by the addition of BSA-OP. After that, the QD-labeled anti-phosphoserine antibody was added into microwells for immunorecognition. Finally, the bound QD was dissolved in an acid-dissolution step and was detected by electrochemical stripping analysis. The measured current responses were proportional to the concentration of BSA-OP. Under optimal conditions, the voltammetric response was linear over the range of 0.5 - 500 ng mL-1 of BSA-OP, with a detection limit of 0.5 ng mL-1 at a deposition potential of -1.2 V for 120 s. It also shows good reproducibility with a relative standard deviation of 8.6% of six times determination of 25 ng mL-1 of BSA-OP. This QD-based electrochemical immunoassay offers great promise for simple and cost-effective analysis of protein biomarkers.

  12. Structural, elastic, electronic and phonon properties of SnX{sub 2}O{sub 4} (X=Mg, Zn, Cd) spinel from density functional theory

    SciTech Connect (OSTI)

    U?ur, Gkay; Candan, Abdullah

    2014-10-06

    First-principle calculations of structural, electronic, elastic and phonon properties of SnMg{sub 2}O{sub 4}, SnZn{sub 2}O{sub 4} and SnCd{sub 2}O{sub 4} compounds are presented, using the pseudo-potential plane waves approach based on density functional theory (DFT) within the generalized gradient approximation (GGA). The computed ground state structural parameters, i.e. lattice constants, internal free parameter and bulk modulus are in good agreement with the available theoretical results. Our calculated elastic constants are indicative of stability of SnX{sub 2}O{sub 4} (X=Mg, Zn, Cd) compounds in the spinel structure. The partial density of states (PDOS) of these compounds is in good agreement with the earlier ab-initio calculations. The phonon dispersion relations were calculated using the direct method. Phonon dispersion results indicate that SnZn{sub 2}O{sub 4} is dynamically stable, while SnMg{sub 2}O{sub 4} and SnCd{sub 2}O{sub 4} are unstable.

  13. Synthesis, structures, and properties of three Zn(II), Mn(II), and Cd(II) compounds based on tetrazole-1-acetic ligand

    SciTech Connect (OSTI)

    Liu, Dong-Sheng Chen, Wen-Tong; Xu, Ya-Ping; Shen, Ping; Hu, Shao-Jun; Sui, Yan

    2015-03-15

    Three new compounds, ([Zn(tza){sub 2}(H{sub 2}O)]·H{sub 2}O){sub n} (1), ([Mn(tza){sub 2}(Htza){sub 2}]·2H{sub 2}O){sub n} (2) and [Cd(tza){sub 2}]{sub n} (3), were obtained by reactions of 1H-Tetrazole-1-acetic (Htza) with corresponding metal salts, and characterized by elemental analysis, infrared spectroscopy, and single crystal X-ray diffraction, respectively. The X-ray diffraction analysis reveals that compound 1 is three-dimensional (3D) supramolecular structure with line chains. Compound 2 is three-dimensional (3D) supramolecular structure with Mn-carboxylate chains. Compound 3 is a 3D framework with (3,6)-connected ‘ant’ topological network. Furthermore, the photoluminescence of 1 and 3 and the magnetic properties of 2 have also been investigated. - Graphical abstract: Three new Zn/Mn/Cd compounds were obtained by reactions of Htza with corresponding metal salts, and characterized by chemical methods. Different linear chains result in different final structures. Compounds 1 and 2 are 3D supramolecular structures. Compound 3 is a 3D framework with (3,6)-connected ‘ant’ topological network. - Highlights: • Three new Zn/Mn/Cd compounds based on Htza ligand has been synthesized. • Different linear chains result in different final structures. • The fluorescence or magnetic properties have been investigated.

  14. Preparation of water soluble L-arginine capped CdSe/ZnS QDs and their interaction with synthetic DNA: Picosecond-resolved FRET study

    SciTech Connect (OSTI)

    Giri, Anupam; Goswami, Nirmal; Lemmens, Peter; Pal, Samir Kumar

    2012-08-15

    Graphical abstract: Frster resonance energy transfer (FRET) studies on the interaction of water soluble arginine-capped CdSe/ZnS QDs with ethidium bromide (EB) labeled synthetic dodecamer DNA. Highlights: ? We have solubilized CdSe/ZnS QD in water replacing their TOPO ligand by L-arginine. ? We have studied arginine@QDDNA interaction using FRET technique. ? Arginine@QDs act as energy donor and ethidium bromide-DNA acts as energy acceptor. ? We have applied a kinetic model to understand the kinetics of energy transfer. ? Circular dichroism studies revealed negligible perturbation in the DNA B-form in the arg@QD-DNA complex. -- Abstract: We have exchanged TOPO (trioctylphosphine oxide) ligand of CdSe/ZnS core/shell quantum dots (QDs) with an amino acid L-arginine (Arg) at the toluene/water interface and eventually rendered the QDs from toluene to aqueous phase. We have studied the interaction of the water soluble Arg-capped QDs (energy donor) with ethidium (EB) labeled synthetic dodecamer DNA (energy acceptor) using picoseconds resolved Frster resonance energy transfer (FRET) technique. Furthermore, we have applied a model developed by M. Tachiya to understand the kinetics of energy transfer and the distribution of acceptor (EB-DNA) molecules around the donor QDs. Circular dichroism (CD) studies revealed a negligible perturbation in the native B-form structure of the DNA upon interaction with Arg-capped QDs. The melting and the rehybridization pathways of the DNA attached to the QDs have been monitored by the CD which reveals hydrogen bonding is the associative mechanism for interaction between Arg-capped QDs and DNA.

  15. Zinc concentration effect on structural, optical and electrical properties of Cd{sub 1?x}Zn{sub x}Se thin films

    SciTech Connect (OSTI)

    Akaltun, Yunus; Y?ld?r?m, M. Ali; Ate?, Aytun; Y?ld?r?m, Muhammet

    2012-11-15

    Highlights: ? Cd{sub 1?x}Zn{sub x}Se thin films were deposited using SILAR method. ? The electron effective mass, refractive index, dielectric constant values were calculated by using the energy bandgap values as a function of the zinc concentration (x). ? The resistivity and activation energy changed as a function of the zinc concentration (x). -- Abstract: Cd{sub 1?x}Zn{sub x}Se thin films with different compositions (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) were deposited on glass substrates using successive ionic layer adsorption and reaction (SILAR) method at room temperature and ambient pressure. The zinc concentration (x) effect on the structural, morphological, optical and electrical properties of Cd{sub 1?x}Zn{sub x}Se thin films were investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that all the films exhibited polycrystalline nature and were covered well on glass substrates. The energy dispersive X-ray (EDAX) analysis confirmed nearly stoichiometric deposition of the films. The energy bandgap values were changed from 1.99 to 2.82 eV depending on the zinc concentration. Bowing parameter was calculated as 0.08 eV. The electron effective mass (m{sub e}*/m{sub o}), refractive index (n), optical static and high frequency dielectric constants (?{sub o}, ?{sub ?}) values were calculated by using the energy bandgap values as a function of the zinc concentration. The resistivity values of the films changed between 10{sup 5} and 10{sup 7} ? cm with increasing zinc concentration at room temperature.

  16. Quantum-dot light-emitting diodes utilizing CdSe/ZnS nanocrystals embedded in TiO{sub 2} thin film

    SciTech Connect (OSTI)

    Kang, Seung-Hee; Kumar, Ch. Kiran; Kim, Eui-Tae; Lee, Zonghoon; Kim, Kyung-Hyun; Huh, Chul

    2008-11-10

    Quantum-dot (QD) light-emitting diodes (LEDs) are demonstrated on Si wafers by embedding core-shell CdSe/ZnS nanocrystals in TiO{sub 2} thin films via plasma-enhanced metallorganic chemical vapor deposition. The n-TiO{sub 2}/QDs/p-Si LED devices show typical p-n diode current-voltage and efficient electroluminescence characteristics, which are critically affected by the removal of QD surface ligands. The TiO{sub 2}/QDs/Si system we presented can offer promising Si-based optoelectronic and electronic device applications utilizing numerous nanocrystals synthesized by colloidal solution chemistry.

  17. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells

    SciTech Connect (OSTI)

    Chen, Fanqing; Gerion, Daniele

    2004-06-14

    One of the biggest challenges in cell biology is the imaging of living cells. For this purpose, the most commonly used visualization tool is fluorescent markers. However, conventional labels, such as organic fluorescent dyes or green fluorescent proteins (GFP), lack the photostability to allow the tracking of cellular events that happen over minutes to days. In addition, they are either toxic to cells (dyes), or difficult to construct and manipulate (GFP). We report here the use of a new class of fluorescent labels, silanized CdSe/ZnS nanocrystal-peptide conjugates, for imaging the nuclei of living cells. CdSe/ZnS nanocrystals, or so called quantum dots (qdots), are extremely photostable, and have been used extensively in cellular imaging of fixed cells. However, most of the studies about living cells so far have been concerned only with particle entry into the cytoplasm or the localization of receptors on the cell membrane. Specific targeting of qdots to the nucleus of living cells ha s not been reported in previous studies, due to the lack of a targeting mechanism and proper particle size. Here we demonstrate for the first time the construction of a CdSe/ZnS nanocrystal-peptide conjugate that carries the SV40 large T antigen nuclear localization signal (NLS), and the transfection of the complex into living cells. By a novel adaptation of commonly used cell transfection techniques for qdots, we were able to introduce and retain the NLS-qdots conjugate in living cells for up to a week without detectable negative cellular effects. Moreover, we can visualize the movement of the CdSe/ZnS nanocrystal-peptide conjugates from cytoplasm to the nucleus, and the accumulation of the complex in the cell nucleus, over a long observation time period. This report opens the door for using qdots to visualize long-term biological events that happen in the cell nucleus, and provides a new nontoxic, long-term imaging platform for cell nuclear processes.

  18. Charge trapping and de-trapping in isolated CdSe/ZnS nanocrystals under an external electric field: Indirect evidence for a permanent dipole moment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zang, Huidong; Cristea, Mihail; Shen, Xuan; Liu, Mingzhao; Camino, Fernando; Cotlet, Mircea

    2015-08-05

    Single nanoparticle studies of charge trapping and de-trapping in core/shell CdSe/ZnS nanocrystals incorporated into an insulating matrix and subjected to an external electric field demonstrate the ability to reversibly modulate the exciton dynamics and photoluminescence blinking while providing indirect evidence for the existence of a permanent ground state dipole moment in such nanocrystals. A model assuming the presence of energetically deep charge traps physically aligned along the direction of the permanent dipole is proposed in order to explain the dynamics of nanocrystal blinking in the presence of a permanent dipole moment.

  19. Molecular beam epitaxy of ZnSSe/CdSe short-period superlattices for III–V/II–VI multijunction solar cells

    SciTech Connect (OSTI)

    Sorokin, S. V. Gronin, S. V.; Sedova, I. V.; Klimko, G. V.; Evropeitsev, E. A.; Baidakova, M. V.; Sitnikova, A. A.; Toropov, A. A.; Ivanov, S. V.

    2015-08-15

    Results on the molecular-beam epitaxy growth of short-period alternately-strained ZnS{sub x}Se{sub 1−x}/CdSe superlattices which are pseudomorphic to GaAs (001) substrates and possess effective band-gap values within the range of E{sub g} ≈ 2.5–2.7 eV are presented. Oscillations of the specular-spot intensity in reflection high-energy electron diffraction are used for in situ control of the superlattice parameters. A method to determine the SL parameters (compositions and thicknesses of the constituent layers) based on combined analysis of the grown structures by low-temperature photoluminescence and X-ray diffractometry is developed. It is found that the parameters of the grown ZnS{sub x}Se{sub 1−x}/CdSe superlattices are close to their design values and the density of extended defects in the structures is low even though the structure thickness (∼300 nm) considerably exceeds the critical thickness for bulk II–VI layers with the same lattice-constant mismatch.

  20. Photophysics of (CdSe)ZnS Colloidal Quantum Dots in an Aqueous Environment Stabilized with Amino Acids and Genetically-Modified Proteins

    SciTech Connect (OSTI)

    Ai, X.; Xu, Q.; Jones, M.; Song, Q.; Ding, S.-Y.; Ellingson, R. J.; Himmel, M.; Rumbles, G.

    2007-01-01

    Using a combination of two amino acids, histidine and N-acetyl-cysteine, to replace the original organic capping groups of (CdSe)ZnS quantum dots, water-soluble and highly luminescent (CdSe)ZnS quantum dots have been successfully prepared at pH 8. Characterization by steady-state and time-resolved photoluminescence spectroscopy, and transient absorption spectroscopy, demonstrate that the electronic properties of these quantum dots exceed those of the original as-synthesized samples dissolved in a more-conventional organic solvent. Furthermore, these amino acid-stabilized quantum dots have been assembled onto a cellulose substrate via cellulose binding proteins that specifically bind to cellulose and was genetically engineered to harbor dual hexahistidine tags at the N- and C-termini to confer binding with the zinc(II) on the quantum dot surface. The spectroscopic measurements show that the protein-bound quantum dots continue to retain their desirable electronic properties when bound on the substrate. Meanwhile, the specific and very selective binding properties of the proteins have remained effective. (1)Select optimal greenhouse gas (GHG) and petroleum reduction strategies for each fleet location, (2)Meet or exceed Federal fleet GHG and petroleum reduction requirements outlined in the Guidance, (3)Acquire vehicles to support these strategies while minimizing fleet size and vehicle miles traveled (VMT), (4)Refine strategies based on agency performance.

  1. High temperature thermoelectric properties of the solid-solution zintl phase Eu₁₁Cd6-xZnxSb₁₂

    SciTech Connect (OSTI)

    Kazem, Nasrin; Hurtado, Antonio; Sui, Fan; Ohno, Saneyuki; Zevalkink, Alexandra; Snyder, Jeffrey G.; Kauzlarich, Susan M.

    2015-08-24

    Solid-solution Zintl compounds with the formulaEu₁₁Cd6-xZnxSb₁₂ have been synthesized from the elements as single crystals using a tin flux according to the stoichiometry Eu:Cd:Zn:Sb:Sn of 11:6–xp:xp:12:30 with xp = 0, 1, 2, 3, 4, 5, and 6, where xp is the preparative amount of Zn employed in the reaction. The crystal structures and the compositions were established by single-crystal as well as powder X-ray diffraction and wavelength-dispersive X-ray analysis measurements. The title solid-solution Zintl compounds crystallize isostructurally in the centrosymmetric monoclinic space group C 2/m (No. 12, Z = 2) as the Sr₁₁Cd₆Sb₁₂ structure type (Pearson symbol mC58). There is a miscibility gap at 3 ≤ xp ≤ 4 where the major product crystallizes in a disordered structure related to the Ca₉Mn₄Bi₉ structure type; otherwise, for all other compositions, the Sr₁₁Cd₆Sb₁₂ structure is the majority phase. Eu₁₁Cd₆Sb₁₂ shows lower lattice thermal conductivity relative to Eu₁₁Zn₆Sb₁₂ consistent with its higher mean atomic weight, and as anticipated, the solid-solution samples of Eu₁₁Cd6–xZnxSb₁₂ have effectively reduced lattice thermal conductivities relative to the end member compounds. Eu₁₁̣̣₀(1)Cd₄̣̣₅(2)Zn₁̣̣₅(2)Sb₁₂̣̣₀(1) exhibits the highest zT value of >0.5 at around 800 K which is twice as large as the end member compounds.

  2. Boundary Entropy Can Increase Under Bulk RG Flow (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Boundary Entropy Can Increase Under Bulk RG Flow Citation Details In-Document Search Title: Boundary Entropy Can Increase Under Bulk RG Flow The boundary entropy log(g) of a critical ...

  3. Boundary Entropy Can Increase Under Bulk RG Flow (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Boundary Entropy Can Increase Under Bulk RG Flow Citation Details In-Document Search Title: Boundary Entropy Can Increase Under Bulk RG Flow You are accessing a document from ...

  4. BeZnCdSe quantum-well ridge-waveguide laser diodes under low threshold room-temperature continuous-wave operation

    SciTech Connect (OSTI)

    Feng, Jijun; Akimoto, Ryoichi

    2015-10-19

    Low threshold current ridge-waveguide BeZnCdSe quantum-well laser diodes (LDs) have been developed by completely etching away the top p-type BeMgZnSe/ZnSe:N short-period superlattice cladding layer, which can suppress the leakage current that flows laterally outside of the electrode. The waveguide LDs are covered with a thick SiO{sub 2} layer and planarized with chemical-mechanical polishing and a reactive ion etching process. Room-temperature lasing under continuous-wave condition is achieved with the laser cavity formed by the cleaved waveguide facets coated with high-reflectivity dielectric films. For a 4 μm-wide green LD lasing around a wavelength of 535 nm, threshold current and voltage of 7.07 mA and 7.89 V are achieved for a cavity length of 300 μm, and the internal differential quantum efficiency, internal absorption loss, gain constant, and nominal transparency current density are estimated to be 27%, 4.09 cm{sup −1}, 29.92 (cm × μm)/kA and 6.35 kA/(cm{sup 2 }× μm), respectively. This compact device can realize a significantly improved performance with much lower threshold power consumption, which would benefit the potential application for ZnSe-based green LDs as light sources in full-color display and projector devices installed in consumer products such as pocket projectors.

  5. Fluorescence resonance energy transfer measured by spatial photon migration in CdSe-ZnS quantum dots colloidal systems as a function of concentration

    SciTech Connect (OSTI)

    Azevedo, G.; Monte, A. F. G.; Reis, A. F.; Messias, D. N.

    2014-11-17

    The study of the spatial photon migration as a function of the concentration brings into attention the problem of the energy transfer in quantum dot embedded systems. By measuring the photon propagation and its spatial dependence, it is possible to understand the whole dynamics in a quantum dot system, and also improve their concentration dependence to maximize energy propagation due to radiative and non-radiative processes. In this work, a confocal microscope was adapted to scan the spatial distribution of photoluminescence from CdSe-ZnS core-shell quantum dots in colloidal solutions. The energy migration between the quantum dots was monitored by the direct measurement of the photon diffusion length, according to the diffusion theory. We observed that the photon migration length decreases by increasing the quantum dot concentration, this kind of behavior has been regarded as a signature of Frster resonance energy transfer in the system.

  6. Biogeochemistry of Metalliferous Peats: Sulfur Speciation and Depth Distributions of dsrAB Genes and Cd, Fe, Mn, S, and Zn in Soil Cores

    SciTech Connect (OSTI)

    Martinez,C.; Yanez, C.; Yoon, S.; Bruns, M.

    2007-01-01

    Spatial relationships between concentrations of Cd, Fe, Mn, S, and Zn and bacterial genes for dissimilatory sulfate reduction were studied in soils of the Manning peatland region in western New York. Peat cores were collected within a field exhibiting areas of Zn phytotoxicity, and pH and elemental concentrations were determined with depth. The oxidation states of S were estimated using S-XANES spectroscopy. Soil microbial community DNA was extracted from peat soils for ribosomal RNA intergenic spacer analysis (RISA) of diversity profiles with depth. To assess the presence of sulfate-reducing microorganisms (SRM), DNA extracts were also used as templates for PCR detection of dsrAB genes coding for dissimilatory (bi)sulfite reductase. Elemental distributions, S redox speciation, and detection of dsrAB genes varied with depth and water content. The pH of peat soils increased with depth. The highest concentrations of Zn, Cd, and S occurred at intermediate depths, whereas Mn concentrations were highest in the topmost peat layers. Iron showed a relatively uniform distribution with depth. Concentrations of redox sensitive elements, S and Mn, but not Fe, seemed to respond to variations in water content and indicated vertical redox stratification in peat cores where topmost peats were typically acidic and oxidizing and deeper peats were typically circumneutral and reducing. Even then, S-XANES analyses showed that surface peats contained >50% of the total S in reduced forms while deep peats contained generally <5% of the total S in oxidized forms. While bacterial RISA profiles of the peats were diverse, dsrAB gene detection followed redox stratification chemistry closely. For the most part, dsrAB genes were detected in deeper peats, where S accumulation was evident, while they were not detected in topmost peat layers where Mn accumulation indicated oxic conditions. Combined chemical, spectroscopic, and microbiological analyses indicated that prolonged exposure to dry

  7. Optical studies of carriers’ vertical transport in the alternately-strained ZnS{sub 0.4}Se{sub 0.6}/CdSe superlattice

    SciTech Connect (OSTI)

    Evropeytsev, E. A. Sorokin, S. V.; Gronin, S. V.; Sedova, I. V.; Klimko, G. V.; Ivanov, S. V.; Toropov, A. A.

    2015-03-15

    We present the results of theoretical modelling and experimental optical studies of the alternatively-strained CdSe/ZnS{sub y}Se{sub 1−y} (y = 0.4) superlattice (SL) with effective band-gap E{sub g}{sup eff} ∼ 2.580 eV and a thickness of ∼300 nm, which was grown by molecular-beam epitaxy on a GaAs substrate. The thicknesses and composition of the layers of the superlattice are determined on the basis of the SL minibands parameters calculated implying both full lattice matching of the SL as a whole to a GaAs substrate and high efficiency of photoexcited carriers transport along the growth axis. Photoluminescence studies of the transport properties of the structure (including a superlattice with one enlarged quantum well) show that the characteristic time of the diffusion of charge carriers at 300 K is shorter than the times defined by recombination processes. Such superlattices seem to be promising for the formation of a wide-gap photoactive region in a multijunction solar cell, which includes both III–V and II–VI compounds.

  8. Ordering mechanism of stacked CdSe/ZnS{sub x}Se{sub 1-x} quantum dots: A combined reciprocal-space and real-space approach

    SciTech Connect (OSTI)

    Schmidt, Th.; Roventa, E.; Clausen, T.; Flege, J. I.; Alexe, G.; Rosenauer, A.; Hommel, D.; Falta, J.; Bernstorff, S.; Kuebel, C.

    2005-11-15

    The vertical and lateral ordering of stacked CdSe quantum dot layers embedded in ZnS{sub x}Se{sub 1-x} has been investigated by means of grazing incidence small angle x-ray scattering and transmission electron microscopy. Different growth parameters have been varied in order to elucidate the mechanisms leading to quantum dot correlation. From the results obtained for different numbers of quantum dot layers, we conclude on a self-organized process which leads to increasing ordering for progressive stacking. The dependence on the spacer layer thickness indicates that strain induced by lattice mismatch drives the ordering process, which starts to break down for too thick spacer layers in a thickness range from 45 to 80 A. Typical quantum dot distances in a range from about 110 to 160 A have been found. A pronounced anisotropy of the quantum dot correlation has been observed, with the strongest ordering along the [110] direction. Since an increased ordering is found with increasing growth temperature, the formation of stacking faults as an additional mechanism for quantum dot alignment can be ruled out.

  9. Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in Frster resonant energy transfer assemblies

    SciTech Connect (OSTI)

    Kaiser, Uwe; Jimenez de Aberasturi, Dorleta; Vzquez-Gonzlez, Margarita; Carrillo-Carrion, Carolina; Niebling, Tobias; Parak, Wofgang J.; Heimbrodt, Wolfram

    2015-01-14

    Semiconductor quantum dots functionalized with organic dye molecules are important tools for biological sensor applications. Energy transfer between the quantum dot and the attached dyes can be utilized for sensing. Though important, the determination of the real number of dye molecules attached per quantum dot is rather difficult. In this work, a method will be presented to determine the number of ATTO-590 dye molecules attached to CdSe/ZnS quantum dots based on time resolved spectral analysis. The energy transfer from the excited quantum dot to the attached ATTO-590 dye leads to a reduced lifetime of the quantum dot's excitons. The higher the concentration of dye molecules, the shorter the excitonic lifetime becomes. However, the number of dye molecules attached per quantum dot will vary. Therefore, for correctly explaining the decay of the luminescence upon photoexcitation of the quantum dot, it is necessary to take into account the distribution of the number of dyes attached per quantum dot. A Poisson distribution of the ATTO-590 dye molecules not only leads to excellent agreement between experimental and theoretical decay curves but also additionally yields the average number of dye molecules attached per quantum dot. In this way, the number of dyes per quantum dot can be conveniently determined.

