National Library of Energy BETA

Sample records for reverse osmosis system

  1. Reverse Osmosis Optimization

    SciTech Connect (OSTI)

    McMordie Stoughton, Kate; Duan, Xiaoli; Wendel, Emily M.

    2013-08-26

    This technology evaluation was prepared by Pacific Northwest National Laboratory on behalf of the U.S. Department of Energy’s Federal Energy Management Program (FEMP). ¬The technology evaluation assesses techniques for optimizing reverse osmosis (RO) systems to increase RO system performance and water efficiency. This evaluation provides a general description of RO systems, the influence of RO systems on water use, and key areas where RO systems can be optimized to reduce water and energy consumption. The evaluation is intended to help facility managers at Federal sites understand the basic concepts of the RO process and system optimization options, enabling them to make informed decisions during the system design process for either new projects or recommissioning of existing equipment. This evaluation is focused on commercial-sized RO systems generally treating more than 80 gallons per hour.¬

  2. Reverse Osmosis Optimization

    SciTech Connect (OSTI)

    2013-08-01

    This technology evaluation was prepared by Pacific Northwest National Laboratory on behalf of the U.S. Department of Energy’s Federal Energy Management Program (FEMP). The technology evaluation assesses techniques for optimizing reverse osmosis (RO) systems to increase RO system performance and water efficiency. This evaluation provides a general description of RO systems, the influence of RO systems on water use, and key areas where RO systems can be optimized to reduce water and energy consumption. The evaluation is intended to help facility managers at Federal sites understand the basic concepts of the RO process and system optimization options, enabling them to make informed decisions during the system design process for either new projects or recommissioning of existing equipment. This evaluation is focused on commercial-sized RO systems generally treating more than 80 gallons per hour.

  3. The design and control of a thermal management system for a photovoltaic reverse osmosis system

    E-Print Network [OSTI]

    Kelley, Leah C. (Leah Camille)

    2011-01-01

    Reverse osmosis (RO) is a well-known process for desalinating seawater and brackish groundwater. Desalination is energy-intensive, so using photovoltaic (PV) panels to power the process is an attractive environmentally ...

  4. Reverse osmosis desalination with osmotic polyelectrolyte intermediate 

    E-Print Network [OSTI]

    McConnell, Thomas Theodore

    1967-01-01

    by Loeb (27, 29) is the most promising membrane produced to date for reverse osmosis desalination. For production of potable water from saline water a salt rejection of 98. 6 per cent is necessary (15). In ac- tual pra-t. i. ce a greater salt... in comparison to a conventional reverse osmoti- cell with the same water flux. CHAP TER I I SURVEY OF THE LTTERATURE Research on desalination by reverse. osmotic means i. s a relatively new area of study. Most of the work in this field has been done...

  5. Department of Industrial Engineering Fall 2010 Reverse Osmosis: Valve Performance Improvement

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Industrial Engineering Fall 2010 Reverse Osmosis: Valve Performance butterfly valves for their reverse osmosis desalination systems, they must find a material or coating for use of a valve disc made out of ductile iron, which is highly susceptible to corrosion so it is coated

  6. Transport and Removal Mechanisms of Trace Organic Pollutants by Nanofiltration and Reverse Osmosis Membranes

    E-Print Network [OSTI]

    Wang, Jinwen

    2014-01-01

    solutions up to seawater salinity, Desalination, 184 (2005)Composite Seawater Reverse-Osmosis Membrane, Desalination,

  7. Recycling nickel electroplating rinse waters by low temperature evaporation and reverse osmosis

    SciTech Connect (OSTI)

    Lindsey, T.C.; Randall, P.M.

    1993-08-01

    Low temperature evaporation and reverse osmosis systems were each evaluated (on a pilot scale) on their respective ability to process rinse water collected from a nickel electroplating operation. Each system offered advantages under specific operating conditions. The low temperature evaporation system was best suited to processing solutions with relatively high (greater than 4,000 to 5,000 mg/L) nickel concentrations. The reverse osmosis system was best adapted to conditions where the feed solution had a relatively low (less than4,000 to 5,000 mg/L) nickel concentration. In electroplating operations where relatively dilute rinse water solutions must be concentrated to levels acceptable for replacement in the plating bath, a combination of the two technologies might provide the best process alternative.

  8. THE EFFECT OF VERY HIGH HYDRAULIC PRESSURE ON THE PERMEABILITY AND SALT REJECTION OF REVERSE OSMOSIS MEMBRANES

    E-Print Network [OSTI]

    McGovern, Ronan Killian

    We employ a stirred-cell reverse osmosis setup to demonstrate that a seawater reverse osmosis membrane can maintain excellent salt rejection at pressures as high as 172 bar. However, we also demonstrate a very significant ...

  9. The design of a controllable energy recovery device for solar powered reverse osmosis desalination with experimental validation

    E-Print Network [OSTI]

    Reed, Elizabeth Anne, S.M. Massachusetts Institute of Technology

    2012-01-01

    The purpose of this thesis is to design and validate a controllable energy recovery device with application to photovoltaic powered reverse osmosis (PVRO). The energy consumption of a reverse osmosis plant depends significantly ...

  10. Scaling control during membrane distillation of coal seam gas reverse osmosis brine

    E-Print Network [OSTI]

    Scaling control during membrane distillation of coal seam gas reverse osmosis brine Hung C. Duong during membrane distillation (MD) of brine from reverse osmosis (RO) treatment of coal seam gas (CSG. During CSG production, both gas and water are extracted to the surface. Gas is commonly separated from

  11. Algal toxins and reverse osmosis desalination operations: Laboratory bench testing and field monitoring of domoic acid,

    E-Print Network [OSTI]

    Caron, David

    Algal toxins and reverse osmosis desalination operations: Laboratory bench testing and field 2012 Accepted 23 September 2012 Available online 4 October 2012 Keywords: Reverse osmosis Desalination desalination facilities has become an important topic in recent years due to enhanced societal interest

  12. Nanofiltration/reverse osmosis for treatment of coproduced waters

    SciTech Connect (OSTI)

    Mondal, S.; Hsiao, C.L.; Wickramasinghe, S.R. [Colorado State University, Ft Collins, CO (United States)

    2008-07-15

    Current high oil and gas prices have lead to renewed interest in exploration of nonconventional energy sources such as coal bed methane, tar sand, and oil shale. However oil and gas production from these nonconventional sources has lead to the coproduction of large quantities of produced water. While produced water is a waste product from oil and gas exploration it is a very valuable natural resource in the arid Western United States. Thus treated produced water could be a valuable new source of water. Commercially available nanofiltration and low pressure reverse osmosis membranes have been used to treat three produced waters. The results obtained here indicate that the permeate could be put to beneficial uses such as crop and livestock watering. However minimizing membrane fouling will be essential for the development of a practical process. Field Emission Scanning Electron Microscopy imaging may be used to observe membrane fouling.

  13. Adsorption of Estrone on nanofiltration and reverse osmosis membranes in water and wastewater treatment 

    E-Print Network [OSTI]

    Nghiem, D.L.; Schäfer, Andrea; Waite, T.D.

    2002-01-01

    Adsorption of the trace contaminant estrone, a natural hormone and commonly abundant in surface waters and in treated as well as untreated wastewaters, to eight commercial nanofiltration (NF) and reverse osmosis (RO) ...

  14. A reverse osmosis treatment process for produced water: optimization, process control, and renewable energy application 

    E-Print Network [OSTI]

    Mareth, Brett

    2009-06-02

    resources (wind and solar) are analyzed as potential power sources for the process, and an overview of reverse osmosis membrane fouling is presented. A computer model of the process was created using a dynamic simulator, Aspen Dynamics, to determine energy...

  15. Particle count monitoring of reverse osmosis water treatment for removal of low-level radionuclides

    SciTech Connect (OSTI)

    Moritz, E.J.; Hoffman, C.R.; Hergert, T.R.

    1995-03-01

    Laser diode particle counting technology and analytical measurements were used to evaluate a pilot-scale reverse osmosis (RO) water treatment system for removal of particulate matter and sub-picocurie low-level radionuclides. Stormwater mixed with Waste Water Treatment Plant (WWTP) effluent from the Rocky Flats Environmental Technology Site (RFETS), formerly a Department of Energy (DOE) nuclear weapons production facility, were treated. No chemical pretreatment of the water was utilized during this study. The treatment system was staged as follows: multimedia filtration, granular activated carbon adsorption, hollow tube ultrafiltration, and reverse osmosis membrane filtration. Various recovery rates and two RO membrane models were tested. Analytical measurements included total suspended solids (TSS), total dissolved solids (TDS), gross alpha ({alpha}) and gross beta ({beta}) activity, uranium isotopes {sup 233/234}U and {sup 238}U, plutonium {sup 239/240}Pu, and americium {sup 241}Am. Particle measurement between 1--150 microns ({mu}) included differential particle counts (DPC), and total particle counts (TPC) before and after treatment at various sampling points throughout the test. Performance testing showed this treatment system produced a high quality effluent in clarity and purity. Compared to raw water levels, TSS was reduced to below detection of 5 milligrams per liter (mg/L) and TDS reduced by 98%. Gross {alpha} was essentially removed 100%, and gross {beta} was reduced an average of 94%. Uranium activity was reduced by 99%. TPC between 1-150{mu} were reduced by an average 99.8% to less than 1,000 counts per milliliter (mL), similar in purity to a good drinking water treatment plant. Raw water levels of {sup 239/240}Pu and {sup 241}Am were below reliable quantitation limits and thus no removal efficiencies could be determined for these species.

  16. Reverse osmosis (RO) treatment of Tucson's share of Central Arizona Project (CAP) water is being con-

    E-Print Network [OSTI]

    Fay, Noah

    Reverse osmosis (RO) treatment of Tucson's share of Central Arizona Project (CAP) water is being for RO Treatment of CAP Water PROJECT TEAM This Arizona Water Institute PROJECT FACT SHEET is part to treat CAP water and to minimize the amount of concentrate produced. More research and significant

  17. Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis 

    E-Print Network [OSTI]

    Richards, Laura A.; Vuachère, Marion; Schäfer, Andrea

    2010-01-01

    The objective of this study was to evaluate the impact of pH on boron, fluoride, and nitrate retention by comparing modelled speciation predictions with retention using six different nanofiltration (NF) and reverse osmosis ...

  18. Final Report: Computer Simulation of Osmosis and Reverse Osmosis in Structured Membranes

    SciTech Connect (OSTI)

    Sohail Murad

    2012-01-03

    Molecular simulation methods were developed as part of this project to increase our fundamental understanding of membrane based separation systems. Our simulations clarified for example that steric (size) effects had a significant impact on the desalination membranes. Previously it was thought the separation was entirely driven by coulombic force (attractive/repulsive forces at the membrane surfaces). Steric effects played an important role, because salt ions in brackish water are never present alone, but are strongly hydrated which effectively increases their size, and makes it impossible to enter a membrane, while the smaller water molecules can enter more readily. Membrane surface effects did play a role in increasing the flux of water, but not in the separation itself. In addition we also developed simulation methods to study ion exchange, gas separations, and pervaporation. The methods developed were used to once again increase our fundamental understanding of these separation processes. For example our studies showed that when the separation factor of gases in membranes can be significantly affected by the presence of another gas, it is generally because the separation mechanism has changed. For example in the case of nitrogen and carbon dioxide, in their pure state the separation factor is determined by diffusion, while in mixtures it is influenced more by adsorption in the membrane (zeolite in our case) Finally we developed a new technique using the NMR chemical shift to determine intermolecular interactions for mixtures. For polar-nonpolar systems such as Xe dissolved in water we were able to significantly improve the accuracy of gas solubilities, which are very sensitive to the cross interaction between water and Xe.

  19. Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains 250 citations and includes a subject term index and title list.)

  20. Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains a minimum of 245 citations and includes a subject term index and title list.)

  1. Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    NONE

    1996-10-01

    The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Novel Fouling-Reducing Coatings for Ultrafiltration, Nanofiltration, and Reverse Osmosis Membranes

    SciTech Connect (OSTI)

    Benny Freeman

    2008-08-31

    Polymeric membranes could potentially be the most flexible and viable long-term strategy for treatment of produced water from oil and gas production. However, widespread use of membranes, including reverse osmosis (RO) membranes, for produced water purification is hindered due to fouling caused by the impurities present in the water. Fouling of RO membranes is likely caused by surface properties including roughness, hydrophilicity, and charge, so surface modification is the most widely considered approach to improve the fouling properties of current RO membranes. This project focuses on two main approaches to surface modification: coating and grafting. Hydrophilic coating and grafting materials based on poly(ethylene glycol) (PEG) are applied to commercial RO membranes manufactured by Dow FilmTec and GE. Crossflow filtration experiments are used to determine the fouling resistance of modified membranes, and compare their performance to that of unmodified commercial RO membranes. Grafting and coating are shown to be two alternative methods of producing modified membranes with improved fouling resistance.

  4. pH effect on the separation of uranium fluoride effluents by the reverse osmosis process

    SciTech Connect (OSTI)

    Yun Chen ); Min-Lin Chu; Mu-Chang Shieh , Lung-tan, )

    1992-04-01

    Ammonium fluoride solutions and uranium fluoride effluents (UFE) with solute concentrations from 0.101 to 7,920 kg/m{sup 3}, at pH 2.80 to 9.60, have been treated with a continuous feedback reverse osmosis (RO) process. The solute rejections of NH{sub 4}{sup +}, F{sup {minus}}, and U{sup 6+} depend heavily on the feed pH value. For ammonium fluoride solutions, the rejection ratio of NH{sub 4}{sup +} decreases sharply from ca. 90 to 44.2% with the feed pH increased from 3.30 to 9.60, while that of F{sup {minus}} increases abruptly from 44.8 to 99.9% at the same pH change. For UFE solutions, the rejection ratio of U{sup 6+} remains greater than 90% at pH 2.80-7.13, while that of F{sup {minus}} decreases steadily from 96.4 to 18.8% with decreasing feed pH. Accordingly, the fluoride ions can be separated from UFE solutions under acidic conditions. The changes of solute rejection with feed pH can be explained by the different solubilities of the solutes in the membrane at different pH values. The UFE solutions with {alpha} and {beta} activities at 20.4-53.7 and 8.99-21.3 ({times} 10{sup 5} Baq/m{sup 3}) can be reduced to a level lower than 2.41 and 3.37 ({times}10{sup 5} Baq/m{sup 3}), respectively, by the current RO process.

  5. A Remote Absorption Process for Disposal of Evaporate and Reverse Osmosis Concentrates

    SciTech Connect (OSTI)

    Brunsell, D.A.

    2008-07-01

    Many commercial nuclear plants and DOE facilities generate secondary waste streams consisting of evaporator bottoms and reverse osmosis (RO) concentrate. Since liquids are not permitted in disposal facilities, these waste streams must be converted to dry solids, either by evaporation to dried solids or by solidification to liquid-free solids. Evaporation of the liquid wastes reduces their volume, but requires costly energy and capital equipment. In some cases, concentration of the contaminants during drying can cause the waste to exceed Class A waste for nuclear utilities or exceed DOE transuranic limits. This means that disposal costs will be increased, or that, when the Barnwell, SC disposal site closes to waste outside of the Atlantic Compact in July 2008, the waste will be precluded from disposal for the foreseeable future). Solidification with cement agents requires less energy and equipment than drying, but results in a volume increase of 50-100%. The doubling or tripling of waste weight, along with the increased volume, sharply increases shipping and disposal costs. Confronted with these unattractive alternatives, Diversified Technologies Services (DTS), in conjunction with selected nuclear utilities and D and D operations at Rocky Flats, undertook an exploratory effort to convert this liquid wastewater to a solid without using cement. This would avoid the bulking effect of cement, and permit the waste to be disposed of the Energy Solutions facility in Utah as well as some DOE facilities. To address the need for an attractive alternative to drying and cement solidification, a test program was developed using a polymer absorbent media to convert the concentrate streams to a liquid-free waste form that meets the waste acceptance criteria of the pertinent burial sites. Two approaches for mixing the polymer with the liquid were tested: mechanical mixing and in-situ incorporation. As part of this test program, a process control program (PCP) was developed that is 100% scalable from a concentrate test sample as small as 50 grams to full-scale processing of 100 cubic foot containers or larger. In summary: The absorption process offers utilities a viable and less costly alternative to on-site drying or solidification of concentrates. The absorption process can be completed by site personnel or by a vendor as a turnkey service. The process is suitable for multiple types of waste, including RO and evaporator concentrates, sludges, and other difficult to process waters and wet solids. (author)

  6. Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis

    SciTech Connect (OSTI)

    Yip, NY; Elimelech, M

    2014-09-16

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural -> anthropogenic -> engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.

  7. Time reversal communication system

    DOE Patents [OSTI]

    Candy, James V. (Danville, CA); Meyer, Alan W. (Danville, CA)

    2008-12-02

    A system of transmitting a signal through a channel medium comprises digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. The channel medium may be air, earth, water, tissue, metal, and/or non-metal.

  8. Development of a new feed channel spacer for reverse osmosis elements. Phase 2 final report, October 1, 1994--December 31, 1997

    SciTech Connect (OSTI)

    Milstead, C.E.; Riley, R.L.

    1998-02-11

    During Phase 1, computer modeling techniques were used as the prime instrument of evaluation of designs for a new feed channel spacer to replace the 30 mil thick standard mesh (Vexar) spacer currently used in ROWPU [Reverse Osmosis Water Processing Unit] spiral-wound elements. A hemispherical peg model, based on a Bed of Nails concept developed in Phase 1, was selected for prototype production of spiral-wound elements for field testing. Evaluation in the See-Thru test cell to observe pressure drops through the spacer, feed mixing patterns and ease of cleaning fouled membrane samples showed considerable benefit over Vexar. This design would be suitable for production by roll embossing (or rotary punching) methods instead of expensive injection molding techniques. A 10{1/2} inch die set was fabricated to prove this concept using a 12 ton press brake. Due to a number of factors, however, the equipment did not work as anticipated and numerous modifications are currently in progress. This work will continue at no cost to the government until completed. A seawater test system has been constructed for field testing of various commercially available feed channel spacers for comparison with the Vexar spacer.

  9. On-Site Pilot Study - Removal of Uranium, Radium-226 and Arsenic from Impacted Leachate by Reverse Osmosis - 13155

    SciTech Connect (OSTI)

    McMurray, Allan; Everest, Chris; Rilling, Ken; Vandergaast, Gary; LaMonica, David

    2013-07-01

    Conestoga-Rovers and Associates (CRA-LTD) performed an on-site pilot study at the Welcome Waste Management Facility in Port Hope, Ontario, Canada, to evaluate the effectiveness of a unique leachate treatment process for the removal of radioactive contaminants from leachate impacted by low-level radioactive waste. Results from the study also provided the parameters needed for the design of the CRA-LTD full scale leachate treatment process design. The final effluent water quality discharged from the process to meet the local surface water discharge criteria. A statistical software package was utilized to obtain the analysis of variance (ANOVA) for the results from design of experiment applied to determine the effect of the evaluated factors on the measured responses. The factors considered in the study were: percent of reverse osmosis permeate water recovery, influent coagulant dosage, and influent total dissolved solids (TDS) dosage. The measured responses evaluated were: operating time, average specific flux, and rejection of radioactive contaminants along with other elements. The ANOVA for the design of experiment results revealed that the operating time is affected by the percent water recovery to be achieved and the flocculant dosage over the range studied. The average specific flux and rejection for the radioactive contaminants were not affected by the factors evaluated over the range studied. The 3 month long on-site pilot testing on the impacted leachate revealed that the CRA-LTD leachate treatment process was robust and produced an effluent water quality that met the surface water discharge criteria mandated by the Canadian Nuclear Safety Commission and the local municipality. (authors)

  10. Using microbial desalination cells to reduce water salinity prior to reverse Maha Mehanna,a

    E-Print Network [OSTI]

    Using microbial desalination cells to reduce water salinity prior to reverse osmosis Maha Mehannand February 2010, Accepted 16th June 2010 DOI: 10.1039/c002307h A microbial desalination cell (MDC the energy efficiency of a downstream reverse osmosis (RO) desalination system. We investigated here the use

  11. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    SciTech Connect (OSTI)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  12. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore »FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  13. Impact of speciation on fluoride, arsenic and magnesium retention by nanofiltration/reverse osmosis in remote Australian communities 

    E-Print Network [OSTI]

    Richards, L. A.; Richards, B. S.; Rossiter, H.M.A.; Schäfer, Andrea

    2009-01-01

    In order to provide safe drinking water in isolated communities where water supply and electrical infrastructure is limited, a system combining solar energy and advanced water treatment technology (a two-staged membrane ...

  14. Fuel cell system with coolant flow reversal

    DOE Patents [OSTI]

    Kothmann, Richard E. (Pittsburgh, PA)

    1986-01-01

    Method and apparatus for cooling electrochemical fuel cell system components. Periodic reversal of the direction of flow of cooling fluid through a fuel cell stack provides greater uniformity and cell operational temperatures. Flow direction through a recirculating coolant fluid circuit is reversed through a two position valve, without requiring modulation of the pumping component.

  15. Chemical reactions in reverse micelle systems

    DOE Patents [OSTI]

    Matson, Dean W. (Kennewick, WA); Fulton, John L. (Richland, WA); Smith, Richard D. (Richland, WA); Consani, Keith A. (Richland, WA)

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  16. Removal of pharmaceuticals and endocrine disrupting compounds in water recycling process using reverse osmosis systems 

    E-Print Network [OSTI]

    Al-Rifai, Jawad H.; Khabbazb, Hadi; Schäfer, Andrea

    2011-01-01

    A detailed investigation was carried out to evaluate the occurrence, persistence and fate of a range of micropollutants at different processing points at a full-scale water recycling plant (WRP) in Queensland, Australia. ...

  17. A modular design architecture for application to community-scale photovoltaic-powered reverse osmosis systems

    E-Print Network [OSTI]

    Bilton, Amy M. (Amy Marlou)

    2013-01-01

    Access to safe, clean drinking water is a major challenge for many communities. These communities are often near seawater and/or brackish groundwater sources, making desalination a possible solution. Unfortunately, ...

  18. Autonomous control and membrane maintenance optimization of photovoltaic reverse osmosis systems

    E-Print Network [OSTI]

    Bhujle, Aditya Sarvanand

    2013-01-01

    The supply of clean water in remote and off-grid areas has been a major global challenge for humanity. Over 780 million people lack access to clean water [1]. However, a significant fraction of these people have access to ...

  19. Damping Pressure Pulsations in a Wave-Powered Desalination System

    E-Print Network [OSTI]

    Padhye, Nikhil

    Wave-driven reverse osmosis desalination systems can be a cost-effective option for providing a safe and reliable source of drinking water for large coastal communities. Such systems usually require the stabilization of ...

  20. Shipboard fluid system diagnostics using non-intrusive load monitoring

    E-Print Network [OSTI]

    Mitchell, Gregory R. (Gregory Reed)

    2007-01-01

    Systems on modem naval vessels are becoming exclusively dependent on electrical power. One example of this is the replacement of distilling and evaporator plants with reverse osmosis units. As the system is in continuous ...

  1. An advanced vapor-compression desalination system 

    E-Print Network [OSTI]

    Lara Ruiz, Jorge Horacio Juan

    2006-04-12

    Currently, the two dominant desalination methods are reverse osmosis (RO) and multi-stage flash (MSF). RO requires large capital investment and maintenance, whereas MSF is too energy intensive. An innovative vapor-compression desalination system...

  2. Continuous countercurrent membrane column for the separation of solute/solvent and solvent/solvent systems

    DOE Patents [OSTI]

    Nerad, Bruce A. (Longmont, CO); Krantz, William B. (Boulder, CO)

    1988-01-01

    A reverse osmosis membrane process or hybrid membrane - complementary separator process for producing enriched product or waste streams from concentrated and dilute feed streams for both solvent/solvent and solute/solvent systems is described.

  3. A Broken System: The Persistent Patterns of Reversals of Death

    E-Print Network [OSTI]

    Gelman, Andrew

    A Broken System: The Persistent Patterns of Reversals of Death Sentences in the United States process for all death sentences in U.S. states between 1973 and 1995. The reversal rate was high Sentence Reversals in the United States 1 See Stuart Banner, The Death Penalty: An American History 267

  4. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system 

    E-Print Network [OSTI]

    Richards, B.S.; Capão, D.P.S.; Schäfer, Andrea

    2008-01-01

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration – nanofiltration / reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating ...

  5. Impact of speciation on behaviour of uranium in a solar powered membrane system for treatment of brackish groundwater 

    E-Print Network [OSTI]

    Rossiter, Helfrid M.A.; Graham, Margaret C.; Schäfer, Andrea

    2010-01-01

    Factors affecting uranium removal from brackish groundwater using a direct solar powered ultrafiltration-nanofiltration/reverse osmosis membrane system were investigated during a field trial in the Australian outback. ...

  6. FDD Algorithm for an AHU Reverse-Return System 

    E-Print Network [OSTI]

    Djuric, N.; Novakovic, V.

    2008-01-01

    A fault detection and diagnosis (FDD) algorithm was developed for an AHU reverse-return system for air cooling. These FDD rules were generated using simulation in three steps. Cause-effect rules were established by connecting the faults...

  7. Reverse Integration for Computing Stationary Points of Unstable Stiff Systems

    E-Print Network [OSTI]

    C. W. Gear; Ioannis Kevrekidis

    2003-02-24

    Using existing, forward-in-time integration schemes, we demonstrate that it is possible to compute unstable, saddle-type fixed points of stiff systems of ODEs when the stable compenents are fast (i.e., rapidly damped) while the unstable components are slow. The approach has implications for the reverse (backward in time) integration of such stiff systems, and for the coarse reverse integration of microscopic/stochastic simulations.

  8. Reverse Osmosis Optimization | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOA Applicantof Years |RequestDepartment LBNL-1470EReuben

  9. Reverse Genetics System for Mouse Hepatitis Virus Strain 1 

    E-Print Network [OSTI]

    Carter, Kristen

    2011-04-19

    , providing a convenient animal model that can be investigated without the restrictions necessary to work with the SARS-coronavirus. A reverse genetic cDNA assembly system was developed for the betacoronavirus mouse hepatitis virus strain A59 (MHVA59), in 2002...

  10. Hybrid Pressure Retarded Osmosis-Membrane Distillation System for Power Generation from Low-Grade Heat: Thermodynamic Analysis and Energy Efficiency

    SciTech Connect (OSTI)

    Lin, SH; Yip, NY; Cath, TY; Osuji, CO; Elimelech, M

    2014-05-06

    We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 degrees C and working concentrations of 1.0, 2.0, and 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 degrees C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for performance optimization.

  11. Forward and reverse control system for induction motors

    DOE Patents [OSTI]

    Wright, J.T.

    1987-09-15

    A control system for controlling the direction of rotation of a rotor of an induction motor includes an array of five triacs with one of the triacs applying a current of fixed phase to the windings of the rotor and four of the triacs being switchable to apply either hot ac current or return ac current to the stator windings so as to reverse the phase of current in the stator relative to that of the rotor and thereby reverse the direction of rotation of the rotor. Switching current phase in the stator is accomplished by operating the gates of pairs of the triacs so as to connect either hot ac current or return ac current to the input winding of the stator. 1 fig.

  12. Reversible work extraction in a hybrid opto-mechanical system

    E-Print Network [OSTI]

    Cyril Elouard; Maxime Richard; Alexia Auffèves

    2015-02-16

    With the progress of nano-technology, thermodynamics also has to be scaled down, calling for specific protocols to extract and measure work. Usually, such protocols involve the action of an external, classical field (the battery) of infinite energy, that controls the energy levels of a small quantum system (the calorific fluid). Here we suggest a realistic device to reversibly extract work in a battery of finite energy : a hybrid optomechanical system. Such devices consist in an optically active two-level quantum system interacting strongly with a nano-mechanical oscillator that provides and stores mechanical work, playing the role of the battery. We identify protocols where the battery exchanges large, measurable amounts of work with the quantum emitter without getting entangled with it. When the quantum emitter is coupled to a thermal bath, we show that thermodynamic reversibility is attainable with state-of-the-art devices, paving the road towards the realization of a full cycle of information-to-energy conversion at the single bit level.

  13. Osmosis Capital | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart Grid DataInformationOpenOsmosis Capital Jump to:

  14. Osmosis : a molecular dynamics computer simulation study 

    E-Print Network [OSTI]

    Lion, Thomas

    2013-11-28

    Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and ...

  15. The effect of wind speed fluctuations on the performance of a wind-powered membrane system for brackish water desalination 

    E-Print Network [OSTI]

    Park, Gavin L.; Schäfer, Andrea; Richards, Bryce S.

    2011-01-01

    A wind-powered reverse osmosis membrane (wind-membrane) system without energy storage was tested using synthetic brackish water (2750 and 5500 mg/L NaCl) over a range of simulated wind speeds under both steady-state and ...

  16. Dispersive Quantum Systems: a class of isolated non-time reversal quantum systems

    E-Print Network [OSTI]

    Lúcio Fassarella

    2011-09-02

    A "dispersive quantum system" is a quantum system which is both isolated and non-time reversal invariant. This article presents precise definitions for those concepts and also a characterization of dispersive quantum systems within the class of completely positive Markovian quantum systems in finite dimension (through a homogeneous linear equation for the non-Hamiltonian part of the system's Liouvillian). To set the framework, the basic features of quantum mechanics are reviewed focusing on time evolution and also on the theory of completely positive Markovian quantum systems, including Kossakowski-Lindblad's standard form for Liouvillians. After those general considerations, I present a simple example of dispersive two-level quantum system and apply that to describe neutrino oscillation.

  17. Engineering nanostructured selective layers for reverse osmosis membranes

    E-Print Network [OSTI]

    Kovacs, Jason Richard

    2015-01-01

    A major challenge to communities across the world in the next century will be ensuring millions have access to adequate freshwater resources. Studies from the UN World Health Organization indicate that over 1.1 billion ...

  18. Reverse Computation for Rollback-based Fault Tolerance in Large Parallel Systems

    SciTech Connect (OSTI)

    Perumalla, Kalyan S [ORNL; Park, Alfred J [ORNL

    2013-01-01

    Reverse computation is presented here as an important future direction in addressing the challenge of fault tolerant execution on very large cluster platforms for parallel computing. As the scale of parallel jobs increases, traditional checkpointing approaches suffer scalability problems ranging from computational slowdowns to high congestion at the persistent stores for checkpoints. Reverse computation can overcome such problems and is also better suited for parallel computing on newer architectures with smaller, cheaper or energy-efficient memories and file systems. Initial evidence for the feasibility of reverse computation in large systems is presented with detailed performance data from a particle simulation scaling to 65,536 processor cores and 950 accelerators (GPUs). Reverse computation is observed to deliver very large gains relative to checkpointing schemes when nodes rely on their host processors/memory to tolerate faults at their accelerators. A comparison between reverse computation and checkpointing with measurements such as cache miss ratios, TLB misses and memory usage indicates that reverse computation is hard to ignore as a future alternative to be pursued in emerging architectures.

  19. Effective Reverse Conversion in Residue Number System Processors

    E-Print Network [OSTI]

    propose effective Residue Number System (RNS) to Weighted Number System conversion techniques with k being the num- ber of moduli. First, we introduce an RNS to MRC technique, which ad- dresses in an RNS to MRC with an asymptotic complexity, in terms of arithmetic operations, in the order of O

  20. Materials and System Issues with Reversible SOFC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report ManagementMarineLaboratory: FocusGo/No-Go2| DepartmentSystem

  1. Time Reversal Symmetry and Energy Drift in Conservative Systems L. Brugnano and D. Trigiante

    E-Print Network [OSTI]

    Brugnano, Luigi

    Time Reversal Symmetry and Energy Drift in Conservative Systems L. Brugnano and D. Trigiante effects among multiple Savonius turbines J. Renewable Sustainable Energy 4, 053107 (2012) Suppressing on.217.1.25. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions #12

  2. Momentum-independent reflectionless transmission in the non-Hermitian time-reversal symmetric system

    SciTech Connect (OSTI)

    Zhang, X.Z.; Song, Z.

    2013-12-15

    We theoretically study the non-Hermitian systems, the non-Hermiticity of which arises from the unequal hopping amplitude (UHA) dimers. The distinguishing features of these models are that they have full real spectra if all of the eigenvectors are time-reversal (T) symmetric rather than parity-time-reversal (PT) symmetric, and that their Hermitian counterparts are shown to be an experimentally accessible system, which have the same topological structures as that of the original ones but modulated hopping amplitudes within the unbroken region. Under the reflectionless transmission condition, the scattering behavior of momentum-independent reflectionless transmission (RT) can be achieved in the concerned non-Hermitian system. This peculiar feature indicates that, for a certain class of non-Hermitian systems with a balanced combination of the RT dimers, the defects can appear fully invisible to an outside observer. -- Highlights: •We investigate the non-Hermitian system with time reversal symmetry. •The Hermitian counterpart is experimentally accessible system. •The behavior of momentum-independent reflectionless transmission can be achieved. •A balanced combination of reflectionless transmission dimers leads to invisibility. •It paves an alternative way for the design of invisible cloaking devices.

  3. Journal of Membrane Science 281 (2006) 7087 Forward osmosis: Principles, applications, and recent developments

    E-Print Network [OSTI]

    2006-01-01

    areas of forward osmosis research include pressure-retarded osmosis for generation of electricity fromJournal of Membrane Science 281 (2006) 70­87 Review Forward osmosis: Principles, applications the state-of-the-art of the physical principles and applications of forward osmosis as well

  4. Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems

    SciTech Connect (OSTI)

    2011-12-05

    HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

  5. Forward osmosis :a new approach to water purification and desalination.

    SciTech Connect (OSTI)

    Miller, James Edward; Evans, Lindsey R.

    2006-07-01

    Fresh, potable water is an essential human need and thus looming water shortages threaten the world's peace and prosperity. Waste water, brackish water, and seawater have great potential to fill the coming requirements. Unfortunately, the ability to exploit these resources is currently limited in many parts of the world by both the cost of the energy and the investment in equipment required for purification/desalination. Forward (or direct) osmosis is an emerging process for dewatering aqueous streams that might one day help resolve this problem. In FO, water from one solution selectively passes through a membrane to a second solution based solely on the difference in the chemical potential (concentration) of the two solutions. The process is spontaneous, and can be accomplished with very little energy expenditure. Thus, FO can be used, in effect, to exchange one solute for a different solute, specifically chosen for its chemical or physical properties. For desalination applications, the salts in the feed stream could be exchanged for an osmotic agent specifically chosen for its ease of removal, e.g. by precipitation. This report summarizes work performed at Sandia National Laboratories in the area of FO and reviews the status of the technology for desalination applications. At its current state of development, FO will not replace reverse osmosis (RO) as the most favored desalination technology, particularly for routine waters. However, a future role for FO is not out of the question. The ability to treat waters with high solids content or fouling potential is particularly attractive. Although our analysis indicates that FO is not cost effective as a pretreatment for conventional BWRO, water scarcity will likely drive societies to recover potable water from increasingly marginal resources, for example gray water and then sewage. In this context, FO may be an attractive pretreatment alternative. To move the technology forward, continued improvement and optimization of membranes is recommended. The identification of optimal osmotic agents for different applications is also suggested as it is clear that the space of potential agents and recovery processes has not been fully explored.

  6. The regeneration efficiency improvement of the reverse pulse air regenerating DPF system

    SciTech Connect (OSTI)

    Ichikawa, Yukihito; Hattori, Isao; Kasai, Yoshiyuki [NGK Insulators, Ltd., Nagoya (Japan)

    1996-09-01

    This paper describes the system modification through the improvement of pulse air penetration into the DPF cell channels in respect to the development of a wall-flow type diesel particulate filter (DPF) system with reverse pulse air regeneration for diesel vehicles. In this system, regeneration becomes more difficult with low exhaust gas temperatures and increased DPF volume. The pressure increase in the DPF cell channels was monitored as a parameter of pulse air penetration when reverse pulse air was injected into the DPF. By maximizing the pressure increase, the pulse air injection system was modified. The modification includes various changes in the air pipe arrangement and the air injecting time. The ratio of the length to the diameter of the DPF was also evaluated in relation to the regeneration efficiency. In this study, the high aspect ratio, i.e. small diameter and long DPF, showed better regeneration efficiency. The results of this study indicate that this system can be enlarged with the above modification despite low exhaust gas temperatures.

