National Library of Energy BETA

Sample records for review application materials

  1. Supercapacitors specialities - Materials review

    SciTech Connect (OSTI)

    Obreja, Vasile V. N.

    2014-06-16

    The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes

  2. Materials Physics and Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MPA Materials Physics and Applications We develop new technologies that solve pressing national energy and security challenges by exploring and exploiting materials and their properties; developing practical applications of materials, and providing world-class user facilities. Contact Us Division Leader Tanja Pietrass Email Deputy Division Leader Rick Martineau Email Chief of Staff Jeff Willis Email Division Office (505) 665-1131 Materials Physics Applications Division Materials Physics and

  3. Packaging - Materials review

    SciTech Connect (OSTI)

    Herrmann, Matthias

    2014-06-16

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device

  4. Materials Science Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Materials Science Applications VASP VASP is a plane wave ab initio code for quantum mechanical molecular dynamics. It is highly scalable and shows very good parallel performance for a variety of chemical and materials science calculations. VASP is available to NERSC users who already have a VASP license. Read More » Quantum ESPRESSO/PWscf Quantum Espresso is an integrated suite of computer codes for electronic structure calculations and materials modeling at the nanoscale. It builds on

  5. Cathode materials review

    SciTech Connect (OSTI)

    Daniel, Claus Mohanty, Debasish Li, Jianlin Wood, David L.

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  6. 2014 Annual Merit Review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Results Report - Materials Technologies: Propulsion Materials 2014 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials Merit review of DOE ...

  7. 2012 Annual Merit Review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies: Propulsion Materials 2012 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials Merit review of DOE Vehicle Technologies research ...

  8. 2013 Annual Merit Review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies: Propulsion Materials 2013 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials Merit review of DOE Vehicle Technologies research ...

  9. 2011 Annual Merit Review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies: Propulsion Materials 2011 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials Merit review of DOE Vehicle Technologies research ...

  10. 2014 Annual Merit Review Results Report - Materials Technologies:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propulsion Materials | Department of Energy Review Results Report - Materials Technologies: Propulsion Materials 2014 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials Merit review of DOE Vehicle Technologies research activities 2014_amr_07.pdf (3.63 MB) More Documents & Publications 2013 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials 2014 Annual Merit review Results Report - Materials Technologies 2013

  11. 2014 Annual Merit review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    review Results Report - Materials Technologies 2014 Annual Merit review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities ...

  12. Materials Science Application Training 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Materials Science Application Training 2015 NERSC will present an one-hour online training class focused on Materials Science applications, VASP and Quantum Espresso on June 5, 2015, Friday, from 10:00-11:00 PDT. This training class will be provided by NERSC consultants, Jack Deslippe and Zhengji Zhao. The targeted audience will be new to intermediate NERSC users who use the pre-installed VASP and QE at NERSC. The class will address the frequently asked questions and common problems that users

  13. Materials Science Application Training 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Materials Science Application Training 2016 June 3, 2016 NERSC will present an one-hour online training class focused on Materials Science applications, VASP and Quantum Espresso on June 10, 2016, Friday, from 10:00-11:00 PDT. This training class will be provided by NERSC staff, Taylor Barnes and Zhengji Zhao. The targeted audience will be new to intermediate NERSC users who use the pre-installed VASP and QE at NERSC. The class will address the frequently asked questions and common problems

  14. MPA, Materials Physics and Applications (Technical Report) |...

    Office of Scientific and Technical Information (OSTI)

    MPA, Materials Physics and Applications Citation Details In-Document Search Title: MPA, Materials Physics and Applications Authors: Kippen, Karen Elizabeth 1 + Show Author...

  15. Waste Package Materials Performance Peer Review

    Broader source: Energy.gov [DOE]

    A consensus peer review of the current technical basis and the planned experimental and modeling program for the prediction of the long-term performance of waste package materials being considered...

  16. Transmission Reliability Peer Review Materials Now Available

    Broader source: Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability held a peer review of the Transmission Reliability Program on June 10-11, 2015, in Washington, DC. Materials including the agenda and presentations are now available for download.

  17. Materials Databases Infrastructure Constructed by First Principles Calculations: A Review

    SciTech Connect (OSTI)

    Lin, Lianshan

    2015-10-13

    The First Principles calculations, especially the calculation based on High-Throughput Density Functional Theory, have been widely accepted as the major tools in atom scale materials design. The emerging super computers, along with the powerful First Principles calculations, have accumulated hundreds of thousands of crystal and compound records. The exponential growing of computational materials information urges the development of the materials databases, which not only provide unlimited storage for the daily increasing data, but still keep the efficiency in data storage, management, query, presentation and manipulation. This review covers the most cutting edge materials databases in materials design, and their hot applications such as in fuel cells. By comparing the advantages and drawbacks of these high-throughput First Principles materials databases, the optimized computational framework can be identified to fit the needs of fuel cell applications. The further development of high-throughput DFT materials database, which in essence accelerates the materials innovation, is discussed in the summary as well.

  18. 2013 Annual Merit Review Results Report - Materials Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technologies 2013 Annual Merit Review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities 2013_amr_06.pdf (4.04 MB) More Documents & Publications 2014 Annual Merit review Results Report - Materials Technologies 2012 Annual Merit Review Results Report - Materials Technologies 2014 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials

  19. Program Evaluation: Materials for Reviewers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials for Reviewers Program Evaluation: Materials for Reviewers So that the peer review is fair, credible, useful, and cost effective, the review leader should provide adequate and timely preparation materials to the peer review panel (via the panel chair) and to the presenters. Preparation materials need to be relevant to the objectives and review criteria. Within these materials there should not only be the relevant project-specific technical materials but also clear information about the

  20. 2011 Annual Merit Review Results Report - Materials Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technologies 2011 Annual Merit Review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities 2011_amr_06.pdf (5.51 MB) More Documents & Publications 2012 Annual Merit Review Results Report - Materials Technologies 2010 DOE EERE Vehicle Technologies Program Merit Review - Lightweight Materials 2008 Annual Merit Review Results Summary - 11. Lightweight Materials

  1. 2012 Annual Merit Review Results Report - Materials Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technologies 2012 Annual Merit Review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities 2012_amr_06.pdf (5.04 MB) More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Lightweight Materials 2011 Annual Merit Review Results Report - Materials Technologies 2010 DOE EERE Vehicle Technologies Program Merit Review - Lightweight Materials

  2. 2014 Annual Merit review Results Report - Materials Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy review Results Report - Materials Technologies 2014 Annual Merit review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities 2014_amr_06.pdf (4.15 MB) More Documents & Publications 2013 Annual Merit Review Results Report - Materials Technologies 2012 Annual Merit Review Results Report - Materials Technologies 2011

  3. 2008 Annual Merit Review Results Summary - 11. Lightweight Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1. Lightweight Materials 2008 Annual Merit Review Results Summary - 11. Lightweight Materials DOE Vehicle Technologies Annual Merit Review 2008meritreview11.pdf (3.67 MB) More ...

  4. 2008 Annual Merit Review Results Summary - 12. Propulsion Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. Propulsion Materials 2008 Annual Merit Review Results Summary - 12. Propulsion Materials DOE Vehicle Technologies Annual Merit Review 2008meritreview12.pdf (2.52 MB) More ...

  5. Review of hydrogen isotope permeability through materials (Technical...

    Office of Scientific and Technical Information (OSTI)

    Review of hydrogen isotope permeability through materials Citation Details In-Document Search Title: Review of hydrogen isotope permeability through materials You are accessing ...

  6. 2012 Annual Merit Review Results Report - Materials Technologies:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propulsion Materials | Department of Energy Technologies: Propulsion Materials 2012 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials Merit review of DOE Vehicle Technologies research activities 2012_amr_07.pdf (2.32 MB) More Documents & Publications 2011 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials 2010 DOE EERE Vehicle Technologies Program Merit Review - Propulsion Materials 2012 Annual Merit Review Results Report -

  7. Space Reflector Materials for Prometheus Application

    SciTech Connect (OSTI)

    J. Nash; V. Munne; LL Stimely

    2006-01-31

    The two materials studied in depth which appear to have the most promise in a Prometheus reflector application are beryllium (Be) and beryllium oxide (BeO). Three additional materials, magnesium oxide (MgO), alumina (Al{sub 2}O{sub 3}), and magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) were also recently identified to be of potential interest, and may have promise in a Prometheus application as well, but are expected to be somewhat higher mass than either a Be or BeO based reflector. Literature review and analysis indicates that material properties for Be are largely known, but there are gaps in the properties of Be0 relative to the operating conditions for a Prometheus application. A detailed preconceptual design information document was issued providing material properties for both materials (Reference (a)). Beryllium oxide specimens were planned to be irradiated in the JOY0 Japanese test reactor to partially fill the material property gaps, but more testing in the High Flux Isotope Reactor (HFIR) test reactor at Oak Ridge National Laboratory (ORNL) was expected to be needed. A key issue identified for BeO was obtaining material for irradiation testing with an average grain size of {approx}5 micrometers, reminiscent of material for which prior irradiation test results were promising. Current commercially available material has an average grain size of {approx}10 micrometers. The literature indicated that improved irradiation performance could be expected (e.g., reduced irradiation-induced swelling) with the finer grain size material. Confirmation of these results would allow the use of historic irradiated materials test results from the literature, reducing the extent of required testing and therefore the cost of using this material. Environmental, safety and health (ES&H) concerns associated with manufacturing are significant but manageable for Be and BeO. Although particulate-generating operations (e.g., machining, grinding, etc.) involving Be

  8. NREL: Photovoltaics Research - Materials Applications and Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about the scientists specializing in each area of PV research: National Center for Photovoltaics research staff Materials Applications and Performance research staff Materials...

  9. 2013 Annual Merit Review Results Report - Materials Technologies:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propulsion Materials | Department of Energy Technologies: Propulsion Materials 2013 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials Merit review of DOE Vehicle Technologies research activities 2013_amr_07.pdf (2.5 MB) More Documents & Publications 2014 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials 2013 Annual Merit Review Results Report - Vehicle Analysis DOE Vehicle Technologies Program 2009 Merit Review Report -

  10. Superconducting materials for large scale applications

    SciTech Connect (OSTI)

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  11. Review of activities in USA on HTS materials

    SciTech Connect (OSTI)

    Peterson, D.E.

    1995-02-01

    Rapid progress in attaining practical applications of High Temperature Superconductors (HTS) has been made since the discovery of these new materials. Many critical parameters influencing HTS powder synthesis and wire processing have been identified through a combination of fundamental exploration and applied research. The complexity of these novel materials with regard to phase behavior and physical properties has become evident as a result of these careful studies. Achieving optimal mechanical and superconducting properties in wires and tapes will require further understanding and synergy among several different technical disciplines. Highlights of efforts towards producing practical superconductors for electric power applications based on rare earth-, bismuth-, and thallium-based systems are reviewed.

  12. 2011 Annual Merit Review Results Report - Materials Technologies:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propulsion Materials | Department of Energy Technologies: Propulsion Materials 2011 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials Merit review of DOE Vehicle Technologies research activities 2011_amr_07.pdf (7.01 MB) More Documents & Publications 2010 DOE EERE Vehicle Technologies Program Merit Review - Fuels Technologies 2010 DOE EERE Vehicle Technologies Program Merit Review - Propulsion Materials 2011 Annual Merit Review Results Report - Hybrid and

  13. Quantum and Dirac Materials for Energy Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum and Dirac Materials Conference Quantum and Dirac Materials for Energy (QDM) Applications The purpose of the workshop is to discuss current status and future prospects for the quantum materials and Dirac materials for energy and information technology applications using recent advances in synthesis, characterization and modeling. Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for

  14. 2011 Annual Merit Review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies 2011 Annual Merit Review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities 2011amr06.pdf (5.51 MB) More Documents ...

  15. 2013 Annual Merit Review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies 2013 Annual Merit Review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities 2013amr06.pdf (4.04 MB) More Documents ...

  16. 2012 Annual Merit Review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies 2012 Annual Merit Review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities 2012amr06.pdf (5.04 MB) More Documents ...

  17. Materials Databases Infrastructure Constructed by First Principles Calculations: A Review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Lianshan

    2015-10-13

    The First Principles calculations, especially the calculation based on High-Throughput Density Functional Theory, have been widely accepted as the major tools in atom scale materials design. The emerging super computers, along with the powerful First Principles calculations, have accumulated hundreds of thousands of crystal and compound records. The exponential growing of computational materials information urges the development of the materials databases, which not only provide unlimited storage for the daily increasing data, but still keep the efficiency in data storage, management, query, presentation and manipulation. This review covers the most cutting edge materials databases in materials design, and their hotmore » applications such as in fuel cells. By comparing the advantages and drawbacks of these high-throughput First Principles materials databases, the optimized computational framework can be identified to fit the needs of fuel cell applications. The further development of high-throughput DFT materials database, which in essence accelerates the materials innovation, is discussed in the summary as well.« less

  18. Introduction to Chemistry and Material Sciences Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intro Chem and MatSci Apps Introduction to Chemistry and Material Sciences Applications June 26, 2012 Last edited: 2016-04-29 11:34:4

  19. Introduction to Chemistry and Material Sciences Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intro Chem and MatSci Apps Introduction to Chemistry and Material Sciences Applications June 26, 2012 Last edited: 2016-04-29 11:34:4

  20. Transmission Reliability "Load as a Resource" Peer Review Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Load as a Resource" Peer Review Materials Now Available Transmission Reliability "Load as a Resource" Peer Review Materials Now Available September 25, 2014 - 11:43am Addthis OE's...

  1. 2008 Annual Merit Review Results Summary - 11. Lightweight Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1. Lightweight Materials 2008 Annual Merit Review Results Summary - 11. Lightweight Materials DOE Vehicle Technologies Annual Merit Review 2008_merit_review_11.pdf (3.67 MB) More Documents & Publications 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation 2008 Annual Merit Review Results Summary - 6. Solid State Energy Conversion

  2. 2008 Annual Merit Review Results Summary - 12. Propulsion Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2. Propulsion Materials 2008 Annual Merit Review Results Summary - 12. Propulsion Materials DOE Vehicle Technologies Annual Merit Review 2008_merit_review_12.pdf (2.52 MB) More Documents & Publications 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics 2008 Annual Merit Review Results Summary - 13. Health Impacts

  3. Vehicle Technologies Office Merit Review 2015: Enabling High-Energy/Voltage Lithium-Ion Cells for Transportation Applications: Part 2 Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about enabling high...

  4. Comparison of ferrite materials for pulse applications

    SciTech Connect (OSTI)

    Dinkel, J.A.; Jensen, C.C.

    1993-06-01

    Materials are the limiting factor in many pulse power projects. The magnetic materials available from several manufacturers were experimentally compared for their usefulness in high speed magnetic field applications. This particular application is a high speed kicker magnet for manipulation of a charged particle beam.

  5. 2012 Advanced Applications Research & Development Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Method - Yuri Makarov, PNNL PDF icon 2012 Advanced Applications R&D Peer Review - Modal Analysis for Grid Operations (MANGO) - Henry Huang, PNNL PDF icon 2012 Advanced ...

  6. Colorado - Access Permit Application File Review Checklist |...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Colorado - Access Permit Application File Review Checklist Author Colorado Department of Transportation...

  7. Material review of Li ion battery separators

    SciTech Connect (OSTI)

    Weber, Christoph J. Geiger, Sigrid; Falusi, Sandra; Roth, Michael

    2014-06-16

    Separators for Li Ion batteries have a strong impact on cell production, cell performance, life, as well as reliability and safety. The separator market volume is about 500 million m{sup 2} mainly based on consumer applications. It is expected to grow strongly over the next decade for mobile and stationary applications using large cells. At present, the market is essentially served by polyolefine membranes. Such membranes have some technological limitations, such as wettability, porosity, penetration resistance, shrinkage and meltdown. The development of a cell failure due to internal short circuit is potentially closely related to separator material properties. Consequently, advanced separators became an intense area of worldwide research and development activity in academia and industry. New separator technologies are being developed especially to address safety and reliability related property improvements.

  8. 2012 Advanced Applications Research & Development Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid PMU Data - Ning Zhou, PNNL (1.23 MB) 2012 Advanced Applications R&D Peer Review - IEEE-IEC Harmonization - Ken Martin, EPG (1.51 MB) 2012 Advanced Applications R&D Peer ...

  9. Nanomaterials for Hydrogen Storage Applications: A Review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Niemann, Michael U.; Srinivasan, Sesha S.; Phani, Ayala R.; Kumar, Ashok; Goswami, D. Yogi; Stefanakos, Elias K.

    2008-01-01

    Nmore » anomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices.anostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS 2 / MoS 2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc.) and their hydrogen storage characteristics are outlined.« less

  10. Vehicle Technologies Office Merit Review 2016: Enabling High-Energy, High-Voltage Li-Ion Cells for Transportation Applications: Materials Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  11. First-principles modeling of materials for nuclear energy applications

    SciTech Connect (OSTI)

    Dmitriev, Andrey I. Nikonov, Anton Yu.; Ponomareva, Alena V.; Abrikosov, Igor A.; Barannikova, Svetlana A.

    2014-11-14

    We discuss recent developments in the field of ab initio electronic structure theory and its use for studies of materials for nuclear energy applications. We review state-of-the-art simulation methods that allow for an efficient treatment of effects due to chemical and magnetic disorder, and illustrate their predictive power with examples of two materials systems, Fe-Cr-Ni alloys and Zr-Nb alloys.

  12. Vehicle Technologies Office Merit Review 2015: Lightweight Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview | Department of Energy Lightweight Materials Overview Vehicle Technologies Office Merit Review 2015: Lightweight Materials Overview Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lightweight materials overview. lm999_joost_2015_o.pdf (3.16 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Overview of VTO Material

  13. Vehicle Technologies Office Merit Review 2014: Tailored Materials for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Internal Combustion Engine Efficiency | Department of Energy Tailored Materials for Improved Internal Combustion Engine Efficiency Vehicle Technologies Office Merit Review 2014: Tailored Materials for Improved Internal Combustion Engine Efficiency Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about tailored materials for improved internal

  14. Bioinspired Nanoscale Materials for Biomedical and Energy Applications

    SciTech Connect (OSTI)

    Bhattacharya, Priyanka; Du, Dan; Lin, Yuehe

    2014-05-01

    The demand of green, affordable and environmentally sustainable materials has encouraged scientists in different fields to draw inspiration from nature in developing materials with unique properties such as miniaturization, hierarchical organization, and adaptability. Together with the exceptional properties of nanomaterials, over the past century, the field of bioinspired nanomaterials has taken huge leaps. While on one hand, the sophistication of hierarchical structures endow biological systems with multifunctionality, the synthetic control on the creation of nanomaterials enables the design of materials with specific functionalities. The aim of this review is to provide a comprehensive, up-to-date overview of the field of bioinspired nanomaterials, which we have broadly categorized into biotemplates and biomimics. We will discuss the application of bioinspired nanomaterials as biotemplates in catalysis, nanomedicine, immunoassays and in energy, drawing attention to novel materials such as protein cages. Further, the applications of bioinspired materials in tissue engineering and biomineralization will also be discussed.

  15. Friction of Materials for Automotive Applications

    SciTech Connect (OSTI)

    Blau, Peter Julian

    2013-01-01

    This brief overview of friction-related issues in materials for automobiles is invited for a special issue on automotive materials in the ASM journal AM&P. It describes a range of areas in a ground vehicle in which friction must be controlled or minimized. Applications range from piston rings to tires, and from brakes to fuel injector components. A perspective on new materials and lubricants, and the need for validation testing is presented.

  16. Accelerated Aging of Roofing Materials - 2013 BTO Peer Review | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Accelerated Aging of Roofing Materials - 2013 BTO Peer Review Accelerated Aging of Roofing Materials - 2013 BTO Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review emrgtech24_destaillats_040413.pdf (1.02 MB) More Documents & Publications Accelerated Aging of Roofing Materials Stay-Clean and Durable White Elastomeric Roof Coatings New Cool Roof Coatings and Affordable Cool Color Asphalt

  17. Vehicle Technologies Office Merit Review 2015: Overview of VTO Material

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Material Technologies Vehicle Technologies Office Merit Review 2015: Overview of VTO Material Technologies Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about overview of VTO Material Technologies. lm000_joost_2015_o.pdf (3.21 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Overview of VTO

  18. Vehicle Technologies Office Merit Review 2014: Tailored Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Tailored Materials for Improved ... at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit ...

  19. Vehicle Technologies Office Merit Review 2014: Multi-Material...

    Energy Savers [EERE]

    Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies ...

  20. Slice Product Review Meeting Materials (rd/meetings)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slice Product Review Meeting Materials (updated January 31, 2006) September 15, 2005 - Kick-off Meeting September 9 Announcement Letter (PDF, 1 page, 30 KB, posted September 9,...

  1. Vehicle Technologies Office Merit Review 2015: Materials Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High Power Battery Exceeding PHEV-40 Requirements Vehicle Technologies Office Merit Review 2015: Materials Development for High Energy High Power Battery Exceeding PHEV-40 ...

  2. Vehicle Technologies Office Merit Review 2015: Multi-Material...

    Energy Savers [EERE]

    Vehicle Technologies Office Merit Review 2015: Multi-Material Lightweight Vehicles Presentation given by VEHMA at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies ...

  3. Vehicle Technologies Office Merit Review 2014: Multi-Material...

    Energy Savers [EERE]

    Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles: Mach II Design Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and ...

  4. Vehicle Technologies Office Merit Review 2014: Novel Anode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Vehicle Technologies Office Merit Review 2014: First Principles Calculations and NMR Spectroscopy of Electrode Materials Vehicle Technologies Office ...

  5. Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles | Department of Energy Multi-Material Lightweight Vehicles Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles. lm072_skszek_2014_o.pdf (1.89 MB) More Documents & Publications Multi-Material Lightweight Prototype Vehicle Vehicle Technologies Office Merit

  6. New Composite Thermoelectric Materials for Macro-size Applications

    ScienceCinema (OSTI)

    Dresselhaus, Mildred [MIT, Cambridge, Massachusetts, United States

    2010-01-08

    A review will be given of several important recent advances in both thermoelectrics research and industrial thermoelectric applications, which have attracted much attention, increasing incentives for developing advanced materials appropriate for large-scale applications of thermoelectric devices. One promising strategy is the development of materials with a dense packing of random nanostructures as a route for the sacle-up of thermoelectrics applications. The concepts involved in designing composite materials containing nanostructures for thermoelectric applications will be discussed in general terms. Specific application is made to the Bi{sub 2}Te{sub 3} nanocomposite system for use in power generation. Also emphasized are the scientific advantages of the nanocomposite approach for the simultaneous increase in the power factor and decrease of the thermal conductivity, along with the practical advantages of having bulk samples for property measurements and device applications. A straightforward path is identified for the scale-up of thermoelectric materials synthesis containing nanostructured constituents for use in thermoelectric applications. We end with some vision of where the field of thermoelectrics is now heading.

  7. Training April 5 - Material Science and Chemistry Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 5 Training April 5 - Material Science and Chemistry Applications March 9, 2011 by Francesca Verdier Training on "Using Chemistry and Material Sciences Applications" will be ...

  8. June 26 Training: Using Chemistry and Material Sciences Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 26 Training: Using Chemistry and Material Sciences Applications June 26 Training: Using Chemistry and Material Sciences Applications June 15, 2012 by Francesca Verdier NERSC ...

  9. Lignin Based Carbon Materials for Energy Storage Applications...

    Office of Scientific and Technical Information (OSTI)

    Book: Lignin Based Carbon Materials for Energy Storage Applications Citation Details In-Document Search Title: Lignin Based Carbon Materials for Energy Storage Applications The ...

  10. Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications 2004 Diesel Engine Emissions Reduction ...

  11. Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles: Mach II Design | Department of Energy Multi-Material Lightweight Vehicles: Mach II Design Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles: Mach II Design Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles: Mach II design. lm088_skszek_2014_o.pdf (2.33 MB) More Documents & Publications Vehicle

  12. Vehicle Technologies Office Merit Review 2015: Materials Development for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Energy High Power Battery Exceeding PHEV-40 Requirements | Department of Energy Materials Development for High Energy High Power Battery Exceeding PHEV-40 Requirements Vehicle Technologies Office Merit Review 2015: Materials Development for High Energy High Power Battery Exceeding PHEV-40 Requirements Presentation given by TIAX LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about materials development for

  13. A review of metasurfaces: Physics and applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Hou -Tong; Taylor, Antoinette J.; Yu, Nanfang

    2016-06-16

    Metamaterials are composed of periodic subwavelength metal/dielectric structures that resonantly couple to the electric and/or magnetic components of the incident electromagnetic fields, exhibiting properties that are not found in nature. This class of micro- and nano-structured artificial media have attracted great interest during the past 15 years and yielded ground-breaking electromagnetic and photonic phenomena. However, the high losses and strong dispersion associated with the resonant responses and the use of metallic structures, as well as the difficulty in fabricating the micro- and nanoscale 3D structures, have hindered practical applications of metamaterials. Planar metamaterials with subwavelength thickness, or metasurfaces, consisting ofmore » single-layer or few-layer stacks of planar structures, can be readily fabricated using lithography and nanoprinting methods, and the ultrathin thickness in the wave propagation direction can greatly suppress the undesirable losses. Metasurfaces enable a spatially varying optical response (e.g. scattering amplitude, phase, and polarization), mold optical wavefronts into shapes that can be designed at will, and facilitate the integration of functional materials to accomplish active control and greatly enhanced nonlinear response. This paper reviews recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible. We provide an overview of key metasurface concepts such as anomalous reflection and refraction, and introduce metasurfaces based on the Pancharatnam–Berry phase and Huygens' metasurfaces, as well as their use in wavefront shaping and beam forming applications, followed by a discussion of polarization conversion in few-layer metasurfaces and their related properties. An overview of dielectric metasurfaces reveals their ability to realize unique functionalities coupled with Mie resonances and their low ohmic losses. In addition, we also describe metasurfaces for

  14. Energy Storage Systems 2007 Peer Review- Utility & Commercial Applications Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Utility and commercial application project presentations from the 2007 Energy Storage Systems (ESS) peer review.

  15. Vehicle Technologies Office Merit Review 2014: Overiew of Materials...

    Energy Savers [EERE]

    Vehicle Technologies Office Merit Review 2014: Overiew of Materials Technologies R&D Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and ...

  16. 2013 Estorm - Invited Paper - Cathode Materials Review

    SciTech Connect (OSTI)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood III, David L

    2014-01-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403 431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783 789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  17. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    SciTech Connect (OSTI)

    Thiel, Elizabeth Chilcote

    2002-05-01

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

  18. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    SciTech Connect (OSTI)

    Thiel, E.C.; Fuhrman, P.W.

    2002-05-30

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

  19. Quantum and Dirac Materials for Energy Applications Conference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum and Dirac Materials for Energy Applications Quantum and Dirac Materials for Energy Applications Conference (QDM-15) WHEN: Mar 08, 2015 8:00 AM - Mar 11, 2015 5:00 PM WHERE:...

  20. June 26 Training: Using Chemistry and Material Sciences Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 26 Training: Using Chemistry and Material Sciences Applications June 26 Training: Using Chemistry and Material Sciences Applications June 15, 2012 by Francesca Verdier NERSC will present a three-hour training class focussed on Chemistry and Material Sciences applications on Tuesday, June 26, from 9:00 to 12:00 Pacific Time. The first hour of the training is targeted at beginners. We will show you how to get started running material science and chemistry application codes at NERSC. We will

  1. A Review of Materials for Gas Turbines Firing Syngas Fuels

    SciTech Connect (OSTI)

    Gibbons, Thomas; Wright, Ian G

    2009-05-01

    Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

  2. Energy harvesting from low frequency applications using piezoelectric materials

    SciTech Connect (OSTI)

    Li, Huidong; Tian, Chuan; Deng, Z. Daniel

    2014-12-15

    In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and the methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters.

  3. Supercritical fluids: Reactions, materials and applications

    SciTech Connect (OSTI)

    Tumas, W.; Jacobson, G.B.; Josephsohn, N.S.; Brown, G.H.

    1999-04-09

    A number of important processes utilizing supercritical fluids have been either implemented or are emerging for extractions, separations and a wide range of cleaning applications. Supercritical fluids can be reasonable solvents yet share many of the advantages of gases including miscibility with other gases (i.e. hydrogen and oxygen), low viscosities and high diffusivities. Carbon dioxide has the further advantages of being nontoxic, nonflammable, inexpensive and currently unregulated. The use of compressed gases, either as liquids or supercritical fluids, as reaction media offers the opportunity to replace conventional hazardous solvents and also to optimize and potentially control the effect of solvent on chemical and material processing. The last several years has seen a significant growth in advances in chemical synthesis, catalytic transformations and materials synthesis and processing. The authors report on results from an exploratory program at Los Alamos National Laboratory aimed at investigating the use of dense phase fluids, particularly carbon dioxide, as reaction media for homogeneous, heterogeneous and phase-separable catalytic reactions in an effort to develop new, environmentally-friendly methods for chemical synthesis and processing. This approach offers the possibility of opening up substantially different chemical pathways, increasing selectivity at higher reaction rates, facilitating downstream separations and mitigating the need for hazardous solvents. Developing and understanding chemical and catalytic transformations in carbon dioxide could lead to greener chemistry at three levels: (1) Solvent replacement; (2) Better chemistry (e.g. higher reactivity, selectivity, less energy consumption); and (3) New chemistry (e.g. novel separations, use of COP{sub 2} as a C-1 source).

  4. Coating Active Materials for Applications in Electrochemical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon precursor on the electro-active material to form a carbon-coated electro-active material Process reduces manufacturing cost Coating process produces carbon-coated metal...

  5. Quantum and Dirac Materials for Energy Applications Conference (QDM-15)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March » Quantum and Dirac Materials for Energy Applications Quantum and Dirac Materials for Energy Applications Conference (QDM-15) WHEN: Mar 08, 2015 8:00 AM - Mar 11, 2015 5:00 PM WHERE: La Fonda Hotel Santa Fe, NM CONTACT: Caryll Blount 505 665-3950 CATEGORY: Science TYPE: Conference INTERNAL: Calendar Login Event Description The purpose of the workshop is to discuss current status and future prospects for the quantum materials and Dirac materials for energy and information technology

  6. Optical Spectroscopy for Materials Applications | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Spectroscopy for Materials Applications The two main objectives of the Smith research group are: (1) to measure the organization and dynamics of biological structures, and...

  7. Antiferroelectric Materials, Applications and Recent Progress...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These new multiferroic materials could pave the way to next-generation light, compact, fast, and energy-efficient voltage tunable RFmicrowave, spintronic, and memory devices. A ...