  10. RG&E (Electric)- Commercial and Industrial Efficiency Program

    Broader source: Energy.gov [DOE]

    NYSEG and RG&E offer rebates to non-residential customers installing energy efficient equipment that have an electricity Systems Benefits Charge (SBC) included in their energy bills. Both...

  11. RG&E (Gas)- Commercial and Industrial Efficiency Program

    Broader source: Energy.gov [DOE]

    NYSEG and RG&E offer rebates to non-residential customers installing energy efficiency equipment who pay a natural gas Systems Benefits Charge (SBC). Both prescriptive rebates and custom...

  12. Bright three-band white light generated from CdSe/ZnSe quantum dot-assisted Sr{sub 3}SiO{sub 5}:Ce{sup 3+},Li{sup +}-based white light-emitting diode with high color rendering index

    SciTech Connect (OSTI)

    Jang, Ho Seong; Kwon, Byoung-Hwa; Jeon, Duk Young; Yang, Heesun

    2009-10-19

    In this study, bright three-band white light was generated from the CdSe/ZnSe quantum dot (QD)-assisted Sr{sub 3}SiO{sub 5}:Ce{sup 3+},Li{sup +}-based white light-emitting diode (WLED). The CdSe/ZnSe core/shell structure was confirmed by energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. The CdSe/ZnSe QDs showed high quantum efficiency (79%) and contributed to the high luminous efficiency ({eta}{sub L}) of the fabricated WLED. The WLED showed bright natural white with excellent color rendering property ({eta}{sub L}=26.8 lm/W, color temperature=6140 K, and color rendering index=85) and high stability against the increase in forward bias currents from 20 to 70 mA.

  13. Five new Zn(II) and Cd(II) coordination polymers constructed by 3,5-bis-oxyacetate-benzoic acid: Syntheses, crystal structures, network topologies and luminescent properties

    SciTech Connect (OSTI)

    Jiang Xianrong; Yuan Hongyan; Feng Yunlong

    2012-07-15

    Five Zn(II) and Cd(II) coordination polymers, [Zn{sub 2}(BOABA)(bpp)(OH)]{center_dot}0.5H{sub 2}O (1), [Cd{sub 3}(BOABA){sub 2}(bpp){sub 2}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O (2), [Cd{sub 3}(BOABA){sub 2}(2,2 Prime -bipy){sub 3}(H{sub 2}O){sub 4}]{center_dot}5.5H{sub 2}O (3), [CdNa(BOABA)(H{sub 2}O)]{sub 2}{center_dot}H{sub 2}O (4) and [Cd{sub 2}(BOABA)(bimb)Cl(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (5) (H{sub 3}BOABA=3,5-bis-oxyacetate-benzoic acid, bpp=1,3-bi(4-pyridyl)propane, 2,2 Prime -bipy=2,2 Prime -bipyridine, bimb=1,4-bis(imidazol-1 Prime -yl)butane), have been solvothermally synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra and TG analyses. 1 is an uninodal 4-connected 2D square grid network based on binuclear zinc clusters. 2 is 2D wavelike layer structure and further linked by hydrogen bonds into the final 3D (5,6,6)-connected topology network. 3 is 3-connected 2D topology network and the 2,2 Prime -bipy ligands decorate in two different types. 4 is a (4,8)-connected 2D topology network with heterocaryotic {l_brace}Cd{sub 2}Na{sub 2}{r_brace} clusters and BOABA{sup 3-} ligands. 5 can be rationalized as a (3,10)-connected 3D topology network with tetranuclear {l_brace}Cd{sub 4}Cl{sub 2}{r_brace} clusters and BOABA{sup 3-} ligands. Meanwhile, photoluminescence studies revealed that these five coordination polymers display strong fluorescent emission bands in the solid state at room temperature. - Graphical abstract: Five new d{sup 10} metal(II) coordination polymers based on H{sub 3}BOABA ligand were obtained and characterized. They display different topological structures and luminescent properties. Highlights: Black-Right-Pointing-Pointer Five d{sup 10} metal(II) polymers based on 3,5-bis-oxyacetate-benzoic acid were obtained. Black-Right-Pointing-Pointer The polymers were structurally characterized by single-crystal X-ray diffraction. Black-Right-Pointing-Pointer Polymers 1-5 display different

  14. Synchrotron X-ray 2D and 3D Elemental Imaging of CdSe/ZnS Quantum dot Nanoparticles in Daphnia Magna

    SciTech Connect (OSTI)

    Jackson, B.; Pace, H; Lanzirotti, A; Smith, R; Ranville, J

    2009-01-01

    The potential toxicity of nanoparticles to aquatic organisms is of interest given that increased commercialization will inevitably lead to some instances of inadvertent environmental exposures. Cadmium selenide quantum dots (QDs) capped with zinc sulfide are used in the semiconductor industry and in cellular imaging. Their small size (<10 nm) suggests that they may be readily assimilated by exposed organisms. We exposed Daphnia magna to both red and green QDs and used synchrotron X-ray fluorescence to study the distribution of Zn and Se in the organism over a time period of 36 h. The QDs appeared to be confined to the gut, and there was no evidence of further assimilation into the organism. Zinc and Se fluorescence signals were highly correlated, suggesting that the QDs had not dissolved to any extent. There was no apparent difference between red or green QDs, i.e., there was no effect of QD size. 3D tomography confirmed that the QDs were exclusively in the gut area of the organism. It is possible that the QDs aggregated and were therefore too large to cross the gut wall.

  15. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    SciTech Connect (OSTI)

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hodges, D.; Hossain, A.; Lee, W.; Mahler, G.; Maritato, M.; Petryk, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B.

    2015-07-28

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  16. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hodges, D.; Hossain, A.; Lee, W.; et al

    2015-07-28

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics.more » The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less

  17. Influence of irradiation with {gamma}-ray photons on the photoluminescence of Cd{sub 0.9}Zn{sub 0.1}Te crystals preliminarily subjected to the intense radiation of a neodymium laser

    SciTech Connect (OSTI)

    Glinchuk, K. D.; Medvid', A. P.; Mychko, A. M.; Naseka, Yu. M.; Prokhorovich, A. V.; Strilchuk, O. M.

    2013-04-15

    The effect of the preliminary treatment of Cd{sub 0.9}Zn{sub 0.1}Te crystals with high-power pulses of neodymium laser radiation (the power density is {<=}1.8 MW/cm{sup 2}, at a wavelength of 532 nm) on the low-temperature (5 K) photoluminescence induced by {gamma}-ray radiation (the dose was {Phi}{sub {gamma}} = 5 kGy) is studied. The luminescence bands are related to radiation-stimulated donor-acceptor pairs, which include shallow neutral donors and neutral cadmium vacancies stimulated by {gamma}-ray irradiation, the transition of free electrons to neutral cadmium vacancies formed by radiation, and the annihilation of excitons bound to the above vacancies. It is shown that, in the crystals preliminarily treated with laser radiation, the intensity of the {gamma}-ray-stimulated luminescence bands is significantly lower than in crystals not subjected to laser radiation. This fact is accounted for by a decrease in the concentration of cadmium vacancies generated by the {gamma}-ray radiation as a result of their annihilation during the course of their interaction with laser-stimulated defects, in particular, as a consequence of their recombination at laser-stimulated interstitial cadmium atoms.

  18. CD Templates

    Broader source: Energy.gov [DOE]

    EERE has developed templates for CD labels and CD packages. These can be used for all EERE products. Both templates are available as EPS files, which can be downloaded and edited in a graphics package like Adobe Illustrator.

  19. Electroluminescence of ZnO-based semiconductor heterostructures

    SciTech Connect (OSTI)

    Novodvorskii, O A; Lotin, A A; Panchenko, Vladislav Ya; Parshina, L S; Khaidukov, E V; Zuev, D A; Khramova, O D [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation)

    2011-01-31

    Using pulsed laser deposition, we have grown n-ZnO/p-GaN, n-ZnO/i-ZnO/p-GaN and n-ZnO/n-Mg{sub 0.2}Zn{sub 0.8}O/i-Cd{sub 0.2}Zn{sub 0.8}O/p-GaN light-emitting diode (LED) heterostructures with peak emission wavelengths of 495, 382 and 465 nm and threshold current densities (used in electroluminescence measurements) of 1.35, 2, and 0.48 A cm{sup -2}, respectively. Because of the spatial carrier confinement, the n-ZnO/n-Mg{sub 0.2}Zn{sub 0.8}O/i-Cd{sub 0.2}Zn{sub 0.8}O/p-GaN double heterostructure LED offers a higher electroluminescence intensity and lower electroluminescence threshold in comparison with the n-ZnO/p-GaN and n-ZnO/i-ZnO/p-GaN LEDs. (lasers)

  20. Ginsenoside Rg3 regulates S-nitrosylation of the NLRP3 inflammasome via suppression of iNOS

    SciTech Connect (OSTI)

    Yoon, Sung-Jin; Park, Jun-Young; Choi, Song; Lee, Jin-Bong; Jung, Haiyoung; Kim, Tae-Don; Yoon, Suk Ran; Choi, Inpyo; Shim, Sungbo; Park, Young-Jun

    2015-08-07

    Ginsenoside Rg3, a specific biological effector, is well-known as a major bioactive ingredient of Panax ginseng. However, its role in the inflammasome activation process remains unclear. In this report, we demonstrate that ginsenosides 20(R)-Rg3 and 20(S)-Rg3 are capable of suppressing both lethal endotoxic shock and the S-nitrosylation of the NLRP3 inflammasome by inhibiting nitric oxide (NO) production through the regulation of inducible nitric oxide synthase (iNOS) expression. In response to lipopolysaccharide (LPS), the reducing effect of 20(S)-Rg3 and 20(R)-Rg3 on nitric oxide led to an increase in the survival time of mice after lethal endotoxin-induced shock, and excess levels of NO inhibited IL-1β production via the S-nitrosylation of the NLRP3 inflammasome. In addition, ginsenosides 20(R)-Rg3 and 20(S)-Rg3 had suppressive effects on the LPS- or UV-irradiation-induced reactive oxygen species (ROS) levels in macrophage and HaCaT cells and thereby prevented apoptosis of spleen cells in mice. Altogether, these results demonstrate that ginsenoside 20(R)-Rg3 and 20(S)-Rg3, a naturally occurring compound, might act as a dual therapeutic regulator for the treatment of inflammatory and oxidative stress-related diseases. - Highlights: • Ginsenosides Rg3 inhibits NO production through the regulation of iNOS expression. • Ginsenosides Rg3 inhibits the S-nitrosylation of the NLRP3 inflammasome. • Ginsenosides Rg3 suppress on the LPS- or UV-irradiation-induced ROS levels in cells.

  1. Electrodeposition of Zn based nanostructure thin films for photovoltaic applications

    SciTech Connect (OSTI)

    Al-Bathi, S. A. M.

    2015-03-30

    We present here a systematic study on the synthesis thin films of various ZnO, CdO, Zn{sub x}Cd{sub 1-x} (O) and ZnTe nanostructures by electrodeposition technique with ZnCl{sub 2,} CdCl{sub 2} and ZnSO{sub 4} solution as starting reactant. Several reaction parameters were examined to develop an optimal procedure for controlling the size, shape, and surface morphology of the nanostructure. The results showed that the morphology of the products can be carefully controlled through adjusting the concentration of the electrolyte. The products present well shaped Nanorods arrays at specific concentration and temperature. UV-VIS spectroscopy and X-ray diffraction results show that the product presents good crystallinity. A possible formation process has been proposed.

  2. Microsoft Word - RBL_Jan_2009_RG13-1-398.doc

    Office of Legacy Management (LM)

    13-1-398 Well: Gas production well, Federal RG 13-1-398, API # 05-103-10605. Operator: Williams Production RMT, Incorporated Sampler: U.S. Department of Energy, Office of Legacy Management, Grand Junction, CO. Date of Sampling Event: 7 January 2009 Samples of natural gas and produced water were collected from production well Federal RG 13-1-398. Location data for the surface collection point and the sample location are given in Table 1. A description of each sample collected is listed in Table

  3. Microsoft Word - RBL_Jan_2009_RG24-13-398.doc

    Office of Legacy Management (LM)

    24-13-398 Well: Gas production well, Federal RG 24-13-398, API # 05-103-10702. Operator: Williams Production RMT, Incorporated Sampler: U.S. Department of Energy, Office of Legacy Management, Grand Junction, CO. Date of Sampling Event: 7 January 2009 Samples of natural gas and produced water were collected from production well Federal RG 24-13-398. Location data for the surface collection point and the sample location are given in Table 1. A description of each sample collected is listed in

  4. ZnCuInS/ZnSe/ZnS Quantum Dot-Based Downconversion Light-Emitting Diodes and Their Thermal Effect

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Wenyan; Zhang, Yu; Ruan, Cheng; Wang, Dan; Zhang, Tieqiang; Feng, Yi; Gao, Wenzhu; Yin, Jingzhi; Wang, Yiding; Riley, Alexis P.; et al

    2015-01-01

    The quantum dot-based light-emitting diodes (QD-LEDs) were fabricated using blue GaN chips and red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. The power efficiencies were measured as 14.0 lm/W for red, 47.1 lm/W for yellow, and 62.4 lm/W for green LEDs at 2.6 V. The temperature effect of ZnCuInS/ZnSe/ZnS QDs on these LEDs was investigated using CIE chromaticity coordinates, spectral wavelength, full width at half maximum (FWHM), and power efficiency (PE). The thermal quenching induced by the increased surface temperature of the device was confirmed to be one of the important factors to decrease power efficiencies while the CIE chromaticity coordinates changed little due to themore » low emission temperature coefficients of 0.022, 0.050, and 0.068 nm/°C for red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. These indicate that ZnCuInS/ZnSe/ZnS QDs are more suitable for downconversion LEDs compared to CdSe QDs.« less

  5. High Efficiency Single Crystal CdTe Solar Cells: November 19, 2009 - January 31, 2011

    SciTech Connect (OSTI)

    Carmody, M.; Gilmore, A.

    2011-05-01

    The goal of the program was to develop single crystal CdTe-based top cells grown on Si solar cells as a platform for the subsequent manufacture of high efficiency tandem cells for CPV applications. The keys to both the single junction and the tandem junction cell architectures are the ability to grow high quality single-crystal CdTe and CdZnTe layers on p-type Si substrates, to dope the CdTe and CdZnTe controllably, both n and p-type, and to make low resistance ohmic front and back contacts. EPIR demonstrated the consistent MBE growth of CdTe/Si and CdZnTe/Si having high crystalline quality despite very large lattice mismatches; epitaxial CdTe/Si and CdZnTe/Si consistently showed state-of-the-art electron mobilities and good hole mobilities; bulk minority carrier recombination lifetimes of unintentionally p-doped CdTe and CdZnTe grown by MBE on Si were demonstrated to be consistently of order 100 ns or longer; desired n- and p-doping levels were achieved; solar cell series specific resistances <10 ?-cm2 were achieved; A single-junction solar cell having a state-of-the-art value of Voc and a unverified 16.4% efficiency was fabricated from CdZnTe having a 1.80 eV bandgap, ideal for the top junction in a tandem cell with a Si bottom junction.

  6. Selective Zn2+ sensing using a modified bipyridine complex

    SciTech Connect (OSTI)

    Akula, Mahesh; El-Khoury, Patrick Z.; Nag, Amit; Bhattacharya, Anupam

    2014-06-01

    A novel fluorescent Zn2+ sensor, 4-(pyridin-2-yl)-3H-pyrrolo[2, 3-c]quinoline (PPQ), has been designed, synthesized and characterized by various spectroscopic and analytical techniques. PPQ exhibits superior detection of Zn2+ in the presence of various cations tested, including Cd2+ and Hg2+, via wavelength shifted fluorescence intensity enhancement. The emission wavelength at 500 nm, ensures probable noninterference from cellular components while performing biological applications.

  7. Atom-probe tomographic study of interfaces of Cu{sub 2}ZnSnS{sub 4} photovoltaic cells

    SciTech Connect (OSTI)

    Tajima, S. Asahi, R.; Itoh, T.; Hasegawa, M.; Ohishi, K.; Isheim, D.; Seidman, D. N.

    2014-09-01

    The heterophase interfaces between the CdS buffer layer and the Cu{sub 2}ZnSnS{sub 4} (CZTS) absorption layers are one of the main factors affecting photovoltaic performance of CZTS cells. We have studied the compositional distributions at heterophase interfaces in CZTS cells using three-dimensional atom-probe tomography. The results demonstrate: (a) diffusion of Cd into the CZTS layer; (b) segregation of Zn at the CdS/CZTS interface; and (c) a change of oxygen and hydrogen concentrations in the CdS layer depending on the heat treatment. Annealing at 573 K after deposition of CdS improves the photovoltaic properties of CZTS cells probably because of the formation of a heterophase epitaxial junction at the CdS/CZTS interface. Conversely, segregation of Zn at the CdS/CZTS interface after annealing at a higher temperature deteriorates the photovoltaic properties.

  8. Improve the open-circuit voltage of ZnO solar cells with inserting ZnS layers by two ways

    SciTech Connect (OSTI)

    Sun, Yunfei; Yang, Jinghai; Yang, Lili; Cao, Jian; Gao, Ming; Zhang, Zhiqiang; Wang, Zhe; Song, Hang

    2013-04-15

    ZnS NPs layers were deposited on ZnO NRs by two different ways. One is spin coating; the other is successive ionic layer adsorption and reaction (SILAR) method. The ZnO NRs/ZnS NPs composites were verified by X-ray diffraction, X-ray photoelectron spectroscopy, and UVvisible spectrophotometer; their morphologies and thicknesses were examined by scanning electron microscopic and transmission electron microscopic images. The CdS quantum dot sensitized solar cells (QDSSCs) were constructed using ZnO NRs/ZnS NPs composites as photoanode and their photovoltaic characteristic was studied by JV curves. The results indicated that the way of SILAR is more beneficial for retarding the back transfer of electrons to CdS and electrolyte than spin coating method. The open-circuit voltage increased to 0.59 V by introducing a ZnS layer through SILAR method. When ZnS NPs layer was deposited for 10 times on ZnO NRs, the conversion efficiency of QDSSC shows ?3.3 folds increments of as-synthesized ZnO solar cell. - Graphical abstract: When ZnO nanorods were deposited by ZnS for 10 times, the conversion efficiency of QDSSC shows ?3.3 folds increments of as-synthesized ZnO solar cell. Highlights: ? ZnS layers were deposited with two different ways. ? The way of SILAR is more beneficial for retarding the back transfer of electrons. ? The open-circuit voltage increased to 0.59 V by introducing a ZnS layer through SILAR method.

  9. Telescope Guiding with a HyViSI H2RG Used in Guide Mode

    SciTech Connect (OSTI)

    Simms, Lance M.; Figerb, Donald F.; Hanold, Brandon J.; Kahn, Steven M.; Gilmore, D.Kirk

    2010-06-04

    We report on long exposure results obtained with a Teledyne HyViSI H2RG detector operating in guide mode. The sensor simultaneously obtained nearly seeing-limited data while also guiding the Kitt Peak 2.1 m telescope. Results from unguided and guided operation are presented and used to place lower limits on flux/fluence values for accurate centroid measurements. We also report on significant noise reduction obtained in recent laboratory measurements that should further improve guiding capability with higher magnitude stars.

  10. RG flow of the Polyakov-loop potential - first status report

    SciTech Connect (OSTI)

    Braun, J.; Gies, H.; Pirner, H.-J.

    2005-06-14

    We study SU(2) Yang-Mills theory at finite temperature in the framework of the functional renormalization group. We concentrate on the effective potential for the Polyakov loop which serves as an order parameter for confinement. In this first status report, we focus on the behaviour of the effective Polyakov-loop potential at high temperatures. In addition to the standard perturbative result, our findings provide information about the 'RG improved' backreactions of Polyakov-loop fluctuations on the potential. We demonstrate that these fluctuations establish the convexity of the effective potential.

  11. Recognition of the Activated States of G[alpha]13 by the rgRGS Domain of PDZRhoGEF

    SciTech Connect (OSTI)

    Chen, Zhe; Singer, William D.; Danesh, Shahab M.; Sternweis, Paul C.; Sprang, Stephen R.

    2009-12-01

    G12 class heterotrimeric G proteins stimulate RhoA activation by RGS-RhoGEFs. However, p115RhoGEF is a GTPase Activating Protein (GAP) toward G{alpha}13, whereas PDZRhoGEF is not. We have characterized the interaction between the PDZRhoGEF rgRGS domain (PRG-rgRGS) and the alpha subunit of G13 and have determined crystal structures of their complexes in both the inactive state bound to GDP and the active states bound to GDP {center_dot} AlF (transition state) and GTP{gamma}S (Michaelis complex). PRG-rgRGS interacts extensively with the helical domain and the effector-binding sites on G{alpha}13 through contacts that are largely conserved in all three nucleotide-bound states, although PRG-rgRGS has highest affinity to the Michaelis complex. An acidic motif in the N terminus of PRG-rgRGS occupies the GAP binding site of G{alpha}13 and is flexible in the GDP {center_dot} AlF complex but well ordered in the GTPS complex. Replacement of key residues in this motif with their counterparts in p115RhoGEF confers GAP activity.

  12. Polarized Raman scattering of single ZnO nanorod

    SciTech Connect (OSTI)

    Yu, J. L. Lai, Y. F. Wang, Y. Z.; Cheng, S. Y.

    2014-01-21

    Polarized Raman scattering measurement on single wurtzite c-plane (001) ZnO nanorod grown by hydrothermal method has been performed at room temperature. The polarization dependence of the intensity of the Raman scattering for the phonon modes A{sub 1}(TO), E{sub 1}(TO), and E{sub 2}{sup high} in the ZnO nanorod are obtained. The deviations of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules are observed, which can be attributed to the structure defects in the ZnO nanorod as confirmed by the comparison of the transmission electron microscopy, photoluminescence spectra as well as the polarization dependent Raman signal of the annealed and unannealed ZnO nanorod. The Raman tensor elements of A{sub 1}(TO) and E{sub 1}(TO) phonon modes normalized to that of the E{sub 2}{sup high} phonon mode are |a/d|=0.32±0.01, |b/d|=0.49±0.02, and |c/d|=0.23±0.01 for the unannealed ZnO nanorod, and |a/d|=0.33±0.01, |b/d|=0.45±0.01, and |c/d|=0.20±0.01 for the annealed ZnO nanorod, which shows strong anisotropy compared to that of bulk ZnO epilayer.

  13. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    SciTech Connect (OSTI)

    Singh, Neetu Kapoor, Avinashi; Kumar, Vinod; Mehra, R. M.

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  14. COL Application Content Guide for HTGRs: Revision to RG 1.206, Part 1 - Status Report

    SciTech Connect (OSTI)

    Wayne Moe

    2012-08-01

    A combined license (COL) application is required by the Nuclear Regulatory Commission (NRC) for all proposed nuclear plants. The information requirements for a COL application are set forth in 10 CFR 52.79, “Contents of Applications; Technical Information in Final Safety Analysis Report.” An applicant for a modular high temperature gas-cooled reactor (HTGR) must develop and submit for NRC review and approval a COL application which conforms to these requirements. The technical information necessary to allow NRC staff to evaluate a COL application and resolve all safety issues related to a proposed nuclear plant is detailed and comprehensive. To this, Regulatory Guide (RG) 1.206, “Combined License Applications for Nuclear Power Plants” (LWR Edition), was developed to assist light water reactor (LWR) applicants in incorporating and effectively formatting required information for COL application review (Ref. 1). However, the guidance prescribed in RG 1.206 presumes a LWR design proposal consistent with the systems and functions associated with large LWR power plants currently operating under NRC license.