  7. Experimental investigation of induced-charge electro-osmosis

    E-Print Network [OSTI]

    Levitan, Jeremy Asher, 1977-

    2005-01-01

    We analyze the general phenomenon of induced-charge electro-osmosis (ICEO), nonlinear electro-osmotic slip generated when an electric field acts on its own induced charge around a polarizable surface, in the context of ...

  8. Direct test of time-reversal symmetry in the entangled neutral kaon system at a $?$-factory

    E-Print Network [OSTI]

    J. Bernabeu; A. Di Domenico; P. Villanueva-Perez

    2012-08-20

    We present a novel method to perform a direct T (time reversal) symmetry test in the neutral kaon system, independent of any CP and/or CPT symmetry tests. This is based on the comparison of suitable transition probabilities, where the required interchange of in out states for a given process is obtained exploiting the Einstein-Podolsky-Rosen correlations of neutral kaon pairs produced at a $\\phi$-factory. In the time distribution between the two decays, we compare a reference transition like the one defined by the time ordered decays $(\\ell^-,\\pi\\pi)$ with the T -conjugated one defined by $(3\\pi^0, \\ell^+)$. With the use of this and other T conjugated comparisons, the KLOE-2 experiment at DA$\\Phi$NE could make a significant test.

  9. System level design enhancements for cost effective renewable power generation by reverse electrodialysis

    E-Print Network [OSTI]

    Weiner, Adam Michael

    2015-01-01

    Studies of the future competitiveness of reverse electrodialysis (RED) with other energy technologies show that the projected levelized cost of electricity realized through current stack designs is prohibitively high. ...

  10. Apparatus and method for controlling the rotary airlocks in a coal processing system by reversing the motor current rotating the air lock

    DOE Patents [OSTI]

    Groombridge, Clifton E. (Hardin, MT)

    1996-01-01

    An improvement to a coal processing system where hard materials found in the coal may cause jamming of either inflow or outflow rotary airlocks, each driven by a reversible motor. The instantaneous current used by the motor is continually monitored and compared to a predetermined value. If an overcurrent condition occurs, indicating a jamming of the airlock, a controller means starts a "soft" reverse rotation of the motor thereby clearing the jamming. Three patterns of the motor reversal are provided.

  11. Reversible Bending Fatigue Test System for Investigating Vibration Integrity of Spent Nuclear Fuel during Transportation

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L; Flanagan, Michelle

    2013-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from tested surrogate rods provides a fundamental understanding of the underlying failure mechanisms of the SNF surrogate rod under vibration which has not been achieved previously. The newly developed device is scheduled to be installed in the hot-cell in summer 2013 to test high burnup SNF.

  12. Osmosis, colligative properties, entropy, free energy and the chemical potential

    E-Print Network [OSTI]

    Peter Hugo Nelson

    2014-09-13

    A diffusive model of osmosis is presented that explains currently available experimental data. It makes predictions that distinguish it from the traditional convective flow model of osmosis, some of which have already been confirmed experimentally and others have yet to be tested. It also provides a simple kinetic explanation of Raoult's law and the colligative properties of dilute aqueous solutions. The diffusive model explains that when a water molecule jumps from low to high osmolarity at equilibrium, the free energy change is zero because the work done pressurizing the water molecule is balanced by the entropy of mixing. It also explains that equal chemical potentials are required for particle exchange equilibrium in analogy with the familiar requirement of equal temperatures at thermal equilibrium.

  13. An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California

    E-Print Network [OSTI]

    Nicholas, Michael A; Ogden, J

    2010-01-01

    hydrogen dispenser Alkaline Electrolyzer Reverse osmosis andPV) electricity Alkaline Electrolyzer Reverse osmosis and

  14. Osmotically-assisted desalination method and system

    DOE Patents [OSTI]

    Achilli, Andrea; Childress, Amy E.; Cath, Tzahi Y.

    2014-08-12

    Systems and methods for osmotically assisted desalination include using a pressurized concentrate from a pressure desalination process to pressurize a feed to the desalination process. The depressurized concentrate thereby produced is used as a draw solution for a pressure-retarded osmosis process. The pressure-retarded osmosis unit produces a pressurized draw solution stream that is used to pressurize another feed to the desalination process. In one example, the feed to the pressure-retarded osmosis process is impaired water.

  15. System and method for manipulating domain pinning and reversal in ferromagnetic materials

    DOE Patents [OSTI]

    Silevitch, Daniel M.; Rosenbaum, Thomas F.; Aeppli, Gabriel

    2013-10-15

    A method for manipulating domain pinning and reversal in a ferromagnetic material comprises applying an external magnetic field to a uniaxial ferromagnetic material comprising a plurality of magnetic domains, where each domain has an easy axis oriented along a predetermined direction. The external magnetic field is applied transverse to the predetermined direction and at a predetermined temperature. The strength of the magnetic field is varied at the predetermined temperature, thereby isothermally regulating pinning of the domains. A magnetic storage device for controlling domain dynamics includes a magnetic hard disk comprising a uniaxial ferromagnetic material, a magnetic recording head including a first magnet, and a second magnet. The ferromagnetic material includes a plurality of magnetic domains each having an easy axis oriented along a predetermined direction. The second magnet is positioned adjacent to the magnetic hard disk and is configured to apply a magnetic field transverse to the predetermined direction.

  16. Saturation curve analysis of humidification-dehumidification desalination systems and analysis of reversible ejector performance

    E-Print Network [OSTI]

    McGovern, Ronan Killian

    2012-01-01

    The limitations upon the efficiency of humidification-dehumidification (HDH) desalination systems are investigated. Secondly, ejector technologies are analyzed as a means of powering desalination systems thermally. Thermal ...

  17. Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering for systems with broken time reversal invariance

    E-Print Network [OSTI]

    Yan. V. Fyodorov; H. -J. Sommers

    1997-01-07

    Assuming the validity of random matrices for describing the statistics of a closed chaotic quantum system, we study analytically some statistical properties of the S-matrix characterizing scattering in its open counterpart. In the first part of the paper we attempt to expose systematically ideas underlying the so-called stochastic (Heidelberg) approach to chaotic quantum scattering. Then we concentrate on systems with broken time-reversal invariance coupled to continua via M open channels. By using the supersymmetry method we derive: (i) an explicit expression for the density of S-matrix poles (resonances) in the complex energy plane (ii) an explicit expression for the parametric correlation function of densities of eigenphases of the S-matrix. We use it to find the distribution of derivatives of these eigenphases with respect to the energy ("partial delay times" ) as well as with respect to an arbitrary external parameter.

  18. Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems

    SciTech Connect (OSTI)

    Tang, Xia; Opalka, Susanne M.; Mosher, Daniel A; Laube, Bruce L; Brown, Ronald J; Vanderspurt, Thomas H; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Ronnebro, Ewa; Boyle, Tim; Cordaro, Joseph

    2010-06-30

    A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method's potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H2 dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH4)4 stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH4)2 and Mg(BH4)2 in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH4)4 ligand complex in SiO2 aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of Ca(BH4)2 and Mg(BH4)2 in nano-frameworks did not improve their H2 absorption due to the formation of stable alkaline earth B12H12 intermediates upon rehydrogenation. This project primarily investigated the effect of nano-framework surface chemistry on hydride properties, while the effect of pore size is the focus area of other efforts (e.g., HRL, Sandia National Laboratories (SNL) etc.) within the Metal Hydride Center of Excellence (MHCoE). The projects were complementary in gaining an overall understanding of the influence of nano-frameworks on hydride behavior.

  19. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination

    E-Print Network [OSTI]

    Cohen-Tanugi, David

    Nanoporous graphene (NPG) shows tremendous promise as an ultra-permeable membrane for water desalination thanks to its atomic thickness and precise sieving properties. However, a significant gap exists in the literature ...

  20. Renewable energy powered membrane technology: Salt and inorganic contaminant removal by nanofiltration/reverse osmosis 

    E-Print Network [OSTI]

    Richards, Laura A.; Richards, Bryce S.; Schäfer, Andrea

    2011-01-01

    The objective of this study was to evaluate the effects of fluctuating energy and pH on retention of dissolved contaminants from real Australian groundwaters using a solar (photovoltaic) powered ultrafiltration – ...

  1. Transport and Removal Mechanisms of Trace Organic Pollutants by Nanofiltration and Reverse Osmosis Membranes

    E-Print Network [OSTI]

    Wang, Jinwen

    2014-01-01

    treatment technologies are needed. Membrane processes are now the primary separation technology used in wastewater

  2. The Development of a Synthesis Approach for Optimal Design of Seawater Reverse Osmosis Desalination Networks 

    E-Print Network [OSTI]

    Alnouri, Sabla

    2012-10-19

    on the developed representation, by accounting for detailed water quality information, within the SWRO desalination network optimization problem. The superstructures were modified to incorporate models that capture the performance of common membrane elements...

  3. Reclamation of Cleaning Water Using Ultrafiltration and Double Pass Reverse Osmosis 

    E-Print Network [OSTI]

    Neuman, T.; Long, G.; Tinter, M.

    1994-01-01

    In the production of electrodeposition primers, water is used as the primary cleaning agent. The dirty water that is generated contains residual contaminants from the primer production equipment, which requires that the water be disposed of as a...

  4. Performance of a New PIC Receiver for the reverse link of a DS-CDMA System in a Rayleigh Fading Channel

    E-Print Network [OSTI]

    Lee, Jae Hong

    Performance of a New PIC Receiver for the reverse link of a DS-CDMA System in a Rayleigh Fading and A WGN. For the CDMA system a new parallel inter- ference cancellation (PIC) receiver with an adaptive (MF) out- puts. The BER of the proposed PIC receiver is ob- tained by simulation and compared

  5. Optimization Online - Recruiting Suppliers for Reverse Production ...

    E-Print Network [OSTI]

    Mar 14, 2007 ... Recruiting Suppliers for Reverse Production Systems: an MDP Heuristics Approach. Wuthichai Wongthatsanekorn(wwongtha ***at*** ...

  6. Poloidal field system design for the ZT-H reversed field pinch experiment

    SciTech Connect (OSTI)

    Schoenberg, K.F.; Gribble, R.F.; Linton, T.W.; Reass, W.R.

    1983-01-01

    This report discusses each of the following areas: (1) equilibrium specification, (2) the equilibrium winding, (3) the magnetizing winding, (4) numerical poloidal field system analysis, (5) coil cross section, turns, minimum field error, (6) coil stresses and cooling, (7) the upper structure, (8) the loads, (9) boundary conditions and method of analysis, and (10) design description. (MOW)

  7. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS--I: REGULAR PAPERS, VOL. 60, NO. 6, JUNE 2013 1487 RNS Reverse Converters for Moduli Sets

    E-Print Network [OSTI]

    Sousa, Leonel

    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS--I: REGULAR PAPERS, VOL. 60, NO. 6, JUNE 2013 1487 RNS on residue number sys- tems (RNS) has targeted parallelism and larger dynamic ranges. In this paper, we start in an improvement of the RNS arithmetic computation, at the cost of lower reverse conversion performance. Index

  8. REVERSE RADIATIVE SHOCK LASER EXPERIMENTS RELEVANT TO ACCRETING...

    Office of Scientific and Technical Information (OSTI)

    and radiative properties of a reverse shock relevant to a cataclysmic variable system. A reverse shock is a shock wave that develops when a freely flowing, supersonic...

  9. AC Electro-osmotic Flow Induced-charge electro-osmosis, AC pumping of liquids, traveling-wave electro-osmosis.

    E-Print Network [OSTI]

    Bazant, Martin Z.

    AC Electro-osmotic Flow Synonyms Induced-charge electro-osmosis, AC pumping of liquids, traveling-charge electro-osmotic flow around electrodes applying an alternating voltage. Overview Classical electrokinetic phenomena, such as electro-osmotic flow and electrophoresis, are linear in the applied voltage and thus

  10. Reversible concentric ring microfluidic interconnects

    E-Print Network [OSTI]

    Thompson, Mary Kathryn, 1980-

    2004-01-01

    A reversible, Chip-to-Chip microfluidic interconnect was designed for use in high temperature, high pressure applications such as chemical microreactor systems. The interconnect uses two sets of concentric, interlocking ...

  11. Institute for Software Technology Reverse Engineering

    E-Print Network [OSTI]

    1 Institute for Software Technology SOMA Reverse Engineering Univ.Prof. Dr. Franz Wotawa Institut Technology Inhalt Was versteht man unter Reverse Engineering? Techniken/Methoden Probleme VU Software Maintenance 3Institute for Software Technology Engineering vs. Reverse Engineering Idee Produkt/ SystemEngineering

  12. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    SciTech Connect (OSTI)

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  13. Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell

    E-Print Network [OSTI]

    Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell Craig M. Werner a,n , Bruce E. Logan b , Pascal E. Saikaly a , Gary L. Amy Keywords: Forward osmosis Desalination Fouling Microbial osmotic fuel cell a b s t r a c t A microbial

  14. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 5. Science Applications, Incorporated system requirements definition

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This report sets forth the system requirements for a Solar Controlled-Environment Agriculture System (SCEAS) Project. In the report a conceptual baseline system description for an engineering test facility is given. This baseline system employs a fluid roof/roof filter in combination with a large storage tank and a ground water heat exchanger in order to provide cooling and heating as needed. Desalination is accomplished by pretreatment followed by reverse osmosis. Energy is provided by means of photovoltaics and wind machines in conjunction with storage batteries. Site and climatic data needed in the design process are given. System performance specifications and integrated system design criteria are set forth. Detailed subsystem design criteria are presented and appropriate references documented.

  15. Evaluation of flow fields on bubble removal and system performance in an ammonium bicarbonate reverse electrodialysis stack

    E-Print Network [OSTI]

    gradient energy, which is based on extracting the free energy released from natural salinity gradients­7]. Reverse electrodialysis (RED), a technology that can be used to harvest this energy and directly convert (seawater) from the low concen- trate (river water). This separation creates a gradient in chemical

  16. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    storage density. However, it remains poorly understood, and even the fundamental mechanism of magnetic reversal for exchange-biased systems in changing magnetic fields is...

  17. Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations

    E-Print Network [OSTI]

    Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations fracturing of wells during oil and gas (O&G) exploration consumes large volumes of fresh water and generates fracturing of oil and gas (O&G) wells are becoming of greater concern in the United States and around

  18. Hybrid joule heating/electro-osmosis process for extracting contaminants from soil layers

    DOE Patents [OSTI]

    Carrigan, Charles R.; Nitao, John J.

    2003-06-10

    Joule (ohmic) heating and electro-osmosis are combined in a hybrid process for removal of both water-soluble contaminants and non-aqueous phase liquids from contaminated, low-permeability soil formations that are saturated. Central to this hybrid process is the partial desaturation of the formation or layer using electro-osmosis to remove a portion of the pore fluids by induction of a ground water flow to extraction wells. Joule heating is then performed on a partially desaturated formation. The joule heating and electro-osmosis operations can be carried out simultaneously or sequentially if the desaturation by electro-osmosis occurs initially. Joule heating of the desaturated formation results in a very effective transfer or partitioning of liquid state contaminants to the vapor phase. The heating also substantially increases the vapor phase pressure in the porous formation. As a result, the contaminant laden vapor phase is forced out into soil layers of a higher permeability where other conventional removal processes, such as steam stripping or ground water extraction can be used to capture the contaminants. This hybrid process is more energy efficient than joule heating or steam stripping for cleaning low permeability formations and can share electrodes to minimize facility costs.

  19. Mixed draw solutions for improved forward osmosis performance Ryan W. Holloway a

    E-Print Network [OSTI]

    or forward osmosis (FO) is a membrane separation technology that utilizes highly selective semipermeable membranes to extract water from a feed stream to a highly concentrated draw solution (DS) [1­4]. The driving], activated sludge [6,10­13], digester centrate [9], and produced water from oil and gas exploration [5

  20. High Recovery Desalination of Brackish Water by Chemically-Enhanced Seeded Precipitation

    E-Print Network [OSTI]

    McCool, Brian Carey

    2012-01-01

    distillation for seawater desalination and waste waterof a seawater reverse osmosis plant. Desalination, 2005.seawater RO systems -- process design and economics. Desalination,

  1. On the regimes of charge reversal

    E-Print Network [OSTI]

    Felipe Jimenez-Angeles; Marcelo Lozada-Cassou

    2008-11-19

    Charge reversal of the planar electrical double layer is studied by means of a well known integral equations theory. By a numerical analysis, a diagram is constructed with the onset points of charge reversal in the space of the fundamental variables of the system. Within this diagram two regimes of charge reversal are identified, referred to as oscillatory and non oscillatory. We found that these two regimes can be distinguished through a simple formula. Furthermore, a symmetry between electrostatic and size correlations in charge reversal is exhibited. The agreement of our results with other theories and molecular simulations data is discussed.

  2. Remote community drinking water supply : mechanisms of uranium retention and adsorption by ultrafiltration, nanofiltration and reverse osmosis 

    E-Print Network [OSTI]

    Schulte-Herbruggen, Helfrid Maria Albertina

    2012-11-29

    Worldwide, around 884 million people lack access to safe drinking water. To address this, groundwater sources such as boreholes and wells are often installed in remote locations especially in developing countries. However, ...

  3. Experiments and modeling of multilayered coatings and membranes : application to thermal barrier coatings and reverse osmosis membranes

    E-Print Network [OSTI]

    Luk-Cyr, Jacques

    2014-01-01

    In this thesis, I developed a novel methodology for characterizing interfacial delamination of thermal barrier coatings. The proposed methodology involves novel experiments-plus numerical simulations in order to determine ...

  4. Reversible Acid Gas Capture

    ScienceCinema (OSTI)

    Dave Heldebrant

    2012-12-31

    Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

  5. Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    Wastes by a Wind-Powered Reverse Osmosis System, Year 2 Basic Information Title: Removal of Nitrogenous Aquaculture Wastes by a Wind-Powered Reverse Osmosis System, Year 2 Project Number: 2002HI1B Start Date: 3 are (1) to investigate the nitrogen build-up in freshwater aquaculture of tilapia, (2) to develop a wind-powered

  6. Towards direct potable reuse with forward osmosis: Technical assessment of long-term process performance at the pilot scale

    E-Print Network [OSTI]

    performance at the pilot scale Nathan T. Hancock a , Pei Xu a , Molly J. Roby a , Juan D. Gomez b , Tzahi Y. Cath a,n a Department of Civil and Environmental Engineering, 1500 Illinois Street, Colorado School the performance of forward osmosis (FO) at the pilot scale to achieve simultaneous seawater desalination

  7. Owner's Interference in Reverse Auction Bidding to Skew a Free Market 

    E-Print Network [OSTI]

    Chaudhari, Sushil V.

    2010-07-14

    controversial bidding system. No previous research has been undertaken by the Texas A&M University Reverse Auction Bidding study group into potential owner interference with the bidding system for a reverse auction. Six bidders were asked to participate...

  8. Electrical detection of microwave assisted magnetization reversal by spin pumping

    SciTech Connect (OSTI)

    Rao, Siddharth; Subhra Mukherjee, Sankha; Elyasi, Mehrdad; Singh Bhatia, Charanjit; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering and NUSNNI, National University of Singapore, Singapore 117576 (Singapore)

    2014-03-24

    Microwave assisted magnetization reversal has been investigated in a bilayer system of Pt/ferromagnet by detecting a change in the polarity of the spin pumping signal. The reversal process is studied in two material systems, Pt/CoFeB and Pt/NiFe, for different aspect ratios. The onset of the switching behavior is indicated by a sharp transition in the spin pumping voltage. At a threshold value of the external field, the switching process changes from partial to full reversal with increasing microwave power. The proposed method provides a simple way to detect microwave assisted magnetization reversal.

  9. THERMALLY ACTIVATED REVERSAL IN MAGNETIC NANOSTRUCTURES

    E-Print Network [OSTI]

    Usadel, K. D.

    THERMALLY ACTIVATED REVERSAL IN MAGNETIC NANOSTRUCTURES ULRICH NOWAK Theoretische Physik, Gerhard to the nanometer scale. With decreasing size of magnetic particles thermal activation becomes rel­ evant an overview on numerical ap­ proaches to thermal activation in magnetic systems as far as they can

  10. Adaiabtic theorems and reversible isothermal processes

    E-Print Network [OSTI]

    Walid K. Abou Salem; Juerg Froehlich

    2006-01-23

    Isothermal processes of a finitely extended, driven quantum system in contact with an infinite heat bath are studied from the point of view of quantum statistical mechanics. Notions like heat flux, work and entropy are defined for trajectories of states close to, but distinct from states of joint thermal equilibrium. A theorem characterizing reversible isothermal processes as quasi-static processes (''isothermal theorem'') is described. Corollaries concerning the changes of entropy and free energy in reversible isothermal processes and on the 0th law of thermodynamics are outlined.

  11. Work and reversibility in quantum thermodynamics

    E-Print Network [OSTI]

    Stephanie Wehner; Mark M. Wilde; Mischa P. Woods

    2015-06-26

    It is a central question in quantum thermodynamics to determine how much work can be gained by a process that transforms an initial state $\\rho$ to a final state $\\sigma$. For example, we might ask how much work can be obtained by thermalizing $\\rho$ to a thermal state $\\sigma$ at temperature $T$ of an ambient heat bath. Here, we show that for large systems, or when allowing slightly inexact catalysis, the amount of work is characterized by how reversible the process is. More specifically, the amount of work to be gained depends on how well we can return the state $\\sigma$ to its original form $\\rho$ without investing any work. We proceed to exhibit an explicit reversal operation in terms of the Petz recovery channel coming from quantum information theory. Our result establishes a quantitative link between the reversibility of thermodynamical processes and the corresponding work gain.

  12. Reversible brazing process

    DOE Patents [OSTI]

    Pierce, Jim D. (Albuquerque, NM); Stephens, John J. (Albuquerque, NM); Walker, Charles A. (Albuquerque, NM)

    1999-01-01

    A method of reversibly brazing surfaces together. An interface is affixed to each surface. The interfaces can be affixed by processes such as mechanical joining, welding, or brazing. The two interfaces are then brazed together using a brazing process that does not defeat the surface to interface joint. Interfaces of materials such as Ni-200 can be affixed to metallic surfaces by welding or by brazing with a first braze alloy. The Ni-200 interfaces can then be brazed together using a second braze alloy. The second braze alloy can be chosen so that it minimally alters the properties of the interfaces to allow multiple braze, heat and disassemble, rebraze cycles.

  13. Reversal bending fatigue testing

    DOE Patents [OSTI]

    Wang, Jy-An John; Wang, Hong; Tan, Ting

    2014-10-21

    Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.

  14. Surface Nanostructuring of Polysulfone Membranes by Atmospheric Pressure Plasma-Induced Graft Polymerization (APPIGP)

    E-Print Network [OSTI]

    Kim, Soo Min

    2013-01-01

    UF membrane for seawater desalination with reverse osmosis.membranes for surface seawater desalination. Desalination,J. , et al. , Desalination of Seawater by Reverse Osmosis,

  15. Reverse slapper detonator

    DOE Patents [OSTI]

    Weingart, Richard C. (Livermore, CA)

    1990-01-01

    A reverse slapper detonator (70), and methodology related thereto, are provided. The detonator (70) is adapted to be driven by a pulse of electric power from an external source (80). A conductor (20) is disposed along the top (14), side (18), and bottom (16) surfaces of a sheetlike insulator (12). Part of the conductor (20) comprises a bridge (28), and an aperture (30) is positioned within the conductor (20), with the bridge (28) and the aperture (30) located on opposite sides of the insulator (12). A barrel (40) and related explosive charge (50) are positioned adjacent to and in alignment with the aperture (30), and the bridge (28) is buttressed with a backing layer (60). When the electric power pulse vaporizes the bridge (28), a portion of the insulator (12) is propelled through the aperture (30) and barrel (40), and against the explosive charge (50), thereby detonating it.

  16. Multiple stimulus reversible hydrogels

    DOE Patents [OSTI]

    Gutowska, Anna; Krzyminski, Karol J.

    2003-12-09

    A polymeric solution capable of gelling upon exposure to a critical minimum value of a plurality of environmental stimuli is disclosed. The polymeric solution may be an aqueous solution utilized in vivo and capable of having the gelation reversed if at least one of the stimuli fall below, or outside the range of, the critical minimum value. The aqueous polymeric solution can be used either in industrial or pharmaceutical environments. In the medical environment, the aqueous polymeric solution is provided with either a chemical or radioisotopic therapeutic agent for delivery to a specific body part. The primary advantage of the process is that exposure to one environmental stimuli alone will not cause gelation, thereby enabling the therapeutic agent to be conducted through the body for relatively long distances without gelation occurring.

  17. Multiple stimulus reversible hydrogels

    DOE Patents [OSTI]

    Gutowska, Anna; Krzyminski, Karol J.

    2006-04-25

    A polymeric solution capable of gelling upon exposure to a critical minimum value of a plurality of environmental stimuli is disclosed. The polymeric solution may be an aqueous solution utilized in vivo and capable of having the gelation reversed if at least one of the stimuli fall below, or outside the range of, the critical minimum value. The aqueous polymeric solution can be used either in industrial or pharmaceutical environments. In the medical environment, the aqueous polymeric solution is provided with either a chemical or radioisotopic therapeutic agent for delivery to a specific body part. The primary advantage of the process is that exposure to one environmental stimuli alone will not cause gelation, thereby enabling the therapeutic agent to be conducted through the body for relatively long distances without gelation occurring.

  18. Engineered Osmosis for Energy Efficient Separations: Optimizing Waste Heat Utilization FINAL SCIENTIFIC REPORT DOE F 241.3

    SciTech Connect (OSTI)

    NATHAN HANCOCK

    2013-01-13

    The purpose of this study is to design (i) a stripper system where heat is used to strip ammonia (NH{sub 3}) and carbon dioxide (CO{sub 2}) from a diluted draw solution; and (ii) a condensation or absorption system where the stripped NH{sub 3} and CO{sub 2} are captured in condensed water to form a re-concentrated draw solution. This study supports the Industrial Technologies Program of the DOE Office of Energy Efficiency and Renewable Energy and their Industrial Energy Efficiency Grand Challenge award solicitation. Results from this study show that stimulated Oasys draw solutions composed of a complex electrolyte solution associated with the dissolution of NH{sub 3} and CO{sub 2} gas in water can successfully be stripped and fully condensed under standard atmospheric pressure. Stripper bottoms NH{sub 3} concentration can reliably be reduced to < 1 mg/L, even when starting with liquids that have an NH{sub 3} mass fraction exceeding 6% to stimulate diluted draw solution from the forward osmosis membrane component of the process. Concentrated draw solution produced by fully condensing the stripper tops was show to exceed 6 M-C with nitrogen-to-carbon (N:C) molar ratios on the order of two. Reducing the operating pressure of the stripper column serves to reduce the partial vapor pressure of both NH{sub 3} and CO{sub 2} in solution and enables lower temperature operation towards integration of industrial low-grade of waste heat. Effective stripping of solutes was observed with operating pressures as low as 100 mbar (3-inHg). Systems operating at reduced pressure and temperature require additional design considerations to fully condense and absorb these constituents for reuse within the Oasys EO system context. Comparing empirical data with process stimulation models confirmed that several key parameters related to vapor-liquid equilibrium and intrinsic material properties were not accurate. Additional experiments and refinement of material property databases within the chosen process stimulation software was required to improve the reliability of process simulations for engineering design support. Data from experiments was also employed to calculate critical mass transfer and system design parameters (such as the height equivalent to a theoretical plate (HETP)) to aid in process design. When measured in a less than optimal design state for the stripping of NH{sub 3} and CO{sub 2} from a simulated dilute draw solution the HETP for one type of commercial stripper packing material was 1.88 ft/stage. During this study it was observed that the heat duty required to vaporize the draw solution solutes is substantially affected by the amount of water boilup also produced to achieve a low NH{sub 3} stripper bottoms concentration specification. Additionally, fluid loading of the stripper packing media is a critical performance parameter that affects all facets of optimum stripper column performance. Condensation of the draw solution tops vapor requires additional process considerations if being conducted in sub-atmospheric conditions and low temperature. Future work will focus on the commercialization of the Oasys EO technology platform for numerous applications in water and wastewater treatment as well as harvesting low enthalpy energy with our proprietary osmotic heat engine. Engineering design related to thermal integration of Oasys EO technology for both low and hig-grade heat applications is underway. Novel thermal recovery processes are also being investigated in addition to the conventional approaches described in this report. Oasys Water plans to deploy commercial scale systems into the energy and zero liquid discharge markets in 2013. Additional process refinement will lead to integration of low enthalpy renewable heat sources for municipal desalination applications.

  19. Economic Analysis of a Brackish Water Photovoltaic-Operated (BWRO-PV) Desalination System: Preprint

    SciTech Connect (OSTI)

    Al-Karaghouli, A.; Kazmerski, L. L.

    2010-10-01

    The photovoltaic (PV)-powered reverse-osmosis (RO) desalination system is considered one of the most promising technologies in producing fresh water from both brackish and sea water, especially for small systems located in remote areas. We analyze the economic viability of a small PV-operated RO system with a capacity of 5 m3/day used to desalinate brackish water of 4000 ppm total dissolve solids, which is proposed to be installed in a remote area of the Babylon governorate in the middle of Iraq; this area possesses excellent insolation throughout the year. Our analysis predicts very good economic and environmental benefits of using this system. The lowest cost of fresh water achieved from using this system is US $3.98/ m3, which is very reasonable compared with the water cost reported by small-sized desalination plants installed in rural areas in other parts of the world. Our analysis shows that using this small system will prevent the release annually of 8,170 kg of CO2, 20.2 kg of CO, 2.23 kg of CH, 1.52 kg of particulate matter, 16.41 kg of SO2, and 180 kg of NOx.

  20. The efficiency of reverse engineering in the design of the ORCA XI autonomous underwater vehicle by Rachel E. Sharples.

    E-Print Network [OSTI]

    Sharples, Rachel E

    2010-01-01

    Reverse engineering is the process of determining how a system works to aid duplication, maintenance, or redesign. Applications of reverse engineering include mechanical, electrical, software, and process systems. Although ...

  1. Reverse-Engineering Banks' Financial Strength Ratings Using ...

    E-Print Network [OSTI]

    mal92

    2008-08-10

    Dec 27, 2006 ... can provide superior results in reverse-engineering a bank rating system. .... economic performance because of adverse selection. ..... shall sketch below very briefly the basic concepts of LAD, referring the reader for a more ...

  2. First-Principles Prediction of Thermodynamically Reversible Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First-Principles Prediction of Thermodynamically Reversible Hydrogen Storage Reactions in the Li-Mg-Ca-B-H system Home Author: V. Ozolins, E. H. Majzoub, C. Wolverton Year: 2009...

  3. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This paper on titan plasma engineering contains papers on the following topics: reversed-field pinch as a fusion reactor; parametric systems studies; magnetics; burning-plasma simulations; plasma transient operations; current drive; and physics issues for compact RFP reactors.

  4. Coding analysis of the IS-95A reverse link 

    E-Print Network [OSTI]

    Amin, Noor Rajib

    1999-01-01

    The IS-95A reverse link CDMA system is analyzed from a channel coding point of view. Analytical performance is derived for the Viterbi decoder to perform hard decision decoding. A dual-max decoding metric is suggested to ...

  5. Induced-charge electro-osmosis around metal and Janus spheres in water: Patterns of flow and breaking symmetries

    E-Print Network [OSTI]

    Chenhui Peng; Israel Lazo; Sergij V. Shiyanovskii; Oleg D. Lavrentovich

    2014-11-06

    We establish experimentally the flow patterns of induced-charge electro-osmosis (ICEO) around immobilized metallic spheres in aqueous electrolyte. The AC field modifies local electrolyte concentration and causes quadrupolar flows with inward velocities being smaller than the outward ones. At high fields, the flow becomes irregular, with vortices smaller than the size of the sphere. Janus metallo-dielectric spheres create dipolar flows and pump the fluid from the dielectric toward the metallic part. The experimentally determined far-field flows decay with the distance as r-3.

  6. Membranes and renewable energy — a new era of sustainable development for developing countries 

    E-Print Network [OSTI]

    Schäfer, Andrea; Broeckmann, Andreas; Richards, Bryce

    2005-01-01

    This article outlines the combination of a small scale hybrid ultrafiltration and nanofiltration/reverse osmosis system with solar energy. The system is targeted to remote communities with access to either contaminated ...

  7. Time Reversal Violation

    SciTech Connect (OSTI)

    Quinn, H; /SLAC

    2009-01-27

    This talk briefly reviews three types of time-asymmetry in physics, which I classify as universal, macroscopic and microscopic. Most of the talk is focused on the latter, namely the violation of T-reversal invariance in particle physics theories. In sum tests of microscopic T-invariance, or observations of its violation, are limited by the fact that, while we can measure many processes, only in very few cases can we construct a matched pair of process and inverse process and observe it with sufficient sensitivity to make a test. In both the cases discussed here we can achieve an observable T violation making use of flavor tagging, and in the second case also using the quantum properties of an antisymmetric coherent state of two B mesons to construct a CP-tag. Both these tagging properties depend only on very general properties of the flavor and/or CP quantum numbers and so provide model independent tests for T-invariance violations. The microscopic laws of physics are very close to T-symmetric. There are small effects that give CP- and T-violating processes in three-generation-probing weak decays. Where a T-violating observable can be constructed we see the relationships between T-violation and CP-violation expected in a CPT conserving theory. These microscopic effects are unrelated to the 'arrow of time' that is defined by increasing entropy, or in the time direction defined by the expansion of our Universe.

  8. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, L.J.; Foreman, L.R.

    1999-08-31

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved. 7 figs.

  9. Characterizations of the Proportional (Reversed) Hazard Class

    E-Print Network [OSTI]

    Kundu, Debasis

    Characterizations of the Proportional (Reversed) Hazard Class Debasis Kundu Department Abstract In this paper we provide two simple characterizations of the proportional (reversed) hazard class, generalized exponential, Rayleigh, Burr type X, exponentiated Weibull belong to the proportional (reversed

  10. An Analysis of the Economic and Financial Life-Cycle Costs of Reverse-Osmosis Desalination in South Texas: A Case Study of the Southmost Facility 

    E-Print Network [OSTI]

    Sturdivant, A.; Rister, M.; Rogers, C.; Lacewell, R.; Norris, J.; Leal, J.; Garza, J.; Adams, J.

    2009-01-01

    and operating the Southmost desalination facility (near Brownsville, TX) in South Texas are investigated using the spreadsheet model DESAL ECONOMICS©. Primary data key to this analysis include actual initial construction costs, annual continued costs (i...

  11. Adapting Consumer Report's product evaluation methods for particle removal, gravity non-electric and reverse osmosis water filters in the Indian marketplace

    E-Print Network [OSTI]

    Liu, Shuyue, S.M. Massachusetts Institute of Technology

    2015-01-01

    Household Water Treatment and Storage (HWTS) products provides households that are drinking unimproved water supplies with a first line of defense against contaminants in their drinking water and those drinking improved ...

  12. An evaluation of membrane materials for the treatment of highly concentrated suspended salt solutions in reverse osmosis and nanofiltration processes for desalination 

    E-Print Network [OSTI]

    Hughes, Trenton Whiting

    2009-05-15

    membrane materials that are most suitable for the process. In the study, a one plate SEPA Cell module by GE Osmonics was used to determine which membranes were most susceptible to fouling and/or membrane hydrolysis. A cellulose acetate (CA), polyamide (PA...

  13. Rotation Reversal Bifurcation and Energy Confinement Saturation...

    Office of Scientific and Technical Information (OSTI)

    Rotation Reversal Bifurcation and Energy Confinement Saturation in Tokamak OhmicL-Mode Plasmas Citation Details In-Document Search Title: Rotation Reversal Bifurcation and Energy...

  14. Introduction Reverse Engineering MIFARE Classic

    E-Print Network [OSTI]

    Garcia, Flavio D.

    Dismantling MIFARE Classic Flavio D. Garcia Institute for Computing and Information Sciences, Radboud, Peter van Rossum, Roel Verdult, Ronny Wichers Schreur and Bart Jacobs Flavio D. Garcia Dismantling. Garcia Dismantling MIFARE Classic #12;Introduction Reverse Engineering MIFARE Classic Cryptanalysis

  15. Reverse Engineering Quantum Field Theory

    E-Print Network [OSTI]

    Robert Oeckl

    2012-10-02

    An approach to the foundations of quantum theory is advertised that proceeds by "reverse engineering" quantum field theory. As a concrete instance of this approach, the general boundary formulation of quantum theory is outlined.