  8. Engineering and Materials for Automotive Thermoelectric Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Design and optimization of TE exhaust generator, vehicle integration, and thermal management; distributed cooling and heating with TE devices; discovery and development of highly efficient TE materials.

  9. Engineering and Materials for Automotive Thermoelectric Applications...

    Broader source: Energy.gov (indexed) [DOE]

    cooling and heating with TE devices; discovery and development of highly efficient TE materials. yang.pdf (4.47 MB) More Documents & Publications Develop Thermoelectric ...

  10. 2012 Advanced Applications Research & Development Peer Review | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Advanced Applications Research & Development Peer Review 2012 Advanced Applications Research & Development Peer Review The Advanced Applications Research & Development Peer Review included seven sessions over 2 days on June 12 - 13, 2012. Presentations are available through the individual session links. The agenda and participant list are available below. Presentations June 12 - Day 1: Session I, Session II, Session III, Session IV, Session V June 13 - Day 2: Session

  11. 2012 Advanced Applications Research & Development Peer Review - Day 2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations | Department of Energy 2 Presentations 2012 Advanced Applications Research & Development Peer Review - Day 2 Presentations The Advanced Applications Research & Development Peer Review included seven sessions over 2 days on June 12 - 13, 2012. Presentations from Day 2 (Sessions VI and VII) are available below. Session VI: Yuri Makarov, Henry Huang, Jim McCalley Session VII: Carlos Martinez, Pete Sauer, Gil Tam 2012 Advanced Applications R&D Peer Review - Real-Time

  12. Applications Solutions Science Predicting Materials Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... as in the Strategic Plan, we: * List and review the strategic goals of the ... Initiative which focuses on the development of cleaner technologies for coal-fired power plants. ...

  13. Structuring Materials on Multiple Length Scales for Energy Applications |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MIT-Harvard Center for Excitonics Structuring Materials on Multiple Length Scales for Energy Applications October 25, 2012 at 3pm/36-428 Adreas Stein Department of Chemistry, University of Minnesota astein Abstract: Nanoporous and nanostructured materials are becoming increasingly important for advanced applications, including energy storage and conversion materials. Templating methods based on hard templates (colloidal crystal templating, nanocasting) and soft templates (surfactant systems)

  14. Quantum and Dirac Materials for Energy Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15:20 C. Batista: Skyrmions and Frustration 15:20 - 15:40 Break 15:40 - 16:20 E. Rossi: Kondo Effect and Non---Fermi Liquid Behavior in Dirac Materials (pdf) 16:20 - 17:00 F....

  15. Coating Active Materials for Applications in Electrochemical Devices |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Coating Active Materials for Applications in Electrochemical Devices Technology available for licensing: A process that includes suspending/dissolving an electro-active material and a carbon precursor in a solvent; and then depositing the carbon precursor on the electro-active material to form a carbon-coated electro-active material Process reduces manufacturing cost Coating process produces carbon-coated metal oxides without the problems associated with

  16. Advanced Pattern Material for Investment Casting Applications

    SciTech Connect (OSTI)

    F. Douglas Neece Neil Chaudhry

    2006-02-08

    Cleveland Tool and Machine (CTM) of Cleveland, Ohio in conjunction with Harrington Product Development Center (HPDC) of Cincinnati, Ohio have developed an advanced, dimensionally accurate, temperature-stable, energy-efficient and cost-effective material and process to manufacture patterns for the investment casting industry. In the proposed technology, FOPAT (aFOam PATtern material) has been developed which is especially compatible with the investment casting process and offers the following advantages: increased dimensional accuracy; increased temperature stability; lower cost per pattern; less energy consumption per pattern; decreased cost of pattern making equipment; decreased tooling cost; increased casting yield. The present method for investment casting is "the lost wax" process, which is exactly that, the use of wax as a pattern material, which is then melted out or "lost" from the ceramic shell. The molten metal is then poured into the ceramic shell to produce a metal casting. This process goes back thousands of years and while there have been improvements in the wax and processing technology, the material is basically the same, wax. The proposed technology is based upon an established industrial process of "Reaction Injection Molding" (RIM) where two components react when mixed and then "molded" to form a part. The proposed technology has been modified and improved with the needs of investment casting in mind. A proprietary mix of components has been formulated which react and expand to form a foam-like product. The result is an investment casting pattern with smooth surface finish and excellent dimensional predictability along with the other key benefits listed above.

  17. Review of the synergies between computational modeling and experimental characterization of materials across length scales

    SciTech Connect (OSTI)

    Dingreville, Rémi; Karnesky, Richard A.; Puel, Guillaume; Schmitt, Jean -Hubert

    2015-11-16

    With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends in which predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure–property relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanics community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to “simply” support experimental work. This is illustrated by examples from several application areas on structural materials. In conclusion this manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.

  18. Review of the synergies between computational modeling and experimental characterization of materials across length scales

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dingreville, Rémi; Karnesky, Richard A.; Puel, Guillaume; Schmitt, Jean -Hubert

    2015-11-16

    With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends in which predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure–property relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanicsmore » community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to “simply” support experimental work. This is illustrated by examples from several application areas on structural materials. In conclusion this manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.« less

  19. Materials from 2016 Peer Review of Reliability and Markets Program Now

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Available | Department of Energy Materials from 2016 Peer Review of Reliability and Markets Program Now Available Materials from 2016 Peer Review of Reliability and Markets Program Now Available June 22, 2016 - 1:09pm Addthis The Office of Electricity Delivery and Energy Reliability (OE) held a peer review of its Reliability & Markets Program on June 9-10, 2016 in Arlington, VA. Materials from the peer review, including the agenda and presentations, are now available for downloading. The

  20. Role of Friction in Materials Selection for Automotive Applications

    SciTech Connect (OSTI)

    Blau, Peter Julian

    2013-01-01

    This is an invited article for a special issue of the ASM International monthly magazine that concerns "Automotive Materials and Applications." The article itself overviews frictional considerations in material selection for automobiles. It discusses implications for energy efficiency (engine friction) and safety (brakes) among other topics.

  1. Standard Review Plan for the review of a license application for a low-level radioactive waste disposal facility. Revision 3

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Standard Review Plan (SRP) (NUREG-1200) provides guidance to staff reviewers in the Office of Nuclear Material Safety and Safeguards who perform safety reviews of applications to construct and operate low-level radioactive waste disposal facilities. The SRP ensures the quality and uniformity of the staff reviews and presents a well-defined base from which to evaluate proposed changes in the scope and requirements of the staff reviews. The SRP makes information about the regulatory licensing process widely available and serves to improve the understanding of the staff`s review process by interested members of the public and the industry. Each individual SRP addresses the responsibilities of persons performing the review, the matters that are reviewed, the Commission`s regulations and acceptance criteria necessary for the review, how the review is accomplished, the conclusions that are appropriate, and the implementation requirements.

  2. Potential applications of nanostructured materials in nuclear waste management.

    SciTech Connect (OSTI)

    Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi; Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

    2003-09-01

    This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

  3. Composite Materials for Battery Applications | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials for Battery Applications Technology available for licensing: Process for the production of Si- Graphene nano-composite materials for use as anode materials in Lithium Ion Batteries Improved cycling performance in nano- composites through increased electrical conductivity and stabilization of structure during delithiation IN-10-018 US 2012/0282527 A1 Availability: Technology available for license to organizations with commercial interest. Collaborative research is available under a

  4. Bar code application to nuclear material accountancy

    SciTech Connect (OSTI)

    Usui, S.; Sano, H. )

    1991-01-01

    For the purpose of efficient implementation of IAEA safeguards inspection, operators ought to prepare the information which is related to the strata for flow verification in a timely manner, such as physical inventory listing and summary of the fuel bundles. Today the use of bar code technique in tracing of products related data or counting number of items has been more and more applied to many facets of industry. From these points of view, the Japan Nuclear Fuel Company (NF) has been developing JNF Total Bar Code System. Now JNF has established an on-line input system of the fuel bundle accountability data by use of the bar code system to quickly prepare the information necessary for the inspection. As the first step, JNF implemented this bar code system at the flow verification to prepare physical inventory summary and location map of the fuel bundles in the storage. This paper reports that as a result of this, NF confirmed that this bar code system made it possible to input easily and quickly nuclear material accountancy information, and therefore this system is utilized as an effective and efficient measure of timely preparation for the inspection.

  5. A REVIEW OF RECENT IMPURITY MEASUREMENTS OF LANL MATERIAL

    SciTech Connect (OSTI)

    Edwards, T.

    2012-07-12

    The Applied Computational Engineering and Statistics (ACES) group of the Savannah River National Laboratory (SRNL) was asked to review recent measurements performed by the Los Alamos National Laboratory (LANL) on material from that facility that is being considered for processing through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). There are specification limits for impurities in the feed to the MOX facility: a maximum limit and an exceptional limit. The limits for an impurity apply to the population of concentration values for that impurity for a class of material that is to be processed through MOX. For the purposes of this report, these limits were defined as follows. The concentration of an elemental impurity, expressed as micrograms of the element per gram of plutonium ({micro}g/g Pu), is to be no more than the maximum limit for that element for 98% of the material coming through MOX; that is, 98% of the material processed at MOX is to have a concentration of the given element less than the maximum limit. In addition, the concentration for a given element is to be no more than the exceptional limit for that element for 99.9% of the material processed through MOX. The measurements evaluated as part of this study included LANL blend lots 1 through 29 and cover carbon (C), chlorine (Cl), fluorine (F), nitrogen (N), phosphorous (P), and sulfur (S). Note that all of the measurements for each impurity were below their respective maximum (and obviously, therefore, their exceptional) limits. Thus, there is no immediate concern regarding the LANL material being suitable for processing through MOX. Two approaches were used to investigate the quantiles of the impurity populations. The first approach used was a nonparametric approach. While the results from this approach did not indicate any problems for any of the impurities, there was too little data available to lead to confident statements about satisfying the maximum and

  6. Recycled materials in geotechnical applications. Geotechnical special publication No. 79

    SciTech Connect (OSTI)

    Vipulanandan, C.; Elton, D.J.

    1998-07-01

    Recycled materials have the potential for use in a variety of geotechnical and geoenvironmental applications. This proceedings contains 15 papers on field applications and laboratory testing related to recycled materials. Papers cover: geotechnics of industrial by-products; paper mill sludge for landfill cover; mitigation of void development under bridge approach slabs using rubber tire chips; tire shreds as lightweight fill for embankments and retaining walls; performance of a highway embankment and hydraulic barriers constructed using waste foundry sand, and recycled materials; lagoon-stored lime for embankment; construction and demolition debris for base and subbase applications; fly ash for fill, pavement, earth structures and aggregate; compaction of contaminated soils-reuse as a road base material; and database on beneficial reuse of foundry by-products; and more.

  7. 2012 Advanced Applications Research & Development Peer Review - Day 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations | Department of Energy 1 Presentations 2012 Advanced Applications Research & Development Peer Review - Day 1 Presentations The Advanced Applications Research & Development Peer Review included seven sessions over 2 days on June 12 - 13, 2012. Presentations from Day 1 (Sessions I through V) are available below. Session I: Dan Trudnowski, Ning Zhou, Mani Venkatasubramanian Session II: Brett Amidan, Bharat Bhargava, Ning Zhou Session III: Ken Martin, Mani

  8. Environmental Standard Review Plan for the review of license renewal applications for nuclear power plants

    SciTech Connect (OSTI)

    O'Brien, J.; Kim, T.J.; Reynolds, S.

    1991-08-01

    The Environmental Standard Review Plan for the Review of License Applications for Nuclear Power Plants (ESRP-LR) is to be used by the NRC staff when performing environmental reviews of applications for the renewal of power reactor licenses. The use of the ESRP-LR provides a framework for the staff to determine whether or not environmental issues important to license renewal have been identified and the impacts evaluated and provides acceptance standards to help the reviewers comply with the National Environmental Policy Act.

  9. Materials for defense/aerospace applications (NON-SV)

    SciTech Connect (OSTI)

    Ellis, A. R.

    2012-03-01

    Through this effort, Sandia and Lockheed Martin Aeronautics Company (LM Aero) sought to assess the feasibility of (1) applying special materials to a defense application; (2) developing a piezoelectric-based micro thermophotovoltaic (TPV) cell; and (3) building and delivering a prototype laboratory emission measurement system. This project supported the Stockpile Research & Development Program by contributing to the development of radio frequency (RF) MEMS- and optical MEMS-based components - such as switches, phase shifters, oscillators, and filters - with improved performance and reduced weight and size. Investigation of failure mechanisms and solutions helped to ensure that MEMS-based technology will meet performance requirements and long term reliability goals in the specified environments dictated by Lockheed Martin's commercial and defense applications. The objectives of this project were to (1) fabricate and test materials for military applications; (2) perform a feasibility study of a piezoelectric-based micro TPV cell; and (3) build and deliver a prototype laboratory emission measurement system. Sandia fabricated and tested properties of materials, studied options for manufacturing scale-up, and delivered a prototype IR Emissometer. LM Aero provided material requirements and designs. Both participated in the investigation of attachment methods and environmental effects on material performance, a feasibility study of piezoelectric TPV cells, an investigation and development of new approaches to implement the required material functionality, and analysis and validation of material performance physics, numerical models, and experimental metrology.

  10. Magnet operating experience review for fusion applications

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    1991-11-01

    This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries.

  11. Superhard nanophase cutter materials for rock drilling applications

    SciTech Connect (OSTI)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-06-23

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications.

  12. Vehicle Technologies Office Merit Review 2015: Materials Issues Associated with EGR Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about materials...

  13. Vehicle Technologies Office Merit Review 2015: Materials Benchmarking Activities for CAMP Facility

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about materials...

  14. Encapsulant Material For Solar Cell Module And Laminated Glass Applications

    DOE Patents [OSTI]

    Hanoka, Jack I.

    2000-09-05

    An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of ionomer. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first ionomer layer, and a second layer of ionomer is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.

  15. Attrition Resistant Catalyst Materials for Fluid Bed Applications - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Attrition Resistant Catalyst Materials for Fluid Bed Applications National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing SummaryResearchers at NREL have developed novel steam reforming catalyst materials which have improved resistance to loss of catalyst due to attrition when producing hydrogen from gasified

  16. Aerogels: A new material for emissive display applications

    SciTech Connect (OSTI)

    Glauser, S.A.C. [California Univ., Davis, CA (United States); Lee, H.W.H. [Lawrence Livermore National Lab., CA (United States)

    1997-03-01

    The remarkable optical and electronic properties of doped and undoped silica aerogels establish their utility as unique, multifunctional host materials for fluorescent dyes and other luminescent materials for display and imaging applications. We present results on the photoluminescence and absorption of undoped silica aerogels and aerogels doped with Er{sup 3+}, rhodamine 6G (R6G), and fluorescein. We also demonstrate evidence of Fowler-Nordheim tunneling of electrons in aerogels. 4 refs., 10 figs.

  17. Encapsulant Material For Solar Cell Module And Laminated Glass Applications

    DOE Patents [OSTI]

    Hanoka, Jack I.; Klemchuk, Peter P.

    2001-02-13

    An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of an acid copolymer of polyethylene. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first layer of the acid copolymer of polyethylene, and a second layer of the acid copolymer of polyethlene is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.

  18. Vehicle Technologies Office Merit Review 2014: Innovative Cell Materials and Design for 300 Mile Range EVs

    Broader source: Energy.gov [DOE]

    Presentation given by OneD Material, LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative cell materials...

  19. Electrical properties of commercial sheet insulation materials for cryogenic applications

    SciTech Connect (OSTI)

    Tuncer, Enis; Sauers, Isidor; James, David Randy; Ellis, Alvin R; Pace, Marshall O

    2008-01-01

    Dielectric properties of electrical insulation materials are needed for low-temperature power applications. Performance of materials and their compatibility determine the size of the electrical insulation in power equipment. In this work we report the dielectric properties of some commercially available materials in sheet form. The selected materials are polypropylene laminated paper from Sumitomo Electric U.S.A., Inc., porous polyethylene (Tyvek\\texttrademark) from Dupont, and polyamide paper (Nomex\\texttrademark) from Dupont. The dielectric properties are characterized with an electrical impedance analyzer in the frequency domain. The impedances are recorded in a cryocooler in the temperature range from 50 to 300 K. The dielectric breakdown characteristics of the materials are measured in a liquid nitrogen bath at atmospheric pressure.

  20. Polymers as advanced materials for desiccant applications, 1988

    SciTech Connect (OSTI)

    Czanderna, A.W.; Neidlinger, H.H.

    1990-09-01

    This report documents work to identify a next-generation, low-cost material with which solar energy or heat from another low-cost energy source can be used for regenerating the water vapor sorption activity of the desiccant. The objective of the work is to determine how the desired sorption performance of advanced desiccant materials can be predicted by understanding the role of the material modifications and material surfaces. The work concentrates on solid materials to be used for desiccant cooling systems and which process water vapor in an atmosphere to produce cooling. The work involved preparing modifications of polystyrene sulfonic acid sodium salt, synthesizing a hydrogel, and evaluating the sorption performances of these and similar commercially available polymeric materials; all materials were studied for their potential application in solid commercial desiccant cooling systems. Background information is also provided on desiccant cooling systems and the role of a desiccant material within such a system, and it includes the use of polymers as desiccant materials. 31 refs., 16 figs., 5 tabs.

  1. Vehicle Technologies Office Merit Review 2014: Novel Anode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel anode...

  2. 2013 Annual Merit Review Results Report - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... research projects, like microwave-assisted or ... and not too much data could be presented, but that ... The reviewer also stated the completion of alpha design for ...

  3. DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -1 7. Materials Technologies: Propulsion Materials Introduction Advanced materials, including metals, polymers, composites, and intermetallic compounds, can play an important role in improving the efficiency of transportation engines and vehicles. Weight reduction is one of the most effective ways to increase the fuel economy of vehicles while reducing exhaust emissions. The development of propulsion materials and enabling technologies will help reduce costs while improving the durability,

  4. Chemical hydrogen storage material property guidelines for automotive applications

    SciTech Connect (OSTI)

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.

  5. 2013 Annual Merit Review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Various brazing materials have been investigated. Silicon ... Replacing them with titanium may increase the cost and ... slides that Task 2 (FSP of steel forgingscastings) had not ...

  6. Vehicle Technologies Office Merit Review 2016: Material Technologies- Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Department of Energy (DOE) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  7. Review of Interests and Activities in Thermoelectric Materials and Devices

    Broader source: Energy.gov (indexed) [DOE]

    INQUIRY REPORT Review of Allegations Regarding Continued Retaliation Against a Bonneville Power Administration Whistleblower DOE/IG-0910 May 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 May 15, 2014 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Special Inquiry: "Review of Allegations Regarding Continued Retaliation Against a Bonneville Power

  8. Materials Physics and Applications Division Lead | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Materials Physics and Applications Division Lead Antoinette Taylor Toni Taylor November 2009 Los Alamos National Laboratory Fellow Six Los Alamos scientists have been designated 2009 Los Alamos National Laboratory Fellows in recognition of sustained, outstanding scientific contributions and exceptional promise for continued professional achievement. The title of Fellow is bestowed on only about 2 percent of the Laboratory's current technical staff. The new

  9. Material Handling Fuel Cells for Building Electric Peak Shaving Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Handling Fuel Cells for Building Electric Peak Shaving Applications U.S. Department of Energy Fuel Cell Technologies Office August 11, 2015 Presenter: Michael Penev of NREL DOE Host: Pete Devlin 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov 3 Acknowledgments Fuel Cell Technologies Office, DOE EERE For providing funding for this project and for supporting sustainable hydrogen technology development through analysis, demonstration,

  10. Uranium for hydrogen storage applications : a materials science perspective.

    SciTech Connect (OSTI)

    Shugard, Andrew D.; Tewell, Craig R.; Cowgill, Donald F.; Kolasinski, Robert D.

    2010-08-01

    Under appropriate conditions, uranium will form a hydride phase when exposed to molecular hydrogen. This makes it quite valuable for a variety of applications within the nuclear industry, particularly as a storage medium for tritium. However, some aspects of the U+H system have been characterized much less extensively than other common metal hydrides (particularly Pd+H), likely due to radiological concerns associated with handling. To assess the present understanding, we review the existing literature database for the uranium hydride system in this report and identify gaps in the existing knowledge. Four major areas are emphasized: {sup 3}He release from uranium tritides, the effects of surface contamination on H uptake, the kinetics of the hydride phase formation, and the thermal desorption properties. Our review of these areas is then used to outline potential avenues of future research.

  11. Vehicle Technologies Office Merit Review 2015: Applied Integrated Computational Materials Engineering (ICME) for New Propulsion Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Applied...

  12. Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

  13. Vehicle Technologies Office Merit Review 2015: High Energy Anode Material Development for Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Sinode Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy anode material...

  14. Vehicle Technologies Office Merit Review 2014: A Materials Approach to Fuel-Efficient Tires

    Broader source: Energy.gov [DOE]

    Presentation given by PPG Industries at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a materials approach to fuel...

  15. Vehicle Technologies Office Merit Review 2015: Advanced Bus and Truck Radial Materials for Fuel Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by PPG at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced bus and truck radial materials...

  16. Vehicle Technologies Office Merit Review 2015: Multi-Material Lightweight Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by VEHMA at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles.

  17. Application of Negligible Creep Criteria to Candidate Materials for HTGR Pressure Vessels

    SciTech Connect (OSTI)

    Jetter, Robert I; Sham, Sam; Swindeman, Robert W

    2011-01-01

    Two of the proposed High Temperature Gas Reactors (HTGRs) under consideration for a demonstration plant have the design object of avoiding creep effects in the reactor pressure vessel (RPV) during normal operation. This work addresses the criteria for negligible creep in Subsection NH, Division 1 of the ASME B&PV (Boiler and Pressure Vessel) Code, Section III, other international design codes and some currently suggested criteria modifications and their impact on permissible operating temperatures for various reactor pressure vessel materials. The goal of negligible creep could have different interpretations depending upon what failure modes are considered and associated criteria for avoiding the effects of creep. It is shown that for the materials of this study, consideration of localized damage due to cycling of peak stresses results in a lower temperature for negligible creep than consideration of the temperature at which the allowable stress is governed by creep properties. In assessing the effect of localized cyclic stresses it is also shown that consideration of cyclic softening is an important effect that results in a higher estimated temperature for the onset of significant creep effects than would be the case if the material were cyclically hardening. There are other considerations for the selection of vessel material besides avoiding creep effects. Of interest for this review are (1) the material s allowable stress level and impact on wall thickness (the goal being to minimize required wall thickness) and (2) ASME Code approval (inclusion as a permitted material in the relevant Section and Subsection of interest) to expedite regulatory review and approval. The application of negligible creep criteria to two of the candidate materials, SA533 and Mod 9Cr-1Mo (also referred to as Grade 91), and to a potential alternate, normalized and tempered 2 Cr-1Mo, is illustrated and the relative advantages and disadvantages of the materials are discussed.

  18. Characterization of Thin Films by XAFS: Application to Spintronics Materials

    SciTech Connect (OSTI)

    Heald, Steve M.; Kaspar, Tiffany C.; Droubay, Timothy C.; Chambers, Scott A.

    2009-10-25

    X-ray absorption fine structure (XAFS) has proven very valuable in characterizing thin films. This is illustrated with some examples from the area of diluted magnetic semiconductor (DMS) materials for spintronics applications. A promising route to DMS materials is doping of oxides such as TiO2 and ZnO with magnetic atoms such as Co. These can be grown as epitaxial thin films on various substrates. XAFS is especially valuable for characterizing the dopant atoms. The near edge region is sensitive to the symmetry of the bonding and valence of the dopants, and the extended XAFS can determine the details of the lattice site. XAFS is also valuable for detecting metallic nanoparticles. These can be difficult to detect by other methods, and can give a spurious magnetic signal. The power of XAFS is illustrated by examples from studies on Co doped ZnO films.

  19. Materials capability review Los Alamos National Laboratory, May 3-6, 2010

    SciTech Connect (OSTI)

    Taylor, Antoinette

    2010-01-01

    The 2010 'Capability Review' process at LANL significantly differs from the Division reviews of prior years. The Capabilities being reviewed (some 4-8 per year) are deliberately chosen to be crosscutting over the Laboratory, and therefore will include not only several experimental, theoretical and simulation disciplines, but also contributions from multiple line organizations. This approach is consistent with the new Laboratory organizational structure, focusing on agile and integrated capabilities applied to present national security missions, and also nurtured to be available for rapid application to future missions. The overall intent is that the Committee assess the quality of the science, engineering, and technology identified in the agenda, and advise the LANS Board of Governors and Laboratory management. Specifically, the Committees will: (1) Assess the quality of science, technology and engineering within the Capability in the areas defined in the agenda. Identify issues to develop or enhance the core competencies within this capability. (2) Evaluate the integration of this capability across the Laboratory organizations that are listed in the agenda in terms of joint programs, projects, proposals, and/or publications. Describe the integration of this capability in the wider scientific community using the recognition as a leader within the community, ability to set research agendas, and attraction and retention of staff. (3) Assess the quality and relevance of this capability's science, technology and engineering contributions to current and emerging Laboratory programs, including Nuclear Weapons, Threat Reduction/Homeland Security, and Energy Security. (4) Advise the Laboratory Director/Principal Associate Director for Science, Technology and Engineering on the health of the Capability including the current and future (5 year) science, technology and engineering staff needs, mix of research and development activities, program opportunities, environment for

  20. Candidate Structural Materials for In-Core VHTR Application

    SciTech Connect (OSTI)

    Snead, Lance Lewis; Katoh, Yutai; Windes, Will; Smit, Kobus

    2008-01-01

    Graphite moderated gas cooled reactors led the way into the nuclear age with the Chicago Pile-1 reactor, which provided the first sustained critical reaction in December, 1942. The first commercial nuclear plant, Calder Hall in the UK, went critical in 1956 with an outlet gas temperature of {approx}345 C. As depicted in Fig. 1, in five decades since Calder Hall, outlet temperature increased rapidly, reaching a plateau of {approx}950 C. This apparent ceiling is in large part due to limitations in the structural materials utilized within the core (e.g. control systems) and primary loop (hot duct, heat-exchangers etc.) Simply, the operating temperatures of Generation III (HTGR's) are very near performance limits of the structural alloys used, both in terms of elevated temperature and as-irradiated properties. This limitation remains today and is the reason the outlet temperature of the Generation IV Very High Temperature Reactor (VHTR) continues to be revised downward from the original optimistic goal of {approx}1200 C, to it's current target outlet temperature of {approx}950 C, a temperature consistent with the previous generation of HTGR's. An example of the challenges facing Generation IV VHTR is found by considering the control rods. For the Fort St. Vrain Reactor the control system consisted of thirty tubes each containing B4C control material. Alloy 800, originally developed by Inco in the 1950's under the trade-name Incoloy 800 and 800H had found widespread application is steam generators, turbines and was selected for this control rod application. These materials are included for Class 1 Nuclear Component by ASME section III. In addition to Ft. St Vrain, alloy 800H has found control rod application in the German HTR and Japanese HTTR reactors and is the primary choice Pebble Bed Modular Reactor (a HTGR) reactivity control system. Figure 2 gives the ASME allowed stress for Alloy 800H. Due to the loss in creep rupture strength, the allowed design stress for

  1. Glazing materials for solar and architectural applications. Final report

    SciTech Connect (OSTI)

    Lampert, C.M.

    1994-09-01

    This report summarizes five collaborative research projects on glazings performed by participants in Subtask C of IEA Solar Heating and Cooling Programme (SHC) Task 10, Materials Research and Testing. The projects include materials characterization, optical and thermal measurements, and durability testing of several types of new glazings Three studies were completed on electrochromic and dispersed liquid crystals for smart windows, and two were completed for low-E coatings and transparent insulation materials for more conventional window and wall applications. In the area of optical switching materials for smart windows, the group developed more uniform characterization parameters that are useful to determine lifetime and performance of electrochromics. The detailed optical properties of an Asahi (Japan) prototype electrochromic window were measured in several laboratories. A one square meter array of prototype devices was tested outdoors and demonstrated significant cooling savings compared to tinted static glazing. Three dispersed liquid crystal window devices from Taliq (USA) were evaluated. In the off state, these liquid crystal windows scatter light greatly. When a voltage of about 100 V ac is applied, these windows become transparent. Undyed devices reduce total visible light transmittance by only .25 when switched, but this can be increased to .50 with the use of dyed liquid crystals. A wide range of solar-optical and emittance measurements were made on low-E coated glass and plastic. Samples of pyrolytic tin oxide from Ford glass (USA) and multilayer metal-dielectric coatings from Interpane (Germany) and Southwall (USA) were evaluated. In addition to optical characterization, the samples were exposure-tested in Switzerland. The thermal and optimal properties of two different types of transparent insulation materials were measured.

  2. 2013-02 "Review Material Disposal Areas at LANL in Addition to Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area 54 for Risks Associated with Fires" | Department of Energy 2 "Review Material Disposal Areas at LANL in Addition to Technical Area 54 for Risks Associated with Fires" 2013-02 "Review Material Disposal Areas at LANL in Addition to Technical Area 54 for Risks Associated with Fires" The intent of this Recommendation 2013-02 is to ensure that the appropriate level of review has been given to MDAs other than MDA G at LANL that may be at similar risk in the event of

  3. Materials Capability Review Los Alamos National Laboratory April 29-May 2, 2012

    SciTech Connect (OSTI)

    Taylor, Antoinette J

    2012-04-20

    Los Alamos National Laboratory (LANL) uses Capability Reviews to assess the quality and institutional integration of science, technology and engineering (STE) and to advise Laboratory Management on the current and future health of LANL STE. The capabilities are deliberately chosen to be crosscutting over the Laboratory and therefore will include experimental, theoretical and simulation disciplines from multiple line organizations. Capability Reviews are designed to provide a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. The principal product of the Capability Review is the report that includes the review committee's assessments, recommendations, and recommendations for STE.

  4. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    SciTech Connect (OSTI)

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  5. Application of hard X-ray microprobe methods to clay-rich materials...

    Office of Scientific and Technical Information (OSTI)

    Application of hard X-ray microprobe methods to clay-rich materials Citation Details In-Document Search Title: Application of hard X-ray microprobe methods to clay-rich materials ...

  6. Advanced Nickel Oxide Based Materials for Electrochromic Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Energy Efficiency Building Energy Efficiency Advanced Materials Advanced Materials Find More Like This Return to Search Advanced Nickel Oxide Based Materials for...