  15. Modification of electron states in CdTe absorber due to a buffer layer in CdTe/CdS solar cells

    SciTech Connect (OSTI)

    Fedorenko, Y. G. Major, J. D.; Pressman, A.; Phillips, L. J.; Durose, K.

    2015-10-28

    By application of the ac admittance spectroscopy method, the defect state energy distributions were determined in CdTe incorporated in thin film solar cell structures concluded on ZnO, ZnSe, and ZnS buffer layers. Together with the Mott-Schottky analysis, the results revealed a strong modification of the defect density of states and the concentration of the uncompensated acceptors as influenced by the choice of the buffer layer. In the solar cells formed on ZnSe and ZnS, the Fermi level and the energy position of the dominant deep trap levels were observed to shift closer to the midgap of CdTe, suggesting the mid-gap states may act as recombination centers and impact the open-circuit voltage and the fill factor of the solar cells. For the deeper states, the broadening parameter was observed to increase, indicating fluctuations of the charge on a microscopic scale. Such changes can be attributed to the grain-boundary strain and the modification of the charge trapped at the grain-boundary interface states in polycrystalline CdTe.

  16. https://bluedart.phe.com/owa/?ae=Item&t=IPM.Note&id=RgAAAAA%2f3

    National Nuclear Security Administration (NNSA)

    Phyllis Radack Manager, Regulatory Services 702-295-6582 702-858-5587 (cell) 702-295-7699 ...idRgAAAAA%2f3mOqqZ%2bfSq... 702-858-5587 (cell) 702-295-7699 (fax) From: Morris, Patrick ...

  17. Investigation of structural heterogeneity at the SPE site using combined P–wave travel times and Rg phase velocities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rowe, Charlotte A.; Patton, Howard J.

    2015-10-01

    Here, we present analyses of the 2D seismic structure beneath Source Physics Experiments (SPE) geophone lines that extended radially at 100 m spacing from 100 to 2000 m from the source borehole. With seismic sources at only one end of the geophone lines, standard refraction profiling methods cannot resolve seismic velocity structures unambiguously. In previous work, we demonstrated overall agreement between body-wave refraction modeling and Rg dispersion curves for the least complex of the five lines. A more detailed inspection supports a 2D reinterpretation of the structure. We obtained Rg phase velocity measurements in both the time and frequency domains,more » then used iterative adjustment of the initial 1D body-wave model to predict Rg dispersion curves to fit the observed values. Our method applied to the most topographically severe of the geophone lines is supplemented with a 2D ray-tracing approach, whose application to P-wave arrivals supports the Rg analysis. In addition, midline sources will allow us to refine our characterization in future work.« less

  18. Pulsed laser deposition of Mn doped CdSe quantum dots for improved solar cell performance

    SciTech Connect (OSTI)

    Dai, Qilin; Wang, Wenyong E-mail: jtang2@uwyo.edu; Tang, Jinke E-mail: jtang2@uwyo.edu; Sabio, Erwin M.

    2014-05-05

    In this work, we demonstrate (1) a facile method to prepare Mn doped CdSe quantum dots (QDs) on Zn{sub 2}SnO{sub 4} photoanodes by pulsed laser deposition and (2) improved device performance of quantum dot sensitized solar cells of the Mn doped QDs (CdSe:Mn) compared to the undoped QDs (CdSe). The band diagram of photoanode Zn{sub 2}SnO{sub 4} and sensitizer CdSe:Mn QD is proposed based on the incident-photon-to-electron conversion efficiency (IPCE) data. Mn-modified band structure leads to absorption at longer wavelengths than the undoped CdSe QDs, which is due to the exchange splitting of the CdSe:Mn conduction band by the Mn dopant. Three-fold increase in the IPCE efficiency has also been observed for the Mn doped samples.

  19. Ginsenoside-Rg{sub 1} induces angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a

    SciTech Connect (OSTI)

    Kwok, Hoi-Hin; Chan, Lai-Sheung; Poon, Po-Ying; Yue, Patrick Ying-Kit; Wong, Ricky Ngok-Shun

    2015-09-15

    Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. Ginsenoside-Rg{sub 1} (Rg{sub 1}), one of the most abundant active components of ginseng, has been demonstrated as an angiogenesis-stimulating compound in different models. There is increasing evidence implicating microRNAs (miRNAs), a group of non-coding RNAs, as important regulators of angiogenesis, but the role of microRNAs in Rg{sub 1}-induced angiogenesis has not been fully explored. In this report, we found that stimulating endothelial cells with Rg{sub 1} could reduce miR-23a expression. In silico experiments predicted hepatocyte growth factor receptor (MET), a well-established mediator of angiogenesis, as the target of miR-23a. Transfection of the miR-23a precursor or inhibitor oligonucleotides validated the inverse relationship of miR-23a and MET expression. Luciferase reporter assays further confirmed the interaction between miR-23a and the MET mRNA 3′-UTR. Intriguingly, ginsenoside-Rg{sub 1} was found to increase MET protein expression in a time-dependent manner. We further demonstrated that ginsenoside-Rg{sub 1}-induced angiogenic activities were indeed mediated through the down-regulation of miR-23a and subsequent up-regulation of MET protein expression, as confirmed by gain- and loss-of-function angiogenic experiments. In summary, our results demonstrated that ginsenoside-Rg{sub 1} could induce angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. This study has broadened our understanding of the non-genomic effects of ginsenoside-Rg{sub 1,} and provided molecular evidence that warrant further development of natural compound as novel angiogenesis-promoting therapy. - Highlights: • Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. • Ginsenoside-Rg{sub 1} (Rg{sub 1}) has been demonstrated as an angiogenesis-stimulating compound. • We found that Rg{sub 1} induces angiogenesis by

  20. Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures forphotovoltaic applications

    SciTech Connect (OSTI)

    Schrier, Joshua; Demchenko, Denis O.; Wang, Lin-Wang; Alivisatos,A. Paul

    2007-05-01

    Although ZnO and ZnS are abundant, stable, environmentallybenign, their band gap energies (3.44 eV, 3.72 eV) are too large foroptimal photovoltaic efficiency. By using band-corrected pseudopotentialdensity-functional theory calculations, we study how the band gap,opticalabsorption, and carrier localization canbe controlled by formingquantum-well like and nanowire-based heterostructures ofZnO/ZnS andZnO/ZnTe. In the case of ZnO/ZnS core/shell nanowires, which can besynthesized using existing methods, we obtain a band gap of 2.07 eV,which corresponds to a Shockley-Quiesser efficiency limitof 23 percent.Based on these nanowire results, we propose that ZnO/ZnScore/shellnanowires can be used as photovoltaic devices with organic polymersemiconductors as p-channel contacts.

  1. Enhanced spontaneous emission of CdSe quantum dots in monolithic II-VI pillar microcavities

    SciTech Connect (OSTI)

    Lohmeyer, H.; Kruse, C.; Sebald, K.; Gutowski, J.; Hommel, D.

    2006-08-28

    The emission properties of CdSe/ZnSe quantum dots in ZnSe-based pillar microcavities are studied. All-epitaxial cavities made of ZnSSe and MgS/ZnCdSe superlattices with a single quantum-dot sheet embedded have been grown by molecular beam epitaxy. Pillar structures with diameters down to 500 nm have been realized by focused-ion-beam etching. A pronounced enhancement of the spontaneous emission rate of quantum dots coupling to the fundamental mode of the cavities is found as evidence for the Purcell effect. The enhancement by a factor of up to 3.8 depends systematically on the pillar diameter and thus on the Purcell factor of the individual pillars.

  2. Elastic and surface energies: Two key parameters for CdSe quantum dot formation

    SciTech Connect (OSTI)

    Robin, Ivan-Christophe; Andre, Regis; Bougerol, Catherine; Aichele, Thomas; Tatarenko, Serge

    2006-06-05

    The two-dimensional-three-dimensional transition of a strained CdSe layer on (001) ZnSe induced by the use of amorphous selenium is studied. To precisely control the thickness of the CdSe layer, atomic layer epitaxy growth mode is used. Atomic force microscopy and reflection high-energy electron diffraction measurements reveal the formation of CdSe islands when 3 ML (monolayers) of CdSe, corresponding to the critical thickness, are deposited. When only 2.5 ML of CdSe are deposited another relaxation mechanism is observed, leading to the appearance of strong undulations on the surface. For a 3 ML thick CdSe layer, transmission electron microscopy images indicate that the formation of the islands occurs only after the amorphous selenium desorption.

  3. Electrochemical solar cells using CdSe thin film electrodes

    SciTech Connect (OSTI)

    Xiao, Xu-Rui; Tien, H.Ti.

    1983-01-01

    Electrochemical photocells consisting of a CdSe thin film anode and a Pt cathode immersed in 1M Na/sub 2/S-NaOH-S solution have been studied. CdSe thin films were formed on Ti, Cr, Mo, SnO/sub 2/, glassy carbon, and graphite substrates by coating an aqueous mixture of CdSe, ZnCl/sub 2/, and surfactant, subsequently sintering at 400/sup 0/-500/sup 0/C in air. The current-voltage (I-V) relations, output power efficiency, open-circuit voltage, and short-circuit current were measured. Seven percent power conversion efficiency was obtained at 20 mW/cm/sup 2/ light intensity after photoetching. The monochromatic I-V curves were analyzed.

  4. Investigation of structural heterogeneity at the SPE site using combined P–wave travel times and Rg phase velocities

    SciTech Connect (OSTI)

    Rowe, Charlotte A.; Patton, Howard J.

    2015-10-01

    Here, we present analyses of the 2D seismic structure beneath Source Physics Experiments (SPE) geophone lines that extended radially at 100 m spacing from 100 to 2000 m from the source borehole. With seismic sources at only one end of the geophone lines, standard refraction profiling methods cannot resolve seismic velocity structures unambiguously. In previous work, we demonstrated overall agreement between body-wave refraction modeling and Rg dispersion curves for the least complex of the five lines. A more detailed inspection supports a 2D reinterpretation of the structure. We obtained Rg phase velocity measurements in both the time and frequency domains, then used iterative adjustment of the initial 1D body-wave model to predict Rg dispersion curves to fit the observed values. Our method applied to the most topographically severe of the geophone lines is supplemented with a 2D ray-tracing approach, whose application to P-wave arrivals supports the Rg analysis. In addition, midline sources will allow us to refine our characterization in future work.

  5. Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys

    SciTech Connect (OSTI)

    Li, Keyan; Kang, Congying [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)] [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China) [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-10-15

    In this work, the bulk moduli and band gaps of M{sub x}Zn{sub 1?x}O (M = Be, Mg, Ca, Cd) alloys in the whole composition range were quantitatively calculated by using the electronegativity-related models for bulk modulus and band gap, respectively. We found that the change trends of bulk modulus and band gap with an increase of M concentration x are same for Be{sub x}Zn{sub 1?x}O and Cd{sub x}Zn{sub 1?x}O, while the change trends are reverse for Mg{sub x}Zn{sub 1?x}O and Ca{sub x}Zn{sub 1?x}O. It was revealed that the bulk modulus is related to the valence electron density of atoms whereas the band gap is strongly influenced by the detailed chemical bonding behaviors of constituent atoms. The current work provides us a useful guide to compositionally design advanced alloy materials with both good mechanical and optoelectronic properties.

  6. Effect of ZnO facet on ethanol steam reforming over Co/ZnO (Journal...

    Office of Scientific and Technical Information (OSTI)

    Effect of ZnO facet on ethanol steam reforming over CoZnO Citation Details In-Document Search Title: Effect of ZnO facet on ethanol steam reforming over CoZnO The effects of ZnO ...

  7. Effect and optimization of CdS/CdTe interdiffusion on CdTe electrical properties and CdS/CdTe cell performance

    SciTech Connect (OSTI)

    Song, W.; Mao, D.; Kaydanov, V.; Ohno, T.R.; Trefny, J.V.; Levi, D.H.; Johnston, S. McCandless, B.E.

    1999-03-01

    We have investigated the effect of the CdS/CdTe interdiffusion on the properties of the CdTe films and the CdS/CdTe cell performance. Sulfur (S) diffusion into the CdTe films leads to a decreased defect density in the films, improvement of cell performance, and possibly to the increase of the carrier lifetime in the films. Cell performance is improved with the increase of the amount of S in the CdTe films. S diffusion into CdTe also deteriorates the uniformity of the CdS window layers, resulting in worse cell performance. Based on this study, we propose a processing method to improve cell performance. {copyright} {ital 1999 American Institute of Physics.}

  8. Rod consolidation of RG and E's (Rochester Gas and Electric Corporation) spent PWR (pressurized water reactor) fuel

    SciTech Connect (OSTI)

    Bailey, W.J.

    1987-05-01

    The rod consolidation demonstration involved pulling the fuel rods from five fuel assemblies from Unit 1 of RG and E's R.E. Ginna Nuclear Power Plant. Slow and careful rod pulling efforts were used for the first and second fuel assemblies. Rod pulling then proceeded smoothly and rapidly after some minor modifications were made to the UST and D consolidation equipment. The compaction ratios attained ranged from 1.85 to 2.00 (rods with collapsed cladding were replaced by dummy rods in one fuel assembly to demonstrate the 2:1 compaction ratio capability). This demonstration involved 895 PWR fuel rods, among which there were some known defective rods (over 50 had collapsed cladding); no rods were broken or dropped during the demonstration. However, one of the rods with collapsed cladding unexplainably broke during handling operations (i.e., reconfiguration in the failed fuel canister), subsequent to the rod consolidation demonstration. The broken rod created no facility problems; the pieces were encapsulated for subsequent storage. Another broken rod was found during postdemonstration cutting operations on the nonfuel-bearing structural components from the five assemblies; evidence indicates it was broken prior to any rod consolidation operations. During the demonstration, burnish-type lines or scratches were visible on the rods that were pulled; however, experience indicates that such lines are generally produced when rods are pulled (or pushed) through the spacer grids. Rods with collapsed cladding would not enter the funnel (the transition device between the fuel assembly and the canister that aids in obtaining high compaction ratios). Reforming of the flattened areas of the cladding on those rods was attempted to make the rod cross sections more nearly circular; some of the reformed rods passed through the funnel and into the canister.

  9. Heterojunctions of model CdTe/CdSe mixtures

    SciTech Connect (OSTI)

    van Swol, Frank; Zhou, Xiaowang W.; Challa, Sivakumar R.; Martin, James E.

    2015-03-18

    We report on the strain behavior of compound mixtures of model group IIVI semiconductors. We use the StillingerWeber Hamiltonian that we recently introduced, specifically developed to model binary mixtures of group IIVI compounds such as CdTe and CdSe. We also employ molecular dynamics simulations to examine the behavior of thin sheets of material, bilayers of CdTe and CdSe. The lattice mismatch between the two compounds leads to a strong bending of the entire sheet, with about a 0.5 to 1 deflection between neighboring planes. To further analyze bilayer bending, we introduce a simple one-dimensional model and use energy minimization to find the angle of deflection. The analysis is equivalent to a least-squares straight line fit. We consider the effects of bilayers which are asymmetric with respect to the thickness of the CdTe and CdSe parts. We thus learn that the bending can be subdivided into four kinds depending on the compressive/tensile nature of each outer plane of the sheet. We use this approach to directly compare our findings with experimental results on the bending of CdTe/CdSe rods. To reduce the effects of the lattice mismatch we explore diffuse interfaces, where we mix (i.e. alloy) Te and Se, and estimate the strain response.

  10. Heterojunctions of model CdTe/CdSe mixtures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van Swol, Frank; Zhou, Xiaowang W.; Challa, Sivakumar R.; Martin, James E.

    2015-03-18

    We report on the strain behavior of compound mixtures of model group II-VI semiconductors. We use the Stillinger-Weber Hamiltonian that we recently introduced, specifically developed to model binary mixtures of group II-VI compounds such as CdTe and CdSe. We also employ molecular dynamics simulations to examine the behavior of thin sheets of material, bilayers of CdTe and CdSe. The lattice mismatch between the two compounds leads to a strong bending of the entire sheet, with about a 0.5 to 1° deflection between neighboring planes. To further analyze bilayer bending, we introduce a simple one-dimensional model and use energy minimization tomore » find the angle of deflection. The analysis is equivalent to a least-squares straight line fit. We consider the effects of bilayers which are asymmetric with respect to the thickness of the CdTe and CdSe parts. We thus learn that the bending can be subdivided into four kinds depending on the compressive/tensile nature of each outer plane of the sheet. We use this approach to directly compare our findings with experimental results on the bending of CdTe/CdSe rods. To reduce the effects of the lattice mismatch we explore diffuse interfaces, where we mix (i.e. alloy) Te and Se, and estimate the strain response.« less

  11. Heterojunctions of model CdTe/CdSe mixtures

    SciTech Connect (OSTI)

    van Swol, Frank; Zhou, Xiaowang W.; Challa, Sivakumar R.; Martin, James E.

    2015-03-18

    We report on the strain behavior of compound mixtures of model group II-VI semiconductors. We use the Stillinger-Weber Hamiltonian that we recently introduced, specifically developed to model binary mixtures of group II-VI compounds such as CdTe and CdSe. We also employ molecular dynamics simulations to examine the behavior of thin sheets of material, bilayers of CdTe and CdSe. The lattice mismatch between the two compounds leads to a strong bending of the entire sheet, with about a 0.5 to 1° deflection between neighboring planes. To further analyze bilayer bending, we introduce a simple one-dimensional model and use energy minimization to find the angle of deflection. The analysis is equivalent to a least-squares straight line fit. We consider the effects of bilayers which are asymmetric with respect to the thickness of the CdTe and CdSe parts. We thus learn that the bending can be subdivided into four kinds depending on the compressive/tensile nature of each outer plane of the sheet. We use this approach to directly compare our findings with experimental results on the bending of CdTe/CdSe rods. To reduce the effects of the lattice mismatch we explore diffuse interfaces, where we mix (i.e. alloy) Te and Se, and estimate the strain response.

  12. Enhancement of photoluminescence in ZnS/ZnO quantum dots interfacial heterostructures

    SciTech Connect (OSTI)

    Rajalakshmi, M.; Sohila, S.; Ramesh, R.; Bhalerao, G.M.

    2012-09-15

    Highlights: ? ZnS/ZnO quantum dots (QDs) were synthesized by controlled oxidation of ZnS nanoparticles. ? Interfacial heterostructure formation of ZnS/ZnO QDs is seen in HRTEM. ? Enormous enhancement of UV emission (?10 times) in ZnS/ZnO QDs heterostructure is observed. ? Phonon confinement effect is seen in the Raman spectrum. -- Abstract: ZnS/ZnO quantum dots (QDs) were synthesized by controlled oxidation of ZnS nanoparticles. HRTEM image showed small nanocrystals of size 4 nm and the magnified image of single quantum dot shows interfacial heterostructure formation. The optical absorption spectrum shows a blue shift of 0.19 and 0.23 eV for ZnO and ZnS QDs, respectively. This is due to the confinement of charge carries within the nanostructures. Enormous enhancement in UV emission (10 times) is reported which is attributed to interfacial heterostructure formation. Raman spectrum shows phonons of wurtzite ZnS and ZnO. Phonon confinement effect is seen in the Raman spectrum wherein LO phonon peaks of ZnS and ZnO are shifted towards lower wavenumber side and are broadened.

  13. Blue and green electroluminescence from CdSe nanocrystal quantum-dot-quantum-wells

    SciTech Connect (OSTI)

    Lu, Y. F.; Cao, X. A.

    2014-11-17

    CdS/CdSe/ZnS quantum dot quantum well (QDQW) nanocrystals were synthesized using the successive ion layer adsorption and reaction technique, and their optical properties were tuned by bandgap and strain engineering. 3-monolayer (ML) CdSe QWs emitted blue photoluminescence at 467 nm with a spectral full-width-at-half-maximum of ∼30 nm. With a 3 ML ZnS cladding layer, which also acts as a passivating and strain-compensating layer, the QDQWs acquired a ∼35% quantum yield of the QW emission. Blue and green electroluminescence (EL) was obtained from QDQW light-emitting devices with 3–4.5 ML CdSe QWs. It was found that as the peak blueshifted, the overall EL was increasingly dominated by defect state emission due to poor hole injection into the QDQWs. The weak EL was also attributed to strong field-induced charge separation resulting from the unique QDQW geometry, weakening the oscillator strength of optical transitions.

  14. High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates

    SciTech Connect (OSTI)

    Mahabaduge, H. P.; Rance, W. L.; Burst, J. M.; Reese, M. O.; Gessert, T. A.; Metzger, W. K.; Barnes, T. M.; Meysing, D. M.; Wolden, C. A.; Li, J.; Beach, J. D.; Garner, S.

    2015-03-30

    Flexible, high-efficiency, low-cost solar cells can enable applications that take advantage of high specific power, flexible form factors, lower installation and transportation costs. Here, we report a certified record efficiency of 16.4% for a flexible CdTe solar cell that is a marked improvement over the previous standard (14.05%). The improvement was achieved by replacing chemical-bath-deposited CdS with sputtered CdS:O and also replacing the high-temperature sputtered ZnTe:Cu back contact layer with co-evaporated and rapidly annealed ZnTe:Cu. We use quantum efficiency and capacitance-voltage measurements combined with device simulations to identify the reasons for the increase in efficiency. Both device simulations and experimental results show that higher carrier density can quantitatively account for the increased open circuit voltage (V{sub OC}) and Fill Factor (FF), and likewise, the increase in short circuit current density (J{sub SC}) can be attributed to the more transparent CdS:O.

  15. CdWO{sub 4} polymorphs: Selective preparation, electronic structures, and photocatalytic activities

    SciTech Connect (OSTI)

    Yan, Tingjiang; Li, Liping; Tong, Wenming; Zheng, Jing; Wang, Yunjian; Li, Guangshe

    2011-02-15

    This work explored the selective synthesis of polymorphs of CdWO{sub 4} in either tetragonal or monoclinic phase by optimizing the experimental parameters. Systematic characterization indicated that both polymorphs possessed similar spherical morphologies but different structural building blocks. Electronic structures calculations for both polymorphs demonstrated the same constructions of conduction band or valence band, while the conduction band widths of both polymorphs were quite different. Both CdWO{sub 4} polymorphs exhibited good photocatalytic activity for degradation of methyl orange under UV light irradiation. When comparing to some other well-known tungstate oxide materials, the photocatalytic activity was found to follow such a consequence, monoclinic CdWO{sub 4{approx}}monoclinic ZnWO{sub 4}>tetragonal CdWO{sub 4}>tetragonal CaWO{sub 4}. The specific photocatalytic activity of monoclinic CdWO{sub 4} was even higher than that of commercial TiO{sub 2} photocatalyst (Degussa P25). The increased activity from the tetragonal CdWO{sub 4} to the monoclinic was consistent with the trend of the decreased symmetry, and this could be explained in terms of the geometric structures and electronic structures for both polymorphs. -- Graphical abstract: Monoclinic CdWO{sub 4} exhibited a much higher photocatalytic activity than the tetragonal form owing to the lower symmetry, more distorted geometric structure, and the dispersive band configuration. Display Omitted Research highlights: > Polymorphs of CdWO{sub 4} in either tetragonal or monoclinic phase were selectively synthesized. > Both polymorphs possessed similar spherical morphologies, while the relevant structural building blocks were different. > Photocatalytic activities of CdWO{sub 4} polymorphs depended strongly on the symmetry, geometric structure, as well as band configuration.