  16. CX-012598: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace ETP Reverse Osmosis (RO) Cooling Towers (CTWs) and Add a Chemical Addition System CX(s) Applied: B1.5Date: 41827 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  17. Assessment of Brine Management for Geologic Carbon Sequestration

    E-Print Network [OSTI]

    Breunig, Hanna M.

    2014-01-01

    CO 2 ]  of  geothermal  heat,  desalination  water,  algae  geothermal  energy   extraction,  desalination,  salt  and  Geothermal  Energy  Systems CHP  Binary  Cycle Section  5.3  Non-­?potable  Water   NPV Reverse  Osmosis  Treatment Water  Sold  at  Desalination  

  18. Response time distributions via reversed processes

    E-Print Network [OSTI]

    Imperial College, London

    Response time distributions via reversed processes Peter G. Harrison Maria G. Vigliotti Abstract in both the forward and reversed processes. There- fore if the reversed process is known, each node-sojourn time can be taken from either process. In particular, the reversed process can be used for the first

  19. Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    Supply, Waste Water Descriptors: nitrogen, aquaculture waste, membrane, reverse osmosis, water reuse

  20. Reversible Solid Oxide Electrolysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7,BreakoutRetooling Michigan:Energy Systems |Clean,

  1. Aging in reversible dynamics of disordered systems. I. Emergence of the arcsine law in Bouchaud's asymmetric trap model on the complete graph

    E-Print Network [OSTI]

    Véronique Gayrard

    2010-08-23

    In this paper the celebrated arcsine aging scheme of G. Ben Arous and J. Cern\\'y is taken up. Using a brand new approach based on point processes and weak convergence techniques, this scheme is implemented in a wide class of Markov processes that can best be described as Glauber dynamics of discrete disordered systems. More specifically, conditions are given for the underlying clock process (a partial sum process that measures the total time elapsed along paths of a given length) to converge to a subordinator, and this subordinator is constructed explicitly. This approach is illustrated on Bouchaud's asymmetric trap model on the complete graph for which aging is for the first time proved, and the full, optimal picture, obtained.

  2. F and H Area Effluent Treatment Facility (F/H ETF): ultrafiltration and hyperfiltration systems testing at Carre, Inc. with simulated F and H area effluents

    SciTech Connect (OSTI)

    Ryan, J.P.

    1984-05-23

    The F and H Area Effluent Treatment Facility is essentially a four-stage process that will decontaminate the waste water that is currently being discharged to seepage basins in the Separations Areas. The stages include pretreatment, reverse osmosis, ion exchange, and evaporation. A series of tests were performed at Carre, Inc. (Seneca, SC) from March 5 through March 13, to determine the usefulness of ultrafiltration (UF) in the pretreatment stage of the ETF. The results of that testing program indicate that UF would be an excellent means of removing entrained activity from the 200 Area process effluents. Hyperfiltration (HF) was also tested as a means of providing an improved concentration factor from the reverse osmosis stage. The results show that the membranes that were tested would not reject salt well enough at high salt concentrations to be useful in the final reverse osmosis stage. However, there are several membranes which are commercially available that would provide the needed rejection if they could be applied (dynamically) on the Carre support structure. This avenue is still being explored, as theoretically, it could eliminate the need for the F/H ETF evaporator.

  3. C*-algebras associated with reversible extensions of logistic maps

    E-Print Network [OSTI]

    Kwasniewski, B K

    2010-01-01

    A construction of reversible extensions of dynamical systems which applies to arbitrary mappings (not necessarily with open range) is presented. It is based on calculating the maximal ideal space of C*-algebras that extends endomorphisms to partial automorphisms via partial isometric representations, and involves a newfound set of "parameters" (the role of parameters play chosen sets or ideals). Additionally, it is characterised as a universal object. As model examples, we give a thorough description of reversible extensions of logistic maps, and a classification of systems associated with compression of unitaries generating homeomorphisms of the circle.

  4. Considerations for the use of the modified line reversal technique for gas temperature measurement

    SciTech Connect (OSTI)

    Winkleman, B.C.

    1993-06-01

    Several areas related to the successful and accurate application of modified line reversal are discussed. Initially, generalized modified line reversal equations are developed. A review of basic line reversal theory is presented followed by development of correction factors for optical system effects. Image size and their effect on accurate determinations of spectral radiances is discussed. Temperature biases introduced by image vignetting is calculated. Measured image irradiances are given.

  5. Reverse engineering of integrated circuits

    DOE Patents [OSTI]

    Chisholm, Gregory H. (Shorewood, IL); Eckmann, Steven T. (Colorado Springs, CO); Lain, Christopher M. (Pittsburgh, PA); Veroff, Robert L. (Albuquerque, NM)

    2003-01-01

    Software and a method therein to analyze circuits. The software comprises several tools, each of which perform particular functions in the Reverse Engineering process. The analyst, through a standard interface, directs each tool to the portion of the task to which it is most well suited, rendering previously intractable problems solvable. The tools are generally used iteratively to produce a successively more abstract picture of a circuit, about which incomplete a priori knowledge exists.

  6. Multivariate Distributions with Proportional Reversed Hazard Marginals

    E-Print Network [OSTI]

    Kundu, Debasis

    Multivariate Distributions with Proportional Reversed Hazard Marginals Debasis Kundu1 & Manuel Franco2 & Juana-Maria Vivo3 Abstract Several univariate proportional reversed hazard models have been a class of bivariate models with proportional reversed hazard marginals. It is observed that the proposed

  7. Reverse Engineering of Web Applications: A

    E-Print Network [OSTI]

    Coenen, Frans

    Reverse Engineering of Web Applications: A Technical Review Reshma Patel1 Frans Coenen1 Russell/July 2007 #12;2Reverse Engineering of Web Applications: A Technical Report REVERSE ENGINEEING OF WEB, Wirral, CH62 3NX lawson@transglobalexpress.co.uk Abstract The World Wide Web (WWW) has become one

  8. The Carlson-Simpson Lemma in Reverse Mathematics

    E-Print Network [OSTI]

    Erhard, Julia Christina

    2013-01-01

    6.3 Reverse Mathematicswords . . . . . 1.4 Reverse Mathematics diagrams Miller-1.1 Reverse Mathematics . . . . . . 1.2 The Dual Ramsey

  9. Review of field-reversed configurations

    SciTech Connect (OSTI)

    Steinhauer, Loren C. [Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States)

    2011-07-15

    This review addresses field-reversed configurations (FRCs), which are compact-toroidal magnetic systems with little or no toroidal field and very high {beta} (ratio of plasma pressure to magnetic pressure). Although enthusiasm for the FRC has primarily been driven by its potential for an attractive fusion reactor, this review focuses on the physics rather than on technological or engineering aspects. Major advances in both theory and experiment have taken place since the previous comprehensive FRC review in 1988. Even so many questions remain. In particular, even though FRC experiments have exhibited remarkable stability, how well this extrapolates to larger systems remains unresolved. The review considers FRCs under familiar topical categories: equilibrium, global stability, self-organization, transport, formation, and sustainment.

  10. Generalized reversible susceptibility tensor Advanced Materials Research Institute, University of New Orleans, New Orleans, Louisiana 70148

    E-Print Network [OSTI]

    Spinu, Leonard

    online 6 May 2005 A theory of reversible susceptibility tensor based on magnetization vector dynamics one to find the reversible susceptibility tensor for virtually any magnetic system if an expression-frequency limit of this TS formula. The dynamics of magnetization M is governed by the Landau­Lifshitz­Gilbert LLG

  11. Method to Design General RNS Reverse Converters for Extended Moduli Sets

    E-Print Network [OSTI]

    Sousa, Leonel

    1 Method to Design General RNS Reverse Converters for Extended Moduli Sets Hector Pettenghi, Member, research on residue number systems (RNS) has targeted larger dynamic ranges in order to further explore-of-the-art, resulting in an improvement of the overall RNS performance at the cost of a slower reverse conversion

  12. ASIC and FPGA Implementations of Modern 4-Moduli RNS Reverse Converters

    E-Print Network [OSTI]

    Sousa, Leonel

    ASIC and FPGA Implementations of Modern 4-Moduli RNS Reverse Converters Using Distinct complex and essential part of residue number system (RNS), and has a significant role in the general performance of RNS. Recently, it is showed that the reverse converter performance could be significantly

  13. Frontiers of Reverse Engineering: a Conceptual Model Gerardo Canfora and Massimiliano Di Penta

    E-Print Network [OSTI]

    Di Penta, Massimiliano

    is not available--the sys- tem binaries. The IEEE-1219 [32] standard recommends reverse engineering as a key Software reverse engineering is a crucial task to recon- struct high-level views of a software system--with the pur- pose of understanding and/or maintaining it--when the only reliable source of information

  14. Time Reversal with MISO for Ultra-Wideband Communications: Experimental Results (invited paper)

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    TH2B-1 Time Reversal with MISO for Ultra-Wideband Communications: Experimental Results (invited reversal (TR) communications marks a paradigm shift in UWB communications. The system complexity can provides unique solutions to applications, including logistics, security applications, medical applications

  15. Novel Cleanup Agents Designed Exclusively for Oil Field Membrane Filtration Systems Low Cost Field Demonstrations of Cleanup Agents in Controlled Experimental Environments

    SciTech Connect (OSTI)

    David Burnett; Harold Vance

    2007-08-31

    The goal of our project is to develop innovative processes and novel cleaning agents for water treatment facilities designed to remove fouling materials and restore micro-filter and reverse osmosis (RO) membrane performance. This project is part of Texas A&M University's comprehensive study of the treatment and reuse of oilfield brine for beneficial purposes. Before waste water can be used for any beneficial purpose, it must be processed to remove contaminants, including oily wastes such as residual petroleum hydrocarbons. An effective way of removing petroleum from brines is the use of membrane filters to separate oily waste from the brine. Texas A&M and its partners have developed highly efficient membrane treatment and RO desalination for waste water including oil field produced water. We have also developed novel and new cleaning agents for membrane filters utilizing environmentally friendly materials so that the water from the treatment process will meet U.S. EPA drinking water standards. Prototype micellar cleaning agents perform better and use less clean water than alternate systems. While not yet optimized, the new system restores essentially complete membrane flux and separation efficiency after cleaning. Significantly the amount of desalinated water that is required to clean the membranes is reduced by more than 75%.

  16. Implications of Scheduled ITC Reversion for RPS Compliance: Preliminary Results

    SciTech Connect (OSTI)

    Lowder, Travis; Miller, John; O'Shaughnessy, Eric; Heeter, Jenny

    2015-09-14

    This poster presents DRAFT initial results of a forthcoming NREL analysis. The analysis investigates the impacts of the scheduled investment tax credit (ITC) reversion from 30 percent to 10 percent for certain solar photovoltaic projects. Specifically, it considers whether the reversion will result in increased use of alternative compliance payments (ACPs) in lieu of solar renewable energy credits (SRECs) for renewable portfolio standard (RPS) compliance. The analysis models the effect of a 10 percent ITC on power purchase agreement (PPA) prices for non-residential systems in the eight states with solar carve-outs and solar ACPs. Our preliminary results suggest that states will likely install sufficient capacity to meet long-term targets through SRECs rather than ACPs following the ITC reversion. However, the analysis shows that the ITC reversion could affect project economics such that capacity shortfalls in certain states could temporarily increase the use of ACPs. NREL anticipates publishing a full report of this analysis in fall 2015. credits (SRECs) for renewable portfolio standard (RPS) compliance. The analysis models the effect of a 10 percent ITC on power purchase agreement (PPA) prices for non-residential systems in the eight states with solar carve-outs and solar ACPs. Our preliminary results suggest that states will likely install sufficient capacity to meet long-term targets through SRECs rather than ACPs following the ITC reversion. However, the analysis shows that the ITC reversion could affect project economics such that capacity shortfalls in certain states could temporarily increase the use of ACPs. NREL anticipates publishing a full report of this analysis in fall 2015.

  17. Electro-Osmosis and Water Uptake in Polymer Electrolytes in Equilibrium with Water Vapor at Low Temperatures

    SciTech Connect (OSTI)

    Gallagher, K. G.; Pivovar, B. S.; Fuller, T. F.

    2009-01-01

    Water uptake and electro-osmosis are investigated to improve the understanding and aid the modeling of water transport in proton-exchange membrane fuel cells (PEMFCs) below 0 C. Measurements of water sorption isotherms show a significant reduction in the water capacity of polymer electrolytes below 0 C. This reduced water content is attributed to the lower vapor pressure of ice compared to supercooled liquid water. At -25 C, 1100 equivalent weight Nafion in equilibrium with vapor over ice has 8 moles of water per sulfonic acid group. Measurements of the electro-osmotic drag coefficient for Nafion and both random and multiblock copolymer sulfonated poly(arylene ether sulfone) (BPSH) chemistries are reported for vapor equilibrated samples below 0 C. The electro-osmotic drag coefficient of BPSH chemistries is found to be {approx}0.4, and that of Nafion is {approx}1. No significant temperature effect on the drag coefficient is found. The implication of an electro-osmotic drag coefficient less than unity is discussed in terms of proton conduction mechanisms. Simulations of the ohmically limited current below 0 C show that a reduced water uptake below 0 C results in a significant decrease in PEMFC performance.

  18. Gravity controlled anti-reverse rotation device

    DOE Patents [OSTI]

    Dickinson, Robert J. (Shaler Township, Allegheny County, PA); Wetherill, Todd M. (Lower Burrell, PA)

    1983-01-01

    A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.

  19. Time Reversal of Bose-Einstein Condensates

    SciTech Connect (OSTI)

    Martin, J.; Georgeot, B.; Shepelyansky, D. L. [Laboratoire de Physique Theorique, Universite de Toulouse III, CNRS, 31062 Toulouse (France)

    2008-08-15

    Using Gross-Pitaevskii equation, we study the time reversibility of Bose-Einstein condensates (BEC) in kicked optical lattices, showing that in the regime of quantum chaos, the dynamics can be inverted from explosion to collapse. The accuracy of time reversal decreases with the increase of atom interactions in BEC, until it is completely lost. Surprisingly, quantum chaos helps to restore time reversibility. These predictions can be tested with existing experimental setups.

  20. Reversing the Circulation of Magnetic Vortices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the ALS, researchers have shown for the first time how to use pulsed magnetic fields to reverse the circulation. Taming the Whirlwind Although magnetic vortices may seem...

  1. Reverse Migration: The Impact of Returning Home

    E-Print Network [OSTI]

    Albright, Alison; Naybor, Deborah

    2010-01-01

    The Case of Taiwan. Migration Policy Institute. SeptemberSilent River: Women and Migration. Retrieved September 2009of the problems reverse migration will create for women and

  2. Reverse logistics for consumer electronics : forecasting failures, managing inventory, and matching warranties

    E-Print Network [OSTI]

    Calmon, André du Pin

    2015-01-01

    The goal of this thesis is to describe, model, and optimize reverse logistics systems commonly used in the Consumer Electronics industry. The context and motivation for this work stem from a collaboration with an industrial ...

  3. Time-Reversible Ergodic Maps and the 2015 Ian Snook Prize

    E-Print Network [OSTI]

    William Graham Hoover; Carol Griswold Hoover

    2015-07-04

    The time reversibility characteristic of Hamiltonian mechanics has long been extended to nonHamiltonian dynamical systems modeling nonequilibrium steady states with feedback-based thermostats and ergostats. Typical solutions are multifractal attractor-repellor phase-space pairs with reversed momenta and unchanged coordinates, $(q,p)\\longleftrightarrow (q,-p)$ . Weak control of the temperature, $\\propto p^2$ and its fluctuation, resulting in ergodicity, has recently been achieved in a three-dimensional time-reversible model of a heat-conducting harmonic oscillator. Two-dimensional cross sections of such nonequilibrium flows can be generated with time-reversible dissipative maps yielding \\ae sthetically interesting attractor-repellor pairs. We challenge the reader to find and explore such time-reversible dissipative maps. This challenge is the 2015 Snook-Prize Problem.

  4. Quantum Walk Search with Time-Reversal Symmetry Breaking

    E-Print Network [OSTI]

    Thomas G. Wong

    2015-07-15

    We formulate Grover's unstructured search algorithm as a chiral quantum walk, where transitioning in one direction has a phase conjugate to transitioning in the opposite direction. For small phases, this breaking of time-reversal symmetry is too small to significantly affect the evolution: the system still approximately evolves in its ground and first excited states, rotating to the marked vertex in time $\\pi \\sqrt{N} / 2$. Increasing the phase does not change the runtime, but rather changes the support for the 2D subspace, so the system evolves in its first and second excited states, or its second and third excited states, and so forth. Apart from the critical phases corresponding to these transitions in the support, which become more frequent as the phase grows, this reveals that our model of quantum search is robust against time-reversal symmetry breaking.

  5. Motion-reversal in a simple microscopic swimmer

    E-Print Network [OSTI]

    A. Alexander-Katz

    2007-05-18

    We study the motion of a microscopic swimmer composed of a semiflexible polymer anchored at the surface of a magnetic sphere using hydrodynamic simulations and scaling arguments. The swimmer is driven by a rotating magnetic field, and displays forward and backward motion depending on the value of the rotational frequency. In particular, the system exhibits forward thrust for frequencies below a critical frequency $\\omega^*$, while above $\\omega^*$ the motion is reversed.

  6. Corrosion/erosion pipe inspection using reverse geometry radiography

    SciTech Connect (OSTI)

    Albert, R.D.

    1996-07-01

    Measurement of corrosion in piping was studied using the Digiray Reverse Geometry X-ray{reg_sign} (RGX{reg_sign}) imaging system during a series of field tests. Sponsored by Shell, Exxon and Mobil oil companies, these were recently carried out at the Shell Martinez refinery facility. Results of the field tests as well as other RGX radiographs taken in the laboratory by Digiray will be described in this report.

  7. Cheaper Adjoints by Reversing Address Computations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hascoët, L.; Utke, J.; Naumann, U.

    2008-01-01

    The reverse mode of automatic differentiation is widely used in science and engineering. A severe bottleneck for the performance of the reverse mode, however, is the necessity to recover certain intermediate values of the program in reverse order. Among these values are computed addresses, which traditionally are recovered through forward recomputation and storage in memory. We propose an alternative approach for recovery that uses inverse computation based on dependency information. Address storage constitutes a significant portion of the overall storage requirements. An example illustrates substantial gains that the proposed approach yields, and we show use cases in practical applications.

  8. Preparation of blue-emitting CaMgSi{sub 2}O{sub 6}:Eu{sup 2+} phosphors in reverse micellar system and their application to transparent emissive display devices

    SciTech Connect (OSTI)

    Choi, Sungho; Tae, Se-Won; Seo, Jung-Hyun; Jung, Ha-Kyun

    2011-06-15

    Blue-emitting Eu{sup 2+}-doped CaMgSi{sub 2}O{sub 6} phosphors were prepared by the reverse micelle method. The resultant particles were nanocrystalline with a grain size of about <300 nm and exhibited a characteristic blue emission spectrum centered at 445 nm induced by the oxygen coordinated Eu{sup 2+} ions. By using the corresponding nanophosphors followed by the formation of a uniform phosphor layer, we have demonstrated the mini-sized transparent plasma-discharge panels and investigated their luminance characteristics. Phosphor coated panel is properly transparent, {>=}65%, at the visible wavelength region and illuminates a characteristic blue emission under Ne/Xe plasma discharge conditions. Thus, we can obtain a fast decaying, robust blue-emitting silicate phosphor layer under excited plasma radiation for upcoming emissive display devices like as transparent and three-dimensional plasma display panels. - Graphical abstract: Blue-emitting CaMgSi{sub 2}O{sub 6}:Eu{sup 2+} nanophosphors coated transparent luminescent layers can be obtained. It illuminates the characteristic blue emission, spectrum centered at 425 nm wavelength, under the Ne-Xe mixed gas plasma discharge condition. Highlights: > Blue-emitting CaMgSi{sub 2}O{sub 6}:Eu{sup 2+} nanophosphors via reverse micelle method. > Transparent blue-emitting layer was prepared by using corresponding phosphors. > Fast decaying with degradation-free luminescent layer under plasma radiation. > Promising luminescent layer for the upcoming plasma discharged transparent displays.

  9. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    SciTech Connect (OSTI)

    Not Available

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  10. Simulation of integrated pollutant removal (IPR) water-treatment system using ASPEN Plus

    SciTech Connect (OSTI)

    Harendra, Sivaram; Oryshcyhn, Danylo [U.S. DOE Ochs, Thomas [U.S. DOE Gerdemann, Stephen; Clark, John

    2013-01-01

    Capturing CO2 from fossil fuel combustion provides an opportunity for tapping a significant water source which can be used as service water for a capture-ready power plant and its peripherals. Researchers at the National Energy Technology Laboratory (NETL) have patented a process—Integrated Pollutant Removal (IPR®)—that uses off-the-shelf technology to produce a sequestration ready CO2 stream from an oxy-combustion power plant. Water condensed from oxy-combustion flue gas via the IPR system has been analyzed for composition and an approach for its treatment—for in-process reuse and for release—has been outlined. A computer simulation model in ASPEN Plus has been developed to simulate water treatment of flue gas derived wastewater from IPR systems. At the field installation, water condensed in the IPR process contains fly ash particles, sodium (largely from spray-tower buffering) and sulfur species as well as heavy metals, cations, and anions. An IPR wastewater treatment system was modeled using unit operations such as equalization, coagulation and flocculation, reverse osmosis, lime softening, crystallization, and pH correction. According to the model results, 70% (by mass) of the inlet stream can be treated as pure water, the other 20% yields as saleable products such as gypsum (CaSO4) and salt (NaCl) and the remaining portion is the waste. More than 99% of fly ash particles are removed in the coagulation and flocculation unit and these solids can be used as filler materials in various applications with further treatment. Results discussed relate to a slipstream IPR installation and are verified experimentally in the coagulation/flocculation step.

  11. Durability Evaluation of Reversible Solid Oxide Cells

    SciTech Connect (OSTI)

    Xiaoyu Zhang; James E. O'Brien; Robert C. O'Brien; Gregory K. Housley

    2013-11-01

    An experimental investigation on the performance and durability of single solid oxide cells (SOCs) is under way at the Idaho National Laboratory. Reversible operation of SOCs includes electricity generation in the fuel cell mode and hydrogen generation in the electrolysis mode. Degradation is a more significant issue when operating SOCs in the electrolysis mode. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOCs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus for single cell and small stack tests has been developed for this purpose. Cells were obtained from four industrial partners. Cells from Ceramatec Inc. and Materials and Systems Research Inc. (MSRI) showed improved durability in electrolysis mode compared to previous stack tests. Cells from Saint Gobain Advanced Materials Inc. (St. Gobain) and SOFCPower Inc. demonstrated stable performance in the fuel cell mode, but rapid degradation in the electrolysis mode, especially at high current density. Electrolyte-electrode delamination was found to have a significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the electrode microstructure helped to mitigate degradation. Polarization scans and AC impedance measurements were performed during the tests to characterize cell performance and degradation.

  12. Fractional Topological Phases and Broken Time-Reversal Symmetry...

    Office of Scientific and Technical Information (OSTI)

    Fractional Topological Phases and Broken Time-Reversal Symmetry in Strained Graphene Prev Next Title: Fractional Topological Phases and Broken Time-Reversal Symmetry in...

  13. Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Reversible Fuel Cells Workshop Summary Report Progress on the Development of Reversible SOFC Stack Technology Lessons Learned from SOFCSOEC Development...

  14. Subsurface imaging with reverse vertical seismic profiles

    E-Print Network [OSTI]

    Krasovec, Mary L. (Mary Lee), 1972-

    2001-01-01

    This thesis presents imaging results from a 3D reverse vertical seismic profile (RVSP) dataset measured at a hydrocarbon bearing pinnacle reef in northern Michigan. The study presented many challenges in seismic data ...

  15. Reversible Dimerization of (+)-Myrmicarin 215B

    E-Print Network [OSTI]

    Movassaghi, Mohammad

    Brønsted acid promoted reversible dimerization of myrmicarin 215B leads to formation of a new heptacyclic product, isomyrmicarin 430B, that possesses a C1,C2-trans,C2,C3-trans-substituted cyclopentane ring. Mechanistic ...

  16. Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Radisav Vidic; David Dzombak; Ming-Kai Hsieh; Heng Li; Shih-Hsiang Chien; Yinghua Feng; Indranil Chowdhury; Jason Monnell

    2009-06-30

    This study evaluated the feasibility of using three impaired waters - secondary treated municipal wastewater, passively treated abandoned mine drainage (AMD), and effluent from ash sedimentation ponds at power plants - for use as makeup water in recirculating cooling water systems at thermoelectric power plants. The evaluation included assessment of water availability based on proximity and relevant regulations as well as feasibility of managing cooling water quality with traditional chemical management schemes. Options for chemical treatment to prevent corrosion, scaling, and biofouling were identified through review of current practices, and were tested at bench and pilot-scale. Secondary treated wastewater is the most widely available impaired water that can serve as a reliable source of cooling water makeup. There are no federal regulations specifically related to impaired water reuse but a number of states have introduced regulations with primary focus on water aerosol 'drift' emitted from cooling towers, which has the potential to contain elevated concentrations of chemicals and microorganisms and may pose health risk to the public. It was determined that corrosion, scaling, and biofouling can be controlled adequately in cooling systems using secondary treated municipal wastewater at 4-6 cycles of concentration. The high concentration of dissolved solids in treated AMD rendered difficulties in scaling inhibition and requires more comprehensive pretreatment and scaling controls. Addition of appropriate chemicals can adequately control corrosion, scaling and biological growth in ash transport water, which typically has the best water quality among the three waters evaluated in this study. The high TDS in the blowdown from pilot-scale testing units with both passively treated mine drainage and secondary treated municipal wastewater and the high sulfate concentration in the mine drainage blowdown water were identified as the main challenges for blowdown disposal. Membrane treatment (nanofiltration or reverse osmosis) can be employed to reduce TDS and sulfate concentrations to acceptable levels for reuse of the blowdown in the cooling systems as makeup water.

  17. Reversible Acid Gas Capture Using CO2-Binding Organic Liquids

    SciTech Connect (OSTI)

    Heldebrant, David J.; Koech, Phillip K.; Yonker, Clement R.; Rainbolt, James E.; Zheng, Feng

    2010-08-31

    Acid gas scrubbing technology is predominantly aqueous alkanolamine based. Of the acid gases, CO2, H2S and SO2 have been shown to be reversible, however there are serious disadvantages with corrosion and high regeneration costs. The primary scrubbing system composed of monoethanolamine is limited to 30% by weight because of the highly corrosive solution. This gravimetric limitation limits the CO2 volumetric (?108 g/L) and gravimetric capacity (?7 wt%) of the system. Furthermore the scrubbing system has a large energy penalty from pumping and heating the excess water required to dissolve the MEA bicarbonate salt. Considering the high specific heat of water (4 j/g-1K-1), low capacities and the high corrosion we set out to design a fully organic solvent that can chemically bind all acid gases i.e. CO2 as reversible alkylcarbonate ionic liquids or analogues thereof. Having a liquid acid gas carrier improves process economics because there is no need for excess solvent to pump and to heat. We have demonstrated illustrated in Figure 1, that CO2-binding organic liquids (CO2BOLs) have a high CO2 solubility paired with a much lower specific heat (<1.5 J/g-1K-1) than aqueous systems. CO2BOLs are a subsection of a larger class of materials known as Binding Organic Liquids (BOLs). Our BOLs have been shown to reversibly bind and release COS, CS2, and SO2, which we denote COSBOLS, CS2BOLs and SO2BOLs. Our BOLs are highly tunable and can be designed for post or pre-combustion gas capture. The design and testing of the next generation zwitterionic CO2BOLs and SO2BOLs are presented.

  18. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2005-01-25

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In this report, we report our application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Based on our ultrafiltration experiments with apple juice, we conclude that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. Thus, flow reversal technology seems an attractive alternative to mitigate fouling problem in crossflow membrane filtration.

  19. Transport Physics in Reversed Shear Plasmas

    SciTech Connect (OSTI)

    Levinton, F.M.; Batha, S.H.; Beer, M.A.; Bell, M.G.; Budny, R.V.; Efthimion, P.C.; Mazzucato, E.; Nazikian, R.; Park, H.K.; Ramsey, A.T.; Schmidt, G.L.; Scott, S.D.; Synakowski, E.J.; Taylor, G.; Von Goeler, S.; Zarnstorff, M.C.; Bush, C.E.

    1997-12-31

    Reversed magnetic shear is considered a good candidate for improving the tokamak concept because it has the potential to stabilize MHD instabilities and reduce particle and energy transport. With reduced transport the high pressure gradient would generate a strong off-axis bootstrap current and could sustain a hollow current density profile. Such a combination of favorable conditions could lead to an attractive steady-state tokamak configuration. Indeed, a new tokamak confinement regime with reversed magnetic shear has been observed on the Tokamak Fusion Test Reactor (TFTR) where the particle, momentum, and ion thermal diffusivities drop precipitously, by over an order of magnitude. The particle diffusivity drops to the neoclassical level and the ion thermal diffusivity drops to much less than the neoclassical value in the region with reversed shear. This enhanced reversed shear (ERS) confinement mode is characterized by an abrupt transition with a large rate of rise of the density in the reversed shear region during neutral beam injection, resulting in nearly a factor of three increase in the central density to 1.2 X 10(exp 20) cube m. At the same time the density fluctuation level in the reversed shear region dramatically decreases. The ion and electron temperatures, which are about 20 keV and 7 keV respectively, change little during the ERS mode. The transport and transition into and out of the ERS mode have been studied on TFTR with plasma currents in the range 0.9-2.2 MA, with a toroidal magnetic field of 2.7-4.6 T, and the radius of the q(r) minimum, q{sub min}, has been varied from r/a = 0.35 to 0.55. Toroidal field and co/counter neutral beam injection toroidal rotation variations have been used to elucidate the underlying physics of the transition mechanism and power threshold of the ERS mode.

  20. Reverse circling supercurrents along a superconducting ring

    E-Print Network [OSTI]

    Tian De Cao

    2012-01-21

    The reason why high temperature superconductivity has been being debated is that many basic ideas in literatures are wrong. This work shows that the magnetic flux quantum in a superconducting ring have been inaccurately explained in fact, thus we suggest a reinterpretation of the magnetic flux quantum in a superconducting ring on the basis of the translations of pairs. We also predict that the internal and external surface of a superconducting tube have the reverse circling supercurrents. This means that a more thick tube could trap a larger amount of flux. Both the magnetic flux quantum and the reverse circling supercurrents could not be found with the London equation.

  1. Reversing the Circulation of Magnetic Vortices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100Nationalquestionnaires 0serial codesReversing the Circulation ofReversing

  2. Reversing the Circulation of Magnetic Vortices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100Nationalquestionnaires 0serial codesReversing the CirculationReversing

  3. Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L

    2014-01-01

    Testing high-burnup spent nuclear fuel (SNF) presents many challenges in areas such as specimen preparation, specimen installation, mechanical loading, load control, measurements, data acquisition, and specimen disposal because these tasks are complicated by the radioactivity of the test specimens. Research and comparison studies conducted at Oak Ridge National Laboratory (ORNL) resulted in a new concept in 2010 for a U-frame testing setup on which to perform hot-cell reversible bending fatigue testing. Subsequently, the three-dimensional finite element analysis and the engineering design of components were completed. In 2013 the ORNL team finalized the upgrade of the U-frame testing setup and the integration of the U-frame setup into a Bose dual linear motor test bench to develop a cyclic integrated reversible-bending fatigue tester (CIRFT). A final check was conducted on the CIRFT test system in August 2013, and the CIRFT was installed in the hot cell in September 2013 to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The fatigue responses of Zircaloy-4 (Zry-4) cladding and the role of pellet pellet and pellet clad interactions are critical to SNF vibration integrity, but such data are not available due to the unavailability of an effective testing system. While the deployment of the developed CIRFT test system in a hot cell will provide the opportunity to generate the data, the use of a surrogate rod has proven quite effective in identifying the underlying deformation mechanism of an SNF composite rod under an equivalent loading condition. This paper presents the experimental results of using surrogate rods under CIRFT reversible cyclic loading. Specifically, monotonic and cyclic bending tests were conducted on surrogate rods made of a Zry-4 tube and alumina pellet inserts, both with and without an epoxy bond.

  4. RNS Reverse Converters based on the New Chinese Remainder Theorem I

    E-Print Network [OSTI]

    Sousa, Leonel

    RNS Reverse Converters based on the New Chinese Remainder Theorem I Hector Pettenghi Departamento number systems (RNS) has targeted larger dynamic ranges in order to further explore the inherent parallelism of these systems. In this paper, a performance analysis is presented for RNS

  5. Stratigraphic Architecture and Paleomagnetic Reversal Stratigraphy

    E-Print Network [OSTI]

    LeTourneau, Peter M.

    3 Stratigraphic Architecture and Paleomagnetic Reversal Stratigraphy of the Late Triassic-bounded tectonostratigraphic sequences of fluvial and lacustrine strata. Seismic profiles show that the rift evolved in two-graben. The upper and lower rift sequences are separated by a regional unconformity. The Taylorsville basin

  6. Flow reversal power limit for the HFBR

    SciTech Connect (OSTI)

    Cheng, L.Y.; Tichler, P.R.

    1997-01-01

    The High Flux Beam Reactor (HFBR) is a pressurized heavy water moderated and cooled research reactor that began operation at 40 MW. The reactor was subsequently upgraded to 60 MW and operated at that level for several years. The reactor undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Questions which were raised about the afterheat removal capability during the flow reversal transition led to a reactor shutdown and subsequent resumption of operation at a reduced power of 30 MW. An experimental and analytical program to address these questions is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safe operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW. Direct use of the experimental results and an understanding of the governing phenomenology supports this conclusion.

  7. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2004-06-14

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In our previous report, we reported our work on UF of BSA. In this report, we report our continuing application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using pectin in apple juice as feed show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow.

  8. Flux Enhancement in Crossflow Membrane Filtration: Fouling and It's Minimization by Flow Reversal

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2005-08-04

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and operating transmembrane pressure. Thus, flow reversal technology seems an attractive alternative to mitigate fouling problem in crossflow membrane filtration.

  9. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Magnetic Vortex Core Reversal by Low-Field Excitations Print Wednesday, 28 March 2007 00:00 In micrometer-sized magnetic thin...

  10. Forward and reverse characteristics of irradiated MOSFETs

    SciTech Connect (OSTI)

    Paccagnella, A.; Ceschia, M.; Verzellesi, G.; Dalla Betta, G.F.; Soncini, G.; Bellutti, P.; Fuochi, P.G.

    1996-06-01

    pMOSFETs biased with V{sub gs} < V{sub gd} during Co{sup 60} {gamma} irradiation have shown substantial differences between the forward and reverse subthreshold characteristics, induced by a non-uniform charge distribution in the gate oxide. Correspondingly, modest differences have been observed in the over-threshold I-V characteristics. After irradiation, the forward subthreshold curves can shift at higher or lower gate voltages than the reverse ones. The former behavior has been observed in long-channel devices, in agreement with the classical MOS theory and numerical simulations. The latter result has been obtained in short-channel devices, and it has been correlated to a parasitic punch-through conduction mechanism.

  11. Membranes for Reverse-Organic Air Separations

    Broader source: Energy.gov [DOE]

    New Membranes Use Reverse Separation to Reduce Pollutant Emissions: Many industrial applications need a process to separate pollutants known as volatile organic compounds (VOCs) from air in order to protect the environment and save energy. One such application is the venting of vapor from underground storage tanks (UST) used in gasoline storage and dispensing. These vapors, which can build up and create high pressure within the UST, contribute to ground-level ozone and smog upon release.