  7. Application Review and Selection Process | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Review and Selection Process Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Recommender Information Application Review and Selection Process Key Dates Frequently Asked Questions Fellows Central Contact WDTS Home How to Apply Application Review and Selection Process Print Text Size: A A A FeedbackShare Page Application Eligibility and Compliance: To be considered for this program, an applicant must

  8. Fire protection system operating experience review for fusion applications

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  9. Cryogenic system operating experience review for fusion applications

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    1992-01-01

    This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design.

  10. An environmental cracking evaluation of fastener materials for seawater applications

    SciTech Connect (OSTI)

    Aylor, D.M.

    1994-12-31

    Slow strain rate tests (SSRT) were conducted on various nickel-base, titanium base, and copper-nickel (Cu-Ni) alloys in order to identify a replacement material for Alloy K-500 in seawater fastener applications. SSRT data and fracture surface analysis of the test specimens identified a susceptibility to environmental cracking in cathodically polarized environments for Alloy K-500, Alloy 625 Plus, and Alloy 625PH. Alloy 625 Plus exhibited slightly increased environmental cracking resistance-at {minus}850 mV vs. SCE over Alloy K-500 and Alloy 625PH. Ti-6Al-4V ELI, Beta C, and Beta 21S titanium displayed no susceptibility to environmental cracking in freely corroding 3.5% NaCl or cathodically polarized conditions. Precharging these titanium alloys for 8 weeks at {minus}1,250 mV vs. SCE did not adversely affect their environmental cracking resistance. The Cu-3Ni and Cu-15Ni-7Sn spray formed alloys exhibited extensive scatter and low measured maximum loads, presumably due to macroporosity present in the as-fabricated material.

  11. An application of neural networks to process and materials control

    SciTech Connect (OSTI)

    Howell, J.A.; Whiteson, R. )

    1991-01-01

    Process control consists of two basic elements: a model of the process and knowledge of the desired control algorithm. In some cases the level of the control algorithm is merely supervisory, as in an alarm-reporting or anomaly-detection system. If the model of the process is known, then a set of equations may often be solved explicitly to provide the control algorithm. Otherwise, the model has to be discovered through empirical studies. Neural networks have properties that make them useful in this application. The problems of anomaly detection in nuclear materials control systems fits well into this general control framework. To successfully model a process with a neutral network, a good set of observable must be chosen. These observable just in some sense adequately span the space of representable events, so that a signature metric can be built for normal operation. In this way, a non-normal event, one that does not fit within the signature, can be detected. In this paper, the authors discuss the issues involved in applying a neural network model to anomaly detection in materials control systems.

  12. Alternative materials to cadmium for neutron absorbers in safeguards applications

    SciTech Connect (OSTI)

    Freeman, Corey R [Los Alamos National Laboratory; Geist, William H [Los Alamos National Laboratory; West, James D [Los Alamos National Laboratory

    2009-01-01

    Cadmium is increasingly difficult to use in safeguards applications because of rising cost and increased safety regulations. This work examines the properties of two materials produced by Ceradyne, inc. that present alternatives to cadmium for neutron shielding. The first is an aluminum metal doped with boron and the second is a boron carbide powder, compressed into a ceramic. Both are enriched in the {sup 10}B isotope. Two sheets of boron doped aluminum (1.1 mm and 5.2mm thick) and one sheet of boron carbide (8.5mm thick) were provided by Ceradyne for testing. An experiment was designed to test the neutron absorption capabilities of these three sheets against two different thicknesses of cadmium (0.6mm and 1.6mm thick). The thinner piece of aluminum boron alloy (1.1mm) performed as well as the cadmium pieces at absorbing neutrons. The thicker aluminum-boron plate provided more shielding than the cadmium sheets and the boron carbide performed best by a relatively large margin. Monte Carlo N-Particle eXtended (MCNPX) transport code modeling of the experiment was performed to provide validaLed computational tools for predicting the behavior of systems in which these materials may be incorporated as alternatives to cadmium. MCNPX calculations predict that approximately 0.17mm of the boron carbide is equivalent to 0.6mm of cadmium. There are drawbacks to these materials that need to be noted when considering using them as replacements for cadmium. Notably, they may need to be thicker than cadmium, and are not malleable, requiring machining to fit any curved forms.

  13. Application of Telepresence Technologies to Nuclear Material Safeguards

    SciTech Connect (OSTI)

    Wright, M.C.; Rome, J.A.

    1999-09-20

    Implementation of remote monitoring systems has become a priority area for the International Atomic Energy Agency and other international inspection regimes. For the past three years, DOE2000 has been the US Department of Energy's (DOE's) initiative to develop innovative applications to exploit the capabilities of broadband networks and media integration. The aim is to enhance scientific collaboration by merging computing and communications technologies. These Internet-based telepresence technologies could be easily extended to provide remote monitoring and control for confidence building and transparency systems at nuclear facilities around the world. One of the original DOE2000 projects, the Materials Microcharacterization Collaboratory is an interactive virtual laboratory, linking seven DOE user facilities located across the US. At these facilities, external collaborators have access to scientists, data, and instrumentation, all of which are available to varying degrees using the Internet. Remote operation of the instruments varies between passive (observational) to active (direct control), in many cases requiring no software at the remote site beyond a Web browser. Live video streams are continuously available on the Web so that participants can see what is happening at a particular location. An X.509 certificate system provides strong authentication, The hardware and software are commercially available and are easily adaptable to safeguards applications.

  14. Transmission Reliability "Load as a Resource" Peer Review Materials Now

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Available | Department of Energy "Load as a Resource" Peer Review Materials Now Available Transmission Reliability "Load as a Resource" Peer Review Materials Now Available September 25, 2014 - 11:43am Addthis OE's Transmission Reliability program is conducting R&D projects on "Load as a Resource" (LaaR) that explore how various types of customer loads could be turned on and off for short periods of time to provide services normally performed by generators. A

  15. Materials Degradation In Biomass-Derived Oils Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office (BETO) Project Peer Review Materials Degradation In Biomass-Derived Oils March 25, 2015 Jim Keiser, Mike Brady, Sam Lewis, Maggie Connatser and Mike Kass Oak Ridge National Laboratory Goals/Objectives The presence of significant concentrations of oxygen-bearing compounds, particularly carboxylic acids and ketones, makes biomass derived oils very corrosive to some common structural materials The goals of this project are: 1) Use conventional and developmental analysis

  16. Materials Applications for Non-Lethal: Aqueous Foams

    SciTech Connect (OSTI)

    GOOLSBY,TOMMY D.; SCOTT,STEVEN H.

    1999-09-15

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be

  17. Advanced Materials and Processing of Composites for High Volume Applications

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  18. MATERIAL COMPATIBILITY EVALUATION FOR DWPF NITRIC-GLYCOLIC ACID - LITERATURE REVIEW

    SciTech Connect (OSTI)

    Mickalonis, J.; Skidmore, E.

    2013-06-05

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction.  For C276 alloy, the primary material of construction for the CPC vessels, corrosion rates of either 2 or 20 mpy were reported up to a temperature of 93 C.  For the austenitic stainless steels, 304L and 316L, variable rates were reported over a range of temperatures, varying from 2 mpy up to 200 mpy (at 100 C).  For 690, G30, Allcorr, Ultimet and Stellite alloys no data were available.  For relevant polymers where data are available, the data suggests that exposure to glycolic acid is not detrimental. The literature data had limited application to the DWPF process since only the storage and feed vessels, pumps and piping used to handle the glycolic acid are directly covered by the available data. These components are either 304L or 316L alloys for which the literature data is inconsistent (See Bullet 2 above). Corrosion rates in pure glycolic acid solutions also are not representative of the DWPF process streams. This stream is complex and contains aggressive species, i.e. chlorides, sulfates, mercury, as well as antifoaming agents which cumulatively have an unknown effect on the corrosion rates of the materials of construction. Therefore, testing is recommended to investigate any synergistic effects of the

  19. Materials Capability Review Los Alamos National Laboratory May 4-7, 2009

    SciTech Connect (OSTI)

    Taylor, Antoniette J

    2009-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g ., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors. LANL has defined fourteen STE capabilities. Table 1

  20. Geopolymer Sealing Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

  1. Vehicle Technologies Office Merit Review 2015: Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly

    Broader source: Energy.gov [DOE]

    Presentation given by USAMP at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about integrated computational materials...

  2. Vehicle Technologies Office Merit Review 2014: Materials Issues Associated with EGR Systems (Agreement ID:18571) Project ID:18518

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about materials...

  3. Vehicle Technologies Office Merit Review 2014: Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly

    Broader source: Energy.gov [DOE]

    Presentation given by USAMP at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about integrated computational materials...

  4. Advanced Materials and Processing of Composites for High Volume Applications

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  5. Thermal Interface Materials for Power Electronics Applications: Preprint

    SciTech Connect (OSTI)

    Narumanchi, S.; Mihalic, M.; Kelly, K.; Eesley, G.

    2008-07-01

    The thermal resistance of the thermal interface material layer greatly affects the maximum temperature of the power electronics.

  6. Magnetorheological materials, method for making, and applications thereof

    DOE Patents [OSTI]

    Shen, Rui; Yang, Hong; Shafrir, Shai N.; Miao, Chunlin; Wang, Mimi; Mici, Joni; Lambropoulos, John C.; Jacobs, Stephen D.

    2014-08-19

    A magnetorheological material comprises a magnetic particle and a ceramic material, wherein the magnetorheological material is in a dried form and further wherein a portion of the ceramic material is in the form of a nanocrystalline coating over the entire exterior surface of the magnetic particle and another portion of the ceramic material is in the form of a free nanocrystal. A magnetorheological material comprises a magnetic particle having a ceramic material coating over an external surface thereof as a result of a coating process, and a free nanocrystal of the ceramic material in the form of a residual by-product of the coating process. A sol-gel process for making a magnetorheological product comprises providing a sol of a desired ceramic coating material; combining a desired quantity of carbonyl iron (CI) particles with the sol to coat the CI particles with the ceramic coating material; creating a resulting quantity of nanocrystalline ceramic material-coated CI particles and a quantity of free nanocrystals of the ceramic material; and, drying the resulting quantity of coated CI particles and free nanocrystals to a moisture content equal to or less than 2 wt %.

  7. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications

    SciTech Connect (OSTI)

    Gomez, J. C.

    2011-09-01

    It is clearly understood that lower overall costs are a key factor to make renewable energy technologies competitive with traditional energy sources. Energy storage technology is one path to increase the value and reduce the cost of all renewable energy supplies. Concentrating solar power (CSP) technologies have the ability to dispatch electrical output to match peak demand periods by employing thermal energy storage (TES). Energy storage technologies require efficient materials with high energy density. Latent heat TES systems using phase change material (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation like melting-solidification. PCM technology relies on the energy absorption/liberation of the latent heat during a physical transformation. The main objective of this report is to provide an assessment of molten salts and metallic alloys proposed as candidate PCMs for TES applications, particularly in solar parabolic trough electrical power plants at a temperature range from 300..deg..C to 500..deg.. C. The physical properties most relevant for PCMs service were reviewed from the candidate selection list. Some of the PCM candidates were characterized for: chemical stability with some container materials; phase change transformation temperatures; and latent heats.

  8. RESCHEDULED: Webinar on Material Handling Fuel Cells for Building Electric Peak Shaving Applications

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar entitled "Material Handling Fuel Cells for Building Electric Peak Shaving Applications".

  9. A REVIEW ON BIOMASS DENSIFICATION TECHNOLOGIE FOR ENERGY APPLICATION

    SciTech Connect (OSTI)

    JAYA SHANKAR TUMULURU; CHRISTOPHER T. WRIGHT

    2010-08-01

    The world is currently facing challenges to reduce the dependence on fossil fuels and to achieve a sustainable renewable supply. Renewable energies represent a diversity of energy sources that can help to maintain the equilibrium of different ecosystems. Among the various sources of renewable energy, biomass is finding more uses as it is considered carbon neutral since the carbondioxide released during its use is already part of the carbon cycle (Arias et al., 2008). Increasing the utilization of biomass for energy can help to reduce the negative CO2 impact on the environment and help to meet the targets established in the Kyoto Protocol (UN, 1998). Energy from biomass can be produced from different processes like thermochemical (combustion, gasification, and pyrolysis), biological (anaerobic digestion, fermentation) or chemical (esterification) where direct combustion can provide a direct near-term energy solution (Arias et al., 2008). Some of the inherent problems with raw biomass materials, like low bulk density, high moisture content, hydrophilic nature and low calorific value, limit the ease of use of biomass for energy purposes (Arias et al., 2008). In fact, due to its low energy density compared to fossil fuels, high volumes of biomass will be needed; adding to problems associated with storage, transportation and feed handling at a cogeneration plant. Furthermore, grinding biomass pulverizes, can be very costly and in some cases impractical. All of these drawbacks have given rise to the development of new technologies in order to increase the quality of biomass fuels. The purpose of the work is mainly in four areas 1) Overview of the torrefaction process and to do a literature review on i) Physical properties of torrefied raw material and torrefaction gas composition. 2) Basic principles in design of packed bed i) Equations governing the flow of material in packed bed ii) Equations governing the flow of the gases in packed bed iii) Effect of physical

  10. REVIEW OF EQUIPMENT USED IN RUSSIAN PRACTICE FOR ACCOUNTING MEASUREMENTS OF NUCLEAR MATERIALS.

    SciTech Connect (OSTI)

    NEYMOTIN,L.

    1999-07-25

    The objective of this work was to analyze instrumentation and methodologies used at Russian nuclear facilities for measurement of item nuclear materials, materials in bulk form, and waste streams; specify possibilities for the application of accounting measurements; and develop recommendations for improvement. The major steps and results: Representative conversion, enrichment (gas centrifuge), fuel fabrication, spent fuel reprocessing, and chemical-metallurgical production facilities in Russia were selected; Full lists of nuclear materials were prepared; Information about measurement methods and instrumentation for each type of nuclear material were gathered; and Recommendations on methodological and instrumentation support of accounting measurements for all types of materials were formulated. The analysis showed that the existing measurement methods and instrumentation serve mostly to support the technological process control and nuclear and radiation safety control. Requirements for these applications are lower than requirements for MC and A applications. To improve the state of MC and A at Russian nuclear facilities, significant changes in instrumentation support will be required, specifically in weighing equipment, volume measurements, and destructive and non-destructive analysis equipment, along with certified reference materials.

  11. 30 TAC, part 1, chapter 116, rule 116.114 Application review...

    Open Energy Info (EERE)

    scheduleLegal Abstract These rules outline the permit application review schedule for air quality control permits to construct in the state of Texas. Published NA Year Signed...

  12. The Effect of Elevated Temperature on Concrete Materials and Structures - a Literature Review.

    SciTech Connect (OSTI)

    Naus, Dan J

    2006-03-01

    The objective of this limited study was to provide an overview of the effects of elevated temperature on the behavior of concrete materials and structures. In meeting this objective the effects of elevated temperatures on the properties of ordinary Portland cement concrete constituent materials and concretes are summarized. The effects of elevated temperature on high-strength concrete materials are noted and their performance compared to normal strength concretes. A review of concrete materials for elevated-temperature service is presented. Nuclear power plant and general civil engineering design codes are described. Design considerations and analytical techniques for evaluating the response of reinforced concrete structures to elevated-temperature conditions are presented. Pertinent studies in which reinforced concrete structural elements were subjected to elevated temperatures are described.

  13. Chemical Emissions of Residential Materials and Products: Review of Available Information

    SciTech Connect (OSTI)

    Willem, Henry; Singer, Brett

    2010-09-15

    This report is prepared in the context of a larger program whose mission is to advance understanding of ventilation and indoor air quality in U.S. homes. A specific objective of this program is to develop the scientific basis ? through controlled experiments, monitoring and analysis ? for health risk-based ventilation standards. Appropriate and adequate ventilation is a basic element of a healthy home. Ventilation provides outdoor air and in the process removes indoor odors and contaminants including potentially unhealthful chemicals emitted by indoor materials, products and activities. Ventilation traditionally was assured to occur via infiltration of outdoor air through cracks and other leakage pathways in the residential building envelope. As building air tightness is improved for energy efficiency, infiltration can be reduced to inadequate levels. This has lead to the development of standards requiring mechanical ventilation. Though nominally intended to ensure acceptable indoor air quality, the standards are not explicitly tied to health risk or pollutant exposure targets. LBNL is currently designing analyses to assess the impact of varying ventilation standards on pollutant concentrations, health risks and energy use. These analyses require information on sources of chemical pollutant emissions, ideally including emission rates and the impact of ventilation on emissions. Some information can be obtained from recent studies that report measurements of various air contaminants and their concentrations in U.S. residences. Another way to obtain this information is the bottom-up approach of collecting and evaluating emissions data from construction and interior materials and common household products. This review contributes to the latter approach by summarizing available information on chemical emissions from new residential products and materials. We review information from the scientific literature and public sources to identify and discuss the databases that

  14. 'Greener' way to assemble materials for solar applications |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The accomplishment creates molecular building blocks for the design of optoelectronic and sensory materials. It entailed design of a semiconducting polymer with a hydrophobic ...

  15. Die Materials for Critical Applications and Increased Production...

    Office of Scientific and Technical Information (OSTI)

    To resist heat checking, die materials should have a low coefficient of thermal expansion, high thermal conductivity, high hot yield strength, good temper softening resistance, ...

  16. Polymers as Advanced Materials for Desiccant Applications: 1987

    SciTech Connect (OSTI)

    Czanderna, A. W.

    1988-12-01

    This research is concerned with solid materials used as desiccants for desiccant cooling systems that process water vapor in an atmosphere to produce net cooling.

  17. Computational physics and applied mathematics capability review June 8-10, 2010 (Advance materials to committee members)

    SciTech Connect (OSTI)

    Lee, Stephen R

    2010-01-01

    (broadly defined) in a variety of settings, including particle transport, solvers, and plasma physics; (3) Monte Carlo - Monte Carlo was invented at Los Alamos, and this theme discusses these vitally important methods and their application in everything from particle transport, to condensed matter theory, to biology; (4) Molecular Dynamics - This theme describes the widespread use of molecular dynamics for a variety of important applications, including nuclear energy, materials science, and biological modeling; (5) Discrete Event Simulation - The technical scope of this theme represents a class of complex system evolutions governed by the action of discrete events. Examples include network, communication, vehicle traffic, and epidemiology modeling; and (6) Integrated Codes - This theme discusses integrated applications (comprised of all of the supporting science represented in Themes 1-5) that are of strategic importance to the Laboratory and the nation. The laboratory has in approximately 10 million source lines of code in over 100 different such strategically important applications. Of these themes, four of them will be reviewed during the 2010 review cycle: Themes 1, 2, 3, and 6. Because these capability reviews occur every three years, Themes 4 and 5 will be reviewed in 2013, along with Theme 6 (which will be reviewed during each review, owing to this theme's role as an integrator of the supporting science represented by the other 5 themes). Yearly written status reports will be provided to the Capability Review Committee Chair during off-cycle years.

  18. Integrated computational materials engineering: Tools, simulations and new applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Madison, Jonathan D.

    2016-03-30

    Here, Integrated Computational Materials Engineering (ICME) is a relatively new methodology full of tremendous potential to revolutionize how science, engineering and manufacturing work together. ICME was motivated by the desire to derive greater understanding throughout each portion of the development life cycle of materials, while simultaneously reducing the time between discovery to implementation [1,2].

  19. Structural investigations of layered oxide materials for PHEV applications

    Broader source: Energy.gov (indexed) [DOE]

    Structural Materials Challenges in the Deployment of Hydrogen Pipelines Brian Somerday Hydrogen and Metallurgy Science Department Sandia National Laboratories, Livermore, CA Hydrogen Transmission and Distribution Workshop National Renewable Energy Laboratory, Golden, Colorado Feb. 25-26, 2014 Two principal materials-related challenges for steel hydrogen pipelines: reliability and cost * Prominent reliability issue is potential for hydrogen embrittlement - No hydrogen embrittlement-related

  20. Lignin Based Carbon Materials for Energy Storage Applications

    SciTech Connect (OSTI)

    Chatterjee, Sabornie; Saito, Tomonori; Rios, Orlando; Johs, Alexander

    2014-01-01

    The implementation of Li-ion battery technology into electric and hybrid electric vehicles and portable electronic devices such as smart phones, laptops and tablets, creates a demand for efficient, economic and sustainable materials for energy storage. However, the high cost and long processing time associated with manufacturing battery-grade anode and cathode materials are two big constraints for lowering the total cost of batteries and environmentally friendly electric vehicles. Lignin, a byproduct of the pulp and paper industry and biorefinery, is one of the most abundant and inexpensive natural biopolymers. It can be efficiently converted to low cost carbon fibers with optimal properties for use as anode materials. Recent developments in the preparation of lignin precursors and conversion to carbon fiber-based anode materials have created a new class of anode materials with excellent electrochemical characteristics suitable for immediate use in existing Li- or Na-ion battery technologies.

  1. Current developments in soil organic matter modeling and the expansion of model applications. A review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campbell, Eleanor E.; Paustian, Keith

    2015-12-23

    It is important to note that Soil organic matter (SOM) is a great natural resource. It is fundamental to soil and ecosystem functions across a wide range of scales, from site-specific soil fertility and water holding capacity to global biogeochemical cycling. It is also a highly complex material that is sensitive to direct and indirect human impacts. In our SOM research, simulation models play an important role by providing a mathematical framework to integrate, examine, and test the understanding of SOM dynamics. Simulation models of SOM are also increasingly used in more ‘applied’ settings to evaluate human impacts on ecosystemmore » function, and to manage SOM for greenhouse gas mitigation, improved soil health, and sustainable use as a natural resource. Within this context, there is a need to maintain a robust connection between scientific developments in SOM modeling approaches and SOM model applications. This need forms the basis of this review. In this review we first provide an overview of SOM modeling, focusing on SOM theory, data-model integration, and model development as evidenced by a quantitative review of SOM literature. Second, we present the landscape of SOM model applications, focusing on examples in climate change policy. Finally, we conclude by discussing five areas of recent developments in SOM modeling including: (1) microbial roles in SOM stabilization; (2) modeling SOM saturation kinetics; (3) temperature controls on decomposition; (4)SOM dynamics in deep soil layers; and (5)SOM representation in earth system models. Our aim is to comprehensively connect SOM model development to its applications, revealing knowledge gaps in need of focused interdisciplinary attention and exposing pitfalls that, if avoided, can lead to best use of SOM models to support policy initiatives and sustainable land management solutions.« less

  2. Current developments in soil organic matter modeling and the expansion of model applications. A review

    SciTech Connect (OSTI)

    Campbell, Eleanor E.; Paustian, Keith

    2015-12-23

    It is important to note that Soil organic matter (SOM) is a great natural resource. It is fundamental to soil and ecosystem functions across a wide range of scales, from site-specific soil fertility and water holding capacity to global biogeochemical cycling. It is also a highly complex material that is sensitive to direct and indirect human impacts. In our SOM research, simulation models play an important role by providing a mathematical framework to integrate, examine, and test the understanding of SOM dynamics. Simulation models of SOM are also increasingly used in more ‘applied’ settings to evaluate human impacts on ecosystem function, and to manage SOM for greenhouse gas mitigation, improved soil health, and sustainable use as a natural resource. Within this context, there is a need to maintain a robust connection between scientific developments in SOM modeling approaches and SOM model applications. This need forms the basis of this review. In this review we first provide an overview of SOM modeling, focusing on SOM theory, data-model integration, and model development as evidenced by a quantitative review of SOM literature. Second, we present the landscape of SOM model applications, focusing on examples in climate change policy. Finally, we conclude by discussing five areas of recent developments in SOM modeling including: (1) microbial roles in SOM stabilization; (2) modeling SOM saturation kinetics; (3) temperature controls on decomposition; (4)SOM dynamics in deep soil layers; and (5)SOM representation in earth system models. Our aim is to comprehensively connect SOM model development to its applications, revealing knowledge gaps in need of focused interdisciplinary attention and exposing pitfalls that, if avoided, can lead to best use of SOM models to support policy initiatives and sustainable land management solutions.

  3. Evaluation of ceramic filter material, selection for application

    SciTech Connect (OSTI)

    Alvin, M.A.; Tressler, R.E.; Lippert, T.E.; Diaz, E.S.

    1993-09-01

    Field testing in several of the Westinghouse Advanced Particulate Filtration (APF) systems has indicated that the oxide-based materials are more susceptible to thermal shock which results from system transients (i.e., combustion of char or reducing gases; system startup/turbine transients). The current clay bonded silicon carbide filter materials have a higher thermal shock resistance, but appear to be more susceptible to high temperature creep, as well as to changes that occur within the binder phase(s). Strength has frequently been used to assess what effects advanced coal fired process systems have on the stability and projected life of the various porous ceramic filter materials (Tables 1 and 2). Based on the numerous phase changes that occur, and the influence of pulse cleaning on the thermal fatigue characteristics of both the alumina/mullite and clay bonded silicon carbide filter materials, alternate material properties as thermal conductivity, thermal coefficient of expansion, elastic modulus, fracture toughness, and emissivity as a function of thermal/chemical aging are now being considered as critical factors for projecting filter durability and operating life. Table 3 provides a summary of the as-manufactured material properties for the alumina/mullite and clay bonded silicon carbide filter materials which have been used in the Westinghouse`s APF systems. Effort is currently being directed to determine how these properties change during thermal aging of the filters in various subpilot and pilot plant systems.

  4. Selecting a radiation tolerant piezoelectric material for nuclear reactor applications

    SciTech Connect (OSTI)

    Parks, D. A.; Reinhardt, B. T.; Tittmann, B. R.

    2013-01-25

    Bringing systems for online monitoring of nuclear reactors to fruition has been delayed by the lack of suitable ultrasonic sensors. Recent work has demonstrated the capability of an AlN sensor to perform ultrasonic evaluation in an actual nuclear reactor. Although the AlN demonstrated sustainability, no loss in signal amplitude and d{sub 33} up to a fast and thermal neutron fluence of 1.85 Multiplication-Sign 1018 n/cm{sup 2} and 5.8 Multiplication-Sign 1018 n/cm{sup 2} respectively, no formal process to selecting a suitable sensor material was made. It would be ideal to use first principles approaches to somehow reduce each candidate piezoelectric material to a simple ranking showing directly which materials one should expect to be most radiation tolerant. However, the complexity of the problem makes such a ranking impractical and one must appeal to experimental observations. This should not be of any surprise to one whom is familiar with material science as most material properties are obtained in this manner. Therefore, this work adopts a similar approach, the mechanisms affecting radiation tolerance are discussed and a good engineering sense is used for material qualification of the candidate piezoelectric materials.

  5. The Application of materials attractiveness in a graded approach to nuclear materials security

    SciTech Connect (OSTI)

    Ebbinghaus, B.; Bathke, C.; Dalton, D.; Murphy, J.

    2013-07-01

    The threat from terrorist groups has recently received greater attention. In this paper, material quantity and material attractiveness are addressed through the lens of a minimum security strategy needed to prevent the construction of a nuclear explosive device (NED) by an adversary. Nuclear materials are placed into specific security categories (3 or 4 categories) , which define a number of security requirements to protect the material. Materials attractiveness can be divided into four attractiveness levels, High, Medium, Low, and Very Low that correspond to the utility of the material to the adversary and to a minimum security strategy that is necessary to adequately protect the nuclear material. We propose a graded approach to materials attractiveness that recognizes for instance substantial differences in attractiveness between pure reactor-grade Pu oxide (High attractiveness) and fresh MOX fuel (Low attractiveness). In either case, an adversary's acquisition of a Category I quantity of plutonium would be a major incident, but the acquisition of Pu oxide by the adversary would be substantially worse than the acquisition of fresh MOX fuel because of the substantial differences in the time and complexity required of the adversary to process the material and fashion it into a NED.

  6. Die Materials for Critical Applications and Increased Production...

    Office of Scientific and Technical Information (OSTI)

    A paper copy of this document is also available for sale to the public from the National Technical Information Service, Springfield, VA at www.ntis.gov. Die materials for aluminum ...

  7. Improved Membrane Materials for PEM Fuel Cell Application

    SciTech Connect (OSTI)

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  8. The development of Sn-Li coolant/breeding material for APEX/ALPS applications.

    SciTech Connect (OSTI)

    Sze, D.-K.

    1999-07-08

    A Sn-Li alloy has been identified to be a coolant/breeding material for D-T fusion applications. The key feature of this material is its very low vapor pressure, which will be very useful for free surface concepts employed in APEX, ALPS and inertial confinement fission. The vapor is dominated by lithium, which has very low Z. Initial assessment of the material indicates acceptable tritium breeding capability, high thermal conductivity, expected low tritium volubility, and expected low chemical reactivities with water and air. Some key concerns are the high activation and material compatibility issues. The initial assessment of this material, for fission applications, is presented in this paper.

  9. Precursor Derived Nanostructured Si-C-X Materials for Nuclear Applications. Final Report, October 2010 - September 2014

    SciTech Connect (OSTI)

    Bordia, Rajendra; Tomar, Vikas; Henager, Chuck

    2015-04-08

    Polymer derived ceramic route is an attractive approach to make structural materials with unique nanostructures that have very desirable high temperature properties. Processing techniques to make a variety of needed shapes and forms (e.g. coatings, matrices for fiber reinforced composites, porous ceramics) have been developed. With appropriate high temperature processing, the precursors can be converted to nano-crystalline materials. In this collaborative project, we investigated the processing, stability and properties of nanostructured Si-C materials, derived from polymeric precursors, and their performance under conditions appropriate for nuclear energy applications. All the milestones of the project were accomplished. Some of the results are being currently analyzed and additional papers being prepared in which support from NEUP will be acknowledged. So far, eight peer-reviewed papers have been published and one invention disclosure made. In this report, we summarize the major findings of this project.