  16. Wide emission-tunable CdTeSe/ZnSe/ZnS core-shell quantum dots...

    Office of Scientific and Technical Information (OSTI)

    OSTI Identifier: 22475756 Resource Type: Journal Article Resource Relation: Journal Name: Materials Research Bulletin; Journal Volume: 65; Other Information: Copyright (c) 2015 ...

  17. Simulation of Electric Field in Semi Insulating Au/CdTe/Au Detector under Flux

    SciTech Connect (OSTI)

    Franc, J.; James, R.; Grill, R.; Kubat, J.; Belas, E.; Hoschl, P.; Moravec, P.; Praus, P.

    2009-08-02

    We report our simulations on the profile of the electric field in semi insulating CdTe and CdZnTe with Au contacts under radiation flux. The type of the space charge and electric field distribution in the Au/CdTe/Au structure is at high fluxes result of a combined influence of charge formed due to band bending at the electrodes and from photo generated carriers, which are trapped at deep levels. Simultaneous solution of drift-diffusion and Poisson equations is used for the calculation. We show, that the space charge originating from trapped photo-carriers starts to dominate at fluxes 10{sup 15}-10{sup 16}cm{sup -2}s{sup -1}, when the influence of contacts starts to be negligible.

  18. Preparation of new morphological ZnO and Ce-doped ZnO

    SciTech Connect (OSTI)

    Chelouche, A.; Djouadi, D.; Aksas, A.

    2013-12-16

    ZnO micro-tori and cerium doped hexangulars ZnO have been prepared by the sol-gel method under methanol hypercritical conditions of temperature and pressure. X-ray diffraction (XRD) measurement has revealed the high crystalline quality and the nanometric size of the samples. Scanning electron microscopy (SEM) has shown that the ZnO powder has a torus-like shape while that of ZnO:Ce has a hexangular-like shape, either standing free or inserted into the cores of ZnO tori. Transmission electron microscopy (TEM) has revealed that the ZnO particles have sizes between 25 and 30 nm while Ce-doped ZnO grains have diameters ranging from 75 nm to 100 nm. Photoluminescence spectra at room temperature of the samples have revealed that the introduction of cerium in ZnO reduces the emission intensity lines, particularly the ZnO red and green ones.

  19. High efficiency thin film CdTe and a-Si based solar cells

    SciTech Connect (OSTI)

    Compaan, A. D.; Deng, X.; Bohn, R. G.

    2000-01-04

    This report describes work done by the University of Toledo during the first year of this subcontract. During this time, the CdTe group constructed a second dual magnetron sputter deposition facility; optimized reactive sputtering for ZnTe:N films to achieve 10 ohm-cm resistivity and {approximately}9% efficiency cells with a copper-free ZnTe:N/Ni contact; identified Cu-related photoluminescence features and studied their correlation with cell performance including their dependence on temperature and E-fields; studied band-tail absorption in CdS{sub x}Te{sub 1{minus}x} films at 10 K and 300 K; collaborated with the National CdTe PV Team on (1) studies of high-resistivity tin oxide (HRT) layers from ITN Energy Systems, (2) fabrication of cells on the HRT layers with 0, 300, and 800-nm CdS, and (3) preparation of ZnTe:N-based contacts on First Solar materials for stress testing; and collaborated with Brooklyn College for ellipsometry studies of CdS{sub x}Te{sub 1{minus}x} alloy films, and with the University of Buffalo/Brookhaven NSLS for synchrotron X-ray fluorescence studies of interdiffusion in CdS/CdTe bilayers. The a-Si group established a baseline for fabricating a-Si-based solar cells with single, tandem, and triple-junction structures; fabricated a-Si/a-SiGe/a-SiGe triple-junction solar cells with an initial efficiency of 9.7% during the second quarter, and 10.6% during the fourth quarter (after 1166 hours of light-soaking under 1-sun light intensity at 50 C, the 10.6% solar cells stabilized at about 9%); fabricated wide-bandgap a-Si top cells, the highest Voc achieved for the single-junction top cell was 1.02 V, and top cells with high FF (up to 74%) were fabricated routinely; fabricated high-quality narrow-bandgap a-SiGe solar cells with 8.3% efficiency; found that bandgap-graded buffer layers improve the performance (Voc and FF) of the narrow-bandgap a-SiGe bottom cells; and found that a small amount of oxygen partial pressure ({approximately}2 {times} 10

  20. Ultraviolet emission from a multi-layer graphene/MgZnO/ZnO light-emitting diode

    SciTech Connect (OSTI)

    Kang, Jang-Won; Choi, Yong-Seok; Goo Kang, Chang; Hun Lee, Byoung [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Byeong-Hyeok [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Tu, C. W. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407 (United States); Park, Seong-Ju, E-mail: sjpark@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-02-03

    We report on ultraviolet emission from a multi-layer graphene (MLG)/MgZnO/ZnO light-emitting diodes (LED). The p-type MLG and MgZnO in the MLG/MgZnO/ZnO LED are used as transparent hole injection and electron blocking layers, respectively. The current-voltage characteristics of the MLG/MgZnO/ZnO LED show that current transport is dominated by tunneling processes in the MgZnO barrier layer under forward bias conditions. The holes injected from p-type MLG recombine efficiently with the electrons accumulated in ZnO, and the MLG/MgZnO/ZnO LED shows strong ultraviolet emission from the band edge of ZnO and weak red-orange emission from the deep levels of ZnO.

  1. ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells

    DOE Patents [OSTI]

    Bhattacharya, Raghu N.

    2009-11-03

    The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.

  2. Thermodynamic properties of model CdTe/CdSe mixtures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van Swol, Frank; Zhou, Xiaowang W.; Challa, Sivakumar R.; Martin, James E.

    2015-02-20

    We report on the thermodynamic properties of binary compound mixtures of model groups II–VI semiconductors. We use the recently introduced Stillinger–Weber Hamiltonian to model binary mixtures of CdTe and CdSe. We use molecular dynamics simulations to calculate the volume and enthalpy of mixing as a function of mole fraction. The lattice parameter of the mixture closely follows Vegard's law: a linear relation. This implies that the excess volume is a cubic function of mole fraction. A connection is made with hard sphere models of mixed fcc and zincblende structures. We found that the potential energy exhibits a positive deviation frommore » ideal soluton behaviour; the excess enthalpy is nearly independent of temperatures studied (300 and 533 K) and is well described by a simple cubic function of the mole fraction. Using a regular solution approach (combining non-ideal behaviour for the enthalpy with ideal solution behaviour for the entropy of mixing), we arrive at the Gibbs free energy of the mixture. The Gibbs free energy results indicate that the CdTe and CdSe mixtures exhibit phase separation. The upper consolute temperature is found to be 335 K. Finally, we provide the surface energy as a function of composition. Moreover, it roughly follows ideal solution theory, but with a negative deviation (negative excess surface energy). This indicates that alloying increases the stability, even for nano-particles.« less

  3. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.

    SciTech Connect (OSTI)

    Chibli, H.; Carlini, L.; Park, S.; Dimitrijevic, N. M.; Nadeau, J. L.

    2011-01-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  4. High Compositional Homogeneity of CdTexSe1-x Crystals Grown by the Bridgman Method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Lee, K.; Lee, W.; Tappero, R.; Yang, G.; Gul, R.; et al

    2015-02-03

    We obtained high-quality CdTexSe1-x (CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The resulting compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ~1.0. This uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing higher efficiency gamma-raymore » detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional CdxZn1-xTe (CdZnTe or CZT).« less

  5. Piezoelectric and luminescent properties of ZnO nanostructures...

    Office of Scientific and Technical Information (OSTI)

    Conference: Piezoelectric and luminescent properties of ZnO nanostructures on Ag films. Citation Details In-Document Search Title: Piezoelectric and luminescent properties of ZnO ...

  6. CD DVD Retrieval | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CD DVD Retrieval Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells The user can download the complete CD/DVD via zip files, or if applicable use the interactive webpages to review the content online. Users can also request mailed copies of the media using the NETL CD-DVD ordering system. CD Image Title: Naturally Fracture Reservoir Simulator: FRACGEN & NFFLOW Info: The DOE sponsored a project to simulate the behavior of tight,

  7. Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures

    SciTech Connect (OSTI)

    Dukovic, Gordana; Merkle, Maxwell G.; Nelson, James H.; Hughes, Steven M.; Alivisatos, A. Paul

    2008-08-06

    colloidal CdS and CdSe/CdS core/shell nanocrystals. Among the II-VI semiconductors, CdS is of particular interest because it has the correct band alignment for water photolysis[2] and has been demonstrated to be photocatalytically active.[11-16] We have found that the photoexcitation of CdS and CdSe/CdS in the presence of an organometallic Pt precursor leads to deposition of Pt nanoparticles on the semiconductor surface. Stark differences are observed in the Pt nanoparticle location on the two substrates, and the photodeposition can be completely inhibited by the modification of the semiconductor surface. Our results suggest that tuning of the semiconductor band structure, spatial organization and surface chemistry should be crucial in the design of photocatalytic nanostructures.

  8. Dielectric functions and carrier concentrations of Hg{sub 1−x}Cd{sub x}Se films determined by spectroscopic ellipsometry

    SciTech Connect (OSTI)

    Lee, A. J.; Peiris, F. C.; Brill, G.; Doyle, K.; Myers, T. H.

    2015-08-17

    Spectroscopic ellipsometry, ranging from 35 meV to 6 eV, was used to determine the dielectric functions of a series of molecular beam epitaxy-grown Hg{sub 1−x}Cd{sub x}Se thin films deposited on both ZnTe/Si(112) and GaSb(112) substrates. The fundamental band gap as well as two higher-order electronic transitions blue-shift with increasing Cd composition in Hg{sub 1−x}Cd{sub x}Se, as expected. Representing the free carrier absorption with a Drude oscillator, we found that the effective masses of Hg{sub 1−x}Cd{sub x}Se (grown on ZnTe/Si) vary between 0.028 and 0.050 times the free electron mass, calculated using the values of carrier concentration and the mobility obtained through Hall measurements. Using these effective masses, we determined the carrier concentrations of Hg{sub 1−x}Cd{sub x}Se samples grown on GaSb, which is of significance as films grown on such doped-substrates posit ambiguous results when measured by conventional Hall experiments. These models can serve as a basis for monitoring Cd-composition during sample growth through in-situ spectroscopic ellipsometry.

  9. Synthesis, crystal structures, and physical properties of the new Zintl phases A{sub 21}Zn{sub 4}Pn{sub 18} (A=Ca, Eu; Pn=As, Sb)—Versatile arrangements of [ZnPn{sub 4}] tetrahedra

    SciTech Connect (OSTI)

    Suen, Nian-Tzu; Wang, Yi; Bobev, Svilen

    2015-07-15

    Four new Zintl phases, Ca{sub 21}Zn{sub 4}As{sub 18}, Ca{sub 21}Zn{sub 4}Sb{sub 18}, Eu{sub 21}Zn{sub 4}As{sub 18} and Eu{sub 21}Zn{sub 4}Sb{sub 18} have been synthesized by metal flux reactions. Their structures have been established from single-crystal X-ray diffraction. Despite the similar chemical makeup and the identical formulae, the structures of the four compounds are not the same—Ca{sub 21}Zn{sub 4}As{sub 18}, Ca{sub 21}Zn{sub 4}Sb{sub 18} and Eu{sub 21}Zn{sub 4}As{sub 18} crystallize in the monoclinic space group C2/m (No. 12, Z=4) with the β-Ca{sub 21}Mn{sub 4}Sb{sub 18} structure type, while Eu{sub 21}Zn{sub 4}Sb{sub 18} adopts the Ba{sub 21}Cd{sub 4}Sb{sub 18} structure type with the orthorhombic space group Cmce (No. 64, Z=8). Both structures are based on ZnAs{sub 4} or ZnSb{sub 4} tetrahedra, linked in slightly different ways, and Ca{sup 2+} and Eu{sup 2+} cations that fill the space between them. The structural relationships between the title compounds and other known ternary phases with intricate structures are discussed. Electrical resistivity measurement on single-crystalline Eu{sub 21}Zn{sub 4}Sb{sub 18} suggests an intrinsic semiconductor behavior with a band gap of ca. 0.2 eV. The temperature dependent DC magnetization measurement on the same material indicates Curie–Weiss paramagnetism in the high-temperature regime, and a spontaneous antiferromagnetic ordering below 8 K. The calculated effective moments of Eu confirm the divalent Eu{sup 2+} ground state, as expected from the Zintl–Klemm concept. - Graphical abstract: The four new Zintl phases—Ca{sub 21}Zn{sub 4}As{sub 18}, Ca{sub 21}Zn{sub 4}Sb{sub 18}, Eu{sub 21}Zn{sub 4}As{sub 18}, and Eu{sub 21}Zn{sub 4}Sb{sub 18}—crystallize in two structure types, showing the versatility in the arrangements of ZnAs{sub 4} and ZnSb{sub 4} tetrahedra. - Highlights: • Ca{sub 21}Zn{sub 4}As{sub 18}, Ca{sub 21}Zn{sub 4}Sb{sub 18}, Eu{sub 21}Zn{sub 4}As{sub 18}, and Eu{sub 21}Zn{sub 4}Sb{sub 18

  10. Simulation, Modeling, and Crystal Growth of Cd0.9Zn0.1Te for...

    Office of Scientific and Technical Information (OSTI)

    for Nuclear Spectrometers High-quality, large (10 cm long and 2.5 cm diameter), ... properties, electron and hole mobility-life-time product, mutausub e approx ...

  11. sup 3 P Hg, Cd, and Zn photosensitized chemistry of vinyl halides in krypton matrix

    SciTech Connect (OSTI)

    Cartland, H.E.; Pimentel, G.C. )

    1990-01-25

    The reaction of group IIB metals in the {sup 3}P state with vinyl fluoride, chloride, and bromide is studied in krypton matrix. The primary process in all cases is hydrogen halide elimination to form a hydrogen halide/acetylene hydrogen-bonded complex. Insertion of metal atoms into C-Cl and C-Br bonds, but not into C-H and C-F bonds, is also observed. The insertion photochemistry can be explained by a mechanism which requires that the process occur on a triplet surface with the vinyl halide in the planar ground-state conformation.

  12. Materials Data on ZnCdPt2 (SG:123) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Effects of chemo-mechanical polishing on CdZnTe X-ray and gamma...

    Office of Scientific and Technical Information (OSTI)

    In our earlier studies of mechanical polishing with alumina powder, etching with hydrogen bromide in hydrogen peroxide solution, and chemomechanical polishing with ...

  14. CD

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Square Footage, and Number of Workers in the Building.) Metal Panel: A wall construction panel made of aluminum or galvanized steel fabricated in factories and fastened to the...

  15. CD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The loose waste sludge was then immobilized by blowing in dry powdered grout. The dry ... melter pouring is suspended, at least one steam atomized scrubber operates all the time. ...

  16. An electrostatic nanogenerator based on ZnO/ZnS core/shell electrets with stabilized quasi-permanent charge

    SciTech Connect (OSTI)

    Wang, Chao; Cai, Liang; Feng, Yajuan; Chen, Lin; Yan, Wensheng E-mail: zhsun@ustc.edu.cn; Liu, Qinghua; Yao, Tao; Hu, Fengchun; Pan, Zhiyun; Sun, Zhihu E-mail: zhsun@ustc.edu.cn; Wei, Shiqiang

    2014-06-16

    ZnO-based nanogenerators with excellent performance and convenient functionalization are particularly desirable for self-powered technology, which is however difficult to achieve simultaneously in traditional piezoelectric ZnO nanogenerators. Here, we report a design of electrostatic ZnO nanogenerator by virtue of a type-II ZnO/ZnS core/shell nanostructure electrets, which can turn acoustic waves into electric power with an energy conversion efficiency of 2.2%. The ZnO/ZnS core/shell electrets are charged by ultraviolet irradiation with a long-term stability of the electrostatic charges under ambient condition. The electronic and atomic structure evolution in the charged ZnO/ZnS core/shell electrets are also discussed by detailed experimental and theoretical investigations. This design opens up an alternative path for fabricating robust ZnO-based nanogenerator for future nanotechnology application.

  17. Recycling of CdTe photovoltaic waste

    DOE Patents [OSTI]

    Goozner, Robert E.; Long, Mark O.; Drinkard, Jr., William F.

    1999-01-01

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate and electrolyzing the leachate to separate Cd from Te, wherein the Te is deposits onto a cathode while the Cd remains in solution.

  18. WPN 10-3: Procurement Toolkit CD

    Office of Energy Efficiency and Renewable Energy (EERE)

    To issue the Procurement Toolkit CD to all Grantees, to share with their local agencies, for use in the Weatherization Assistance Program.

  19. The impact of oxygen incorporation during intrinsic ZnO sputtering on the performance of Cu(In,Ga)Se{sub 2} thin film solar cells

    SciTech Connect (OSTI)

    Lee, Kkotnim; Ok, Eun-A; Park, Jong-Keuk; Kim, Won Mok; Baik, Young-Joon; Jeong, Jeung-hyun; Kim, Donghwan

    2014-08-25

    We investigated the impact of incorporating 2% oxygen during intrinsic ZnO sputtering on the efficiency of Cu(In,Ga)Se{sub 2} solar cells. The added oxygen not only reduced the optical absorption loss of the Al-doped ZnO overlaying layer but also improved the electronic properties of the underlying CdS/Cu(In,Ga)Se{sub 2} by increasing carrier density, lowering defect level, and increasing diffusion length, eventually enhancing J{sub SC}, V{sub OC}, and fill factor. It was found that the Na doping concentration was significantly increased around the CdS/Cu(In,Ga)Se{sub 2} junction due to the plasma-activated oxygen. The improved electronic properties are better explained by the increased Na concentration than simply the oxygen-related defect passivation.

  20. ZnO and MgZnO Nanocrystalline Flexible Films: Optical and Material Properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huso, Jesse; Morrison, John L.; Che, Hui; Sundararajan, Jency P.; Yeh, Wei Jiang; McIlroy, David; Williams, Thomas J.; Bergman, Leah

    2011-01-01

    An emore » merging material for flexible UV applications is Mg x Zn 1 − x O which is capable of tunable bandgap and luminescence in the UV range of ~3.4 eV–7.4 eV depending on the composition x . Studies on the optical and material characteristics of ZnO and Mg 0.3 Zn 0.7 O nanocrystalline flexible films are presented. The analysis indicates that the ZnO and Mg 0.3 Zn 0.7 O have bandgaps of 3.34 eV and 4.02 eV, respectively. The photoluminescence (PL) of the ZnO film was found to exhibit a structural defect-related emission at ~3.316 eV inherent to the nanocrystalline morphology. The PL of the Mg 0.3 Zn 0.7 O film exhibits two broad peaks at 3.38 eV and at 3.95 eV that are discussed in terms of the solubility limit of the ZnO-MgO alloy system. Additionally, external deformation of the film did not have a significant impact on its properties as indicated by the Raman LO-mode behavior, making these films attractive for UV flexible applications.« less

  1. Arrays of ZnO/CuIn{sub x}Ga{sub 1?x}Se{sub 2} nanocables with tunable shell composition for efficient photovoltaics

    SciTech Connect (OSTI)

    Akram, Muhammad Aftab; Javed, Sofia; Xu, Jun; Mujahid, Mohammad; Lee, Chun-Sing

    2015-05-28

    Arrays of one-dimensional (1D) nanostructure are receiving much attention for their optoelectronic and photovoltaic applications due to their advantages in light absorption, charge separation, and transportation. In this work, arrays of ZnO/CuIn{sub x}Ga{sub 1?x}Se{sub 2} core/shell nanocables with tunable shell compositions over the full range of 0???x???1 have been controllably synthesized. Chemical conversions of ZnO nanorods to a series of ZnO-based nanocables, including ZnO/ZnSe, ZnO/CuSe, ZnO/CuSe/In{sub x}Ga{sub 1?x}, ZnO/CuSe/(In{sub x}Ga{sub 1?x}){sub 2}Se{sub 3}, and ZnO/CuIn{sub x}Ga{sub 1?x}Se{sub 2}, are well designed and successfully achieved. Composition-dependent influences of the CuIn{sub x}Ga{sub 1?x}Se{sub 2} shells on photovoltaic performance are investigated. It is found that the increase in indium content (x) leads to an increase in short-circuit current density (J{sub SC}) but a decrease in open-circuit voltage (V{sub OC}) for the ZnO/CuIn{sub x}Ga{sub 1?x}Se{sub 2} nanocable solar cells. An array of ZnO/CuIn{sub 0.67}Ga{sub 0.33}Se{sub 2} nanocables with a length of ?1??m and a shell thickness of ?10?nm exhibits a bandgap of 1.20?eV, and yields a maximum power conversion efficiency of 1.74% under AM 1.5?G illumination at an intensity of 100 mW/cm{sup 2}. It dramatically surpasses that (0.22%) of the ZnO/CuIn{sub 0.67}Ga{sub 0.33}Se{sub 2} planar thin-film device. Our work reveals that 1D nanoarray allows efficient photovoltaics without using toxic CdS buffer layer.

  2. Crystal structure and magnetic properties and Zn substitution effects on the spin-chain compound Sr{sub 3}Co{sub 2}O{sub 6}

    SciTech Connect (OSTI)

    Wang, Xia [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba Ibaraki 305-0044 (Japan); Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Guo, Yanfeng, E-mail: Yangfeng.Guo@physics.ox.ac.uk [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba Ibaraki 305-0044 (Japan); Sun, Ying [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba Ibaraki 305-0044 (Japan); Tsujimoto, Yoshihiro [Materials Processing Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba Ibaraki 305-0047 (Japan); Matsushita, Yoshitaka [Materials Analysis Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba Ibaraki 305-0047 (Japan); Yamaura, Kazunari, E-mail: yamaura.kazunari@nims.go.jp [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba Ibaraki 305-0044 (Japan); Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan)

    2013-08-15

    The effects of substituting Co on the spin-chain compound Sr{sub 3}Co{sub 2}O{sub 6} with Zn were investigated by synchrotron X-ray diffraction, magnetic susceptibility, isothermal magnetization, and specific heat measurements. To the best of our knowledge, this is the first report to describe the successful substitution of Co in Sr{sub 3}Co{sub 2}O{sub 6} with Zn. The substitution was carried out by a method involving high pressures and temperatures to obtain Sr{sub 3}CoZnO{sub 6}, which crystalized into a K{sub 4}CdCl{sub 6}-derived rhombohedral structure with a space group of R-3c, similar to the host compound. With the Zn substitution, the Ising-type magnetic anisotropy of the host compound remarkably reduced; the newly formed Sr{sub 3}CoZnO{sub 6} became magnetically isotropic with Heisenberg-type characteristics. This could probably be ascribed to the establishment of a different interaction pathway, Co{sup 4+}(S=1/2)OZn{sup 2+}(S=0)OCo{sup 4+}(S=1/2). Details of the magnetic properties of Zn substituted Sr{sub 3}Co{sub 2}O{sub 6} were reported. - Graphical abstract: Crystal structure of the spin-chain compound Sr{sub 3}CoZnO{sub 6} synthesized at 6 GPa. Zn atoms preferably occupy the trigonal prism sites rather than the octahedral sites. As a result, the compound is much magnetically isotropic. Highlights: Effects of substituting Co with Zn on spin-chain magnetism of Sr{sub 3}Co{sub 2}O{sub 6} were studied. High-pressure synthesis resulted in a solid solution of Sr{sub 3}CoZnO{sub 6}. Sr{sub 3}CoZnO{sub 6} showed more isotropic magnetism than the host Sr{sub 3}Co{sub 2}O{sub 6}.