  12. Preference reversal in quantum decision theory

    E-Print Network [OSTI]

    V. I. Yukalov; D. Sornette

    2015-10-08

    We consider the psychological effect of preference reversal and show that it finds a natural explanation in the frame of quantum decision theory. When people choose between lotteries with non-negative payoffs, they prefer a more certain lottery because of uncertainty aversion. But when people evaluate lottery prices, e.g. for selling to others the right to play them, they do this more rationally, being less subject to behavioral biases. This difference can be explained by the presence of the attraction factors entering the expression of quantum probabilities. Only the existence of attraction factors can explain why, considering two lotteries with close utility factors, a decision maker prefers one of them when choosing, but evaluates higher the other one when pricing. We derive a general quantitative criterion for the preference reversal to occur that relates the utilities of the two lotteries to the attraction factors under choosing versus pricing and test successfully its application on experiments by Tversky et al. We also show that the planning paradox can be treated as a kind of preference reversal.

  13. Full 180u Magnetization Reversal with Electric Fields

    E-Print Network [OSTI]

    Chen, Long-Qing

    Full 180u Magnetization Reversal with Electric Fields J. J. Wang1 *, J. M. Hu1,2 *, J. Ma1 , J. X reversal with an electric field rather than a current or magnetic field is a fundamental challenge morphological engineering approach to accomplishing full 1806 magnetization reversals with electric fields

  14. A New Approach in Supply Chain Design: studies in reverse logistics and nonprofit settings

    E-Print Network [OSTI]

    Berenguer Falguera, Gemma

    2012-01-01

    integrated forward/reverse logistics network design.Design: studies in reverse logistics and nonprofit settingsDesign: studies in reverse logistics and nonprofit settings

  15. Time Reversal in Solids (Linear and Nonlinear Elasticity): Multimedia Resources in Time Reversal

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dynamic nonlinear elastic behavior, nonequilibrium dynamics, first observed as a curiosity in earth materials has now been observed in a great variety of solids. The primary manifestations of the behavior are characteristic wave distortion, and slow dynamics, a recovery process to equilibrium that takes place linearly with the logarithm of time, over hours to days after a wave disturbance. The link between the diverse materials that exhibit nonequilibrium dynamics appears to be the presence of soft regions, thought to be 'damage' at many scales, ranging from order 10-9 m to 10-1 m at least. The regions of soft matter may be distributed as in a rock sample, or isolated, as in a sample with a single crack [LANLhttp://www.lanl.gov/orgs/ees/ees11/geophysics/nonlinear/nonlinear.shtml]. The Geophysics Group (EES-11) at Los Alamos National Laboratory has posted two or more multimedia items under each of the titles below to demonstrate aspects of their work: 1) Source Reconstruction Using Time Reversal; 2) Robustness and Efficiency of Time Reversal Acoustics in Solid Media; 3) Audio Example of Time Reversal - Speech Privacy; 4) Crack Imagining with Time Reversal - Experimental Results; 5) Time Reversal of the 2004 (M9.0) Sumatra Earthquake.

  16. Dynamics of Molecular Motors in Reversible Burnt-Bridge Models

    E-Print Network [OSTI]

    Maxim N. Artyomov; Alexander Yu. Morozov; Anatoly B. Kolomeisky

    2009-11-22

    Dynamic properties of molecular motors whose motion is powered by interactions with specific lattice bonds are studied theoretically with the help of discrete-state stochastic "burnt-bridge" models. Molecular motors are depicted as random walkers that can destroy or rebuild periodically distributed weak connections ("bridges") when crossing them, with probabilities $p_1$ and $p_2$ correspondingly. Dynamic properties, such as velocities and dispersions, are obtained in exact and explicit form for arbitrary values of parameters $p_1$ and $p_2$. For the unbiased random walker, reversible burning of the bridges results in a biased directed motion with a dynamic transition observed at very small concentrations of bridges. In the case of backward biased molecular motor its backward velocity is reduced and a reversal of the direction of motion is observed for some range of parameters. It is also found that the dispersion demonstrates a complex, non-monotonic behavior with large fluctuations for some set of parameters. Complex dynamics of the system is discussed by analyzing the behavior of the molecular motors near burned bridges.

  17. Solvent control of crack dynamics in a reversible hydrogel

    E-Print Network [OSTI]

    Tristan Baumberger; Christiane Caroli; David Martina

    2006-05-16

    The resistance to fracture of reversible biopolymer hydrogels is an important control factor of the cutting/slicing and eating characteristics of food gels. It is also critical for their utilization in tissue engineering, for which mechanical protection of encapsulated components is needed. Its dependence on loading rate and, recently, on the density and strength of cross-links has been investigated. But no attention was paid so far to solvent nor to environment effects. Here we report a systematic study of crack dynamics in gels of gelatin in water/glycerol mixtures. We show on this model system that: (i) increasing solvent viscosity slows down cracks; (ii) soaking with solvent increases markedly gel fragility; (iii) tuning the viscosity of the (miscible) environmental liquid affects crack propagation via diffusive invasion of the crack tip vicinity. The results point toward the fact that fracture occurs by viscoplastic chain pull-out. This mechanism, as well as the related phenomenology, should be common to all reversibly cross-linked (physical) gels.

  18. June 15-16, 2001 SPLST 2001 -Szeged, Hungary 1 Columbus -Tool for Reverse Engineering

    E-Print Network [OSTI]

    Ferenc, Rudolf

    June 15-16, 2001 SPLST 2001 - Szeged, Hungary 1 Columbus - Tool for Reverse Engineering Large;June 15-16, 2001 SPLST 2001 - Szeged, Hungary 2 Introduction · Software systems are rapidly growing" [Chikofsky et al.] #12;June 15-16, 2001 SPLST 2001 - Szeged, Hungary 3 Assessment of RE tools · Analysis

  19. Methane Production in Microbial Reverse-Electrodialysis Methanogenesis Cells (MRMCs) Using Thermolytic Solutions

    E-Print Network [OSTI]

    . These results show that the MRMC has significant potential for production of nearly pure methane using lowMethane Production in Microbial Reverse-Electrodialysis Methanogenesis Cells (MRMCs) Using Supporting Information ABSTRACT: The utilization of bioelectrochemical systems for methane production has

  20. A field-reversed magnetic configuration and applications of high-temperature FRC plasma

    SciTech Connect (OSTI)

    Ryzhkov, S. V., E-mail: ryzhkov@power.bmstu.ru [Bauman Moscow State Technical University (Russian Federation)

    2011-12-15

    As applied to a tokomak, a magnetic trap for confinement of a plasma with an inverted field or a magnetic field reversed configuration (FRC) is one of the most promising alternatives of the systems with high {beta}. A brief review of the latest data on FRC and potential directions of using such configurations in addition to energy generation in thermonuclear reactors (TNRs) is proposed.

  1. Dual capacity compressor with reversible motor and controls arrangement therefor

    DOE Patents [OSTI]

    Sisk, Francis J. (Washington Township, Fayette County, PA)

    1980-12-02

    A hermetic reciprocating compressor such as may be used in heat pump applications is provided for dual capacity operation by providing the crankpin of the crankshaft with an eccentric ring rotatably mounted thereon, and with the end of the connecting rod opposite the piston encompassing the outer circumference of the eccentric ring, with means limiting the rotation of the eccentric ring upon the crankpin between one end point and an opposite angularly displaced end point to provide different values of eccentricity depending upon which end point the eccentric ring is rotated to upon the crankpin, and a reversible motor in the hermetic shell of the compressor for rotating the crankshaft, the motor operating in one direction effecting the angular displacement of the eccentric ring relative to the crankpin to the one end point, and in the opposite direction effecting the angular displacement of the eccentric ring relative to the crankpin to the opposite end point, this arrangement automatically giving different stroke lengths depending upon the direction of motor rotation. The mechanical structure of the arrangement may take various forms including at least one in which any impact of reversal is reduced by utilizing lubricant passages and chambers at the interface area of the crankpin and eccentric ring to provide a dashpot effect. In the main intended application of the arrangement according to the invention, that is, in a refrigerating or air conditioning system, it is desirable to insure a delay during reversal of the direction of compressor operation. A control arrangement is provided in which the control system controls the direction of motor operation in accordance with temperature conditions, the system including control means for effecting operation in a low capacity direction or alternatively in a high capacity direction in response to one set, and another set, respectively, of temperature conditions and with timer means delaying a restart of the compressor motor for at least a predetermined time in response to a condition of the control means operative to initiate a change in the operating direction of the compressor when it restarts.

  2. Expanded boundary integral method and chaotic time-reversal doublets in quantum billiards

    E-Print Network [OSTI]

    Gregor Veble; Tomaz Prosen; Marko Robnik

    2006-12-05

    We present the expanded boundary integral method for solving the planar Helmholtz problem, which combines the ideas of the boundary integral method and the scaling method and is applicable to arbitrary shapes. We apply the method to a chaotic billiard with unidirectional transport, where we demonstrate existence of doublets of chaotic eigenstates, which are quasi-degenerate due to time-reversal symmetry, and a very particular level spacing distribution that attains a chaotic Shnirelman peak at short energy ranges and exhibits GUE-like statistics for large energy ranges. We show that, as a consequence of such particular level statistics or algebraic tunneling between disjoint chaotic components connected by time-reversal operation, the system exhibits quantum current reversals.

  3. Economics of Concentration Processes in the Food Industry 

    E-Print Network [OSTI]

    Renshaw, T. A.; Sapakie, S. F.; Hanson, M. C.

    1983-01-01

    to operate than the triple effect evaporator, while the reverse osmosis and freeze concentration system are 2 and 3 times as costly. This shrinkage of the cost differentials is primarily due to the type and quantity of energy each of these systems utilize....

  4. Reversing the Circulation of Magnetic Vortices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100Nationalquestionnaires 0serial codesReversing the Circulation of Magnetic

  5. Reversing the Circulation of Magnetic Vortices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100Nationalquestionnaires 0serial codesReversing the Circulation of

  6. Reversing the Circulation of Magnetic Vortices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100Nationalquestionnaires 0serial codesReversing the Circulation

  7. Reversing the Circulation of Magnetic Vortices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultiday ProductionDesigningResources Thomas» Reveal RevealReversing

  8. Reducing collective quantum state rotation errors with reversible dephasing

    SciTech Connect (OSTI)

    Cox, Kevin C.; Norcia, Matthew A.; Weiner, Joshua M.; Bohnet, Justin G.; Thompson, James K.

    2014-12-29

    We demonstrate that reversible dephasing via inhomogeneous broadening can greatly reduce collective quantum state rotation errors, and observe the suppression of rotation errors by more than 21?dB in the context of collective population measurements of the spin states of an ensemble of 2.1×10{sup 5} laser cooled and trapped {sup 87}Rb atoms. The large reduction in rotation noise enables direct resolution of spin state populations 13(1) dB below the fundamental quantum projection noise limit. Further, the spin state measurement projects the system into an entangled state with 9.5(5) dB of directly observed spectroscopic enhancement (squeezing) relative to the standard quantum limit, whereas no enhancement would have been obtained without the suppression of rotation errors.

  9. Towards reversible basic linear algebra subprograms: A performance study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perumalla, Kalyan S.; Yoginath, Srikanth B.

    2014-12-06

    Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) amore »memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.« less

  10. Time reversal symmetry and collapse models

    E-Print Network [OSTI]

    Daniel Bedingham; Owen Maroney

    2015-02-24

    Collapse models are modifications of quantum theory where the wave function is treated as physically real and the collapse of the wave function is a physical process. This appears to introduce a time reversal asymmetry into the dynamics of the wave function since the collapses affect only the future state. This paper challenges this conclusion, showing that in three different examples of time asymmetries associated with collapse models, if the physically real part of the model can be reduced to the locations in space and time about which collapses occur, then such a model works both forward and backward in time, in each case satisfying the Born rule. Despite the apparent asymmetry of the collapse process, these models in fact have time reversal symmetry. Any physically observed time asymmetries that arise in such models are due to the asymmetric imposition of initial or final time boundary conditions, rather than from an inherent asymmetry in the dynamical law. This is the standard explanation of time asymmetric behaviour resulting from time symmetric laws.

  11. RADIATION DAMAGE RESISTANCE OF REVERSE ELECTRODE GE COAXIAL DETECTORS

    E-Print Network [OSTI]

    Pehl, Richard H.

    2011-01-01

    Parker, "Radiation Damage of Germanium Detectors", Bull. Am.to radiation damage between the two detectors was clearlyRADIATION DAMAGE RESISTANCE OF REVERSE ELECTRODE GE COAXIAL DETECTORS

  12. A Reversible Crystallinity-Preserving Phase Transition in Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reversible Crystallinity-Preserving Phase Transition in Metal-Organic Frameworks: Discovery, Mechanistic Studies, and Potential Applications Previous Next List Liu, Dahuan; Liu,...

  13. Reverse-selective diffusion in nanocomposite membranes

    E-Print Network [OSTI]

    Reghan J. Hill

    2005-10-27

    The permeability of certain polymer membranes with impenetrable nanoinclusions increases with the particle volume fraction (Merkel et al., Science, 296, 2002). This intriguing observation contradicts even qualitative expectations based on Maxwell's classical theory of conduction/diffusion in composites with homogeneous phases. This letter presents a simple theoretical interpretation based on classical models of diffusion and polymer physics. An essential feature of the theory is a polymer-segment depletion layer at the inclusion-polymer interface. The accompanying increase in free volume leads to a significant increase in the local penetrant diffusivity, which, in turn, increases the bulk permeability while exhibiting reverse selectivity. This model captures the observed dependence of the bulk permeability on the inclusion size and volume fraction, providing a straightforward connection between membrane microstructure and performance.

  14. Relationship between Thermodynamic Driving Force and One-Way Fluxes in Reversible Chemical Reactions

    E-Print Network [OSTI]

    Daniel A. Beard; Hong Qian

    2006-11-22

    Chemical reaction systems operating in nonequilibrium open-system states arise in a great number of contexts, including the study of living organisms, in which chemical reactions, in general, are far from equilibrium. Here we introduce a theorem that relates forward and re-verse fluxes and free energy for any chemical process operating in a steady state. This rela-tionship, which is a generalization of equilibrium conditions to the case of a chemical process occurring in a nonequilibrium steady state, provides a novel equivalent definition for chemical reaction free energy. In addition, it is shown that previously unrelated theories introduced by Ussing and Hodgkin and Huxley for transport of ions across membranes, Hill for catalytic cycle fluxes, and Crooks for entropy production in microscopically reversible systems, are united in a common framework based on this relationship.

  15. Voltage multi-stability in distribution grids with power flow reversal

    E-Print Network [OSTI]

    Hung D. Nguyen; Konstantin Turitsyn

    2014-07-08

    High levels of penetration of distributed generation and aggressive reactive power compensation with modern power electronics may result in the reversal of active and reactive power flows in future distribution grids. The voltage stability of these operating conditions may be very different from the more traditional power consumption regime. We study the stability characteristics of distribution networks with reversed power flow. After introducing a universal algebraic approach to characterize all the solutions of the power flow equations, we show that new solutions appear in the reversed power flow regime even in the simplest three bus systems. We show that the some of these solutions are stable and the system may exhibit a phenomenon of multistability, where multiple stable equilibria co-exist at the given set of parameters, and the system may converge to an undesirable equilibrium after a disturbance. These predictions are validated with dynamic simulations of two different systems. Under certain conditions the new states are viable and may be characterized by relatively high voltages. Possible approaches towards reactive power/voltage regulation as well as permissible distributed generation capacity in future power systems are proposed and discussed in the end of the paper.

  16. Compact Reversed-Field Pinch Reactors (CRFPR): preliminary engineering considerations

    SciTech Connect (OSTI)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Embrechts, M.J.; Schnurr, N.M.; Battat, M.E.; LaBauve, R.J.; Davidson, J.W.

    1984-08-01

    The unique confinement physics of the Reversed-Field Pinch (RFP) projects to a compact, high-power-density fusion reactor that promises a significant reduction in the cost of electricity. The compact reactor also promises a factor-of-two reduction in the fraction of total cost devoted to the reactor plant equipment (i.e., fusion power core (FPC) plus support systems). In addition to operational and developmental benefits, these physically smaller systems can operate economically over a range of total power output. After giving an extended background and rationale for the compact fusion approaches, key FPC subsystems for the Compact RFP Reactor (CRFPR) are developed, designed, and integrated for a minimum-cost, 1000-MWe(net) system. Both the problems and promise of the compact, high-power-density fusion reactor are quantitatively evaluated on the basis of this conceptual design. The material presented in this report both forms a framework for a broader, more expanded conceptual design as well as suggests directions and emphases for related research and development.

  17. An Improved RNS Reverse Converter for the {22n+1 -1,2n,2n -1} Moduli Set

    E-Print Network [OSTI]

    Cotofana, Sorin

    An Improved RNS Reverse Converter for the {22n+1 -1,2n,2n -1} Moduli Set K.A. Gbolagade1,2, R Residue Number Systems (RNS) have significant ad- vantages over conventional binary number systems tolerance. RNS have been widely applied in Digital Signal Pro- cessing (DSP) applications [5]. However

  18. Conservation of Information: Reverse engineering dark social systems

    E-Print Network [OSTI]

    2010-01-01

    for advice on nuclear waste management cleanup, cf.oversees nuclear waste management; cf. www.em.doe.gov/Pages/

  19. Conservation of Information: Reverse engineering dark social systems

    E-Print Network [OSTI]

    2010-01-01

    the least cognitive power from humans. Neither punishment (the power of bistability or ? , which increases as human

  20. Conservation of Information: Reverse engineering dark social systems

    E-Print Network [OSTI]

    2010-01-01

    and Social Psychology Kirk, R. (2003). More terrible thandecreasing conflict (Kirk, 2003) by increasing cooperation,indirectly under its control (Kirk, 2003; Simmel, 1964), an

  1. Conservation of Information: Reverse engineering dark social systems

    E-Print Network [OSTI]

    2010-01-01

    to the DOE repository (at WIPP in New Mexico). As predicted,usually plutonium. The WIPP repository site is in NM;

  2. Conservation of Information: Reverse engineering dark social systems

    E-Print Network [OSTI]

    2010-01-01

    and Radioactive Waste Management 9(1): 59-70. Lawless, W.decision-making on radioactive waste management." ASCEand Radioactive Waste Management 12(2): 70-78. Lawless, W.

  3. Conservation of Information: Reverse engineering dark social systems

    E-Print Network [OSTI]

    2010-01-01

    NRC (Nuclear Regulatory Commission; at www.nrc.gov). SDT (gave the Nuclear Regulatory Commission the authority to

  4. Conservation of Information: Reverse engineering dark social systems

    E-Print Network [OSTI]

    2010-01-01

    be to control its business model geospatially (Lawless etthe software giant to a business model where a single source

  5. Development of Reversible Fuel Cell Systems at Proton Energy | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy 1EnergyTroughBatteriesNOxNOT|of

  6. On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets

    SciTech Connect (OSTI)

    Beer, N R; Wheeler, E; Lee-Houghton, L; Watkins, N; Nasarabadi, S; Hebert, N; Leung, P; Arnold, D; Bailey, C; Colston, B

    2007-12-19

    The first lab-on-chip system for picoliter droplet generation and RNA isolation, followed by reverse transcription, and PCR amplification with real-time fluorescence detection in the trapped droplets has been developed. The system utilized a shearing T-junction in a fused silica device to generate a stream of monodisperse picoliter-scale droplets that were isolated from the microfluidic channel walls and each other by the oil phase carrier. An off-chip valving system stopped the droplets on-chip, allowing thermal cycling for reverse transcription and subsequent PCR amplification without droplet motion. This combination of the established real-time reverse transcription-PCR assay with digital microfluidics is ideal for isolating single-copy RNA and virions from a complex environment, and will be useful in viral discovery and gene-profiling applications.

  7. Time reversal in thermoacoustic tomography - an error estimate

    E-Print Network [OSTI]

    Hristova, Yulia

    2008-01-01

    The time reversal method in thermoacoustic tomography is used for approximating the initial pressure inside a biological object using measurements of the pressure wave made outside the object. This article presents error estimates for the time reversal method in the cases of variable, non-trapping sound speeds.

  8. Highly Reversible Open Framework Nanoscale Electrodes for Divalent Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    Highly Reversible Open Framework Nanoscale Electrodes for Divalent Ion Batteries Richard Y. Wang into electrode materials has enabled the development of rechargeable batteries with high energy density. Reversible insertion of divalent ions such as magnesium would allow the creation of new battery chemistries

  9. Reversibly immobilized biological materials in monolayer films on electrodes

    DOE Patents [OSTI]

    Weaver, P.F.; Frank, A.J.

    1993-05-04

    Methods and techniques are described for reversibly binding charged biological particles in a fluid medium to an electrode surface. The methods are useful in a variety of applications. The biological materials may include microbes, proteins, and viruses. The electrode surface may consist of reversibly electroactive materials such as polyvinylferrocene, silicon-linked ferrocene or quinone.

  10. Reversibly immobilized biological materials in monolayer films on electrodes

    DOE Patents [OSTI]

    Weaver, Paul F. (Golden, CO); Frank, Arthur J. (Lakewood, CO)

    1993-01-01

    Methods and techniques are described for reversibly binding charged biological particles in a fluid medium to an electrode surface. The methods are useful in a variety of applications. The biological materials may include microbes, proteins, and viruses. The electrode surface may consist of reversibly electroactive materials such as polyvinylferrocene, silicon-linked ferrocene or quinone.

  11. Reversible plasticity in amorphous materials Micah Lundberg1

    E-Print Network [OSTI]

    Dennin, Michael

    Reversible plasticity in amorphous materials Micah Lundberg1 , Kapilanjan Krishan1 , Ning Xu2 to external loads. Plasticity, i.e. dis- sipative and irreversible macroscopic changes in a material for reversible plastic events at the microscopic scale in both experiments and simulations of two

  12. Efficient Optimistic Parallel Simulations using Reverse Computation Christopher D. Carothers

    E-Print Network [OSTI]

    , state­saving techniques have been traditionally used to realize rollback. In this article, we propose that of state­ saving. Using compiler techniques, we describe an approach to automatically generate reversible, as compared to traditional state­saving. On sample models using reverse computation, we observe as much

  13. Efficient Optimistic Parallel Simulations using Reverse Computation Christopher D. Carothers

    E-Print Network [OSTI]

    , state-saving techniques have been traditionally used to realize rollback. In this article, we propose that of state- saving. Using compiler techniques, we describe an approach to automatically generate reversible, as compared to traditional state-saving. On sample models using reverse computation, we observe as much

  14. Role Reversal Imitation and Language in Typically Developing Infants

    E-Print Network [OSTI]

    Carpenter, M.alinda

    on the adult. However, 12-month-olds had more difficulty than 18-month-olds with triadic, object-mediated role 12- and 18-month-old infants and in children with autism and other developmental de- lays. Many reversal imitation: self­self reversals, in which the adult acted on herself and the child then acted

  15. Sadi Carnot's Ingenious Reasoning of Ideal Heat Engine Reversible Cycles

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Sadi Carnot's Ingenious Reasoning of Ideal Heat Engine Reversible Cycles MILIVOJE M. KOSTIC and speculations flourished. Carnot's reasoning of reversible cycles is in many ways equal if not more significant@niu.edu; http://www.kostic.niu.edu Abstract: - Sadi Carnot, at age 28, published in 1824, now famous "Réflexions

  16. Experimental implementation of reverse time migration for nondestructive evaluation

    E-Print Network [OSTI]

    Experimental implementation of reverse time migration for nondestructive evaluation applications Geophysics Group (EES-17), Los Alamos National Laboratory, MS D443, Los Alamos, New Mexico 87545 pylb@lanl.gov, tju@lanl.gov Abstract: Reverse time migration (RTM) is a commonly employed imaging technique

  17. Introduction to Reversible Computing: Motivation, Progress, and Challenges

    E-Print Network [OSTI]

    Frank, Michael P.

    reversible quality; and (3) the design of highly- optimized reversible logic circuits and algorithms. Finally as the number of useful information processing operations (including logic, storage, and communication operations) that can be performed per unit of available energy that is dissipated to the environment as heat

  18. Reducing current reversal time in electric motor control

    DOE Patents [OSTI]

    Bredemann, Michael V

    2014-11-04

    The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

  19. Wavelength dependence of reversible photodegradation of disperse orange 11 dye-doped PMMA thin films

    E-Print Network [OSTI]

    Anderson, Benjamin R; Kuzyk, Mark G

    2015-01-01

    Using transmittance imaging microscopy we measure the wavelength dependence of reversible photodegradation in disperse orange 11 (DO11) dye-doped (poly)methyl-methacrylate (PMMA). The reversible and irreversible inverse quantum efficiencies (IQEs) are found to be constant over the spectral region investigated, with the average reversible IQE being $\\overline{B}_\\alpha= 8.70 (\\pm 0.38)\\times 10^5$ and the average irreversible IQE being $\\overline{B}_\\epsilon= 1.396 (\\pm 0.031)\\times 10^8$. The large difference between the IQEs is hypothesized to be due to the reversible decay channel being a direct decay mechanism of the dye, while the irreversible decay channel is an indirect mechanism, with the dye first absorbing light, then heating the surrounding environment causing polymer chain scission and cross linking. Additionally, the DO11/PMMA's irreversible IQE is found to be among the largest of those reported for organic dyes, implying that the system is highly photostable. We also find that the recovery rate i...

  20. Reversible Logic Synthesis with Minimal Usage of Ancilla Bits

    E-Print Network [OSTI]

    Siyao Xu

    2015-06-10

    Reversible logic has attracted much research interest over the last few decades, especially due to its application in quantum computing. In the construction of reversible gates from basic gates, ancilla bits are commonly used to remove restrictions on the type of gates that a certain set of basic gates generates. With unlimited ancilla bits, many gates (such as Toffoli and Fredkin) become universal reversible gates. However, ancilla bits can be expensive to implement, thus making the problem of minimizing necessary ancilla bits a practical topic. This thesis explores the problem of reversible logic synthesis using a single base gate and a few ancilla bits. Two base gates are discussed: a variation of the 3-bit Toffoli gate and the original 3-bit Fredkin gate. There are three main results associated with these two gates: i) the variated Toffoli gate can generate all n-bit reversible gates using 1 ancilla bit, ii) the variated Toffoli can generate all n-bit reversible gates that are even permutations using no ancilla bit, iii) the Fredkin gate can generate all n-bit conservative reversible gates using 1 ancilla bit. Prior to this paper, the best known result for general universality requires three basic gates, and the best known result for conservative universality needs 5 ancilla bits. The second result is trivially optimal. For the first and the third result, we explicitly prove their optimality: the variated Toffoli cannot generate all n-bit reversible gates without using any extra input lines, and the Fredkin gate cannot generate all n-bit conservative reversible gates without using extra input lines. We also explore a stronger version of the second converse by introducing a new concept called borrowed bits, and prove that the Fredkin gate cannot generate all n-bit conservative reversible gates without ancilla bits, even with an unlimited number of borrowed bits.

  1. On-demand generation of aqueous two-phase microdroplets with reversible phase transitions

    SciTech Connect (OSTI)

    Boreyko, Jonathan B [ORNL; Mruetusatorn, Prachya [ORNL; Retterer, Scott T [ORNL; Collier, Pat [ORNL

    2013-01-01

    Aqueous two-phase systems contained entirely within microdroplets enable a bottom-up approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Here, we demonstrate the on-demand generation of femtolitre aqueous two-phase droplets within a microfluidic oil channel. Gated pressure pulses were used to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microgel states were obtained via evaporation-induced dehydration and on-demand water rehydration. In contrast to other microfluidic aqueous two-phase droplets, which require continuous flows and high-frequency droplet formation, our system enables the controlled isolation and reversible transformation of a single microdroplet and is expected to be useful for future studies in dynamic microcompartmentation and affinity partitioning.

  2. Reversible piezomagnetoelectric switching in bulk polycrystalline ceramics

    SciTech Connect (OSTI)

    Stevenson, T. Bennett, J.; Brown, A. P.; Wines, T.; Bell, A. J.; Comyn, T. P.; Smith, R. I.

    2014-08-01

    Magnetoelectric (ME) coupling in materials offer tremendous advantages in device functionality enabling technologies including advanced electronic memory, combining electronic speed, and efficiency with magnetic robustness. However, low cost polycrystalline ME materials are excluded from most commercial applications, operating only at cryogenic temperatures, impractically large electric/magnetic fields, or with low ME coefficients (1-100 mV/cm?Oe). Despite this, the technological potential of single compound ME coupling has continued to drive research into multiferroics over the last two decades. Here we show that by manipulating the large induced atomic strain within the polycrystalline, room temperature multiferroic compound 0.7BiFeO{sub 3}–0.3PbTiO{sub 3}, we can induce a reversible, piezoelectric strain controlled ME effect. Employing an in situ neutron diffraction experiment, we have demonstrated that this piezomagnetoelectric effect manifests with an applied electric field >8 kV/mm at the onset of piezoelectric strain, engineered in to the compound by crystallographic phase mixing. This produces a remarkable intrinsic ME coefficient of 1276 mV/cm?Oe, due to a strain driven modification to the oxygen sub-lattice, inducing an increase in magnetic moment per Fe{sup 3+} ion of +0.142 ?{sub B}. This work provides a framework for investigations into strain engineered nanostructures to realize low-cost ME devices designed from the atoms up, as well as contributing to the deeper understanding of single phase ME coupling mechanisms.

  3. Faraday rotation: effect of magnetic field reversals

    E-Print Network [OSTI]

    Melrose, D B

    2010-01-01

    The standard formula for the rotation measure, RM, which determines the position angle, $\\psi={\\rm RM}\\lambda^2$, due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution $\\Delta\\psi$ needed to correct this omission. In contrast with a result proposed by \\cite{BB10}, $\\Delta\\psi$ is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correc...

  4. FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS

    SciTech Connect (OSTI)

    Melrose, D. B. [SIfA, School of Physics, University of Sydney, NSW 2006 (Australia)

    2010-12-20

    The standard formula for the rotation measure (RM), which determines the position angle, {psi} = RM{lambda}{sup 2}, due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution {Delta}{psi} needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, {Delta}{psi} is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.

  5. A high performance field-reversed configuration

    SciTech Connect (OSTI)

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.; Garate, E.; Tuszewski, M.; Smirnov, A.; Gota, H.; Barnes, D.; Deng, B. H.; Thompson, M. C.; Trask, E.; Yang, X.; Putvinski, S.; Rostoker, N.; Andow, R.; Aefsky, S.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R.; and others

    2015-05-15

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ?1?keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.

  6. Liquid suspensions of reversible metal hydrides

    DOE Patents [OSTI]

    Reilly, J.J.; Grohse, E.W.; Winsche, W.E.

    1983-12-08

    The reversibility of the process M + x/2 H/sub 2/ ..-->.. MH/sub x/, where M is a metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under a liquid, thereby to reduce contamination, provide better temperature control and provide in situ mobility of the reactants. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen (at high pressures) and to release (at low pressures) previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the former is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the H/sub 2/ pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  7. Rigid-rotor, field-reversed configuration

    SciTech Connect (OSTI)

    Conti, F., E-mail: conti@df.unipi.it; Giammanco, F. [Physics Department “E. Fermi,” University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy) [Physics Department “E. Fermi,” University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Plasma Diagnostics and Technologies Ltd., Via Giuntini 63, 56023 Navacchio (PI) (Italy); Wessel, F. J.; Binderbauer, M. W.; Bolte, N.; Morehouse, M.; Qerushi, A.; Rahman, H. U.; Roche, T.; Slepchenkov, M. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)] [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2014-02-15

    The radial profiles, n(r), B{sub z}(r), and E{sub r}(r), for a Flux-Coil (“inductively driven”), Field-Reversed Configuration (FC-FRC) are measured and compared to the predictions of the Rigid-Rotor Model (RRM), which is an analytic, one-dimensional, time-independent, equilibrium description for the FRC. Injectors mounted on both ends of the confinement vessel provide a pre-fill plasma. Coaxial coils mounted outside the vacuum boundaries of the annular-confinement vessel accelerate the plasma and produce the FRC. The density profile is measured by laser interferometry, the magnetic-field profile using an in-situ probe array, and the electric-field profile using an in-situ, floating-probe array. Free parameters for each profile are measured, which also allow other intrinsic-plasma parameters to be determined, using computer-fit algorithms: null radius, radial thickness, plasma temperature, rotation frequencies, the latter of which are independently verified by spectroscopy. All radial profiles agree with the RRM predictions, for the experimental configuration, parameter regime, and specified-time interval studied here.

  8. REVERSE DISPLACEMENT ANALYSIS FOR TENSEGRITY STRUCTURES

    E-Print Network [OSTI]

    Florida, University of

    and enthusiasm. #12;iv TABLE OF CONTENTS Page ACKNOWLEDGMENTS....................................................................9 Coordinate Systems....................................................................... 10 Force Coordinates....................................................................... 28 Tensegrity Platforms

  9. Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Guan, Jie; Minh, Nguyen

    2007-02-21

    This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuel cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.

  10. Reversibility and Adiabatic Computation: Trading Time and Space for Energy

    E-Print Network [OSTI]

    Ming Li; Paul Vitanyi

    1997-03-13

    Future miniaturization and mobilization of computing devices requires energy parsimonious `adiabatic' computation. This is contingent on logical reversibility of computation. An example is the idea of quantum computations which are reversible except for the irreversible observation steps. We propose to study quantitatively the exchange of computational resources like time and space for irreversibility in computations. Reversible simulations of irreversible computations are memory intensive. Such (polynomial time) simulations are analysed here in terms of `reversible' pebble games. We show that Bennett's pebbling strategy uses least additional space for the greatest number of simulated steps. We derive a trade-off for storage space versus irreversible erasure. Next we consider reversible computation itself. An alternative proof is provided for the precise expression of the ultimate irreversibility cost of an otherwise reversible computation without restrictions on time and space use. A time-irreversibility trade-off hierarchy in the exponential time region is exhibited. Finally, extreme time-irreversibility trade-offs for reversible computations in the thoroughly unrealistic range of computable versus noncomputable time-bounds are given.

  11. Reverse Shock Emission in Gamma-ray Bursts Revisited

    E-Print Network [OSTI]

    Gao, He

    2015-01-01

    A generic synchrotron external shock model is the widely preferred paradigm used to interpret the broad-band afterglow data of gamma-ray bursts (GRBs), including predicted observable signatures from a reverse shock which have been confirmed by observations. Investigations of the nature of the reverse shock emission can provide valuable insights into the intrinsic properties of the GRB ejecta. Here we briefly review the standard and the extended models of the reverse shock emission, discussing the connection between the theory and observations, including the implications of the latest observational advances.

  12. An unusual route to polarization reversal in ferroelectric ultrathin nanowires

    SciTech Connect (OSTI)

    Herchig, R.; Chang, Ch.-M.; Mani, B. K.; Ponomareva, I., E-mail: iponomar@usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

    2014-07-07

    Ferroelectric nanowires are promising candidates for miniaturized ferroelectric devices. Some potential nanoscale applications of the nanowires, such as ultra high density ferroelectric memory, utilize their reversible polarization. To meet the ever increasing demand for low energy consumption, it is extremely desirable to reduce the operational fields associated with polarization reversal. In this Letter, we use first-principles-based simulations to explore an unusual route to polarization reversal that utilizes a combination of relatively low bias field and THz pulsed radiation. Such an approach allows for lower operational fields and may lead to other potential applications such as THz radiation sensing and remote switches.

  13. An analysis of reverse logistics technology and service for hi-tech industry

    E-Print Network [OSTI]

    Li, Jinfan, 1976-

    2004-01-01

    This thesis provides a method for hi-tech companies to evaluate reverse logistic software and services. To clarify what is reverse logistics, the definition and features of reverse logistics are first introduced. The reasons ...

  14. Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low

    E-Print Network [OSTI]

    Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low, Director Product Development & Federal Programs #12;Project Background f Reversible Solid Oxide Fuel Cells

  15. Real-time sub- Å ngstrom imaging of reversible and irreversible...

    Office of Scientific and Technical Information (OSTI)

    ngstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene Title: Real-time sub- ngstrom imaging of reversible and irreversible conformations...

  16. Optimal reverse carpooling over wireless networks - a distributed optimization approach

    E-Print Network [OSTI]

    Parandehgheibi, Ali

    We focus on a particular form of network coding, reverse carpooling, in a wireless network where the potentially coded transmitted messages are to be decoded immediately upon reception. The network is fixed and known, and ...

  17. On reconstruction and time reversal in thermoacoustic tomography in acoustically

    E-Print Network [OSTI]

    Kuchment, Peter

    On reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous of recent approaches to the reconstruction in thermoacoustic/photoacoustic tomography: backprojection of the problem of sound speed recovery is also provided. Keywords: Tomography, thermoacoustic, wave equation. AMS

  18. Arc Reversals in Hybrid Bayesian Networks with Deterministic Variables

    E-Print Network [OSTI]

    Cinicioglu, Esma N.; Shenoy, Prakash P.