  10. Thermoelectric Materials for Automotive Applications | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Discusses the background information on what makes a good thermoelectric material, then the findings of three recent ORNL field report studies focused at PbSe, Bi2Se3, CrSi2, respectively parker.pdf (1.4 MB) More Documents & Publications Thermoelectrics Theory and Structure Thermoelectrics Theory and Structure

  11. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    SciTech Connect (OSTI)

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  12. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities mademore » from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.« less

  13. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    SciTech Connect (OSTI)

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Minerao (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  14. Interoperability of Materials Database Systems in Support of Nuclear Energy Development and Potential Applications for Fuel Cell Material Selection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Lianshan; Austin, Timothy; Ren, Weiju

    2015-01-01

    Materials database interoperability has been of great interest in recent years for information exchange in support of research and development (R&D). In response to data and knowledge sharing needs of the GenIV International Forum (GIF) for global collaboration in nuclear energy R&D, the European Commission JRC Institute for Energy and Transport (JRC-IET) and the Oak Ridge National Laboratory (ORNL) have established a materials database interoperability project that develops techniques for automated materials data exchange between systems hosted at the two institutes MatDB Online at JRC IET and the Gen IV Materials Handbook at ORNL, respectively. The work to enable automatedmore » exchange of data between the two systems leverages the XML data import and export functionalities of both systems in combination with recently developed standards for engineering materials data. The preliminary results of data communication between the two systems have demonstrated the feasibility and efficiency of materials database interoperability, which constructs an interoperation framework that can be seamlessly integrated into the high-throughput First Principles material databases and thus advance the discovery of novel materials in fuel cell applications.« less

  15. Interoperability of Materials Database Systems in Support of Nuclear Energy Development and Potential Applications for Fuel Cell Material Selection

    SciTech Connect (OSTI)

    Lin, Lianshan; Austin, Timothy; Ren, Weiju

    2015-01-01

    Materials database interoperability has been of great interest in recent years for information exchange in support of research and development (R&D). In response to data and knowledge sharing needs of the GenIV International Forum (GIF) for global collaboration in nuclear energy R&D, the European Commission JRC Institute for Energy and Transport (JRC-IET) and the Oak Ridge National Laboratory (ORNL) have established a materials database interoperability project that develops techniques for automated materials data exchange between systems hosted at the two institutes MatDB Online at JRC IET and the Gen IV Materials Handbook at ORNL, respectively. The work to enable automated exchange of data between the two systems leverages the XML data import and export functionalities of both systems in combination with recently developed standards for engineering materials data. The preliminary results of data communication between the two systems have demonstrated the feasibility and efficiency of materials database interoperability, which constructs an interoperation framework that can be seamlessly integrated into the high-throughput First Principles material databases and thus advance the discovery of novel materials in fuel cell applications.

  16. A review of the effects of coolant environments on the fatigue life of LWR structural materials.

    SciTech Connect (OSTI)

    Chopra, O. K.; Shack, W. J.

    2009-04-01

    The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code specifies design curves for the fatigue life of structural materials in nuclear power plants. However, the effects of light water reactor (LWR) coolant environments were not explicitly considered in the development of the design curves. The existing fatigue-strain-versus-life ({var_epsilon}-N) data indicate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. Under certain environmental and loading conditions, fatigue lives in water relative to those in air can be a factor of 15 lower for austenitic stainless steels and a factor of {approx}30 lower for carbon and low-alloy steels. This paper reviews the current technical basis for the understanding of the fatigue of piping and pressure vessel steels in LWR environments. The existing fatigue {var_epsilon}-N data have been evaluated to identify the various material, environmental, and loading parameters that influence fatigue crack initiation and to establish the effects of key parameters on the fatigue life of these steels. Statistical models are presented for estimating fatigue life as a function of material, loading, and environmental conditions. An environmental fatigue correction factor for incorporating the effects of LWR environments into ASME Code fatigue evaluations is described. This paper also presents a critical review of the ASME Code fatigue design margins of 2 on stress (or strain) and 20 on life and assesses the possible conservatism in the current choice of design margins.

  17. Applications of membrane processes for in-process materials recycling

    SciTech Connect (OSTI)

    Kim, B.M.; Thornton, R.F.; Shapiro, A.P.; Freshour, A.R.; El-Shoubary, Y.

    1996-12-31

    Zero discharge of wastes should be the ultimate goal of manufacturers. Waste reduction lowers costs and lessens liability associated with plant effluents. One approach toward this goal is elimination or minimization of wastes by in-process recycling of waste materials. We have examined opportunities for waste minimization for many equipment manufacturing plants and have evaluated membrane processes for in-process recycling. Membrane processes evaluated include vibrating membranes for suspended solid removal, ion exchange membranes for acid recovery, reverse osmosis and electrodialysis for dissolved salt removal, microporous membranes for recycling of machining coolants, oil emulsions, alkaline cleaners and others. This paper presents several examples of evaluations of membrane processes for materials recycling in manufacturing plants. 5 figs., 1 tab.

  18. Materials Research for Smart Grid Applications Steven J Bossart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research for Smart Grid Applications Steven J Bossart Ryan Egidi U.S. Department of Energy National Energy Technology Laboratory Our nation is transitioning to a Smart Grid which can sense and more optimally control the transmission, distribution, and delivery of electric power. The control of the electric power system is becoming more challenging with the addition of distributed renewable power sources, energy storage systems, electric vehicle charging, building and home energy management

  19. Vehicle Technologies Office Merit Review 2015: Validation of Material Models for Crash Simulation of Automotive Carbon Fiber Composite Structures (VMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material...

  20. Vehicle Technologies Office Merit Review 2014: Materials for Advanced Turbocharger Designs (Agreement ID:17257) Project ID:18518

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about materials for...

  1. TERA Application and Review Process Flowchart | Open Energy Informatio...

    Open Energy Info (EERE)

    and Review Process FlowchartLegal Published NA Year Signed or Took Effect 2014 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  2. Guidance on EIS Review and Recovery Act Loan Guarantee Applications

    Broader source: Energy.gov [DOE]

    DOE must complete NEPA review before it may provide financial assistance in the form of loan guarantees.  Projects seeking such assistance under Section 1705 of Title XVII of the Energy Policy Act...

  3. Trends in HFE Methods and Tools and Their Applicability to Safety Reviews

    SciTech Connect (OSTI)

    O'Hara, J.M.; Plott, C.; Milanski, J.; Ronan, A.; Scheff, S.; Laux, L.; and Bzostek, J.

    2009-09-30

    The U.S. Nuclear Regulatory Commission's (NRC) conducts human factors engineering (HFE) safety reviews of applicant submittals for new plants and for changes to existing plants. The reviews include the evaluation of the methods and tools (M&T) used by applicants as part of their HFE program. The technology used to perform HFE activities has been rapidly evolving, resulting in a whole new generation of HFE M&Ts. The objectives of this research were to identify the current trends in HFE methods and tools, determine their applicability to NRC safety reviews, and identify topics for which the NRC may need additional guidance to support the NRC's safety reviews. We conducted a survey that identified over 100 new HFE M&Ts. The M&Ts were assessed to identify general trends. Seven trends were identified: Computer Applications for Performing Traditional Analyses, Computer-Aided Design, Integration of HFE Methods and Tools, Rapid Development Engineering, Analysis of Cognitive Tasks, Use of Virtual Environments and Visualizations, and Application of Human Performance Models. We assessed each trend to determine its applicability to the NRC's review by considering (1) whether the nuclear industry is making use of M&Ts for each trend, and (2) whether M&Ts reflecting the trend can be reviewed using the current design review guidance. We concluded that M&T trends that are applicable to the commercial nuclear industry and are expected to impact safety reviews may be considered for review guidance development. Three trends fell into this category: Analysis of Cognitive Tasks, Use of Virtual Environments and Visualizations, and Application of Human Performance Models. The other trends do not need to be addressed at this time.

  4. Photoinduced charge-transfer materials for nonlinear optical applications

    DOE Patents [OSTI]

    McBranch, Duncan W.

    2006-10-24

    A method using polyelectrolyte self-assembly for preparing multi-layered organic molecular materials having individual layers which exhibit ultrafast electron and/or energy transfer in a controlled direction occurring over the entire structure. Using a high molecular weight, water-soluble, anionic form of poly-phenylene vinylene, self-assembled films can be formed which show high photoluminescence quantum efficiency (QE). The highest emission QE is achieved using poly(propylene-imine) (PPI) dendrimers as cationic binders. Self-quenching of the luminescence is observed as the solid polymer film thickness is increased and can be reversed by inserting additional spacer layers of transparent polyelectrolytes between each active conjugated layer, such that the QE grows with thickness. A red shift of the luminescence is also observed as additional PPV layers are added. This effect persists as self-quenching is eliminated. Charge transfer superlattices can be formed by additionally incorporating C.sub.60 acceptor layers.

  5. Materials and processes for the effective capture and immobilization of radioiodine: A review

    SciTech Connect (OSTI)

    Riley, Brian J.; Vienna, John D.; Strachan, Denis M.; McCloy, John S.; Jerden, Jr., James L.

    2015-12-02

    In this study, the immobilization of radioiodine produced from reprocessing used nuclear fuel is a growing priority for research and development of nuclear waste forms. This review provides a comprehensive summary of the current issues surrounding processing and containment of 129I, the isotope of greatest concern due to its long half-life of 1.6 × 107 y and potential incorporation into the human body. Strategies for disposal of radioiodine, captured by both wet scrubbing and solid sorbents, are discussed, as well as potential iodine waste streams for insertion into an immobilization process. Next, consideration of direct disposal of salts, incorporation into glasses, ceramics, cements, and other phases is discussed. The bulk of the review is devoted to an assessment of various sorbents for iodine and of waste forms described in the literature, particularly inorganic minerals, ceramics, and glasses. This review also contains recommendations for future research needed to address radioiodine immobilization materials and processes.

  6. Materials and processes for the effective capture and immobilization of radioiodine: A review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Riley, Brian J.; Vienna, John D.; Strachan, Denis M.; McCloy, John S.; Jerden, Jr., James L.

    2015-12-02

    In this study, the immobilization of radioiodine produced from reprocessing used nuclear fuel is a growing priority for research and development of nuclear waste forms. This review provides a comprehensive summary of the current issues surrounding processing and containment of 129I, the isotope of greatest concern due to its long half-life of 1.6 × 107 y and potential incorporation into the human body. Strategies for disposal of radioiodine, captured by both wet scrubbing and solid sorbents, are discussed, as well as potential iodine waste streams for insertion into an immobilization process. Next, consideration of direct disposal of salts, incorporation intomore » glasses, ceramics, cements, and other phases is discussed. The bulk of the review is devoted to an assessment of various sorbents for iodine and of waste forms described in the literature, particularly inorganic minerals, ceramics, and glasses. This review also contains recommendations for future research needed to address radioiodine immobilization materials and processes.« less

  7. Active nondestructive assay of nuclear materials: principles and applications

    SciTech Connect (OSTI)

    Gozani, Tsahi

    1981-01-01

    The purpose of this book is to present, coherently and comprehensively, the wealth of available but scattered information on the principles and applications of active nondestructive analysis (ANDA). Chapters are devoted to the following: background and overview; interactions of neutrons with matter; interactions of ..gamma..-rays with matter; neutron production and sources; ..gamma..-ray production and sources; effects of neutron and ..gamma..-ray transport in bulk media; signatures of neutron- and photon-induced fissions; neutron and photon detection systems and electronics; representative ANDA systems; and instrument analysis, calibration, and measurement control for ANDA. Each chapter has an introductory section describing the relationship of the topic of that chapter to ANDA. Each chapter ends with a section that summarizes the main results and conclusions of the chapter, and a reference list.

  8. Integrated nonlinear photonics: Emerging applications and ongoing challenges - A mini review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hendrickson, Scott M.; Foster, Amy C.; Camacho, Ryan M.; Clader, B. David

    2014-11-26

    In this paper, we provide a review of recent progress in integrated nonlinear photonics with a focus on emerging applications in all-optical signal processing, ultra-low-power all-optical switching, and quantum information processing.

  9. Integrated nonlinear photonics. Emerging applications and ongoing challenges - A mini review

    SciTech Connect (OSTI)

    Hendrickson, Scott M.; Foster, Amy C.; Camacho, Ryan M.; Clader, B. David

    2014-11-26

    In this paper, we provide a review of recent progress in integrated nonlinear photonics with a focus on emerging applications in all-optical signal processing, ultra-low-power all-optical switching, and quantum information processing.

  10. Plasma-based ion implantation and deposition: A review of physics,technology, and applications

    SciTech Connect (OSTI)

    Pelletier, Jacques; Anders, Andre

    2005-05-16

    After pioneering work in the 1980s, plasma-based ion implantation (PBII) and plasma-based ion implantation and deposition (PBIID) can now be considered mature technologies for surface modification and thin film deposition. This review starts by looking at the historical development and recalling the basic ideas of PBII. Advantages and disadvantages are compared to conventional ion beam implantation and physical vapor deposition for PBII and PBIID, respectively, followed by a summary of the physics of sheath dynamics, plasma and pulse specifications, plasma diagnostics, and process modeling. The review moves on to technology considerations for plasma sources and process reactors. PBII surface modification and PBIID coatings are applied in a wide range of situations. They include the by-now traditional tribological applications of reducing wear and corrosion through the formation of hard, tough, smooth, low-friction and chemically inert phases and coatings, e.g. for engine components. PBII has become viable for the formation of shallow junctions and other applications in microelectronics. More recently, the rapidly growing field of biomaterial synthesis makes used of PBII&D to produce surgical implants, bio- and blood-compatible surfaces and coatings, etc. With limitations, also non-conducting materials such as plastic sheets can be treated. The major interest in PBII processing originates from its flexibility in ion energy (from a few eV up to about 100 keV), and the capability to efficiently treat, or deposit on, large areas, and (within limits) to process non-flat, three-dimensional workpieces, including forming and modifying metastable phases and nanostructures. We use the acronym PBII&D when referring to both implantation and deposition, while PBIID implies that deposition is part of the process.

  11. Proactive Management of Materials Degradation - A Review of Principles and Programs

    SciTech Connect (OSTI)

    Bond, Leonard J.; Doctor, Steven R.; Taylor, Theodore T.

    2008-08-28

    The U.S. Nuclear Regulatory Commission (NRC) has undertaken a program to lay the technical foundation for defining proactive actions so that future degradation of materials in light water reactors (LWRs) is limited and, thereby, does not diminish either the integrity of important LWR components or the safety of operating plants. This technical letter report was prepared by staff at Pacific Northwest National Laboratory in support of the NRC Proactive Management of Materials Degradation (PMMD) program and relies heavily on work that was completed by Dr. Joseph Muscara and documented in NUREG/CR-6923. This report concisely explains the basic principles of PMMD and its relationship to prognostics, provides a review of programs related to PMMD being conducted worldwide, and provides an assessment of the technical gaps in PMMD and prognostics that need to be addressed. This technical letter report is timely because the majority of the U.S. reactor fleet is applying for license renewal, and many plants are also applying for increases in power rating. Both of these changes could increase the likelihood of materials degradation and underline, therefore, the interest in proactive management in the future.

  12. A Review of Removable Surface Contamination on Radioactive Materials Transportation Containers

    SciTech Connect (OSTI)

    Kennedy, Jr, W. E.; Watson, E. C.; Murphy, D. W.; Harrer, B. J.; Harty, R.; Aldrich, J. M.

    1981-05-01

    This report contains the results of a study sponsored by the U.S. Nuclear Regulatory Commission (NRC) of removable surface contamination on radioactive materials transportation containers. The purpose of the study is to provide information to the NRC during their review of existing regulations. Data was obtained from both industry and literature on three major topics: 1) radiation doses, 2) economic costs, and 3) contamination frequencies. Containers for four categories of radioactive materials are considered including radiopharmaceuticals, industrial sources, nuclear fuel cycle materials, and low-level radioactive waste. Assumptions made in this study use current information to obtain realistic yet conservative estimates of radiation dose and economic costs. Collective and individual radiation doses are presented for each container category on a per container basis. Total doses, to workers and the public, are also presented for spent fuel cask and low-level waste drum decontamination. Estimates of the additional economic costs incurred by lowering current limits by factors of 10 and 100 are presented. Current contamination levels for each category of container are estimated from the data collected. The information contained in this report is designed to be useful to the NRC in preparing their recommendations for new regulations.

  13. The properties and weldability of materials for fusion reactor applications

    SciTech Connect (OSTI)

    Chin, B.A.; Kee, C.K.; Wilcox, R.C.; Zinkle, S.J.

    1991-11-15

    Low-activation austenitic stainless steels have been suggested for applications within fusion reactors. The use of these nickel-free steels will help to reduce the radioactive waste management problem after service. one requirement for such steels is the ability to obtain sound welds for fabrication purposes. Thus, two austenitic Fe-Cr-Mn alloys were studied to characterize the welded microstructure and mechanical properties. The two steels investigated were a Russian steel (Fe-11.6Cr19.3Mn-0.181C) and an US steel (Fe-12.lCr-19.4Mn-0.24C). Welding was performed using a gas tungsten arc welding (GTAW) process. Microscopic examinations of the structure of both steels were conducted. The as-received Russian steel was found to be in the annealed state. Only the fusion zone and the base metal were observed in the welded Russian steel. No visible heat affected zone was observed. Examination revealed that the as-received US steel was in the cold rolled condition. After welding, a fusion zone and a heat affected zone along with the base metal region were found.

  14. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    SciTech Connect (OSTI)

    Marra, J.

    2010-09-29

    proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.

  15. Application for managing model-based material properties for simulation-based engineering

    DOE Patents [OSTI]

    Hoffman, Edward L.

    2009-03-03

    An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.

  16. A HUMAN RELIABILITY-CENTERED APPROACH TO THE DEVELOPMENT OF JOB AIDS FOR REVIEWERS OF MEDICAL DEVICES THAT USE RADIOLOGICAL BYPRODUCT MATERIALS.

    SciTech Connect (OSTI)

    COOPER, S.E.; BROWN, W.S.; WREATHALL, J.

    2005-02-02

    The U.S. Nuclear Regulatory Commission (NRC) is engaged in an initiative to risk-inform the regulation of byproduct materials. Operating experience indicates that human actions play a dominant role in most of the activities involving byproduct materials, which are radioactive materials other than those used in nuclear power plants or in weapons production, primarily for medical or industrial purposes. The overall risk of these activities is strongly influenced by human performance. Hence, an improved understanding of human error, its causes and contexts, and human reliability analysis (HRA) is important in risk-informing the regulation of these activities. The development of the human performance job aids was undertaken by stages, with frequent interaction with the prospective users. First, potentially risk significant human actions were identified based on reviews of available risk studies for byproduct material applications and of descriptions of events for byproduct materials applications that involved potentially significant human actions. Applications from the medical and the industrial domains were sampled. Next, the specific needs of the expected users of the human performance-related capabilities were determined. To do this, NRC headquarters and region staff were interviewed to identify the types of activities (e.g., license reviews, inspections, event assessments) that need HRA support and the form in which such support might best be offered. Because the range of byproduct uses regulated by NRC is so broad, it was decided that initial development of knowledge and tools would be undertaken in the context of a specific use of byproduct material, which was selected in consultation with NRC staff. Based on needs of NRC staff and the human performance related characteristics of the context chosen, knowledge resources were then compiled to support consideration of human performance issues related to the regulation of byproduct materials. Finally, with

  17. Development and Applications Of Photosensitive Device Systems To Studies Of Biological And Organic Materials

    SciTech Connect (OSTI)

    Gruner, Sol

    2012-01-20

    The primary focus of the grant is the development of new x-ray detectors for biological and materials work at synchrotron sources, especially Pixel Array Detectors (PADs), and the training of students via research applications to problems in biophysics and materials science using novel x-ray methods. This Final Progress Report provides a high-level overview of the most important accomplishments. These major areas of accomplishment include: (1) Development and application of x-ray Pixel Array Detectors; (2) Development and application of methods of high pressure x-ray crystallography as applied to proteins; (3) Studies on the synthesis and structure of novel mesophase materials derived from block co-polymers.

  18. In situ XAS Characterization of Catalytic Nano-Materials with Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Fuel Cells and Batteries | Stanford Synchrotron Radiation Lightsource XAS Characterization of Catalytic Nano-Materials with Applications to Fuel Cells and Batteries Friday, July 12, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Qingying Jia, Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA The development of novel electrode materials is hindered by the lack of fundamental understanding of the precise structural effects on the catalytic activity and

  19. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  20. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Understanding and manipulating the most fundamental properties of materials can lead to major breakthroughs in solar power, reactor fuels, optical computing, telecommunications. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Yu Seung Kim (left) and Kwan-Soo Lee (right) New class of fuel cells offer increased flexibility, lower cost A new class of fuel cells based on a newly discovered polymer-based material could bridge

  1. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  2. Material Development for Tooling Applications Using Big Area Additive Manufacturing (BAAM)

    SciTech Connect (OSTI)

    Duty, Chad E.; Drye, Tom; Franc, Alan

    2015-03-01

    Techmer Engineered Solutions (TES) is working with Oak Ridge National Laboratory (ORNL) to develop materials and evaluate their use for ORNL s recently developed Big Area Additive Manufacturing (BAAM) system for tooling applications. The first phase of the project established the performance of some commercially available polymer compositions deposited with the BAAM system. Carbon fiber reinforced ABS demonstrated a tensile strength of nearly 10 ksi, which is sufficient for a number of low temperature tooling applications.

  3. Engineering aspects of the application of structural materials in the 5 MW-ESS-mercury-target

    SciTech Connect (OSTI)

    Guttek, B.

    1996-06-01

    A main problem of the ESS-Hg-target development and the design of the components of its primary Hg-circuit is the choice of structural materials. As designing, calculations and experiments with elected materials take time and are very costy, a preview on their successful application has to be done before as detailed as possible. One aspect on this is to have the knowledge of characteristics values of the structural material candidates under the occuring mechanical and thermal loads, irradiation, corrosion and erosion. Another point is the technology of engineering concerning the manufacturing, welding, surface treatment, and quality control of such parts and components under the demand to reach maximum lifetime.

  4. Vehicle Technologies Office Merit Review 2016: ICME Guided Development of Advanced Cast Aluminum Alloys for Automotive Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Ford at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Propulsion Materials

  5. Review of Sorghum Production Practices: Applications for Bioenergy

    SciTech Connect (OSTI)

    Turhollow Jr, Anthony F; Webb, Erin; Downing, Mark

    2010-06-01

    Sorghum has great potential as an annual energy crop. While primarily grown for its grain, sorghum can also be grown for animal feed and sugar. Sorghum is morphologically diverse, with grain sorghum being of relatively short stature and grown for grain, while forage and sweet sorghums are tall and grown primarily for their biomass. Under water-limited conditions sorghum is reliably more productive than corn. While a relatively minor crop in the United States (about 2% of planted cropland), sorghum is important in Africa and parts of Asia. While sorghum is a relatively efficient user of water, it biomass potential is limited by available moisture. The following exhaustive literature review of sorghum production practices was developed by researchers at Oak Ridge National Laboratory to document the current state of knowledge regarding sorghum production and, based on this, suggest areas of research needed to develop sorghum as a commercial bioenergy feedstock. This work began as part of the China Biofuels Project sponsored by the DOE Energy Efficiency and Renewable Energy Program to communicate technical information regarding bioenergy feedstocks to government and industry partners in China, but will be utilized in a variety of programs in which evaluation of sorghum for bioenergy is needed. This report can also be used as a basis for data (yield, water use, etc.) for US and international bioenergy feedstock supply modeling efforts.

  6. An assessment of performance of materials for FBC (fluidized-bed combustion) air heater applications

    SciTech Connect (OSTI)

    Natesan, K.; Miller, S.A.; Podolski, W.F.

    1986-10-01

    The major materials issue in the commercialization of fluidized-bed combustion (FBC) systems for utility cogeneration applications is the corrosion/erosion degradation of in-bed components. To examine this issue, pertinent materials information was collected from 13 sources that included 16 different experimental fluidized-bed combustors (four pressurized, the other atmospheric), and a detailed analysis of the data was performed. The data analysis confirmed that austenitic stainless steels (notably Types 304 and 310) and cobalt-base alloys (notably Haynes 188) are superior to nickel-base alloys. Type 347 stainless steel and Incoloy 800H are questionable from the point of view of metal wastage. Very limited data are available for claddings and coatings. The correlations of the corrosion rate data presented in this paper for several of the more promising alloy candidates for air heater application provide guidelines for the selection of materials with reasonably assured performance in a corrosive environment.

  7. A cost-effective approach to evaluate insulative materials for low heat flux applications

    SciTech Connect (OSTI)

    Kneer, M.J.; Koo, J.H.; Miller, M.J.; Schneider, M.E. )

    1993-01-01

    Insulative materials are used as thermal barriers to protect a substrate (e.g., wood, metal, or ordnance) from heat sources (e.g., fires or aerodynamic heating). Insulative coatings can be either inert, ablative, intumescent, or a combination of these three. This paper describes a cost-effective approach that we have developed to screen candidate materials for an application before proceeding with expensive qualification testings. Both radiant heat and hydrocarbon flame environments were used and compared. Several applications are discussed in this paper with emphasis on fast cookoff simulations. Eight insulative materials were tested and compared. Mass loss, maximum expansion, backface temperature, thermal margin, and surface and subsurface analyses were performed. 8 refs.

  8. Low work function materials for microminiature energy conversion and recovery applications

    DOE Patents [OSTI]

    Zavadil, Kevin R.; Ruffner, Judith A.; King, Donald B.

    2003-05-13

    Low work function materials are disclosed together with methods for their manufacture and integration with electrodes used in thermionic conversion applications (specifically microminiature thermionic conversion applications). The materials include a mixed oxide system and metal in a compositionally modulated structure comprised of localized discontinuous structures of material that are deposited using techniques suited to IC manufacture, such as rf sputtering or CVD. The structures, which can include layers are then heated to coalescence yielding a thin film that is both durable and capable of electron emission under thermionic conversion conditions used for microminiature thermionic converters. Using the principles of the invention, thin film electrodes (emitters and collectors) required for microconverter technology are manufactured using a single process deposition so as to allow for full fabrication integration consistent with batch processing, and tailoring of emission/collection properties. In the preferred embodiment, the individual layers include mixed BaSrCaO, scandium oxide and tungsten.

  9. Status review of the science and technology of Ultrananoscrystalline Diamond (UNCD (sup {trademark}) films and application to multifunctional devices.

    SciTech Connect (OSTI)

    Auciello, O.; Sumant, A. V.

    2010-07-01

    This review focuses on a status report on the science and technology of ultrananocrystalline diamond (UNCD) films developed and patented at Argonne National Laboratory. The UNCD material has been developed in thin film form and exhibit multifunctionalities applicable to a broad range of macro to nanoscale multifunctional devices. UNCD thin films are grown by microwave plasma chemical vapor deposition (MPCVD) or hot filament chemical vapor deposition (HFCVD) using new patented Ar-rich/CH4 or H2/CH4 plasma chemistries. UNCD films exhibit a unique nanostructure with 2-5 nm grain size (thus the trade name UNCD) and grain boundaries of 0.4-0.6 nm for plain films, and grain sizes of 7-10 nm and grain boundaries of 2-4 nm when grown with nitrogen introduced in the Ar-rich/CH4 chemistry, to produce UNCD films incorporated with nitrogen, which exhibit electrical conductivity up to semi-metallic level. This review provides a status report on the synthesis of UNCD films via MPCVD and integration with dissimilar materials like oxides for piezoactuated MEMS/NEMS, metal films for contacts, and biological matter for a new generation of biomedical devices and biosensors. A broad range of applications from macro to nanoscale multifunctional devices is reviewed, such as coatings for mechanical pumps seals, field-emission cold cathodes, RF MEMS/NEMS resonators and switches for wireless communications and radar systems, NEMS devices, biomedical devices, biosensors, and UNCD as a platform for developmental biology, involving biological cells growth on the surface. Comparisons with nanocrystalline diamond films and technology are made when appropriate.

  10. Synthesis, characterization, properties, and applications of nanosized ferroelectric, ferromagnetic, or multiferroic materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dhak, Debasis; Hong, Seungbum; Das, Soma; Dhak, Prasanta

    2015-01-01

    Recently, there has been an enormous increase in research activity in the field of ferroelectrics and ferromagnetics especially in multiferroic materials which possess both ferroelectric and ferromagnetic properties simultaneously. However, the ferroelectric, ferromagnetic, and multiferroic properties should be further improved from the utilitarian and commercial viewpoints. Nanostructural materials are central to the evolution of future electronics and information technologies. Ferroelectrics and ferromagnetics have already been established as a dominant branch in electronics sector because of their diverse applications. The ongoing dimensional downscaling of materials to allow packing of increased numbers of components into integrated circuits provides the momentum for evolutionmoreof nanostructural devices. Nanoscaling of the above materials can result in a modification of their functionality. Furthermore, nanoscaling can be used to form high density arrays of nanodomain nanostructures, which is desirable for miniaturization of devices.less

  11. Beryllium processing technology review for applications in plasma-facing components

    SciTech Connect (OSTI)

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.

  12. LENS repair and modification of metal NW components:materials and applications guide.

    SciTech Connect (OSTI)

    Smugeresky, John E. (Sandia National Laboratories, Livermore, CA); Gill, David Dennis; Oberhaus, Jason (BWXT Y-12); Adams, Thad; VanCamp, Chad

    2006-11-01

    Laser Engineered Net Shaping{trademark} (LENS{reg_sign}) is a unique, layer additive, metal manufacturing technique that offers the ability to create fully dense metal features and components directly from a computer solid model. LENS offers opportunities to repair and modify components by adding features to existing geometry, refilling holes, repairing weld lips, and many other potential applications. The material deposited has good mechanical properties with strengths typically slightly higher that wrought material due to grain refinement from a quickly cooling weld pool. The result is a material with properties similar to cold worked material, but without the loss in ductility traditionally seen with such treatments. Furthermore, 304L LENS material exhibits good corrosion resistance and hydrogen compatibility. This report gives a background of the LENS process including materials analysis addressing the requirements of a number of different applications. Suggestions are given to aid both the product engineer and the process engineer in the successful utilization of LENS for their applications. The results of testing on interface strength, machinability, weldability, corrosion resistance, geometric effects, heat treatment, and repair strategy testing are all included. Finally, the qualification of the LENS process is briefly discussed to give the user confidence in selecting LENS as the process of choice for high rigor applications. The testing showed LENS components to have capability in repair/modification applications requiring complex castings (W80-3 D-Bottle bracket), thin wall parts requiring metal to be rebuilt onto the part (W87 Firing Set Housing and Y-12 Test Rings), the filling of counterbores for use in reservoir reclamation welding (SRNL hydrogen compatibility study) and the repair of surface defects on pressure vessels (SRNL gas bottle repair). The material is machinable, as testing has shown that LENS deposited material machines similar to that of

  13. Open literature review of threats including sabotage and theft of fissile material transport in Japan.

    SciTech Connect (OSTI)

    Cochran, John Russell; Furaus, James Phillip; Marincel, Michelle K.