  3. Homoepitaxy of ZnO and MgZnO Films at 90 C

    SciTech Connect (OSTI)

    Ehrentraut, Dirk; Goh, Gregory K.L.; Fujii, Katsushi; Ooi, Chin Chun; Quang, Le Hong; Fukuda, Tsuguo; Kano, Masataka; Zhang, Yuantao; Matsuoka, Takashi

    2014-06-01

    The aqueous synthesis of uniform single crystalline homoepitaxial zinc oxide, ZnO, and magnesium zinc oxide, Mg{sub x}Zn{sub 1?x}O, films under very low temperature conditions at T=90 C and ambient pressure has been explored. A maximum Mg content of 1 mol% was recorded by energy dispersive spectroscopy. The growth on the polar (0 0 0 1) and (0 0 0 1) faces resulted in films that are strongly different in their structural and optical quality as evidenced by high-resolution X-ray diffraction, secondary electron microscopy, and photoluminescence. This is a result of the chemistry and temperature of the solution dictating the stability range of growth-governing metastable species. The use of trisodium citrate, Na{sub 3}C{sub 6}H{sub 5}O{sub 7}, yielded coalesced, mirror-like homoepitaxial films whereas adding magnesium nitrate hexahydrate, Mg(NO{sub 3}){sub 2}6H{sub 2}O, favors the growth of films with pronounced faceting. - Graphical abstract: Homoepitaxial ZnO films grown from aqueous solution below boiling point of water on a ZnO substrate with off-orientation reveal parallel grooves that are characterized by (1 0 1{sup } 1) facets. Adding trisodium citrate yields closed, single-crystalline ZnO films, which can further be functionalized. Alloying with MgO yields MgZnO films with low Mg content only. - Highlights: A simple method to synthesize uniform single crystalline homoepitaxial ZnO and MgZnO films. ZnO growth on (0 0 0 1) and (0 0 0 1{sup }) face resulted in films that are strongly different in their structural and optical quality. Single crystalline MgZnO film was fabricated under mild conditions (90 C and ambient pressure). Mg incorporation of nearly 1 mol% was obtained while maintaining single phase wurtzite structure.

  4. CD-0, Approve Mission Need

    Broader source: Energy.gov [DOE]

    The Initiation Phase begins with the identification of a mission-related need. A Program Office will identify a credible performance gap between its current capabilities and capacities and those required to achieve the goals articulated in its strategic plan. The Mission Need Statement (MNS) is the translation of this gap into functional requirements that cannot be met through other than material means. It should describe the general parameters of the solution and why it is critical to the overall accomplishment of the Department’s mission, including the benefits to be realized. The mission need is independent of a particular solution, and should not be defined by equipment, facility, technological solution, or physical end-item. This approach allows the Program Office the flexibility to explore a variety of solutions and not limit potential solutions (refer to DOE G 413.3-17). The requirements needed to attain CD-0 are listed below.

  5. CdO-CdS nano-composites as improved photo-catalysts for the generation of hydrogen from water

    SciTech Connect (OSTI)

    Kahane, Shital V.; Mahamuni, Shailaja; Sasikala, R.; Sudarsan, V.

    2014-04-24

    CdO-CdS nanocomposites were prepared by polyol method followed by heating at 300C. XRD study confirmed the atomic scale mixing of CdO and CdS nanoparticles, leading to the formation of CdSO{sub 3} phase at the interfacial region between CdO and CdS. The enhancement in photo-catalytic activity for hydrogen generation from water is observed in case of CdO-CdS nanocomposites compared to individual CdS and CdO nanoparticles. Based on XRD, steady state and time resolved luminescence studies and surface area measurements, it is determined that, the fine mixing of CdS and CdO, higher surface area of the composite sample and increase in lifetime of the charge carriers are responsible for the observed increase in hydrogen yield from water when composite sample was used as the photo-catalyst compared to individual components.

  6. Cyclotron production of {sup 61}Cu using natural Zn and enriched {sup 64}Zn targets

    SciTech Connect (OSTI)

    Asad, A. H.; Smith, S. V.; Chan, S.; Jeffery, C. M.; Morandeau, L.; Price, R. I.

    2012-12-19

    Copper-61 ({sup 61}Cu) shares with {sup 64}Cu certain advantages for PET diagnostic imaging, but has a shorter half-life (3.4hr vs. 12.7hr) and a greater probability of positron production per disintegration (61% vs. 17.9%). One important application is for in vivo imaging of hypoxic tissue. In this study {sup 61}Cu was produced using the {sup 64}Zn(p,{alpha}){sup 61}Cu reaction on natural Zn or enriched {sup 64}Zn targets. The enriched {sup 64}Zn (99.82%) was electroplated onto high purity gold or silver foils or onto thin Al discs. A typical target bombardment used 30{mu}A; at 11.7, 14.5 or 17.6MeV over 30-60min. The {sup 61}Cu (radiochemical purity of >95%) was separated using a combination of cation and anion exchange columns. The {sup 64}Zn target material was recovered after each run, for re-use. In a direct comparison with enriched {sup 64}Zn-target results, {sup 61}Cu production using the cheaper {sup nat}Zn target proved to be an effective alternative.

  7. Unique Challenges Accompany Thick-Shell CdSe/nCdS (n > 10) Nanocrystal Synthesis

    SciTech Connect (OSTI)

    Guo, Y; Marchuk, K; Abraham, R; Sampat, S; Abraham, R.; Fang, N; Malko, AV; Vela, J

    2011-12-23

    Thick-shell CdSe/nCdS (n {ge} 10) nanocrystals were recently reported that show remarkably suppressed fluorescence intermittency or 'blinking' at the single-particle level as well as slow rates of Auger decay. Unfortunately, whereas CdSe/nCdS nanocrystal synthesis is well-developed up to n {le} 6 CdS monolayers (MLs), reproducible syntheses for n {ge} 10 MLs are less understood. Known procedures sometimes result in homogeneous CdS nucleation instead of heterogeneous, epitaxial CdS nucleation on CdSe, leading to broad and multimodal particle size distributions. Critically, obtained core/shell sizes are often below those desired. This article describes synthetic conditions specific to thick-shell growth (n {ge} 10 and n {ge} 20 MLs) on both small (sub2 nm) and large (>4.5 nm) CdSe cores. We find added secondary amine and low concentration of CdSe cores and molecular precursors give desired core/shell sizes. Amine-induced, partial etching of CdSe cores results in apparent shell-thicknesses slightly beyond those desired, especially for very-thick shells (n {ge} 20 MLs). Thermal ripening and fast precursor injection lead to undesired homogeneous CdS nucleation and incomplete shell growth. Core/shells derived from small CdSe (1.9 nm) have longer PL lifetimes and more pronounced blinking at single-particle level compared with those derived from large CdSe (4.7 nm). We expect our new synthetic approach will lead to a larger throughput of these materials, increasing their availability for fundamental studies and applications.

  8. Critical Decision 2 (CD-2) Approval Template | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Decision 2 (CD-2) Approval Template Critical Decision 2 (CD-2) Approval Template File ExampleCD-2Template02-14-12.docx More Documents & Publications Example BCP...

  9. CdTe devices and method of manufacturing same

    SciTech Connect (OSTI)

    Gessert, Timothy A.; Noufi, Rommel; Dhere, Ramesh G.; Albin, David S.; Barnes, Teresa; Burst, James; Duenow, Joel N.; Reese, Matthew

    2015-09-29

    A method of producing polycrystalline CdTe materials and devices that incorporate the polycrystalline CdTe materials are provided. In particular, a method of producing polycrystalline p-doped CdTe thin films for use in CdTe solar cells in which the CdTe thin films possess enhanced acceptor densities and minority carrier lifetimes, resulting in enhanced efficiency of the solar cells containing the CdTe material are provided.

  10. Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils

    SciTech Connect (OSTI)

    Jacquat, Olivier; Voegelin, Andreas; Villard, Andre; Marcus, Matthew A.; Kretzschmar, Ruben

    2007-10-15

    Recent studies demonstrated that Zn-phyllosilicate- and Zn-layered double hydroxide-type (Zn-LDH) precipitates may form in contaminated soils. However, the influence of soil properties and Zn content on the quantity and type of precipitate forming has not been studied in detail so far. In this work, we determined the speciation of Zn in six carbonate-rich surface soils (pH 6.2 to 7.5) contaminated by aqueous Zn in the runoff from galvanized power line towers (1322 to 30090 mg/kg Zn). Based on 12 bulk and 23 microfocused extended X-ray absorption fine structure (EXAFS) spectra, the number, type and proportion of Zn species were derived using principal component analysis, target testing, and linear combination fitting. Nearly pure Zn-rich phyllosilicate and Zn-LDH were identified at different locations within a single soil horizon, suggesting that the local availabilities of Al and Si controlled the type of precipitate forming. Hydrozincite was identified on the surfaces of limestone particles that were not in direct contact with the soil clay matrix. With increasing Zn loading of the soils, the percentage of precipitated Zn increased from {approx}20% to {approx}80%, while the precipitate type shifted from Zn-phyllosilicate and/or Zn-LDH at the lowest studied soil Zn contents over predominantly Zn-LDH at intermediate loadings to hydrozincite in extremely contaminated soils. These trends were in agreement with the solubility of Zn in equilibrium with these phases. Sequential extractions showed that large fractions of soil Zn ({approx}30% to {approx}80%) as well as of synthetic Zn-kerolite, Zn-LDH, and hydrozincite spiked into uncontaminated soil were readily extracted by 1 M NH{sub 4}NO{sub 3} followed by 1 M NH{sub 4}-acetate at pH 6.0. Even though the formation of Zn precipitates allows for the retention of Zn in excess to the adsorption capacity of calcareous soils, the long-term immobilization potential of these precipitates is limited.

  11. Recycling of CdTe photovoltaic waste

    DOE Patents [OSTI]

    Goozner, Robert E.; Long, Mark O.; Drinkard, Jr., William F.

    1999-04-27

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base.

  12. Recycling of CdTe photovoltaic waste

    DOE Patents [OSTI]

    Goozner, R.E.; Long, M.O.; Drinkard, W.F. Jr.

    1999-04-27

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base. 3 figs.

  13. Preparation, structural and optical characterization of ZnO, ZnO: Al nanopowder

    SciTech Connect (OSTI)

    Mohan, R. Raj; Rajendran, K.; Sambath, K.

    2014-01-28

    In this paper, ZnO and ZnO:Al nanopowders have been synthesized by low cost hydrothermal method. Zinc nitrate, hexamethylenetetramine (HMT) and aluminium nitrate are used as precursors for ZnO and AZO with different molar ratios. The structural and optical characterization of doped and un-doped ZnO powders have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX), photoluminescence (PL) and ultra violet visible (UV-Vis) absorption studies. The SEM results show that the hydrothermal synthesis can be used to obtain nanoparticles with different morphology. It is observed that the grain size of the AZO nanoparticles increased with increasing of Al concentration. The PL measurement of AZO shows that broad range of green emission around 550nm with high intensity. The green emission resulted mainly because of intrinsic defects.

  14. Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)

    SciTech Connect (OSTI)

    Gessert, T. A.

    2010-09-01

    Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

  15. High Compositional Homogeneity of CdTexSe1-x Crystals Grown by the Bridgman Method

    SciTech Connect (OSTI)

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Lee, K.; Lee, W.; Tappero, R.; Yang, G.; Gul, R.; James, R. B.

    2015-02-03

    We obtained high-quality CdTexSe1-x (CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The resulting compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ~1.0. This uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing higher efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional CdxZn1-xTe (CdZnTe or CZT).

  16. Twinning effect on photoluminescence spectra of ZnSe nanowires

    SciTech Connect (OSTI)

    Xu, Jing; Wang, Chunrui Wu, Binhe; Xu, Xiaofeng; Chen, Xiaoshuang; Oh, Hongseok; Baek, Hyeonjun; Yi, Gyu-Chul

    2014-11-07

    Bandgap engineering in a single material along the axial length of nanowires may be realized by arranging periodic twinning, whose twin plane is vertical to the axial length of nanowires. In this paper, we report the effect of twin on photoluminescence of ZnSe nanowires, which refers to the bandgap of it. The exciton-related emission peaks of transverse twinning ZnSe nanowires manifest a 10-meV-blue-shift in comparison with those of longitudinal twinning ZnSe nanowires. The blue-shift is attributed to quantum confinement effect, which is influenced severely by the proportion of wurtzite ZnSe layers in ZnSe nanowires.

  17. Energy efficiency CD ROM. Final technical report

    SciTech Connect (OSTI)

    Totten, Michael

    1998-01-01

    The Center for Renewable Energy and SustainableTechnology (CREST) has completed the three tasks of subcontract DE-FC36-97GO10228. Three separate multimedia CD-ROM products were developed.

  18. Dynamics of photoexcited carrier relaxation and recombination in CdTe/CdS thin films

    SciTech Connect (OSTI)

    Levi, D.H.; Fluegel, B.D.; Ahrenkiel, R.K.

    1996-05-01

    Efficiency-limiting defects in photovoltaic devices are readily probed by time-resolved spectroscopy. This paper presents the first direct optical measurements of the relaxation and recombination pathways of photoexcited carriers in the CdS window layer of CdTe/CdS polycrystalline thin films. Femtosecond time-resolved pump/probe measurements indicate the possible existence of a two-phase CdS/CdSTe layer, rather than a continuously graded alloy layer at the CdTe/CdS interface. Complementary time-resolved photoluminescence (PL) measurements show that the photoexcited carriers are rapidly captured by deep-level defects. The temporal and density-dependent properties of the photoluminescence prove that the large Stokes shift of the PL relative to the band edge is due to strong phonon coupling to deep-level defects in CdS. The authors suggest that modifications in the CdS processing may enhance carrier collection efficiency in the blue spectral region.

  19. Single crystalline multi-petal Cd nanoleaves prepared by thermal reduction of CdO

    SciTech Connect (OSTI)

    Khan, Waheed S.; National Institute for Biotechnology and Genetic Engineering , P.O. Box No. 577, Jhang Road, Faisalabad ; Cao, Chuanbao; Aslam, Imran; Ali, Zulfiqar; Butt, Faheem K.; Mahmood, Tariq; Nabi, Ghulam; Ihsan, Ayesha; Usman, Zahid; Rehman, Asma

    2013-02-15

    Highlights: ? Cd nanoleaves are obtained on abraded Cu substrate by thermal reduction of CdO. ? Vapour solid (VS) growth mechanism governs the formation of Cd nanoleaves (CdNLs). ? PL spectrum for CdNLs exhibits a strong ultraviolet (UV) emission band at 353 nm. ? UV band is attributed to interband radiative recombination under Xe illumination. -- Abstract: Multi-petal cadmium metal nanoleaves with 3040 nm thickness were fabricated on abraded copper substrate by simple thermal reduction of cadmium oxide (CdO) powder at 1050 C inside horizontal tube furnace (HTF) under nitrogen gas flow. The structural, compositional and morphological characterizations of the as-prepared cadmium nanoleaves (CdNLs) were performed by X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy and selected area electron diffraction. Non-catalytic vapoursolid (VS) process based growth mechanism governing the formation of CdNLs has been proposed and discussed briefly. Photoluminescence (PL) spectrum for CdNLs measured at room temperature exhibited a single prominent emission band at 353 nm which may either be ascribed to surface oxidation effects or interband radiative recombination under Xe light illumination.

  20. Aqueous Synthesis of Zinc Blende CdTe/CdS Magic-Core/Thick-Shell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tetrahedral Shaped Nanocrystals with Emission Tunable to Near-Infrared Aqueous Synthesis of Zinc Blende CdTe/CdS Magic-Core/Thick-Shell Tetrahedral Shaped Nanocrystals with Emission Tunable to Near-Infrared Authors: Deng, Z., Schulz, O., Lin, S., Ding, B., Liu, X., Wei, X., Ros, R., Liu, Y., Yan, H., and Francis, M. Title: Aqueous Synthesis of Zinc Blende CdTe/CdS Magic-Core/Thick-Shell Tetrahedral Shaped Nanocrystals with Emission Tunable to Near-Infrared Source: Journal of the American

  1. Impact of air-exposure on the chemical and electronic structure ofZnO:Zn3N2 thin films

    SciTech Connect (OSTI)

    Bar, M.; Ahn, K.-S.; Shet, S.; Yan, Y.; Weinhardt, L.; Fuchs, O.; Blum, M.; Pookpanratana, S.; George, K.; Yang, W.; Denlinger, J.D.; Al-Jassim, M.; Heske, C.

    2008-09-08

    The chemical and electronic surface structure of ZnO:Zn3N2 ("ZnO:N") thin films with different N contents was investigated by soft x-ray emission spectroscopy. Upon exposure to ambient air (in contrast to storage in vacuum), the chemical and electronic surface structure of the ZnO:N films changes substantially. In particular, we find that the Zn3N2/(Zn3N2+ZnO) ratio decreases with exposure time and that this change depends on the initial N content. We suggest a degradation mechanism based on the reaction of the Zn3N2 content with atmospheric humidity.

  2. A transferable force field for CdS-CdSe-PbS-PbSe solid systems

    SciTech Connect (OSTI)

    Fan, Zhaochuan; Vlugt, Thijs J. H.; Koster, Rik S.; Fang, Changming; Huis, Marijn A. van; Wang, Shuaiwei; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.

    2014-12-28

    A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., “Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth,” Nano Lett. 14, 3661–3667 (2014)]. In this work, we extend this force field by including another two important binary semiconductors, PbS and CdS, and provide detailed information on the validation of this force field. The parameterization combines Bader charge analysis, empirical fitting, and ab initio energy surface fitting. When compared with experimental data and density functional theory calculations, it is shown that a wide range of physical properties of bulk PbS, PbSe, CdS, CdSe, and their mixed phases can be accurately reproduced using this force field. The choice of functional forms and parameterization strategy is demonstrated to be rational and effective. This transferable force field can be used in various studies on II-VI and IV-VI semiconductor materials consisting of CdS, CdSe, PbS, and PbSe. Here, we demonstrate the applicability of the force field model by molecular dynamics simulations whereby transformations are initiated by cation exchange.

  3. Development and characterization of PCDTBT:CdSe QDs hybrid solar cell

    SciTech Connect (OSTI)

    Dixit, Shiv Kumar Bhatnagar, Chhavi Kumari, Anita Madhwal, Devinder Bhatnagar, P. K. Mathur, P. C.

    2014-10-15

    Solar cell consisting of low band gap polymer poly[N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10, 30-benzothiadiazole)] (PCDTBT) as donor and cadmium selenide/zinc sulphide (CdSe/ZnS) core shell quantum dots (QDs) as an acceptor has been developed. The absorption measurements show that the absorption coefficient increases in bulk heterojunction (BHJ) structure covering broad absorption spectrum (200nm–700nm). Also, the photoluminescence (PL) of the PCDTBT:QDs film is found to decrease by an order of magnitude showing a significant transfer of electrons to the QDs. With this approach and under broadband white light with an irradiance of 8.19 mW/cm{sup 2}, we have been able to achieve a power conversion efficiency (PCE) of 3.1 % with fill factor 0.42 for our typical solar cell.

  4. Spin noise spectroscopy of ZnO

    SciTech Connect (OSTI)

    Horn, H.; Berski, F.; Hbner, J.; Oestreich, M.; Balocchi, A.; Marie, X.; Mansur-Al-Suleiman, M.; Bakin, A.; Waag, A.

    2013-12-04

    We investigate the thermal equilibrium dynamics of electron spins bound to donors in nanoporous ZnO by optical spin noise spectroscopy. The spin noise spectra reveal two noise contributions: A weak spin noise signal from undisturbed localized donor electrons with a dephasing time of 24 ns due to hyperfine interaction and a strong spin noise signal with a spin dephasing time of 5 ns which we attribute to localized donor electrons which interact with lattice defects.

  5. Stable highly conductive ZnO via reduction of Zn vacancies

    SciTech Connect (OSTI)

    Look, David C.; Droubay, Timothy C.; Chambers, Scott A.

    2012-09-04

    Growth of Ga-doped ZnO by pulsed laser deposition at 200 ?C in an ambient of Ar and H2 produces a resistivity ? of ~ 1.5 x 10-4 ?-cm, stable to 500 ?C. Annealing on Zn foil reduces ? to ~ 1.2 x 10-4 ?-cm, one of the lowest values ever reported. The key is reducing the Zn-vacancy acceptor concentration NA to 5 x 1019, only 3% of the Ga-donor concentration ND of 1.6 x 1021 cm-3, with ND and NA determined from a degenerate mobility theory. The plasmonic wavelength is 1060 nm, further bridging the gap between metals and semiconductors.

  6. High-Efficiency Polycrystalline CdTe Thin-Film Solar Cells with an Oxygenated Amorphous CdS (a-CdS:O) Window Layer: Preprint

    SciTech Connect (OSTI)

    Wu, X.; Dhere, R. G.; Yan, Y.; Romero, M. J.; Zhang, Y.; Zhou, J.; DeHart, C.; Duda, A.; Perkins, C.; To, B.

    2002-05-01

    In the conventional CdS/CdTe device structure, the poly-CdS window layer has a bandgap of {approx}2.4 eV, which causes absorption in the short-wavelength region. Higher short-circuit current densities (Jsc) can be achieved by reducing the CdS thickness, but this can adversely impact device open-circuit voltage (Voc) and fill factor (FF). Also, poly-CdS film has about 10% lattice mismatch related to the CdTe film, which limits the improvement of device Voc and FF. In this paper, we report a novel window material: oxygenated amorphous CdS film (a-CdS:O) prepared at room temperature by rf sputtering. The a-CdS:O film has a higher optical bandgap (2.5-3.1 eV) than the poly-CdS film and an amorphous structure. The preliminary device results have demonstrated that Jsc of the CdTe device can be greatly improved while maintaining higher Voc and FF. We have fabricated a CdTe cell demonstrating an NREL-confirmed Jsc of 25.85 mA/cm2 and a total-area efficiency of 15.4%.

  7. cd ordering | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CD-DVD Ordering System Please complete the following information so the National Energy Technology Lab (NETL) can promptly process your order. Below is a sample of the fields required to order a CD or DVD. If any fields are left blank you may not receive your disk. Data gathered by this form will be used only by the NETL. and will not be distributed for any other purpose. Data transferred via the Internet to this database should not be considered secure. Last Name: Doe First Name: John Middle

  8. Optical probing of MgZnO/ZnO heterointerface confinement potential energy levels

    SciTech Connect (OSTI)

    Solovyev, V. V.; Van'kov, A. B.; Kukushkin, I. V.; Falson, J.; Kozuka, Y.; Zhang, D.; Smet, J. H.; Maryenko, D.; Tsukazaki, A.; Kawasaki, M.

    2015-02-23

    Low-temperature photoluminescence and reflectance measurements were employed to study the optical transitions present in two-dimensional electron systems confined at Mg{sub x}Zn{sub 1x}O/ZnO heterojunctions. Transitions involving A- and B-holes and electrons from the two lowest subbands formed within the confinement potential are detected. In the studied density range of 2.06.5??10{sup 11?}cm{sup ?2}, the inter-subband splitting is measured and the first excited electron subband is shown to be empty of electrons.

  9. I-III-VI.sub.2 based solar cell utilizing the structure CuInGaSe.sub.2 CdZnS/ZnO

    DOE Patents [OSTI]

    Chen, Wen S.; Stewart, John M.

    1992-01-07

    A thin film I-III-VI.sub.2 based solar cell having a first layer of copper indium gallium selenide, a second layer of cadmium zinc sulfide, a double layer of zinc oxide, and a metallization structure comprised of a layer of nickel covered by a layer of aluminum. An optional antireflective coating may be placed on said metallization structure. The cadmium zinc sulfide layer is deposited by means of an aqueous solution growth deposition process and may actually consist of two layers: a low zinc content layer and a high zinc content layer. Photovoltaic efficiencies of 12.5% at Air Mass 1.5 illumination conditions and 10.4% under AMO illumination can be achieved.