    2009-05-01

    This article discusses arc reversals in hybrid Bayesian networks with deterministic variables. Hybrid Bayesian networks contain a mix of discrete and continuous chance variables. In a Bayesian network representation, a continuous chance variable...

  19. Integration by Parts and Time Reversal for Diffusion Processes

    E-Print Network [OSTI]

    Millet, A.; Nualart, David; Sanz, M.

    1989-01-05

    In this paper we obtain necessary and sufficient conditions for the reversibility of the diffusion property, assuming the existence of a density at every time t. The proofs are based on techniques of the stochastic calculus ...

  20. Application of real options to reverse logistics process

    E-Print Network [OSTI]

    Kaga, Akihiro, 1975-

    2004-01-01

    In this thesis, real options are used to identify the optimal model for the reverse logistics process of a technology company in the circuit board business. Currently, customers return defective boards and the company ...

  1. Reversible Attraction-Mediated Colloidal Crystallization on Patterned Substrates 

    E-Print Network [OSTI]

    Fernandes, Gregory

    2009-05-15

    In this dissertation we used tunable particle-particle and particle-substrate attraction to achieve reversible two-dimensional crystallization of colloids on homogeneous and patterned substrates. Total internal reflection and video microscopy...

  2. A new time quantifiable Monte Carlo method in simulating magnetization reversal process

    E-Print Network [OSTI]

    X. Z. Cheng; M. B. A. Jalil; H. K. Lee; Y. Okabe

    2005-04-14

    We propose a new time quantifiable Monte Carlo (MC) method to simulate the thermally induced magnetization reversal for an isolated single domain particle system. The MC method involves the determination of density of states, and the use of Master equation for time evolution. We derive an analytical factor to convert MC steps into real time intervals. Unlike a previous time quantified MC method, our method is readily scalable to arbitrarily long time scales, and can be repeated for different temperatures with minimal computational effort. Based on the conversion factor, we are able to make a direct comparison between the results obtained from MC and Langevin dynamics methods, and find excellent agreement between them. An analytical formula for the magnetization reversal time is also derived, which agrees very well with both numerical Langevin and time-quantified MC results, over a large temperature range and for parallel and oblique easy axis orientations.

  3. Reversible shear thickening at low shear rates of electrorheological fluids under electric fields

    E-Print Network [OSTI]

    Yu Tian; Minliang Zhang; Jile Jiang; Noshir Pesika; Hongbo Zeng; Jacob Israelachvili; Yonggang Meng; Shizhu Wen

    2010-08-24

    Shear thickening is a phenomenon of significant viscosity increase of colloidal suspensions. While electrorheological (ER) fluids can be turned into a solid-like material by applying an electric field, their shear strength is widely represented by the attractive electrostatic interaction between ER particles. By shearing ER fluids between two concentric cylinders, we show a reversible shear thickening of ER fluids above a low critical shear rate (electric field strength (>100 V/mm), which could be characterized by a modified Mason number. Shear thickening and electrostatic particle interaction-induced inter-particle friction forces is considered to be the real origin of the high shear strength of ER fluids, while the applied electric field controls the extent of shear thickening. The electric field-controlled reversible shear thickening has implications for high-performance ER/magnetorheological (MR) fluid design, clutch fluids with high friction forces triggered by applying local electric field, other field-responsive materials and intelligent systems.

  4. Reverse and flick: Hybrid locomotion in bacteria

    E-Print Network [OSTI]

    Stocker, Roman

    Many bacteria are motile. They use one or more helical flagella as propellers, rotating them like the corkscrew on a wine bottle opener. Despite the limited morphological repertoire of the propulsive system, radically ...

  5. REVERSE-ENGINEERING COUNTRY RISK RATINGS: A ...

    E-Print Network [OSTI]

    2008-11-10

    Feb 19, 1999 ... This study provides new insights on the importance of variables by supporting the necessity of ..... system is that of (iii) self-containment, i.e. its non-reliance on any other past or present country risk ratings. ...... 1131-1151.

  6. Reversing entanglement change by a weak measurement 

    E-Print Network [OSTI]

    Sun, Qingqing; Al-Amri, M.; Davidovich, Luiz; Zubairy, M. Suhail.

    2010-01-01

    Entanglement of a system changes due to interactions with the environment. A typical type of interaction is amplitude damping. If we add a detector to monitor the environment and only select the no-damping outcome, this amplitude damping is modified...

  7. REVERSIBLE HYDROGEN STORAGE IN A LiBH{sub 4}-C{sub 60} NANOCOMPOSITE

    SciTech Connect (OSTI)

    Teprovich, J.; Zidan, R.; Peters, B.; Wheeler, J.

    2013-08-06

    Reversible hydrogen storage in a LiBH{sub 4}:C{sub 60} nanocomposite (70:30 wt. %) synthesized by solvent-assisted mixing has been demonstrated. During the solvent-assisted mixing and nanocomposite formation, a chemical reaction occurs in which the C{sub 60} cages are significantly modified by polymerization as well as by hydrogenation (fullerane formation) in the presence of LiBH{sub 4}. We have determined that two distinct hydrogen desorption events are observed upon rehydrogenation of the material, which are attributed to the reversible formation of a fullerane (C{sub 60}H{sub x}) as well as a LiBH4 species. This system is unique in that the carbon species (C{sub 60}) actively participates in the hydrogen storage process which differs from the common practice of melt infiltration of high surface area carbon materials with LiBH{sub 4} (nanoconfinment effect). This nanocomposite demonstrated good reversible hydrogen storage properties as well as the ability to absorb hydrogen under mild conditions (pressures as low as 10 bar H{sub 2} or temperatures as low as 150?C). The nanocomposite was characterized by TGA-RGA, DSC, XRD, LDI-TOF-MS, FTIR, 1H NMR, and APPI MS.

  8. Transition density estimation for stochastic differential equations via forward-reverse representations

    E-Print Network [OSTI]

    Spokoiny, Vladimir

    ) Ural State University, Ekaterinburg, Russia 1 #12;2 Abstract The general reverse diffusion equations

  9. E-print Network : Main View : Search Results for Title: "Reversible...

    Office of Scientific and Technical Information (OSTI)

    Reversible control of spin-polarized supercurrents in ferromagnetic Josephson junctions" Author: Banerjee AND Robinson...

  10. Wind reversals in turbulent Rayleigh-Benard convection

    E-Print Network [OSTI]

    Francisco Fontenele Araujo; S. Grossmann; D. Lohse

    2005-08-29

    The phenomenon of irregular cessation and subsequent reversal of the large-scale circulation in turbulent Rayleigh-B\\'enard convection is theoretically analysed. The force and thermal balance on a single plume detached from the thermal boundary layer yields a set of coupled nonlinear equations, whose dynamics is related to the Lorenz equations. For Prandtl and Rayleigh numbers in the range $10^{-2} \\leq \\Pr \\leq 10^{3}$ and $10^{7} \\leq \\Ra \\leq 10^{12}$, the model has the following features: (i) chaotic reversals may be exhibited at Ra $\\geq 10^{7}$; (ii) the Reynolds number based on the root mean square velocity scales as $\\Re_{rms} \\sim \\Ra^{[0.41 ... 0.47]}$ (depending on Pr), and as $\\Re_{rms} \\sim \\Pr^{-[0.66 ... 0.76]}$ (depending on Ra); and (iii) the mean reversal frequency follows an effective scaling law $\\omega / (\

  11. Combined Ideal and Kinetic Effects on Reversed Shear Alfven Eigenmodes

    SciTech Connect (OSTI)

    N.N. Gorelenkov, G.J. Kramer, and R. Nazikian

    2011-05-23

    A theory of Reversed Shear Alfven Eigenmodes (RSAEs) is developed for reversed magnetic field shear plasmas when the safety factor minimum, qmin, is at or above a rational value. The modes we study are known sometimes as either the bottom of the frequency sweep or the down sweeping RSAEs. We show that the ideal MHD theory is not compatible with the eigenmode solution in the reversed shear plasma with qmin above integer values. Corrected by special analytic FLR condition MHD dispersion of these modes nevertheless can be developed. Large radial scale part of the analytic RSAE solution can be obtained from ideal MHD and expressed in terms of the Legendre functions. The kinetic equation with FLR effects for the eigenmode is solved numerically and agrees with the analytic solutions. Properties of RSAEs and their potential implications for plasma diagnostics are discussed.

  12. Synthesis of Reversible Functions Beyond Gate Count and Quantum Cost

    E-Print Network [OSTI]

    Robert Wille; Mehdi Saeedi; Rolf Drechsler

    2010-04-26

    Many synthesis approaches for reversible and quantum logic have been proposed so far. However, most of them generate circuits with respect to simple metrics, i.e. gate count or quantum cost. On the other hand, to physically realize reversible and quantum hardware, additional constraints exist. In this paper, we describe cost metrics beyond gate count and quantum cost that should be considered while synthesizing reversible and quantum logic for the respective target technologies. We show that the evaluation of a synthesis approach may differ if additional costs are applied. In addition, a new cost metric, namely Nearest Neighbor Cost (NNC) which is imposed by realistic physical quantum architectures, is considered in detail. We discuss how existing synthesis flows can be extended to generate optimal circuits with respect to NNC while still keeping the quantum cost small.

  13. Unsteady Reversed Stagnation-Point Flow over a Flat Plate

    E-Print Network [OSTI]

    Sin, Vai Kuong

    2013-01-01

    This paper investigates the nature of the development of two-dimensional laminar flow of an incompressible fluid at the reversed stagnation-point. ". In this study, we revisit the problem of reversed stagnation-point flow over a flat plate. Proudman and Johnson (1962) first studied the flow and obtained an asymptotic solution by neglecting the viscous terms. This is no true in neglecting the viscous terms within the total flow field. In particular it is pointed out that for a plate impulsively accelerated from rest to a constant velocity V0 that a similarity solution to the self-similar ODE is obtained which is noteworthy completely analytical.

  14. Geometric signature of reversal modes in ferromagnetic nanowires

    E-Print Network [OSTI]

    Tannous, C; Gieraltowski, J

    2010-01-01

    Magnetic nanowires are a good platform to study fundamental processes in Magnetism and have many attractive applications in recording such as perpendicular storage and in spintronics such as non-volatile magnetic memory devices (MRAM) and magnetic logic devices. In this work, nanowires are used to study magnetization reversal processes through a novel geometric approach. Reversal modes imprint a definite signature on a parametric curve representing the locus of the critical switching field. We show how the different modes affect the geometry of this curve depending on the nature of the anisotropy (uniaxial or cubic anisotropy), demagnetization and exchange effects. The samples we use are electrochemically grown Nickel and Cobalt nanowires.

  15. On the Dramatic Spin-up/Spin-down Torque Reversals in Accreting Pulsars

    E-Print Network [OSTI]

    Robert W. Nelson; Lars Bildsten; Deepto Chakrabarty; Mark H. Finger; Danny T. Koh; Thomas A. Prince; Bradley C. Rubin; D. Mathew Scott; Brian A. Vaughan; Robert B. Wilson

    1997-08-21

    Dramatic torque reversals between spin up and spin down have been observed in half of the persistent X-ray pulsars monitored by the BATSE all-sky monitor on CGRO. Theoretical models developed to explain early pulsar timing data can explain spin down torques via a disk-magnetosphere interaction if the star nearly corotates with the inner accretion disk. To produce the observed BATSE torque reversals, however, these equilibrium models require the disk to alternate between two mass accretion rates, with $\\dot M_{\\pm}$ producing accretion torques of similar magnitude, but always of opposite sign. Moreover, in at least one pulsar (GX 1+4) undergoing secular spin down the neutron star spins down faster during brief ($\\sim 20$ day) hard X-ray flares -- this is opposite the correlation expected from standard theory, assuming BATSE pulsed flux increases with mass accretion rate. The $10$ day to 10 yr intervals between torque reversals in these systems are much longer than any characteristic magnetic or viscous time scale near the inner disk boundary and are more suggestive of a global disk phenomenon. We discuss possible explanations of the observed torque behavior. Despite the preferred sense of rotation defined by the binary orbit, the BATSE observations are surprisingly consistent with an earlier suggestion by Makishima \\etal (1988) for GX~1+4: the disks in these systems somehow alternate between episodes of prograde and retrograde rotation. We are unaware of any mechanism that could produce a stable retrograde disk in a binary undergoing Roche-lobe overflow, but such flip-flop behavior does occur in numerical simulations of wind-fed systems. One possibility is that the disks in some of these binaries are fed by an X-ray excited wind.

  16. Consider Installing Turbulators on Two- and Three-Pass Firetube...

    Broader source: Energy.gov (indexed) [DOE]

    Three-Pass Firetube Boilers (January 2012) More Documents & Publications Clean Boiler Waterside Heat Transfer Surfaces CIBO Energy Efficiency Handbook Reverse Osmosis Optimization...

  17. Understanding the Relationship between Osmotic Membrane Structure and Separation Performance

    E-Print Network [OSTI]

    Wong, Mavis C.Y.

    2014-01-01

    project on seawater desalination and wastewater reclamation,The Future of Seawater Desalination: Energy, Technology, andA.F. Ismail, Seawater Reverse Osmosis (SWRO) desalination by

  18. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy

    2006-01-01

    3-1: Summary of Alkaline Electrolyzer Costs from Literaturereformer, purifier Alkaline electrolyzer Purifier Fuel cell,Jonathan Weinert DATE Alkaline Electrolyzer Reverse osmosis

  19. Scale-up characteristics of salinity gradient power technologies

    E-Print Network [OSTI]

    Feinberg, Benjamin Jacob

    2014-01-01

    gradient power,” Energy and Environmental Science, 4 (2011)gradient power,” Energy and Environmental Science, 4 (2011)to reverse osmosis, Energy & Environmental Science, 3 (2010)

  20. Watermelon-like iron nanoparticles: Cr doping effect on magnetism and magnetization interaction reversal

    SciTech Connect (OSTI)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark E.; Engelhard, Mark H.; Wu, Yaqiao; Tang, Jinke; Qiang, You

    2013-06-26

    Chromium (Cr) forms a solid solution with iron (Fe) lattice when doped in core-shell iron -iron oxide nanocluster (NC) and shows a mixed phase of sigma (?) FeCr and bcc Fe. The Cr dopant affects heavily the magnetization and magnetic reversal process, and causes the hysteresis loop to shrink near the zero field axis. Dramatic transformation happens from dipolar interaction (0 at. % Cr) to strong exchange interaction (8 at. % of Cr) is confirmed from the Henkel plot and delta M plot, and is explained by a water-melon model of core-shell NC system.

  1. Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves

    SciTech Connect (OSTI)

    Kumari, Monika; Hirt, Ann M., E-mail: ann.hirt@erdw.ethz.ch [Department of Earth Sciences, Institute of Geophysics, ETH-Zurich, Sonneggstrasse 5, CH-8092 Zurich (Switzerland); Widdrat, Marc; Faivre, Damien [Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, D-14424 Potsdam (Germany); Tompa, Éva; Pósfai, Mihály [Department of Earth and Environmental Sciences, University of Pannonia, Egyetem u. 10, H-8200 Veszprém (Hungary); Uebe, Rene; Schüler, Dirk [Department Biologie I, LMU Munich, Großhaderner Str. 2, D-82152 Martinsried (Germany)

    2014-09-28

    Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.

  2. Architectural Extraction in Reverse Engineering by Prototyping: An Experiment

    E-Print Network [OSTI]

    Ducasse, Stéphane

    . Commonly, the re-engineering life-cycle has been defined as a succession of the fol- lowing tasks: analysis Esprit Project grant 21975. 1 #12;3 A Pattern for Architectural Extraction In this section we introduceArchitectural Extraction in Reverse Engineering by Prototyping: An Experiment£ Sander Tichelaar

  3. Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks

    E-Print Network [OSTI]

    Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks Geoffrey is usually measured by immersing the membrane in a salt solution at a single, fixed concentration. While salt resistance of the membranes separating different salt concentration solutions has implications for modeling

  4. Two typical processes ... Isentropic("mechanical" reversible, elastic)

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    energy (non-equilibrium) and entropy is conserved, and ... · Caloric(at DT, irreversible, where thermal is coupled and accompanied with energy conversions and dissipation to heat/thermal energy ... Carnot cycle provides for de-coupling of thermal energy from other types and, YES!, for reversible heat transfer

  5. Perfect Sorting by Reversals Is Not Always Difficult

    E-Print Network [OSTI]

    Chauve, Cedric

    scenarios that conserve the combinatorial structure of genomes. More precisely, we investigate the problem on genome rearrangements and, in particular, reversals and translocations, has proven to be a powerful tool to understanding the evolution of groups of species. For eukaryotic genomes, several evolution scenarios have

  6. Reversible vectorisation of 3D digital planar curves and applications

    E-Print Network [OSTI]

    Sivignon, Isabelle

    Reversible vectorisation of 3D digital planar curves and applications Isabelle Sivignon a,, Florent the problem of the computation of a planar polygonal curve from a digital planar curve, such that the digital data can be exactly retrieved from the polygonal curve. The proposed transformation also provides

  7. Imaging and time reversal in random media Liliana Borcea

    E-Print Network [OSTI]

    Papanicolaou, George C.

    -separated scatterers in a randomly inhomogeneous environment using an active sensor array. The main features decomposition of the array response matrix in the frequency domain, and (iii) the construction of an objective of the medium. This is a new approach to array imaging that is motivated by time reversal in random media

  8. Just: Data requirements Data requirements of reverse-engineering algorithms

    E-Print Network [OSTI]

    Just, Winfried

    Just: Data requirements Data requirements of reverse-engineering algorithms Winfried Just vastly underdetermined. It is therefore important to estimate the probability that a given algorithm of different algorithms can be made. We also give an example of how expected algorithm performance can

  9. Time Reversal Invariance Violation in Neutron Deuteron Scattering

    E-Print Network [OSTI]

    Young-Ho Song; Rimantas Lazauskas; Vladimir Gudkov

    2011-04-15

    Time reversal invariance violating (TRIV) effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of TRIV potentials in a Distorted Wave Born Approximation, using realistic hadronic strong interaction wave functions, obtained by solving three-body Faddeev equations in configuration space. The relation between TRIV and parity violating observables are discussed.

  10. Accepted Manuscript Title: Imaging the spread of reversible brain inactivations

    E-Print Network [OSTI]

    Laubach, Mark

    and reversible suppression of neurophysiological activity. Interpretations of the effects of muscimol infusions demonstrated that the behavioral effects of FCM infusion are similar to the behavioral effects of muscimol infusion. FCM infusion into the rat amygdala before fear conditioning impaired both cued and contextual

  11. Opportunities and Context for Reversed Field Pinch Research!

    E-Print Network [OSTI]

    ! ! #12;The Reversed Field Pinch magnetic configuration! · Magnetic field is generated primarily, wave-particle physics, plasma-wall interactions ITER is the keystone as it strives to integrate! · Kyoto Institute of Technology, Japan (RELAX) ­ joint RFP experiments, validation studies! · University

  12. The imperfect price-reversibility of world oil demand

    SciTech Connect (OSTI)

    Gately, D. [New York Univ., NY (United States)

    1993-12-31

    This paper examines the price-reversibility of world oil demand, using price-decomposition methods employed previously on other energy demand data. We conclude that the reductions in world oil demand following the oil price increases of the 1970s will not be completely reversed by the price cuts of the 1980s. The response to price cuts in the 1980s is perhaps only one-fifth that for price increases in the 1970s. This has dramatic implications for projections of oil demand, especially under low-price assumptions. We also consider the effect on demand of a price recovery (sub-maximum increase) in the 1990s - due either to OPEC or to a carbon tax-specifically whether the effects would be as large as for the price increases of the 1970s or only as large as the smaller demand reversals of the 1980s. On this the results are uncertain, but a tentative conclusion is that the response to a price recovery would lie midway between the small response to price cuts and the larger response to increases in the maximum historical price. Finally, we demonstrate two implications of wrongly assuming that demand is perfectly price-reversible. First, such an assumption will grossly overestimate the demand response to price declines of the 1980s. Secondly, and somewhat surprisingly, it causes an underestimate of the effect of income growth on future demand. 21 refs., 11 figs., 1 tab.

  13. Applying knowledge to reverse engineering problems Robert B. Fisher

    E-Print Network [OSTI]

    Fisher, Bob

    University on applying domain knowledge of standard shapes and relationships to solve or improve reverse engi `knowledge-based' techniques to help overcome these and other problems. The underlying theme behind this set follow standard conventions arising from tradition or utility. We argue that exploiting this extra

  14. Simulation studies of nucleation of ferroelectric polarization reversal.

    SciTech Connect (OSTI)

    Brennecka, Geoffrey L.; Winchester, Benjamin Michael

    2014-08-01

    Electric field-induced reversal of spontaneous polarization is the defining characteristic of a ferroelectric material, but the process(es) and mechanism(s) associated with the initial nucleation of reverse-polarity domains are poorly understood. This report describes studies carried out using phase field modeling of LiTaO3, a relatively simple prototype ferroelectric material, in order to explore the effects of either mechanical deformation or optically-induced free charges on nucleation and resulting domain configuration during field-induced polarization reversal. Conditions were selected to approximate as closely as feasible those of accompanying experimental work in order to provide not only support for the experimental work but also ensure that additional experimental validation of the simulations could be carried out in the future. Phase field simulations strongly support surface mechanical damage/deformation as effective for dramatically reducing the overall coercive field (Ec) via local field enhancements. Further, optically-nucleated polarization reversal appears to occur via stabilization of latent nuclei via the charge screening effects of free charges.

  15. Introduction The median problem for the reversal distance in

    E-Print Network [OSTI]

    Lonardi, Stefano

    genomes E. Ohlebusch, M.I. Abouelhoda, K. Hockel, J. Stallkamp University of Ulm, Germany CPM 2005 The median problem for the reversal distance in circular bacterial genomes #12;Introduction Methods Conclusion General Problem Distances Specific Problem Median Problem Given 3 genomes G1, G2, and G3, find

  16. Reversing Stealthy Dopant-Level Circuits Takeshi Sugawara1

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    failure analysis technique called the passive volt- age contrast [2]. The experiments are conducted . Keywords: Stealthy dopant-level trojan, Chip reverse engineering, LSI failure analysis, Passive voltage houses, foundries, assembly and test- ing companies, etc.) are commonly involved in a chip development

  17. Revisiting time reversal and holography with spacetime transformations

    E-Print Network [OSTI]

    Bacot, Vincent; Eddi, Antonin; Fink, Mathias; Fort, Emmanuel

    2015-01-01

    Wave control is usually performed by spatially engineering the properties of a medium. Because time and space play similar roles in wave propagation, manipulating time boundaries provides a complementary approach. Here, we experimentally demonstrate the relevance of this concept by introducing instantaneous time mirrors. We show with water waves that a sudden change of the effective gravity generates time-reversed waves that refocus at the source. We generalize this concept for all kinds of waves introducing a universal framework which explains the effect of any time disruption on wave propagation. We show that sudden changes of the medium properties generate instant wave sources that emerge instantaneously from the entire space at the time disruption. The time-reversed waves originate from these "Cauchy sources" which are the counterpart of Huygens virtual sources on a time boundary. It allows us to revisit the holographic method and introduce a new approach for wave control.

  18. Two-step polarization reversal in biased ferroelectrics

    SciTech Connect (OSTI)

    Daniels, John E., E-mail: j.daniels@unsw.edu.au; Ukritnukun, Supphatuch; Glaum, Julia [School of Materials Science and Engineering, University of New South Wales, Sydney 2052 (Australia); Cozzan, Clayton [School of Materials Science and Engineering, University of New South Wales, Sydney 2052 (Australia); Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Tutuncu, Goknur; Dosch, Chris [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Andrieux, Jerome [Université Claude Bernard Lyon 1, LMI -UMR CNRS n°5615, 69622 Villeurbanne Cedex (France); European Synchrotron Radiation Facility, Grenoble 38000 (France); Jo, Wook [School of Mechanical and Advanced Materials Engineering, UNIST, Ulsan (Korea, Republic of); Jones, Jacob L. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-06-14

    Polarization reversal in polycrystalline ferroelectrics is shown to occur via two distinct and sequential domain reorientation steps. This reorientation sequence, which cannot be readily discriminated in the overall sample polarization, is made apparent using time-resolved high-energy x-ray diffraction. Upon application of electric fields opposite to the initial poling direction, two unique and significantly different time constants are observed. The first (faster time constant) is shown to be derived by the release of a residual stress due to initial electrical biasing and the second (slower time constant) due to the redevelopment of residual stress during further domain wall motion. A modified domain reorientation model is given that accurately describes the domain volume fraction evolution during the reversal process.

  19. Reverse Test and Characterization of Quantum Relative Entropy

    E-Print Network [OSTI]

    Keiji Matsumoto

    2010-10-05

    The aim of the present paper is to give axiomatic characterization of quantum relative entropy utilizing resource conversion scenario. We consider two sets of axioms: non-asymptotic and asymptotic. In the former setting, we prove that the upperbound and the lowerbund of $\\mathrm{D}^{Q}(\\rho||\\sigma) $ is $\\mathrm{D}^{R}(\\rho||\\sigma) :=\\mathrm{tr}% \\,\\rho\\ln\\sqrt{\\rho}\\sigma^{-1}\\sqrt{\\rho}$ and $\\mathrm{D}(\\rho||\\sigma) :=$ $\\mathrm{tr}\\,\\rho(\\ln\\rho-\\ln\\sigma) $, respectively. In the latter setting, we prove uniqueness of quantum relative entropy, that is, $\\mathrm{D}^{Q}(\\rho||\\sigma) $ should equal a constant multiple of $\\mathrm{D}(\\rho||\\sigma) $. In the analysis, we define and use reverse test and asymptotic reverse test, which are natural inverse of hypothesis test.

  20. Fast chirality reversal of the magnetic vortex by electric current

    SciTech Connect (OSTI)

    Lim, W. L. Liu, R. H.; Urazhdin, S.; Tyliszczak, T.; Erokhin, S. G.; Berkov, D.

    2014-12-01

    The possibility of high-density information encoding in magnetic materials by topologically stable inhomogeneous magnetization configurations such as domain walls, skyrmions, and vortices has motivated intense research into mechanisms enabling their control and detection. While the uniform magnetization states can be efficiently controlled by electric current using magnetic multilayer structures, this approach has proven much more difficult to implement for inhomogeneous states. Here, we report direct observation of fast reversal of magnetic vortex by electric current in a simple planar structure based on a bilayer of spin Hall material Pt with a single microscopic ferromagnetic disk contacted by asymmetric electrodes. The reversal is enabled by a combination of the chiral Oersted field and spin current generated by the nonuniform current distribution in Pt. Our results provide a route for the efficient control of inhomogeneous magnetization configurations by electric current.

  1. Loschmidt cooling by time reversal of atomic matter waves

    E-Print Network [OSTI]

    J. Martin; B. Georgeot; D. L. Shepelyansky

    2007-11-28

    We propose an experimental scheme which allows to realize approximate time reversal of matter waves for ultracold atoms in the regime of quantum chaos. We show that a significant fraction of the atoms return back to their original state, being at the same time cooled down by several orders of magnitude. We give a theoretical description of this effect supported by extensive numerical simulations. The proposed scheme can be implemented with existing experimental setups.

  2. Cooling by Time Reversal of Atomic Matter Waves

    SciTech Connect (OSTI)

    Martin, J.; Georgeot, B.; Shepelyansky, D. L. [Laboratoire de Physique Theorique, Universite de Toulouse III, CNRS, 31062 Toulouse (France)

    2008-02-01

    We propose an experimental scheme which allows us to realized approximate time reversal of matter waves for ultracold atoms in the regime of quantum chaos. We show that a significant fraction of the atoms return back to their original state, being at the same time cooled down by several orders of magnitude. We give a theoretical description of this effect supported by extensive numerical simulations. The proposed scheme can be implemented with existing experimental setups.

  3. Dynamic processes in field-reversed-configuration compact toroids

    SciTech Connect (OSTI)

    Rej, D.J.

    1987-01-01

    In this lecture, the dynamic processes involved in field-reversed configuration (FRC) formation, translation, and compression will be reviewed. Though the FRC is related to the field-reversed mirror concept, the formation method used in most experiments is a variant of the field-reversed THETA-pinch. Formation of the FRC eqilibrium occurs rapidly, usually in less than 20 ..mu..s. The formation sequence consists of several coupled processes: preionization; radial implosion and compression; magnetic field line closure; axial contraction; equilibrium formation. Recent experiments and theory have led to a significantly improved understanding of these processes; however, the experimental method still relies on a somewhat empirical approach which involves the optimization of initial preionization plasma parameters and symmetry. New improvements in FRC formation methods include the use of lower voltages which extrapolate better to larger devices. The axial translation of compact toroid plasmas offers an attractive engineering convenience in a fusion reactor. FRC translation has been demonstrated in several experiments worldwide, and these plasmas are found to be robust, moving at speeds up to the Alfven velocity over distances of up to 16 m, with no degradation in the confinement. Compact toroids are ideal for magnetic compression. Translated FRCs have been compressed and heated by imploding liners. Upcoming experiments will rely on external flux compression to heat a translater FRC at 1-GW power levels. 39 refs.

  4. Studying protein assembly with reversible Brownian dynamics of patchy particles

    E-Print Network [OSTI]

    Heinrich C. R. Klein; Ulrich S. Schwarz

    2014-05-12

    Assembly of protein complexes like virus shells, the centriole, the nuclear pore complex or the actin cytoskeleton is strongly determined by their spatial structure. Moreover it is becoming increasingly clear that the reversible nature of protein assembly is also an essential element for their biological function. Here we introduce a computational approach for the Brownian dynamics of patchy particles with anisotropic assemblies and fully reversible reactions. Different particles stochastically associate and dissociate with microscopic reaction rates depending on their relative spatial positions. The translational and rotational diffusive properties of all protein complexes are evaluated on-the-fly. Because we focus on reversible assembly, we introduce a scheme which ensures detailed balance for patchy particles. We then show how the macroscopic rates follow from the microscopic ones. As an instructive example, we study the assembly of a pentameric ring structure, for which we find excellent agreement between simulation results and a macroscopic kinetic description without any adjustable parameters. This demonstrates that our approach correctly accounts for both the diffusive and reactive processes involved in protein assembly.

  5. A Library-Based Synthesis Methodology for Reversible Logic

    E-Print Network [OSTI]

    Mehdi Saeedi; Mehdi Sedighi; Morteza Saheb Zamani

    2010-04-10

    In this paper, a library-based synthesis methodology for reversible circuits is proposed where a reversible specification is considered as a permutation comprising a set of cycles. To this end, a pre-synthesis optimization step is introduced to construct a reversible specification from an irreversible function. In addition, a cycle-based representation model is presented to be used as an intermediate format in the proposed synthesis methodology. The selected intermediate format serves as a focal point for all potential representation models. In order to synthesize a given function, a library containing seven building blocks is used where each building block is a cycle of length less than 6. To synthesize large cycles, we also propose a decomposition algorithm which produces all possible minimal and inequivalent factorizations for a given cycle of length greater than 5. All decompositions contain the maximum number of disjoint cycles. The generated decompositions are used in conjunction with a novel cycle assignment algorithm which is proposed based on the graph matching problem to select the best possible cycle pairs. Then, each pair is synthesized by using the available components of the library. The decomposition algorithm together with the cycle assignment method are considered as a binding method which selects a building block from the library for each cycle. Finally, a post-synthesis optimization step is introduced to optimize the synthesis results in terms of different costs.

  6. On reversal of centrifugal acceleration in special relativity

    E-Print Network [OSTI]

    Maxim Lyutikov

    2009-03-05

    The basic principles of General Theory of Relativity historically have been tested in gedanken experiments in rotating frame of references. One of the key issues, which still evokes a lot of controversy, is the centrifugal acceleration. Machabeli & Rogava (1994) argued that centrifugal acceleration reverse direction for particles moving radially with relativistic velocities within a "bead on a wire" approximation. We show that this result is frame-dependent and reflects a special relativistic dilution of time (as correctly argued by de Felice (1995)) and is analogous to freezing of motion on the black hole horizon as seen by a remote observer. It is a reversal of coordinate acceleration; there is no such effect as measured by a defined set of observers, e.g., proper and/or comoving. Frame-independent velocity of a "bead" with respect to stationary rotating observers increases and formally reaches the speed of light on the light cylinder. In general relativity, centrifugal force does reverse its direction at photon circular orbit, r=3M in Schwarzschild metric, as argued by Abramowicz (1990).

  7. Water dynamics in large and small reverse micelles: From two ensembles to collective behavior

    E-Print Network [OSTI]

    Fayer, Michael D.

    Water dynamics in large and small reverse micelles: From two ensembles to collective behavior David July 2009 The dynamics of water in Aerosol-OT reverse micelles are investigated with ultrafast infrared spectroscopy of the hydroxyl stretch. In large reverse micelles, the dynamics of water are separable into two

  8. Time reversed imaging for perturbed media Kurang Mehta and Roel Snieder

    E-Print Network [OSTI]

    Snieder, Roel

    Time reversed imaging for perturbed media Kurang Mehta and Roel Snieder Center for Wave Phenomena; accepted 16 December 2005 In time reversed imaging a pulse is propagated through a medium, the signal is recorded, and then the time reversed signal is back-propagated through the same medium to refocus

  9. Measuring sexual selection on females in sex-role-reversed Mormon crickets (Anabrus simplex, Orthoptera: Tettigoniidae)

    E-Print Network [OSTI]

    Gwynne, Darryl T.

    Measuring sexual selection on females in sex-role-reversed Mormon crickets (Anabrus simplex). In this study, we quantify the strength and form of selection on females of the sex-role-reversed Mormon cricket on females is predicted for sex-role-reversed Mormon crickets, Anabrus simplex, where males are choosy

  10. Implementation of Reverse Logistics in the Determination and Formulation of Product End-of-Life Strategies

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    1 Implementation of Reverse Logistics in the Determination and Formulation of Product End-of-life strategies, reverse logistics, product design. 1. INTRODUCTION Traditionally, product design and #12;2 government have to manage reverse logistics according to the existing end-of-life options

  11. Reverse Supply Chain Management and Electronic Waste Recycling: A Multitiered Network Equilibrium Framework for E-Cycling

    E-Print Network [OSTI]

    Nagurney, Anna

    Reverse Supply Chain Management and Electronic Waste Recycling: A Multitiered Network Equilibrium for the modeling of reverse supply chain management of electronic waste, which includes recycling. We describe networks; Environment; Waste management; Reverse logistics; Variational inequali- ties; Network equilibrium

  12. Time-reversal symmetry breaking and the field theory of quantum chaos

    SciTech Connect (OSTI)

    Simons, B.D. [Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE (United Kingdom)] [Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE (United Kingdom); Agam, O. [NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540 (United States)] [NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540 (United States); Andreev, A.V. [Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States)] [Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States)

    1997-04-01

    Recent studies have shown that the quantum statistical properties of systems which are chaotic in their classical limit can be expressed in terms of an effective field theory. Within this description, spectral properties are determined by low energy relaxation modes of the classical evolution operator. It is in the interaction of these modes that quantum interference effects are encoded. In this paper we review this general approach and discuss how the theory is modified to account for time-reversal symmetry breaking. To keep our discussion general, we will also briefly describe how the theory is modified by the presence of an additional discrete symmetry such as inversion. Throughout, parallels are drawn between quantum chaotic systems and the properties of weakly disordered conductors. {copyright} {ital 1997 American Institute of Physics.}

  13. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOE Patents [OSTI]

    Rostoker, Norman; Binderbauer, Michl

    2003-12-16

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  14. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOE Patents [OSTI]

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2007-02-20

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  15. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOE Patents [OSTI]

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-02-07

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  16. Scattering Experiments with Microwave Billiards at an Exceptional Point under Broken Time Reversal Invariance

    E-Print Network [OSTI]

    S. Bittner; B. Dietz; H. L. Harney; M. Miski-Oglu; A. Richter; F. Schäfer

    2014-02-14

    Scattering experiments with microwave cavities were performed and the effects of broken time-reversal invariance (TRI), induced by means of a magnetized ferrite placed inside the cavity, on an isolated doublet of nearly degenerate resonances were investigated. All elements of the effective Hamiltonian of this two-level system were extracted. As a function of two experimental parameters, the doublet and also the associated eigenvectors could be tuned to coalesce at a so-called exceptional point (EP). The behavior of the eigenvalues and eigenvectors when encircling the EP in parameter space was studied, including the geometric amplitude that builds up in the case of broken TRI. A one-dimensional subspace of parameters was found where the differences of the eigenvalues are either real or purely imaginary. There, the Hamiltonians were found PT-invariant under the combined operation of parity (P) and time reversal (T) in a generalized sense. The EP is the point of transition between both regions. There a spontaneous breaking of PT occurs.