    2005-06-01

    This report is a review of open literature concerning threats including sabotage and theft related to fissile material transport in Japan. It is intended to aid Japanese officials in the development of a design basis threat. This threat includes the external threats of the terrorist, criminal, and extremist, and the insider threats of the disgruntled employee, the employee forced into cooperation via coercion, the psychotic employee, and the criminal employee. Examination of the external terrorist threat considers Japanese demographics, known terrorist groups in Japan, and the international relations of Japan. Demographically, Japan has a relatively homogenous population, both ethnically and religiously. Japan is a relatively peaceful nation, but its history illustrates that it is not immune to terrorism. It has a history of domestic terrorism and the open literature points to the Red Army, Aum Shinrikyo, Chukaku-Ha, and Seikijuku. Japan supports the United States in its war on terrorism and in Iraq, which may make Japan a target for both international and domestic terrorists. Crime appears to remain low in Japan; however sources note that the foreign crime rate is increasing as the number of foreign nationals in the country increases. Antinuclear groups' recent foci have been nuclear reprocessing technology, transportation of MOX fuel, and possible related nuclear proliferation issues. The insider threat is first defined by the threat of the disgruntled employee. This threat can be determined by studying the history of Japan's employment system, where Keiretsu have provided company stability and lifetime employment. Recent economic difficulties and an increase of corporate crime, due to sole reliability on the honor code, have begun to erode employee loyalty.

  14. A review on nanomechanical resonators and their applications in sensors and molecular transportation

    SciTech Connect (OSTI)

    Arash, Behrouz; Rabczuk, Timon; Jiang, Jin-Wu

    2015-06-15

    Nanotechnology has opened a new area in science and engineering, leading to the development of novel nano-electromechanical systems such as nanoresonators with ultra-high resonant frequencies. The ultra-high-frequency resonators facilitate wide-ranging applications such as ultra-high sensitive sensing, molecular transportation, molecular separation, high-frequency signal processing, and biological imaging. This paper reviews recent studies on dynamic characteristics of nanoresonators. A variety of theoretical approaches, i.e., continuum modeling, molecular simulations, and multiscale methods, in modeling of nanoresonators are reviewed. The potential application of nanoresonators in design of sensor devices and molecular transportation systems is introduced. The essence of nanoresonator sensors for detection of atoms and molecules with vibration and wave propagation analyses is outlined. The sensitivity of the resonator sensors and their feasibility in detecting different atoms and molecules are particularly discussed. Furthermore, the applicability of molecular transportation using the propagation of mechanical waves in nanoresonators is presented. An extended application of the transportation methods for building nanofiltering systems with ultra-high selectivity is surveyed. The article aims to provide an up-to-date review on the mechanical properties and applications of nanoresonators, and inspire additional potential of the resonators.

  15. Vehicle Technologies Office Merit Review 2015: Continuum Modeling as a Guide to Developing New Battery Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Lawrence Berkley National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  16. Vehicle Technologies Office Merit Review 2016: Advanced Bus and Truck Radial Materials for Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by PPG at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  17. Vehicle Technologies Office Merit Review 2015: Process Development and Scale up of Advanced Active Battery Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Process...

  18. Vehicle Technologies Office Merit Review 2014: Process Development and Scale Up of Advanced Electrolyte Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about process...

  19. Vehicle Technologies Office Merit Review 2015: Tailored Materials for Improved Internal Combustion Engine Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  20. Vehicle Technologies Office Merit Review 2015: Design of High Performance, High Energy Cathode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkley National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  1. Vehicle Technologies Office Merit Review 2015: User Facilities for Energy Storage Materials Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about user facilities...

  2. Vehicle Technologies Office Merit Review 2014: First Principles Calculations and NMR Spectroscopy of Electrode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about first principles calculations...

  3. Vehicle Technologies Office Merit Review 2014: Microscopy Investigation on the Fading Mechanism of Electrode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  4. Vehicle Technologies Office Merit Review 2015: Microscopy Investigation on the Fading Mechanism of Electrode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  5. Vehicle Technologies Office Merit Review 2016: Design of High Performance, High Energy Cathode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkeley National Laboratory (LBNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  6. Vehicle Technologies Office Merit Review 2015: First Principles Calculations of Existing and Novel Electrode Material

    Broader source: Energy.gov [DOE]

    Presentation given by Massachusetts Institute of Technology at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about first...

  7. Vehicle Technologies Office Merit Review 2014: Predicting and Understanding Novel Electrode Materials From First-Principles

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  8. Vehicle Technologies Office Merit Review 2015: Predicting and Understanding Novel Electrode Materials from First-Principles

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkley National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  9. Vehicle Technologies Office Merit Review 2014: Design of High Performance, High Energy Cathode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  10. Vehicle Technologies Office Merit Review 2014: Design and Synthesis of Advanced High-Energy Cathode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the...

  11. Vehicle Technologies Office Merit Review 2015: Design and Synthesis of Advanced High-Energy Cathode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkley National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  12. Vehicle Technologies Office Merit Review 2015: Enabling Materials for High Temperature Power Electronics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about enabling...

  13. Vehicle Technologies Office Merit Review 2016: Design and Synthesis of Advanced High-Energy Cathode Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Lawrence Berkeley National Laboratory (LBNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  14. Vehicle Technologies Office Merit Review 2016: Low Cost Manufacturing of Advanced Silicon-Based Anode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Group14 at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  15. Vehicle Technologies Office Merit Review 2015: Advanced In-Situ Diagnostic Techniques for Battery Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Brookhaven National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced in...

  16. Vehicle Technologies Office Merit Review 2014: Understanding Structural Changes in LMR-NMC Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about understanding...

  17. Vehicle Technologies Office Merit Review 2014: Development of High-Energy Cathode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  18. Vehicle Technologies Office Merit Review 2016: Innovative SCR Materials and Systems for Low Temperature Aftertreatment

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory (PNNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  19. Vehicle Technologies Office Merit Review 2016: Microscopy Investigation on the Fading Mechanism of Electrode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory (PNNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  20. Vehicle Technologies Office Merit Review 2016: Electrode Materials Design and Failure Prediction

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkeley National Laboratory (LBNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  1. Vehicle Technologies Office Merit Review 2015: Development of High-Energy Cathode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  2. Vehicle Technologies Office Merit Review 2016: High Energy Anode Material Development for Li-Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Sinode Systems at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  3. Vehicle Technologies Office Merit Review 2016: First Principles Calculations of Existing and Novel Electrode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkeley National Laboratory (LBNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  4. Vehicle Technologies Office Merit Review 2016: Predicting and Understanding Novel Electrode Materials From First-Principles

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkeley National Laboratory (LBNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  5. Vehicle Technologies Office Merit Review 2014: Active, Tailorable Adhesives for Dissimilar Material Bonding, Repair and Assembly

    Broader source: Energy.gov [DOE]

    Presentation given by Michigan State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Active, tailorable...

  6. Vehicle Technologies Office Merit Review 2015: Active, Tailorable Adhesives for Dissimilar Material Bonding, Repair and Assembly

    Broader source: Energy.gov [DOE]

    Presentation given by Michigan State University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about active, tailorable...

  7. Vehicle Technologies Office Merit Review 2016: Active, Tailorable Adhesives for Dissimilar Material Bonding, Repair and Assembly

    Broader source: Energy.gov [DOE]

    Presentation given by Michigan State University at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  8. Vehicle Technologies Office Merit Review 2016: Advanced In Situ Diagnostic Techniques for Battery Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Brookhaven National Laboratory (BNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  9. Vehicle Technologies Office Merit Review 2015: High Temperature Materials for High Efficiency Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  10. Vehicle Technologies Office Merit Review 2014: High Temperature Materials for High Efficiency Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  11. Vehicle Technologies Office Merit Review 2014: Atomistic models of LMRNMC Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about atomistic models...

  12. Vehicle Technologies Office Merit Review 2015: Enhanced High and Low Temperature Performance of NOx Reduction Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  13. Vehicle Technologies Office Merit Review 2016: Enhanced High and Low Temperature Performance of NOx Reduction Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory (PNNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  14. Vehicle Technologies Office Merit Review 2014: First Principles Calculations of Existing and Novel Electrode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Massachusetts Institute of Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about first...

  15. Vehicle Technologies Office Merit Review 2016: Development of High-Energy Cathode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory (PNNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  16. Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics

    SciTech Connect (OSTI)

    Li, XL

    2012-04-01

    Metal assisted chemical etching (MacEtch) is a recently developed anisotropic wet etching method that is capable of producing high aspect ratio semiconductor nanostructures from patterned metal film. In this review article, we highlight the characteristics of MacEtch of silicon (Si) including controllability of the produced sidewall roughness, the inherent high aspect ratio, the weak crystal orientation dependence, impurity doping and solution concentration dependent porosity, as well as the applicability of MacEtch to non-Si based semiconductor materials including III-V compound semiconductors. Also reviewed are applications of MacEtch produced high aspect ratio Si nanostructures in photovoltaics, where the p-n junction can be in the planar Si tray, core-shell, or axial geometry, with nanowire, micropillar, or hole arrays serving as light trapping or carrier collection structures. The prospect of using MacEtch to improve the cost and efficiency of photovoltaic cells is discussed. (c) 2011 Elsevier Ltd. All rights reserved.

  17. Particle deposition from turbulent flow: Review of published research and its applicability to ventilation ducts in commercial buildings

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2002-06-01

    This report reviews published experimental and theoretical investigations of particle deposition from turbulent flows and considers the applicability of this body of work to the specific case of particle deposition from flows in the ducts of heating, ventilating and air conditioning (HVAC) systems. Particle deposition can detrimentally affect the performance of HVAC systems and it influences the exposure of building occupants to a variety of air pollutants. The first section of this report describes the types of HVAC systems under consideration and discusses the components, materials and operating parameters commonly found in these systems. The second section reviews published experimental investigations of particle deposition rates from turbulent flows and considers the ramifications of the experimental evidence with respect to HVAC ducts. The third section considers the structure of turbulent airflows in ventilation ducts with a particular emphasis on turbulence investigations that have been used as a basis for particle deposition models. The final section reviews published literature on predicting particle deposition rates from turbulent flows.

  18. Guidelines for preparing and reviewing applications for the licensing of non-power reactors: Standard review plan and acceptance criteria. NUREG - 1537, Part 2

    SciTech Connect (OSTI)

    1996-02-01

    NUREG - 1537, Part 2 gives guidance on the conduct of licensing action reviews to NRC staff who review non-power reactor licensing applications. These licensing actions include construction permits and initial operating licenses, license renewals, amendments, conversions from highly enriched uranium to low-enriched uranium, decommissioning, and license termination.

  19. Potential industrial applications for composite phase-change materials as thermal energy storage media

    SciTech Connect (OSTI)

    Spanner, G.E.; Wilfert, G.L.

    1989-07-01

    Considerable effort has been spent by the US Department of Energy and its contractors over the last few years to develop composite phase-change materials (CPCMs) for thermal energy storage (TES). This patented TES medium consists of a phase-change material (typically a salt or metal alloy) that is retained within the porous structure of a supporting material (typically a ceramic). The objectives of this study were to (1) introduce CPCMs to industries that may not otherwise be aware of them, (2) identify potentially attractive applications for CPCM in industry, (3) determine technical requirements that will affect the design of CPCM's for specific applications, and (4) generate interest among industrial firms for employing CPCM TES in their processes. The approach in this study was to examine a wide variety of industries using a series of screens to select those industries that would be most likely to adopt CPCM TES in their processes. The screens used in this study were process temperature, presence of time-varying energy flows, energy intensity of the industry, and economic growth prospects over the next 5 years. After identifying industries that passed all of the screens, representatives of each industry were interviewed by telephone to introduce them to CPCM TES, assess technical requirements for CPCM TES in their industry, and determine their interest in pursuing applications for CPCM TES. 11 refs., 4 tabs.

  20. Investigation of metallic, ceramic, and polymeric materials for engineered barrier applications in nuclear-waste packages

    SciTech Connect (OSTI)

    Westerman, R.E.

    1980-10-01

    An effort to develop licensable engineered barrier systems for the long-term (about 1000 yr) containment of nuclear wastes under conditions of deep continental geologic disposal has been underway at Pacific Northwest Laboratory since January 1979, under the auspices of the High-Level Waste Immobilization Program. In the present work, the barrier system comprises the hard or structural elements of the package: the canister, the overpack(s), and the hole sleeve. A number of candidate metallic, ceramic, and polymeric materials were put through mechanical, corrosion, and leaching screening tests to determine their potential usefulness in barrier-system applications. Materials demonstrating adequate properties in the screening tests will be subjected to more detailed property tests, and, eventually, cost/benefit analyses, to determine their ultimate applicability to barrier-system design concepts. The following materials were investigated: two titanium alloys of Grade 2 and Grade 12; 300 and 400 series stainless steels, Inconels, Hastelloy C-276, titanium, Zircoloy, copper-nickel alloys and cast irons; total of 14 ceramic materials, including two grades of alumina, plus graphite and basalt; and polymers such as polyamide-imide, polyarylene, polyimide, polyolefin, polyphenylene sulfide, polysulfone, fluoropolymer, epoxy, furan, silicone, and ethylene-propylene terpolymer (EPDM) rubber. The most promising candidates for further study and potential use in engineered barrier systems were found to be rubber, filled polyphenylene sulfide, fluoropolymer, and furan derivatives.

  1. Final Report of Optimization Algorithms for Hierarchical Problems, with Applications to Nanoporous Materials

    SciTech Connect (OSTI)

    Nash, Stephen G.

    2013-11-11

    The research focuses on the modeling and optimization of nanoporous materials. In systems with hierarchical structure that we consider, the physics changes as the scale of the problem is reduced and it can be important to account for physics at the fine level to obtain accurate approximations at coarser levels. For example, nanoporous materials hold promise for energy production and storage. A significant issue is the fabrication of channels within these materials to allow rapid diffusion through the material. One goal of our research is to apply optimization methods to the design of nanoporous materials. Such problems are large and challenging, with hierarchical structure that we believe can be exploited, and with a large range of important scales, down to atomistic. This requires research on large-scale optimization for systems that exhibit different physics at different scales, and the development of algorithms applicable to designing nanoporous materials for many important applications in energy production, storage, distribution, and use. Our research has two major research thrusts. The first is hierarchical modeling. We plan to develop and study hierarchical optimization models for nanoporous materials. The models have hierarchical structure, and attempt to balance the conflicting aims of model fidelity and computational tractability. In addition, we analyze the general hierarchical model, as well as the specific application models, to determine their properties, particularly those properties that are relevant to the hierarchical optimization algorithms. The second thrust was to develop, analyze, and implement a class of hierarchical optimization algorithms, and apply them to the hierarchical models we have developed. We adapted and extended the optimization-based multigrid algorithms of Lewis and Nash to the optimization models exemplified by the hierarchical optimization model. This class of multigrid algorithms has been shown to be a powerful tool for

  2. Development of a Controlled Material Specification for Alloy 617 for Nuclear Applications

    SciTech Connect (OSTI)

    Ren, Weiju

    2005-05-01

    Investigation is conducted in an effort to refine the standard specifications of Alloy 617 for the Very High Temperature Reactor applications. Background, motivation and rationale of the investigation are discussed. Historical data generated from various heats of the alloy are collected, sorted, and analyzed. The analyses include examination of mechanical property data and corresponding heat chemical composition, discussion on previous Alloy 617 specification development effort at the Oak Ridge National Laboratory, and assessment of the strengthening elements and mechanisms of the alloy. Based on the analyses, literature review, and knowledge of Ni base alloys, a tentative refined specification is recommended. Future work for verifying and improving the tentative refined specification is also suggested.

  3. Vehicle Technologies Office Merit Review 2014: Process Development and Scale-up of Advanced Cathode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about process development and scale...

  4. Vehicle Technologies Office Merit Review 2015: Mixed Polyanion (MP) Glasses as Cathode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about mixed polyanion...

  5. Vehicle Technologies Office Merit Review 2014: Lithium-Bearing Mixed Polyanion Glasses as Cathode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lithium-bearing...

  6. Vehicle Technologies Office Merit Review 2015: Electrode Architecture-Assembly of Battery Materials and Electrodes

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Hydro Quebec at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrode architecture-assembly...

  7. Vehicle Technologies Office Merit Review 2015: Lithium-Ion Battery Production and Recycling Materials Issues

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lithium-ion...

  8. Vehicle Technologies Office Merit Review 2016: Process Development and Scale-Up of Critical Battery Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  9. Vehicle Technologies Office Merit Review 2014: Overiew of Materials Technologies R&D

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of...

  10. Vehicle Technologies Office Merit Review 2016: Enabling Materials for High Temperature Power Electronics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  11. Vehicle Technologies Office Merit Review 2016: Post-Test Analysis of Lithium-Ion Battery Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  12. 2013-02 "Review Material Disposal Areas at LANL in Addition to...

    Broader source: Energy.gov (indexed) [DOE]

    2 is to ensure that the appropriate level of review has been given to MDAs other than MDA G at LANL that may be at similar risk in the event of wild fires. Rec 2013-02 - March 20,...

  13. Vehicle Technologies Office Merit Review 2014: Electrode Architecture-Assembly of Battery Materials and Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Hydro-Québec at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrode architecture-assembly...

  14. Vehicle Technologies Office Merit Review 2016: Materials Benchmarking Activities For CAMP Facility

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  15. Vehicle Technologies Office Merit Review 2016: High Temperature Materials for High Efficiency Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  16. Vehicle Technologies Office Merit Review 2016: Applied Computational Methods for New Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  17. Vehicle Technologies Office Merit Review 2014: Collision Welding of Dissimilar Materials by Vaporizing Foil Actuator

    Broader source: Energy.gov [DOE]

    Presentation given by The Ohio State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about collision welding...

  18. Vehicle Technologies Office Merit Review 2015: Collision Welding of Dissimilar Materials by Vaporizing Foil Actuator

    Broader source: Energy.gov [DOE]

    Presentation given by Ohio State University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about collision welding of...

  19. Vehicle Technologies Office Merit Review 2016: Materials Issues Associated with EGR Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  20. APPLICATION FO FLOW FORMING FOR USE IN RADIOACTIVE MATERIAL PACKAGING DESIGNS

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.; Abramczyk, G.

    2012-07-11

    This paper reports on the development and testing performed to demonstrate the use of flow forming as an alternate method of manufacturing containment vessels for use in radioactive material shipping packaging designs. Additionally, ASME Boiler and Pressure Vessel Code, Section III, Subsection NB compliance along with the benefits compared to typical welding of containment vessels will be discussed. SRNL has completed fabrication development and the testing on flow formed containment vessels to demonstrate the use of flow forming as an alternate method of manufacturing a welded 6-inch diameter containment vessel currently used in the 9975 and 9977 radioactive material shipping packaging. Material testing and nondestructive evaluation of the flow formed parts demonstrate compliance to the minimum material requirements specified in applicable parts of ASME Boiler and Pressure Vessel Code, Section II. Destructive burst testing shows comparable results to that of a welded design. The benefits of flow forming as compared to typical welding of containment vessels are significant: dimensional control is improved due to no weld distortion; less final machining; weld fit-up issues associated with pipes and pipe caps are eliminated; post-weld non-destructive testing (i.e., radiography and die penetrant tests) is not necessary; and less fabrication steps are required. Results presented in this paper indicate some of the benefits in adapting flow forming to design of future radioactive material shipping packages containment vessels.

  1. Lithium and lithium ion batteries towards micro-applications: a review

    SciTech Connect (OSTI)

    Wang, Yuxing; Liu, Bo; Li, Qiuyan; Cartmell, Samuel S.; Ferrara, Seth A.; Deng, Zhiqun; Xiao, Jie

    2015-07-01

    Batteries employing lithium chemistry have been intensively investigated because of their high energy attributes which may be deployed for vehicle electrification and large-scale energy storage applications. Another important direction of battery research for micro-electronics, however, is relatively less discussed in the field but growing fast in recent years. This paper reviews chemistry and electrochemistry in different microbatteries along with their cell designs to meet the goals of their various applications. The state-of-the-art knowledge and recent progress of microbatteries for emerging micro-electronic devices may shed light on the future development of microbatteries towards high energy density and flexible design.

  2. Analysis Tools for Sizing and Placement of Energy Storage for Grid Applications - A Literature Review

    SciTech Connect (OSTI)

    Hoffman, Michael G.; Kintner-Meyer, Michael CW; Sadovsky, Artyom; DeSteese, John G.

    2010-09-24

    The purpose of this report was to review pertinent literature and studies that might reveal models capable of optimizing the siting, sizing and economic value of energy storage in the future smart grid infrastructure. Energy storage technology and utility system deployment have been subjects of intense research and development for over three decades. During this time, many models have been developed that consider energy storage implementation in the electric power industry and other applications. Nevertheless, this review of literature discovered no actual models and only a few software tools that relate specifically to the application environment and expected requirements of the evolving smart grid infrastructure. This report indicates the existing need for such a model and describes a pathway for developing it.

  3. Properties of ethylene carbonate and its use in electrochemical applications: a literature review

    SciTech Connect (OSTI)

    Johnson, P.H.

    1985-06-01

    Ethylene carbonate (C/sub 3/H/sub 4/O/sub 3/) is an important industrial solvent and used extensively in the textile and cosmetic industry. Ethylene carbonate (EC) and propylene carbonate (PC) were tested for use as solvents for electrochemical applications. High chemical and electrochemical stability, low toxicity, good ionizing and solvating ability and low volatility make both EC and PC suitable solvents for electrochemical applications. Propylene carbonate has been used extensively in lithium batteries and nonaqueous electrochemical studies. The intent of this review is to stimulate the use of ethylene carbonate in nonaqueous electrochemistry. This review covers the literature up to January 1, 1985. 147 refs., 14 figs., 51 tabs.

  4. Review of crystal diffraction and its application to focusing energetic gamma rays

    SciTech Connect (OSTI)

    Smither, R.K.; Fernandez, P.B.; Graber, T.; von Ballmoos, P.; Naya, J.; Albernhe, F.; Vedrenne, G.; Faiz, M.

    1995-10-01

    The basic features of crystal diffraction and their application to the construction of a crystal diffraction lens for focusing energetic gamma rays are described using examples from the work preformed at the Argonne National Laboratory. Both on-axis and off-axis performance are discussed. The review includes of normal crystals, bent crystals, and crystals with variable crystal-plane spacings to develop both condenser-type lenses and point-to-point imaging lenses.

  5. Application of Engineering and Technical Requirements for DOE Nuclear Facilities Standard Review Plan (SRP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Standard Review Plan (SRP), Application of Engineering and Technical Requirements for DOE Nuclear Facilities, was developed by the Chief of Nuclear Safety (CNS)1, Office of the Under Secretary for Nuclear Security, to help strengthen the technical rigor of line management oversight and federal monitoring of DOE nuclear facilities. This SRP (hereafter refers to as the Engineering SRP) provides consistent review guidance to assure that engineering and technical requirements are appropriately applied for the design, operations and disposition2 of DOE nuclear facilities. It is one of a series of three SRPs developed by the CNS. The other two SRPs address: 1) nuclear safety basis program review; and 2) application of requirements of DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets, and DOE-STD-1189, Integration of Safety into the Design Process, for DOE Critical Decision (CD) review and approval. These SRPs may be revised in the future to reflect changes in the DOE requirements, lessons learned, and experience/insights from nuclear facility design, operations, and disposition.

  6. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

    2012-07-17

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

  7. High temperature radiator materials for applications in the low Earth orbital environment

    SciTech Connect (OSTI)

    Rutledge, S.K.; Banks, B.A.; Mirtich, M.J.; Lebed, R.; Brady, J.; Hotes, D.; Kussmaul, M.

    1994-09-01

    Radiators must be constructed of materials which have high emittance in order to efficiently radiate heat from high temperature space power systems. In addition, if these radiators are to be used for applications in the low Earth orbital environment, they must not be detrimentally affected by exposure to atomic oxygen. Four materials selected as candidate radiator materials 304 stainless steel, copper, titanium-6% aluminum-4% vanadium (Ti-6%Al-4%V), and niobium-1% zirconium (Nb-1%Zr) were surface modified by acid etching, heat treating, abrading, sputter texturing, electrochemical etching, and combinations of the above in order to improve their emittance. Combination treatment techniques with heat treating as the second treatment provided about a factor of two improvement in emittance for 304 stainless steel, Ti-6%Al-4%V, and Nb-1%Zr. A factor of three improvement in emittance occurred for discharge chamber sputter textured copper. Exposure to atomic oxygen in RF plasma asher did not significantly change the emittance of those samples that had been heat treated as part of their texturing process. An evaluation of oxygen penetration is needed to understand how oxidation affects the mechanical properties of these materials when heat treated.

  8. Hierarchically Superstructured Prussian Blue Analogues: Spontaneous Assembly Synthesis and Applications as Pseudocapacitive Materials

    SciTech Connect (OSTI)

    Yue, Yanfeng; Zhang, Zhiyong; Binder, Andrew J.; Chen, Jihua; Jin, Xianbo; Overbury, Steven; Dai, Sheng

    2014-11-10

    Hierarchically superstructured Prussian blue analogues (hexa- conventional hybrid graphene/MnO2 nanostructured textiles. cyanoferrate, M = NiII, CoII and CuII) are synthesized through Because sodium or potassium ions are involved in energy stor- a spontaneous assembly technique. In sharp contrast to mac- age processes, more environmentally neutral electrolytes can roporous-only Prussian blue analogues, the hierarchically su- be utilized, making the superstructured porous Prussian blue perstructured porous Prussian blue materials are demonstrated analogues a great contender for applications as high-per- to possess a high capacitance, which is similar to those of the formance pseudocapacitors.

  9. Hierarchically Superstructured Prussian Blue Analogues: Spontaneous Assembly Synthesis and Applications as Pseudocapacitive Materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Yanfeng; Zhang, Zhiyong; Binder, Andrew J.; Chen, Jihua; Jin, Xianbo; Overbury, Steven; Dai, Sheng

    2014-11-10

    Hierarchically superstructured Prussian blue analogues (hexa- conventional hybrid graphene/MnO2 nanostructured textiles. cyanoferrate, M = NiII, CoII and CuII) are synthesized through Because sodium or potassium ions are involved in energy stor- a spontaneous assembly technique. In sharp contrast to mac- age processes, more environmentally neutral electrolytes can roporous-only Prussian blue analogues, the hierarchically su- be utilized, making the superstructured porous Prussian blue perstructured porous Prussian blue materials are demonstrated analogues a great contender for applications as high-per- to possess a high capacitance, which is similar to those of the formance pseudocapacitors.

  10. Review of the margins for ASME code fatigue design curve - effects of surface roughness and material variability.

    SciTech Connect (OSTI)

    Chopra, O. K.; Shack, W. J.; Energy Technology

    2003-10-03

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. The Code specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This report provides an overview of the existing fatigue {var_epsilon}-N data for carbon and low-alloy steels and wrought and cast austenitic SSs to define the effects of key material, loading, and environmental parameters on the fatigue lives of the steels. Experimental data are presented on the effects of surface roughness on the fatigue life of these steels in air and LWR environments. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are discussed. Data available in the literature have been reviewed to evaluate the conservatism in the existing ASME Code fatigue evaluations. A critical review of the margins for ASME Code fatigue design curves is presented.

  11. State-of-the-art review of materials-related problems in flue gas desulfurization systems

    SciTech Connect (OSTI)

    Maiya, P. S.

    1980-10-01

    This report characterizes the chemical and mechanical environments to which the structural components used in flue-gas desulfurization (FGD) are exposed. It summarizes the necessary background information pertinent to various FGD processes currently in use, with particular emphasis on lime/limestone scrubbing technology, so that the materials problems and processing variables encountered in FGD systems can be better defined and appreciated. The report also describes the materials currently used and their performance to date in existing wet scrubbers. There is little doubt that with more extensive use of coal and flue-gas scrubbers by utilities and other segments of private industry, a better understanding of the material failure mechanisms, performance limitations, and potential problem areas is required for the design of more reliable and cost-effective FGD systems. To meet the above objectives, a materials evaluation program is proposed. The important experimental variables and the number of tests required to evaluate a given material are discussed. 55 references, 9 figures, 6 tables.

  12. Fusion Energy Sciences Advisory Committee Reports on Review of the Fusion Materials Research Program, Review of the Proposed Proof-of-Principle Programs, Review of the Possible Pathways for Pursuing Burning Plasma Physics, and Comments on the ER Facilities Roadmap

    SciTech Connect (OSTI)

    none,

    1998-07-01

    The Fusion Energy Science Advisory Committee was asked to conduct a review of Fusion Materials Research Program (the Structural Materials portion of the Fusion Program) by Dr. Martha Krebs, Director of Energy Research for the Department of Energy. This request was motivated by the fact that significant changes have been made in the overall direction of the Fusion Program from one primarily focused on the milestones necessary to the construction of successively larger machines to one where the necessary scientific basis for an attractive fusion energy system is. better understood. It was in this context that the review of current scientific excellence and recommendations for future goals and balance within the Program was requested.

  13. Normal and refractory concretes for LMFBR applications. Volume 1. Review of literature on high-temperature behavior of portland cement and refractory concretes. Final report

    SciTech Connect (OSTI)

    Bazant, Z.P.; Chern, J.C.; Abrams, M.S.; Gillen, M.P.

    1982-06-01

    The extensive literature on the properties and behavior at elevated temperature of portland cement concrete and various refractory concretes was reviewed to collect in concise form the physical and chemical properties of castable refractory concretes and of conventional portland cement concretes at elevated temperature. This survey, together with an extensive bibliography of source documents, is presented in Volume 1. A comparison was made of these properties, the relative advantages of the various concretes was evaluated for possible liquid metal fast breeder reactor applications, and a selection was made of several materials of interest for such applications. Volume 2 concludes with a summary of additional knowledge needed to support such uses of these materials together with recommendations on research to provide that knowledge.

  14. SNM Movement Detection/Radiation Sensors and Advanced Materials Portfolio Review

    SciTech Connect (OSTI)

    James,R.

    2008-06-19

    The project objectives are: (1) determine for the first time the properties limiting the performance of CZT detectors; (2) develop efficient, non-destructive techniques to measure the quality of detector materials; and (3) provide rapid feedback to crystal growers and, in conjunction with suppliers, improve CZT detector performance as measured by device energy resolution, efficiency, stability and cost. The goal is a stable commercial supply of low-cost, high energy resolution (0.5% FWHM at 662 keV) CZT crystals for detecting, characterizing and imaging nuclear and radiological materials in a wide variety of field conditions.

  15. Uncertainty quantification in application of the enrichment meter principle for nondestructive assay of special nuclear material

    SciTech Connect (OSTI)

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    2015-09-05

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed and achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.

  16. Uncertainty quantification in application of the enrichment meter principle for nondestructive assay of special nuclear material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    2015-09-05

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed andmore » achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.« less

  17. Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles: Workshop Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles October 29, 2015 Sponsored by U.S. Department of Energy Fuel Cell Technologies Office (FCTO) and Pacific Northwest National Laboratory (This page intentionally left blank) Section title Unt utaerest in pos eum quo con et iii ADVANCED COMPOSITE MATERIALS FOR COLD AND CRYOGENIC HYDROGEN STORAGE APPLICATIONS IN FUEL CELL ELECTRIC VEHICLES Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage

  18. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic-impedance measurements. [Patent application

    DOE Patents [OSTI]

    Not Available

    1981-06-10

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are presented. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  19. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    SciTech Connect (OSTI)

    2011-07-31

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

  20. Fabrication of nano structural biphasic materials from phosphogypsum waste and their in vitro applications

    SciTech Connect (OSTI)

    Mohamed, Khaled R.; Mousa, Sahar M.; El Bassyouni, Gehan T.

    2014-02-01

    Graphical abstract: (a) Schema of the process, (b) TEM of nano particles of biphasic materials and (c) SEM of post-immersion. - Highlights: Ratio of HA and ?-TCP phases were controlled by thermal treatment. HA partially decomposed into ?-TCP with other bioactive phases. Calcined HA at 900 C is the best for the bioactivity behavior. - Abstract: In this study, a novel process of preparing biphasic calcium phosphate (BCP) is proposed. Also its bioactivity for the utilization of the prepared BCP as a biomaterial is studied. A mixture of calcium hydroxyapatite (HAP) and tricalcium phosphate (?-TCP) could be obtained by thermal treatment of HAP which was previously prepared from phosphogypsum (PG) waste. The chemical and phase composition, morphology and particle size of prepared samples was characterized by X-ray diffraction (XRD), Infrared spectroscopy (IR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The bioactivity was investigated by soaking of the calcined samples in simulated body fluid (SBF). Results confirmed that the calcination temperatures played an important role in the formation of calcium phosphate (CP) materials. XRD results indicated that HAP was partially decomposed into ?-TCP. The in vitro data confirmed that the calcined HAP forming BCP besides other phases such as pyrophosphate and silica are bioactive materials. Therefore, BCP will be used as good biomaterials for medical applications.

  1. Network Requirements Reviews

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reviews Network Requirements Reviews Documents and Background Materials FAQ for Case Study Authors BER Requirements Review 2015 ASCR Requirements Review 2015 Previous...

  2. Materials for Stretchable Electronics - Electronic Eyeballs, Brain Monitors and Other Applications

    ScienceCinema (OSTI)

    Rogers, John A. [University of Illinois, Urbana Champaign, Illinois, United States

    2010-01-08

    Electronic circuits that involve transistors and related components on thin plastic sheets or rubber slabs offer mechanical properties (e.g. bendability, stretchability) and other features (e.g. lightweight, rugged construction) which cannot be easily achieved with technologies that use rigid, fragile semiconductor wafer or glass substrates.  Device examples include personal or structural health monitors and electronic eye imagers, in which the electronics must conform to complex curvilinear shapes or flex/stretch during use.  Our recent work accomplishes these technology outcomes by use of single crystal inorganic nanomaterials in ?wavy? buckled configurations on elastomeric supports.  This talk will describe key fundamental materials and mechanics aspects of these approaches, as well as engineering features of their use in individual transistors, photodiodes and integrated circuits.  Cardiac and brain monitoring devices provide examples of application in biomedicine; hemispherical electronic eye cameras illustrate new capacities for bio-inspired device design.

  3. Nuclear power plant cable materials : review of qualification and currently available aging data for margin assessments in cable performance.

    SciTech Connect (OSTI)

    Celina, Mathias Christopher; Gillen, Kenneth Todd; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostlyinert' aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section - a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original

  4. Max Phase Materials And Coatings For High Temperature Heat Transfer Applications

    SciTech Connect (OSTI)

    Martinez-Rodriguez, M.; Garcia-Diaz, B.; Olson, L.; Fuentes, R.; Sindelar, R.

    2015-10-19

    Molten salts have been used as heat transfer fluids in a variety of applications within proposed Gen IV nuclear designs and in advanced power system such as Concentrating Solar Power (CSP). However, operating at elevated temperatures can cause corrosion in many materials. This work developed coating technologies for MAX phase materials on Haynes-230 and characterized the corrosion of the coatings in the presence of commercial MgCl2-KCl molten salt. Cold spraying of Ti2AlC and physical vapor deposition (PVD) of Ti2AlC or Zr2AlC were tested to determine the most effective form of coating MAX phases on structural substrates. Corrosion testing at 850°C for 100 hrs showed that 3.9 μm Ti2AlC by PVD was slightly protective while 117 μm Ti2AlC by cold spray and 3.6 μm Zr2AlC by PVD were completely protective. None of the tests showed decomposition of the coating (Ti or Zr) into the salt

  5. DOE-DARPA High-Performance Corrosion-Resistant Materials (HPCRM), Annual HPCRM Team Meeting & Technical Review

    SciTech Connect (OSTI)

    Farmer, J; Brown, B; Bayles, B; Lemieux, T; Choi, J; Ajdelsztajn, L; Dannenberg, J; Lavernia, E; Schoenung, J; Branagan, D; Blue, C; Peter, B; Beardsley, B; Graeve, O; Aprigliano, L; Yang, N; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Boudreau, J

    2007-09-21

    The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable life prediction and process design.

  6. Accident Generated Particulate Materials and Their Characteristics -- A Review of Background Information

    SciTech Connect (OSTI)

    Sutter, S. L.

    1982-05-01

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of the amount of radioactive particulate material initially airborne (source term) during accidents. Pacific Northwest Laboratory (PNL) has surveyed the literature, gathering information on the amount and size of these particles that has been developed from limited experimental work, measurements made from operational accidents, and known aerosol behavior. Information useful for calculating both liquid and powder source terms is compiled in this report. Potential aerosol generating events discussed are spills, resuspension, aerodynamic entrainment, explosions and pressurized releases, comminution, and airborne chemical reactions. A discussion of liquid behavior in sprays, sparging, evaporation, and condensation as applied to accident situations is also included.

  7. Instructions and Materials

    Broader source: Energy.gov [DOE]

    The following are 2012 Program Peer Review Meeting instructions, materials and resource links for presenters and reviewers.

  8. Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Searchable Application Supplemental Information

  9. Expancel Foams: Fabrication and Characterization of a New Reduced Density Cellular Material for Structural Applications

    SciTech Connect (OSTI)

    L. Whinnery; S. Goods; B. Even

    2000-08-01

    higher density unexpanded powder (approximately 0.5 g/cm{sup 3}) can be produced using this technique. The extremely wide range of accessible densities, ease of processing, relatively inexpensive materials, uniformity of the density, scaleable nature of the process should make this technology highly competitive for a variety of Defense Programs and commercial applications.

  10. Methods of chemical analysis for organic waste constituents in radioactive materials: A literature review

    SciTech Connect (OSTI)

    Clauss, S.A.; Bean, R.M.

    1993-02-01

    Most of the waste generated during the production of defense materials at Hanford is presently stored in 177 underground tanks. Because of the many waste treatment processes used at Hanford, the operations conducted to move and consolidate the waste, and the long-term storage conditions at elevated temperatures and radiolytic conditions, little is known about most of the organic constituents in the tanks. Organics are a factor in the production of hydrogen from storage tank 101-SY and represent an unresolved safety question in the case of tanks containing high organic carbon content. In preparation for activities that will lead to the characterization of organic components in Hanford waste storage tanks, a thorough search of the literature has been conducted to identify those procedures that have been found useful for identifying and quantifying organic components in radioactive matrices. The information is to be used in the planning of method development activities needed to characterize the organics in tank wastes and will prevent duplication of effort in the development of needed methods.

  11. Advanced Materials and Processing of Composites for High Volume Applications (ACC932)

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Structural Automotive Components from Composite Materials | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting lm049_berger_2012_o.pdf (4.04 MB) More Documents & Publications Advanced Materials and Processing of Composites for High Volume Applications Advanced Materials and Processing of Composites for High Volume Applications Structural Automotive Components from Composite Materials

  13. Applications of laser produced ion beams to nuclear analysis of materials

    SciTech Connect (OSTI)

    Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2012-07-11

    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of {approx} 1.0 {mu}m at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi{sub 0.85}Co{sub 0.15}O{sub 2} anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5{mu}m FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.

  14. Database application for input and review of information on analytical measurements

    SciTech Connect (OSTI)

    Narayanan, U.I.; Spaletto, M.I.; Baran, D.T.; Stiffin, A.V.; Dallmann, E.

    1995-03-01

    An Analytical Measurements Information Database Application was developed to give an overall view of the criteria involved in the selection of an analytical measurement technique. This specific database application was developed for the measurement of elemental concentration of uranium. It includes information on many components of each measurement technique and allows easy comparison of different techniques. The integrated data information for the methods contained in this program include the specific technique, expected precision and bias, materials applicability, interferences, analysis time, reagents needed, training time, instrumentation required and its associated costs, and resulting process streams. Process stream information may be used to determine the method of preference based on pollution prevention opportunities. Use of this information also serves as an up-front indication of the types of waste generated when different analytical methods are implemented. Most sites, through pollution prevention programs and departmental mandates, are required to generate annual waste forecasts. The use of the process stream information greatly reduces the difficulty of predicting waste generation rates for different analytical methods, while the accuracy of such predictions is substantially increased.

  15. ANS materials databook

    SciTech Connect (OSTI)

    Marchbanks, M.F.

    1995-08-01

    Technical development in the Advanced Neutron Source (ANS) project is dynamic, and a continuously updated information source is necessary to provide readily usable materials data to the designer, analyst, and materials engineer. The Advanced Neutron Source Materials Databook (AMBK) is being developed as a part of the Advanced Neutron Source Materials Information System (AMIS). Its purpose is to provide urgently needed data on a quick-turnaround support basis for those design applications whose schedules demand immediate estimates of material properties. In addition to the need for quick materials information, there is a need for consistent application of data throughout the ANS Program, especially where only limited data exist. The AMBK is being developed to fill this need as well. It is the forerunner to the Advanced Neutron Source Materials Handbook (AMHB). The AMHB, as reviewed and approved by the ANS review process, will serve as a common authoritative source of materials data in support of the ANS Project. It will furnish documented evidence of the materials data used in the design and construction of the ANS system and will serve as a quality record during any review process whose objective is to establish the safety level of the ANS complex. The information in the AMBK and AMHB is also provided in electronic form in a dial-up computer database known as the ANS Materials Database (AMDB). A single consensus source of materials information prepared and used by all national program participants has several advantages. Overlapping requirements and data needs of various sub-projects and subcontractors can be met by a single document which is continuously revised. Preliminary and final safety analysis reports, stress analysis reports, equipment specifications, materials service reports, and many other project-related documents can be substantially reduced in size and scope by appropriate reference to a single data source.

  16. Vehicle Technologies Office Merit Review 2016: Collision Welding of Dissimilar Materials by Vaporizing Foil Actuator: A Breakthrough Technology for Dissimilar Materials Joining

    Broader source: Energy.gov [DOE]

    Presentation given by Ohio State University at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  17. Application of soil barriers for encapsulation of contaminants using special blocking materials and sealing technologies

    SciTech Connect (OSTI)

    Kretzschmar, H.J.; Lakatos, I.

    1997-12-31

    This paper describes the use of Montanwax and polymersilicate solution for use as blocking materials for the containment of pollutants.

  18. Semiconductor Nanotechnology: Novel Materials and Devices for Electronics, Photonics, and Renewable Energy Applications

    SciTech Connect (OSTI)

    Goodnick, Stephen; Korkin, Anatoli; Krstic, Predrag S; Mascher, Peter; Preston, John; Zaslavsky, Alex

    2010-03-01

    Electronic and photonic information technology and renewable energy alternatives, such as solar energy, fuel cells and batteries, have now reached an advanced stage in their development. Cost-effective improvements to current technological approaches have made great progress, but certain challenges remain. As feature sizes of the latest generations of electronic devices are approaching atomic dimensions, circuit speeds are now being limited by interconnect bottlenecks. This has prompted innovations such as the introduction of new materials into microelectronics manufacturing at an unprecedented rate and alternative technologies to silicon CMOS architectures. Despite the environmental impact of conventional fossil fuel consumption, the low cost of these energy sources has been a long-standing economic barrier to the development of alternative and more efficient renewable energy sources, fuel cells and batteries. In the face of mounting environmental concerns, interest in such alternative energy sources has grown. It is now widely accepted that nanotechnology offers potential solutions for securing future progress in information and energy technologies. The Canadian Semiconductor Technology Conference (CSTC) forum was established 25 years ago in Ottawa as an important symbol of the intrinsic strength of the Canadian semiconductor research and development community, and the Canadian semiconductor industry as a whole. In 2007, the 13th CSTC was held in Montreal, moving for the first time outside the national capital region. The first three meetings in the series of Nano and Giga Challenges in Electronics and Photonics NGCM2002 in Moscow, NGCM2004 in Krakow, and NGC2007 in Phoenix were focused on interdisciplinary research from the fundamentals of materials science to the development of new system architectures. In 2009 NGC2009 and the 14th Canadian Semiconductor Technology Conference (CSTC2009) were held as a joint event, hosted by McMaster University (10 14 August

  19. Workshop on innovation in materials processing and manufacture: Exploratory concepts for energy applications

    SciTech Connect (OSTI)

    Horton, L.L.

    1993-06-01

    The goal of the workshop was to bring together industrial, academic, and DOE Laboratory personnel to discuss and identify potential areas for which creative, innovative, and/or multidisciplinary solutions could result in major payoffs for the nation`s energy economy, DOE, and industry. The topics emphasized in these discussions were: surfaces and interfacial processing technologies, biomolecular materials, powder/precursor technologies, magnetic materials, nanoscale materials, novel ceramics and composites, novel intermetallics and alloys, environmentally benign materials, and energy efficiency. The workshop had a 2-day format. One the first day, there was an introductory session that summarized future directions within DOE`s basic and materials technology programs, and the national studies on manufacturing and materials science and engineering. The balance of the workshop was devoted to brainstorming sessions by seven working groups. During the first working group session, the entire group was divided to discuss topics on: challenges for hostile environments, novel materials in transportation technologies, novel nanoscale materials, and opportunities in biomolecular materials. For the second session, the entire group (except for the working group on biomolecular materials) was reconfigured into new working groups on: alternative pathways to energy efficiency, environmentally benign materials and processes, and waste treatment and reduction: a basic sciences approach. This report contains separate reports from each of the seven working groups.

  20. Thermal effects on transducer material for heat assisted magnetic recording application

    SciTech Connect (OSTI)

    Ji, Rong Xu, Baoxi; Cen, Zhanhong; Ying, Ji Feng; Toh, Yeow Teck

    2015-05-07

    Heat Assisted Magnetic Recording (HAMR) is a promising technology for next generation hard disk drives with significantly increased data recording capacities. In HAMR, an optical near-field transducer (NFT) is used to concentrate laser energy on a magnetic recording medium to fulfill the heat assist function. The key components of a NFT are transducer material, cladding material, and adhesion material between the cladding and the transducer materials. Since transducer materials and cladding materials have been widely reported, this paper focuses on the adhesion materials between the Au transducer and the Al{sub 2}O{sub 3} cladding material. A comparative study for two kinds of adhesion material, Ta and Cr, has been conducted. We found that Ta provides better thermal stability to the whole transducer than Cr. This is because after thermal annealing, chromium forms oxide material at interfaces and chromium atoms diffuse remarkably into the Au layer and react with Au to form Au alloy. This study also provides insights on the selection of adhesion material for HAMR transducer.

  1. A REVIEW OF NON-INVASIVE IMAGING METHODS AND APPLICATIONS IN CONTAMINANT HYDROGEOLOGY RESEARCH

    SciTech Connect (OSTI)

    Werth, Charles J.; Zhang, Changyong; Brusseau, M. L.; Oostrom, Martinus; Baumann, T.

    2010-03-08

    Contaminant hydrogeological processes occurring in porous media are typically not amenable to direct observation. As a result, indirect measurements (e.g., contaminant breakthrough at a fixed location) are often used to infer processes occurring at different scales, locations, or times. To overcome this limitation, non-invasive imaging methods are increasingly being used in contaminant hydrogeology research. The most common methods, and the subjects of this review, are optical imaging using UV or visible light, dual-energy gamma-radiation, X-ray microtomography, and magnetic resonance imaging (MRI). Non-invasive imaging techniques have provided valuable insights into a variety of complex systems and processes, including porous media characterization, multiphase fluid distribution, fluid flow, solute transport and mixing, colloidal transport and deposition, and reactions. In this paper we review the theory underlying these methods, applications of these methods to contaminant hydrogeology research, and methods advantages and disadvantages. As expected, there is no perfect method or tool for non-invasive imaging. However, optical methods generally present the least expensive and easiest options for imaging fluid distribution, solute and fluid flow, colloid transport, and reactions in artificial two-dimensional (2D) porous media. Gamma radiation methods present the best opportunity for characterization of fluid distributions in 2D at the Darcy scale. X-ray methods present the highest resolution and flexibility for three-dimensional (3D) natural porous media characterization, and 3D characterization of fluid distributions in natural porous media. And MRI presents the best option for 3D characterization of fluid distribution, fluid flow, colloid transport, and reaction in artificial porous media. Obvious deficiencies ripe for method development are the ability to image transient processes such as fluid flow and colloid transport in natural porous media in three

  2. Removal of Hazardous Pollutants from Wastewaters: Applications of TiO 2 -SiO 2 Mixed Oxide Materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rasalingam, Shivatharsiny; Peng, Rui; Koodali, Ranjit T.

    2014-01-01

    The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP) have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the applicationmore » of TiO 2 -SiO 2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.« less

  3. 9975 SHIPPING PACKAGE PERFORMANCE OF ALTERNATE MATERIALS FOR LONG-TERM STORAGE APPLICATION

    SciTech Connect (OSTI)

    Skidmore, E.; Hoffman, E.; Daugherty, W.

    2010-02-24

    The Model 9975 shipping package specifies the materials of construction for its various components. With the loss of availability of material for two components (cane fiberboard overpack and Viton{reg_sign} GLT O-rings), alternate materials of construction were identified and approved for use for transport (softwood fiberboard and Viton{reg_sign} GLT-S O-rings). As these shipping packages are part of a long-term storage configuration at the Savannah River Site, additional testing is in progress to verify satisfactory long-term performance of the alternate materials under storage conditions. The test results to date can be compared to comparable results on the original materials of construction to draw preliminary conclusions on the performance of the replacement materials.

  4. Energy and Technology Review

    SciTech Connect (OSTI)

    Not Available

    1986-03-01

    An overview is given of research programs at a two-stage light-gas gun facility. Representative gas-gun experiments are described, and the impact of this research on other LLNL programs and on high-pressure physics work in general are discussed. Particular applications reported include: measurement of equations of state for various materials, synthesis and study of novel materials, and studies of high explosives. Specialized diagnostic techniques for gas-gun experiments are reviewed. (LEW)

  5. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    SciTech Connect (OSTI)

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.

  6. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advancedmore » understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.« less

  7. BER Requirements Review 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reviews Network Requirements Reviews Documents and Background Materials FAQ for Case Study Authors BER Requirements Review 2015 BER Attendees 2015 ASCR Requirements...

  8. Understanding the structure and structural degradation mechanisms in high-voltage lithium-ion battery cathode oxides. A review of materials diagnostics

    SciTech Connect (OSTI)

    Mohanty, Debasish; Li, Jianlin; Nagpure, Shrikant C; Wood, III, David L; Daniel, Claus

    2015-12-21

    Materials diagnostic techniques are the principal tools used in the development of low-cost, high-performance electrodes for next-generation lithium-based energy storage technologies. Also, this review highlights the importance of materials diagnostic techniques in unraveling the structure and the structural degradation mechanisms in high-voltage, high-capacity oxides that have the potential to be implemented in high-energy-density lithium-ion batteries for transportation that can use renewable energy and is less-polluting than today. The rise in CO2 concentration in the earth’s atmosphere due to the use of petroleum products in vehicles and the dramatic increase in the cost of gasoline demand the replacement of current internal combustion engines in our vehicles with environmentally friendly, carbon free systems. Therefore, vehicles powered fully/partially by electricity are being introduced into today’s transportation fleet. As power requirements in all-electric vehicles become more demanding, lithium-ion battery (LiB) technology is now the potential candidate to provide higher energy density. Moreover, discovery of layered high-voltage lithium-manganese–rich (HV-LMR) oxides has provided a new direction toward developing high-energy-density LiBs because of their ability to deliver high capacity (~250 mA h/g) and to be operated at high operating voltage (~4.7 V). Unfortunately, practical use of HV-LMR electrodes is not viable because of structural changes in the host oxide during operation that can lead to fundamental and practical issues. This article provides the current understanding on the structure and structural degradation pathways in HV-LMR oxides, and manifests the importance of different materials diagnostic tools to unraveling the key mechanism(s). Furthermore, the fundamental insights reported, might become the tools to manipulate the chemical and/or structural aspects of HV-LMR oxides for low cost, high-energy-density LiB applications.

  9. Understanding the structure and structural degradation mechanisms in high-voltage lithium-ion battery cathode oxides. A review of materials diagnostics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mohanty, Debasish; Li, Jianlin; Nagpure, Shrikant C; Wood, III, David L; Daniel, Claus

    2015-12-21

    Materials diagnostic techniques are the principal tools used in the development of low-cost, high-performance electrodes for next-generation lithium-based energy storage technologies. Also, this review highlights the importance of materials diagnostic techniques in unraveling the structure and the structural degradation mechanisms in high-voltage, high-capacity oxides that have the potential to be implemented in high-energy-density lithium-ion batteries for transportation that can use renewable energy and is less-polluting than today. The rise in CO2 concentration in the earth’s atmosphere due to the use of petroleum products in vehicles and the dramatic increase in the cost of gasoline demand the replacement of current internalmore » combustion engines in our vehicles with environmentally friendly, carbon free systems. Therefore, vehicles powered fully/partially by electricity are being introduced into today’s transportation fleet. As power requirements in all-electric vehicles become more demanding, lithium-ion battery (LiB) technology is now the potential candidate to provide higher energy density. Moreover, discovery of layered high-voltage lithium-manganese–rich (HV-LMR) oxides has provided a new direction toward developing high-energy-density LiBs because of their ability to deliver high capacity (~250 mA h/g) and to be operated at high operating voltage (~4.7 V). Unfortunately, practical use of HV-LMR electrodes is not viable because of structural changes in the host oxide during operation that can lead to fundamental and practical issues. This article provides the current understanding on the structure and structural degradation pathways in HV-LMR oxides, and manifests the importance of different materials diagnostic tools to unraveling the key mechanism(s). Furthermore, the fundamental insights reported, might become the tools to manipulate the chemical and/or structural aspects of HV-LMR oxides for low cost, high-energy-density LiB applications.« less

  10. Understanding the structure and structural degradation mechanisms in high-voltage lithium-ion battery cathode oxides. A review of materials diagnostics

    SciTech Connect (OSTI)

    Mohanty, Debasish; Li, Jianlin; Nagpure, Shrikant C; Wood, III, David L; Daniel, Claus

    2015-01-01

    Materials diagnostic techniques are the principal tools used in the development of low-cost, high-performance electrodes for next-generation lithium-based energy storage technologies. Also, this review highlights the importance of materials diagnostic techniques in unraveling the structure and the structural degradation mechanisms in high-voltage, high-capacity oxides that have the potential to be implemented in high-energy-density lithium-ion batteries for transportation that can use renewable energy and is less-polluting than today. The rise in CO2 concentration in the earth’s atmosphere due to the use of petroleum products in vehicles and the dramatic increase in the cost of gasoline demand the replacement of current internal combustion engines in our vehicles with environmentally friendly, carbon free systems. Therefore, vehicles powered fully/partially by electricity are being introduced into today’s transportation fleet. As power requirements in all-electric vehicles become more demanding, lithium-ion battery (LiB) technology is now the potential candidate to provide higher energy density. Moreover, discovery of layered high-voltage lithium-manganese–rich (HV-LMR) oxides has provided a new direction toward developing high-energy-density LiBs because of their ability to deliver high capacity (~250 mA h/g) and to be operated at high operating voltage (~4.7 V). Unfortunately, practical use of HV-LMR electrodes is not viable because of structural changes in the host oxide during operation that can lead to fundamental and practical issues. This article provides the current understanding on the structure and structural degradation pathways in HV-LMR oxides, and manifests the importance of different materials diagnostic tools to unraveling the key mechanism(s). Furthermore, the fundamental insights reported, might become the tools to manipulate the chemical and/or structural aspects of HV-LMR oxides for low cost, high-energy-density LiB applications.

  11. A Study of Selected Properties and Applications of AlMgB14 and Related Composites: Ultra-Hard Materials

    SciTech Connect (OSTI)

    Theron L. Lewis

    2002-05-28

    This research presents a study of the hardness, electrical, and thermal properties AlMgB{sub 14} containing Al{sub 2}MgO{sub 4} spinel. This research also investigated how much Al{sub 2}MgO{sub 4} spinel consistently forms with AlMgB{sub 14}, if AlMgB{sub 14} materials can be produced by hot isostatic pressing (HIP), what effects TiC and TiB{sub 2} have on this composite material, and the importance of mechanical alloying. Included also is a study of the variation in hardness measurements and how they relate to SI units. Heretofore, all ultra-hard materials (hardness > 40 GPA) have been found to be cubic in structure, electrical insulators, and expensive; the behavior of AlMgB{sub 14}, which in certain specimens and compositions can have hardness values greater than 40 GPa, is therefore quite unusual since it is non-cubic, conductive, and moderate in cost. This offers an opportunity to investigate the relationship between hardness, thermal, and electrical properties from a new perspective. The main purpose of this project was to characterize the different properties of the AlMgB{sub 14} materials and to demonstrate that this material can be made in bulk. The technologies used for this study include microhardness measurement techniques, scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction spectroscopy, x-ray diffraction spectroscopy at different temperatures, optical microscopy, thermomechanical analysis, differential thermal analysis, 4-point probe resistivity, density techniques, Seebeck Effect, and Hall Effect. This research may lead to use of this material for applications where high abrasion resistance along with electrical conduction is needed. Also this research gave more information about a material that could have a great impact on industrial applications.

  12. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    SciTech Connect (OSTI)

    Liang, Chengdu; Dudney, Nancy J; Howe, Jane Y

    2015-05-05

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  13. Method for morphological control and encapsulation of materials for electronics and energy applications

    DOE Patents [OSTI]

    Ivanov, Ilia N.; Simpson, John T.

    2013-06-11

    An electronic device comprises a drawn glass tube having opposing ends, a semiconductive material disposed inside of the drawn glass tube, and a first electrode and a second electrode disposed at the opposing ends of the drawn glass tube. A method of making an electrical device comprises disposing a semiconductive material inside of a glass tube, and drawing the glass tube with the semiconductive material disposed therein to form a drawn glass tube. The method of making an electrical device also comprises disposing a first electrode and a second electrode on the opposing ends of the drawn glass tube to form an electric device.

  14. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    SciTech Connect (OSTI)

    P. Calderoni; P. Sharpe; M. Shimada

    2009-09-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  15. Method and apparatus for separating materials magnetically. [Patent application; iron pyrite from coal

    DOE Patents [OSTI]

    Hise, E.C. Jr.; Holman, A.S.; Friedlaender, F.J.

    1980-11-06

    Magnetic and nonmagnetic materials are separated by passing stream thereof past coaxial current-carrying coils which produce a magnetic field wherein intensity varies sharply with distance radially of the axis of the coils.

  16. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    SciTech Connect (OSTI)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S.

    2015-01-15

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g{sup ?1} at 100 mA g{sup ?1} after 30th cycles. At high current density value of 1 A g{sup ?1}, B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states.

  17. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review

    Broader source: Energy.gov [DOE]

    This presentation reports on direct hydrogen PEMFC manufacturing cost estimation for automotive applications.

  18. Department of Energy and USEC Announce Decision to Delay USEC Loan Guarantee Application Final Review

    Broader source: Energy.gov [DOE]

    Additional time will allow company to address financial and technical concerns about its application

  19. Vehicle Technologies Office Merit Review 2016: Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly

    Broader source: Energy.gov [DOE]

    Presentation given by USAMP at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  20. Vehicle Technologies Office Merit Review 2016: Validation of Material Models for Crash Simulation of Automotive Carbon Fiber Composite Structures (VMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Ford at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  1. Vehicle Technologies Office Merit Review 2014: Enabling Materials for High Temperature Power Electronics (Agreement ID:26461) Project ID:18516

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about enabling...

  2. Vehicle Technologies Office Merit Review 2016: Integrated Computational Materials Engineering (ICME) Development of Carbon Fiber Composites for Lightweight Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Ford at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  3. Vehicle Technologies Office Merit Review 2016: An Integrated Flame Spray Process for Low Cost Production of Battery Materials

    Broader source: Energy.gov [DOE]

    Presentation given by University of Missouri at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  4. Vehicle Technologies Office Merit Review 2015: Alternative High-Performance Motors with Non-Rare Earth Materials

    Broader source: Energy.gov [DOE]

    Presentation given by General Electric Global at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about alternative high...

  5. Vehicle Technologies Office Merit Review 2014: Alternative High-Performance Motors with Non-Rare Earth Materials

    Broader source: Energy.gov [DOE]

    Presentation given by General Electric Global at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about alternative high...

  6. Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Optodot Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

  7. Vehicle Technologies Office Merit Review 2015: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Optodot Corporation at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

  8. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications

    SciTech Connect (OSTI)

    Sarrut, David; Universit Lyon 1; Centre Lon Brard ; Bardis, Manuel; Marcatili, Sara; Mauxion, Thibault; Boussion, Nicolas; Freud, Nicolas; Ltang, Jean-Michel; Jan, Sbastien; Maigne, Lydia; Perrot, Yann; Pietrzyk, Uwe; Robert, Charlotte; and others

    2014-06-15

    In this paper, the authors' review the applicability of the open-source GATE Monte Carlo simulation platform based on the GEANT4 toolkit for radiation therapy and dosimetry applications. The many applications of GATE for state-of-the-art radiotherapy simulations are described including external beam radiotherapy, brachytherapy, intraoperative radiotherapy, hadrontherapy, molecular radiotherapy, and in vivo dose monitoring. Investigations that have been performed using GEANT4 only are also mentioned to illustrate the potential of GATE. The very practical feature of GATE making it easy to model both a treatment and an imaging acquisition within the same frameworkis emphasized. The computational times associated with several applications are provided to illustrate the practical feasibility of the simulations using current computing facilities.

  9. Vehicle Technologies Office Merit Review 2016: Hybrid Electrolytes for PHEV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by NOHMs Technologies at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  10. Vehicle Technologies Office Merit Review 2015: Technology Requirements for High Power Applications of Wireless Power Transfer

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about technology...

  11. Vehicle Technologies Office Merit Review 2015: High-Strength Electroformed Nanostructured Aluminum for Lightweight Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Xtalic Corporation at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-strength...

  12. Vehicle Technologies Office Merit Review 2016: High-Strength Electroformed Nanostructured Aluminum for Lightweight Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Xtalic Corporation at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  13. Vehicle Technologies Office Merit Review 2015: Understanding Protective Film Formation by Magnesium Alloys in Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about understanding...

  14. Vehicle Technologies Office Merit Review 2014: Understanding Protective Film Formation on Magnesium Alloys in Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about understanding...

  15. Vehicle Technologies Office Merit Review 2016: High Energy Lithium Batteries for PHEV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Envia at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  16. Dynamical properties measurements for asteroid, comet and meteorite material applicable to impact modeling and mitigation calculations

    SciTech Connect (OSTI)

    Furnish, M.D.; Boslough, M.B.; Gray, G.T. III; Remo, J.L.

    1994-07-01

    We describe methods for measuring dynamical properties for two material categories of interest in understanding large-scale extraterrestrial impacts: iron-nickel and underdense materials (e.g. snow). Particular material properties measured by the present methods include Hugoniot release paths and constitutive properties (stress vs. strain). The iron-nickel materials lend themselves well to conventional shock and quasi-static experiments. As examples, a suite of experiments is described including six impact tests (wave profile compression/release) over the stress range 2--20 GPa, metallography, quasi-static and split Hopkinson pressure bar (SHPB) mechanical testing, and ultrasonic mapping and sound velocity measurements. Temperature sensitivity of the dynamic behavior was measured at high and low strain rates. Among the iron-nickel materials tested, an octahedrite was found to have behavior close to that of Armco iron under shock and quasi-static conditions, while an ataxite exhibited a significantly larger quasi-static yield strength than did the octahedrite or a hexahedrite. The underdense materials pose three primary experimental difficulties. First, the samples are friable; they can melt or sublimate during storage, preparation and testing. Second, they are brittle and crushable; they cannot withstand such treatment as traditional machining or launch in a gun system. Third, with increasing porosity the calculated Hugoniot density becomes rapidly more sensitive to errors in wave time-of-arrival measurements. Carefully chosen simulants eliminate preservation (friability) difficulties, but the other difficulties remain. A family of 36 impact tests was conducted on snow and snow simulants at Sandia, yielding reliable Hugoniot and reshock states, but limited release property information. Other methods for characterizing these materials are discussed.

  17. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Materials Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Materials Physics and Applications» Materials Science and Technology» Institute for Materials Science» Materials Science Rob Dickerson uses a state-of-the-art transmission electron microscope at the Electron Microscopy Laboratory managed by Los

  18. CRC handbook of laser science and technology. Volume 5. Optical materials. Part 3. Applications, coatings, and fabrication

    SciTech Connect (OSTI)

    Weber, M.J.

    1987-01-01

    This book describes the uses, coatings, and fabrication of laser materials. Topics considered include: optical waveguide materials; optical storage materials; holographic recording materials; phase conjunction materials; holographic recording materials; phase conjunction materials; laser crystals; laser glasses; quantum counter materials; thin films and coatings; multilayer dielectric coatings; graded-index surfaces and films; optical materials fabrication; fabrication techniques; fabrication procedures for specific materials.

  19. Application of the ASME code in designing containment vessels for packages used to transport radioactive materials

    SciTech Connect (OSTI)

    Raske, D.T.; Wang, Z.

    1992-07-01

    The primary concern governing the design of shipping packages containing radioactive materials is public safety during transport. When these shipments are within the regulatory jurisdiction of the US Department of Energy, the recommended design criterion for the primary containment vessel is either Section III or Section VIII, Division 1, of the ASME Boiler and Pressure Vessel Code, depending on the activity of the contents. The objective of this paper is to discuss the design of a prototypic containment vessel representative of a packaging for the transport of high-level radioactive material.

  20. EERE Strategic Program Review

    Energy Savers [EERE]

    ... Light Source Basic Research Projects Materials ... At the same time, advances in materials science, information ... Lightweight Materials Program 1997 NRC Review of the ...

  1. Materials Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Videos Materials

  2. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect (OSTI)

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R.

    1997-12-01

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  3. Vehicle Technologies Office Merit Review 2016: Improved Tire Efficiency through Elastomeric Polymers Enhanced with Carbon-Based Nanostructured Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  4. Vehicle Technologies Office Merit Review 2015: Process R&D and Scale up of Critical Battery Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about process R&D...

  5. Vehicle Technologies Office Merit Review 2016: Process Development and Scale-Up of Advanced Active Battery Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  6. Vehicle Technologies Office Merit Review 2014: Applied ICME for New Propulsion Materials (Agreement ID:26391) Project ID:18865

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about applied ICME...

  7. Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  8. Vehicle Technologies Office Merit Review 2016: Alternative High-Performance Motors with Non-Rare Earth Materials

    Broader source: Energy.gov [DOE]

    Presentation given by General Electric (GE) Global at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric...

  9. Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel efficiency...

  10. Vehicle Technologies Office Merit Review 2015: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  11. High Temperature Phase Change Materials for Thermal Energy Storage Applications: Preprint

    SciTech Connect (OSTI)

    Gomez, J.; Glatzmaier, G. C.; Starace, A.; Turchi, C.; Ortega, J.

    2011-08-01

    To store thermal energy, sensible and latent heat storage materials are widely used. Latent heat thermal energy storage (TES) systems using phase change materials (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation. Molten salt PCM candidates for cascaded PCMs were evaluated for the temperatures near 320 degrees C, 350 degrees C, and 380 degrees C. These temperatures were selected to fill the 300 degrees C to 400 degrees C operating range typical for parabolic trough systems, that is, as one might employ in three-PCM cascaded thermal storage. Based on the results, the best candidate for temperatures near 320 degrees C was the molten salt KNO3-4.5wt%KCl. For the 350 degrees C and 380 degrees C temperatures, the evaluated molten salts are not good candidates because of the corrosiveness and the high vapor pressure of the chlorides.

  12. Heat treated 9 Cr-1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-08-21

    The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

  13. APPLICATION OF POLYURETHANE FOAM FOR IMPACT ABSORPTION AND THERMAL INSULATION FOR GENERAL PURPOSE RADIOACTIVE MATERIALS PACKAGINGS

    SciTech Connect (OSTI)

    Smith, A; Glenn Abramczyk, G; Paul Blanton, P; Steve Bellamy, S; William Daugherty, W; Sharon Williamson, S

    2009-02-18

    Polyurethane foam has been employed in impact limiters for large radioactive materials packagings since the early 1980's. Its consistent crush response, controllable structural properties and excellent thermal insulating characteristics have made it attractive as replacement for the widely used cane fiberboard for smaller, drum size packagings. Accordingly, polyurethane foam was chosen for the overpack material for the 9977 and 9978 packagings. The study reported here was undertaken to provide data to support the analyses performed as part of the development of the 9977 and 9978, and compared property values reported in the literature with published property values and test results for foam specimens taken from a prototype 9977 packaging. The study confirmed that, polyurethane foam behaves in a predictable and consistent manner and fully satisfies the functional requirements for impact absorption and thermal insulation.

  14. Laboratory studies on corrosion of materials for fluidized bed combustion applications

    SciTech Connect (OSTI)

    Natesan, K.

    1990-10-01

    An extensive corrosion test program was conducted at Argonne National Laboratory to evaluate the corrosion performance of metallic structural materials in environments that simulate both steady-state and off-normal exposure conditions anticipated in fluidized bed combustion (FBC) systems. This report discusses the possible roles of key parameters, such as sorbent and gas chemistries, metal temperature, gas cycling conditions, and alloy pretreatment, in the corrosion process. Data on scale thickness and intergranular penetration depth are presented for several alloys as a function of the chemistry of the exposure environment, deposit chemistry, and exposure time. Test results were obtained to compare the corrosion behavior of materials in the presence of reagent grade sorbent compounds and spent-bed materials from bubbling- and circulating-fluid-bed systems. Finally, the laboratory test results were compared with metal wastage information developed over the years in several fluidized bed test facilities. Metallic alloys chosen for the tests were carbon steel, Fe-2 1/4Cr-1Mo and Fe-9Cr-1Mo ferritic steels. Types 304 and 310 stainless steel, and Incoloy 800. 26 refs., 61 figs., 8 tabs.

  15. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications

    SciTech Connect (OSTI)

    Martin, Madhavi Z; Allman, Steve L; Brice, Deanne Jane; Martin, Rodger Carl; Andre, Nicolas O

    2012-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine the limits of detection of strontium (Sr) and cesium (Cs), common nuclear fission products. Additionally, detection limits were determined for cerium (Ce), often used as a surrogate for radioactive plutonium in laboratory studies. Results were obtained using a laboratory instrument with a Nd:YAG laser at fundamental wavelength of 1064 nm, frequency doubled to 532 nm with energy of 50 mJ/pulse. The data was compared for different concentrations of Sr and Ce dispersed in a CaCO3 (white) and carbon (black) matrix. We have addressed the sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis in pellets that were doped with the different elements at various concentrations. These results demonstrate that LIBS technique is inherently well suited for in situ analysis of nuclear materials in hot cells. Three key advantages are evident: (1) small samples (mg) can be evaluated; (2) nuclear materials can be analyzed with minimal sample preparation; and (3) samples can be remotely analyzed very rapidly (ms-seconds). Our studies also show that the methods can be made quantitative. Very robust multivariate models have been used to provide quantitative measurement and statistical evaluation of complex materials derived from our previous research on wood and soil samples.

  16. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect (OSTI)

    Young, J K

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  17. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect (OSTI)

    Young, J.K.

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R&D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  18. Millimeter-Wave Thermal Analysis Development and Application to GEN IV Reactor Materials

    SciTech Connect (OSTI)

    Wosko, Paul; Sundram, S. K.

    2012-10-16

    New millimeter-wave thermal analysis instrumentation has been developed and studied for characterization of materials required for diverse fuel and structural needs in high temperature reactor environments such as the Next Generation Nuclear Plant (NGNP). A two-receiver 137 GHz system with orthogonal polarizations for anisotropic resolution of material properties has been implemented at MIT. The system was tested with graphite and silicon carbide specimens at temperatures up to 1300 ºC inside an electric furnace. The analytic and hardware basis for active millimeter-wave radiometry of reactor materials at high temperature has been established. Real-time, non contact measurement sensitivity to anisotropic surface emissivity and submillimeter surface displacement was demonstrated. The 137 GHz emissivity of reactor grade graphite (NBG17) from SGL Group was found to be low, ~ 5 %, in the 500 – 1200 °C range and increases by a factor of 2 to 4 with small linear grooves simulating fracturing. The low graphite emissivity would make millimeter-wave active radiometry a sensitive diagnostic of graphite changes due to environmentally induced stress fracturing, swelling, or corrosion. The silicon carbide tested from Ortek, Inc. was found to have a much higher emissivity at 137 GHz of ~90% Thin coatings of silicon carbide on reactor grade graphite supplied by SGL Group were found to be mostly transparent to millimeter-waves, increasing the 137 GHz emissivity of the coated reactor grade graphite to about ~14% at 1250 ºC.

  19. Vehicle Technologies Office Merit Review 2016: Gate Driver Optimization for WBG Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  20. Vehicle Technologies Office Merit Review 2014: New High-Energy Electrochemical Couple for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a new high-energy...

  1. Vehicle Technologies Office Merit Review 2015: New High-Energy Electrochemical Couple for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about new high-energy...

  2. Vehicle Technologies Office Merit Review 2015: High Energy Lithium Batteries for PHEV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Envia at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries for PHEV...

  3. Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

  4. Vehicle Technologies Office Merit Review 2015: Gate Driver Optimization for WBG Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about gate driver...

  5. Vehicle Technologies Office Merit Review 2016: New High-Energy Electrochemical Couple for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  6. Vehicle Technologies Office Merit Review 2015: Green Racing Protocols & Technology Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Green Racing...

  7. Development and Applications of Photosensitive Device Systems to Studies of Biological and Organic Materials

    SciTech Connect (OSTI)

    Gruner, Sol M.

    2005-06-01

    R&D and application testing are proceeding on Pixel Array Detectors (PADs) for time-resolved and crystallographic applications at synchrotron radiation (SR) sources [1, 2, 4, 23, 24]. In conjunction with an NIH-funded SBIR grant, a novel mixed-mode analog/digital pixel design is being developed. Reports and publications on recent developments in the hybrid detector will be presented at the IEEE Nuclear Science Symposium in Rome in October, 2004 [21-23]. We've been invited to help prepare a special issue of Journal of Synchrotron Radiation on x-ray detectors; additionally, we will contribute an article on fast time-resolved PADs [24]. Application of a PAD developed under a DOE Facilities Initiative Grant, in collaboration with Dr. Jin Wang's group at the Advanced Photon Source, is being intensively used for microsecond time-resolved x-ray imaging of fuel injectors [3, 15]. This detector is the primary data acquisition device used by the Wang collaboration for work which was awarded the 2002 DOE Combustion and Emission Control R&D award.

  8. Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    No Name

    2014-10-01

    ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  9. Drilling Sideways - A Review of Horizontal Well Technology and Its Domestic Application

    Reports and Publications (EIA)

    1993-01-01

    Focuses primarily on domestic horizontal drilling applications, past and present, and on salient aspects of current and near-future horizontal drilling and completion technology.

  10. Solution of the nonlinear Poisson-Boltzmann equation: Application to ionic diffusion in cementitious materials

    SciTech Connect (OSTI)

    Arnold, J.; Kosson, D.S.; Garrabrants, A.; Meeussen, J.C.L.; Sloot, H.A. van der

    2013-02-15

    A robust numerical solution of the nonlinear Poisson-Boltzmann equation for asymmetric polyelectrolyte solutions in discrete pore geometries is presented. Comparisons to the linearized approximation of the Poisson-Boltzmann equation reveal that the assumptions leading to linearization may not be appropriate for the electrochemical regime in many cementitious materials. Implications of the electric double layer on both partitioning of species and on diffusive release are discussed. The influence of the electric double layer on anion diffusion relative to cation diffusion is examined.

  11. Methods For Improving Polymeric Materials For Use In Solar Cell Applications

    DOE Patents [OSTI]

    Hanoka, Jack I.

    2003-07-01

    A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.

  12. Methods For Improving Polymeric Materials For Use In Solar Cell Applications

    DOE Patents [OSTI]

    Hanoka, Jack I.

    2001-11-20

    A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.

  13. Diesel Emission Control Review

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and technology approaches for diesel emission control for heavy and light duty applications

  14. Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary PDF icon ...

  15. Meeting Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Meeting Materials Meeting Materials Here you will find various items to be used before and during the requirements review. The following documents are included: Case study worksheet to be filled in by meeting participants Sample of a completed case study from a Nuclear Physics requirements workshop held in 2011 A graph of NERSC and HEP usage as a function of time A powerpoint template you can use at the requirements review Downloads CaseStudyTemplate.docx | unknown Case Study Worksheet -

  16. Review of Destructive Assay Methods for Nuclear Materials Characterization from the Three Mile Island (TMI) Fuel Debris

    SciTech Connect (OSTI)

    Carla J. Miller

    2013-09-01

    This report provides a summary of the literature review that was performed and based on previous work performed at the Idaho National Laboratory studying the Three Mile Island 2 (TMI-2) nuclear reactor accident, specifically the melted fuel debris. The purpose of the literature review was to document prior published work that supports the feasibility of the analytical techniques that were developed to provide quantitative results of the make-up of the fuel and reactor component debris located inside and outside the containment. The quantitative analysis provides a technique to perform nuclear fuel accountancy measurements

  17. Review of Individual Technology Assessment Reports (ITAR) for industrial boiler applications

    SciTech Connect (OSTI)

    Archer, T.; Bakshi, P.; Weisenberg, I.J.

    1980-01-01

    Eight Individual Technology Assessment Reports and one Background Study in Support of New Source Performance Standards for Industrial Boilers are reviewed. These ITARs were prepared for the EPA and include studies of particulate control, flue-gas desulfurization, fluidized-bed combustion, NO/sub x/ combustion modification, NO/sub x/ flue-gas treatment, coal cleaning, synthetic fuels, and oil cleaning. The ITARs provide engineering and cost data for the air pollution control technologies that will be required to meet the New Source Performance Standards for industrial boilers. The pollutants considered were SO/sub x/, NO/sub x/, and particulates. Each ITAR is reviewed from the standpoint of engineering, demonstrated technology, and costing methodology. The cost review includes a comparison of the costing methodology of each ITAR with the costing methodology recommended by the EPA background document.

  18. Method of bonding functional surface materials to substrates and applications in microtechnology and anti-fouling

    DOE Patents [OSTI]

    Feng, Xiangdong; Liu, Jun; Liang, Liang

    2001-01-01

    A simple and effective method to bond a thin coating of poly(N-isopropylacylamide) (NIPAAm) on a glass surface by UV photopolymerization, and the use of such a coated surface in nano and micro technology applications. A silane coupling agent with a dithiocarbamate group is provided as a photosensitizer preferably, (N,N'-diethylamine) dithiocarbamoylpropyl-(trimethoxy) silane (DATMS). The thiocarbamate group of the sensitizer is then bonded to the glass surface by coupling the silane agent with the hydroxyl groups on the glass surface. The modified surface is then exposed to a solution of NIPAAm and a crosslinking agent which may be any organic molecule having an acrylamide group and at least two double bonds in its structure, such as N, N'-methylenebisacrylamide, and a polar solvent which may be any polar liquid which will dissolve the monomer and the crosslinking agent such as acetone, water, ethanol, or combinations thereof. By exposing the glass surface to a UV light, free radicals are generated in the thiocarbamate group which then bonds to the crosslinking agent and the NIPAAm. Upon bonding, the crosslinking agent and the NIPAAm polymerize to form a thin coating of PNIPAAm bonded to the glass. Depending upon the particular configuration of the glass, the properties of the PNIPAAm allow applications in micro and nano technology.

  19. Method of bonding functional surface materials to substrates and applications in microtechnology and antifouling

    DOE Patents [OSTI]

    Feng, Xiangdong; Liu, Jun; Liang, Liang

    1999-01-01

    A simple and effective method to bond a thin coating of poly(N-isopropylacylamide) (NIPAAm) on a glass surface by UV photopolymerization, and the use of such a coated surface in nano and micro technology applications. A silane coupling agent with a dithiocarbamate group is provided as a photosensitizer, preferably, (N,N'-diethylamine)dithiocarbamoylpropyl-(trimethoxy)silane (DATMS). The thiocarbamate group of the sensitizer is then bonded to the glass surface by coupling the silane agent with the hydroxyl groups on the glass surface. The modified surface is then exposed to a solution of NIPAAm and a crosslinking agent which may be any organic molecule having an acrylamide group and at least two double bonds in its structure, such as N,N'-methylenebisacrylamide, and a polar solvent which may be any polar liquid which will dissolve the monomer and the crosslinking agent such as acetone, water, ethanol, or combinations thereof. By exposing the glass surface to a UV light, free radicals are generated in the thiocarbamate group which then bonds to the crosslinking agent and the NIPAAm. Upon bonding, the crosslinking agent and the NIPAAm polymerize to form a thin coating of PNIPAAm bonded to the glass. Depending upon the particular configuration of the glass, the properties of the PNIPAAm allow applications in micro and nano technology.

  20. Commercialization of New Carbon Fiber Materials Based on Sustainable Resources for Energy Applications

    SciTech Connect (OSTI)

    Eberle, Cliff; Webb, Daniel C; Albers, Tracy; Chen, Chong

    2013-03-01

    Oak Ridge National Laboratory (ORNL) and GrafTech International have collaborated to develop and demonstrate the performance of high temperature thermal insulation prototypes made from lignin-based carbon fibers. This project will potentially lead to the first commercial application of lignin-based carbon fibers (LBCF). The goal of the commercial application is to replace expensive, Chinese-sourced isotropic pitch carbon fibers with lower cost carbon fibers made from a domestically sourced, bio-derived (renewable) feedstock. LBCF can help recapture jobs that were previously exported to China while resolving a supply chain vulnerability and reducing the production cost for GrafTech s high temperature thermal insulation. The performance of the LBCF prototypes was measured and found to be comparable to that of the current commercial product. During production of the insulation prototypes, ORNL and GrafTech demonstrated lignin compounding/pelletization, fiber production, heat treatment, and compositing at scales far surpassing those previously demonstrated in LBCF R&D or production. A plan was developed for the commercialization of LBCF thermal insulation, with key milestones including qualification of multiple scalable lignin sources in 2013, tons-scale production and field testing by customers in 2014, and product launch as soon thereafter as production capabilities can be constructed and commissioned.

  1. Method and apparatus for the application of textile treatment compositions to textile materials

    DOE Patents [OSTI]

    Argyle, M.D.; Propp, W.A.

    1998-01-20

    A system is described for applying textile treatment compositions to textile materials. A conduit member is provided which includes a passageway having a first end, a second end, and a medial portion with a constricted (narrowed) region. The passageway may include at least one baffle having an opening there through. A yarn strand is then moved through the passageway. A textile treatment composition (a sizing agent or dye) dissolved in a carrier medium (a supercritical fluid or liquefied gas) is thereafter introduced into the constricted region, preferably at an acute angle relative to the passageway. The carrier medium expands inside the passageway which causes delivery of the treatment composition to the yarn. The treated yarn then passes through the baffle (if used) which facilitates drying of the yarn. During this process, a carrier gas can be introduced into the passageway to ensure the production of a smooth, dry product. 1 fig.

  2. Method and apparatus for the application of textile treatment compositions to textile materials

    DOE Patents [OSTI]

    Argyle, Mark D.; Propp, William Alan

    1998-01-01

    A system for applying textile treatment compositions to textile materials. A conduit member is provided which includes a passageway having a first end, a second end, and a medial portion with a constricted (narrowed) region. The passageway may include at least one baffle having an opening therethrough. A yarn strand is then moved through the passageway. A textile treatment composition (a sizing agent or dye) dissolved in a carrier medium (a supercritical fluid or liquified gas) is thereafter introduced into the constricted region, preferably at an acute angle relative to the passageway. The carrier medium expands inside the passageway which causes delivery of the treatment composition to the yarn. The treated yarn then passes through the baffle (if used) which facilitates drying of the yarn. During this process, a carrier gas can be introduced into the passageway to ensure the production of a smooth, dry product.

  3. Phenolic cation-exchange resin material for recovery of cesium and strontium. [Patent application

    DOE Patents [OSTI]

    Ebra, M.A.; Wallace, R.M.

    1982-05-05

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear wate solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs/sup +/ and Sr/sup 2 +/ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  4. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    SciTech Connect (OSTI)

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1997-12-01

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs.

  5. BES Requirements Review 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BES Requirements Review 2014 Science Engagement Move your data Programs & Workshops Science Requirements Reviews Network Requirements Reviews Documents and Background Materials FAQ for Case Study Authors BER Requirements Review 2015 ASCR Requirements Review 2015 Previous Reviews HEP/NP Requirements Review 2013 FES Requirements Review 2014 BES Requirements Review 2014 BES Attendees 2014 Requirements Review Reports Case Studies Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1

  6. FES Requirements Review 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FES Requirements Review 2014 Science Engagement Move your data Programs & Workshops Science Requirements Reviews Network Requirements Reviews Documents and Background Materials FAQ for Case Study Authors BER Requirements Review 2015 ASCR Requirements Review 2015 Previous Reviews HEP/NP Requirements Review 2013 FES Requirements Review 2014 FES Attendees 2014 BES Requirements Review 2014 Requirements Review Reports Case Studies Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1

  7. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    SciTech Connect (OSTI)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna

    2015-05-15

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  8. Covariant Spectator Theory: Foundations and Applications A Mini-Review of the Covariant Spectator Theory

    SciTech Connect (OSTI)

    Alfred Stadler, Franz Gross

    2010-10-01

    We provide a short overview of the Covariant Spectator Theory and its applications. The basic ideas are introduced through the example of a {phi}{sup 4}-type theory. High-precision models of the two-nucleon interaction are presented and the results of their use in calculations of properties of the two- and three-nucleon systems are discussed. A short summary of applications of this framework to other few-body systems is also presented.

  9. Dynamic materials testing and constitutive modeling of structural sheet steel for automotive applications. Final progress report

    SciTech Connect (OSTI)

    Cady, C.M.; Chen, S.R.; Gray, G.T. III

    1996-08-23

    The objective of this study was to characterize the dynamic mechanical properties of four different structural sheet steels used in automobile manufacture. The analysis of a drawing quality, special killed (DQSK) mild steel; high strength, low alloy (HSLA) steel; interstitial free (IF); and a high strength steel (M-190) have been completed. In addition to the true stress-true strain data, coefficients for the Johnson-Cook, Zerilli-Armstrong, and Mechanical Threshold Stress constitutive models have been determined from the mechanical test results at various strain rates and temperatures and are summarized. Compression, tensile, and biaxial bulge tests and low (below 0.1/s) strain rate tests were completed for all four steels. From these test results it was determined to proceed with the material modeling optimization using the through thickness compression results. Compression tests at higher strain rates and temperatures were also conducted and analyzed for all the steels. Constitutive model fits were generated from the experimental data. This report provides a compilation of information generated from mechanical tests, the fitting parameters for each of the constitutive models, and an index and description of data files.

  10. Safety analysis for the use of hazardous production materials in photovoltaic applications

    SciTech Connect (OSTI)

    Moskowitz, P.D.; Fthenakis, V.M.; Crandall, R.S.; Nelson, B.P.

    1993-12-31

    A wide range of hazardous production materials (HPMs) are used in industrial and university facilities engaged in research and development (R&D) related to semiconductor and photovoltaic devices. Because of the nature of R&D facilities where research activities are constantly changing, it is important for facility managers to pro-actively control the storage, distribution, use and disposal of these HPMs. As part of this control process, facility managers must determine the magnitude of the risk presented by their operations and the protection afforded by the administrative, engineering and personnel controls that have been implemented to reduce risks to life and property to acceptable levels. Facility auditing combined with process hazard analysis (PHA), provides a mechanism for identifying these risks and evaluating their magnitude. In this paper, the methods and results of a PHA for a photovoltaic R&D facility handling HPMs are presented. Of the 30 potential accidents identified, none present High or even Moderate Risks; 18 present Low Risks; and, 12 present Routine Risks. Administrative, engineering and personal safety controls associated with each accident are discussed. 15 refs., 2 figs., 6 tabs.

  11. Safety analysis for the use of hazardous production materials in photovoltaic applications

    SciTech Connect (OSTI)

    Moskowitz, P.D.; Fthenakis, V.M.; Crandall, R.S.; Nelson, B.P.

    1993-11-01

    A wide range of hazardous production materials (HPMs) are used in industrial and university facilities engaged in research and development (R and D) related to semiconductor and photovoltaic devices. Because of the nature of R and D facilities where research activities are constantly changing, it is important for facility managers to pro-actively control the storage, distribution, use and disposal of these HPMs. As part of this control process, facility managers must determine the magnitude of the risk presented by their operations and the protection afforded by the administrative, engineering and personnel controls that have been implemented to reduce risks to life and property to acceptable levels. Facility auditing combined with process hazard analysis (PHA), provides a mechanism for identifying these risks and evaluating their magnitude. In this paper, the methods and results of a PHA for a photovoltaic R and D facility handling HPMs are presented. Of the 30 potential accidents identified, none present High or even Moderate Risks; 18 present Low Risks; and, 12 present Routine Risks. Administrative, engineering and personal safety controls associated with each accident are discussed.

  12. Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; Holladay, Jamelyn D.

    2011-10-05

    A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia Borane (AB) was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to {approx}16% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with 8 thermally isolated sections in which H2 flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target.

  13. A Comparative Study of Welded ODS Cladding materials for AFCI/GNEP Applications

    SciTech Connect (OSTI)

    Indrajit Charit; Megan Frary; Darryl Butt; K.L. Murty; Larry Zirker; James Cole; Mitchell Meyer; Rajiv S. Mishra; Mark Woltz

    2011-03-31

    This research project involved working on the pressure resistance welding of oxide dispersion strengthened (ODS) alloys which will have a large role to play in advanced nuclear reactors. The project also demonstrated the research collaboration between four universities and one nation laboratory (Idaho National Laboratory) with participation from an industry for developing for ODS alloys. These alloys contain a high number density of very fine oxide particles that can impart high temperature strength and radiation damage resistance suitable for in-core applications in advanced reactors. The conventional fusion welding techniques tend to produce porosity-laden microstructure in the weld region and lead to the agglomeration and non-uniform distribution of the neededoxide particles. That is why two solid state welding methods - pressure resistance welding (PRW) and friction stir welding (FSW) - were chosen to be evaluated in this project. The proposal is expected to support the development of Advanced Burner Reactors (ABR) under the GNEP program (now incorporated in Fuel Cycle R&D program). The outcomes of the concluded research include training of graduate and undergraduate students and get them interested in nuclear related research.

  14. Mechanosynthesis, deposition and characterization of CZTS and CZTSe materials for solar cell applications

    SciTech Connect (OSTI)

    Shyju, T.S.; Anandhi, S.; Suriakarthick, R.; Gopalakrishnan, R.; Kuppusami, P.

    2015-07-15

    Mechanosynthesis of nanocrystalline powders of CZTS and CZTSe by ball milling technique and the physical properties of thermally evaporated CZTS and CZTSe thin films as a function of substrate temperature are investigated. Nanocrystalline Cu–Zn–Tin–Sulphide (CZTS) and Cu–Zn–Tin–Selenide (CZTSe) powders synthesized by ball milling at different milling time using the source materials of Cu, Zn, Sn, S (or) Se in the ratio 2:1:1:4 are investigated. The above synthesized powder was thermally evaporated on glass substrate kept at room temperature and 673 K under a vacuum of 10{sup −6} mbar to prepare quaternary compound semiconducting thin films in a single step process. The synthesized powder and deposited CZTS and CZTSe thin films belong to tetragonal crystal system. Raman spectra reveal that the synthesized nanocrystals are pure without any secondary phases. A gradual reduction in optical bandgap of films was observed with increasing substrate temperature due to increased crystallinity of the films. The changes in surface morphology of the films with respect to substrate temperature were studied by scanning electron microscopy and atomic force microscopy. Electrical studies indicate that the deposited films have p-type conductivity. - Highlights: • Nanocrystalline powders of CZTS and CZTSe are synthesized by ball milling technique. • The ball milled powder was thermally evaporated on glass at room temperature and 673 K. • Raman spectroscopy reveals that the synthesized nanocrystals are pure without any secondary phases. • SEM and AFM micrographs illustrate the granular type of growth and the roughness and particle sizes obtained at the substrate temperature of 673 K are higher than those obtained in the room temperature. • Hall coefficient obtained for the film confirms the p-type conductivity. • A gradual reduction in optical bandgap was observed with increasing substrate temperature.

  15. Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications

    DOE Patents [OSTI]

    Seals, Roland D.

    2015-08-18

    The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB.sub.2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardface coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.

  16. Fabrication of Tungsten-Rhenium Cladding materials via Spark Plasma Sintering for Ultra High Temperature Reactor Applications

    SciTech Connect (OSTI)

    Charit, Indrajit; Butt, Darryl; Frary, Megan; Carroll, Mark

    2012-11-05

    This research will develop an optimized, cost-effective method for producing high-purity tungsten-rhenium alloyed fuel clad forms that are crucial for the development of a very high-temperature nuclear reactor. The study will provide critical insight into the fundamental behavior (processing-microstructure- property correlations) of W-Re alloys made using this new fabrication process comprising high-energy ball milling (HEBM) and spark plasma sintering (SPS). A broader goal is to re-establish the U.S. lead in the research field of refractory alloys, such as W-Re systems, with potential applications in very high-temperature nuclear reactors. An essential long-term goal for nuclear power is to develop the capability of operating nuclear reactors at temperatures in excess of 1,000K. This capability has applications in space exploration and some special terrestrial uses where high temperatures are needed in certain chemical or reforming processes. Refractory alloys have been identified as being capable of withstanding temperatures in excess of 1,000K and are considered critical for the development of ultra hightemperature reactors. Tungsten alloys are known to possess extraordinary properties, such as excellent high-temperature capability, including the ability to resist leakage of fissile materials when used as a fuel clad. However, there are difficulties with the development of refractory alloys: 1) lack of basic experimental data on thermodynamics and mechanical and physical properties, and 2) challenges associated with processing these alloys.

  17. Application of PSA to review and define technical specifications for advanced nuclear power plants

    SciTech Connect (OSTI)

    Kim, I.S.; Samanta, P.K.; Reinhart, F.M.; Wohl, M.L.

    1995-11-01

    As part of the design certification process, probabilistic safety assessments (PSAS) are performed at the design stage for each advanced nuclear power plant. Among other usages, these PSAs are important inputs in defining the Technical Specifications (TSs) for these plants. Knowledge gained from their use in improving the TSs for operating nuclear power plants is providing methods and insights for using PSAs at this early stage. Evaluating the safety or the risk significance of the TSs to be defined for an advanced plant encompasses diverse aspects: (a) determining the basic limiting condition for operation (LCO); (b) structuring conditions associated with the LCO; (c) defining completion times (equivalent to allowed outage times in the TS for conventional plants); and, (d) prescribing required actions to be taken within the specified completion times. In this paper, we consider the use of PSA in defining the TSs for an advanced nuclear plant, namely General Electric`s Advanced Boiling Water Reactor (ABWR). Similar approaches are being taken for ABB-CE`s System 80+ and Westinghouse`s AP-600. We discuss the general features of an advanced reactor`s TS, how PSA is being used in reviewing the TSs, and we give an example where the TS submittal was reviewed using a PSA-based analysis to arrive at the requirements for the plant.

  18. Review of safety guidelines and licensing procedures applicable in Italy with regard to fusion machines

    SciTech Connect (OSTI)

    Sgalambro, G.

    1993-06-01

    A consistent set of general safety criteria has been set up in Italy dealing with fusion machines, considering also the most recent recommendations issued by ICRP. The paper gives a short discussion of the more safety relevant aspects in the design of fusion machines starting from the consideration of the applicable dose limits. The procedure for the licensing of fusion machines is presented in the second part of the paper.

  19. How to solve materials and design problems in solar heating and cooling. Energy technology review No. 77

    SciTech Connect (OSTI)

    Ward, D.S.; Oberoi, H.S.; Weinstein, S.D.

    1982-01-01

    A broad range of difficulties encountered in active and passive solar space heating systems and active solar space cooling systems is covered. The problems include design errors, installation mistakes, inadequate durability of materials, unacceptable reliability of components, and wide variations in performance and operation of different solar systems. Feedback from designers and manufacturers involved in the solar market is summarized. The designers' experiences with and criticisms of solar components are presented, followed by the manufacturers' replies to the various problems encountered. Information is presented on the performance and operation of solar heating and cooling systems so as to enable future designs to maximize performance and eliminate costly errors. (LEW)

  20. Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P. ); Moskowitz, P.D.; Fthenakis, V.M. )

    1992-07-01

    To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

  1. Soil Stabilization Methods with Potential for Application at the Nevada National Security Site: A Literature Review

    SciTech Connect (OSTI)

    Shillito, Rose; Fenstermaker, Lynn

    2014-01-01

    Nuclear testing at the Nevada National Security Site (NNSS) has resulted in large areas of surficial radionuclide-contaminated soils. Much of the radionuclide contamination is found at or near the soil surface, and due to the dry climate setting, and the long half-life of radioactive isotopes, soil erosion poses a long-term health risk at the NNSS. The objective of this literature review is to present a survey of current stabilization methods used for minimizing soil erosion, both by water and wind. The review focuses on in situ uses of fundamental chemical and physical mechanisms for soil stabilization. A basic overview of the physical and chemical properties of soil is also presented to provide a basis for assessing stabilization methods. Some criteria for stabilization evaluation are identified based on previous studies at the NNSS. Although no specific recommendations are presented as no stabilization method, alone or in combination, will be appropriate in all circumstances, discussions of past and current stabilization procedures and specific soil tests that may aid in current or future soil stabilization activities at the NNSS are presented. However, not all Soils Corrective Action Sites (CASs) or Corrective Action Units (CAUs) will require stabilization of surficial radionuclide-contaminated soils. Each Soils CAS or CAU should be evaluated for site-specific conditions to determine if soil stabilization is necessary or practical for a given specific site closure alternative. If stabilization is necessary, then a determination will be made as to which stabilization technique is the most appropriate for that specific site.

  2. Good Manufacturing Practices (GMP) / Good Laboratory Practices (GLP) Review and Applicability for Chemical Security Enhancements

    SciTech Connect (OSTI)

    Iveson, Steven W.

    2014-11-01

    Global chemical security has been enhanced through the determined use and integration of both voluntary and legislated standards. Many popular standards contain components that specifically detail requirements for the security of materials, facilities and other vital assets. In this document we examine the roll of quality management standards and how they affect the security culture within the institutions that adopt these standards in order to conduct business within the international market place. Good manufacturing practices and good laboratory practices are two of a number of quality management systems that have been adopted as law in many nations. These standards are designed to protect the quality of drugs, medicines, foods and analytical test results in order to provide the world-wide consumer with safe and affective products for consumption. These standards provide no established security protocols and yet manage to increase the security of chemicals, materials, facilities and the supply chain via the effective and complete control over the manufacturing, the global supply chains and testing processes. We discuss the means through which these systems enhance security and how nations can further improve these systems with additional regulations that deal specifically with security in the realm of these management systems. We conclude with a discussion of new technologies that may cause disruption within the industries covered by these standards and how these issues might be addressed in order to maintain or increase the level of security within the industries and nations that have adopted these standards.

  3. Trends in Energy Management Technology - Part 4: Review ofAdvanced Applications in Energy Management, Control, and InformationSystems

    SciTech Connect (OSTI)

    Yee, Gaymond; Webster, Tom

    2003-08-01

    In this article, the fourth in a series, we provide a review of advanced applications in Energy Management, Control, and Information Systems (EMCIS). The available features for these products are summarized and analyzed with regard to emerging trends in EMCIS and potential benefits to the Federal sector. The first article [1] covered enabling technologies for emerging energy management systems. The second article [2] serves as a basic reference for building control system (BCS) networking fundamentals and includes an assessment of current approaches to open communications. The third article [3] evaluated several products that exemplify the current state of practice in EMCIS. It is important for energy managers in the Federal sector to have a high level of knowledge and understanding of these complex energy management systems. This series of articles provides energy practitioners with some basic informational and educational tools to help make decisions relative to energy management systems design, specification, procurement, and energy savings potential.

  4. Review of Back Contact Silicon Solar Cells for Low-Cost Application

    SciTech Connect (OSTI)

    Smith, David D.

    1999-08-04

    Back contact solar cells hold significant promise for increased performance in photovoltaics for the near future. Two major advantages which these cells possess are a lack of grid shading loss and coplanar interconnection. Front contacted cells can have up to 10% shading loss when using screen printed metal grids. A front contact cell must also use solder connections which run from the front of one cell to the back of the next for series interconnection. This procedure is more difficult to automate than the case of co-planar contacts. The back contact cell design is not a recent concept. The earliest silicon solar cell developed by Bell Labs was a back contact device. There have been many design modifications to the basic concept over the years. To name a few, there is the Interdigitated Back Contact (IBC) cell, the Stanford Point contact solar cell, the Emitter Wrap Through (EWT), and its many variations. A number of these design concepts have demonstrated high efficiency. The SunPower back contact solar cell holds the efficiency record for silicon concentrator cells. The challenge is to produce a high efficiency cell at low cost using high throughput techniques. This has yet to be achieved with a back contact cell design. The focus of this paper will be to review the relevant features of back contact cells and progress made toward the goal of a low cost version of this device.

  5. A review of video security training and assessment-systems and their applications

    SciTech Connect (OSTI)

    Cellucci, J.; Hall, R.J. )

    1991-01-01

    This paper reports that during the last 10 years computer-aided video data collection and playback systems have been used as nuclear facility security training and assessment tools with varying degrees of success. These mobile systems have been used by trained security personnel for response force training, vulnerability assessment, force-on-force exercises and crisis management. Typically, synchronous recordings from multiple video cameras, communications audio, and digital sensor inputs; are played back to the exercise participants and then edited for training and briefing. Factors that have influence user acceptance include: frequency of use, the demands placed on security personnel, fear of punishment, user training requirements and equipment cost. The introduction of S-VHS video and new software for scenario planning, video editing and data reduction; should bring about a wider range of security applications and supply the opportunity for significant cost sharing with other user groups.

  6. Review of state-of-the-art of solar collector corrosion processes. Task 1 of solar collector studies for solar heating and cooling applications. Final technical progress report

    SciTech Connect (OSTI)

    Clifford, J E; Diegle, R B

    1980-04-11

    The state-of-the-art of solar collector corrosion processes is reviewed, and Task 1 of a current research program on use of aqueous heat transfer fluids for solar heating and cooling is summarized. The review of available published literature has indicated that lack of quantitative information exists relative to collector corrosion at the present time, particularly for the higher temperature applications of solar heating and cooling compared to domestic water heating. Solar collector systems are reviewed from the corrosion/service life viewpoint, with emphasis on various applications, collector design, heat transfer fluids, and freeze protection methods. Available information (mostly qualitative) on collector corrosion technology is reviewed to indicate potential corrosion problem areas and corrosion prevention practices. Sources of limited quantitative data that are reviewed are current solar applications, research programs on collector corrosion, and pertinent experience in related applications of automotive cooling and non-solar heating and cooling. A data bank was developed to catalog corrosion information. Appendix A of this report is a bibliography of the data bank, with abstracts reproduced from presently available literature accessions (about 220). This report is presented as a descriptive summary of information that is contained in the data bank.

  7. BER Requirements Review 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BER Attendees 2015 ASCR Requirements Review 2015 Previous Reviews Requirements Review Reports Case Studies News & Publications ESnet News Publications and Presentations Galleries ESnet Awards and Honors Blog ESnet Live Home » Science Engagement » Science Requirements Reviews » Network Requirements Reviews » BER Requirements Review 2015 Science Engagement Move your data Programs & Workshops Science Requirements Reviews Network Requirements Reviews Documents and Background Materials

  8. ASCR Requirements Review 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASCR Requirements Review 2015 ASCR Attendees 2015 Previous Reviews Requirements Review Reports Case Studies News & Publications ESnet News Publications and Presentations Galleries ESnet Awards and Honors Blog ESnet Live Home » Science Engagement » Science Requirements Reviews » Network Requirements Reviews » ASCR Requirements Review 2015 Science Engagement Move your data Programs & Workshops Science Requirements Reviews Network Requirements Reviews Documents and Background Materials

  9. Ultrasonics: Fundamentals, Technologies, and Applications

    SciTech Connect (OSTI)

    Ensminger, Dale; Bond, Leonard J.

    2011-09-17

    This is a new edition of a bestselling industry reference. Discusses the science, technology, and applications of low and high power ultrasonics, including industrial implementations and medical uses. Reviews the basic equations of acoustics, starting from basic wave equations and their applications. New material on property determination, inspection of metals (NDT) and non-metals, imaging, process monitoring and control. Expanded discussion of transducers, transducer wave-fields, scattering, attenuation and measurement systems and models. New material that discusses high power ultrasonics - in particular using mechanical effects and sonochemistry, including applications to nano-materials. Examines diagnosis, therapy, and surgery from a technology and medical physics perspective.

  10. Appendix G: Peer review nondisclosure agreement

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    This peer review nondisclosure agreement should be signed by each reviewer prior to the program sending review materials if sensitive or proprietary information will be provided reviewers or discussed during the review, and to everyone attending a review.

  11. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10²more » MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.« less

  12. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    SciTech Connect (OSTI)

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10² MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.

  13. Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01

    To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

  14. Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01

    To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

  15. Section 27: Peer Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Decommissioning Project CAO Carlsbad Area Office CARD Compliance Application Review Document CBFO Carlsbad Field Office CCA Compliance Certification Application CFR...

  16. Innovative Cell Materials and Designs for 300 Mile Range EVs | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es130_zhu_2013_p.pdf (1.37 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Innovative Cell Materials and Design for 300 Mile Range EVs Innovative Cell Materials and Designs for 300 Mile Range EVs Vehicle Technologies Office Merit Review 2016: Advanced High-Performance Batteries for Electric Vehicle (EV) Applications

  17. 2010 DOE EERE Vehicle Technologies Program Merit Review - Lightweight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials | Department of Energy Lightweight Materials 2010 DOE EERE Vehicle Technologies Program Merit Review - Lightweight Materials Lightweight materials research and development merit review results 2010_amr_06.pdf (1.36 MB) More Documents & Publications 2012 Annual Merit Review Results Report - Materials Technologies DOE Vehicle Technologies Program 2009 Merit Review Report - Lightweight Materials 2011 Annual Merit Review Results Report - Materials Technologies

  18. LANSCE | User Resources | Reviews

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reviews Proposals are reviewed by the external program review committee approximately two weeks after the proposal deadline has passed. Lujan Center WNR Review Login Login to check your review status. Lujan Center Review Process Approximately four months before the start of each run cycle, a call for proposals is issued identifying the start and end of the run cycle and instrument availability. All proposals, including national security, are subject to external peer review by the Materials

  19. Tubular structured hierarchical mesoporous titania material derived from natural cellulosic substances and application as photocatalyst for degradation of methylene blue

    SciTech Connect (OSTI)

    Huang, Haiqing; Liu, Xiaoyan; Huang, Jianguo

    2011-11-15

    Graphical abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material with high photocatalytic activity under UV light was fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template using a one-pot sol-gel method. Highlights: {yields} Tubular structured mesoporous titania material was fabricated by sol-gel method. {yields} The titania material faithfully recorded the hierarchical structure of the template substrate (cotton). {yields} The titania material exhibited high photocatalytic activity in decomposition of methylene blue. -- Abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material was designed and fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template by one-pot sol-gel method. The tubular structured hierarchical mesoporous titania material processes large specific surface area (40.23 m{sup 2}/g) and shows high photocatalytic activity in the photodegradation of methylene blue under UV light irradiation.

  20. GATE Center of Excellence in Lightweight Materials and Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Technologies | Department of Energy 6_vaidya_2012_p.pdf (4.01 MB) More Documents & Publications GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

  1. Packaging Review Guide for Reviewing Safety Analysis Reports for Packagings

    SciTech Connect (OSTI)

    DiSabatino, A; Biswas, D; DeMicco, M; Fisher, L E; Hafner, R; Haslam, J; Mok, G; Patel, C; Russell, E

    2007-04-12

    This Packaging Review Guide (PRG) provides guidance for Department of Energy (DOE) review and approval of packagings to transport fissile and Type B quantities of radioactive material. It fulfills, in part, the requirements of DOE Order 460.1B for the Headquarters Certifying Official to establish standards and to provide guidance for the preparation of Safety Analysis Reports for Packagings (SARPs). This PRG is intended for use by the Headquarters Certifying Official and his or her review staff, DOE Secretarial offices, operations/field offices, and applicants for DOE packaging approval. This PRG is generally organized at the section level in a format similar to that recommended in Regulatory Guide 7.9 (RG 7.9). One notable exception is the addition of Section 9 (Quality Assurance), which is not included as a separate chapter in RG 7.9. Within each section, this PRG addresses the technical and regulatory bases for the review, the manner in which the review is accomplished, and findings that are generally applicable for a package that meets the approval standards. This Packaging Review Guide (PRG) provides guidance for DOE review and approval of packagings to transport fissile and Type B quantities of radioactive material. It fulfills, in part, the requirements of DOE O 460.1B for the Headquarters Certifying Official to establish standards and to provide guidance for the preparation of Safety Analysis Reports for Packagings (SARPs). This PRG is intended for use by the Headquarters Certifying Official and his review staff, DOE Secretarial offices, operations/field offices, and applicants for DOE packaging approval. The primary objectives of this PRG are to: (1) Summarize the regulatory requirements for package approval; (2) Describe the technical review procedures by which DOE determines that these requirements have been satisfied; (3) Establish and maintain the quality and uniformity of reviews; (4) Define the base from which to evaluate proposed changes in scope

  2. Tritium breeding materials

    SciTech Connect (OSTI)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved.

  3. Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MANUFACTURING COST ANALYSIS OF 10 KW AND 25 KW DIRECT HYDROGEN POLYMER ELECTROLYTE MEMBRANE (PEM) FUEL CELL FOR MATERIAL HANDLING APPLICATIONS Prepared by: BATTELLE Battelle Memorial Institute 505 King Avenue Columbus, OH 43201 Prepared for: U.S. Department of Energy Golden Field Office Golden, CO DOE Contract No. DE-EE0005250 March 25, 2013 This report is a work prepared for the United States Government by Battelle. In no event shall either the United States Government or Battelle have any

  4. Enterprise Assessments Targeted Review of the Safety System Management of the Secondary Confinement System and Power Distribution Safety System at the Y-12 National Security Complex Highly Enriched Uranium Materials Facility … December 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targeted Review of the Safety System Management of the Secondary Confinement System and Safety Significant Power Distribution System at the Y-12 National Security Complex Highly Enriched Uranium Materials Facility December 2015 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms

  5. California - Establishing Transmission Project Review Streamlining...

    Open Energy Info (EERE)

    Regulatory Guidance - Supplemental Material: California - Establishing Transmission Project Review Streamlining DirectivesPermittingRegulatory GuidanceSupplemental Material...

  6. Introductory materials for committee members: 1) instructions for the Los Alamos National Laboratory fiscal year 2010 capability reviews 2) NPAC strategic capability planning 3) Summary self-assessment for the nuclear and particle physics, astrophysics an

    SciTech Connect (OSTI)

    Redondo, Antonio

    2010-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors.

  7. Vehicle Technologies Office Merit Review 2015: Development of Advanced High-Performance Batteries for 12V Start Stop Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Maxwell at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  8. Vehicle Technologies Office Merit Review 2016: Advanced Polyolefin Separators for Li-Ion Batteries Used in Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Entek at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  9. Vehicle Technologies Office Merit Review 2014: Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancement in...

  10. Vehicle Technologies Office Merit Review 2016: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Pennsylvania State University (Penn State) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  11. Vehicle Technologies Office Merit Review 2016: Development of Advanced High-Performance Batteries for 12V Start Stop Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Maxwell at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  12. Piezoelectric materials used in underwater acoustic transducers

    SciTech Connect (OSTI)

    Li, Huidong; Deng, Zhiqun; Carlson, Thomas J.

    2012-07-07

    Piezoelectric materials have been used in underwater acoustic transducers for nearly a century. In this paper, we reviewed four different types of piezoelectric materials: piezoelectric ceramics, single crystals, composites, and polymers, which are widely used in underwater acoustic transducers nowadays. Piezoelectric ceramics are the most dominant material type and are used as a single-phase material or one of the end members in composites. Piezoelectric single crystals offer outstanding electromechanical response but are limited by their manufacturing cost. Piezoelectric polymers provide excellent acoustic impedance matching and transducer fabrication flexibility although their piezoelectric properties are not as good as ceramics and single crystals. Composites combined the merits of ceramics and polymers and are receiving increased attention. The typical structure and electromechanical properties of each type of materials are introduced and discussed with respect to underwater acoustic transducer applications. Their advantages and disadvantages are summarized. Some of the critical design considerations when developing underwater acoustic transducers with these materials are also touched upon.

  13. Critical Materials:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 2. Technology Assessment and Potential ................................................................................................. 5 5 2.1 Major Trends in Selected Clean Energy Application Areas ........................................................... 5 6 2.1.1 Permanent Magnets for Wind

  14. Packaging Materials Properties Data

    SciTech Connect (OSTI)

    Leduc, D.

    1991-10-30

    Several energy absorbing materials are used in nuclear weapons component shipping containers recently designed for the Y-12 Plant Program Management Packaging Group. As a part of the independent review procedure leading to Certificates of Compliance, the U.S. Department of Energy Technical Safety Review Panels requested compression versus deflection . data on these materials. This report is a compilation of that data.

  15. Packaging materials properties data

    SciTech Connect (OSTI)

    Walker, M.S.

    1991-01-01

    Several energy absorbing materials are used in nuclear weapons component shipping containers recently designed for the Y-12 Plant Program Management Packaging Group. As a part of the independent review procedure leading to Certificates of Compliance, the US Department of Energy Technical Safety Review Panels requested compression versus deflection data on these materials. This report is a compilation of that data.

  16. High-Heat-Flux Testing of Irradiated Tungsten-Based Materials for Fusion Applications Using Infrared Plasma Arc Lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36-× 36-× 18-cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.

  17. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design andmore » implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.« less

  18. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    SciTech Connect (OSTI)

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  19. Longer-term domestic supply problems for nonrenewable materials with special emphasis on energy-related applications

    SciTech Connect (OSTI)

    Goeller, H.E.

    1980-01-01

    An examination is made on how materials are used in present and future energy production and use. Problem areas which are discussed include by-products production, import limitations, substitution and recycle, accelerated use, synthesis, and the adequacy of the data bases availability. (FS)

  20. High-Heat Flux Testing of Irradiated Tungsten based Materials for Fusion Applications using Infrared Plasma Arc Lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans Jr, James O; Schaich, Charles Ross; Ueda, Yoshio; Harper, David C; Katoh, Yutai; Snead, Lance Lewis; Byun, Thak Sang

    2014-01-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat flux conditions, while historically a mainstay of fusion research has proved challenging, especially for irradiated materials. A new high-heat flux testing facility based on water-wall Plasma Arc Lamps (PALs) is now being used for materials and small component testing. Two PAL systems, utilizing a 12,000 C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, are currently in use. The first PAL system provides a maximum incident heat flux of 4.2 MW/m2 over an area of 9x12 cm2. The second PAL available at ORNL provides a maximum incident heat flux of 27 MW/m2 over an area of 1x10 cm2. The absorbed heat fluxes into a tungsten target for the two PALs are approximately 1.97 and 12.7 MW/m2, respectively. This paper will present the overall design of the new PAL facilities as well as the design and implementation of the Irradiated Material Target Station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interested, such as those for plasma facing components. Moreover, IMTS designs are underway to extend the testing of small mock-ups for assessing the combined heating and thermomechanical effects of cooled, irradiated components. For the testing of material coupons , the specimens are placed in a shallow recess within the molybdenum holder that is attached to a water-cooled copper alloy rod. As the measurement of the specimen temperature for PAL is historically challenging since traditional approaches of temperature measurement cannot be employed due to the infrared heating and proximity of the PAL reflector to the specimen that does not allow a direct line of site, experiments for temperature calibration are presented. Finally, results for the high-heat flux testing of tungsten-based materials using the PAL are presented. As a demonstration of the system, results will be

  1. Vehicle Technologies Office Merit Review 2016: High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Farasis at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  2. Vehicle Technologies Office Merit Review 2014: Advanced High Energy Li-Ion Cell for PHEV and EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced high energy Li-ion cell for PHEV...

  3. Vehicle Technologies Office Merit Review 2015: ICME Guided Development of Advanced Cast Aluminum Alloys for Automotive Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ICME guided development of...

  4. Vehicle Technologies Office Merit Review 2015: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Penn State at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy, long cycle life...

  5. Vehicle Technologies Office Merit Review 2014: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy...

  6. Vehicle Technologies Office Merit Review 2016: Fuel Design for LTC Applications: Quantifing Fuel Performance in GCI Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Fuel ...

  7. Vehicle Technologies Office Merit Review 2014: ICME Guided Development of Advanced Cast Aluminum Alloys For Automotive Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Ford at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ICME guided development of advanced cast...

  8. applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It will be the critical enabler of many ground-based, ship-based, and potentially space-based missions and applications." - FEL report to the DOD Joint Technology Office, June 2001 ...

  9. Materials at LANL

    SciTech Connect (OSTI)

    Taylor, Antoinette J

    2010-01-01

    Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08

  10. Analytical Review

    SciTech Connect (OSTI)

    Frank Stodolsky

    2000-04-11

    ANL Performs Independent Review for DOE on the following topics: (1) Systematic analysis--Depends on question asked; (2) Compare technologies and pathways--Examples: (a) fuels, power plant technologies, vehicle materials; (b) Total lifecycle analysis reveals national and global impacts; and (3) Direction of R&D to most fruitful areas.

  11. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect (OSTI)

    Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.

    2014-06-23

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  12. IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS

    SciTech Connect (OSTI)

    Xiaodi Huang; Richard Gertsch

    2005-02-04

    Michigan Technological University, together with The Robbins Group, Advanced Ceramic Research, Advanced Ceramic Manufacturing, and Superior Rock Bits, evaluated a new process and a new material for producing drill bit inserts and disc cutters for the mining industry. Difficulties in the material preparation stage slowed the research initially. Prototype testing of the drill bit inserts showed that the new inserts did not perform up to the current state of the art. Due to difficulties in the prototype production of the disc cutters, the disc cutter was manufactured but not tested. Although much promising information was obtained as a result of this project, the objective of developing an effective means for producing rock drill bits and rock disc cutters that last longer, increase energy efficiency and penetration rate, and lower overall production cost was not met.

  13. Electrosynthesis, Characterization, and Application of Novel Hybrid Materials Based on Carbon Nanotube-Polyaniline-Nickel Hexacyanoferrate Nanocomposites

    SciTech Connect (OSTI)

    Lin, Yuehe; Cui, Xiaoli

    2006-02-14

    Incorporating nanoclusters of nickel hexacyanoferrates (NiHCF) onto a porous polyaniline (PANI)?carbon nanotube (CNT) matrix provides a novel class of hybrid materials with a good ion exchange capacity, high stability, and a selectivity for caesium ions. The CNT-PANI-NiHCF nanocomposite films have been synthesized by electrodeposition step-by-step on glassy carbon electrodes and characterized with cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques. CV and XPS investigations confirmed the formation of PANI and NiHCF on the surface of CNTs. The microscopy of NiHCF hybrid materials was characterized by SEM and TEM; the size of NiHCF particles is approximately 20 to 50 nm. The porous high surface area CNT matrix provides the high loading capacity for the deposition of NiHCF nanoparticles, while the PANI thin-film further stabilizes the nanoparticles. The selectivity for caesium ion adsorption of the hybrid materials was investigated. The high selectivity for caesium provides the base to develop a novel electrochemical ion exchange process for the treatment of nuclear wastes and radioactive-caesium contaminated waters.

  14. On the applicability of probabilistic analyses to assess the structural reliability of materials and components for solid-oxide fuel cells

    SciTech Connect (OSTI)

    Lara-Curzio, Edgar; Radovic, Miladin; Luttrell, Claire R

    2016-01-01

    The applicability of probabilistic analyses to assess the structural reliability of materials and components for solid-oxide fuel cells (SOFC) is investigated by measuring the failure rate of Ni-YSZ when subjected to a temperature gradient and comparing it with that predicted using the Ceramics Analysis and Reliability Evaluation of Structures (CARES) code. The use of a temperature gradient to induce stresses was chosen because temperature gradients resulting from gas flow patterns generate stresses during SOFC operation that are the likely to control the structural reliability of cell components The magnitude of the predicted failure rate was found to be comparable to that determined experimentally, which suggests that such probabilistic analyses are appropriate for predicting the structural reliability of materials and components for SOFCs. Considerations for performing more comprehensive studies are discussed.

  15. Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Innovating tomorrow's materials today New high-tech materials are the key to breakthroughs in biology, the environment, nuclear energy, transportation and national security. Argonne continues to make revolutionary advances in the science of materials discovery and synthesis, and is designing new materials with advantageous properties - one atom at a time. Examples of these include Argonne's patented technologies for nanoparticle applications, heat transfer and materials for advanced

  16. Tailored Porous Materials

    SciTech Connect (OSTI)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  17. Earth-Abundant Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE funds research into Earth-abundant materials for thin-film solar applications in response to the issue of materials scarcity surrounding other photovoltaic (PV) technologies. The sections below...

  18. Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

  19. Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint

    SciTech Connect (OSTI)

    Goodrich, A.; Woodhouse, M.; Hacke, P.

    2012-06-01

    Most silicon PV road maps forecast a continued reduction in wafer thickness, despite rapid declines in the primary incentive for doing so -- polysilicon feedstock price. Another common feature of most silicon-technology forecasts is the quest for ever-higher device performance at the lowest possible costs. The authors present data from device-performance and manufacturing- and system-installation cost models to quantitatively establish the incentives for manufacturers to pursue advanced (thin) wafer and (high efficiency) cell technologies, in an age of reduced feedstock prices. This analysis exhaustively considers the value proposition for high lifetime (p-type) silicon materials across the entire c-Si PV supply chain.

  20. Chapter 6: Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... reflectance and thermal emissivity requirements for roofs. ... ENERGY STAR-compliant roof materials include metal and are ... insulated doors (low-temperature applications) cost more ...