  10. Nanowire CdS-CdTe solar cells with molybdenum oxide as contact

    SciTech Connect (OSTI)

    Dang, Hongmei; Singh, Vijay P.

    2015-10-06

    Using a 10 nm thick molybdenum oxide (MoO3-x) layer as a transparent and low barrier contact to p-CdTe, we demonstrate nanowire CdS-CdTe solar cells with a power conversion efficiency of 11% under front side illumination. Annealing the as-deposited MoO3 film in N2 resulted in a reduction of the cell’s series resistance, from 9.97 Ω/cm2 to 7.69 Ω/cm2, and increase in efficiency from 9.9% to 11%. Under illumination from the back, the MoO3-x/Au side, the nanowire solar cells yielded Jsc of 21 mA/cm2 and efficiency of 8.67%. Our results demonstrate use of a thin layer transition metal oxide as a potential way for a transparent back contact to nanowire CdS-CdTe solar cells. As a result, this work has implications toward enabling a novel superstrate structure nanowire CdS-CdTe solar cell on Al foil substrate by a low cost roll-to roll fabrication process.

  11. Nanowire CdS-CdTe solar cells with molybdenum oxide as contact

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dang, Hongmei; Singh, Vijay P.

    2015-10-06

    Using a 10 nm thick molybdenum oxide (MoO3-x) layer as a transparent and low barrier contact to p-CdTe, we demonstrate nanowire CdS-CdTe solar cells with a power conversion efficiency of 11% under front side illumination. Annealing the as-deposited MoO3 film in N2 resulted in a reduction of the cell’s series resistance, from 9.97 Ω/cm2 to 7.69 Ω/cm2, and increase in efficiency from 9.9% to 11%. Under illumination from the back, the MoO3-x/Au side, the nanowire solar cells yielded Jsc of 21 mA/cm2 and efficiency of 8.67%. Our results demonstrate use of a thin layer transition metal oxide as a potentialmore » way for a transparent back contact to nanowire CdS-CdTe solar cells. As a result, this work has implications toward enabling a novel superstrate structure nanowire CdS-CdTe solar cell on Al foil substrate by a low cost roll-to roll fabrication process.« less

  12. Optical Properties of ZnO-Alloyed Nanocrystalline Films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Che, Hui; Huso, Jesse; Morrison, John L.; Thapa, Dinesh; Huso, Michelle; Yeh, Wei Jiang; Tarun, M. C.; McCluskey, M. D.; Bergman, Leah

    2012-01-01

    ZnO is emore » merging as one of the materials of choice for UV applications. It has a deep excitonic energy level and a direct bandgap of ~3.4 eV. Alloying ZnO with certain atomic constituents adds new optical and electronic functionalities to ZnO. This paper presents research on M g x Z n 1 − x O and Z n S 1 − x O x nanocrystalline flexible films, which enable tunable optical properties in the deep-UV and in the visible range. The ZnO and Mg 0 .3 Zn 0 .7 O films were found to have bandgaps at 3.35 and 4.02 eV, respectively. The photoluminescence of the Mg 0 .3 Zn 0 .7 O exhibited a bandedge emission at 3.95 eV, and at lower energy 3.38 eV due to the limited solubility inherent to these alloys. ZnS 0 .76 O 0 .24 and ZnS 0 .16 O 0 .84 were found to have bandgaps at 3.21 and 2.65 eV, respectively. The effect of nitrogen doping on ZnS 0 .16 O 0 .84 is discussed in terms of the highly lattice mismatched nature of these alloys and the resulting valence-band modification.« less

  13. Determination of CdTe bulk carrier lifetime and interface recombination velocity of CdTe/MgCdTe double heterostructures grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Zhao, Xin-Hao; Campbell, Calli M.; DiNezza, Michael J.; Liu, Shi; Zhao, Yuan; Zhang, Yong-Hang

    2014-12-22

    The bulk Shockley-Read-Hall carrier lifetime of CdTe and interface recombination velocity at the CdTe/Mg{sub 0.24}Cd{sub 0.76}Te heterointerface are estimated to be around 0.5??s and (4.7??0.4)??10{sup 2?}cm/s, respectively, using time-resolved photoluminescence (PL) measurements. Four CdTe/MgCdTe double heterostructures (DHs) with varying CdTe layer thicknesses were grown on nearly lattice-matched InSb (001) substrates using molecular beam epitaxy. The longest lifetime of 179?ns is observed in the DH with a 2??m thick CdTe layer. It is also shown that the photon recycling effect has a strong influence on the bulk radiative lifetime, and the reabsorption process affects the measured PL spectrum shape and intensity.

  14. Synthesis and structural characterization of the new clathrates K8Cd4Ge42, Rb8Cd4Ge42, and Cs8Cd4Ge42

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schafer, Marion; Bobev, Svilen

    2016-03-25

    This paper presents results from our exploratory work in the systems K-Cd-Ge, Rb-Cd-Ge, and Cs-Cd-Ge, which yielded the novel type-I clathrates with refined compositions K8Cd3.77(7)Ge42.23, Rb8Cd3.65(7)Ge42.35, and Cs7.80(1)Cd3.65(6)Ge42.35. The three compounds represent rare examples of clathrates of germanium with the alkali metals, where a d10 element substitutes a group 14 element. The three structures, established by single-crystal X-ray diffraction, indicate that the framework-building Ge atoms are randomly substituted by Cd atoms on only one of the three possible crystallographic sites. Furthermore, this and several other details of the crystal chemistry are elaborated.

  15. The ZnO p-n homojunctions modulated by ZnMgO barriers

    SciTech Connect (OSTI)

    Yang, Jing-Jing; Fang, Qing-Qing Wang, Dan-Dan; Du, Wen-Han

    2015-04-15

    In this paper, we fabricated the ultrathin ZnO p-n homojunctions, which modulated by ZnMgO asymmetrical double barriers (ADB). The ADB p-n homojunctions displays step-like curve in the absorption spectrums, this is the first time that quantum confinement effect has been observed in the absorption spectrums at room temperature (RT). The Hall-effect data confirm there is 2-dimensional electron gas in the interface of the ZnMgO ADB p-n junctions. The quantum confinement effect enhances the hall-mobility μ to 10{sup 3} cm{sup 2}V {sup −1}s{sup −1} based on the polarity of the films. There was no rectification property in the ZnO homojunctions with thickness of 250nm, however, when the ADB was added in the n-type layer of the homojunctions, it displays a typical Zener diode rectification property in the I-V curve.

  16. Photoluminescence studies of type-II CdSe/CdTe superlattices

    SciTech Connect (OSTI)

    Li Jingjing; Johnson, Shane R.; Wang Shumin; Ding Ding; Ning Cunzheng; Zhang Yonghang; Yin Leijun; Skromme, B. J.; Liu Xinyu; Furdyna, Jacek K.

    2012-08-06

    CdSe/CdTe type-II superlattices grown on GaSb substrates by molecular beam epitaxy are studied using time-resolved and steady-state photoluminescence (PL) spectroscopy at 10 K. The relatively long carrier lifetime of 188 ns observed in time-resolved PL measurements shows good material quality. The steady-state PL peak position exhibits a blue shift with increasing excess carrier concentration. Self-consistent solutions of the Schroedinger and Poisson equations show that this effect can be explained by band bending as a result of the spatial separation of electrons and holes, which is critical confirmation of a strong type-II band edge alignment between CdSe and CdTe.

  17. Broadening of optical transitions in polycrystalline CdS and CdTe thin films

    SciTech Connect (OSTI)

    Li Jian; Chen Jie; Collins, R. W.

    2010-11-01

    The dielectric functions {epsilon} of polycrystalline CdS and CdTe thin films sputter deposited onto Si wafers were measured from 0.75 to 6.5 eV by in situ spectroscopic ellipsometry. Differences in {epsilon} due to processing variations are well understood using an excited carrier scattering model. For each sample, a carrier mean free path {lambda} is defined that is found to be inversely proportional to the broadening of each of the band structure critical points (CPs) deduced from {epsilon}. The rate at which broadening occurs with {lambda}{sup -1} is different for each CP, enabling a carrier group speed {upsilon}{sub g} to be identified for the CP. With the database for {upsilon}{sub g}, {epsilon} can be analyzed to evaluate the quality of materials used in CdS/CdTe photovoltaic heterojunctions.

  18. Effect of dopent on the structural and optical properties of ZnS thin film as a buffer layer in solar cell application

    SciTech Connect (OSTI)

    Vashistha, Indu B. Sharma, S. K.; Sharma, Mahesh C.; Sharma, Ramphal

    2015-08-28

    In order to find the suitable alternative of toxic CdS buffer layer, deposition of pure ZnS and doped with Al by chemical bath deposition method have been reported. Further as grown pure and doped thin films have been annealed at 150°C. The structural and surface morphological properties have been characterized by X-Ray diffraction (XRD) and Atomic Force Microscope (AFM).The XRD analysis shows that annealed thin film has been polycrystalline in nature with sphalerite cubic crystal structure and AFM images indicate increment in grain size as well as growth of crystals after annealing. Optical measurement data give band gap of 3.5 eV which is ideal band gap for buffer layer for solar cell suggesting that the obtained ZnS buffer layer is suitable in a low-cost solar cell.

  19. Hierarchical ZnO Structures Templated with Amino Acid Based Surfactant...

    Office of Scientific and Technical Information (OSTI)

    Hierarchical ZnO Structures Templated with Amino Acid Based Surfactants Citation Details In-Document Search Title: Hierarchical ZnO Structures Templated with Amino Acid Based ...

  20. Integrated Biorefinery Research Facility (IBRF I-II) (Post CD...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Biorefinery Research Facility (IBRF I-II) (Post CD-4), EERE, Aug 2011 Integrated Biorefinery Research Facility (IBRF I-II) (Post CD-4), EERE, Aug 2011 PDF icon 000521 & ...

  1. Wind Energy Resource Atlas of Armenia (CD-ROM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Atlas of Armenia (CD-ROM) http:www.nrel.govdocsfy03osti33877CD.zip (ZIP 31.9 MB) NRELCD-500-33877 July 2003 Instructions: The URL above links to a zipped archive...

  2. Buckeye Water C&D District | Open Energy Information

    Open Energy Info (EERE)

    Buckeye Water C&D District (Redirected from Buckeye Irrigation District) Jump to: navigation, search Name: Buckeye Water C&D District Place: Arizona Phone Number: 623-386-2196...

  3. Buckeye Water C&D District | Open Energy Information

    Open Energy Info (EERE)

    Buckeye Water C&D District Jump to: navigation, search Name: Buckeye Water C&D District Place: Arizona Phone Number: 623-386-2196 Website: www.bwcdd.com Outage Hotline: Upper...

  4. Advanced Combustion Modeling with STAR-CD using Transient Flemelet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling with STAR-CD using Transient Flemelet Models: TIF and TPV Advanced Combustion Modeling with STAR-CD using Transient Flemelet Models: TIF and TPV Presentation given at the ...

  5. Neutral nitrogen acceptors in ZnO: The {sup 67}Zn hyperfine interactions

    SciTech Connect (OSTI)

    Golden, E. M.; Giles, N. C.; Evans, S. M.; Halliburton, L. E.

    2014-03-14

    Electron paramagnetic resonance (EPR) is used to characterize the {sup 67}Zn hyperfine interactions associated with neutral nitrogen acceptors in zinc oxide. Data are obtained from an n-type bulk crystal grown by the seeded chemical vapor transport method. Singly ionized nitrogen acceptors (N{sup −}) initially present in the crystal are converted to their paramagnetic neutral charge state (N{sup 0}) during exposure at low temperature to 442 or 633 nm laser light. The EPR signals from these N{sup 0} acceptors are best observed near 5 K. Nitrogen substitutes for oxygen ions and has four nearest-neighbor cations. The zinc ion along the [0001] direction is referred to as an axial neighbor and the three equivalent zinc ions in the basal plane are referred to as nonaxial neighbors. For axial neighbors, the {sup 67}Zn hyperfine parameters are A{sub ‖} = 37.0 MHz and A{sub ⊥} = 8.4 MHz with the unique direction being [0001]. For nonaxial neighbors, the {sup 67}Zn parameters are A{sub 1} = 14.5 MHz, A{sub 2} = 18.3 MHz, and A{sub 3} = 20.5 MHz with A{sub 3} along a [101{sup ¯}0] direction (i.e., in the basal plane toward the nitrogen) and A{sub 2} along the [0001] direction. These {sup 67}Zn results and the related {sup 14}N hyperfine parameters provide information about the distribution of unpaired spin density at substitutional neutral nitrogen acceptors in ZnO.

  6. CD Label and Package Templates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications, Exhibits, & Logos » Templates » CD Label and Package Templates CD Label and Package Templates The Office of Energy Efficiency and Renewable Energy (EERE) has developed templates for CD labels and CD packages. These can be used for all EERE products. Both templates are available as EPS files, which can be downloaded and edited in a graphics package like Adobe Illustrator. You are not required to use these templates for your EERE products. These templates were designed to allow

  7. Minority carrier lifetime in iodine-doped molecular beam epitaxy-grown HgCdTe

    SciTech Connect (OSTI)

    Madni, I.; Umana-Membreno, G. A.; Lei, W.; Gu, R.; Antoszewski, J.; Faraone, L.

    2015-11-02

    The minority carrier lifetime in molecular beam epitaxy grown layers of iodine-doped Hg{sub 1−x}Cd{sub x}Te (x ∼ 0.3) on CdZnTe substrates has been studied. The samples demonstrated extrinsic donor behavior for carrier concentrations in the range from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3} without any post-growth annealing. At a temperature of 77 K, the electron mobility was found to vary from 10{sup 4} cm{sup 2}/V s to 7 × 10{sup 3} cm{sup 2}/V s and minority carrier lifetime from 1.6 μs to 790 ns, respectively, as the carrier concentration was increased from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. The diffusion of iodine is much lower than that of indium and hence a better alternative in heterostructures such as nBn devices. The influence of carrier concentration and temperature on the minority carrier lifetime was studied in order to characterize the carrier recombination mechanisms. Measured lifetimes were also analyzed and compared with the theoretical models of the various recombination processes occurring in these materials, indicating that Auger-1 recombination was predominant at higher doping levels. An increase in deep-level generation-recombination centers was observed with increasing doping level, which suggests that the increase in deep-level trap density is associated with the incorporation of higher concentrations of iodine into the HgCdTe.

  8. Mobility of indium on the ZnO(0001) surface

    SciTech Connect (OSTI)

    Heinhold, R.; Reeves, R. J.; Allen, M. W.; Williams, G. T.; Evans, D. A.

    2015-02-02

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ∼520 °C, with indium migrating from the (0001{sup ¯}) underside of the wafer, around the non-polar (11{sup ¯}00) and (112{sup ¯}0) sidewalls, to form a uniform self-organized (∼20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In{sub 2}O{sub 3} precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentional In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.

  9. CdSe/CdTe type-II superlattices grown on GaSb (001) substrates by molecular beam epitaxy

    SciTech Connect (OSTI)

    Li Jingjing; Liu Shi; Wang Shumin; Ding Ding; Johnson, Shane R.; Zhang Yonghang; Liu Xinyu; Furdyna, Jacek K.; Smith, David J.

    2012-03-19

    CdSe/CdTe superlattices are grown on GaSb substrates using molecular beam epitaxy. X-ray diffraction measurements and cross-sectional transmission electron microscopy images indicate high crystalline quality. Photoluminescence (PL) measurements show the effective bandgap varies with the superlattice layer thicknesses and confirm the CdSe/CdTe heterostructure has a type-II band edge alignment. The valence band offset between unstrained CdTe and CdSe is determined as 0.63 {+-} 0.06 eV by fitting the measured PL peak positions using the envelope function approximation and the Kronig-Penney model. These results suggest that CdSe/CdTe superlattices are promising candidates for multi-junction solar cells and other optoelectronic devices based on GaSb substrates.

  10. The role of oxygen in CdS/CdTe solar cells deposited by close-spaced sublimation

    SciTech Connect (OSTI)

    Rose, D.H.; Levi, D.H.; Matson, R.J.

    1996-05-01

    The presence of oxygen during close-spaced sublimation (CSS) of CdTe has been previously reported to be essential for high-efficiency CdS/CdTe solar cells because it increases the acceptor density in the absorber. The authors find that the presence of oxygen during CSS increases the nucleation site density of CdTe, thus decreasing pinhole density and grain size. Photoluminescence showed that oxygen decreases material quality in the bulk of the CdTe film, but positively impacts the critical CdS/CdTe interface. Through device characterization the authors were unable to verify an increase in acceptor density with increased oxygen. These results, along with the achievement of high-efficiency cells (13% AM1.5) without the use of oxygen, led the authors to conclude that the use of oxygen during CSS deposition of CdTe can be useful but is not essential.

  11. Anisotropy in CdSe quantum rods

    SciTech Connect (OSTI)

    Li, Liang-shi

    2003-09-01

    The size-dependent optical and electronic properties of semiconductor nanocrystals have drawn much attention in the past decade, and have been very well understood for spherical ones. The advent of the synthetic methods to make rod-like CdSe nanocrystals with wurtzite structure has offered us a new opportunity to study their properties as functions of their shape. This dissertation includes three main parts: synthesis of CdSe nanorods with tightly controlled widths and lengths, their optical and dielectric properties, and their large-scale assembly, all of which are either directly or indirectly caused by the uniaxial crystallographic structure of wurtzite CdSe. The hexagonal wurtzite structure is believed to be the primary reason for the growth of CdSe nanorods. It represents itself in the kinetic stabilization of the rod-like particles over the spherical ones in the presence of phosphonic acids. By varying the composition of the surfactant mixture used for synthesis we have achieved tight control of the widths and lengths of the nanorods. The synthesis of monodisperse CdSe nanorods enables us to systematically study their size-dependent properties. For example, room temperature single particle fluorescence spectroscopy has shown that nanorods emit linearly polarized photoluminescence. Theoretical calculations have shown that it is due to the crossing between the two highest occupied electronic levels with increasing aspect ratio. We also measured the permanent electric dipole moment of the nanorods with transient electric birefringence technique. Experimental results on nanorods with different sizes show that the dipole moment is linear to the particle volume, indicating that it originates from the non-centrosymmetric hexagonal lattice. The elongation of the nanocrystals also results in the anisotropic inter-particle interaction. One of the consequences is the formation of liquid crystalline phases when the nanorods are dispersed in solvent to a high enough

  12. Evidence of significant down-conversion in a Si-based solar cell using CuInS{sub 2}/ZnS core shell quantum dots

    SciTech Connect (OSTI)

    Gardelis, Spiros Nassiopoulou, Androula G.

    2014-05-05

    We report on the increase of up to 37.5% in conversion efficiency of a Si-based solar cell after deposition of light-emitting Cd-free, CuInS{sub 2}/ZnS core shell quantum dots on the active area of the cell due to the combined effect of down-conversion and the anti- reflecting property of the dots. We clearly distinguished the effect of down-conversion from anti-reflection and estimated an enhancement of up to 10.5% in the conversion efficiency due to down-conversion.

  13. Stimulated electroluminescence emission from n-ZnO/p-GaAs:Zn heterojunctions fabricated by electro-deposition

    SciTech Connect (OSTI)

    K, P.; Tekmen, S.; Baltakesmez, A.; Tzemen, S.; Meral, K.; Onganer, Y.

    2013-12-15

    In this study, n-ZnO thin films were electrochemically deposited on p-GaAs:Zn substrates. The XRD results of ZnO thin films deposited on p-GaAs:Zn substrates at potentials varied from ?0.9 V to ?1.2 V show a strong c-axis (002) orientation and homogeneity. The current-voltage characteristics exhibit rectification, proving a low turn-on voltage and an ideality factor of 4.71. The n-ZnO/p-GaAs heterostructures show blue-white electroluminescence (EL) emission, which is composed of broad emission bands. In addition to these broad peaks, stimulated emission also appear on the top of the spectra due to the multiple reflections from the mirror like surfaces of ZnO-ZnO and ZnO-GaAs interfaces. Besides, three broad photoluminescence (PL) emission peaks have also been observed peaking at respectively around 3.36 eV, 3.28 eV and 3.07 eV generally attributed to the near bandedge emission, the residual donor level and deep level emission due to the localized defects, respectively.

  14. Selective growth of catalyst-free ZnO nanowire arrays on Al:ZnO for device application

    SciTech Connect (OSTI)

    Chung, T. F.; Luo, L. B.; He, Z. B.; Leung, Y. H.; Shafiq, I.; Yao, Z. Q.; Lee, S. T.

    2007-12-03

    Vertically aligned ZnO nanowire (NW) arrays have been synthesized selectively on patterned aluminum-doped zinc oxide (AZO) layer deposited on silicon substrates without using any metal catalysts. The growth region was defined by conventional photolithography with an insulating template. Careful control of the types of template materials and growth conditions allows good alignment and growth selectivity for ZnO NW arrays. Sharp ultraviolet band-edge peak observed in the photoluminescence spectra of the patterned ZnO NW arrays reveals good optical qualities. The current-voltage characteristics of ZnO NWs/AZO/p-Si device suggest that patterned and aligned ZnO NW arrays on AZO may be used in optoelectronic devices.

  15. ZnO/Cu(InGa)Se.sub.2 solar cells prepared by vapor phase Zn doping

    DOE Patents [OSTI]

    Ramanathan, Kannan; Hasoon, Falah S.; Asher, Sarah E.; Dolan, James; Keane, James C.

    2007-02-20

    A process for making a thin film ZnO/Cu(InGa)Se.sub.2 solar cell without depositing a buffer layer and by Zn doping from a vapor phase, comprising: depositing Cu(InGa)Se.sub.2 layer on a metal back contact deposited on a glass substrate; heating the Cu(InGa)Se.sub.2 layer on the metal back contact on the glass substrate to a temperature range between about 100.degree. C. to about 250.degree. C.; subjecting the heated layer of Cu(InGa)Se.sub.2 to an evaporant species from a Zn compound; and sputter depositing ZnO on the Zn compound evaporant species treated layer of Cu(InGa)Se.sub.2.

  16. Characterization of electrospray ion-beam-deposited CdSe/ZnS quantum dot thin films from a colloidal solution

    SciTech Connect (OSTI)

    Tani, Yuki; Kobayashi, Satoshi; Kawazoe, Hiroshi

    2008-07-15

    Colloidal semiconductor quantum dot (QD) nanocrystals can be deposited in the form of inorganic thin films using the ion beam direct deposition method. To simultaneously preserve the nanocrystal configuration and remove the organics derived from the ligand and solvent, the authors used an electrospray technique and an ion beam technique. These techniques provided a soft-ionization process to obtain nanocrystalline ions and a collision process to attain a nonequilibrium state of the deposits, respectively. Because of the nature of the soft-ionization process, the electrospray phenomenon resulted in various forms of QD ions that depended on the preparation of the colloidal solution source and spraying conditions. The authors concentrated on finding operational conditions of the system that deposited thin films with reduced organics concentrations by examining the correlation between fast Fourier transform infrared absorption spectroscopy and photoluminescence intensity. The morphology of the deposited films was observed using an atomic force microscope.

  17. Control of defects and impurities in production of CdZnTe crystals by the Bridgman method

    SciTech Connect (OSTI)

    Glass, H.L.; Socha, A.J.; Bakken, D.W.; Speziale, V.M.; Flint, J.P.

    1998-12-31

    Cadmium zinc telluride crystals were grown by vertical Bridgman processes using in situ compounding from high purity elements into pyrolytic boron nitride crucibles within sealed fused quartz ampoules containing cadmium vapor at a pressure of roughly one atmosphere. These conditions produce material having the low etch pit density, low precipitate density, high infrared transmission and high purity required for use as substrates for infrared focal plane detector arrays fabricated in epitaxial mercury cadmium telluride. Similar processes should be satisfactory for producing cadmium zinc telluride for gamma ray detectors.