  17. Deterministic Time-Reversible Thermostats : Chaos, Ergodicity, and the Zeroth Law of Thermodynamics

    E-Print Network [OSTI]

    William Graham Hoover; Julien Clinton Sprott; Puneet Kumar Patra

    2015-01-16

    The relative stability and ergodicity of deterministic time-reversible thermostats, both singly and in coupled pairs, are assessed through their Lyapunov spectra. Five types of thermostat are coupled to one another through a single Hooke's-Law harmonic spring. The resulting dynamics shows that three specific thermostat types, Hoover-Holian, Ju-Bulgac, and Martyna-Klein-Tuckerman, have very similar Lyapunov spectra in their equilibrium four-dimensional phase spaces and when coupled in equilibrium or nonequilibrium pairs. All three of these oscillator-based thermostats are shown to be ergodic, with smooth analytic Gaussian distributions in their extended phase spaces ( coordinate, momentum, and two control variables ). Evidently these three ergodic and time-reversible thermostat types are particularly useful as statistical-mechanical thermometers and thermostats. Each of them generates Gibbs' universal canonical distribution internally as well as for systems to which they are coupled. Thus they obey the Zeroth Law of Thermodynamics, as a good heat bath should. They also provide dissipative heat flow with relatively small nonlinearity when two or more such bath temperatures interact and provide useful deterministic replacements for the stochastic Langevin equation.

  18. Electrochemical Grafting of Naphthylmethyl Radicals to Epitaxial Graphene: A Versatile Platform to Reversibly Engineer the Band Structure and Transport Properties of Graphene

    E-Print Network [OSTI]

    Sarkar, Santanu; Haddon, Robert C

    2013-01-01

    The Kolbe electrochemical oxidation strategy has been utilized to achieve an efficient quasireversible electrochemical grafting of the alpha-naphthylmethyl functional group to graphene. The method facilitates reversible bandgap engineering in graphene and preparation of electrochemically erasable organic dielectric films. The picture shows Raman D-band maps of both systems.

  19. Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation

    SciTech Connect (OSTI)

    Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

    2007-12-31

    The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b) Evaluate the capability of an SMZ/MBR system to remove carboxylates and BTEX from produced water in a field trial. Laboratory experiments were conducted to provide a better understanding of each component of the SMZ/VPB and SMZ/MBR process. Laboratory VPB studies were designed to address the issue of influent variability and periodic operation (see DE-FC26-02NT15461). These experiments examined multiple influent loading cycles and variable concentration loadings that simulate air sparging as the regeneration option for the SMZ system. Two pilot studies were conducted at a produced water processing facility near Farmington, New Mexico. The first field test evaluated SMZ adsorption, SMZ regeneration, VPB buffering, and VPB performance, and the second test focused on MBR and SMZ/MBR operation. The design of the field studies were based on the results from the previous field tests and laboratory studies. Both of the biological treatment systems were capable of removing the BTEX constituents in the laboratory and in the field over a range of operating conditions. For the VPB, separation of the BTEX constituents from the saline aqueous phase yielded high removal efficiencies. However, carboxylates remained in the aqueous phase and were not removed in the combined VPB/SMZ system. In contrast, the MBR was capable of directly treating the saline produced water and simultaneously removing the BTEX and carboxylate constituents. The major limitation of the MBR system is the potential for membrane fouling, particularly when the system is treating produced water under field conditions. The combined process was able to effectively pretreat water for reverse osmosis treatment and subsequent downstream reuse options including utilization in power generation facilities. The specific conclusions that can be drawn from this study are summarized.

  20. Reversibility, Water-Mediated Switching, and Directed Cell Dynamics

    E-Print Network [OSTI]

    J. C. Phillips

    2008-03-02

    Reversible switching of the complex network dynamics of proteins is mimicked in selected network glasses and compacted small carbohydrate molecules. Protein transitions occur on long time scales ~ us -ms, evocative of the exponentially large viscosities found in glass-forming supercooled liquids just above the glass transition; in searching for mechanisms for reversibly slowed "geared activation", Kauzmann was led from proteins to glasses. I show here that selected network glasses and small carbohydrate molecules can be used to model such transitions, and elucidate in particular some universal aspects of tandem repeats. The human ankyrin tandem repeat D34, with a superhelical "coiled spring" structure which has 426 residues, folds reversibly and plastically. Such molecules are too large for present transition-state numerical simulations, currently limited to ~ 100 residues solvated by ~ 3000 water molecules for times ~ ns. The transition states of D34 exhibit a surprisingly simple collective ("geared") pattern when studied by fluorescence near its center, in samples modified mutageneously along its 12 helical repeats. One can understand this "plastic" pattern by taking advantage of a symmetric 45-atom carbohydrate molecular bridge to "cross over" from proteins to inorganic network glasses. There one easily identifies gears, and can show that the collective pattern is the signature of nonlocal, water-mediated [hydro(phobic/philic)] switching. Details of the transition patterns emerge from analyzing the amino acid alpha helical repeat sequences with water-only hydrophobicity scales. Freezing and melting of monolayer water films at physiological temperatures can enable ankyrin repeats to direct cell dynamics in muscles, membranes and cytoskeletons.

  1. Phase-reversed structures in superlattice of nonlinear materials

    E-Print Network [OSTI]

    D. A. Antonosyan; G. Yu. Kryuchkyan

    2011-09-13

    We present detailed description of so-called phase-reversed structures that are characterized by two grating wave vectors allowing simultaneously phase-match two parametric three-wave processes. The novelty is that the structure is realized as a definite assembly of nonlinear segments leading to detailed description of cascaded three-photon processes with the parameters of realistic structured nonlinear materials of finite length. We apply these results for analysis of the quasi-phase-matching in production of both photon triplet and four-photon states in cascaded down-conversion. The received results are matched with the experimental data.

  2. Synthesis and magnetic reversal of bi-conical Ni nanostructures

    SciTech Connect (OSTI)

    Biziere, N.; Lassalle Ballier, R.; Viret, M.

    2011-09-15

    Template synthesis in polyethylene terephthalate (PET) membranes has been used to grow hour glass shaped nickel nanowires with a constriction in the range of tens of nanometers at the center. Anisotropic magnetoresistance measurements have been performed on a single nanowire to follow magnetization reversal of the structure. The results are explained via 3D micromagnetic simulations showing the appearance of a complex vortex state close to the constriction whose propagation depends on the angle between the cone axis and the applied field. The interest of this original growth process for spintronics is discussed.

  3. New Limit on Time-Reversal Violation in Beta Decay

    SciTech Connect (OSTI)

    Mumm, H. P.; Chupp, T. E.; Cooper, R. L.; Coulter, K. P.; Freedman, S. J.; Fujikawa, B. K.; Garcia, A.; Jones, G. L.; Nico, J. S.; Thompson, A. K.; Trull, C. A.; Wietfeldt, F. E.; Wilkerson, J. F.

    2011-09-02

    We report the results of an improved determination of the triple correlation DP{center_dot}(p{sub e}xp{sub v}) that can be used to limit possible time-reversal invariance in the beta decay of polarized neutrons and constrain extensions to the standard model. Our result is D=[-0.96{+-}1.89(stat){+-}1.01(sys)]x10{sup -4}. The corresponding phase between g{sub A} and g{sub V} is {phi}{sub AV}=180.013 deg. {+-}0.028 deg. (68% confidence level). This result represents the most sensitive measurement of D in nuclear {beta} decay.

  4. Dynamical processes in the reversed-field pinch

    SciTech Connect (OSTI)

    Caramana, E.; Cayton, T.; Dagazian, R.

    1982-01-01

    This paper presents a review of recent theoretical work on the Reversed-Field Pinch (RFP) at Los Alamos National Laboratory. A wide variety of topics are discussed. These include: nonlinear, two-dimensional, helical, magnetohydrodynamic (MHD) simulations of current-driven modes; a statistical model of plasma turbulence in the RFP; analytic and numerical calculations of resistive ballooning modes in toroidal geometry; work on coherent m = 0 excitations observed in the ZT-40M device; finite Larmor radius effects on the tearing mode; destabilization of MHD modes by kinetic effects; and, possible plasma heating by means of magnetoacoustic oscillations.

  5. Error-field penetration in reversed magnetic shear configurations

    SciTech Connect (OSTI)

    Wang, H. H.; Wang, Z. X.; Wang, X. Q. [MOE Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)] [MOE Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, X. G. [School of Physics, Peking University, Beijing 100871 (China)] [School of Physics, Peking University, Beijing 100871 (China)

    2013-06-15

    Error-field penetration in reversed magnetic shear (RMS) configurations is numerically investigated by using a two-dimensional resistive magnetohydrodynamic model in slab geometry. To explore different dynamic processes in locked modes, three equilibrium states are adopted. Stable, marginal, and unstable current profiles for double tearing modes are designed by varying the current intensity between two resonant surfaces separated by a certain distance. Further, the dynamic characteristics of locked modes in the three RMS states are identified, and the relevant physics mechanisms are elucidated. The scaling behavior of critical perturbation value with initial plasma velocity is numerically obtained, which obeys previously established relevant analytical theory in the viscoresistive regime.

  6. Linearized inverse scattering based on seismic Reverse Time Migration

    E-Print Network [OSTI]

    Tim J. P. M. Op 't Root; Christiaan C. Stolk; Maarten V. de Hoop

    2011-01-21

    In this paper we study the linearized inverse problem associated with imaging of reflection seismic data. We introduce an inverse scattering transform derived from reverse-time migration (RTM). In the process, the explicit evaluation of the so-called normal operator is avoided, while other differential and pseudodifferential operator factors are introduced. We prove that, under certain conditions, the transform yields a partial inverse, and support this with numerical simulations. In addition, we explain the recently discussed 'low-frequency artifacts' in RTM, which are naturally removed by the new method.

  7. Ergodic Time-Reversible Chaos for Gibbs' Canonical Oscillator

    E-Print Network [OSTI]

    William Graham Hoover; Julien Clinton Sprott; Puneet Kumar Patra

    2015-08-27

    Nos\\'e's pioneering 1984 work inspired a variety of time-reversible deterministic thermostats. Though several groups have developed successful doubly-thermostated models, single-thermostat models have failed to generate Gibbs' canonical distribution for the one-dimensional harmonic oscillator. A 2001 doubly-thermostated model, claimed to be ergodic, has a singly-thermostated version. Though neither of these models is ergodic this work has suggested a successful route toward singly-thermostated ergodicity. We illustrate both ergodicity and its lack for these models using phase-space cross sections and Lyapunov instability as diagnostic tools.

  8. Reversible Seeding in Storage Rings (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeedingConnect(Conference)Factory:Collider (JournalReversible Seeding in

  9. Reversible Seeding in Storage Rings (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeedingConnect(Conference)Factory:Collider (JournalReversible Seeding

  10. ROWAN UNIVERSITY DEPARTMENT of CHEMICAL ENGINEERING

    E-Print Network [OSTI]

    Savelski, Mariano J.

    several separation processes and their relevant theory, design and applications for gas, liquid and solid Apply membrane mass transfer and design equations to solve system parameters for reverse osmosis and gas Separation Processes II M 9:25 AM - 12:05 PM (Rowan 340) W 8:00 AM - 9:15 AM (Rowan 340) F 9:25 AM - 10:40 AM

  11. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; Gibaud, A.; Lin, B.; Meron, M.

    2015-02-17

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initialmore »monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.« less

  12. Symmetries and quantum chaos: Time-reversal invariance in the nucleon-nucleon interaction

    SciTech Connect (OSTI)

    French, J.B.; Kota, V.K.B.; Pandey, A.; Tomsovic, S.

    1987-06-08

    Let ..cap alpha.. be the relative norm of a symmetry-breaking term in the Hamiltonian of a many-particle system, and ..lambda.. the energy-dependent transition parameter which charcterizes the quantum chaos via spectral and strength fluctuations. Combining a compact theory for ..lambda../..cap alpha../sup 2/ with fluctuation theories by which ..lambda.. can be deduced from (neutron-resonance) data gives, for the time-reversal-noninvariant nucleon-nucleon interaction, ..cap alpha..less than or equal to(1--2) x 10/sup -3/, which would improve with better small-strength data in nuclei with dense spectra. Diffusion equations involving ..lambda.. as the ''time'' variable are also discussed.

  13. Overview of C-2 field-reversed configuration experiment plasma diagnostics

    SciTech Connect (OSTI)

    Gota, H. Thompson, M. C.; Tuszewski, M.; Binderbauer, M. W.

    2014-11-15

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ?5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.

  14. Travelling waves in a mixture of gases with bimolecular reversible reactions

    E-Print Network [OSTI]

    A. Rossani; A. M. Scarfone

    2003-12-01

    Starting from the kinetic approach for a mixture of reacting gases whose particles interact through elastic scattering and a bimolecular reversible chemical reaction, the equations that govern the dynamics of the system are obtained by means of the relevant Boltzmann-like equation. Conservation laws are considered. Fluid dynamic approximations are used at the Euler level to obtain a close set of PDEs for six unknown macroscopic fields. The dispersion relation of the mixture of reacting gases is explicitly derived in the homogeneous equilibrium state. A set of ODE that governs the propagation of a plane travelling wave is obtained using the Galilei invariance. After numerical integration some solutions, including the well-known Maxwellian and the hard spheres cases, are found for various meaningful interaction laws. The main macroscopic observables for the gas mixture such as the drift velocity, temperature, total density, pressure and its chemical composition are shown.

  15. Local structure-mobility relationships of confined fluids reverse upon supercooling

    E-Print Network [OSTI]

    Jonathan A. Bollinger; Avni Jain; James Carmer; Thomas M. Truskett

    2015-04-10

    We examine the structural and dynamic properties of confined binary hard-sphere mixtures designed to mimic realizable colloidal thin films. Using computer simulations, governed by either Newtonian or overdamped Langevin dynamics, together with other techniques including a Fokker-Planck equation-based method, we measure the position-dependent and average diffusivities of particles along structurally isotropic and inhomogeneous dimensions of the fluids. At moderate packing fractions, local single-particle diffusivities normal to the direction of confinement are higher in regions of high total packing fraction; however, these trends are reversed as the film is supercooled at denser average packings. Auxiliary short-time measurements of particle displacements mirror data obtained for experimental supercooled colloidal systems. We find that average dynamics can be approximately predicted based on the distribution of available space for particle insertion across orders of magnitude in diffusivity regardless of the governing microscopic dynamics.

  16. Topological Field Theory of Time-Reversal Invariant Insulators

    SciTech Connect (OSTI)

    Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.

  17. Epigenetic reversion of breast carcinoma phenotype is accompaniedby DNA sequestration

    SciTech Connect (OSTI)

    Sandal, Tone; Valyi-Nagy, Klara; Spencer, Virginia A.; Folberg,Robert; Bissell, Mina J.; Maniotis, Andrew J.

    2006-07-19

    The importance of microenvironment and context in regulation of tissue-specific genes is finally well established. DNA exposure to, or sequestration from, nucleases can be used to detect differences in higher order chromatin structure in intact cells without disturbing cellular or tissue architecture. To investigate the relationship between chromatin organization and tumor phenotype, we utilized an established 3-D assay where normal and malignant human breast cells can be easily distinguished by the morphology of the structures they make (acinus-like vs tumor-like, respectively). We show that these phenotypes can be distinguished also by sensitivity to AluI digestion where the malignant cells are resistant to digestion relative to non-malignant cells. Reversion of the T4-2 breast cancer cells by either cAMP analogs, or a phospatidylinositol 3-kinase (P13K) inhibitor not only reverted the phenotype, but also the chromatin sensitivity to AluI. By using different cAMP-analogs, we show that the cAMP-induced phenotypic reversion, polarization, and shift in DNA organization act through a cAMP-dependent-protein-kinase A-coupled signaling pathway. Importantly, inhibitory antibody to fibronectin also reverted the malignant phenotype, polarized the acini, and changed chromatin sequestration. These experiments show not only that modifying the tumor microenvironment can alter the organization of tumor cells but also that architecture of the tissues and the global chromatin organization are coupled and yet highly plastic.

  18. Stability and confinement of spheromaks and field-reversed configurations

    SciTech Connect (OSTI)

    Quinn, W.E.

    1982-01-01

    The formation, confinement and stability of two types of compact toroids, spheromaks and field reversed configurations (FRC), are reviewed. Spheromaks, which contain both toroidal and poloidal magnetic fields, have been formed with magnetized coaxial plasma guns, by a combination of Z- and theta-pinch techniques and by an electrodeless slow induction technique, and trapped in both prolate and oblate flux conservers. As predicted by theory, the prolate configuration is unstable to the tilt mode, but the oblate configuration with a conducting wall is stable. Configuration lifetimes of up to 0.8 ms are observed. The FRC is a high-beta, highly prolate compact toroid formed with field-reversed theta-pinch techniques and having purely poloidal magnetic field. Theory predicts unstable fluting and internal tilting modes, but they are not observed experimentally. Configurations with high densities approx. 10/sup 15/ cm/sup -3/ and with lifetimes of 50 to 120 ..mu..s are terminated by an n=2 rotational mode of instability.

  19. Centrifugal force reversal from the perspective of rigidly rotating observer

    E-Print Network [OSTI]

    Giorgi Dalakishvili

    2011-12-26

    In previous studies the dynamics of the relativistic particle moving along the rotating pipe was investigated. The simple gedanken experiment was considered. It was shown that at large enough velocities a centrifugal force acting on the bead changes its usual sign and attracts towards the rotation axis. The authors studied motion of the particle along the rotating straight pipe in the frame of the observer located in the center of rotation, also dynamics of centrifugally accelerated relativistic particle was studied in the laboratory frame. In the both cases it was shown that centrifugal force changes sign. Recently the problem was studied in the frame of stationary observers. It was argued that centrifugal acceleration reversal is not frame invariant effect. In the present paper we consider motion of particle along the rotating straight line in the frame of an arbitrary stationary observer located at certain distance form the center of rotation and rigidly rotating with constant angular velocity. It is shown that any stationary observer could detect reversal of centrifugal acceleration.

  20. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Finn, John M.

    2015-03-01

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a 'special divergence-free' property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. Wemore »also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Ref. [11], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Ref. [35], appears to work very well.« less

  1. REVERSIBLE METAL-TO-METAL METHYL TRANSFER IN n5-CYCLOPENTADIENYL(TRIPHENYLPHOSPHINE)DIMETHYLCOBALT(III)

    E-Print Network [OSTI]

    Bryndza, Henry E.

    2013-01-01

    transfer between transition metals which is assisted by aJournal of the American Chemical Society REVERSIBLE METAL-TO-METAL METHYL TRANSFER IN n 5-CYCLOPENTAOIENYL(

  2. Self-similar solutions for reversing interfaces in the nonlinear diffusion equation with constant absorption

    E-Print Network [OSTI]

    Jamie M. Foster; Dmitry E. Pelinovsky

    2015-06-16

    We consider the slow nonlinear diffusion equation subject to a constant absorption rate and construct local self-similar solutions for reversing (and anti-reversing) interfaces, where an initially advancing (receding) interface gives way to a receding (advancing) one. We use an approach based on invariant manifolds, which allows us to determine the required asymptotic behaviour for small and large values of the concentration. We then `connect' the requisite asymptotic behaviours using a robust and accurate numerical scheme. By doing so, we are able to furnish a rich set of self-similar solutions for both reversing and anti-reversing interfaces.

  3. Acoustic wave front reversal in a three-phase media

    E-Print Network [OSTI]

    N. I. Pushkina

    2015-03-05

    Acoustic wave front conjugation is studied in a sandy marine sediment that contains air bubbles in its fluid fraction. The considered phase conjugation is a four-wave nonlinear parametric sound interaction process caused by nonlinear bubble oscillations which are known to be dominant in acoustic nonlinear interactions in three-phase marine sediments. Two various mechanisms of phase conjugation are studied. One of them is based on the stimulated Raman-type sound scattering on resonance bubble oscillations. The second one is associated with sound interactions with bubble oscillations which frequencies are far from resonance bubble frequencies. Nonlinear equations to solve the wave-front conjugation problem are derived, expressions for acoustic wave amplitudes with a reversed wave front are obtained and compared for various frequencies of the excited bubble oscillations.

  4. The centrifugal force reversal and X-ray bursts

    E-Print Network [OSTI]

    M. A. Abramowicz; W. Kluzniak; J. -P. Lasota

    2001-06-15

    Heyl (2000) made an interesting suggestion that the observed shifts in QPO frequency in type I X-ray bursts could be influenced by the same geometrical effect of strong gravity as the one that causes centrifugal force reversal discovered by Abramowicz and Lasota (1974). However, his main result contains a sign error. Here we derive the correct formula and conclude that constraints on the M(R) relation for neutron stars deduced from the rotational-modulation model of QPO frequency shifts are of no practical interest because the correct formula implies a weak condition R* > 1.3 Rs, where Rs is the Schwarzschild radius. We also argue against the relevance of the rotational-modulation model to the observed frequency modulations.

  5. Strain-induced time-reversal odd superconductivity in graphene

    E-Print Network [OSTI]

    Bitan Roy; Vladimir Juricic

    2014-07-31

    Time-reversal symmetry breaking superconductors are exotic phases of matter with fascinating properties, which are, however, encountered rather sparsely. Here we identify the possibility of realizing such a superconducting ground state that exhibits an $f+is$ pairing symmetry in strained graphene. Although the underlying attractive interactions need to be sufficiently strong and comparable in pristine graphene to support such pairing state, we argue that strain can be conducive for its formation even for weak interactions. We show that quantum-critical behavior near the transition is controlled by a multicritical point, characterized by various critical exponents computed here in the framework of an $\\epsilon$-expansion near four spacetime dimensions. Furthermore, a vortex in this mixed superconducting state hosts a pair of Majorana fermions supporting a quartet of insulating and superconducting orders, among which topologically nontrivial quantum spin Hall insulator. These findings suggest that strained graphene could provide a platform for the realization of exotic superconducting states of Dirac fermions.

  6. Pumping single-file colloids: Absence of current reversal

    E-Print Network [OSTI]

    Debasish Chaudhuri; Archishman Raju; Abhishek Dhar

    2015-06-24

    We consider the single-file motion of colloidal particles interacting via short-ranged repulsion and placed in a traveling wave potential, that varies periodically in time and space. Under suitable driving conditions, a directed time-averaged flow of colloids is generated. We obtain analytic results for the model using a perturbative approach to solve the Fokker-Planck equations. The predictions show good agreement with numerical simulations. We find peaks in the time-averaged directed current as a function of driving frequency, wavelength and particle density and discuss possible experimental realizations. Surprisingly, unlike a closely related exclusion dynamics on a lattice, the directed current in the present model does not show current reversal with density. A linear response formula relating current response to equilibrium correlations is also proposed.

  7. Statistical Stability and Time-Reversal Imgaing in Random Media

    SciTech Connect (OSTI)

    Berryman, J; Borcea, L; Papanicolaou, G; Tsogka, C

    2002-02-05

    Localization of targets imbedded in a heterogeneous background medium is a common problem in seismic, ultrasonic, and electromagnetic imaging problems. The best imaging techniques make direct use of the eigenfunctions and eigenvalues of the array response matrix, as recent work on time-reversal acoustics has shown. Of the various imaging functionals studied, one that is representative of a preferred class is a time-domain generalization of MUSIC (MUltiple Signal Classification), which is a well-known linear subspace method normally applied only in the frequency domain. Since statistical stability is not characteristic of the frequency domain, a transform back to the time domain after first diagonalizing the array data in the frequency domain takes optimum advantage of both the time-domain stability and the frequency-domain orthogonality of the relevant eigenfunctions.

  8. Magnetization reversal driven by a spin torque oscillator

    SciTech Connect (OSTI)

    Sbiaa, R.

    2014-09-01

    Magnetization reversal of a magnetic free layer under spin transfer torque (STT) effect from a magnetic hard layer with a fixed magnetization direction and an oscillating layer is investigated. By including STT from the oscillating layer with in-plane anisotropy and orthogonal polarizer, magnetization-time dependence of free layer is determined. The results show that the frequency and amplitude of oscillations can be varied by adjusting the current density and magnetic properties. For an optimal oscillation frequency (f{sub opt}), a reduction of the switching time (t{sub 0}) of the free layer is observed. Both f{sub opt} and t{sub 0} increase with the anisotropy field of the free layer.

  9. A magnetohydrodynamic model of rotating magnetic field current drive in a field-reversed configuration

    E-Print Network [OSTI]

    Washington at Seattle, University of

    -reversed configuration Richard D. Milroy University of Washington, Redmond Plasma Physics Laboratory, Seattle, Washington of a field-reversed configuration FRC . Previous models assumed a fixed ion model, but here a full two of problems: 1 For the sustainment problem, a RMF is applied to a preexisting FRC. 2 For the formation problem

  10. Time-reversal in an ultrasonic waveguide Philippe Roux,a)

    E-Print Network [OSTI]

    Roman, Benoît

    -reversal invariance of the acoustic wave equation means that for every burst of sound diverging from a source to overcome the distortions induced by multipaths in an acoustic transmission. A set of experiments compression observed for the time-reversed acoustic pulse. The influence of the number of TRM elements

  11. Designing Reversibility-Enforcing Supervisors of Polynomial Complexity for Bounded Petri Nets

    E-Print Network [OSTI]

    Reveliotis, Spiridon "Spyros"

    Designing Reversibility-Enforcing Supervisors of Polynomial Complexity for Bounded Petri Nets Samsung Networks Inc. jin young.choi@samsung.com Abstract. This paper proposes an analytical method for the synthesis of reversibility-enforcing supervisors for bounded Petri nets. The proposed method builds upon

  12. A Regression Algorithm for the Smart Prognosis of a Reversed Polarity Fault in a Photovoltaic Generator

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Regression Algorithm for the Smart Prognosis of a Reversed Polarity Fault in a Photovoltaic database containing sample data is used for simulation purposes. Keywords--Photovoltaic generator, SVR, k-NNR, reversed polarity fault, diagnosis, prognosis. NOMENCLATURE PV = Photovoltaic; SVM = Support Vector

  13. On time-reversal and space-time harmonic processes for Markovian quantum channels

    E-Print Network [OSTI]

    Francesco Ticozzi; Michele Pavon

    2009-04-29

    The time reversal of a completely-positive, nonequilibrium discrete-time quantum Markov evolution is derived via a suitable adjointness relation. Space-time harmonic processes are introduced for the forward and reverse-time transition mechanisms, and their role for relative entropy dynamics is discussed.

  14. Journal of Power Sources 167 (2007) 1117 Voltage reversal during microbial fuel cell stack operation

    E-Print Network [OSTI]

    2007-01-01

    forms of biodegradable organic matter, even human and animal wastewaters [1­4]. The power producedJournal of Power Sources 167 (2007) 11­17 Voltage reversal during microbial fuel cell stack polarity of one or more cells and a loss of power generation. We investigated the causes of charge reversal

  15. Demonstration of Time Reversal Methods in a Multi-path Environment

    E-Print Network [OSTI]

    Sarabandi, Kamal

    Demonstration of Time Reversal Methods in a Multi-path Environment K. Sarahandi* Fellow, ZEEE, I and focusing in a spatially varying (inhomogeneous) medium. While the concept of time reversal or applying time constructively, and focus the received energy at this point. In any b i t e size array that occupies B limited

  16. Reverse engineering gene networks using singular value decomposition and robust regression

    E-Print Network [OSTI]

    Babu, M. Madan

    Reverse engineering gene networks using singular value decomposition and robust regression M. K Engineering, Boston University, Boston, MA 02215 Edited by Charles S. Peskin, New York University, Hartsdale, NY, and approved March 13, 2002 (received for review October 29, 2001) We propose a scheme to reverse-engineer

  17. Advanced Industrial Archaeology: A new reverse-engineering process for contextualizing and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Advanced Industrial Archaeology: A new reverse-engineering process for contextualizing.bernard@irccyn.ec-nantes.fr, michel.cotte@univ-nantes.fr Abstract Since virtual engineering has been introduced inside industries. Keywords reverse-engineering, 3D digitalization, CAD, Advanced Industrial Archaeology, technical heritage 1

  18. Department of Industrial Engineering Fall 2011 Transmission Component Reverse Engineering and Process Planning

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Industrial Engineering Fall 2011 Transmission Component Reverse Engineering to fabricate the parts in the Industrial Engineering Department Factory for Advanced Manufacturing Education of the transmission to reverse engineer and develop process plans for efficient fabrication in a low volume setting

  19. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    E-Print Network [OSTI]

    - newable energy sources. © 2013 Elsevier B.V. All rights reserved. 1. Introduction A microbial fuel cellMicrobial reverse-electrodialysis chemical-production cell for acid and alkali production Xiuping Accepted 7 March 2013 Available online 15 March 2013 Keywords: Microbial fuel cell Reverse electrodialysis

  20. Hydrogen production from continuous flow, microbial reverse-electrodialysis electrolysis cells treating fermentation

    E-Print Network [OSTI]

    Hydrogen production from continuous flow, microbial reverse-electrodialysis electrolysis cells, USA h i g h l i g h t s Fermentation effluent fed MREC produced hydrogen without grid energy in revised form 23 May 2015 Accepted 25 May 2015 Available online 29 May 2015 Keywords: Microbial reverse

  1. Fusion Engineering and Design 38 (1997) 2757 Physics basis for a reversed shear tokamak power plant

    E-Print Network [OSTI]

    California at San Diego, University of

    1997-01-01

    fusion power plant. Analysis of plasma equilibrium and ideal MHD stability, bootstrap current and current the recirculating power fraction. The final plasma configuration for the ARIES-RS power plant obtains i of 4 reserved. Keywords: Reversed shear; Tokamak power plant; Plasma configuration 1. Introduction The reversed

  2. Author's personal copy Does reverse growth dominance develop in old plantations of Eucalyptus saligna?

    E-Print Network [OSTI]

    Anderson, Charles W.

    Author's personal copy Does reverse growth dominance develop in old plantations of Eucalyptus of stand development in plots of Eucalyptus saligna (Sm.) in Hawaii showed a period of increasing growth plantations of Eucalyptus saligna (Sm.) in Hawaii and Brazil would show a pattern of ``reverse'' growth

  3. Application of time reverse modeling on ultrasonic non-destructive testing of concrete

    E-Print Network [OSTI]

    Application of time reverse modeling on ultrasonic non-destructive testing of concrete Erik H-differences Wave propagation Source localization Non-destructive testing a b s t r a c t Time reverse modeling (TRM is to transform a method within exploration geo- physics to non-destructive testing. In contrast to previous time

  4. A thermally responsive, rigid, and reversible adhesive Xiaofan Luo, Kathryn E. Lauber 1

    E-Print Network [OSTI]

    Mather, Patrick T.

    A thermally responsive, rigid, and reversible adhesive Xiaofan Luo, Kathryn E. Lauber 1 , Patrick T: Reversible adhesive Solid adhesive Thermally responsive polymer a b s t r a c t In this paper we present the development of a unique self-adhesive material that, unlike conventional adhesives, maintains a high degree

  5. Hydration and Protein Folding in Water and in Reverse Micelles: Compressibility and Volume Changes

    E-Print Network [OSTI]

    Urbach, Wladimir

    Hydration and Protein Folding in Water and in Reverse Micelles: Compressibility and Volume Changes The partial specific volume and adiabatic compressibility of proteins reflect the hydration properties of the solvent-exposed protein surface, as well as changes in conformational states. Reverse micelles, or water

  6. Engineering Metal Complexes of Chiral Pentaazacrowns as Privileged Reverse-turn

    E-Print Network [OSTI]

    Marshall, Garland R.

    Engineering Metal Complexes of Chiral Pentaazacrowns as Privileged Reverse-turn Scaffolds Ye Che1 the potential of metal complexes of chiral pentaazacrowns con- ceptually derived by reduction of cyclic pentapep- tides as reverse-turn mimetics. The possible conformations of metal complexes of chiral penta- azacrown

  7. Radio Science, Volume ???, Number , Pages 110, Time Reversal of Electromagnetic Waves and

    E-Print Network [OSTI]

    Paris 7 - Denis Diderot, Université

    electromagnetic pulse at a central frequency of 2.45 GHz in a high-Q cavity. Another antenna records the stronglyRadio Science, Volume ???, Number , Pages 1­10, Time Reversal of Electromagnetic Waves demonstration of time-reversal focusing with electromagnetic waves in a SISO scheme. An antenna transmits a 1 µs

  8. Characterization of nanostructured zirconia prepared by hydrolysis and reverse micelle synthesis by small-angle neutron and X-ray scattering

    SciTech Connect (OSTI)

    Thiyagarajan, P.; Li, X.; Littrell, K.; Seifert, S.; Csencsits, R.; Loong, C.

    1999-12-07

    Low temperature techniques such as hydrolysis and reverse micelle syntheses provide the opportunity to determine the relationship between the structural properties and preparation conditions of zirconia powders as well as to tailor their physicochemical properties. The authors have performed small-angle neutron and synchrotron X-ray scattering (SANS and SAXS) experiments to study the nucleation and organization of zirconia nanoparticles via different preparation routes. First, the formation of reverse micelles in individual and mixed solutions of (ZrOCl{sub 2}+D{sub 2}O)/AOT/C{sub 6}D{sub 5}CD{sub 3}, and (NH{sub 4}OH+H{sub 2}O)/AOT/C{sub 6}D{sub 5}CD{sub 3} systems at water/AOT molar ratio of 20 was characterized. Second, the aggregation of zirconia gels obtained from the reaction of the reverse micelle solutions after heat treatments was studied. Third, the nanostructure of zirconia powders prepared by the reverse micelle method is compared with the corresponding powders prepared by hydrolysis after different heat treatments.

  9. The TITAN Reversed-Field Pinch fusion reactor study: Scoping phase report

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The TITAN research program is a multi-institutional effort to determine the potential of the Reversed-Field Pinch (RFP) magnetic fusion concept as a compact, high-power-density, and ''attractive'' fusion energy system from economic (cost of electricity, COE), environmental, and operational viewpoints. In particular, a high neutron wall loading design (18 MW/m/sup 2/) has been chosen as the reference case in order to quantify the issue of engineering practicality, to determine the physics requirements and plasma operating mode, to assess significant benefits of compact systems, and to illuminate the main drawbacks. The program has been divided into two phases, each roughly one year in length: the Scoping Phase and the Design Phase. During the scoping phase, the TITAN design team has defined the parameter space for a high mass power density (MPD) RFP reactor, and explored a variety of approaches to the design of major subsystems. Two major design approaches consistent with high MPD and low COE, the lithium-vanadium blanket design and aqueous loop-in-pool design, have been selected for more detailed engineering evaluation in the design phase. The program has retained a balance in its approach to investigating high MPD systems. On the one hand, parametric investigations of both subsystems and overall system performance are carried out. On the other hand, more detailed analysis and engineering design and integration are performed, appropriate to determining the technical feasibility of the high MPD approach to RFP fusion reactors. This report describes the work of the scoping phase activities of the TITAN program. A synopsis of the principal technical findings and a brief description of the TITAN multiple-design approach is given. The individual chapters on Plasma Physics and Engineering, Parameter Systems Studies, Divertor, Reactor Engineering, and Fusion Power Core Engineering have been cataloged separately.

  10. Change of Paradigm for the Reversed Field Pinch

    SciTech Connect (OSTI)

    Escande, D. F. [Physique des Interactions Ioniques et Moleculaires, UMR 6633-CNRS / Aix-Marseille Universite, Case 321, Av. Normandie Niemen, 13397 MARSEILLE Cedex 20 (France)

    2010-11-23

    The reversed field pinch (RFP) is a magnetic configuration germane to the tokamak, but it produces most of its magnetic field by the currents flowing inside the plasma; external coils provide only a small edge toroidal field whose sign is reversed with respect to the central one, whence the name of the configuration. Because of the presence of magnetic turbulence and chaos, the RFP had been considered for a long period as a terrible confinement configuration. However, recently a change of paradigm occurred for this device. Indeed, when the toroidal current is increased in the RFX-mod RFP in Padua (Italy), a self-organized helical state with an internal transport barrier (ITB) develops, and a broad zone of the plasma becomes hot (above 1 keV for a magnetic field above 0.8 T). The present theoretical picture of the RFP mainly comes from three-dimensional nonlinear visco-resistive MHD simulations whose dynamics has strong similarities with the experimental one, and triggered the experimental search for RFP states with improved confinement. The RFP ohmic state involves a helical electrostatic potential generating, as an electric drift, the so-called dynamo velocity field. The magnetic topology can bifurcate from a magnetic island to kink-like magnetic surfaces with higher resilience to magnetic chaos. This theoretical scenario was found to be relevant when ITB's enclosing a broad hot domain were discovered. The ITBs occur in the vicinity of the maximum of the safety factor. The new paradigm for the RFP supports its reappraisal as a low-external field, non-disruptive, ohmically heated approach to magnetic fusion, exploiting both self-organization and technological simplicity. Furthermore the RFP has the same Greenwald density limit as the tokamak, and it is an excellent test bed for the efficient control of multiple resistive wall modes. Its helical magnetic structure makes it germane to the stellarator too. As a result the RFP is also useful to bring support to the present two main lines of magnetic confinement.

  11. Human portable preconcentrator system

    DOE Patents [OSTI]

    Linker, Kevin L. (Albuquerque, NM); Bouchier, Francis A. (Albuquerque, NM); Hannum, David W. (Albuquerque, NM); Rhykerd, Jr., Charles L. (Albuquerque, NM)

    2003-01-01

    A preconcentrator system and apparatus suited to human portable use wherein sample potentially containing a target chemical substance is drawn into a chamber and through a pervious screen. The screen is adapted to capture target chemicals and then, upon heating, to release those chemicals into the chamber. Chemicals captured and then released in this fashion are then carried to a portable chemical detection device such as a portable ion mobility spectrometer. In the preferred embodiment, the means for drawing sample into the chamber comprises a reversible fan which, when operated in reverse direction, creates a backpressure that facilitates evolution of captured target chemicals into the chamber when the screen is heated.

  12. Reversible Electron Beam Heating for Suppression of Microbunching Instabilities at Free-Electron Lasers

    SciTech Connect (OSTI)

    Behrens, Christopher; /DESY; Huang, Zhirong; Xiang, Dao; /SLAC

    2012-05-30

    The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future x-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., heating the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) upstream and downstream of a magnetic bunch compressor chicane. The additional energy spread is introduced in the first TDS, which suppresses the microbunching instability, and then is eliminated in the second TDS. We show the feasibility of the microbunching gain suppression based on calculations and simulations including the effects of coherent synchrotron radiation. Acceptable electron beam and radio-frequency jitter are identified, and inherent options for diagnostics and on-line monitoring of the electron beam's longitudinal phase space are discussed.

  13. Statistics of reversible bond dynamics observed in force-clamp spectroscopy

    E-Print Network [OSTI]

    Gregor Diezemann; Thomas Schlesier; Burkhard Geil; Andreas Janshoff

    2010-10-30

    We present a detailed analysis of two-state trajectories obtained from force-clamp spectroscopy (FCS) of reversibly bonded systems. FCS offers the unique possibility to vary the equilibrium constant in two-state kinetics, for instance the unfolding and refolding of biomolecules, over many orders of magnitude due to the force dependency of the respective rates. We discuss two different kinds of counting statistics, the event-counting usually employed in the statistical analysis of two-state kinetics and additionally the so-called cycle-counting. While in the former case all transitions are counted, cycle-counting means that we focus on one type of transitions. This might be advantageous in particular if the equilibrium constant is much larger or much smaller than unity because in these situations the temporal resolution of the experimental setup might not allow to capture all transitions of an event-counting analysis. We discuss how an analysis of FCS data for complex systems exhibiting dynamic disorder might be performed yielding information about the detailed force-dependence of the transition rates and about the time scale of the dynamic disorder. In addition, the question as to which extent the kinetic scheme can be viewed as a Markovian two-state model is discussed.

  14. Transport and equilibrium in field-reversed mirrors

    SciTech Connect (OSTI)

    Boyd, J.K.

    1982-09-01

    Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integrals in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior.

  15. Fusion proton diagnostic for the C-2 field reversed configuration

    SciTech Connect (OSTI)

    Magee, R. M. Clary, R.; Korepanov, S.; Smirnov, A.; Garate, E.; Knapp, K.; Tkachev, A.

    2014-11-15

    Measurements of the flux of fusion products from high temperature plasmas provide valuable insights into the ion energy distribution, as the fusion reaction rate is a very sensitive function of ion energy. In C-2, where field reversed configuration plasmas are formed by the collision of two compact toroids and partially sustained by high power neutral beam injection [M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010); M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012)], measurements of DD fusion neutron flux are used to diagnose ion temperature and study fast ion confinement and dynamics. In this paper, we will describe the development of a new 3 MeV proton detector that will complement existing neutron detectors. The detector is a large area (50?cm{sup 2}), partially depleted, ion implanted silicon diode operated in a pulse counting regime. While the scintillator-based neutron detectors allow for high time resolution measurements (?100 kHz), they have no spatial or energy resolution. The proton detector will provide 10 cm spatial resolution, allowing us to determine if the axial distribution of fast ions is consistent with classical fast ion theory or whether anomalous scattering mechanisms are active. We will describe in detail the diagnostic design and present initial data from a neutral beam test chamber.

  16. Reversible rigid coupling apparatus and method for borehole seismic transducers

    DOE Patents [OSTI]

    Owen, Thomas E. (Helotes, TX); Parra, Jorge O. (Helotes, TX)

    1992-01-01

    An apparatus and method of high resolution reverse vertical seismic profile (VSP) measurements is shown. By encapsulating the seismic detector and heaters in a meltable substance (such as wax), the seismic detector can be removably secured in a borehole in a manner capable of measuring high resolution signals in the 100 to 1000 hertz range and higher. The meltable substance is selected to match the overall density of the detector package with the underground formation, yet still have relatively low melting point and rigid enough to transmit vibrations to accelerometers in the seismic detector. To minimize voids in the meltable substance upon solidification, the meltable substance is selected for minimum shrinkage, yet still having the other desirable characteristics. Heaters are arranged in the meltable substance in such a manner to allow the lowermost portion of the meltable substance to cool and solidify first. Solidification continues upwards from bottom-to-top until the top of the meltable substance is solidified and the seismic detector is ready for use. To remove, the heaters melt the meltable substance and the detector package is pulled from the borehole.

  17. First-Principles Study of the Li-Na-Ca-N-H System: Compound Structures and Hydrogen-Storage Properties

    E-Print Network [OSTI]

    Teeratchanan, Pattanasak

    2012-01-01

    system for reversible hydrogen storage,” J. Alloys Comp, volCompound structures and hydrogen-storage properties,” J.compounds: Application to hydrogen storage materials,” Phys.

  18. Phenomenology of reverse-shock emission in the optical afterglows of gamma-ray bursts

    SciTech Connect (OSTI)

    Japelj, J.; Kopa?, D.; Gomboc, A. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, SI-1000 Ljubljana (Slovenia); Kobayashi, S.; Harrison, R.; Virgili, F. J.; Mundell, C. G. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF (United Kingdom); Guidorzi, C. [Physics Departments, University of Ferrara, via Saragat 1, I-44122, Ferrara (Italy); Melandri, A., E-mail: jure.japelj@fmf.uni-lj.si, E-mail: andreja.gomboc@fmf.uni-lj.si [INAF Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy)

    2014-04-20

    We use a parent sample of 118 gamma-ray burst (GRB) afterglows, with known redshift and host galaxy extinction, to separate afterglows with and without signatures of dominant reverse-shock (RS) emission and to determine which physical conditions lead to a prominent reverse-shock emission. We identify 10 GRBs with reverse-shock signatures: 990123, 021004, 021211, 060908, 061126, 080319B, 081007, 090102, 090424, and 130427A. By modeling their optical afterglows with reverse- and forward-shock analytic light curves and using Monte Carlo simulations, we estimate the parameter space of the physical quantities describing the ejecta and circumburst medium. We find that physical properties cover a wide parameter space and do not seem to cluster around any preferential values. Comparing the rest-frame optical, X-ray, and high-energy properties of the larger sample of non-RS-dominated GRBs, we show that the early-time (<1 ks) optical spectral luminosity, X-ray afterglow luminosity, and ?-ray energy output of our reverse-shock dominated sample do not differ significantly from the general population at early times. However, the GRBs with dominant reverse-shock emission have fainter than average optical forward-shock emission at late times (>10 ks). We find that GRBs with an identifiable reverse-shock component show a high magnetization parameter R {sub B} = ?{sub B,r}/?{sub B,f} ? 2-10{sup 4}. Our results are in agreement with the mildly magnetized baryonic jet model of GRBs.

  19. Neutron Emission from Beam-Injected Fast Tritons in JET Plasmas with Reversed or Monotonic Magnetic Shear

    E-Print Network [OSTI]

    Neutron Emission from Beam-Injected Fast Tritons in JET Plasmas with Reversed or Monotonic Magnetic Shear

  20. College of Engineering 3/16/2012 M. Frank, General Model Reversible HW, SEALeR Mar. `12 1

    E-Print Network [OSTI]

    Frank, Michael P.

    at the Superconducting Electronics Approaching the Landauer Limit and Reversibility (SEALeR) workshop Michael P. Frank

  1. XIAP reverses various functional activities of FRNK in endothelial cells

    SciTech Connect (OSTI)

    Ahn, Sunyoung; Kim, Hyun Jeong [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook Univiersity, 126, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of)] [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook Univiersity, 126, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of); Chi, Sung-Gil [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)] [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Park, Heonyong, E-mail: heonyong@dankook.ac.kr [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook Univiersity, 126, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of)] [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook Univiersity, 126, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer FRNK domain is recruited into focal adhesion (FA), controlling endothelial cell adhesion. Black-Right-Pointing-Pointer XIAP binds the FRNK domain of FAK. Black-Right-Pointing-Pointer XIAP inhibits recruitment of FRNK into Fas and FRNK-promoted cell adhesion. Black-Right-Pointing-Pointer XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK. -- Abstract: In endothelial cells, focal adhesion kinase (FAK) regulates cell proliferation, migration, adhesion, and shear-stimulated activation of MAPK. We recently found that FAK is recruited into focal adhesion (FA) sites through interactions with XIAP (X-chromosome linked inhibitor of apoptosis protein) and activated by Src kinase in response to shear stress. In this study, we examined which domain(s) of FAK is(are) important for various vascular functions such as FA recruiting, XIAP-binding and shear stress-stimulated ERK activation. Through a series of experiments, we determined that the FRNK domain is recruited into FA sites and promotes endothelial cell adhesion. Interestingly, XIAP knockdown was shown to reduce FA recruitment of FRNK and the cell adhesive effect of FRNK. In addition, we found that XIAP interacts with FRNK, suggesting cross-talk between XIAP and FRNK. We also demonstrated that FRNK inhibits endothelial cell migration and shear-stimulated ERK activation. These inhibitory effects of FRNK were reversed by XIAP knockdown. Taken together, we can conclude that XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK.

  2. Time Reversal of Wideband Microwaves G. Lerosey, J. de Rosny, A. Tourin, A. Derode and M. Fink

    E-Print Network [OSTI]

    Paris 7 - Denis Diderot, Université

    Time Reversal of Wideband Microwaves G. Lerosey, J. de Rosny, A. Tourin, A. Derode and M. Fink, France (Dated: 12-14-2005) ABSTRACT: In this paper, time reversal is applied to wideband electromagnetic waves in a re- verberant room. To that end a multi-antenna time-reversal mirror (TRM) has been built

  3. Implications of the Scheduled Federal Investment Tax Credit Reversion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RPS renewable portfolio standard SACP solar alternative compliance payment SAM System Advisor Model SCCA Solar Credit Clearinghouse Auction (Massachusetts) SREC solar renewable...

  4. Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations

    SciTech Connect (OSTI)

    Oz, E.; Myers, C. E.; Edwards, M. R.; Berlinger, B.; Brooks, A.; Cohen, S. A.

    2011-01-05

    The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-? plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (?fc) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with (?fc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 103 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.

  5. Accelerated Nodal Discontinuous Galerkin Simulations for Reverse Time Migration with Large Clusters

    E-Print Network [OSTI]

    Modave, Axel; Mulder, Wim A; Warburton, Tim

    2015-01-01

    Improving both accuracy and computational performance of numerical tools is a major challenge for seismic imaging and generally requires specialized implementations to make full use of modern parallel architectures. We present a computational strategy for reverse-time migration (RTM) with accelerator-aided clusters. A new imaging condition computed from the pressure and velocity fields is introduced. The model solver is based on a high-order discontinuous Galerkin time-domain (DGTD) method for the pressure-velocity system with unstructured meshes and multi-rate local time-stepping. We adopted the MPI+X approach for distributed programming where X is a threaded programming model. In this work we chose OCCA, a unified framework that makes use of major multi-threading languages (e.g. CUDA and OpenCL) and offers the flexibility to run on several hardware architectures. DGTD schemes are suitable for efficient computations with accelerators thanks to localized element-to-element coupling and the dense algebraic ope...

  6. Brazil-nut effect versus reverse Brazil-nut effect in a moderately dense granular fluid

    E-Print Network [OSTI]

    Vicente Garzo

    2008-09-03

    A new segregation criterion based on the inelastic Enskog kinetic equation is derived to show the transition between the Brazil-nut effect (BNE) and the reverse Brazil-nut effect (RBNE) by varying the different parameters of the system. In contrast to previous theoretical attempts the approach is not limited to the near-elastic case, takes into account the influence of both thermal gradients and gravity and applies for moderate densities. The form of the phase-diagrams for the BNE/RBNE transition depends sensitively on the value of gravity relative to the thermal gradient, so that it is possible to switch between both states for given values of the mass and size ratios, the coefficients of restitution and the solid volume fraction. In particular, the influence of collisional dissipation on segregation becomes more important when the thermal gradient dominates over gravity than in the opposite limit. The present analysis extends previous results derived in the dilute limit case and is consistent with the findings of some recent experimental results.

  7. All reversible dynamics in maximally non-local theories are trivial

    E-Print Network [OSTI]

    Gross, David; Colbeck, Roger; Dahlsten, Oscar C O

    2009-01-01

    A remarkable feature of quantum theory is non-locality (i.e. the presence of correlations which violate Bell inequalities). However, quantum correlations are not maximally non-local, and it is natural to ask whether there are compelling reasons for rejecting theories in which stronger violations are possible. To shed light on this question, we consider post-quantum theories in which maximally non-local states (non-local boxes) occur. It has previously been conjectured that the set of dynamical transformations possible in such theories is severely limited. We settle the question affirmatively in the case of reversible dynamics, by completely characterizing all such transformations allowed in this setting. We find that the dynamical group is trivial, in the sense that it is generated solely by local operations and permutations of systems. In particular, no correlations can ever be created; non-local boxes cannot be prepared from product states (in other words, no analogues of entangling unitary operations exist...

  8. Dynamics of osmosis in a porous medium

    E-Print Network [OSTI]

    Cardoso, Silvana S. S.; Cartwright, Julyan H. E.

    2014-11-12

    –395. (doi:10.1016/j.jcis.2010.12.006) 10. Revil A, Leroy P. 2004 Constitutive equations for ionic transport in porous shales. J. Geophys. Res. 109, B03208. (doi:10.1029/2003JB002755) 11. Leroy P, Revil A, Titov K. 2005 Characterization of transport...

  9. Manganese reduction/oxidation reaction on graphene composites as a reversible process for storing enormous energy at a fast rate

    E-Print Network [OSTI]

    Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Wei, Chunguang

    2014-01-01

    Oxygen reduction/evolution reaction (ORR/OER) is a basic process for fuel cells or metal air batteries. However, ORR/OER generally requires noble metal catalysts and suffers from low solubility (10-3 molar per liter) of O2, low kinetics rate (10-6 cm2/s) and low reversibility. We report a manganese reduction/oxidation reaction (MRR/MOR) on graphene/MnO2 composites, delivering a high capacity (4200 mAh/g), fast kinetics (0.0024 cm2/s, three orders higher than ORR/OER), high solubility (three orders than O2), and high reversibility (100%). We further use MRR/MOR to invent a rechargeable manganese ion battery (MIB), which delivers an energy density of 1200 Wh/Kg (several times of lithium ion battery), a fast charge ability (3 minutes), and a long cycle life (10,000 cycles). MRR/MOR renders a new class of energy conversion or storage systems with a very high energy density enabling electric vehicles run much more miles at one charge.

  10. Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field

    E-Print Network [OSTI]

    , suggesting perceptual rivalry as a better explanation for illusory motion reversal. After adaptation renewed popularity with the advent of cinema- tography­­an obvious technological metaphor. To ex- plain

  11. A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gilbert, Dustin A.; Ye, Li; Varea, Aïda; Agramunt-Puig, Sebastià; del Valle, Nuria; Navau, Carles; López-Barbera, José Francisco; Buchanan, Kristen S.; Hoffmann, Axel; Sánchez, Alvar; et al

    2015-04-28

    Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir20Mn80/Fe20Ni80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet, which leads to unexpectedmore »asymmetries in the annihilation and nucleation fields. These results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.« less

  12. Integral encounter theories of the multistage reactions. III. Reversible intramolecular energy transfer

    E-Print Network [OSTI]

    Burshtein, Anatoly

    Integral encounter theories of the multistage reactions. III. Reversible intramolecular energy January 2001 The matrix Integral Encounter Theory IET and its modified version MET developed earlier states is longer. Integral encounter theory describes adequately the kinetics of energy conservation

  13. 3D weak-dispersion reverse time migration using a stereo-modeling operator

    E-Print Network [OSTI]

    Li, Jingshuang

    Reliable 3D imaging is a required tool for developing models of complex geologic structures. Reverse time migration (RTM), as the most powerful depth imaging method, has become the preferred imaging tool because of its ...

  14. Synthesis of macroporous poly(styrene-divinyl benzene) microspheres by surfactant reverse micelles swelling method

    E-Print Network [OSTI]

    Gu, Tingyue

    Synthesis of macroporous poly(styrene-divinyl benzene) microspheres by surfactant reverse micelles poly(styrene-divinyl benzene) microspheres with pore size of about 500 nm were prepared by a new method

  15. Polymer Micelles Stabilization on Demand through Reversible Photo-Cross-Linking

    E-Print Network [OSTI]

    Zhao, Yue

    Polymer Micelles Stabilization on Demand through Reversible Photo-Cross-Linking Jinqiang Jiang are disintegrated after being administrated in the body due to an extreme dilution to below the critical micelle

  16. Detection, classification and localization of seabed objects with a virtual time reversal mirror

    E-Print Network [OSTI]

    Dumortier, Alexis Jean Louis

    2009-01-01

    The work presented in this thesis addresses the problem of the detection, classification and localization of seabed objects in shallow water environments using a time reversal approach in a bistatic configuration. The ...

  17. REVERSIBLE MACHINE TRANSLATION: WHAT TO DO WHEN THE LANGUAGES DON'T LINE UP

    E-Print Network [OSTI]

    REVERSIBLE MACHINE TRANSLATION: WHAT TO DO WHEN THE LANGUAGES DON'T LINE UP James Barnett clearcut, the notion of pre- ferred translation is more difficult to de- fine [van Noord, 90], [Barnett, 91

  18. Investigation of the Implementation of Ramp Reversal at a Diamond Interchange 

    E-Print Network [OSTI]

    Wang, Bo

    2013-06-25

    Diamond interchange design has been commonly utilized in United States to facilitate traffic exchange between freeway and frontage roads. Another less common interchange design is X-ramp interchange, which is the reversed version of diamond...

  19. Tearing-mode transport model in the reversed field pinch concept

    E-Print Network [OSTI]

    Bruno, Antonio, 1972-

    2002-01-01

    In this thesis, a self-consistent model for analyzing the transport performance of a Reversed Field Pinch (RFP)-type of thermonuclear fusion reactor has been developed. The study has been focused on determining equilibrium ...

  20. Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions

    E-Print Network [OSTI]

    Zheng, Ruiting

    Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce ...

  1. Cessation of the 22–25 June 2006 Coastally Trapped Wind Reversal

    E-Print Network [OSTI]

    Rahn, David A.; Parish, Thomas R.

    2010-07-01

    Coastally trapped wind reversals (CTWRs) occur periodically in the marine boundary layer off the western coast of the United States and dramatically change the low-level wind regime and coastal weather. Southerly flow becomes established...

  2. Reverse phase high performance liquid chromatograph for analysis of casein phosphopeptides 

    E-Print Network [OSTI]

    McKee, Shelly R.

    1994-01-01

    for the bioavailability of calcium in milk. This study examined high performance liquid chromatography as a viable method for purifying casein phosphopeptides. Specifically, reverse phase HPLC (high performance liquid chromatography) was used to purify casein...

  3. Reverse Nearest Neighbors Search in Ad-hoc Subspaces Man Lung Yiu

    E-Print Network [OSTI]

    Mamoulis, Nikos

    Reverse Nearest Neighbors Search in Ad-hoc Subspaces Man Lung Yiu Department of Computer Science, H.2.4.h Query processing, H.2.4.k Spatial databases Contact Author: Man Lung Yiu Department

  4. STATISTICAL STABILITY IN TIME REVERSAL GEORGE PAPANICOLAOU # , LEONID RYZHIK + , AND KNUT SLNA #

    E-Print Network [OSTI]

    Papanicolaou, George C.

    in a high frequency, remote sensing regime, and show that, because of multiple scattering. The array of transducers operates in a remote­sensing regime so we analyze time reversal with the parabolic

  5. The interaction of nucleocapsid protein, a reverse transcription accessory factor, with replication primer transfer RNA 

    E-Print Network [OSTI]

    Chang, Hsueh-O

    1994-01-01

    In the initiation of reverse transcription in animal retroviruses, an obligate step is the formation of RNA duplex between the transfer RNA primer and a complementary genomic RNA sequence, termed the primer binding site (PBS). A virally encoded...

  6. The vulnerability of technical secrets to reverse engineering : implications for company policy

    E-Print Network [OSTI]

    Kodak, Cenkhan

    2008-01-01

    In this thesis I will explore the controversial topic of reverse engineering, illustrating with case examples drawn from the data storage industry. I will explore intellectual property rights issues including, users' ...

  7. Time Reversed Acoustics and applications to earthquake location and salt dome flank imaging

    E-Print Network [OSTI]

    Lu, Rongrong

    2008-01-01

    The objective of this thesis is to investigate the applications of Time Reversed Acoustics (TRA) to locate seismic sources and image subsurface structures. The back-propagation process of the TRA experiment can be divided ...

  8. The optimal reverse logistics network for consumer batteries in North America

    E-Print Network [OSTI]

    Rahman, Asgar

    2013-01-01

    The recycling of household consumer batteries is gaining legislative support throughout North America. The intent of this thesis document is to provide a broad overview of the current North American reverse logistics network ...

  9. Ohmic energy confinement saturation and core toroidal rotation reversal in Alcator C-Mod plasmas

    SciTech Connect (OSTI)

    Rice, J. E.; Greenwald, M. J.; Podpaly, Y. A.; Reinke, M. L.; Hughes, J. W.; Howard, N. T.; Ma, Y.; Cziegler, I.; Ennever, P. C.; Ernst, D.; Fiore, C. L.; Gao, C.; Irby, J. H.; Marmar, E. S.; Porkolab, M.; Tsujii, N.; Wolfe, S. M. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Diamond, P. H. [UCSD, La Jolla, California 92903 (United States); Duval, B. P. [CRPP, EPFL, Lausanne 1015 (Switzerland)

    2012-05-15

    Ohmic energy confinement saturation is found to be closely related to core toroidal rotation reversals in Alcator C-Mod tokamak plasmas. Rotation reversals occur at a critical density, depending on the plasma current and toroidal magnetic field, which coincides with the density separating the linear Ohmic confinement regime from the saturated Ohmic confinement regime. The rotation is directed co-current at low density and abruptly changes direction to counter-current when the energy confinement saturates as the density is increased. Since there is a bifurcation in the direction of the rotation at this critical density, toroidal rotation reversal is a very sensitive indicator in the determination of the regime change. The reversal and confinement saturation results can be unified, since these processes occur in a particular range of the collisionality.

  10. Systematic Verification of Operational Flight Program through Reverse Engineering

    E-Print Network [OSTI]

    project aims to develop an unmanned helicopter and its on-flight embedded computing system for navigation services for unmanned helicopter that shall be used for disaster response or recovery using real and actuators equipped in the helicopter. The OFP as a safety-critical and mission-critical system should

  11. Dynamic Formation of a Hot Field Reversed Configuration with Improved Confinement by Supersonic Merging of Two Colliding High-{beta} Compact Toroids

    SciTech Connect (OSTI)

    Binderbauer, M. W.; Guo, H. Y.; Tuszewski, M.; Putvinski, S.; Sevier, L.; Barnes, D.; Rostoker, N.; Anderson, M. G.; Andow, R.; Bonelli, L.; Brown, R.; Bui, D. Q.; Bystritskii, V.; Clary, R.; Cheung, A. H.; Conroy, K. D.; Deng, B. H.; Dettrick, S. A.; Douglass, J. D.; Feng, P. [Tri Alpha Energy, Inc., Post Office Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2010-07-23

    A hot stable field-reversed configuration (FRC) has been produced in the C-2 experiment by colliding and merging two high-{beta} plasmoids preformed by the dynamic version of field-reversed {theta}-pinch technology. The merging process exhibits the highest poloidal flux amplification obtained in a magnetic confinement system (over tenfold increase). Most of the kinetic energy is converted into thermal energy with total temperature (T{sub i}+T{sub e}) exceeding 0.5 keV. The final FRC state exhibits a record FRC lifetime with flux confinement approaching classical values. These findings should have significant implications for fusion research and the physics of magnetic reconnection.

  12. Short gamma-ray bursts in the "time-reversal" scenario

    E-Print Network [OSTI]

    Riccardo Ciolfi; Daniel M. Siegel

    2015-01-27

    Short gamma-ray bursts (SGRBs) are among the most luminous explosions in the Universe and their origin still remains uncertain. Observational evidence favors the association with binary neutron star or neutron star-black hole (NS-BH) binary mergers. Leading models relate SGRBs to a relativistic jet launched by the BH-torus system resulting from the merger. However, recent observations have revealed a large fraction of SGRB events accompanied by X-ray afterglows with durations $\\sim10^2\\!-\\!10^5~\\mathrm{s}$, suggesting continuous energy injection from a long-lived central engine, which is incompatible with the short ($\\lesssim1~\\mathrm{s}$) accretion timescale of a BH-torus system. The formation of a supramassive NS, resisting the collapse on much longer spin-down timescales, can explain these afterglow durations, but leaves serious doubts on whether a relativistic jet can be launched at merger. Here we present a novel scenario accommodating both aspects, where the SGRB is produced after the collapse of a supramassive NS. Early differential rotation and subsequent spin-down emission generate an optically thick environment around the NS consisting of a photon-pair nebula and an outer shell of baryon-loaded ejecta. While the jet easily drills through this environment, spin-down radiation diffuses outwards on much longer timescales and accumulates a delay that allows the SGRB to be observed before (part of) the long-lasting X-ray signal. By analyzing diffusion timescales for a wide range of physical parameters, we find delays that can generally reach $\\sim10^5~\\mathrm{s}$, compatible with observations. The success of this fundamental test makes this "time-reversal" scenario an attractive alternative to current SGRB models.

  13. Progress on the Development of Reversible SOFC Stack Technology

    E-Print Network [OSTI]

    in Littleton, Colorado, United States · SOFC development facility in Calgary, Alberta, Canada · Activities coal ­ Scale-up and R&D of SOFC for Coal-Based SOFC systems ­ Large area cells and high kW stacks

  14. Ultra High Mass Range Mass Spectrometer System

    DOE Patents [OSTI]

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  15. Programming of Reversible Systems in Computational Linguistics Gerhard Engelien, Forschungsgruppe LIMAS, Bonn ~ ~ I ~ ~ ~ ~ ~"

    E-Print Network [OSTI]

    LIMAS, Bonn ~ ~ I ~ ~ ~ ~ ~" · In my paper I shall report on some aspects of programming rever- sible · X ·. geh/ en Inflection Class · X · · B Grammatical Information . X . . . X . . . I-pl 3-pl etc

  16. Reverse-Link Power Control in CDMA Distributed Antenna Systems Arif Obaid Halim Yanikomeroglu

    E-Print Network [OSTI]

    Yanikomeroglu, Halim

    , Canada. Email: geng@super.net.pk Email: halim@sce.carleton.ca ABSTRACT--It is well known that transmit Elements (AEs) are spatially distributed throughout the cell area. It has been shown that the CDMA DA by all AEs and fed to a central station (CS) by a common feeder. Delay elements, D, are inserted

  17. Logical Clock Requirements for Reverse Engineering Scenarios from a Distributed System

    E-Print Network [OSTI]

    Woodside, C. Murray

    . Hrischuk*, C. M. Woodside** * Department of Electrical and Computer Engineering, University of Alberta. The causal links are identified by "timestamping" the events with a logical clock, which records in some way interpreted as "potentially causal", to give what is called "happened before" causality. However this produces

  18. Optimistic Parallel Discrete Event Simulations of Physical Systems using Reverse Computation

    E-Print Network [OSTI]

    Tropper, Carl

    incorrect computations. A widely used technique for implementing rollback is state-saving that saves the values of state variables prior to an event computation and restores them by referring to these saved values upon rollback. Copy state saving creates an entire copy of a process's state; incremental state

  19. Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation Systems

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  20. Water Rights Analysis Package (WRAP) Modeling System Programming Manual 

    E-Print Network [OSTI]

    Wurbs, R.; Hoffpauir, R.

    2012-10-01

    ........................................................... 2 HEC-DSS Data Storage System ............................................................................................... 8 Fortran Language... ............................................................................................................. 71 Information for Tracking Changes to Flow in the Routing Arrays ........................................ 83 Information for Tracking Reverse Routing in Water Availability ?...................................... 87 Chapter 4 SALT...

  1. System architecting of a campaign of earth observing satellites

    E-Print Network [OSTI]

    Colson, Justin M

    2008-01-01

    Given the current level of concern over anthropogenic climate change, and the ongoing debate worldwide regarding what action should be taken to reduce and reverse future warming, the ability to collect data on Earth system ...

  2. Structure of Cu64.5Zr35.5 Metallic glass by reverse Monte Carlo simulations

    SciTech Connect (OSTI)

    Fang, Xikui W. [Ames Laboratory; Huang, Li [Ames Laboratory; Wang, Cai-Zhuang [Ames Laboratory; Ho, Kai-Ming [Ames Laboratory; Ding, Z. J. [University of Science and Technology of China

    2014-02-07

    Reverse Monte Carlo simulations (RMC) have been widely used to generate three dimensional (3D) atomistic models for glass systems. To examine the reliability of the method for metallic glass, we use RMC to predict the atomic configurations of a “known” structure from molecular dynamics (MD) simulations, and then compare the structure obtained from the RMC with the target structure from MD. We show that when the structure factors and partial pair correlation functions from the MD simulations are used as inputs for RMC simulations, the 3D atomistic structure of the glass obtained from the RMC gives the short- and medium-range order in good agreement with those from the target structure by the MD simulation. These results suggest that 3D atomistic structure model of the metallic glass alloys can be reasonably well reproduced by RMC method with a proper choice of input constraints.

  3. Reversible Hydrogen Storage Materials – Structure, Chemistry, and Electronic Structure

    SciTech Connect (OSTI)

    Robertson, Ian M.; Johnson, Duane D.

    2014-06-21

    To understand the processes involved in the uptake and release of hydrogen from candidate light-weight metal hydride storage systems, a combination of materials characterization techniques and first principle calculation methods have been employed. In addition to conventional microstructural characterization in the transmission electron microscope, which provides projected information about the through thickness microstructure, electron tomography methods were employed to determine the three-dimensional spatial distribution of catalyst species for select systems both before and after dehydrogenation. Catalyst species identification as well as compositional analysis of the storage material before and after hydrogen charging and discharging was performed using a combination of energy dispersive spectroscopy, EDS, and electron energy loss spectroscopy, EELS. The characterization effort was coupled with first-principles, electronic-structure and thermodynamic techniques to predict and assess meta-stable and stable phases, reaction pathways, and thermodynamic and kinetic barriers. Systems studied included:NaAlH4, CaH2/CaB6 and Ca(BH4)2, MgH2/MgB2, Ni-Catalyzed Magnesium Hydride, TiH2-Catalyzed Magnesium Hydride, LiBH4, Aluminum-based systems and Aluminum

  4. FIELD REVERSED CONFIGURATIONS Present Status and Major Issues

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Potential Low complexity due to low field, solenoidal magnet system Advanced fuel potential due to high beta Workshop, March 1997 Most Studied Modes Rotational n=2 mode is driven by centrifugal forces ­ It can be stabilized by weak multipoles with Bm 2/2o > centrifugal pressure Internal tilt starts out as an axial n=1

  5. Reverse Engineering Software Ecosystems Doctoral Dissertation submitted to the

    E-Print Network [OSTI]

    Lanza, Michele

    and the information in the versioning system repositories of the projects in an ecosystem and generating visual perspectives. Given the large amount of information in an ecosystem, we provide exploration mechanisms that allow one to navigate the wealth of information available about the ecosystem. We distinguish between

  6. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    SciTech Connect (OSTI)

    Pfeifer, Peter; Wexler, Carlos; Hawthorne, M. Frederick; Lee, Mark W.; Jalistegi, Satish S.

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have demonstrated the predicted increase in binding energy experimentally, currently at ~10 kJ/mol. The synthetic route for incorporation of boron at the outset is to create appropriately designed copoly- mers, with a boron-free and a boron-carrying monomer, followed by pyrolysis of the polymer, yielding a bo- ron-substituted carbon scaffold in which boron atoms are bonded to carbon atoms by synthesis. This is in contrast to a second route (funded by DE-FG36-08GO18142) in which first high-surface area carbon is cre- ated and doped by surface vapor deposition of boron, with incorporation of the boron into the lattice the final step of the fabrication. The challenge in the first route is to create high surface areas without compromising sp2 boron-carbon bonds. The challenge in the second route is to create sp2 boron-carbon bonds without com- promising high surface areas.

  7. High field strength following the Kauai R-N geomagnetic reversal

    SciTech Connect (OSTI)

    Paul, H.A. . Dept. of Geology)

    1993-04-01

    The paleomagnetism of superposed lava flows on Kauai, Hawaii shows that the ancient geomagnetic field was unusually strong following a reverse-to-normal polarity transition that occurred about 4 million years ago. Paleointensities were determined by a standard experimental procedure (Thelliers' method) that recreates the process of remanence acquisition in volcanic rocks. This experiment makes it possible to infer the strength of the geomagnetic field present with each lava flow formed, thus producing an accurate picture of the ancient field's behavior after the reversal. Samples from 10 volcanic units yielded virtual dipole moments (VDMs) ranging from 7.4 [times] 10[sup 22] Am[sup 2] to 14.5 [times] 10[sup 22] Am[sup 2] with an average of 11.1[times]10[sup 22] Am[sup 2]. This value is high in comparisons to the average VDM for the past 5 m.y., approximately 8.7[times]10[sup 22] Am[sup 2]. In contrast to the highly variable dipole moment observed following a 15 m.y. old reversal at Steen s Mountain, Oregon, the field following the Kauai transition was relatively steady. Surprisingly, the maximum dipole moments following the two reversals were nearly equal. This similarity hints that high field strength may be a systematic feature of the geodynamo immediately following a polarity reversal.