  18. Modification of solid state CdZnTe (CZT) radiation detectors with high sensitivity or high resolution operation

    DOE Patents [OSTI]

    Washington, II, Aaron L; Duff, Martine C; Teague, Lucile C; Burger, Arnold; Groza, Michael

    2014-11-11

    An apparatus and process is provided to illustrate the manipulation of the internal electric field of CZT using multiple wavelength light illumination on the crystal surface at RT. The control of the internal electric field is shown through the polarization in the IR transmission image under illumination as a result of the Pockels effect.

  19. OPTIMIZATION OF VIRTUAL FRISCH-GRID CdZnTe DETECTOR DESIGNS FOR IMAGING AND SPECTROSCOPY OF GAMMA RAYS.

    SciTech Connect (OSTI)

    BOLOTNIKOV,A.E.; ABDUL-JABBAR, N.M.; BABALOLA, S.; CAMARDA, G.S.; CUI, Y.; HOSSAIN, A.; JACKSON, E.; JACKSON, H.; JAMES, J.R.; LURYI, A.L.; JAMES, R.B.

    2007-08-21

    In the past, various virtual Frisch-grid designs have been proposed for cadmium zinc telluride (CZT) and other compound semiconductor detectors. These include three-terminal, semi-spherical, CAPture, Frisch-ring, capacitive Frisch-grid and pixel devices (along with their modifications). Among them, the Frisch-grid design employing a non-contacting ring extended over the entire side surfaces of parallelepiped-shaped CZT crystals is the most promising. The defect-free parallelepiped-shaped crystals with typical dimensions of 5x5{approx}12 mm3 are easy to produce and can be arranged into large arrays used for imaging and gamma-ray spectroscopy. In this paper, we report on further advances of the virtual Frisch-grid detector design for the parallelepiped-shaped CZT crystals. Both the experimental testing and modeling results are described.

  20. Air-gap gating of MgZnO/ZnO heterostructures

    SciTech Connect (OSTI)

    Tambo, T.; Falson, J. Kozuka, Y.; Maryenko, D.; Tsukazaki, A.; Kawasaki, M.

    2014-08-28

    The adaptation of air-gap dielectric based field-effect transistor technology to controlling the MgZnO/ZnO heterointerface confined two-dimensional electron system (2DES) is reported. We find it possible to tune the charge density of the 2DES via a gate electrode spatially separated from the heterostructure surface by a distance of 5??m. Under static gating, the observation of the quantum Hall effect suggests that the charge carrier density remains homogeneous, with the 2DES in the 3?mm square sample the sole conductor. The availability of this technology enables the exploration of the charge carrier density degree of freedom in the pristine sample limit.

  1. Copper migration in CdTe heterojunction solar cells

    SciTech Connect (OSTI)

    Chou, H.C.; Rohatgi, A.; Jokerst, N.M.; Thomas, E.W.; Kamra, S.

    1996-07-01

    CdTe solar cells were fabricated by depositing a Au/Cu contact with Cu thickness in the range of 50 to 150A on polycrystalline CdTe/CdS/SnO{sub 2} glass structures. The increase in Cu thickness improves ohmic contact and reduces series resistance (R{sub s}), but the excess Cu tends to diffuse into CdTe and lower shunt resistance (R{sub sh}) and cell performance. Light I-V and secondary ion mass spectroscopy (SIMS) measurements were performed to understand the correlations between the Cu contact thickness, the extent of Cu incorporation in the CdTe cells, and its impact on the cell performance. The CdTe/CdS/SnO{sub 2} glass, CdTe/CdS/GaAs, and CdTe/GaAs structures were prepared in an attempt to achieve CdTe films with different degrees of crystallinity and grain size. A large grain polycrystalline CdTe thin film solar cell was obtained for the first time by selective etching the GaAs substrate coupled with the film transfer onto a glass substrate. SIMS measurement showed that poor crystallinity and smaller grain size of the CdTe film promotes Cu diffusion and decreases the cell performance. Therefore, grain boundaries are the main conduits for Cu migration and larger CdTe grain size or alternate method of contact formation can mitigate the adverse effect of Cu and improve the cell performance. 15 refs., 1 fig.,6 tabs.

  2. Radiative lifetimes of zincblende CdSe/CdS quantum dots

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gong, Ke; Martin, James E.; Shea-Rohwer, Lauren E.; Lu, Ping; Kelley, David F.

    2015-01-02

    Recent synthetic advances have made available very monodisperse zincblende CdSe/CdS quantum dots having near-unity photoluminescence quantum yields. Because of the absence of nonradiative decay pathways, accurate values of the radiative lifetimes can be obtained from time-resolved PL measurements. Radiative lifetimes can also be obtained from the Einstein relations, using the static absorption spectra and the relative thermal populations in the angular momentum sublevels. We found that one of the inputs into these calculations is the shell thickness, and it is useful to be able to determine shell thickness from spectroscopic measurements. We use an empirically corrected effective mass model tomore » produce a “map” of exciton wavelength as a function of core size and shell thickness. These calculations use an elastic continuum model and the known lattice and elastic constants to include the effect of lattice strain on the band gap energy. The map is in agreement with the known CdSe sizing curve and with the shell thicknesses of zincblende core/shell particles obtained from TEM images. Furthermore, if selenium–sulfur diffusion is included and lattice strain is omitted from the calculation then the resulting map is appropriate for wurtzite CdSe/CdS quantum dots synthesized at high temperatures, and this map is very similar to one previously reported (J. Am. Chem. Soc. 2009, 131, 14299). Radiative lifetimes determined from time-resolved measurements are compared to values obtained from the Einstein relations, and found to be in excellent agreement. For a specific core size (2.64 nm diameter, in the present case), radiative lifetimes are found to decrease with increasing shell thickness. Thus, this is similar to the size dependence of one-component CdSe quantum dots and in contrast to the size dependence in type-II quantum dots.« less

  3. Radiative lifetimes of zincblende CdSe/CdS quantum dots

    SciTech Connect (OSTI)

    Gong, Ke; Martin, James E.; Shea-Rohwer, Lauren E.; Lu, Ping; Kelley, David F.

    2015-01-02

    Recent synthetic advances have made available very monodisperse zincblende CdSe/CdS quantum dots having near-unity photoluminescence quantum yields. Because of the absence of nonradiative decay pathways, accurate values of the radiative lifetimes can be obtained from time-resolved PL measurements. Radiative lifetimes can also be obtained from the Einstein relations, using the static absorption spectra and the relative thermal populations in the angular momentum sublevels. We found that one of the inputs into these calculations is the shell thickness, and it is useful to be able to determine shell thickness from spectroscopic measurements. We use an empirically corrected effective mass model to produce a “map” of exciton wavelength as a function of core size and shell thickness. These calculations use an elastic continuum model and the known lattice and elastic constants to include the effect of lattice strain on the band gap energy. The map is in agreement with the known CdSe sizing curve and with the shell thicknesses of zincblende core/shell particles obtained from TEM images. Furthermore, if selenium–sulfur diffusion is included and lattice strain is omitted from the calculation then the resulting map is appropriate for wurtzite CdSe/CdS quantum dots synthesized at high temperatures, and this map is very similar to one previously reported (J. Am. Chem. Soc. 2009, 131, 14299). Radiative lifetimes determined from time-resolved measurements are compared to values obtained from the Einstein relations, and found to be in excellent agreement. For a specific core size (2.64 nm diameter, in the present case), radiative lifetimes are found to decrease with increasing shell thickness. Thus, this is similar to the size dependence of one-component CdSe quantum dots and in contrast to the size dependence in type-II quantum dots.

  4. Electrodeposition of zinc on glassy carbon from ZnCl/sub 2/ and ZnBr/sub 2/ electrolytes

    SciTech Connect (OSTI)

    McBreen, J.; Gannon, E.

    1983-08-01

    The initial stages of the electrocrystallization of zinc from 3M ZnCl/sub 2/ and 3M ZnBr/sub 2/ on glassy carbon has been investigated using cyclic voltametry, the potential step method, and scanning electron microscopy. Particular care was taken to ensure electrolyte purity and to eliminate resistance effects in the measurements. The nucleation overvoltage in 3M ZnCl/sub 2/ was about 17 and about 12 mV in 3M ZnBr/sub 2/. In 3M ZnCl/sub 2/, the current transients from the potential step measurements could be fitted to a simple model that assumes instantaneous nucleation followed by growth of three dimensional centers under kinetic control. A similar mechanism is operative for 3M ZnBr/sub 2/ at low overvoltages. At higher overvoltages, the current transient is governed by mixed kinetic and diffusion control and cannot be fitted to a simple model. The lower nucleation overvoltage and the faster kinetics in 3M ZnBr/sub 2/ is correlated with the lower stability constants for the zinc bromide complexes. Erroneous results are obtained when resistance effects are not accounted for.

  5. CD-1, Approve Alternative Selection and Cost Range

    Office of Energy Efficiency and Renewable Energy (EERE)

    CD-1 approval marks the completion of the project definition phase and the conceptual design. This is an iterative process to define, analyze, and refine project concepts and alternatives. This process uses a systems engineering methodology that integrates requirements analysis, risk identification and analysis, acquisition strategies, and concept exploration in order to evolve a cost-effective, preferred solution to meet a mission need (refer to DOE G 413.3-1 for more information). The recommended alternative should provide the essential functions and capabilities at an optimum life-cycle cost, consistent with required cost, scope, schedule, performance, and risk considerations. It should be reflected in the site’s long-range planning documents as well. Approval of CD-1 provides the authorization to begin the project Execution Phase and allows PED funds to be used. The requirements needed to attain CD-1 are listed below. The cost range provided at CD-1 is the preliminary estimate for the selected alternative. As CD-1 progresses to CD-2, the TPC will be refined and the TPC established at CD-2 may be higher than the range defined at CD-1, in which case the PME must be notified. The CD-1 cost range is not the PB cost. The PB against which project success is measured will be established at CD-2. The only exception is when a construction budget request is submitted in advance of an approved CD-2. In this circumstance, refer to Appendix A, Paragraph 4.c.(2). If the top end of the original approved CD-1 cost range grows by more than 50% as the project proceeds toward CD-2, the Program, in coordination with the PME, must reassess the alternative selection process. Upon completing the review, the PME must approve a revised CD-1 identifying the new or reaffirmed selected alternative and an updated CD-1 cost range. This new CD-1 information, to include the new CD-1 cost range and CD-1 approval date, will be reflected within PARS II and all subsequent PDSs and similar

  6. Current enhancement of CdTe-based solar cells

    SciTech Connect (OSTI)

    Paudel, Naba R.; Poplawsky, Jonathan D.; More, Karren Leslie; Yan, Yanfa

    2015-07-30

    We report on the realization of CdTe solar cell photocurrent enhancement using an n-type CdSe heterojunction partner sputtered on commercial SnO2/SnO2:F coated soda-lime glass substrates. With high-temperature close-space sublimation CdTe deposition followed by CdCl2 activation, this thin-film stack allows for substantial interdiffusion at the CdSe/CdTe interface facilitating a CdSexTe1-x alloy formation. The bowing effect causes a reduced optical bandgap of the alloyed absorber layer and, therefore, leads to current enhancement in the long-wavelength region and a decrease in open-circuit voltage (VOC). To overcome the VOC loss and maintain a high short-circuit current (JSC), the CdTe cell configuration has been modified using combined CdS:O/CdSe window layers. The new device structure has demonstrated enhanced collection from both short-and long-wavelength regions as well as a VOC improvement. With an optimized synthesis process, a small-area cell using CdS:O/CdSe window layer showed an efficiency of 15.2% with a VOC of 831 mV, a JSC of 26.3 mA/cm2, and a fill factor of 69.5%, measured under an AM1.5 illumination without antireflection coating. Furthermore, the results provide new directions for further improvement of CdTe-based solar cells.

  7. Determination of the number density of excited and ground Zn atoms during rf magnetron sputtering of ZnO target

    SciTech Connect (OSTI)

    Maaloul, L.; Gangwar, R. K.; Stafford, L.

    2015-07-15

    A combination of optical absorption spectroscopy (OAS) and optical emission spectroscopy measurements was used to monitor the number density of Zn atoms in excited 4s4p ({sup 3}P{sub 2} and {sup 3}P{sub 0}) metastable states as well as in ground 4s{sup 2} ({sup 1}S{sub 0}) state in a 5 mTorr Ar radio-frequency (RF) magnetron sputtering plasma used for the deposition of ZnO-based thin films. OAS measurements revealed an increase by about one order of magnitude of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms by varying the self-bias voltage on the ZnO target from ?115 to ?300?V. Over the whole range of experimental conditions investigated, the triplet-to-singlet metastable density ratio was 5??1, which matches the statistical weight ratio of these states in Boltzmann equilibrium. Construction of a Boltzmann plot using all Zn I emission lines in the 200500?nm revealed a constant excitation temperature of 0.33??0.04?eV. In combination with measured populations of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms, this temperature was used to extrapolate the absolute number density of ground state Zn atoms. The results were found to be in excellent agreement with those obtained previously by actinometry on Zn atoms using Ar as the actinometer gas [L. Maaloul and L. Stafford, J. Vac. Sci. Technol., A 31, 061306 (2013)]. This set of data was then correlated to spectroscopic ellipsometry measurements of the deposition rate of Zn atoms on a Si substrate positioned at 12?cm away from the ZnO target. The deposition rate scaled linearly with the number density of Zn atoms. In sharp contrast with previous studies on RF magnetron sputtering of Cu targets, these findings indicate that metastable atoms play a negligible role on the plasma deposition dynamics of Zn-based coatings.

  8. Evolution of quasiparticle states with and without a Zn impurity...

    Office of Scientific and Technical Information (OSTI)

    Title: Evolution of quasiparticle states with and without a Zn impurity in doped 122 iron pnictides Authors: Pan, Lihua ; Li, Jian ; Tai, Yuan-Yen ; Graf, Matthias J. ; Zhu, ...

  9. Pressure-Induced Structural Transformations of ZnO Nanowires...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Pressure-Induced Structural Transformations of ZnO Nanowires Probed by X-ray Diffraction Citation Details In-Document Search Title: Pressure-Induced Structural ...

  10. Designing optical metamaterial with hyperbolic dispersion based on Al:ZnO/ZnO nano-layered structure using Atomic Layer Deposition technique

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba

    2016-04-07

    In this study, nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8more » μm wavelength.« less

  11. The role of intrahepatic CD3 +/CD4 −/CD8 − double negative T (DN T) cells in enhanced acetaminophen toxicity

    SciTech Connect (OSTI)

    Getachew, Yonas; Cusimano, Frank A.; James, Laura P.; Thiele, Dwain L.

    2014-10-15

    The role of the immune system, specifically NK, NKT and CD3 cells, in acetaminophen (APAP) induced liver injury remains inconsistently defined. In the present study, wild type (C57BL/6J) mice and granzyme B deficient (GrB −/−) mice were treated with acetaminophen to assess the role of the immune system in acute liver injury. Doses of acetaminophen that induced sub lethal liver injury in wild type mice unexpectedly produced fatal hepatotoxicity in granzyme B deficient (GrB −/−) mice. Analysis revealed that GrB −/− mice had an increased population of intrahepatic CD3 (+), CD4 (−), and CD8 (−) lymphocytes expressing the CD69 activation marker and Fas ligand. Depletion of these cells in the GrB −/− and wild type mice made them less susceptible to APAP injury, while depletion of NK1.1 (+) cells or both CD4 (+) and CD8 (+) T cells failed to provide the same hepatoprotection. Transfer of the GrB −/− IHLs further exacerbated liver injury and increased mortality in wild type mice but not in LRP/LPR mice, lacking fas expression. Conclusions: Acetaminophen toxicity is enhanced by the presence of activated, FasL expressing intrahepatic CD3 (+), CD4 (−), CD8 (−), NK1.1 (−) T cells. Depletion of these cells from GrB −/− mice and wild type mice greatly reduces mortality and improves the course of liver injury recovery. - Highlights: • Intrahepatic lymphocytes (IHLs) from GrB −/− mice harbor activated DNT cells. • IHLs from GrB −/− mice exhibit enhanced Fas ligand expression. • Acetaminophen toxicity is enhanced by activated, FasL expressing DNT cells.

  12. Development of CdS/CdTe Tin Film Devices for St. Gobain Coated Glass: Cooperative Research and Development Final Report, CRADA Number CRD-08-317

    SciTech Connect (OSTI)

    Gessert, T.

    2012-04-01

    Research performed at NREL to produce CdS/CdTe devices on St. Gobain coated-glass material to establish a baseline CdS/CdTe device process and determine baseline device performance parameters on St. Gobain material. Performance of these baseline devices compared to similar devices produced by applying the established baseline CdS/CdTe process on alternative St. Gobain coated-glass materials.

  13. The effects of fabrication temperature on current-voltage characteristics and energy efficiencies of quantum dot sensitized ZnOH-GO hybrid solar cells

    SciTech Connect (OSTI)

    Islam, S. M. Z.; Gayen, Taposh; Tint, Naing; Alfano, Robert; Shi, Lingyan; Seredych, Mykola; Bandosz, Teresa J.

    2014-11-07

    The effects of fabrication temperature are investigated on the performance of CdSe quantum dot (QD)-sensitized hybrid solar cells of the composite material of zinc (hydr)oxide (ZnOH-GO)with 2?wt.?% graphite oxide. The current-voltage (I-V) and photo-current measurements show that higher fabrication temperatures yield greater photovoltaic power conversion efficiencies that essentially indicate more efficient solar cells. Two Photon Fluorescence images show the effects of temperature on the internal morphologies of the solar devices based on such materials. The CdSe-QD sensitized ZnOH-GO hybrid solar cells fabricated at 450?C showing conversion of ?10.60% under a tungsten lamp (12.1 mW/cm{sup 2}) are reported here, while using potassium iodide as an electrolyte. The output photocurrent, I (?A) with input power, P (mW/cm{sup 2}) is found to be superlinear, showing a relation of I?=?P{sup n}, where n?=?1.4.

  14. High efficient ZnO nanowalnuts photocatalyst: A case study

    SciTech Connect (OSTI)

    Yan, Feng; Zhang, Siwen; Liu, Yang; Liu, Hongfeng; Qu, Fengyu; Cai, Xue; Wu, Xiang

    2014-11-15

    Highlights: • Walnut-like ZnO nanostructures are synthesized through a facile hydrothermal method. • Morphologies and microstructures of the as-obtained ZnO products were investigated. • The photocatalytic results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. - Abstract: Walnut-like ZnO nanostructures are successfully synthesized through a facile hydrothermal method. The structure and morphology of the as-synthesized products were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The photocatalytic properties of ZnO nanowalnuts are investigated by photodegradating several organic dyes, such as Congo red (CR), methyl orange (MO) and eosin red aqueous solutions under UV irradiation, respectively. The results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. In addition, eosin red and Congo red (CR) aqueous solution degradation experiments are also conducted in the same condition, respectively. It showed that ZnO nanowalnuts represent high photocatalytic activities with a degradation efficiency of 87% for CR with 115 min of irradiation and 97% for eosin red with 55 min of irradiation. The reported ZnO products may be promising candidates as the photocatalysts in waste water treatment.

  15. Synthesis, structural, optical and Raman studies of pure and lanthanum doped ZnSe nanoparticles

    SciTech Connect (OSTI)

    Kumar, Pushpendra; Singh, Jai; Pandey, Mukesh Kumar; Jeyanthi, C.E.; Siddheswaran, R.; Paulraj, M.; Hui, K.N.; Hui, K.S.

    2014-01-01

    Graphical abstract: - Highlights: • Template-free synthesis of ZnSe and ZnSe:La nanoparticles was developed at low temperature 100 °C. • Cubic ZnSe and ZnSe:La nanoparticles were obtained by chemical route. • As-synthesized ZnSe:La nanoparticles showed higher emission intensity than ZnSe nanoparticles. • Band gap (E{sub g}) of ZnSe nanoparticles was bigger than ZnSe nanoparticles due to nanosized effect. - Abstract: In this work, a simple, effective and reproducible chemical synthetic route for the production of high-quality, pure ZnSe nanoparticles (NPs), and lanthanum-doped ZnSe (ZnSe:La) NPs is presented. The wide bandgap, luminescent pure ZnSe and ZnSe:La NPs has been synthesized at a low temperature (100 °C) in a single template-free step. The size and optical bandgap of the NPs was analyzed from powder X-ray diffraction (XRD), UV–visible (UV–vis) spectroscopy, transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM). A broad photoluminescence (PL) emission across the visible spectrum has been demonstrated by a systematic blue-shift in emission due to the formation of small nanoparticles. Here, contribution to emission intensity from surface states of NPs increases with La doping. TEM data revealed that the average size of ZnSe and ZnSe:La NPs is 14 and 8 nm, respectively. On the other hand, band gap energy E{sub g} of ZnSe and ZnSe:La NPs were found to be 3.59 eV and 3.65 eV, respectively. Results showed that hydrazine hydrate played multiple roles in the formation of ZnSe and ZnSe:La NPs. A possible reaction mechanism for the growth of NPs is also discussed.

  16. Spray pyrolysis deposition of Cu-ZnO and Zn-SnO{sub 2} solar cells

    SciTech Connect (OSTI)

    Khelfane, A.; Tarzalt, H.; Sebboua, B.; Zerrouki, H.; Kesri, N.

    2015-12-31

    Large-gap metal oxides, such as titanium, tin, and zinc oxides, have attracted great interest because of their remarkable potential in dye-sensitized solar cells (DSSC) and their low cost and simple preparation procedure. In this work, we investigated several Zn-SnO{sub 2} and Cu-ZnO thin films that were sprayed under different experimental conditions. We varied [Zn/[Sn] and [Cu/[Zn] ratios, calculated on atomic percent in the starting solution. We report some structural results of the films using X-ray diffraction. Optical reflection and transmission spectra investigated by an UV/VIS/NIR spectrophotometer permit the determination of optical constants. The direct band gap was deduced from the photon energy dependence of the absorption coefficient.

  17. DOE CD-4 Review of the MINERvA Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE CD-4 Review of the MINERvA Project Main INjector ExpeRiment v-A May 12, 2010 | Overview | CD-4 Documentation| Other Documents| Overview of Charge and Experiment MINERvA Overview (2.2 MB pdf) Review Agenda (all times EDT) (pdf) Review Charge (pdf) Review Presentation by MINERvA Project (DRAFT until the week of May 12) (docdb page) Required CD-4 Documentation CD-4 Document Checklist (pdf) Technical Requirements Completion Document (pdf) Quality Assurance Plan (pdf) Safety Documentation Hazard

  18. Synthesis of reduced graphene oxide/ZnO nanorods composites on graphene coated PET flexible substrates

    SciTech Connect (OSTI)

    Huang, Lei, E-mail: leihuang@shnu.edu.cn; Guo, Guilue; Liu, Yang; Chang, Quanhong; Shi, Wangzhou

    2013-10-15

    Graphical abstract: - Highlights: ZnO nanorods synthesized on CVD-graphene and rGO surfaces, respectively. ZnO/CVD-graphene and ZnO/rGO form a distinctive porous 3D structure. rGO/ZnO nanostructures possibility in energy storage devices. - Abstract: In this work, reduced graphene oxide (rGO)/ZnO nanorods composites were synthesized on graphene coated PET flexible substrates. Both chemical vapor deposition (CVD) graphene and reduced graphene oxide (rGO) films were prepared following by hydrothermal growth of vertical aligned ZnO nanorods. Reduced graphene sheets were then spun coated on the ZnO materials to form a three dimensional (3D) porous nanostructure. The morphologies of the ZnO/CVD graphene and ZnO/rGO were investigated by SEM, which shows that the ZnO nanorods grown on rGO are larger in diameters and have lower density compared with those grown on CVD graphene substrate. As a result of fact, the rough surface of nano-scale ZnO on rGO film allows rGO droplets to seep into the large voids of ZnO nanorods, then to form the rGO/ZnO hierarchical structure. By comparison of the different results, we conclude that rGO/ZnO 3D nanostructure is more desirable for the application of energy storage devices.