  8. Reversible Fuel Cells Workshop Summary Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7,BreakoutRetooling Michigan:Energy Systems |

  9. Reversible and irreversible processes in dispersive/dissipative optical media: Electro-magnetic free energy and heat production

    E-Print Network [OSTI]

    C. Broadbent; G. Hovhannisyan; M. Clayton; J. Peatross; S. A. Glasgow

    2002-07-31

    We solve the problem addressed by Landau and Lifshitz in 1958, and Oughstun and Sherman of determining the dynamical losses in a purely dissipative dielectric media. We develop concrete notions of macroscopic free energy and losses as energy which is reversible and irreversible, respectively, in the medium-field interaction. We define the reversible and irreversible energies and outline the derivation of said quantities. We examine the implications of our definition and it's auxiliary quantity, the reversal field, for the single Lorentz oscillator model of a medium. We show that for this model the reversible energy reduces to the sum of the kinetic and potential energy, as found by Loudon. We note that in general, the sum of the kinetic and potential energies is greater than the reversible energy. We show that the reversible and irreversible energy have the characteristics classically defining free energy and heat.

  10. Magnetization reversal assisted by half antivortex states in nanostructured circular cobalt disks

    SciTech Connect (OSTI)

    Lara, A.; Aliev, F. G.; Dobrovolskiy, O. V.; Prieto, J. L.; Huth, M.

    2014-11-03

    The half antivortex, a fundamental topological structure which determines magnetization reversal of submicron magnetic devices with domain walls, has been suggested also to play a crucial role in spin torque induced vortex core reversal in circular disks. Here, we report on magnetization reversal in circular disks with nanoholes through consecutive metastable states with half antivortices. In-plane anisotropic magnetoresistance and broadband susceptibility measurements accompanied by micromagnetic simulations reveal that cobalt (Co) disks with two and three linearly arranged nanoholes directed at 45° and 135° with respect to the external magnetic field show reproducible step-like changes in the anisotropic magnetoresistance and magnetic permeability due to transitions between different intermediate states mediated by vortices and half antivortices confined to the dot nanoholes and edges, respectively. Our findings are relevant for the development of multi-hole based spintronic and magnetic memory devices.

  11. Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices

    DOE Patents [OSTI]

    An, Yuehuei H. (Charleston, SC); Mironov, Vladimir A. (Mt. Pleasant, SC); Gutowska, Anna (Richland, WA)

    2000-01-01

    A gelling cell culture medium useful for forming a three dimensional matrix for cell culture in vitro is prepared by copolymerizing an acrylamide derivative with a hydrophilic comonomer to form a reversible (preferably thermally reversible) gelling linear random copolymer in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff, mixing the copolymer with an aqueous solvent to form a reversible gelling solution and adding a cell culture medium to the gelling solution to form the gelling cell culture medium. Cells such as chondrocytes or hepatocytes are added to the culture medium to form a seeded culture medium, and temperature of the medium is raised to gel the seeded culture medium and form a three dimensional matrix containing the cells. After propagating the cells in the matrix, the cells may be recovered by lowering the temperature to dissolve the matrix and centrifuging.

  12. Simulation of oscillating field current drive on the reversed-field pinch

    SciTech Connect (OSTI)

    Harned, D.S.; Schnack, D.D.; Strauss, H.R.; Nebel, R.A.

    1988-07-01

    Oscillating field current drive on the reversed-field pinch is simulated by using a three-dimensional nonlinear resistive magnetohydrodynamic model in conjunction with a one-dimensional hyper-resistive model. When input from the three-dimensional model is used for fluctuating fields in the hyper-resistive equations, the two models are found to give similar relaxed profiles. Comparisons are made with experiments on the Los Alamos National Laboratory ZT-40M reversed-field pinch device (Nucl. Fusion 25, 1321 (1985)). Simulation results indicate that the oscillation period must be much less than the resistive decay time, but should not be much less than the hyper-resistive relaxation time, in order to maintain reversal without a steady-state driving field.

  13. Ultra-fast magnetic vortex core reversal by a local field pulse

    SciTech Connect (OSTI)

    Rückriem, R.; Albrecht, M., E-mail: manfred.albrecht@physik.uni-augsburg.de [Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz (Germany); Schrefl, T. [St. Pölten University of Applied Science, 3100 St. Pölten (Austria)

    2014-02-03

    Magnetic vortex core reversal of a 20-nm-thick permalloy disk with a diameter of 100?nm was studied by micromagnetic simulations. By applying a global out-of-plane magnetic field pulse, it turned out that the final core polarity is very sensitive to pulse width and amplitude, which makes it hard to control. The reason for this phenomenon is the excitation of radial spin waves, which dominate the reversal process. The excitation of spin waves can be strongly suppressed by applying a local field pulse within a small area at the core center. With this approach, ultra-short reversal times of about 15 ps were achieved, which are ten times faster compared to a global pulse.

  14. Theory and Practice of Reversing Control on Multiply- Articulated Vehicles

    E-Print Network [OSTI]

    Rimmer, A. J.; Cebon, D.

    2015-08-18

    ] ? Coefficient of friction between the tyre and the road surface ? Articulation angle [rad] ? Yaw angular velocity [rad/s] ?9? Closed-loop system matrix Page 26 of 44 http://mc.manuscriptcentral.com/jauto Journal of Automobile Engineering 1 2 3 4... is shown in Figure 2 for the two-trailer case (n = 2). Assumptions The following was assumed when deriving the model: (i) The longitudinal velocity of the tractor unit is constant (ii) Yaw and sideslip motion only included; the effects of vehicle roll...

  15. Absence of correlation between Sry polymorphisms and XY sex reversal caused by the M.m. domesticus Y chromosome

    SciTech Connect (OSTI)

    Carlisle, C.; Nagamine, C.M. [Vanderbilt Univ., School of Medicine, Nashville, TN (United States)] [Vanderbilt Univ., School of Medicine, Nashville, TN (United States); Winkinig, H.; Weichenhan, D. [Medizinische Universitaet Zu Luebeck (Germany)] [Medizinische Universitaet Zu Luebeck (Germany)

    1996-04-01

    Mus musculus domesticus Y chromosomes (Y{sup DOM} Chrs) vary in their ability to induce testes in the strain C57BL/6J. In severe cases, XY females develop (XY{sup DOM} sex reversal). To identify the molecular basis for the sex reversal, a 2.7-kb region of Sry, the testis-determining gene, was sequenced from Y{sup DOM} Chrs linked to normal testis determination, transient sex reversal, and severe sex reversal. Four mutations were identified. However, no correlation exists between these mutations and severity of XY{sup DOM} sex reversal. RT-PCR identified Sry transcripts in XY{sup DOM} sex-reversed fetal gonads at 11 d.p.c., the age when Sry is hypothesized to function. In addition, no correlation exists between XY{sup DOM} sex reversal and copy numbers of pSx1, a Y-repetitive sequence whose deletion is linked to XY sex reversal. We conclude that SRY protein variants, blockade of Sry transcription, and deletion of pSx1 sequences are not the underlying causes of XY{sup DOM} sex reversal. 63 refs., 6 figs., 6 tabs.

  16. Mechanical and microscopic properties of the reversible plastic regime in a 2D jammed material

    E-Print Network [OSTI]

    Nathan C. Keim; Paulo E. Arratia

    2013-11-20

    At the microscopic level, plastic flow of a jammed, disordered material consists of a series of particle rearrangements that cannot be reversed by subsequent deformation. An infinitesimal deformation of the same material has no rearrangements. Yet between these limits, there may be a self-organized plastic regime with rearrangements, but with no net change upon reversing a deformation. We measure the oscillatory response of a jammed interfacial material, and directly observe rearrangements that couple to bulk stress and dissipate energy, but do not always give rise to global irreversibility.

  17. Fatigueless response of spider draglines in cyclic torsion facilitated by reversible molecular deformation

    E-Print Network [OSTI]

    Kumar, Bhupesh

    2014-01-01

    We demonstrate that spider draglines exhibit a fatigueless response in extreme cyclic torsion up to its breaking limit. The well defined Raman bands at $1095$ and $1245 cm^{-1}$ shifted linearly towards lower wavenumbers versus increasing twist in both clockwise and counter-clockwise directions. Under thousands of continuous loading cycles of twist strain approaching its breaking limit, all the Raman bands were preserved and the characteristic Raman peak shifts were found to be reversible. Besides, nanoscale surface profile of the worked silk appeared as good as the pristine silk. This unique fatigueless twist response of draglines, facilitated by reversible deformation of protein molecules, could find applications in durable miniatured devices.

  18. Retarded Interaction of Electromagnetic field and Symmetry Violation of Time Reversal in Non-linear Optics

    E-Print Network [OSTI]

    Mei Xiaochun

    2008-04-19

    Based on Document (1), by considering the retarded interaction of radiation fields, the third order transition probabilities of stimulated radiations and absorptions of light are calculated. The revised formulas of nonlinear polarizations are provided. The results show that that the general processes of non-linear optics violate time reversal symmetry. The phenomena of non-linear optics violating time reversal symmetry just as sum frequency, double frequency, different frequencies, double stable states, self-focusing and self-defocusing, echo phenomena, as well as optical self-transparence and self absorptions and so on are analyzed.

  19. Reversing the weak measurement of an arbitrary field with finite photon number 

    E-Print Network [OSTI]

    Sun, Qingqing; Al-Amri, M.; Zubairy, M. Suhail.

    2009-01-01

    ?, can still be reversed probabilistically. If the photon de- tector registered k ?m?n?k? clicks during time t, the com- ponent ?n? will change into e??a? ?a?ta?k?n? = e???n?k?t n ! /?n ? k?!?n ? k? , ?11? where we have ignored the prefactor e???t1... efficiency of the reversing operation ?10?. In a recent experiment ?11?, based on a proposal by Korotkov and Jordan ?12?, the rever- sal of a weak measurement on a superconducting phase qubit was performed. A general procedure for N-dimensional sys- tem...

  20. Propagation direction reversal of ionization zones in the transition between high and low current magnetron sputtering

    SciTech Connect (OSTI)

    School of Materials Science and Engineering, State Key Lab for Materials Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Physics, University of California Berkeley, Berkeley, California 94720, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA; Yang, Yuchen; Liu, Jason; Liu, Lin; Anders, André

    2014-12-11

    Past research has revealed the propagation of dense, asymmetric ionization zones in both high and low current magnetron discharges. Here we report about the direction reversal of ionization zone propagation as observed with fast cameras. At high currents, zones move in the E B direction with velocities of 103 to 104 m/s. However at lower currents, ionization zones are observed to move in the opposite, the -E B direction, with velocities ~;; 103 m/s. It is proposed that the direction reversal is associated with the local balance of ionization and supply of neutrals in the ionization zone.

  1. On the complete determination of biological systems

    E-Print Network [OSTI]

    Church, George M.

    projects to create computational models that are, in some sense, complete. However, the details of what that contribute to the engineering, reverse-engineering or modification of a system). The defining feature advances in medicine, biotechnology and basic research. Moreover, systems level descriptions promise

  2. Thermodynamically Tuned Nanophase Materials for reversible Hydrogen storage

    SciTech Connect (OSTI)

    Ping Liu; John J. Vajo

    2010-02-28

    This program was devoted to significantly extending the limits of hydrogen storage technology for practical transportation applications. To meet the hydrogen capacity goals set forth by the DOE, solid-state materials consisting of light elements were developed. Many light element compounds are known that have high capacities. However, most of these materials are thermodynamically too stable, and they release and store hydrogen much too slowly for practical use. In this project we developed new light element chemical systems that have high hydrogen capacities while also having suitable thermodynamic properties. In addition, we developed methods for increasing the rates of hydrogen exchange in these new materials. The program has significantly advanced (1) the application of combined hydride systems for tuning thermodynamic properties and (2) the use of nanoengineering for improving hydrogen exchange. For example, we found that our strategy for thermodynamic tuning allows both entropy and enthalpy to be favorably adjusted. In addition, we demonstrated that using porous supports as scaffolds to confine hydride materials to nanoscale dimensions could improve rates of hydrogen exchange by > 50x. Although a hydrogen storage material meeting the requirements for commercial development was not achieved, this program has provided foundation and direction for future efforts. More broadly, nanoconfinment using scaffolds has application in other energy storage technologies including batteries and supercapacitors. The overall goal of this program was to develop a safe and cost-effective nanostructured light-element hydride material that overcomes the thermodynamic and kinetic barriers to hydrogen reaction and diffusion in current materials and thereby achieve > 6 weight percent hydrogen capacity at temperatures and equilibrium pressures consistent with DOE target values.

  3. Desalination Using Vapor-Compression Distillation 

    E-Print Network [OSTI]

    Lubis, Mirna R.

    2010-07-14

    The ability to produce potable water economically is the primary purpose of seawater desalination research. Reverse osmosis (RO) and multi-stage flash (MSF) cost more than potable water produced from fresh water resources. ...

  4. Nanoporous graphene as a water desalination membrane

    E-Print Network [OSTI]

    Cohen-Tanugi, David

    2015-01-01

    Desalination is one of the most promising approaches to supply new fresh water in the face of growing water issues. However, commercial reverse osmosis (RO) techniques still suffer from important drawbacks. In order for ...

  5. Application of solar-powered desalination in a remote town in South Australia 

    E-Print Network [OSTI]

    De Munari, Annalisa; Capão, D.P.S; Richards, B.S.; Schäfer, Andrea

    2009-01-01

    Coober Pedy is a remote town in South Australia with abundant solar radiation and scarce and low quality water, where a reverse osmosis plant has been operating since 1967. This paper evaluates the feasibility of powering ...

  6. Novel nanomaterials for water desalination technology

    E-Print Network [OSTI]

    Cohen-Tanugi, David

    Water desalination has a central role to play in the global challenge for sustainable water supply in the 21st century. But while the membranes employed in reverse osmosis (RO) have benefited from substantial improvements ...

  7. The effects of variable operation on RO plant performance

    E-Print Network [OSTI]

    Williams, Christopher Michael, S.M. Massachusetts Institute of Technology

    2011-01-01

    Optimizations of reverse osmosis (RO) plants typically consider steady state operation of the plant. RO plants are subject to transient factors that may make it beneficial to produce more water at one time than at another. ...

  8. Sythhesis and Optimization of Hybrid Membrane Desalination Networks with Value Extraction 

    E-Print Network [OSTI]

    AlNouss, Ahmed M

    2014-02-04

    Membrane desalination technology has become a valuable advanced water treatment process to purify difficult water sources for potable use. Reverse Osmosis (RO) and Nanofiltration (NF) processes are commonly used desalination technologies. Studies...

  9. Investigating the adsorption and transport of water in MFI zeolite pores for water desalination

    E-Print Network [OSTI]

    Humplik, Thomas

    2010-01-01

    The permeability of reverse osmosis membranes is limited by the diffusive transport of water across a non-porous polyamide active layer. Alternatively, fabricating a microporous active layer capable of rejecting salt ions ...

  10. Investigating transport through sub-nanometer zeolites pores

    E-Print Network [OSTI]

    Humplik, Thomas

    2014-01-01

    Membrane-based reverse osmosis (RO), which accounts for over 40% of the current worldwide desalination capacity, is limited by the solution-diffusion mode of water transport through a tortuous polymeric active layer. ...

  11. Desalination of seawater using a high-efficiency jet ejector 

    E-Print Network [OSTI]

    Vishwanathappa, Manohar D.

    2005-08-29

    The ability to produce potable water economically is the primary focus of seawater desalination research. There are numerous methods to desalinate water, including reverse osmosis, multi-stage flash distillation, and multi-effect evaporation...

  12. Desalination of water by vapor transport through hydrophobic nanopores

    E-Print Network [OSTI]

    Lee, Jongho, Ph. D. Massachusetts Institute of Technology

    2014-01-01

    Although Reverse osmosis (RO) is the state-of-the-art desalination technology, it still suffers from persistent drawbacks including low permeate flux, low selectivity for non-ionic species, and lack of resistance to chlorine. ...

  13. Desalination using electrodialysis as a function of voltage and salt concentration 

    E-Print Network [OSTI]

    Banasiak, Laura J.; Kruttschnitt, Thomas W.; Schäfer, Andrea

    2007-01-01

    Electrodialysis is a process that competes with reverse osmosis for desalination and the removal of specific inorganic contaminants. Desalination experiments were carried out on aqueous solutions containing 5 and 10 g/L NaCl to determine the optimum...

  14. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    4 show PV+ system power flows, battery charge state and netPV+ system power flows (a,b,c), the battery charge state (d,reverse power flow (i.e. the battery is charging from the

  15. Reversible differentiation of myofibroblasts by MyoD

    SciTech Connect (OSTI)

    Hecker, Louise; Jagirdar, Rajesh; Jin, Toni; Thannickal, Victor J., E-mail: vjthan@uab.edu

    2011-08-01

    Myofibroblasts participate in tissue repair processes in diverse mammalian organ systems. The deactivation of myofibroblasts is critical for termination of the reparative response and restoration of tissue structure and function. The current paradigm on normal tissue repair is the apoptotic clearance of terminally differentiated myofibroblasts; while, the accumulation of activated myofibroblasts is associated with progressive human fibrotic disorders. The capacity of myofibroblasts to undergo de-differentiation as a potential mechanism for myofibroblast deactivation has not been examined. In this report, we have uncovered a role for MyoD in the induction of myofibroblast differentiation by transforming growth factor-{beta}1 (TGF-{beta}1). Myofibroblasts demonstrate the capacity for de-differentiation and proliferation by modulation of endogenous levels of MyoD. We propose a model of reciprocal signaling between TGF-{beta}1/ALK5/MyoD and mitogen(s)/ERK-MAPK/CDKs that regulate myofibroblast differentiation and de-differentiation, respectively. Our studies provide the first evidence for MyoD in controlling myofibroblast activation and deactivation. Restricted capacity for de-differentiation of myofibroblasts may underlie the progressive nature of recalcitrant human fibrotic disorders.

  16. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  17. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  18. Minimal RED Cell Pairs Markedly Improve Electrode Kinetics and Power Production in Microbial Reverse Electrodialysis Cells

    E-Print Network [OSTI]

    improved compared to microbial fuel cells (MFCs) by using ammonium bicarbonate (AmB) solutions in multiple electrodes used in a microbial fuel cell (MFC) are placed on each side of a reverse electrodialysis (RED increasing power production (Acetate: 4.2 W/m2 ; WW: 1.9 W/m2 ). By maintaining near optimal electrode power

  19. Usefulness of the reversible jump Markov chain Monte Carlo model in regional flood frequency

    E-Print Network [OSTI]

    Ribatet, Mathieu

    Usefulness of the reversible jump Markov chain Monte Carlo model in regional flood frequency; revised 3 May 2007; accepted 17 May 2007; published 3 August 2007. [1] Regional flood frequency analysis and the index flood approach. Results show that the proposed estimator is absolutely suited to regional

  20. Blue quantum electroabsorption modulators based on reversed quantum confined Stark effect with blueshift

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Blue quantum electroabsorption modulators based on reversed quantum confined Stark effect of blue quantum electroabsorption modulators that incorporate 5 nm thick In0.35Ga0.65N/GaN quantum cm-1 for 6 V bias swing around 424 nm, holding promise for blue optical clock generation

  1. Study of Equilibrium Operation by Rotating Magnetic Field Current Drive in Field-Reversed Configuration

    E-Print Network [OSTI]

    Washington at Seattle, University of

    penetrated into an FRC plasma is analytically given by [3] (1) (2) ( ) ( ) ( ) -= - ti r e kaiI kri (RMF) applied for the sake of maintaining Field Reversed Configuration (FRC) in steady state. The simple analytical model such as infinite-long plasma, rigidly rotating ions and electrons and uniform

  2. Maintaining the closed magnetic-field-line topology of a field-reversed configuration (FRC)

    E-Print Network [OSTI]

    not significantly change the FRC's closed field structure. The FRC is an example of a self-organized plasma wherein field-line closure analysis. The study of field-line closure for FRC-like plasmas with transverse1 Maintaining the closed magnetic-field-line topology of a field-reversed configuration (FRC

  3. Gyrokinetic Particle Simulation of a Field Reversed Configuration D. P. Fulton,1, a)

    E-Print Network [OSTI]

    Lin, Zhihong

    - erties favorable for fusion reactors. The FRC represents a high plasma with surprisingly good of the field-reversed configuration (FRC) has been developed using the gyrokinetic toroidal code (GTC). The magnetohydrodynamic equilibrium is mapped from cylindrical coordinates to Boozer coordinates for the FRC core

  4. Studies of Global Stability of FieldReversed Configuration Plasmas Using A Rigid Body Model

    E-Print Network [OSTI]

    ­reversed configuration (FRC) plasmas has been stud­ ied using a simple rigid body model in the parameter space (oblate), while the tilt stability of FRC's with large E (prolate) depends on s=E. It is found that plasma to be unstable to many global magnetohydrodynamic (MHD) modes. However, FRC plasmas formed in `­pinch devices

  5. A numerical study of rotating magnetic fields as a current drive for field reversed configurations

    E-Print Network [OSTI]

    Washington at Seattle, University of

    , confinement, and sustainment TCS 5 experiment, an RMF will be applied to an existing FRC. The plasma Richard D. Milroy University of Washington, Redmond Plasma Physics Laboratory, Seattle, Washington 98195 of a Rotating Magnetic Field RMF as a current drive mechanism in a Field Reversed Configuration FRC . This model

  6. Sustainment of elongated field reversed configurations with localized rotating magnetic field current drive

    E-Print Network [OSTI]

    Washington at Seattle, University of

    this by increasing its penetration into the FRC, brought about automatically by a slight decrease in plasma density current drive H. Y. Guo and A. L. Hoffman Redmond Plasma Physics Laboratory, University of Washington magnetic field RMF antenna length on the sustainment of RMF driven field reversed configurations FRC have

  7. THICK LIQUID-WALLED, FIELD-REVERSED CONFIGURATION* R. W. Moira

    E-Print Network [OSTI]

    California at Los Angeles, University of

    first wall. Although expected to be unstable to ideal MHD modes, experimental FRC plasmas have proved20--a liquid metal) protects the structural walls of the field-reversed configuration (FRC) so in an acceptable impurity level in the core plasma. The shielding of the core by the edge plasma is modeled

  8. Flux Generation and Sustainment of a Field Reversed Configuration (FRC) with Rotating

    E-Print Network [OSTI]

    Washington at Seattle, University of

    component: ur = -/B2 ·dpe/dr plasma diffuses radially outward With RMF: component: j = urBz - FRC cylinder: More accurately for FRC: #12;Screening of RMF Field by Plasma · Axial currents inside FRC limitFlux Generation and Sustainment of a Field Reversed Configuration (FRC) with Rotating Magnetic

  9. Studies of global stability of field-reversed configuration plasmas using a rigid body model

    E-Print Network [OSTI]

    Ji, Hantao

    stability of field-reversed configuration FRC plasmas has been studied using a simple rigid body model to be unstable to many global magnetohydrody- namic MHD modes. However, FRC plasmas formed in - pinch devices of motion for each global mode is formulated and analyzed using a rigid body model of the FRC plasma

  10. Penetration of a transverse magnetic field by an accelerated field-reversed configuration

    E-Print Network [OSTI]

    Washington at Seattle, University of

    . Slough and A. L. Hoffman Redmond Plasma Physics Laboratory, University of Washington, Seattle, Washington 98102 Received 23 June 1998; accepted 14 October 1998 The field-reversed configuration FRC is a compact. The study of the acceleration and penetration physics of the FRC into a transverse magnetic field gradient

  11. Tilt mode stability scaling in field-reversed configurations with finite Larmor radius effect

    E-Print Network [OSTI]

    Washington at Seattle, University of

    University, Ikarashi, Niigata 950-2181, Japan Loren C. Steinhauer University of Washington, Redmond Plasma stability of a static plasma with finite-Larmor-radius FLR effects depends on a combination of the FLR-reversed configuration FRC previous computations of these two factors led to a prediction of stability for S * (3 5)E

  12. Spheromak merging and field reversed configuration formation at the Swarthmore Spheromak Experimenta...

    E-Print Network [OSTI]

    Brown, Michael R.

    configuration FRC 2 is a high com- pact toroidal CT plasma. In its idealized form, it has closed, purely. Plasmas 6, 1717 1999 are reported. In its new configuration, SSX is optimized to study field reversed configuration FRC formation and stability by counter-helicity spheromak merging. A pair of midplane coils

  13. Physics Overview of Rotating Magnetic Field Current Drive for a Field-Reversed Configuration

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Richard D. Milroy Redmond Plasma Physics Laboratory, University of Washington Introduction A Rotating Magnetic Field (RMF) can be used to drive the current in a Field-Reversed Configuration (FRC). This method can be used to sustain an existing FRC, as well as generate a new FRC from a background pre

  14. Observations of improved confinement in field reversed configurations sustained by antisymmetric rotating magnetic fields

    E-Print Network [OSTI]

    Washington at Seattle, University of

    plasma, resulting in a mostly azimuthal field near the FRC separatrix with a very small radial component rotating magnetic fields H. Y. Guo, A. L. Hoffman, and L. C. Steinhauer Redmond Plasma Physics Laboratory in field reversed configurations FRC . A major concern about this method has been the fear of opening up

  15. Rotating magnetic field current drive of high-temperature field reversed configurations with high scaling

    E-Print Network [OSTI]

    Washington at Seattle, University of

    scaling H. Y. Guo,a A. L. Hoffman, and R. D. Milroy Redmond Plasma Physics Laboratory, University in the Translation, Confinement, and Sustainment--Upgrade TCSU device has allowed much higher plasma temperatures to be achieved in the field reversed configurations FRC under rotating magnetic field RMF formation

  16. Formation and steady-state maintenance of field reversed configuration using rotating magnetic field current drive

    E-Print Network [OSTI]

    Washington at Seattle, University of

    , the FRC simply expanded until it contacted the plasma tube wall.1­3 This resulted in relatively cold,a) and G. R. Votroubek Redmond Plasma Physics Laboratory, University of Washington, Seattle, Washington to both form and maintain field reversed configurations FRC in quasisteady state. These experiments differ

  17. Toroidal field stabilization of the rotational instability in field-reversed configurations

    E-Print Network [OSTI]

    Washington at Seattle, University of

    . Milroy1,2,a and L. C. Steinhauer2 1 Plasma Science and Innovation Center, Box 32250, University of Washington, Seattle, Washington 98195-2250, USA 2 Redmond Plasma Physics Laboratory, University of Washington in dynamically formed field-reversed configurations FRC . It generally appears as an m=2 mode azimuthal mode

  18. Modelling of Field-reversed configuration experiment with large safety factor

    E-Print Network [OSTI]

    Washington at Seattle, University of

    confinement of the plasma. I. Introduction Field-reversed configurations (FRC) are a subclass of Compact of the plasma, and especially so at the edge. This surprising fact results from the large elongation of the FRC discusses the stability implications of high-q in FRC plasmas. Section V briefly presents other surprising

  19. Average-case analysis of perfect sorting by reversals Mathilde Bouvel

    E-Print Network [OSTI]

    Boyer, Edmond

    genomics, is the process of sorting a signed permutation to either the identity or to the reversed identity example here: we perform an average case analysis of a sorting algorithm from computational genomics by generating function analysis of a family of trees. Motivation: a computational genomics problem

  20. A comparison of reversible chemical reactions for solar thermochemical power generation

    E-Print Network [OSTI]

    Boyer, Edmond

    453 A comparison of reversible chemical reactions for solar thermochemical power generation O. M storage of the reaction products. A number of reactions have been proposed for solar thermochemical power to be a good choice for first generation solar thermochemical power generation. Revue Phys. Appl. 15 (1980) 453

  1. See reverse side for all notes College of Engineering & Computer Science

    E-Print Network [OSTI]

    Mohan, Chilukuri K.

    Physical Chemistry (3) ENVIRONMENTAL ENGINEERING (35) D=12 CIE272 Civil & Envir. Engr Measurements 3 CIE274See reverse side for all notes College of Engineering & Computer Science Environmental Engineering Chemistry 1 CHEM 110 3 CHE107 General Chemistry Lab 1 CHEM 110 1 CHE116 General Chemistry 2 CHEM 111 3 CHE

  2. *See reverse side for all notes College of Engineering and Computer Science

    E-Print Network [OSTI]

    Mohan, Chilukuri K.

    *See reverse side for all notes College of Engineering and Computer Science Bioengineering NAME Chemistry 1 CH 141 3 CHE107 General Chemistry Lab 1 CH 141 1 CHE116 General Chemistry 2 CH 142 3 CHE117 General Chemistry Lab 2 CH 142 1 CHE275 Organic Chemistry 1 CH 247 3 CHE276 Organic Chemistry Lab 1 CH 247

  3. See reverse side for all notes College of Engineering & Computer Science

    E-Print Network [OSTI]

    Mohan, Chilukuri K.

    ) MAE251 Thermodynamics (4) CHE346 Physical Chemistry (3) ENVIRONMENTAL ENGINEERING (35) D=12 CIE272See reverse side for all notes College of Engineering & Computer Science Environmental Engineering. Equations & Matrix Algebra *MA 260 3 SCIENCES (20) CHE106 General Chemistry 1 CH 141 3 CHE107 General

  4. See reverse side for all notes College of Engineering & Computer Science

    E-Print Network [OSTI]

    Mohan, Chilukuri K.

    251 Thermodynamics (4) OR CHE346 Physical Chemistry (3) ENGR 2200 ENVIRONMENTAL ENGINEERING (35) D=12See reverse side for all notes College of Engineering & Computer Science Environmental Engineering Chemistry 1 CHEM 1510 3 CHE107 General Chemistry Lab 1 CHEM 1510 1 CHE116 General Chemistry 2 CHEM 1520 3

  5. *See reverse side for all notes College of Engineering and Computer Science

    E-Print Network [OSTI]

    Mohan, Chilukuri K.

    *See reverse side for all notes College of Engineering and Computer Science Bioengineering NAME Chemistry 1 CHE 1550 3 CHE107 General Chemistry Lab 1 CHE 1550 1 CHE116 General Chemistry 2 CHE 1560 3 CHE117 General Chemistry Lab 2 CHE 1560 1 CHE275 Organic Chemistry 1 CHE 2530 3 CHE276 Organic Chemistry

  6. See reverse side for all notes College of Engineering & Computer Science

    E-Print Network [OSTI]

    Mohan, Chilukuri K.

    Physical Chemistry (3) ENVIRONMENTAL ENGINEERING (35) D=12 CIE272 Civil & Envir. Engr Measurements 3 CIE274See reverse side for all notes College of Engineering & Computer Science Environmental Engineering Chemistry 1 CHEM 1211 3 CHE107 General Chemistry Lab 1 CHEM 1211L 1 CHE116 General Chemistry 2 CHEM 1212 3

  7. See reverse side for all notes College of Engineering & Computer Science

    E-Print Network [OSTI]

    Mohan, Chilukuri K.

    Thermodynamics (4) CHE346 Physical Chemistry (3) ENVIRONMENTAL ENGINEERING (35) D=12 CIE272 Civil & Envir. EngrSee reverse side for all notes College of Engineering & Computer Science Environmental Engineering. Equations & Matrix Algebra (3)____ 3 SCIENCES (20) CHE106 General Chemistry I (3)____ 3 CHE107 General

  8. See reverse side for all notes College of Engineering & Computer Science

    E-Print Network [OSTI]

    Mohan, Chilukuri K.

    (3 or 4) EE204 MAE251 Thermodynamics (4) CHE346 Physical Chemistry (3) ENVIRONMENTAL ENGINEERING (35See reverse side for all notes College of Engineering & Computer Science Environmental Engineering 3 MA443 4 MAT485 Diff. Equations & Matrix Algebra MA451 3 SCIENCES (20) CHE106 General Chemistry 1

  9. Gradual time reversal in thermo-and photo-acoustic tomography within a resonant

    E-Print Network [OSTI]

    Kunyansky, Leonid

    , thermoacoustic tomography, time reversal, resonant cavity, reflecting walls, wave equation 1. Introduction Thermoacoustic tomography (TAT) [23, 44] and photoacoustic (or optoacoustic) tomography (PAT/OAT) [9, 22, 33] are based on the thermoacoustic effect: when a material is heated it expands. To perform measurements

  10. M. Bahrami ENSC 461 (S 11) Reversed Brayton Cycle 1 ENSC 461 Tutorial, Week#8

    E-Print Network [OSTI]

    Bahrami, Majid

    exchangers are constant pressure devices Step 5: Solve Part a) The mass flow rate of air required can in reverse with a temperature and pressure at the inlet of the compressor of 37C and 100 kPa. The compressor. In this case, the conditioned space (represented by the low temperature heat exchanger) fits these criteria

  11. BIOTECHNOLOGICALLY RELEVANT ENZYMES AND PROTEINS Escherichia coli hydrogenase 3 is a reversible enzyme

    E-Print Network [OSTI]

    Wood, Thomas K.

    hydrogenase. Keywords E. coli hydrogenase 3 . Reversible hydrogenase . Hydrogen production . Hydrogen uptake no toxic by- products (Hansel and Lindblad 1998). The use of biological methods for hydrogen production ciliates, and anaerobic fungi (Horner et al. 2002). Biohydrogen may be produced through either

  12. Earth stewardship: a strategy for socialecological transformation to reverse planetary degradation

    E-Print Network [OSTI]

    Jackson, Robert B.

    Earth stewardship: a strategy for social­ecological transformation to reverse planetary degradation for managing estates or for keeping order at public events. Today, the Earth is one global estate, and improved stewardship is vital for maintaining social order and for preserving life on Earth. In this paper, we describe

  13. On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure Alex Biryukov and Léo of F are far from random and propose a design criteria, along with an algorithm which generates S into the visual representation of S-box's DDT. Keywords: S-box design criteria, Skipjack, linearity, functional

  14. Electric-field-driven magnetization reversal in square-shaped nanomagnet-based multiferroic heterostructure

    E-Print Network [OSTI]

    Chen, Long-Qing

    Electric-field-driven magnetization reversal in square-shaped nanomagnet-based multiferroic. Lett. 98, 222509 (2011); 10.1063/1.3597796 Electrically controlled magnetization switching://scitation.aip.org/termsconditions. Downloaded to IP: 128.118.37.128 On: Wed, 27 May 2015 18:58:21 #12;Electric-field-driven magnetization

  15. Analysis of an Up/Down Power Control Algorithm for the CDMA Reverse Link under Fading #

    E-Print Network [OSTI]

    Mandayam, Narayan

    signal to interference ratio (SIR). On the reverse link, the base station controls the transmit power of the mobile stations so that each user meets its SIR requirement. Power control schemes can be centralized [1, power control is usually done based on (feedback) commands from the base station where the transmit

  16. Time-reversal invariance violation measurement using polarized neutron scattering from polarized xenon

    E-Print Network [OSTI]

    Pinghan Chu

    2014-03-06

    We proposed to use polarized neutrons scattering from a hyperpolarized 131Xe gaseous target in order to measure time-reversal violation effect in baryon processes with nucleons. This article provides a brief introduction, historical review, and possible methods to construct a hyperpolarized 131Xe gaseous target.

  17. A Reversible Process Calculus and the Modelling of the ERK Signalling Pathway

    E-Print Network [OSTI]

    Ulidowski, Irek

    A Reversible Process Calculus and the Modelling of the ERK Signalling Pathway Iain Phillips Irek and key identi- fiers to control execution. As an application of our calculus, we model the ERK signalling in the ERK signalling pathway described in Section 3 is a good example. Simplifying, let us assume

  18. Circulation . Author manuscript Activation of lung p53 by Nutlin-3a prevents and reverses experimental

    E-Print Network [OSTI]

    Boyer, Edmond

    Circulation . Author manuscript Page /1 14 Activation of lung p53 by Nutlin-3a prevents PA-SMCs; lung p53, p21, and MDM2 protein levels; and p21, Bax, PUMA, BTG2, and MDM2 mRNA levels or reversal by Nutlin-3a required lung p53 stabilization and increased p21 expression, as indicated

  19. ORIGINAL ARTICLE Chronic dim light at night provokes reversible depression-like

    E-Print Network [OSTI]

    Nelson, Randy J.

    .96; published online 24 July 2012 Keywords: BDNF; cytokine; hamster; hippocampus; light pollution; Phodopus in the United States and Europe experience nightly light pollution.8 Such unnatural conditions almost certainlyORIGINAL ARTICLE Chronic dim light at night provokes reversible depression-like phenotype: possible

  20. Formation of Self-Supporting Reversible Cellular Networks in Suspensions of Colloids and Liquid Crystals

    E-Print Network [OSTI]

    Schofield, Andrew

    .11-13 (ii) In suspensions of sterically stabilized colloidal particles dispersed in liquid crystalFormation of Self-Supporting Reversible Cellular Networks in Suspensions of Colloids and Liquid, calorimetric findings for liquid crystal/colloid mixtures, heated and cooled up to 13 times, point