  19. U.S. Team Green Building Challenge (CD-ROM)

    SciTech Connect (OSTI)

    Not Available

    2002-09-01

    Mini-CD with copies of U.S. Team materials handed out at the International Green Building Challenge conference in Oslo, Norway in September 2002. CD contents contains map of U.S., project brochures, project posters, and GBTool spreadsheets.

  20. Strain-dependent photoluminescence behavior in three geometries of CdSe/CdS nanocrystals

    SciTech Connect (OSTI)

    Choi, Charina L; Koski, Kristie J; Sivasankar, Sanjeevi; Alivisatos, A Paul

    2009-05-26

    In recent years, a new generation of quantum confined colloidal semiconductor structures has emerged, with more complex shapes than simple quantum dots1, 2. These include nanorods3 and tetrapods4. Beyond shape, it is also now possible to spatially vary the electron and hole potentials within these nanoparticles by varying the composition. Examples of these new structures include seeded dots, rods, and tetrapods, which contain a CdSe core embedded within a CdS shell5, 6. These structures may have many uses beyond those envisioned for simple quantum dots, which are frequently employed in luminescent applications7. This paper is concerned with changes in the optoelectronic properties of tetrapods when the arms are bent. We demonstrate that seeded tetrapods can serve as an optical strain gauge, capable of measuring forces on the order of nanonewtons. We anticipate that a nanocrystal strain gauge with optical readout will be useful for applications ranging from sensitive optomechanical devices to biological force investigations.

  1. Native defects in MBE-grown CdTe

    SciTech Connect (OSTI)

    Olender, Karolina; Wosinski, Tadeusz; Makosa, Andrzej; Tkaczyk, Zbigniew; Kolkovsky, Valery; Karczewski, Grzegorz

    2013-12-04

    Deep-level traps in both n- and p-type CdTe layers, grown by molecular-beam epitaxy on GaAs substrates, have been investigated by means of deep-level transient spectroscopy (DLTS). Four of the traps revealed in the DLTS spectra, which displayed exponential kinetics for capture of charge carriers into the trap states, have been assigned to native point defects: Cd interstitial, Cd vacancy, Te antisite defect and a complex formed of the Te antisite and Cd vacancy. Three further traps, displaying logarithmic capture kinetics, have been ascribed to electron states of treading dislocations generated at the mismatched interface with the substrate and propagated through the CdTe layer.

  2. Modeling Cd partitioning in oxic lake sediments and Cd concentrations in a freshwater bivalve

    SciTech Connect (OSTI)

    Tessier, A.

    1994-12-31

    The author measured cadmium concentrations in the biotic (soft tissues of a freshwater bivalve) and abiotic (oxic sediments and overlying water, diagenetic iron and manganese oxides) compartments of a large number of lakes. The lakes encompass a large range in pH and in Cd concentrations, and are distributed over a geographical area of about 350,000 km{sup 2}. The distribution of Cd between the sediments and the overlying water can be described by sorption to a limited number of sedimentary phases; apparent binding constants of Cd to these phases can be determined from in situ measurements. This approach is somewhat similar to that of ``Trace Metal Equilibrium Partitioning`` which has been considered by the US EPA for the development of sediment quality criteria. The author shows that the binding constants, together with the abundance of the sorbing phases, total sedimentary cadmium concentration and water pH, can be used to predict successfully cadmium accumulation in the freshwater bivalve.

  3. Synthesis, characterization and optical properties of hybrid PVAZnO nanocomposite: A composition dependent study

    SciTech Connect (OSTI)

    Hemalatha, K.S. [Department of Physics, Bangalore University, Bangalore 560 056, Karnataka (India); Department of Physics, Maharani's Science College for Women, Palace Road, Bangalore 560 001, Karnataka (India); Rukmani, K., E-mail: rukmani9909@yahoo.co.in [Department of Physics, Bangalore University, Bangalore 560 056, Karnataka (India); Suriyamurthy, N. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Nagabhushana, B.M. [Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore 560 054, Karnataka (India)

    2014-03-01

    Graphical abstract: - Highlights: ZnO nanoparticles were prepared by solution combustion method. PVAZnO nanocomposites were synthesized by solution casting method. Doped and undoped films were characterized using different techniques. Red shift in optical band gap was observed in Nanocomposite films with respect to nano ZnO. Photoluminescence intensity was found to be optimum for PVA10 mol% ZnO nanocomposite film. - Abstract: Nanocomposites of poly vinyl alcohol (PVA) and ZnO have been synthesized using the solution casting technique for different concentrations of nano ZnO powder prepared by low temperature solution combustion method. The formation of polymer nanocomposite and changes in the structural and micro structural properties of the materials were investigated by X-ray diffraction, Energy dispersive X ray spectroscopy and optical microscopy techniques (FTIR and UVVisible). The surface morphology of PVAZnO nanocomposite films were elucidated using Scanning Electron Microscopy. The optical absorption spectrum of nano ZnO shows blue shift in the optical band gap energy with respect to characteristic bulk ZnO at room temperature, whereas PVAZnO hybrid films show red shift with respect to nano ZnO. The photoluminescence studies show that the intensity of the blue emission (470 nm) varies with change in concentration of ZnO with an optimum intensity observed at 10 mol% of ZnO.

  4. The CD36, CLA-1(CD36L1), and LIMPII (CD36L2) gene family: Cellular distribution, chromosomal location, and genetic evolution

    SciTech Connect (OSTI)

    Calvo, D.; Vega, M.A.; Dopazo, J.

    1995-01-01

    CD36, CLA-1, and LIMPII are single polypeptide membrane glycoproteins, and the genes encoding them constitute a recently described gene family. In the present paper, a cDNA encoding the human lysosomal membrane protein LIMPII was used to determine its expression pattern in cells of various lineages. Like CLA-1, and in contrast with the restricted expression of CD36, the expression of LIMPII is widespread. Mapping of the human LIMPII and CLA-1 genes (gene symbols CD36L2 and CD36L1, respectively) to specific chromosomes revealed that CLA-1, LIMPII, and CD36 do not form a gene cluster, but are found dispersed on chromosomes 12, 4, and 7, respectively. These data, together with the phylogenetic analysis carried out for the members of this family, indicate that the LIMPII, CIA-1, and CD36 genes diverged early in evolution from an ancestor gene, possibly before the divergence between the arthropods and the vertebrates. 48 refs., 5 figs.

  5. Optical-Fiber-Based, Time-Resolved Photoluminescence Spectrometer for Thin-Film Absorber Characterization and Analysis of TRPL Data for CdS/CdTe Interface: Preprint

    SciTech Connect (OSTI)

    Kuciauskas, D.; Duenow, J. N.; Kanevce, A.; Li, J. V.; Young, M. R.; Dippo, P.; Levi, D. H.

    2012-06-01

    We describe the design of a time resolved photoluminescence (TRPL) spectrometer for rapid semiconductor absorber characterization. Simplicity and flexibility is achieved by using single optical fiber to deliver laser pulses and to collect photoluminescence. We apply TRPL for characterization of CdS/CdTe absorbers after deposition, CdCl2 treatment, Cu doping, and back contact formation. Data suggest this method could be applied in various stages of PV device processing. Finally, we show how to analyze TRPL data for CdS/CdTe absorbers by considering laser light absorption depth and intermixing at CdS/CdTe interface.

  6. APT mass spectrometry and SEM data for CdTe solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Chen; Paudel, Naba R.; Yan, Yanfa; Pennycook, Stephen J.; Poplawsky, Jonathan D.; Guo, Wei

    2016-03-16

    Atom probe tomography (APT) data acquired from a CAMECA LEAP 4000 XHR for the CdS/CdTe interface for a non-CdCl2 treated CdTe solar cell as well as the mass spectrum of an APT data set including a GB in a CdCl2-treated CdTe solar cell are presented. Scanning electron microscopy (SEM) data showing the evolution of sample preparation for APT and scanning transmission electron microscopy (STEM) electron beam induced current (EBIC) are also presented. As a result, these data show mass spectrometry peak decomposition of Cu and Te within an APT dataset, the CdS/CdTe interface of an untreated CdTe solar cell, preparationmore » of APT needles from the CdS/CdTe interface in superstrate grown CdTe solar cells, and the preparation of a cross-sectional STEM EBIC sample.« less

  7. High mobility ZnO nanowires for terahertz detection applications

    SciTech Connect (OSTI)

    Liu, Huiqiang; Peng, Rufang E-mail: chusheng@mail.sysu.edu.cn; Chu, Shijin; Chu, Sheng E-mail: chusheng@mail.sysu.edu.cn

    2014-07-28

    An oxide nanowire material was utilized for terahertz detection purpose. High quality ZnO nanowires were synthesized and field-effect transistors were fabricated. Electrical transport measurements demonstrated the nanowire with good transfer characteristics and fairly high electron mobility. It is shown that ZnO nanowires can be used as building blocks for the realization of terahertz detectors based on a one-dimensional plasmon detection configuration. Clear terahertz wave (∼0.3 THz) induced photovoltages were obtained at room temperature with varying incidence intensities. Further analysis showed that the terahertz photoresponse is closely related to the high electron mobility of the ZnO nanowire sample, which suggests that oxide nanoelectronics may find useful terahertz applications.

  8. Nitrogen is a deep acceptor in ZnO

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore » relative to the vacuum level.« less

  9. Process for fabricating ZnO-based varistors

    DOE Patents [OSTI]

    Lauf, Robert J.

    1985-01-01

    The invention is a process for producing ZnO-based varistors incorporating a metal oxide dopant. In one form, the invention comprises providing a varistor powder mix of colloidal particles of ZnO and metal-oxide dopants including Bi.sub.2 O.sub.3. The mix is hot-pressed to form a compact at temperatures below 850.degree. C. and under conditions effecting reduction of the ZnO to sub-stoichiometric oxide. This promotes densification while restricting liquid formation and grain growth. The compact then is heated under conditions restoring the zinc oxide to stoichiometric composition, thus improving the varistor properties of the compact. The process produces fine-grain varistors characterized by a high actual breakdown voltage and a high average breakdown voltage per individual grain boundary.

  10. Process for fabricating ZnO-based varistors

    DOE Patents [OSTI]

    Lauf, R.J.

    The invention is a process for producing ZnO-based varistors incorporating a metal oxide dopant. In one form, the invention comprises providing a varistor powder mix of colloidal particles of ZnO and metal-oxide dopants including Bi/sub 2/O/sub 3/. The mix is hot-pressed to form a compact at temperatures below 850/sup 0/C and under conditions effecting reduction of the ZnO to sub-stoichiometric oxide. This promotes densification while restricting liquid formation and grain growth. The compact then is heated under conditions restoring the zinc oxide to stoichiometric composition, thus improving the varistor properties of the compact. The process produces fine-grain varistors characterized by a high actual breakdown voltage and a high average breakdown voltage per individual grain boundary.

  11. Luminescent properties of solution-grown ZnO nanorods. (Journal...

    Office of Scientific and Technical Information (OSTI)

    Luminescent properties of solution-grown ZnO nanorods. Citation Details In-Document Search Title: Luminescent properties of solution-grown ZnO nanorods. The optical properties of ...

  12. Local structures of copper-doped ZnO films (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Local structures of copper-doped ZnO films Citation Details In-Document Search Title: Local structures of copper-doped ZnO films Authors: Ma, Q. ; Buchholz, D.B. ; Chang, R.P.H. ...

  13. One-step electrochemical synthesis of a grapheneZnO hybrid for improved photocatalytic activity

    SciTech Connect (OSTI)

    Wei, Ang; Xiong, Li; Sun, Li; Liu, Yanjun; Li, Weiwei; Lai, Wenyong; Liu, Xiangmei; Wang, Lianhui; Huang, Wei; Dong, Xiaochen

    2013-08-01

    Graphical abstract: - Highlights: GrapheneZnO hybrid was synthesized by one-step electrochemical deposition. GrapheneZnO hybrid presents a special structure and wide UVvis absorption spectra. GrapheneZnO hybrid exhibits an exceptionally higher photocatalytic activity for the degradation of dye methylene blue. - Abstract: A grapheneZnO (G-ZnO) hybrid was synthesized by one-step electrochemical deposition. During the formation of ZnO nanostructure by cathodic electrochemical deposition, the graphene oxide was electrochemically reduced to graphene simultaneously. Scanning electron microscope images, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectra, and UVvis absorption spectra indicate the resulting G-ZnO hybrid presents a special structure and wide UVvis absorption spectra. More importantly, it exhibits an exceptionally higher photocatalytic activity for the degradation of dye methylene blue than that of pure ZnO nanostructure under both ultraviolet and sunlight irradiation.

  14. Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping

    SciTech Connect (OSTI)

    Ahn, Kwang-Soon; Yan, Yanfa; Shet, Sudhakar; Deutsch, Todd; Turner, John; Al-Jassim, Mowafak

    2007-12-03

    We report on the crystallinity and photoelectrochemical (PEC) response of ZnO thin films codoped by Ga and N. The ZnO:(Ga,N) thin films were deposited by cosputtering at room temperature and followed by postannealing at 500 deg. C in air for 2 h. We found that ZnO:(Ga,N) thin films exhibited significantly enhanced crystallinity compared to ZnO doped solely with N at the same growth conditions. Furthermore, ZnO:(Ga,N) thin films exhibited enhanced N incorporation over ZnO doped solely with N at high temperatures. As a result, ZnO:(Ga,N) thin films achieved dramatically improved PEC response, compared to ZnO thin films doped solely with N at any conditions. Our results suggest a general way to improve PEC response for wide-band-gap oxides.

  15. A Reversible Structural Phase Transition in ZnV2O6 at High Pressures...

    Office of Scientific and Technical Information (OSTI)

    A Reversible Structural Phase Transition in ZnV2O6 at High Pressures Citation Details In-Document Search Title: A Reversible Structural Phase Transition in ZnV2O6 at High Pressures ...

  16. Phases in the Al-Yb-Zn system between 25 and 50 at% ytterbium...

    Office of Scientific and Technical Information (OSTI)

    the Al-Yb-Zn system between 25 and 50 at% ytterbium Citation Details In-Document Search Title: Phases in the Al-Yb-Zn system between 25 and 50 at% ytterbium Phases YbZnsub ...

  17. Classification of Lattice Defects in the Kesterite Cu2ZnSnS4...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers Citation Details In-Document Search Title: ...

  18. Structure of graphene oxide dispersed with ZnO nanoparticles

    SciTech Connect (OSTI)

    Yadav, Rishikesh Pandey, Devendra K.; Khare, P. S.

    2014-10-15

    Graphene has been proposed as a promising two-dimensional nanomaterial with outstanding electronic, optical, thermal and mechanical properties for many applications. In present work a process of dispersion of graphene oxide with ZnO nanoparticles in ethanol solution with different pH values, have been studied. Samples have been characterized by XRD, SEM, PL, UV-visible spectroscopy and particles size measurement. The results analysis indicates overall improved emission spectrum. It has been observed that the average diameter of RGO (Reduced Graphene Oxide) decreases in presence of ZnO nanoparticles from 3.8?m to 0.41?m.

  19. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    SciTech Connect (OSTI)

    Nandi, R. Mohan, S. Major, S. S.; Srinivasa, R. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology and vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.

  20. Pressure-dependent Optical Behaviors of Colloidal CdSe Nanoplatelets...

    Office of Scientific and Technical Information (OSTI)

    dependent Optical Behaviors of Colloidal CdSe Nanoplatelets Citation Details In-Document Search Title: Pressure-dependent Optical Behaviors of Colloidal CdSe Nanoplatelets Authors: ...

  1. Effect of Morphology of CdS thin film on the Photocatalytic Decomposition of Hydrogen Sulfide

    SciTech Connect (OSTI)

    Takahashi, A.; Ishiyama, T.; Takahashi, H.; Sato, Y.; Jeyadevan, B.; Tohji, K.

    2007-03-20

    Photocatalytic activity of the CdS thin film depended very much on the film density, adhesion between the CdS and substrate, and whether effective electron path existed or not. We have proposed the formation of a bridging layer of Cd metal to improve the film density, adhesivity and the electron conduction path. Here, we report the results of the study undertaken to develop CdS/Cd (dendrite)/Ti film with enhanced photocatalytic property to decompose hydrogen sulphide. CdS/Cd (dendrite)/Ti photocatalyst showed the highest photocatalytic activity and photocurrent, which was 1.4 times higher than the traditional CdS/Ti photocatalyst.

  2. 'Giant' multishell CdSe nanocrystal quantum dots with supporessed blinking: novel fluorescent probes for real-time detection of single-molecule events

    SciTech Connect (OSTI)

    Hollingsworth, Jennifer A; Vela, Javier; Htoon, Han; Klimov, Victor I; Casson, Amy R; Chen, Yongfen

    2009-01-01

    We reported for the first time that key nanocrystal quantum dot (NQD) optical properties-quantum yield, photobleaching and blinking-can be rendered independent ofNQD surface chemistry and environment by growth of a very thick, defect-free inorganic shell. Here, we show the precise shell-thickness dependence of these effects. We demonstrate that 'giant-shell' NQDs can be largely non-blinking for observation times as long as 54 minutes and lhat on-time fractions are independent of experimental time-resolution from 1-200 ms. These effects are primarily demonstrated on (CdSe)CdS (core)shell NQDs, but we also show that alloyed shells comprising Cd.Znl.'S and terminated with a non-cytotoxic ZnS layer exhibit similar properties. The mechanism for suppressed blinking and dramatically enhanced stability is attributed to both effective isolation of the NQD core excitonic wavefunction from the NQD surface, as well as a quasi-Type II electronic structure. The unusual electronic structure provides for effective spatial separation of the electron and hole into the shell and core, respectively, and, thereby, for reduced efficiencies in non-radiative Auger recombination.

  3. Gd{sup 3+} incorporated ZnO nanoparticles: A versatile material

    SciTech Connect (OSTI)

    Kumar, Surender Sahare, P.D.

    2014-03-01

    Graphical abstract: - Highlights: • Chemically synthesized Gd{sup 3+} doped ZnO nanoparticles. • The broad visible emission of the ZnO is dependent on the surface defects and can be tailored by Gd{sup 3+} doing. • PL and magnetic properties are modified by Gd{sup 3+} doping. • Photocatalysis experiment reveals that the ZnO: Gd{sup 3+} degrades the Rh B dye faster than the undoped ZnO. - Abstract: Gd{sup 3+} doped ZnO nanoparticles are synthesized by wet chemical route method and investigated through structural, optical, magnetic and photocatalytic properties. Transmission Electron Microscopy technique has been performed on undoped and Gd{sup 3+} doped ZnO nanoparticles. X-ray diffraction, X-ray photoelectron spectroscopy and Raman analyses are carried out in order to examine the desired phase formation and substitution of Gd{sup 3+} in the ZnO matrix. Gd{sup 3+} doped ZnO nanoparticles show enhanced photoluminescent and ferromagnetic properties as compared to undoped ZnO. The broad visible emission of ZnO is found to be largely dependent on the surface defects and these surface defects can be tailored by Gd{sup 3+} doping concentration. Furthermore, Gd{sup 3+} doped ZnO nanoparticles also show improved photocatalytic properties as compared with undoped ZnO nanoparticles under ultraviolet irradiation.

  4. Cu Migration in Polycrystalline CdTe Solar Cells

    SciTech Connect (OSTI)

    Guo, Da; Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Vasileska, Dragica; Ringhofer, Christian

    2014-03-12

    An impurity reaction-diffusion model is applied to Cu defects and related intrinsic defects in polycrystalline CdTe for a better understanding of Cu’s role in the cell level reliability of CdTe PV devices. The simulation yields transient Cu distributions in polycrystalline CdTe during solar cell processing and stressing. Preliminary results for Cu migration using available diffusivity and solubility data show that Cu accumulates near the back contact, a phenomena that is commonly observed in devices after back-contact processing or stress conditions.

  5. Process Development for High Voc CdTe Solar Cells

    SciTech Connect (OSTI)

    Ferekides, C. S.; Morel, D. L.

    2011-05-01

    This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project.

  6. Phase stability in the Cd-Mg system

    SciTech Connect (OSTI)

    Asta, M.; McCormack, R.; de Fontaine, D.

    1993-12-31

    This paper reports on results of a theoretical study of solid-state phase equilibria and short-range order in Cd-Mg alloys. Results of first-principles linear muffin-tin orbital method total-energy calculations for seven hcp-based superstructures have been combined with cluster-variation-method calculations of thermodynamic properties in order to compute the Cd-Mg phase diagram. Effect on the calculated phase diagram of contributions to the alloy free energy arising from atomic vibrations and structural relaxations are assessed using available experimental information for ordered and disordered alloys in the Cd-Mg system.

  7. Self-focused ZnO transducers for ultrasonic biomicroscopy

    SciTech Connect (OSTI)

    Cannata, J. M.; Williams, J. A.; Zhou, Q. F.; Sun, L.; Shung, K. K.; Yu, H.; Kim, E. S.

    2008-04-15

    A simple fabrication technique was developed to produce high frequency (100 MHz) self-focused single element transducers with sputtered zinc oxide (ZnO) crystal films. This technique requires the sputtering of a ZnO film directly onto a curved backing substrate. Transducers were fabricated by sputtering an 18 {mu}m thick ZnO layer on 2 mm diameter aluminum rods with ends shaped and polished to produce a 2 mm focus or f-number equal to one. The aluminum rod served a dual purpose as the backing layer and positive electrode for the resultant transducers. A 4 {mu}m Parylene matching layer was deposited on the transducers after housing and interconnect. This matching layer was used to protect the substrate and condition the transfer of acoustic energy between the ZnO film and the load medium. The pulse-echo response for a representative transducer was centered at 101 MHz with a -6 dB bandwidth of 49%. The measured two way insertion loss was 44 dB. A tungsten wire phantom and an adult zebrafish eye were imaged to show the capability of these transducers.

  8. Photoinduced reduction of surface states in Fe:ZnO

    SciTech Connect (OSTI)

    Knut, R. Palmgren, P.; Karis, O.; Lagerqvist, U.; Pohl, A.; Pal, P.; Svedlindh, P.

    2015-05-28

    We report on the electronic structure of nano-crystalline Fe:ZnO, which has recently been found to be an efficient photocatalyst. Using resonant photoemission spectroscopy, we determine the binding energy of Fe 3d states corresponding to different valencies and coordination of the Fe atoms. The photo-activity of ZnO reduces Fe from 3+ to 2+ in the surface region of the nano-crystalline material due to the formation of oxygen vacancies. Electronic states corresponding to low-spin Fe{sup 2+} are observed and attributed to crystal field modification at the surface. These states are potentially important for the photocatalytic sensitivity to visible light due to their location deep in the ZnO bandgap. X-ray absorption and x-ray photoemission spectroscopy suggest that Fe is only homogeneously distributed for concentrations up to 3%. Increased concentrations does not result in a higher concentration of Fe ions in the surface region. This is limiting the photocatalytic functionality of ZnO, where the most efficient Fe doping concentration has been shown to be 1%-4%.

  9. Modeling Copper Diffusion in Polycrystalline CdTe Solar Cells

    SciTech Connect (OSTI)

    Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Guo, Da; Vasileska, Dragica; Ringhofer, Christain

    2014-06-06

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystalline, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately

  10. Extracting Cu Diffusion Parameters in Polycrystalline CdTe

    SciTech Connect (OSTI)

    Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Guo, Da; Dragica, Vasileska; Ringhofer, Christian

    2014-06-13

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystal-line, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately.