Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fault diagnosis in reversible circuits under missing-gate fault model  

Science Conference Proceedings (OSTI)

This article presents a novel technique for fault detection as well as fault location in a reversible combinational circuit under the missing gate fault model. It is shown that in an (nxn) reversible circuit implemented with k-CNOT gates, addition of ...

Hafizur Rahaman; Dipak K. Kole; Debesh K. Das; Bhargab B. Bhattacharya

2011-07-01T23:59:59.000Z

2

A reverse osmosis laboratory plant for experimenting with fault-tolerant control  

Science Conference Proceedings (OSTI)

A test bed for research and teaching in fault-tolerant control (FTC) systems is presented. The laboratory plant is based on an industrial reverse osmosis desalination plant equipped with standardized components, which introduces more realism and robustness ...

A. Gambier; T. Miksch; E. Badreddin

2009-06-01T23:59:59.000Z

3

Dissections of a metal rectangle  

E-Print Network (OSTI)

In the present popular science paper the following geometric questions are answered: - Which rectangles can be dissected into squares? - When a square can be dissected into rectangles similar to a given rectangle? The proofs are based on a physical interpretation using electrical networks. Only secondary school background is assumed in the paper.

Prasolov, Maxim

2010-01-01T23:59:59.000Z

4

Imaging Faults with Reverse-Time Migration for Geothermal Exploration at Jemez Pueblo in New Mexico  

SciTech Connect

The fault zones at Jemez Pueblo may dominate the flow paths of hot water, or confine the boundaries of the geothermal reservoir. Therefore, it is crucial to image the geometry of these fault zones for geothermal exploration in the area. We use reverse-time migration with a separation imaging condition to image the faults at Jemez Pueblo. A finite-difference full-wave equation method with a perfectly-matching-layer absorbing boundary condition is used for backward propagation of seismic reflection data from receivers and forward propagation of wavefields from sources. In the imaging region, the wavefields are separated into the upgoing and downgoing waves, and leftgoing and rightgoing waves. The upgoing and downgoing waves are used to obtain the downward-looking image, and the leftgoing and rightgoing waves are used to form the left-looking image and right-looking image from sources. The left-looking and right-looking images are normally weaker than the downward-looking image because the reflections from the fault zones are much weaker than those from sedimentary layers, but these migration results contain the images of the faults. We apply our reverse-time migration with a wavefield separation imaging condition to seismic data acquired at Jemez Pueblo, and our preliminary results reveal many faults in the area.

Huang, Lianjie [Los Alamos National Laboratory; Albrecht, Michael [TBA Power; Kaufman, Greg [Jemez Purblo; Kelley, Shari [NM Bureau of Geology and Mineral Researces; Rehfeldt, Kenneth [Los Alamos National Laboratory; Zhang, Zhifu [EES-17 visitor

2011-01-01T23:59:59.000Z

5

Reverse Computation for Rollback-based Fault Tolerance in Large Parallel Systems  

SciTech Connect

Reverse computation is presented here as an important future direction in addressing the challenge of fault tolerant execution on very large cluster platforms for parallel computing. As the scale of parallel jobs increases, traditional checkpointing approaches suffer scalability problems ranging from computational slowdowns to high congestion at the persistent stores for checkpoints. Reverse computation can overcome such problems and is also better suited for parallel computing on newer architectures with smaller, cheaper or energy-efficient memories and file systems. Initial evidence for the feasibility of reverse computation in large systems is presented with detailed performance data from a particle simulation scaling to 65,536 processor cores and 950 accelerators (GPUs). Reverse computation is observed to deliver very large gains relative to checkpointing schemes when nodes rely on their host processors/memory to tolerate faults at their accelerators. A comparison between reverse computation and checkpointing with measurements such as cache miss ratios, TLB misses and memory usage indicates that reverse computation is hard to ignore as a future alternative to be pursued in emerging architectures.

Perumalla, Kalyan S [ORNL; Park, Alfred J [ORNL

2013-01-01T23:59:59.000Z

6

Simplest optimal cutting patterns for equal rectangles  

Science Conference Proceedings (OSTI)

This paper presents branch-and-bound algorithms that can guarantee the simplest optimal cutting patterns of equal rectangles. An existing linear algorithm determines the global upper bound exactly. The branching process ends when a branch of a lower ... Keywords: Cutting stock problem, Optimization, Two-dimensional cutting

Yaodong Cui

2006-11-01T23:59:59.000Z

7

Overpressure prediction by mean total stress estimate using well logs for compressional environments with strike-slip or reverse faulting stress state  

E-Print Network (OSTI)

Predicting correct pore-pressure is important for drilling applications. Wellbore stability problems, kicks, or even blow-outs can be avoided with a good estimate of porepressure. Conventional pore-pressure estimation methods are based on one-dimensional compaction theory and depend on a relationship between porosity and vertical effective stress. Strike-slip or reverse faulting environments especially require a different way to determine pore-pressure, since the overburden is not the maximum stress. This study proposes a method which better accounts for the three-dimensional nature of the stress field and provides improved estimates of pore-pressure. We apply the mean total stress estimate to estimate pore-pressure. Pore pressure is then obtained by modifying Eaton�s pore-pressure equations, which require either resistivity or sonic log data. The method was tested in the Snorre Field in the Norwegian North Sea, where the field changes from strike-slip to reverse stress state. Eaton�s resistivity and sonic equations were used to predict pore-pressure in this region by replacing the vertical stress by the mean total stress estimate. Results suggest that the modified Eaton method with resistivity log data gives better results for the area than the conventional method. The ratio of maximum horizontal stress to minimum horizontal stress throughout each well should be known for best results.

Ozkale, Aslihan

2006-12-01T23:59:59.000Z

8

Fault finder  

DOE Patents (OSTI)

A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

Bunch, Richard H. (1614 NW. 106th St., Vancouver, WA 98665)

1986-01-01T23:59:59.000Z

9

High density packings of equal circles in rectangles with variable aspect ratio  

Science Conference Proceedings (OSTI)

Arranging a fixed number n of equal non-overlapping circles in a rectangle with variable aspect ratio is a non-standard packing problem. It arises if one has to decide how a certain number of circular items should be packed into a rectangular box when ... Keywords: Circle packing, Container design, Hexagonal grid, Rectangular container, Variable aspect ratio

E. Specht

2013-01-01T23:59:59.000Z

10

Tetratic order in the phase behavior of a hard-rectangle system  

Science Conference Proceedings (OSTI)

Previous Monte Carlo investigations by Wojciechowski et al. have found two unusual phases in two-dimensional systems of anisotropic hard particles: a tetratic phase of fourfold symmetry for hard squares [Comput. Methods Sci. Tech. 10, 235 (2004)], and a nonperiodic degenerate solid phase for hard-disk dimers [Phys. Rev. Lett. 66, 3168 (1991)]. In this work, we study a system of hard rectangles of aspect ratio two, i.e., hard-square dimers (or dominos), and demonstrate that it exhibits phases with both of these unusual properties. The liquid shows quasi-long-range tetratic order, with no nematic order. The solid phase we observe is a nonperiodic tetratic phase having the structure of a random tiling of the square lattice with dominos with the well-known degeneracy entropy 1.79k{sub B} per particle. Our simulations do not conclusively establish the thermodynamic stability of this orientationally disordered solid; however, there are strong indications that this phase is glassy. Our observations are consistent with a two-stage phase transition scenario developed by Kosterlitz and co-workers with two continuous phase transitions, the first from isotropic to tetratic liquid, and the second from tetratic liquid to solid. We obtain similar results with both a classical Monte Carlo method using true rectangles and a novel molecular dynamics algorithm employing rectangles with rounded corners.

Donev, Aleksandar [Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544 (United States); PRISM, Princeton University, Princeton, New Jersey 08544 (United States); Burton, Joshua [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Stillinger, Frank H. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Torquato, Salvatore [Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544 (United States); PRISM, Princeton University, Princeton, New Jersey 08544 (United States); Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)

2006-02-01T23:59:59.000Z

11

Effects of burial history, rock ductility and recovery magnitude on inversion of normal faulted strata  

E-Print Network (OSTI)

Inversion of normal faults at different burial depths is studied using physical models constructed with rock and deformed at confining pressure. Models consist of a 1 cm thick limestone layer above a fault dipping 70° in a rigid medium, and are subjected to a two-stage deformation path of layer-parallel extension followed by coaxial contraction. To investigate the effects of burial depth and relative ductility on kinematics of inversion, five model suites were run in which confining pressure and recovery magnitudes were varied. In all models, a normal fault forms in the limestone during extension. Subsequent inversion is accommodated in the limestone by reverse slip on the normal fault, creation and movement along new reverse faults, and distributed fracturing and folding. The relative contribution of these mechanisms depends on the relative ductility of the rock and magnitude of inversion. Reverse slip on the normal fault and distributed fracturing occur during early stages of inversion and new reverse faults form at intermediate stages. During late stage inversion, strata with low mean ductility shorten primarily by reverse slip on the pre-existing normal fault, whereas strata with high mean ductility shorten by continued slip on reverse faults. Evidence for inversion is provided by superposed fracture fabrics in the footwall at early stages (100% recovery). This change in fracture fabric during inversion could lead to an overpressured footwall in natural inversion structures. Reverse reactivation of the normal faults may occur during coaxial contraction even though such faults are unfavorably oriented assuming typical rock friction behavior and a homogeneous stress state. Localized reverse slip on normal faults is favored when strata display low ductility and less favored when strata work-harden during extension, however, the models show that the final inversion geometry is dependent on the ductility during both phases of deformation. Even a fault that is work-hardened during extension can reactivate if the ductility during contraction is low enough.

Kuhle, Nathan John

2001-01-01T23:59:59.000Z

12

FDD Algorithm for an AHU Reverse-Return System  

E-Print Network (OSTI)

A fault detection and diagnosis (FDD) algorithm was developed for an AHU reverse-return system for air cooling. These FDD rules were generated using simulation in three steps. Cause-effect rules were established by connecting the faults and their related effects. The FDD rules were developed for the following faults: old valve, fouled return pipe, fault in the outlet air temperature sensor, fault in the temperature sensor for the inlet temperature, bad position of the sensor for pressure difference. The effects of the involved faults were observed on four system performances. The results showed that increase in both the cooling coil rate and the pump rate appear due to faults in sensors. The inaccurate measurement of the pressure difference and the fault in the control valve do not affect the AHU outlet air temperatures. Increase in both the outlet air temperature and the pump power consumption appears due to the fouled return pipes.

Djuric, N.; Novakovic, V.

2008-10-01T23:59:59.000Z

13

Recurrent faulting and petroleum accumulation, Cat Creek Anticline, central Montana  

SciTech Connect

The Cat Creek anticline, scene of central Montana's first significant oil discovery, is underlain by a south-dipping high-angle fault (Cat Creek fault) that has undergone several episodes of movement with opposite sense of displacement. Borehole data suggest that the Cat Creek fault originated as a normal fault during Proterozoic rifting concurrent with deposition of the Belt Supergroup. Reverse faulting took place in Late Cambrian time, and again near the end of the Devonian Period. The Devonian episode, coeval with the Antler orogeny, raised the southern block several hundred feet. The southern block remained high through Meramecian time, then began to subside. Post-Atokan, pre-Middle Jurassic normal faulting lowered the southern block as much as 1,500 ft. During the Laramide orogeny (latest Cretaceous-Eocene) the Cat Creek fault underwent as much as 4,000 ft of reverse displacement and a comparable amount of left-lateral displacement. The Cat Creek anticline is a fault-propagation fold; en echelon domes and listric normal faults developed along its crest in response to wrenching. Oil was generated mainly in organic-rich shales of the Heath Formation (upper Chesterian Series) and migrated upward along tectonic fractures into Pennsylvanian, Jurassic, and Cretaceous reservoir rocks in structural traps in en echelon domes. Production has been achieved only from those domes where structural closure was retained from Jurassic through Holocene time.

Nelson, W.J. (Illinois State Geological Survey, Champaign (United States))

1991-06-01T23:59:59.000Z

14

Transient fault modeling and fault injection simulation  

E-Print Network (OSTI)

An accurate transient fault model is presented in this thesis. A 7-term exponential current upset model is derived from the results of a device-level, 3-dimensional, single-event-upset simulation. A curve-fitting algorithm is used to extract the numerical model from the empirical data. The model is implemented in a HSPICE simulation environment as a current-injection source for fault simulation. The current transient model is used to conduct electrical-level fault injection simulations on a static RAM cell and subcircuits from two commercial microprocessors. The results from the 7-term exponential model are compared with the results from the widely accepted double-exponential transient model. The experimental data indicate that, for a given charge level, the 7-term exponential fault model results in a higher chance of having a latch error. More importantly, different latch-error patterns are captured from the target circuits under the new fault model.

Yuan, Xuejun

1996-01-01T23:59:59.000Z

15

Fault Current Limiters  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fault Fault Current Limiters Superconducting & Solid-state Power Equipment Office of Electricity Delivery and Energy Reliability www.oe.energy.gov Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585 Plugging America Into the Future of Power What are FCLs? A fault is an unintentional short circuit, or partial short-circuit, in an electric circuit. A variety of factors such as lightning, downed power lines, or crossed power lines cause faults. During a fault, excessive current-called fault current- flows through the electrical system often resulting in a failure of one section of that system by causing a

16

Solar system fault detection  

SciTech Connect

A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

Farrington, Robert B. (Wheatridge, CO); Pruett, Jr., James C. (Lakewood, CO)

1986-01-01T23:59:59.000Z

17

Solar system fault detection  

DOE Patents (OSTI)

A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

Farrington, R.B.; Pruett, J.C. Jr.

1984-05-14T23:59:59.000Z

18

Optimal fault location  

E-Print Network (OSTI)

Basic goal of power system is to continuously provide electrical energy to the users. Like with any other system, failures in power system can occur. In those situations it is critical that correct remedial actions are applied as soon as possible after the accurate fault condition and location are detected. This thesis has been focusing on automated fault location procedure. Different fault location algorithms, classified according to the spatial placement of physical measurements on single ended, multiple ended and sparse system-wide, are investigated. As outcome of this review, methods are listed as function of different parameters that influence their accuracy. This comparison is than used for generating procedure for optimal fault location algorithm selection. According to available data, and position of the fault with respect to the data, proposed procedure decides between different algorithms and selects an optimal one. A new approach is developed by utilizing different data structures such as binary tree and serialization in order to efficiently implement algorithm decision engine. After accuracy of algorithms is strongly influenced by available input data, different data sources are recommended in proposed architecture such as the digital fault recorders, circuit breaker monitoring, SCADA, power system model and etc. Algorithm for determining faulted section is proposed based on the data from circuit breaker monitoring devices. This algorithm works in real time by recognizing to which sequence of events newly obtained recording belongs. Software prototype of the proposed automated fault location analysis is developed using Java programming language. Fault location analysis is automatically triggered by appearance of new event files in a specific folder. The tests were carried out using the real life transmission system as an example.

Knezev, Maja

2007-12-01T23:59:59.000Z

19

Fault Intersection | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Fault Intersection Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Fault Intersection Dictionary.png Fault Intersection: Fault intersections are junctions between normal faults and either transversely oriented strike-slip or oblique-slip faults. Subsurface fluid flow in these areas is enhanced by multiple minor faults that connect the major intersecting structures, forming highly fractured zones or dilational quadrants with increased permeability. Other definitions:Wikipedia Reegle Controlling Structures List of controlling structures typically associated with geothermal

20

Parallel fault backtracing for calculation of fault coverage  

Science Conference Proceedings (OSTI)

A new improved method for calculation of fault coverage with parallel fault backtracing in combinational circuits is proposed. The method is based on structurally synthesized BDDs (SSBDD) which represent gate-level circuits at higher, macro level where ...

Raimund Ubar; Sergei Devadze; Jaan Raik; Artur Jutman

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DIFFERENTIAL FAULT SENSING CIRCUIT  

DOE Patents (OSTI)

A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.

Roberts, J.H.

1961-09-01T23:59:59.000Z

22

Computer hardware fault administration  

DOE Patents (OSTI)

Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

Archer, Charles J. (Rochester, MN); Megerian, Mark G. (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian E. (Rochester, MN)

2010-09-14T23:59:59.000Z

23

Dynamic Fault Detection Chassis  

Science Conference Proceedings (OSTI)

Abstract The high frequency switching megawatt-class High Voltage Converter Modulator (HVCM) developed by Los Alamos National Laboratory for the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) is now in operation. One of the major problems with the modulator systems is shoot-thru conditions that can occur in a IGBTs H-bridge topology resulting in large fault currents and device failure in a few microseconds. The Dynamic Fault Detection Chassis (DFDC) is a fault monitoring system; it monitors transformer flux saturation using a window comparator and dV/dt events on the cathode voltage caused by any abnormality such as capacitor breakdown, transformer primary turns shorts, or dielectric breakdown between the transformer primary and secondary. If faults are detected, the DFDC will inhibit the IGBT gate drives and shut the system down, significantly reducing the possibility of a shoot-thru condition or other equipment damaging events. In this paper, we will present system integration considerations, performance characteristics of the DFDC, and discuss its ability to significantly reduce costly down time for the entire facility.

Mize, Jeffery J [ORNL

2007-01-01T23:59:59.000Z

24

On thermodynamic and microscopic reversibility  

E-Print Network (OSTI)

On Thermodynamic and Microscopic Reversibility Abstract. Theof the University of California. On Thermodynamic andMicroscopic Reversibility Thermodynamic reversibility The

Crooks, Gavin E.

2012-01-01T23:59:59.000Z

25

Fault Current Management Guidebook - Updated  

Science Conference Proceedings (OSTI)

Under the new paradigm of power market operation, electric utilities are forcing more power through the existing transmission lines; and these increased loads will increase the fault current level throughout the power system. Also, new generation sources including distributed generation added at the transmission and distribution network will increase power flows and, consequently, fault current levels. Under increased power flow conditions on the existing assets, managing fault currents is crucial in ord...

2007-12-20T23:59:59.000Z

26

Fault Mapping | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Fault Mapping Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Fault Mapping Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Stratigraphic/Structural: Locates active faults in the area of interest Hydrological: Can reveal whether faults are circulating hydrothermal fluids Thermal: Dictionary.png

27

Multiple signal fault detection using fuzzy logic  

Science Conference Proceedings (OSTI)

In this paper, we describe a multiple Signal Fault Detection system that employs fuzzy logic at two levels of detection: signal segment fault and signal fault. The system involves signal segmentation, feature extraction and fuzzy logic based segment ...

Yi Lu Murphey; Jacob Crossman; ZhiHang Chen

2003-06-01T23:59:59.000Z

28

Major Normal Fault | Open Energy Information  

Open Energy Info (EERE)

Major Normal Fault Major Normal Fault Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Major Normal Fault Dictionary.png Major Normal Fault: Normal faults are structures in which the hanging wall is down dropped along the fault plane relative to the foot wall. They are the predominant type of structure in extensional tectonic environments, but are commonly encountered in a number of geologic settings. Other definitions:Wikipedia Reegle Controlling Structures List of controlling structures typically associated with geothermal systems: Major Normal Fault Termination of a Major Normal Fault Stepover or Relay Ramp in Normal Fault Zones Apex or Salient of Normal Fault Fault Intersection Accommodation Zone Displacement Transfer Zone Pull-Apart in Strike-Slip Fault Zone

29

Definition: Enhanced Fault Protection | Open Energy Information  

Open Energy Info (EERE)

Enhanced Fault Protection Enhanced Fault Protection Enhanced fault protection requires higher precision and greater discrimination of fault location and type with coordinated measurement among multiple devices. For distribution applications, these systems will detect and isolate faults without full-power re-closing, reducing the frequency of through-fault currents. Using high resolution sensors and fault signatures, these systems can better detect high impedance faults. For transmission applications, these systems will employ high speed communications between multiple elements (e.g., stations) to protect entire regions, rather than just single elements. They will also use the latest digital techniques to advance beyond conventional impedance relaying of transmission lines.[1] Related Terms

30

Definition: Fault Mapping | Open Energy Information  

Open Energy Info (EERE)

Mapping Jump to: navigation, search Dictionary.png Fault Mapping Faults are structural features of crustal rocks that are caused by tectonic forces. These features can create...

31

Quantum Operation Time Reversal  

E-Print Network (OSTI)

The dynamics of an open quantum system can be described by a quantum operation, a linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes towards equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.

Crooks, Gavin E

2007-01-01T23:59:59.000Z

32

Quantum Operation Time Reversal  

E-Print Network (OSTI)

The dynamics of an open quantum system can be described by a quantum operation, a linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes towards equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.

Gavin E. Crooks

2007-06-26T23:59:59.000Z

33

Arc fault detection system  

DOE Patents (OSTI)

An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

Jha, Kamal N. (Bethel Park, PA)

1999-01-01T23:59:59.000Z

34

Arc fault detection system  

DOE Patents (OSTI)

An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

Jha, K.N.

1999-05-18T23:59:59.000Z

35

Observer-based fault detection for nuclear reactors  

E-Print Network (OSTI)

This is a study of fault detection for nuclear reactor systems. Basic concepts are derived from fundamental theories on system observers. Different types of fault- actuator fault, sensor fault, and system dynamics fault ...

Li, Qing, 1972-

2001-01-01T23:59:59.000Z

36

EPRI Fault Current Management Guidebook, Fifth Edition  

Science Conference Proceedings (OSTI)

This document is an update of EPRI report 1020029, Fault Current Management Guidebook, Fourth Edition, on fault current effects and management in transmission and distribution systems. This guide is intended to be a snapshot of available references, information, and literature on the effects of high fault current on a number of power system components and various available and emerging fault-current-limiting technologies.

2011-12-19T23:59:59.000Z

37

Memory Fault Modeling Trends: A Case Study  

Science Conference Proceedings (OSTI)

In recent years, embedded memories are the fastest growing segment of system on chip. They therefore have a major impact on the overall Defect per Million (DPM). Further, the shrinking technologies and processes introduce new defects that cause previously ... Keywords: data backgrounds, dynamic faults, fault coverage, fault models, memory tests, static faults

Said Hamdioui; Rob Wadsworth; John Delos Reyes; Ad J. Van De Goor

2004-06-01T23:59:59.000Z

38

Fault Tree Analysis - A Bibliography  

Science Conference Proceedings (OSTI)

Fault tree analysis is a top-down approach to the identification of process hazards. It is touted as one of the best methods for systematically identifying and graphically displaying the many ways something can go wrong. This bibliography references ...

Program NASA Scientific and Technical Information

2000-07-01T23:59:59.000Z

39

SWIFT: Software Implemented Fault Tolerance  

Science Conference Proceedings (OSTI)

To improve performance and reduce power, processor designers employ advances that shrink feature sizes, lower voltage levels, reduce noise margins, and increase clock rates. However, these advances make processors more susceptible to transient faults ...

George A. Reis; Jonathan Chang; Neil Vachharajani; Ram Rangan; David I. August

2005-03-01T23:59:59.000Z

40

Passive fault current limiting device  

DOE Patents (OSTI)

A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment. 6 figs.

Evans, D.J.; Cha, Y.S.

1999-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Automatic fault extraction and simulation of layout realistic faults for integrated analogue circuits  

Science Conference Proceedings (OSTI)

A comprehensive tool has been implemented for the comparison of different test preparation techniques and target faults. It comprises of the realistic fault characterisation program LIFT that can extract sets of various faults from a given analogue or ... Keywords: AnaFAUL, LIFT, VCO, analogue integrated circuits, automatic analogue fault simulation program, catastrophic faults, circuit analysis computing, circuit layout, fault diagnosis, integrated analogue circuits, integrated circuit layout, integrated circuit testing, mixed analogue-digital integrated circuits, mixed-signal circuit, parametric faults, realistic fault characterisation program, simulation, test preparation, voltage-controlled oscillators

C. Sebeke; J. P. Teixeira; M. J. Ohletz

1995-03-01T23:59:59.000Z

42

Fault detection of fault ride through for doubly-fed induction generator based wind energy systems.  

E-Print Network (OSTI)

??Fault detection and mitigation is of high importance for existing DFIG based wind energy conversion systems. Keeping the doubly-fed induction generator (DFIG) online during faults… (more)

Ramroop, Shoba AD

2008-01-01T23:59:59.000Z

43

Reverse hoare logic  

Science Conference Proceedings (OSTI)

We present a novel Hoare-style logic, called Reverse Hoare Logic, which can be used to reason about state reachability of imperative programs. This enables us to give natural specifications to randomized (deterministic or nondeterministic) algorithms. ...

Edsko de Vries; Vasileios Koutavas

2011-11-01T23:59:59.000Z

44

Reversible and Irreversible Finestructure  

Science Conference Proceedings (OSTI)

Various statistics of temperature profiles are examined in an attempt to distinguish irreversible structures due to mixing from reversible distortions induced by internal wave straining. Even if all the low gradient regions were the result of ...

Yves Desaubies; M. C. Gregg

1981-04-01T23:59:59.000Z

45

Definition: Fault Current Limiting | Open Energy Information  

Open Energy Info (EERE)

Limiting Limiting Jump to: navigation, search Dictionary.png Fault Current Limiting Fault current limiting can be achieved through sensors, communications, information processing, and actuators that allow the utility to use a higher degree of network coordination to reconfigure the system to prevent fault currents from exceeding damaging levels. Fault current limiting can also be achieved through the implementation of special stand alone devices known as Fault Current Limiters (FCLs) which act to automatically limit high through currents that occur during faults.[1] Related Terms fault, fault current limiter References ↑ SmartGrid.gov 'Description of Functions' Temp LikeLike UnlikeLike You like this.Sign Up to see what your friends like. late:ISGANAttributionsmart grid,smart grid,smart grid,smart grid,

46

Definition: Fault Current Limiter | Open Energy Information  

Open Energy Info (EERE)

Limiter Limiter Jump to: navigation, search Dictionary.png Fault Current Limiter A fault current limiter prevents current in an electrical circuit from exceeding a predetermined level by increasing the electrical impedance of that circuit before the current through the circuit exceeds that level. Fault current limiters are designed so as to minimize the impedance of the circuit under normal conditions to reduce losses, but increase the impedance of the circuit under fault conditions to limit fault current.[1] View on Wikipedia Wikipedia Definition A Fault Current Limiter (FCL) is a device which limits the prospective fault current when a fault occurs (e.g. in a power transmission network). The term includes superconducting devices and non-superconducting devices, however some of the more simple non-superconducting devices (such

47

Quaternary faulting of Deschutes County, Oregon.  

E-Print Network (OSTI)

??Sixty-one normal faults were identified in a 53-kilometer long by 21-kilometer wide northwest-trending zone in central and northern Deschutes County, Oregon. The faults are within… (more)

Wellik, John M.

2008-01-01T23:59:59.000Z

48

On thermodynamic and microscopic reversibility  

SciTech Connect

The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa.

Crooks, Gavin E.

2011-07-12T23:59:59.000Z

49

Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies  

Science Conference Proceedings (OSTI)

This paper reviews the use of set-membership methods in fault diagnosis (FD) and fault tolerant control (FTC). Setmembership methods use a deterministic unknown-but-bounded description of noise and parametric uncertainty (interval ... Keywords: Fault Detection, Fault-Tolerant Control, Interval Models, Robustness, Set-Membership

Vicenç Puig

2010-12-01T23:59:59.000Z

50

Distribution Fault Location and Waveform Characterization  

Science Conference Proceedings (OSTI)

Automated fault location algorithms for distribution systems require monitoring equipment to record voltage and current waveforms during an event. In addition, most of these algorithms require circuit-impedance parameters to evaluate the fault location. Locating incipient faults and fault waveform characterization is the main aim of this project. This project builds on work done in 2008 towards sub-cycle blip identification using an algorithm based on arc voltage.

2009-12-11T23:59:59.000Z

51

Benchmarking of Fault-Location Technologies  

Science Conference Proceedings (OSTI)

This report resumes the studies on fault-location technologies that were conducted in 2009. These studies were undertaken in a joint project done with the collaboration of Hydro-Qubec, Long Island Power Authority, and the Electric Power Research Institute (EPRI). Two fault-location technologies were tested, the Reactance to Fault (RTF) implemented in the PQView application and the Voltage Drop Fault Location (VDFL) implemented in the MILE application. The RTF is based on substation voltage and current me...

2011-03-31T23:59:59.000Z

52

Application of Control Charts for Detecting Faults in Variable ...  

Science Conference Proceedings (OSTI)

... where Tzone = zone temperature, CSP = cooling setpoint ... Fault Implementation and Impact To test ... fault imple- mentations and impacts are provided ...

53

High temperature superconducting fault current limiter  

DOE Patents (OSTI)

A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

Hull, J.R.

1997-02-04T23:59:59.000Z

54

Autonomic fault mitigation in embedded systems  

Science Conference Proceedings (OSTI)

Autonomy, particularly from a maintenance and fault-management perspective, is an increasingly desirable feature in embedded (and non-embedded) computer systems. The driving factors are several-including increasing pervasiveness of computer systems, ... Keywords: Autonomic computing, Embedded systems, Fault mitigation, Fault tolerance, Hierarchical concurrent finite-state machines, Model-based design

Sandeep Neema; Ted Bapty; Shweta Shetty; Steven Nordstrom

2004-10-01T23:59:59.000Z

55

Fault detection and diagnosis of technical systems  

Science Conference Proceedings (OSTI)

Sensors, actuators and/or physical components in technical systems are often affected by unpermitted or un-expected deviations from normal operation behaviour. The fault diagnosis task consists of determination of the fault type with as many details ... Keywords: fault detection and diagnosis, residuals, symptoms, technical systems

Ioana Fagarasan; S. ST. Iliescu

2008-06-01T23:59:59.000Z

56

CRT RSA algorithm protected against fault attacks  

Science Conference Proceedings (OSTI)

Embedded devices performing RSA signatures are subject to Fault Attacks, particularly when the Chinese Remainder Theorem is used. In most cases, the modular exponentiation and the Garner recombination algorithms are targeted. To thwart Fault Attacks, ... Keywords: RSA, chinese remainder theorem, fault attacks, modular exponentiation, simple power analysis, smart card

Arnaud Boscher; Robert Naciri; Emmanuel Prouff

2007-05-01T23:59:59.000Z

57

Designing Fault-Tolerant Mobile Systems  

Science Conference Proceedings (OSTI)

The purpose of this paper is to investigate how several innovative techniques, not all initially intended for fault-tolerance, can be applied in providing fault tolerance of complex mobile agent systems. Due to their roaming nature, mobile agents usually ... Keywords: exception handling, fault tolerance, mobile agents, software engineering, system structuring

Giovanna Di Marzo Serugendo; Alexander B. Romanovsky

2002-11-01T23:59:59.000Z

58

THE EFFECTS OF FAULT-INDUCED STRESS ANISOTROPY ON FRACTURING, FOLDING AND SILL EMPLACEMENT: INSIGHTS FROM THE BOWIE COAL  

E-Print Network (OSTI)

: INSIGHTS FROM THE BOWIE COAL MINES, SOUTHERN PICEANCE BASIN, WESTERN COLORADO by Eric D. Robeck A thesis-INDUCED STRESS ANISOTROPY ON FRACTURING, FOLDING AND SILL EMPLACEMENT: INSIGHTS FROM THE BOWIE COAL MINES. The Bowie underground coal mines of western Colorado expose a reverse-reactivated growth fault

Seamons, Kent E.

59

Fault-ignorant Quantum Search  

E-Print Network (OSTI)

We investigate the problem of quantum searching on a noisy quantum computer. Taking a 'fault-ignorant' approach, we analyze quantum algorithms that solve the task for various different noise strengths, which are possibly unknown beforehand. We prove lower bounds on the runtime of such algorithms and thereby find that the quadratic speedup is necessarily lost (in our noise models). However, for low but constant noise levels the algorithms we provide (based on Grover's algorithm) still outperform the best noiseless classical search algorithm.

Peter Vrana; David Reeb; Daniel Reitzner; Michael M. Wolf

2013-07-02T23:59:59.000Z

60

CONTROL AND FAULT DETECTOR CIRCUIT  

DOE Patents (OSTI)

A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.

Winningstad, C.N.

1958-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Internal structure of the Kern Canyon Fault, California: a deeply exhumed strike-slip fault  

E-Print Network (OSTI)

Deformation and mineral alteration adjacent to a 2 km long segment of the Kern Canyon fault near Lake Isabella, California are studied to characterize the internal structure of the fault zone and to understand the development of fault structure and constitution and the mechanical and chemical processes responsible for them. The 140 km long Kern Canyon fault (KCF) is a fault of 15 km right-lateral separation exhumed from seismogenic depth that cuts batholithic and metamorphic rocks of the southern Sierra Nevada. The fault consists of at least three distinct phases: an early phase of lower-greenschist-grade ductile shear with an S-C' phyllonite, a subsequent, dominant phase of brittle faulting characterized by a through-going zone of cataclastic rock, and a late stage of minor faulting along discontinuous, thin, hematitic gouge zones. The S-C' fabric and subsidiary fault-slip data indicate that both the phyllonitic and cataclastic zones are approximately vertical and strike-slip; slip lineations within the hematitic gouge suggest oblique-slip. The phyllonite zone trends N20-40E and accommodated ~175 m of separation. The cataclastic zone cuts the phyllonite, trends N21E, and consists of foliated and non-foliated cataclasites; it accommodates the majority of displacement along the fault. Abundant veins and fluid-assisted alteration in the rock surrounding the fault zone attest to the presence of fluids of evolving chemistry during both ductile and brittle faulting. Mass balance calculations indicate quartz loss during phyllonite faulting and imply that the fault system was open and experienced a negative change in volume during phyllonite faulting. Mesoscale and microscale fracture intensities decrease with log distance from the foliated cataclasites and approach a relatively low level at approximately 500 m. The internal structure of the Kern Canyon fault is similar to other large displacement faults in that it consists of a broad zone of fractured and altered rock and a narrow zone of intense cataclasis.

Neal, Leslie Ann

2002-01-01T23:59:59.000Z

62

Hardware Fault Insertion Techniques and Tools  

E-Print Network (OSTI)

The concept of dependability validation becomes more and more important regarding big public telecom systems. This is why fault insertion has been widely accepted as a means of testing the fault handling mechanisms of the systems. This master thesis classifies and compares fault insertion techniques used within the industry. It also looks into internal fault insertion techniques used by the people at Ericsson Telecom working with the AXD301 ATM switch. Hardware Fault Insertion Techniques and Tools 2 Acknowledgements The following people at Ericsson has contributed to this thesis in one way or another: Roger Nordmark Mattias Rimbark Bengt Kvist Anders strm Kenny Ohlsson Johan Jeppson Johan Eklv Also a thank you to my supervisor at KTH: Axel Jantsch A special thanks also to my good friend and colleague: Robert Thorhuus Hardware Fault Insertion Techniques and Tools 3 Abbreviations ASIC - Application Specific Integrated Circuit ATM - Asynchronous Transfer Mode BSDL - Boundary Scan De...

Emil Savqvist; Roger Nordmark; Mattias Rimbark; Bengt Kvist; Anders Åström; Kenny Ohlsson; Johan Eklöv; Axel Jantsch; Robert Thorhuus; Hw Hard Ware

2000-01-01T23:59:59.000Z

63

Apex or Salient of Normal Fault | Open Energy Information  

Open Energy Info (EERE)

Apex or Salient of Normal Fault Apex or Salient of Normal Fault Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Apex or Salient of Normal Fault Dictionary.png Apex or Salient of Normal Fault: Normal faults may intersect in the subsurface to form a fault apex or salient. Apices or salients of normal faults account for 3% of structural controls in the Great Basin. Other definitions:Wikipedia Reegle Controlling Structures List of controlling structures typically associated with geothermal systems: Major Normal Fault Termination of a Major Normal Fault Stepover or Relay Ramp in Normal Fault Zones Apex or Salient of Normal Fault Fault Intersection Accommodation Zone Displacement Transfer Zone Pull-Apart in Strike-Slip Fault Zone Intrusion Margins and Associated Fractures Stratigraphic Boundaries

64

Fault Current Management Guidebook--Updated  

Science Conference Proceedings (OSTI)

Due to increased load demands and reduced incentives to build new transmission, energy companies are increasing power flows on existing transmission assets, which will increase fault current levels throughout the power system. Also, new generation sources to be added at the transmission and distribution network will increase power flows and, consequently, fault current levels. Under increased power flow conditions on existing assets, managing fault currents is crucial for avoiding damage to equipment as ...

2006-11-28T23:59:59.000Z

65

Fault Tree Based Diagnostics Using Fuzzy Logic  

Science Conference Proceedings (OSTI)

Fuzzy set theory is investigated as a tool for the diagnostics of systems described by means of a fault tree. The objective is to diagnose component failures from the observation of fuzzy symptoms using the information contained in a fault tree. A two-step ... Keywords: causal reasoning, component failures, failure analysis, failure modes, fault tree based diagnostics, fuzzy logic, fuzzy symptoms, minimal cut-sets, triggered gates, two-step procedure

P. Gmytrasiewicz; J. A. Hassberger; J. C. Lee

1990-11-01T23:59:59.000Z

66

Field reversed ion rings  

DOE Green Energy (OSTI)

In typical field-reversed ion ring experiments, an intense annular ion beam is injected across a plasma-filled magnetic cusp region into a neutral gas immersed in a ramped solenoidal magnetic field. Assuming the characteristic ionization time is much shorter than the long ({ital t}{approx_gt}2{pi}/{Omega}{sub {ital i}}) beam evolution time scale, we investigate the formation of an ion ring in the background plasma followed by field reversal, using a 21/2-D hybrid, PIC code FIRE, in which the beam and background ions are treated as particles and the electrons as a massless fluid. We show that beam bunching and trapping occurs downstream in a ramped magnetic field for an appropriate set of experimental parameters. We find that a compact ion ring is formed and a large field reversal {zeta}={delta}{ital B}/{ital B}{approx_gt}1 on axis develops. We also observe significant deceleration of the ring on reflection due to the transfer of its axial momentum to the background ions, which creates favorable trapping conditions. {copyright} {ital 1995 American Institute of Physics.}

Sudan, R.N.; Omelchenko, Y.A. [Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853 (United States)

1995-09-01T23:59:59.000Z

67

Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Pipeline Design and Risk Analysis  

SciTech Connect

Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE) - the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. Detailed Design was performed with due regard to actual topography and to avoid the possibility of the trenches freezing in winter, the implementation of specific drainage solutions and thermal protection measures.

Mattiozzi, Pierpaolo [Snamprogetti-Saipem, Via Toniolo, 1, 61032 Fano (Italy); Strom, Alexander [Institute of Geospheres Dynamics, Leninskiy Avenue, 38, Building 1, 119334, Moscow (Russian Federation)

2008-07-08T23:59:59.000Z

68

Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Analysis Methodology and Basic Design  

Science Conference Proceedings (OSTI)

Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE)--the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. This Paper describes the steps followed to formulate the concept of the special trenches and the analytical characteristics of the Model.

Vitali, Luigino [Snamprogetti-Saipem, Via Toniolo, 1, 61032 Fano, Luigino (Italy); Mattiozzi, Pierpaolo [Snamprogetti-Saipem, Via Toniolo, 1, 61032 Fano (Italy)

2008-07-08T23:59:59.000Z

69

Supercritical fluid reverse micelle systems  

DOE Patents (OSTI)

of 1 ) United States Patent 5,158,704 Fulton ,   et al. October 27, 1992 Supercritical fluid reverse micelle systems

Fulton, John L. (Richland, WA); Smith, Richard D. (Richland, WA)

1992-01-01T23:59:59.000Z

70

Integrated framework for reverse logistics  

Science Conference Proceedings (OSTI)

Although reverse logistics has been disregarded for many years, pressures from both environmental awareness and business sustainability have risen. Reverse logistical activities include return, repair and recycle products. Traditionally, since the information ... Keywords: gent-based system, information transparency, reverse logistics

Heng-Li Yang; Chen-Shu Wang

2007-06-01T23:59:59.000Z

71

Limitations for detecting small-scale faults using the coherency analysis of seismic data  

E-Print Network (OSTI)

Coherency analyzes the trace to trace amplitude similarities recorded by seismic waves. Coherency algorithms have been used to identify the structural or stratigraphic features of an area but the limitations for detecting small-scale features are not known. These limitations become extremely important when interpreting coherency within poorly acquired or processed data sets. In order to obtain a better understanding of the coherency limitations, various synthetic seismic data sets were created. The sensitivity of the coherency algorithms to variations in wave frequency, signal-to-noise ratio and fault throw was investigated. Correlation between the coherency values of a faulted reflector and the known offset shows that coherency has the ability to detect the presence of various scale features that may be previously thought to be below seismic resolution or difficult to discriminate with conventional interpretation methods. Coherency values had a smaller standard deviation and were less sensitive to noise when processed with a temporal window length less than one period. A fault could be detected by coherency when the signal-to-noise ratio was >3. A fault could also be detected as long as the throw-to-wavelength ratio was >5% or two-way traveltime-toperiod >10%. Therefore, this study suggests that coherency has the ability to detect a fault as long as the frequency of the data imaging that fault has a period no greater than one order of magnitude to the traveltime through the fault and that the signal can easily be distinguished from noise. Results from application of the coherency analysis were applied to the characterization of a very deep fault and fracture system imaged by a field seismic data set. A series of reverse and strike-slip faults were detected and mapped. Magnitudes of the throws for these faults were not known, but subtle amplitude anomalies in seismic sections confirmed the coherency analysis. The results of this study suggest that coherency has demonstrated an ability to detect features that would normally beoverlooked using traditional interpretation methods and has many future implications for poorly imaged seismic areas, such as sub-salt.

Barnett, David Benjamin

2003-05-01T23:59:59.000Z

72

Reversible brazing process  

SciTech Connect

A method of reversibly brazing surfaces together. An interface is affixed to each surface. The interfaces can be affixed by processes such as mechanical joining, welding, or brazing. The two interfaces are then brazed together using a brazing process that does not defeat the surface to interface joint. Interfaces of materials such as Ni-200 can be affixed to metallic surfaces by welding or by brazing with a first braze alloy. The Ni-200 interfaces can then be brazed together using a second braze alloy. The second braze alloy can be chosen so that it minimally alters the properties of the interfaces to allow multiple braze, heat and disassemble, rebraze cycles.

Pierce, Jim D. (Albuquerque, NM); Stephens, John J. (Albuquerque, NM); Walker, Charles A. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

73

Distribution Fault Location Support Tools, Algorithms, and Implementation Approaches  

Science Conference Proceedings (OSTI)

Distribution grid modernization applications such as fault location and automatic sectionalizing require an accurate assessment of fault current. More-accurate prediction of fault locations will shorten the fault investigation (patrol) time, which in turn can reduce the total restoration time and duration of the outage experienced by the customer. This EPRI technical update report presents information on fault location applications, enumerates different methods used to detect the location of faults, ...

2013-08-14T23:59:59.000Z

74

ARMor: fully verified software fault isolation  

Science Conference Proceedings (OSTI)

We have designed and implemented ARMor, a system that uses software fault isolation (SFI) to sandbox application code running on small embedded processors. Sandboxing can be used to protect components such as the RTOS and critical control loops from ... Keywords: arm executables, automated theorem proving, program logic, software fault isolation

Lu Zhao; Guodong Li; Bjorn De Sutter; John Regehr

2011-10-01T23:59:59.000Z

75

A switch level fault simulation environment  

Science Conference Proceedings (OSTI)

This paper presents a fault simulation environment which accepts pure switch level or mixed switch/RT level descriptions of the design under test. Switch level fault injection strategies for the stuck-at, transition and logic bridge models are presented. ...

V. Krishnaswamy; J. Casas; T. Tetzlaff

2000-06-01T23:59:59.000Z

76

Representing parameterised fault trees using Bayesian networks  

Science Conference Proceedings (OSTI)

Fault trees are used to model how failures lead to hazards and so to estimate the frequencies of the identified hazards of a system. Large systems, such as a rail network, do not give rise to endless different hazards. Rather, similar hazards arise repeatedly ... Keywords: Bayesian network, fault tree, risk analysis

William Marsh; George Bearfield

2007-09-01T23:59:59.000Z

77

Gas Turbine Fault Diagnosis using Random Forests  

Science Conference Proceedings (OSTI)

In the present paper, Random Forests are used in a critical and at the same time non trivial problem concerning the diagnosis of Gas Turbine blading faults, portraying promising results. Random forests-based fault diagnosis is treated as a Pattern Recognition ...

Manolis Maragoudakis; Euripides Loukis; Panayotis-Prodromos Pantelides

2008-06-01T23:59:59.000Z

78

BASE: Using abstraction to improve fault tolerance  

Science Conference Proceedings (OSTI)

Software errors are a major cause of outages and they are increasingly exploited in malicious attacks. Byzantine fault tolerance allows replicated systems to mask some software errors but it is expensive to deploy. This paper describes a replication ... Keywords: Byzantine fault tolerance, N-version programming, asynchronous systems, proactive recovery, state machine replication

Miguel Castro; Rodrigo Rodrigues; Barbara Liskov

2003-08-01T23:59:59.000Z

79

Numeric simulation of faults in electrical networks  

Science Conference Proceedings (OSTI)

In the paper is presented a virtual simulator for three-phased medium voltage electric circuits. The simulator allows analyzing transient regimes caused by the faults produced in electric distribution networks (simple grounding, double grounding, broken ... Keywords: faults in electric network, numerical simulation, three phased circuits, transient regimes

Toader Dumitru; Haragus Stefan; Blaj Constantin

2009-03-01T23:59:59.000Z

80

INDUCTION MOTOR FAULT DIAGNOSTIC AND MONITORING METHODS  

E-Print Network (OSTI)

INDUCTION MOTOR FAULT DIAGNOSTIC AND MONITORING METHODS by Aderiano M. da Silva, B.S. A Thesis;i Abstract Induction motors are used worldwide as the "workhorse" in industrial applications material. However, induction motor faults can be detected in an initial stage in order to prevent

Povinelli, Richard J.

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Detect and classify faults using neural nets  

SciTech Connect

The analysis of transmission line faults is essential to the proper performance of the power system. It is required if protective relays are to take the appropriate action and in monitoring the performance of relays, circuit breakers, and other protective and control elements. The detection and classification of transmission line faults is a fundamental component of such fault analysis. Another application of fault analysis is in software packages for automated analysis of digital fault recorder (DFR) files. Recently, such a package, called DFR Assistant, was developed for substation applications. This program can be installed locally in a substation, in which case it is connected directly to the DFR via a high speed parallel link, or it can be installed at a central station, in which case it can be configured to automatically analyze events coming from all DFRs.

Kezunovic, M.; Rikalo, I.

1996-10-01T23:59:59.000Z

82

Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems  

E-Print Network (OSTI)

in Fault Diagnostics for HVAC Systems Massieh Najafi 1 ,tools for determining HVAC diagnostics, methods todetect faults in HVAC systems are still generally

Najafi, Massieh

2010-01-01T23:59:59.000Z

83

Modeling and simulation of HVAC faults in EnergyPlus  

NLE Websites -- All DOE Office Websites (Extended Search)

simulation of HVAC faults in EnergyPlus Title Modeling and simulation of HVAC faults in EnergyPlus Publication Type Conference Paper Refereed Designation Refereed Year of...

84

Modeling and Measurement Constraints in Fault Diagnostics for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems Title Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems Publication Type Journal...

85

fault diagnosis of a high voltage transmission line using waveform ...  

E-Print Network (OSTI)

Oct 4, 2013 ... FAULT DIAGNOSIS OF A HIGH VOLTAGE TRANSMISSION LINE USING ... Fault types such as single line to ground, line to line, double line to ...

86

CIFTS: Coordinated Infrastructure for Fault-Tolerant Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

CIFTS: Coordinated Infrastructure for Fault-Tolerant Systems CIFTS: Coordinated Infrastructure for Fault-Tolerant Systems Current systems software components for large-scale...

87

CIFTS: A Coordinated Infrastructure for Fault-Tolerant Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

CIFTS: A Coordinated Infrastructure for Fault-Tolerant Systems Title CIFTS: A Coordinated Infrastructure for Fault-Tolerant Systems Publication Type Conference Paper Year of...

88

Automated Fault Location In Smart Distribution Systems  

E-Print Network (OSTI)

Fault location in distribution systems is a critical component of outage management and service restoration, which directly impacts feeder reliability and quality of the electricity supply. Improving fault location methods supports the Department of Energy (DOE) “Grid 2030” initiatives for grid modernization by improving reliability indices of the network. Improving customer average interruption duration index (CAIDI) and system average interruption duration index (SAIDI) are direct advantages of utilizing a suitable fault location method. As distribution systems are gradually evolving into smart distribution systems, application of more accurate fault location methods based on gathered data from various Intelligent Electronic Devices (IEDs) installed along the feeders is quite feasible. How this may be done and what is the needed methodology to come to such solution is raised and then systematically answered. To reach this goal, the following tasks are carried out: 1) Existing fault location methods in distribution systems are surveyed and their strength and caveats are studied. 2) Characteristics of IEDs in distribution systems are studied and their impacts on fault location method selection and implementation are detailed. 3) A systematic approach for selecting optimal fault location method is proposed and implemented to pinpoint the most promising algorithms for a given set of application requirements. 4) An enhanced fault location method based on voltage sag data gathered from IEDs along the feeder is developed. The method solves the problem of multiple fault location estimations and produces more robust results. 5) An optimal IED placement approach for the enhanced fault location method is developed and practical considerations for its implementation are detailed.

Lotfifard, Saeed

2011-08-01T23:59:59.000Z

89

Geomagnetic Reversals: Rates, Timescales, Preferred Paths,  

E-Print Network (OSTI)

Geomagnetic Reversals: Rates, Timescales, Preferred Paths, Statistical Models and Simulations: Geomagnetic reversals, Reversal rates, Paleointensity, Statistics of Geodynamo September 30, 2001 #12;Abstract Paleomagnetic data on geomagnetic reversals are divided into two general categories: times of occurrence

Constable, Catherine G.

90

An arc fault detection system  

DOE Patents (OSTI)

An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn, opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

Jha, Kamal N.

1997-12-01T23:59:59.000Z

91

Fault diagnosis using substation computer  

SciTech Connect

A number of substation integrated control and protection systems (ICPS) are being developed around the world, where the protective relaying, control, and monitoring functions of a substation are implemented using microprocessors. In this design, conventional relays and control devices are replaced by clusters of microprocessors, interconnected by multiplexed digital communication channels using fibre optic, twisted wire pairs or coaxial cables. The ICPS incorporates enhanced functions of value to the utility and leads to further advancement of the automation of transmission substations. This paper presents an automated method of fault diagnosis which can be incorporated in the station computer of an integrated control and protection system. The effectiveness of this method is demonstrated using a transmission-level substation as an example.

Jeyasurya, B. (Indian Inst. of Tech., Bombay (India)); Venkata, S.S. (Washington Univ., Seattle, WA (USA). Dept. of Electrical Engineering); Vadari, S.V. (ESCA Corp., Bellevue, WA (USA)); Postforoosh, J. (T and D. Protection Group, Puget Sound Power and Light, Bellevue, WA (US))

1990-04-01T23:59:59.000Z

92

Reverse Osmosis Optimization  

SciTech Connect

This technology evaluation was prepared by Pacific Northwest National Laboratory on behalf of the U.S. Department of Energy’s Federal Energy Management Program (FEMP). ¬The technology evaluation assesses techniques for optimizing reverse osmosis (RO) systems to increase RO system performance and water efficiency. This evaluation provides a general description of RO systems, the influence of RO systems on water use, and key areas where RO systems can be optimized to reduce water and energy consumption. The evaluation is intended to help facility managers at Federal sites understand the basic concepts of the RO process and system optimization options, enabling them to make informed decisions during the system design process for either new projects or recommissioning of existing equipment. This evaluation is focused on commercial-sized RO systems generally treating more than 80 gallons per hour.¬

McMordie-Stoughton, Katherine L.; Duan, Xiaoli; Wendel, Emily M.

2013-08-26T23:59:59.000Z

93

Cooperative application/OS DRAM fault recovery.  

Science Conference Proceedings (OSTI)

Exascale systems will present considerable fault-tolerance challenges to applications and system software. These systems are expected to suffer several hard and soft errors per day. Unfortunately, many fault-tolerance methods in use, such as rollback recovery, are unsuitable for many expected errors, for example DRAM failures. As a result, applications will need to address these resilience challenges to more effectively utilize future systems. In this paper, we describe work on a cross-layer application/OS framework to handle uncorrected memory errors. We illustrate the use of this framework through its integration with a new fault-tolerant iterative solver within the Trilinos library, and present initial convergence results.

Ferreira, Kurt Brian; Bridges, Patrick G. (University of New Mexico, Albuquerque, NM); Heroux, Michael Allen; Hoemmen, Mark; Brightwell, Ronald Brian

2012-05-01T23:59:59.000Z

94

Mechanical Models of Fault-Related Folding  

SciTech Connect

The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

Johnson, A. M.

2003-01-09T23:59:59.000Z

95

Neural Fault Diagnosis and Fuzzy Fault Control for a Complex Dynamic System  

E-Print Network (OSTI)

Fault diagnosis has become an issue of primary importance in modern process automation as it provides the prerequisites for the task of fault detection. The ability to detect the faults is essential to improve reliability and security of a complex control system. Parameter estimation methods, state observation schemes, statistical likelihood ratio tests, rule-based expert system reasoning, pattern recognition techniques, and artificial neural network approaches are the most common methodologies developed actively during recent years. In this paper, we describe a completed feasibility study demonstrating the merit of employing pattern recognition and an artificial neural network for fault diagnosis through back propagation learning algorithm and making the use of fuzzy approximate reasoning for fault control via parameter changes in a dynamic system. As a test case, a complex magnetic levitation vehicle (MLV) system is studied. Analytical fault symptoms are obtained by system dynamics m...

Ching-yu Tyan; Paul P. Wang; Dennis R. Bahler

1995-01-01T23:59:59.000Z

96

Quantification of Priority-OR gates in temporal fault trees  

Science Conference Proceedings (OSTI)

Fault Tree Analysis has been used in reliability engineering for many decades and has seen various modifications to enable it to analyse fault trees with dynamic and temporal gates so it can incorporate sequential failure in its analysis. Pandora is ... Keywords: Markov chains, Monte Carlo, Pandora, dynamic fault trees, fault trees, safety

Ernest Edifor; Martin Walker; Neil Gordon

2012-09-01T23:59:59.000Z

97

Development of Hydrologic Characterization Technology of Fault Zones  

E-Print Network (OSTI)

pathways in the Monterey Formation, California: Americanalong faults in the Monterey Formation, coastal California.

Karasaki, Kenzi

2009-01-01T23:59:59.000Z

98

Online fault detection and tolerance for photovoltaic energy harvesting systems  

Science Conference Proceedings (OSTI)

Photovoltaic energy harvesting systems (PV systems) are subject to PV cell faults, which decrease the efficiency of PV systems and even shorten the PV system lifespan. Manual PV cell fault detection and elimination are expensive and nearly impossible ... Keywords: fault detection, fault tolerance, photovoltaic panel reconfiguration, photovoltaic system

Xue Lin; Yanzhi Wang; Di Zhu; Naehyuck Chang; Massoud Pedram

2012-11-01T23:59:59.000Z

99

A transmission line fault locator based on Elman recurrent networks  

Science Conference Proceedings (OSTI)

In this paper, a transmission line fault location model which is based on an Elman recurrent network (ERN) has been presented for balanced and unbalanced short circuit faults. All fault situations with different inception times are implemented on a 380-kV ... Keywords: Elman networks, Fault location, Transmission lines, Wavelet transform

Sami Ekici; Selcuk Yildirim; Mustafa Poyraz

2009-01-01T23:59:59.000Z

100

Fault intersections and hybrid transform faults in the southern Salton Trough geothermal area, Baja California, Mexico  

DOE Green Energy (OSTI)

Analysis of 55 wells drilled at the Cerro Prieto Geothermal Field and a suite of geological and geophysical studies throughout the southern Salton Trough from the Mexican-United States border to the Gulf of California clarify two concepts important to geothermal development: (1) increased natural convective fluid flow and better permeability should occur at intersecting faults both regionally and within a producing field, and (2) the Cerro Prieto and Imperial faults are best conceived of as hybrid types having features of both San Andreas style wrench faults and oceanic tranform faults.

Vonder Haar, S.; Puente Cruz, I.

1979-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fault Detection, Location, Isolation and Reconnection in ...  

A University of Colorado research team led by Jae-Do Park has developed a fault detection, location and isolation scheme for a low-voltage DC-bus microgrid system, ...

102

Fault tolerance for holonomic quantum computation  

E-Print Network (OSTI)

We review an approach to fault-tolerant holonomic quantum computation on stabilizer codes. We explain its workings as based on adiabatic dragging of the subsystem containing the logical information around suitable loops along which the information remains protected.

Ognyan Oreshkov; Todd A. Brun; Daniel A. Lidar

2013-12-01T23:59:59.000Z

103

Reversibility and Non-reversibility in Stochastic Chemical Kinetics  

E-Print Network (OSTI)

Mathematical problems with mean field and local type interaction related to stochastic chemical kinetics,are considered. Our main concern various definitions of reversibility, their corollaries (Boltzmann type equations, fluctuations, Onsager relations, etc.) and emergence of irreversibility.

Malyshev, V A

2011-01-01T23:59:59.000Z

104

Supercritical fluid reverse micelle separation  

DOE Patents (OSTI)

A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

Fulton, J.L.; Smith, R.D.

1993-11-30T23:59:59.000Z

105

Supercritical fluid reverse micelle separation  

DOE Patents (OSTI)

A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

Fulton, John L. (Richland, WA); Smith, Richard D. (Richland, WA)

1993-01-01T23:59:59.000Z

106

Measuring and Modeling Fault Density for Plume-Fault Encounter Probability Estimation  

Science Conference Proceedings (OSTI)

Emission of carbon dioxide from fossil-fueled power generation stations contributes to global climate change. Storage of this carbon dioxide within the pores of geologic strata (geologic carbon storage) is one approach to mitigating the climate change that would otherwise occur. The large storage volume needed for this mitigation requires injection into brine-filled pore space in reservoir strata overlain by cap rocks. One of the main concerns of storage in such rocks is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available. This necessitates a method for using available fault data to develop an estimate of the likelihood of injected carbon dioxide encountering and migrating up a fault, primarily due to buoyancy. Fault population statistics provide one of the main inputs to calculate the encounter probability. Previous fault population statistics work is shown to be applicable to areal fault density statistics. This result is applied to a case study in the southern portion of the San Joaquin Basin with the result that the probability of a carbon dioxide plume from a previously planned injection had a 3% chance of encountering a fully seal offsetting fault.

Jordan, P.D.; Oldenburg, C.M.; Nicot, J.-P.

2011-05-15T23:59:59.000Z

107

A fault location approach for fuzzy fault section estimation on radial distribution feeders  

E-Print Network (OSTI)

Locating the faulted section of a distribution system is a difficult task because of lack of accurate system models and the presence of uncertainty in the data used for estimating the fault section. Many of the methods used to account for the uncertainty use fuzzy logic techniques to estimate bounds of possibility of the input data and calculated quantities, or probabilistic modeling of the input data to estimate the likelihood of the location of the fault on a particular section of the feeder. Heuristic knowledge of control center dispatchers has also been used for uncertainty management. This thesis presents the design and implementation of a phase selector algorithm and a fault distance algorithm for use in an automated modular scheme for fault section estimation on radial distribution systems. These two algorithms will be executed in combination with two other fault location algorithms. The scheme is executed using the data record of an abnormal event in a three-stage scheme. The phase selector algorithm was used to obtain event-phase possibility values representing the possibility of involvement of each of the phases and the neutral in an event. A section-event possibility value that indicated the possibility that a section of the feeder was involved in the fault was evaluated using the event-phase possibility values and line section phase topology information. The fault distance algorithm was used to eliminate sections of the feeder that were not likely to be possible faulted section candidates by assuming a bolted fault and estimating its location. Each line section was assigned a fault possibility value of zero or one according to its location relative to the location of the fault. The phase selector algorithm was tested using real data measured at feeder substations and the fault distance algorithm was tested using data obtained by staging faults on a model of an overhead feeder using EMTP/ATP simulation. The results obtained from the tests were promising. A simple illustration of the combination of the results of the two algorithms is given. The result of this combination shows the potential of the simultaneous use of the two algorithms.

Andoh, Kwame Sarpong

2000-01-01T23:59:59.000Z

108

Stress and fault rock controls on fault zone hydrology, Coso geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Stress and fault rock controls on fault zone hydrology, Coso geothermal field, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Stress and fault rock controls on fault zone hydrology, Coso geothermal field, CA Details Activities (1) Areas (1) Regions (0) Abstract: In crystalline rock of the Coso Geothermal Field, CA, fractures are the primary source of permeability. At reservoir depths, borehole image, temperature, and mud logs indicate fluid flow is concentrated in extensively fractured damage zones of large faults well-oriented for slip.

109

Fault Locating, Prediction and Protection (FLPPS)  

Science Conference Proceedings (OSTI)

One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for installation. Because of some testing problems with the Zenergy fault current limiter, installation was delayed until early 2009 with it being put into operation on March 6, 2009. A malfunction of the FCL controller caused the DC power supply to the superconducting magnet to be turned off. This inserted the FCL impedance into the circuit while it was in normal operation causing a voltage resonance condition. While these voltages never reached a point where damage would occur on customer equipment, steps were taken to insure this would not happen again. The FCL was reenergized with load on December 18, 2009. A fault was experienced on the circuit with the FCL in operation on January 14, 2010. The FCL operated properly and reduced the fault current by about 8%, what was expected from tests and modeling. As of the end of the project, the FCL was still in operation on the circuit. The third phase of the project involved the exploration of several advanced protection ideas that might be at a state where they could be applied to the Circuit of the Future and elsewhere in the SCE electrical system. Based on the work done as part of the literature review and survey, as well as a number of internal meetings with engineering staff at SCE, a number of ideas were compiled. These ideas were then evaluated for applicability and ability to be applied on the Circuit of the Future in the time remaining for the project. Some of these basic ideas were implemented on the circuit including measurement of power quality before and after the FCL. It was also decided that we would take what was learned as part of the Circuit of the Future work and extend it to the next generation circuit protection for SCE. Also at this time, SCE put in a proposal to the DOE for the Irvine Smart Grid Demonstration using ARRA funding. SCE was successful in obtaining funding for this proposal, so it was felt that exploration of new protection schemes for this Irvine Smart Grid Demonstration would be a good use of the project resources. With this in mind, a protection system that uses fault interrupting switches, hi

Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

2010-09-30T23:59:59.000Z

110

Fast Fault Recovery in Switched Networks for Carrying IP Telephony Traffic.  

E-Print Network (OSTI)

?? One of the most parts of VOIP management is fault management and, in having a good fault management, finding good mechanisms to detect faults… (more)

Eisazadeh, Ali Akbar

2010-01-01T23:59:59.000Z

111

Information Management for Reverse Logistics  

E-Print Network (OSTI)

Introduction In this chapter, we examine how Information and Communication Technologies (ICT) are being used to support reverse logistics. In this respet, this chapter does not follow a quantitative approach as the rest of the book. Nonetheless, the topics covered in this section outline how ICT systems enable and support the quantitative approaches presented in other chapters of this book. Furthermore, this chapter provides a roadmap to the reader about what aspects of reverse logistics are implemented and what remains to be addressed in the future. Most ICT systems for reverse logistics have been developed to address needs in a specific sector (i.e. decision making on di#erent recovery options of returns, designing a product for optimal end of use recovery, etc.) or to cover the reverse logistics requirements of a particular company. Thus, in our attempt to present this area systematically we need to develop a framework of reference first. For that reason, we go back to the essent

Angelika Kokkinaki; Rob Zuidwijk

2002-01-01T23:59:59.000Z

112

Are all reversible computations tidy?  

E-Print Network (OSTI)

It has long been known that to minimise the heat emitted by a deterministic computer during it's operation it is necessary to make the computation act in a logically reversible manner\\cite{Lan61}. Such logically reversible operations require a number of auxiliary bits to be stored, maintaining a history of the computation, and which allows the initial state to be reconstructed by running the computation in reverse. These auxiliary bits are wasteful of resources and may require a dissipation of energy for them to be reused. A simple procedure due to Bennett\\cite{Ben73} allows these auxiliary bits to be "tidied", without dissipating energy, on a classical computer. All reversible classical computations can be made tidy in this way. However, this procedure depends upon a classical operation ("cloning") that cannot be generalised to quantum computers\\cite{WZ82}. Quantum computations must be logically reversible, and therefore produce auxiliary qbits during their operation. We show that there are classes of quantum computation for which Bennett's procedure cannot be implemented. For some of these computations there may exist another method for which the computation may be "tidied". However, we also show there are quantum computations for which there is no possible method for tidying the auxiliary qbits. Not all reversible quantum computations can be made "tidy". This represents a fundamental additional energy burden to quantum computations. This paper extends results in \\cite{Mar01}.

O. J. E. Maroney

2004-03-10T23:59:59.000Z

113

VCSEL fault location apparatus and method  

DOE Patents (OSTI)

An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

Keeler, Gordon A. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM)

2007-05-15T23:59:59.000Z

114

Geometry of Cenozoic extensional faulting: Dixie Valley, Nevada | Open  

Open Energy Info (EERE)

Geometry of Cenozoic extensional faulting: Dixie Valley, Nevada Geometry of Cenozoic extensional faulting: Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geometry of Cenozoic extensional faulting: Dixie Valley, Nevada Abstract Precise definition of geometric relationships between individual basins and ranges may help to reveal the mechanical processes of Basin and Range Cenozoic extensional faulting at depth. Previous studies have attempted to identify simple horsts and grabens, tilted crustal blocks with planar faulting, or tilted crustal blocks with listric faulting in the shallow crust. Normal faults defining these crustal blocks may root (1) individually in the ductile lower crust, (2) in regional or local low-angle detachment faults, or (3) in igneous intrusions or decoupling surfaces

115

Synthesis and evaluation of fault-tolerant quantum computer architectures  

E-Print Network (OSTI)

Fault-tolerance is the cornerstone of practical, large-scale quantum computing, pushed into its prominent position with heroic theoretical efforts. The fault-tolerance threshold, which is the component failure probability ...

Cross, Andrew W. (Andrew William), 1979-

2005-01-01T23:59:59.000Z

116

Scalable Distributed Consensus to Support MPI Fault Tolerance  

Science Conference Proceedings (OSTI)

As system sizes increase, the amount of time in which an application can run without experiencing a failure decreases. Exascale applications will need to address fault tolerance. In order to support algorithm-based fault tolerance, communication libraries ...

Darius Buntinas

2012-05-01T23:59:59.000Z

117

Rough neural fault classification for hvdc power systems  

Science Conference Proceedings (OSTI)

This Ph.D. thesis proposes an approach to classify faults that commonly occur in a High Voltage Direct Current (HVDC) power system. These faults are distributed throughout the entire HVDC system. The most recently published techniques for power system ...

Liting Han

2008-01-01T23:59:59.000Z

118

High-level test synthesis for delay fault testability  

Science Conference Proceedings (OSTI)

A high-level test synthesis (HLTS) method targeted for delay fault testability is presented. The proposed method, when combined with hierarchical test pattern generation for embedded modules, guarantees 100% delay test coverage for detectable faults ...

Sying-Jyan Wang; Tung-Hua Yeh

2007-04-01T23:59:59.000Z

119

MODELING AND SIMULATION OF HVAC FAULTS IN ENERGYPLUS  

E-Print Network (OSTI)

sensor faults, Energy and Buildings. 42(4). April 2010.faults in buildings. Energy and Buildings. 42(1). Januaryon the DOE-2 model, Energy and Buildings. 21(2). 1994, Pages

Basarkar, Mangesh

2013-01-01T23:59:59.000Z

120

Stability of Distributed Algorithms in the Face of Incessant Faults  

Science Conference Proceedings (OSTI)

For large distributed systems built from inexpensive components, one expects to see incessant failures. This paper proposes two models for such faults and analyzes two well-known self-stabilizing algorithms under these fault models. For a small number ...

Robert E. Lee Deville; Sayan Mitra

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Design and Evaluation of Hybrid Fault-Detection Systems  

Science Conference Proceedings (OSTI)

As chip densities and clock rates increase, processors are becoming more susceptible to transient faults that can affect program correctness. Up to now, system designers have primarily considered hardware-only and software-only fault-detection mechanisms ...

George A. Reis; Jonathan Chang; Neil Vachharajani; Ram Rangan; David I. August; Shubhendu S. Mukherjee

2005-06-01T23:59:59.000Z

122

Two-person control administration: preventing administration faults through duplication  

Science Conference Proceedings (OSTI)

Modern computing systems are complex and difficult to administer, making them more prone to system administration faults. Faults can occur simply due to mistakes in the process of administering a complex system. These mistakes can make the system insecure ...

Shaya Potter; Steven M. Bellovin; Jason Nieh

2009-11-01T23:59:59.000Z

123

Fault Current Limiters (FCL) Fact Sheet | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Publications An Assessment of Fault Current Limiter Testing Requirements Superconductivity Program Overview Superconductivity for Electric Systems: 2008 Annual Peer Review...

124

EPRI Fault Current Management Guidebook, Sixth Edition (Maroon Book)  

Science Conference Proceedings (OSTI)

This document is an update of the document Fault Current Management Guidebook, Fifth Edition on fault current effects and management in transmission and distribution systems. This guide is intended to be a snapshot of available references, information, and literature on the effects of high fault current on a number of power system components and various available and emerging fault-current-limiting technologies.Results and FindingsDue to increased ...

2012-12-31T23:59:59.000Z

125

Underground Cable Fault Location Reference and Application Guide  

Science Conference Proceedings (OSTI)

This report summarizes underground cable fault location methods and details the application of the methods for transmission and distribution cable systems. It summarizes both terminal location and tracer location methods that can be applied to transmission and distribution cable systems. The report is an update to a summary of fault location methods. It provides practical technical material in the art and science of locating cable faults, including a description of common fault location instruments and p...

2011-12-23T23:59:59.000Z

126

Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources  

SciTech Connect

This report discusses issues and provides solutions for dealing with fault current contributions from inverter-based distributed energy resources.

Keller, J.; Kroposki, B.

2010-01-01T23:59:59.000Z

127

Reverse skyline search in uncertain databases  

Science Conference Proceedings (OSTI)

Reverse skyline queries over uncertain databases have many important applications such as sensor data monitoring and business planning. Due to the wide existence of uncertainty in many real-world data, answering reverse skyline queries accurately and ... Keywords: Uncertain database, bichromatic reverse skyline, monochromatic reverse skyline

Xiang Lian; Lei Chen

2010-02-01T23:59:59.000Z

128

Fault Diagnosis of Transformer Based on Probabilistic Neural Network  

Science Conference Proceedings (OSTI)

In order to improve the correct rate of transformer fault diagnosis based on three-ratio method of traditional dissolved gas analysis (DGA), a novel intelligent transformer fault diagnosis method based on both DGA and probabilistic neural network (PNN) ... Keywords: transformer fault diagnosis, probabilistic neural network (PNN), improved three-ratio method

Li Song; Li Xiu-ying; Wang Wen-xu

2011-03-01T23:59:59.000Z

129

New Burnside Anticline: part of Fluorspar area fault complex  

SciTech Connect

Field mapping in the Abbott Formation and examination of topographic lineaments in the Creal Springs, Stonefort, Eddyville, and Harrisburg Quadrangles (southeastern Illinois) reveal the New Burnside anticline and its northeastern extension, the Stonefort anticline to be a single, extensively faulted structure. Interpretation of this evidence also leads to the conclusion that this is a fault-block structure rather than an anticline. Trending notheast-southwest, the structure seems to be the northwesternmost extent of the Fluorspar Area fault complex. The authors found evidence for two episodes of faulting. The first involved northeast-trending, high-angle faults similar to those in the known Fluorspar complex to the southeast. Faults on the northeast (Stonefort antilcine) step down toward the center of the structure, forming a graben. Vertical movement also occurred to the southwest (New Burnside anticline), but the structure in this vicinity is a horst with some blocks tilted. As with other faults in the Fluorspar complex, horizontal slickensides are present locally. The second episode of movement occurred along northwest-southeast-trending strike-slip faults that offset the northeast-trending high-angle faults. This second phase of faulting may correspond with previously reported reactivation of northwest-trending faults elsewhere in the Fluorspar Area fault complex.

Jacobson, R.J.; Trask, C.B.

1983-09-01T23:59:59.000Z

130

Rigorous Development of Dependable Systems Using Fault Tolerance Views  

Science Conference Proceedings (OSTI)

This paper introduces the Mode and Fault Tolerance Views approach to stepwise rigorous development of critical systems. It supports systematic, structured and recursive modelling of system fault tolerance, including error detection, error recovery and ... Keywords: formal methods, Event-B, fault tolerance, modal systems, case study, AOCS

Ilya Lopatkin; Alexei Iliasov; Alexander Romanovsky

2011-11-01T23:59:59.000Z

131

Yet Another Fault Injection Technique : by Forward Body Biasing Injection  

E-Print Network (OSTI)

expensive fault injection tech- niques, like clock or voltage glitches, are well taken into accountYet Another Fault Injection Technique : by Forward Body Biasing Injection K. TOBICH1,2, P. MAURINE1 Injection, Electromag- netic Attacks, RSA, Chinese Remainder Theorem 1 Introduction Fault injection

132

Statistical estimation of multiple faults in aircraft gas turbine engines  

E-Print Network (OSTI)

415 Statistical estimation of multiple faults in aircraft gas turbine engines S Sarkar, C Rao of multiple faults in aircraft gas-turbine engines, based on a statistical pattern recognition tool called commercial aircraft engine. Keywords: aircraft propulsion, gas turbine engines, multiple fault estimation

Ray, Asok

133

Applications of fault detection methods to industrial processes  

Science Conference Proceedings (OSTI)

Components of industrial processes are often affected by un-permitted or un-expected deviations from normal operation behaviour. The fault detection task consists of determination of the fault present in a system and the time of detection. In addition ... Keywords: fault detection and diagnosis, industrial processes, residuals, symptoms

Ioana Fagarasan; S. S. T. Iliescu

2008-06-01T23:59:59.000Z

134

Collective operations in application-level fault-tolerant MPI  

Science Conference Proceedings (OSTI)

Fault-tolerance is becoming a critical issue on high-performance platforms. Checkpointing techniques make programs fault-tolerant by saving their state periodically and restoring this state after failure. System-level checkpointing saves the state ... Keywords: MPI, application-level checkpointing, collective communication, fault-tolerance, non-FIFO communication, scientific computing

Greg Bronevetsky; Daniel Marques; Keshav Pingali; Paul Stodghill

2003-06-01T23:59:59.000Z

135

Outlier Detection Rules for Fault Detection in Solar Photovoltaic Arrays  

E-Print Network (OSTI)

fault detection. Furthermore, the proposed models become more reliable as the number of PV measurements analysis specifically for PV installation. Several fault detection models and monitoring systems have been studied for PV systems [8]­[14]. PV monitoring and fault detection models based on energy yield and power

Lehman, Brad

136

A lightweight fault tolerance framework for Web services  

Science Conference Proceedings (OSTI)

In this paper, we present the design and implementation of a lightweight fault tolerance framework for Web services. With our framework, a Web service can be rendered fault tolerant by replicating it across several nodes. A consensus-based algorithm ... Keywords: Fault tolerance, Web services, distributed consensus, reliable messaging, replication

Wenbing Zhao; Honglei Zhang; Hua Chai

2009-08-01T23:59:59.000Z

137

Fault reconnaissance agent for sensor networks  

Science Conference Proceedings (OSTI)

One of the key prerequisite for a scalable, effective and efficient sensor network is the utilization of low-cost, low-overhead and high-resilient fault-inference techniques. To this end, we propose an intelligent agent system with a problem solving ... Keywords: Management, expectation maximization algorithm, intelligent agents, wireless sensor networks

Elhadi M. Shakshuki; Xinyu Xing; Tarek R. Sheltami

2010-08-01T23:59:59.000Z

138

Optimized Fault Location Final Project Report  

E-Print Network (OSTI)

excessive currents and voltages last long enough to cause equipment damage. CBs have the purpose to connect describes connectivity of the various components in the power system. In order to process retrieved fault, the system topology must be known. Beside the connectivity it is necessary to obtain information about

139

Coordinated Fault Tolerance for High-Performance Computing  

SciTech Connect

Our work to meet our goal of end-to-end fault tolerance has focused on two areas: (1) improving fault tolerance in various software currently available and widely used throughout the HEC domain and (2) using fault information exchange and coordination to achieve holistic, systemwide fault tolerance and understanding how to design and implement interfaces for integrating fault tolerance features for multiple layers of the software stack—from the application, math libraries, and programming language runtime to other common system software such as jobs schedulers, resource managers, and monitoring tools.

Dongarra, Jack; Bosilca, George; et al.

2013-04-08T23:59:59.000Z

140

Reversible Simulations of Elastic Collisions  

Science Conference Proceedings (OSTI)

Consider a system of N identical hard spherical particles moving in a d-dimensional box and undergoing elastic, possibly multi-particle, collisions. We develop a new algorithm that recovers the pre-collision state from the post-collision state of the system, across a series of consecutive collisions, \\textit{with essentially no memory overhead}. The challenge in achieving reversibility for an n-particle collision (where, in general, nN) arises from the presence of nd-d-1 degrees of freedom (arbitrary angles) during each collision, as well as from the complex geometrical constraints placed on the colliding particles. To reverse the collisions in a traditional simulation setting, all of the particular realizations of these degrees of freedom (angles) during the forward simulation must be tracked. This requires memory proportional to the number of collisions, which grows very fast with N and d, thereby severely limiting the \\textit{de facto} applicability of the scheme. This limitation is addressed here by first performing a pseudo-randomization of angles, which ensures determinism in the reverse path for any values of n and d. To address the more difficult problem of geometrical and dynamic constraints, a new approach is developed which correctly samples the constrained phase space. Upon combining the pseudo-randomization with correct phase space sampling, perfect reversibility of collisions is achieved, as illustrated for nn=2, d=3. This result enables, for the first time, reversible simulations of elastic collisions with essentially zero memory accumulation. In principle, the approach presented here could be generalized to larger values of n, which would be of definite interest for molecular dynamics simulations at high densities.

Perumalla, Kalyan S [ORNL; Protopopescu, Vladimir A [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Active Fault Segments As Potential Earthquake Sources- Inferences From  

Open Energy Info (EERE)

Active Fault Segments As Potential Earthquake Sources- Inferences From Active Fault Segments As Potential Earthquake Sources- Inferences From Integrated Geophysical Mapping Of The Magadi Fault System, Southern Kenya Rift Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Active Fault Segments As Potential Earthquake Sources- Inferences From Integrated Geophysical Mapping Of The Magadi Fault System, Southern Kenya Rift Details Activities (0) Areas (0) Regions (0) Abstract: Southern Kenya Rift has been known as a region of high geodynamic activity expressed by recent volcanism, geothermal activity and high rate of seismicity. The active faults that host these activities have not been investigated to determine their subsurface geometry, faulting intensity and constituents (fluids, sediments) for proper characterization of tectonic

142

Definition: Enhanced Fault Detection Technology | Open Energy Information  

Open Energy Info (EERE)

Technology Technology Jump to: navigation, search Dictionary.png Enhanced Fault Detection Technology Enhanced fault detection technology enables higher precision and greater discrimination of fault location and type with coordinated measurement among multiple devices. For distribution applications, this technology can detect and isolate faults without full-power re-closing, reducing the frequency of through-fault currents. Using high resolution sensors and fault signatures, this technology can better detect high impedance faults. For transmission applications, this technology will employ high speed communications between multiple elements (e.g., stations) to protect entire regions, rather than just single elements. It can also use the latest digital techniques to advance beyond conventional impedance relaying of

143

New method for abbreviating the fault tree graphical representation  

SciTech Connect

Fault tree analysis is being widely used for reliability and safety analysis of systems encountered in the nuclear industry and elsewhere. A disadvantage of the fault tree method is the voluminous fault tree graphical representation that conventionally results from analysis of a complex system. Previous methods for shortening the fault tree graphical representation include (1) transfers within the fault tree, and (2) the use of the SAMPLE (K out of N logic) gate, the MATRIX gate, and the SUMMATION gate. The purpose of this presentation is to introduce TABULATION gates as a method to abbreviate the fault tree graphical representation. These new gates reduce the cost of analysis and generally increase the system behavior visibility that is inherent in the fault tree technique. (auth)

Stewart, M.E.; Fussell, J.B.; Crump, R.J.

1974-12-01T23:59:59.000Z

144

Upper crustal faulting in an obliquely extending orogen, structural control  

Open Energy Info (EERE)

faulting in an obliquely extending orogen, structural control faulting in an obliquely extending orogen, structural control on permeability and production in the Coso Geothermal Field, eastern California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Upper crustal faulting in an obliquely extending orogen, structural control on permeability and production in the Coso Geothermal Field, eastern California Details Activities (1) Areas (1) Regions (0) Abstract: New multifold seismic reflection data from the Coso geothermal field in the central Coso Range, eastern California, image brittle faults and other structures in a zone of localized crustal extension between two major strike-slip faults. The Coso Wash fault, a Quaternary-active normal fault that is a locus of surface geothermal activity, is well-imaged as a

145

Reflection seismic profiling in Wabash Valley fault system in southwestern Indiana  

SciTech Connect

During the summer of 1988 common-depth-point (CDP) reflection seismic profiling was initiated by ARPEX in southwestern Indiana in the Wabash Valley fault system. A 2.2-im (1.4-mi) east-west profile was shot across the Mt. Vernon graben in Posey County. Minihole shooting in 21-m (68.9-ft) patterns using 3.4 kg (7.5 lb) of seismic explosives distributed in five 3-m (10-ft) holes provided the energy source. Most shotholes were made with a reversible air-driven penetrating tool that was effective in dense clays. The 12-geophone array length was 43 m (141 ft), and the nominal far-trace offset was 2.1 km (7,000 ft). A 48-channel recording yielded 24-CDP coverage at 11-m (36-ft) intervals. Data were enhanced by gapped deconvolution, bandpass filtering, and CDP stack. The strongest and most continuous reflections at 0.75 and 1.6 sec are associated with the New Albany Shale (Devonian-Mississippian) and Eau Claire Formation (Cambrian), respectively. Within the Mt. Vernon graben and east of the Spenser Consolidated oil field, the depth to Eau Claire Formation apparently increases by approximately 60 m (197 ft) over a horizontal distance of 1.4 km (0.9 mi). Minor faulting east of the Spencer Consolidated field appears to be synthetic to the Hovey lake fault, which bounds the eastern side of the Mt. Vernon graben. Tentative interpretations of faulting and weak reflections from depths greater than 4.5 km (15,000 ft) may be clarified by additional data processing and by additional seismic profiling planned by ARPEX.

Rene, R.M.; Hester, N.C.; Stanonis, F.L. (Indiana Univ., Bloomington (USA))

1989-08-01T23:59:59.000Z

146

Undulator Hall Air Temperature Fault Scenarios  

SciTech Connect

Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

Sevilla, J.

2010-11-17T23:59:59.000Z

147

Neural net application to transmission line fault detection and classification  

E-Print Network (OSTI)

Today, in electric power systems, a large amount of data is made readily available at the occurrence of a fault due to the use of advanced communication systems, digital relays and fault recorders. Such systems are intended to obtain data from contacts of the relays and circuit breakers under operation. In addition, corresponding voltages and currents are recorded during prefault, fault and postfault periods. Restoration of power Systems after a fault occurred requires quick judgment. Hence, fault analysis, as the first step of restoration is very important. However, since faults in power systems are various and relaying systems may be complex, fault analysis is difficult to automate. Common practice in power utility companies, today, is to perform fault analysis by expert operators using their knowledge about the power systems and experience with past faults. Because of the time required to deal with complex fault situations, detailed fault analysis can not be performed by human operators in a short time. Therefore, on-line automated fault analysis system is strongly desired. Traditional approaches to the problem of analysis is to construct a heuristic, rule-based system which embodies a portion of the compiled experience of a human expert. These systems perform fault analysis by mapping fault indications to fault hypotheses. 'These hypotheses are used as inputs for next level of rules. After completion of inferencing process, conclusions are given. The knowledge acquisition process is exhaustive and time consuming. Also, data processing is usually too slow to be effectively applied in a real-time environment. Neural computing is one of the rapidly expanding areas of current research. Neural nets have some obvious advantages over expert systems. They are computationally more effective because of their parallel processing capabilities. Also, there is no need for detailed knowledge acquisition part, because neural nets learn by example. This thesis presents results of a study on using the new neural net system that can perform both on-line and off-line fault detection and classification. Fault analysis is conceptualized as a pattern classification problem which involves the association of input patterns representing the power system state to one or more fault conditions.

Rikalo, Igor

1994-01-01T23:59:59.000Z

148

Reverse engineering of integrated circuits  

DOE Patents (OSTI)

Software and a method therein to analyze circuits. The software comprises several tools, each of which perform particular functions in the Reverse Engineering process. The analyst, through a standard interface, directs each tool to the portion of the task to which it is most well suited, rendering previously intractable problems solvable. The tools are generally used iteratively to produce a successively more abstract picture of a circuit, about which incomplete a priori knowledge exists.

Chisholm, Gregory H. (Shorewood, IL); Eckmann, Steven T. (Colorado Springs, CO); Lain, Christopher M. (Pittsburgh, PA); Veroff, Robert L. (Albuquerque, NM)

2003-01-01T23:59:59.000Z

149

Reversible Seeding in Storage Rings  

Science Conference Proceedings (OSTI)

We propose to generate steady-state microbunching in a storage ring with a reversible seeding scheme. High gain harmonic generation (HGHG) and echo-enabled harmonic generation (EEHG) are two promising methods for microbunching linac electron beams. Because both schemes increase the energy spread of the seeded beam, they cannot drive a coherent radiator turn-by-turn in a storage ring. However, reversing the seeding process following the radiator minimizes the impact on the electron beam and may allow coherent radiation at or near the storage ring repetition rate. In this paper we describe the general idea and outline a proof-of-principle experiment. Electron storage rings can drive high average power light sources, and free-electron lasers (FELs) are now producing coherent light sources of unprecedented peak brightness While there is active research towards high repetition rate FELs (for example, using energy recovery linacs), at present there are still no convenient accelerator-based sources of high repetition rate, coherent radiation. As an alternative avenue, we recently proposed to establish steady-state microbunching (SSMB) in a storage ring. By maintaining steady-state coherent microbunching at one point in the storage ring, the beam generates coherent radiation at or close to the repetition rate of the storage ring. In this paper, we propose a method of generating a microbunched beam in a storage ring by using reversible versions of linac seeding schemes.

Ratner, Daniel; Chao, Alex; /SLAC

2011-12-14T23:59:59.000Z

150

Calculating the probability of injected carbon dioxide plumes encountering faults  

Science Conference Proceedings (OSTI)

One of the main concerns of storage in saline aquifers is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available for these aquifers. This necessitates a method using available fault data to estimate the probability of injected carbon dioxide encountering and migrating up a fault. The probability of encounter can be calculated from areal fault density statistics from available data, and carbon dioxide plume dimensions from numerical simulation. Given a number of assumptions, the dimension of the plume perpendicular to a fault times the areal density of faults with offsets greater than some threshold of interest provides probability of the plume encountering such a fault. Application of this result to a previously planned large-scale pilot injection in the southern portion of the San Joaquin Basin yielded a 3% and 7% chance of the plume encountering a fully and half seal offsetting fault, respectively. Subsequently available data indicated a half seal-offsetting fault at a distance from the injection well that implied a 20% probability of encounter for a plume sufficiently large to reach it.

Jordan, P.D.

2011-04-01T23:59:59.000Z

151

Optimization Online - Recruiting Suppliers for Reverse Production ...  

E-Print Network (OSTI)

Mar 14, 2007 ... Recruiting Suppliers for Reverse Production Systems: an MDP Heuristics Approach. Wuthichai Wongthatsanekorn(wwongtha ***at*** ...

152

Application of Support Vector Machine (SVM) and Proximal Support Vector Machine (PSVM) for fault classification of monoblock centrifugal pump  

Science Conference Proceedings (OSTI)

Monoblock centrifugal pumps are widely used in a variety of applications. Defects and malfunctions (faults) of these pumps result in significant economic loss. Therefore, the pumps must be under constant monitoring. When a possible fault is detected, ... Keywords: CAV, PSVM, bearing faults, cavitation, decision trees, fault classification, fault diagnosis, impeller faults, monoblock centrifugal pumps, proximal SVM, seal faults, support vector machines, vibration signals

N. R. Sakthivel; V. Sugumaran; Binoy B. Nair

2010-12-01T23:59:59.000Z

153

Type E: Extensional Tectonic, Fault-Controlled Resource | Open Energy  

Open Energy Info (EERE)

Type E: Extensional Tectonic, Fault-Controlled Resource Type E: Extensional Tectonic, Fault-Controlled Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type E: Extensional Tectonic, Fault-Controlled Resource Dictionary.png Type E: Extensional Tectonic, Fault-Controlled Resource: No definition has been provided for this term. Add a Definition Brophy Occurrence Models This classification scheme was developed by Brophy, as reported in Updating the Classification of Geothermal Resources.[1] Type A: Magma-heated, Dry Steam Resource Type B: Andesitic Volcanic Resource Type C: Caldera Resource Type D: Sedimentary-hosted, Volcanic-related Resource Type E: Extensional Tectonic, Fault-Controlled Resource Type F: Oceanic-ridge, Basaltic Resource Extensional-tectonic, fault-controlled resources typically result from a

154

Fault Mapping At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

Fault Mapping At Raft River Geothermal Area (1993) Fault Mapping At Raft River Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fault Mapping At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Fault Mapping Activity Date 1993 Usefulness useful DOE-funding Unknown Exploration Basis Geologic mapping, strain and kinematic analysis Notes The mountains expose a detachment fault that separates a hanging wall of Paleozoic rocks from Proterozoic and Archean rocks of the footwall. Beneath the detachment lies a 100 to 300m-thick top-to-the-east extensional shear zone. Geologic mapping, strain and kinematic analysis, and 40Ar/39Ar thermochronology suggest that the shear zone and detachment fault had an

155

Scalable distributed consensus to support MPI fault tolerance.  

Science Conference Proceedings (OSTI)

As system sizes increase, the amount of time in which an application can run without experiencing a failure decreases. Exascale applications will need to address fault tolerance. In order to support algorithm-based fault tolerance, communication libraries will need to provide fault-tolerance features to the application. One important fault-tolerance operation is distributed consensus. This is used, for example, to collectively decide on a set of failed processes. This paper describes a scalable, distributed consensus algorithm that is used to support new MPI fault-tolerance features proposed by the MPI 3 Forum's fault-tolerance working group. The algorithm was implemented and evaluated on a 4,096-core Blue Gene/P. The implementation was able to perform a full-scale distributed consensus in 305 {mu}s and scaled logarithmically.

Buntinas, D. (Mathematics and Computer Science)

2011-01-01T23:59:59.000Z

156

Similarity Matching Techniques for Fault Diagnosis in Automotive Infotainment Electronics  

E-Print Network (OSTI)

Fault diagnosis has become a very important area of research during the last decade due to the advancement of mechanical and electrical systems in industries. The automobile is a crucial field where fault diagnosis is given a special attention. Due to the increasing complexity and newly added features in vehicles, a comprehensive study has to be performed in order to achieve an appropriate diagnosis model. A diagnosis system is capable of identifying the faults of a system by investigating the observable effects (or symptoms). The system categorizes the fault into a diagnosis class and identifies a probable cause based on the supplied fault symptoms. Fault categorization and identification are done using similarity matching techniques. The development of diagnosis classes is done by making use of previous experience, knowledge or information within an application area. The necessary information used may come from several sources of knowledge, such as from system analysis. In this paper similarity matching tec...

Kabir, Mashud

2009-01-01T23:59:59.000Z

157

Active Faulting in the Coso Geothermal Field, Eastern California | Open  

Open Energy Info (EERE)

Faulting in the Coso Geothermal Field, Eastern California Faulting in the Coso Geothermal Field, Eastern California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Active Faulting in the Coso Geothermal Field, Eastern California Details Activities (1) Areas (1) Regions (0) Abstract: New mapping documents a series of late Quaternary NNE-striking normal faults in the central Coso Range that dip northwest, toward and into the main production area of the Coso geothermal field. The faults exhibit geomorphic features characteristic of Holocene activity, and locally are associated with fumaroles and hydothermal alteration. The active faults sole into or terminate against the brittle-ductile transition zone (BDT) at a depth of about 4 to 5 km. The BDT is arched upward over a volume of crust

158

Enhancing and Testing Fast Fault Screening (FFS) Methodology  

Science Conference Proceedings (OSTI)

The aim of this multi-year study is to develop a methodology for fast prediction of the most severe three-phase fault locations for transient stability studies and rank them in order of severity. The methodology is called Fast Fault Screening (FFS).  The key advantage of the FFS is the ability to quickly scan through thousands of potential fault locations from transient stability perspective and identify the most severe locations. In the previous efforts, FFS was developed for angular ...

2012-12-31T23:59:59.000Z

159

Impact of Wind Power Integration on Fault Current Management  

Science Conference Proceedings (OSTI)

This report presents a study on the impact of wind power integration on the grid fault current level due to various types of faults that might take place inside or outside of wind farms. Wind power is one of the renewable energy sources that has shown tremendous growth in recent years. The increasing integration of wind energy generation and other distributed renewable energy generation could change grid behavior under fault situations and influence system stability. Specifically, integration of addition...

2010-01-14T23:59:59.000Z

160

Timer-based composition of fault-containing self-stabilizing protocols  

Science Conference Proceedings (OSTI)

One of the desired properties of distributed systems is self-adaptability against faults. Self-stabilizing protocols provide autonomous recovery from any finite number of transient faults. However, in practice, catastrophic faults rarely occur, while ... Keywords: Distributed system, Fault tolerance, Fault-containment, Hierarchical composition, Self-adaptability, Self-stabilization, Synchronizer, Timer

Yukiko Yamauchi; Sayaka Kamei; Fukuhito Ooshita; Yoshiaki Katayama; Hirotsugu Kakugawa; Toshimitsu Masuzawa

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Historic Surface Faulting and Paleoseismicity in the Area of...  

Open Energy Info (EERE)

Historic Surface Faulting and Paleoseismicity in the Area of the 1954 Rainbow Mountain-Stillwater Earthquake Sequence, Central Nevada Jump to: navigation, search OpenEI Reference...

162

Low-cost motor drive embedded fault diagnosis systems  

E-Print Network (OSTI)

Electric motors are used widely in industrial manufacturing plants. Bearing faults, insulation faults, and rotor faults are the major causes of electric motor failures. Based on the line current analysis, this dissertation mainly deals with the low cost incipient fault detection of inverter-fed driven motors. Basically, low order inverter harmonics contributions to fault diagnosis, a motor drive embedded condition monitoring method, analysis of motor fault signatures in noisy line current, and a few specific applications of proposed methods are studied in detail. First, the effects of inverter harmonics on motor current fault signatures are analyzed in detail. The introduced fault signatures due to harmonics provide additional information about the motor faults and enhance the reliability of fault decisions. It is theoretically and experimentally shown that the extended fault signatures caused by the inverter harmonics are similar and comparable to those generated by the fundamental harmonic on the line current. In the next chapter, the reference frame theory is proposed as a powerful toolbox to find the exact magnitude and phase quantities of specific fault signatures in real time. The faulty motors are experimentally tested both offline, using data acquisition system, and online, employing the TMS320F2812 DSP to prove the effectiveness of the proposed tool. In addition to reference frame theory, another digital signal processor (DSP)-based phasesensitive motor fault signature detection is presented in the following chapter. This method has a powerful line current noise suppression capability while detecting the fault signatures. It is experimentally shown that the proposed method can determine the normalized magnitude and phase information of the fault signatures even in the presence of significant noise. Finally, a signal processing based fault diagnosis scheme for on-board diagnosis of rotor asymmetry at start-up and idle mode is presented. It is quite challenging to obtain these regular test conditions for long enough time during daily vehicle operations. In addition, automobile vibrations cause a non-uniform air-gap motor operation which directly affects the inductances of electric motor and results quite noisy current spectrum. The proposed method overcomes the challenges like aforementioned ones simply by testing the rotor asymmetry at zero speed.

Akin, Bilal

2007-08-01T23:59:59.000Z

163

Upper crustal faulting in an obliquely extending orogen, structural...  

Open Energy Info (EERE)

faulting in an obliquely extending orogen, structural control on permeability and production in the Coso Geothermal Field, eastern California Jump to: navigation, search...

164

Dynamic analysis and fault diagnosis of a water hydraulic motor.  

E-Print Network (OSTI)

??This research is concerned with condition monitoring and fault diagnosis of the piston of the water hydraulic motor by vibration signal analysis. Vibration signatures are… (more)

Chen, Hanxin.

2008-01-01T23:59:59.000Z

165

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION...  

Open Energy Info (EERE)

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

166

Thermal Waters Along The Konocti Bay Fault Zone, Lake County...  

Open Energy Info (EERE)

Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Thermal...

167

Fault Detection and Diagnosis in Building HVAC Systems  

E-Print Network (OSTI)

diagnostic method for vapor compression air conditioners”,evaluation of faults in vapor compression cycle equipment”,Diagnostic Methods to Vapor Compression Cooling Equipment“,

Najafi, Massieh

2010-01-01T23:59:59.000Z

168

Intersecting Fault Trends and Crustal-Scale Fluid Pathways Below...  

Open Energy Info (EERE)

Intersecting Fault Trends and Crustal-Scale Fluid Pathways Below the Dixie Valley Geothermal Area, Nevada, Inferred from 3d Magnetotelluric Surveying Jump to: navigation, search...

169

CiFTS : Coordinated Infrastructure for Fault Tolerant Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Demos Team News Contact Us Coordinated and Improved Fault Tolerance for High Performance Computing Systems In the next few years SciDAC applications will utilize exascale...

170

Petri net modeling of fault analysis for probabilistic risk assessment.  

E-Print Network (OSTI)

??Fault trees and event trees have been widely accepted as the modeling strategy to perform Probabilistic Risk Assessment (PRA). However, there are several limitations associated… (more)

Lee, Andrew

2013-01-01T23:59:59.000Z

171

Cryptic Faulting and Multi-Scale Geothermal Fluid Connections...  

Open Energy Info (EERE)

Cryptic Faulting and Multi-Scale Geothermal Fluid Connections in the Dixie Valley-Central Nevada Seismic Belt Area- Implications from Mt Resistivity Surveying Jump to: navigation,...

172

Recency Of Faulting And Neotechtonic Framework In The Dixie Valley...  

Open Energy Info (EERE)

Recency Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Jump to: navigation, search GEOTHERMAL...

173

An Assessment of Fault Current Limiter Testing Requirements ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Reliability (OE) is conducting research and development (R&D) on next-generation electricity delivery equipment including fault current limiters (FCLs). Prototype FCL...

174

Recent earthquake sequences at Coso: Evidence for conjugate faulting...  

Open Energy Info (EERE)

Recent earthquake sequences at Coso: Evidence for conjugate faulting and stress loading near a geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

175

Fault Prediction and Fault-Tolerant of Lithium-ion Batteries Temperature Failure for Electric Vehicle  

Science Conference Proceedings (OSTI)

Design and implementation of dual-redundancy was developed to predict Lithium-ion battery failure for electric vehicle. Data fusion unit, prediction unit and determination unit were designed. Outputs from original and redundant sensors were integrated ... Keywords: Lithium-ion battery, dual-redundancy, data fusion, prediction, Fault-tolerant

Hu Chunhua; He Ren; Wang Runcai; Yu Jianbo

2012-07-01T23:59:59.000Z

176

A fuzzy neural network based fault detection scheme for synchronous generator with internal fault  

Science Conference Proceedings (OSTI)

A fuzzy neural network (FNN) based inter-turn short circuit fault detection scheme for generator is proposed. The second harmonic magnitude of field current and the negative sequence components of voltages and currents are used as inputs for the FNN ...

Hongwei Fang; Changliang Xia

2009-08-01T23:59:59.000Z

177

Prototyping a fault-tolerant multiprocessor SoC with run-time fault recovery  

Science Conference Proceedings (OSTI)

Modern integrated circuits (ICs) are becoming increasingly complex. The complexity makes it difficult to design, manufacture and integrate these high performance ICs. The advent of multiprocessor Systems-on-chips (SoCs) makes it even more challenging ... Keywords: fault-tolerance, multiprocessor system, network-on-chip, retargetable simulation, run-time verification, system-on-chip

Xinping Zhu; Wei Qin

2006-07-01T23:59:59.000Z

178

Structural geology of Shawneetown fault zone, Southeastern Illinois  

SciTech Connect

Vertical movements of crustal blocks along the narrow east-west-trending Shawneetown fault zone in southeastern Illinois occurred between Early Permian and Late Cretaceous. The main blocks moved vertically and retured to roughly their orignal positions so that strata now show little relative offset across the fault zone. However, individual faults with displacements up to 3,500 ft (1,070 m) bound narrow slices of steeply tilted or overturned strata resulting in a juxtaposition of Kinderhookian (Lower Mississippian) and Upper Devonian strata with Lower Pennsylvanina strata. The bedrock is intensely fractured, commonly brecciated, and cemented with either silica or calcite. Slickensides and mullion display various orientations within the zone and on individual outcrops. The dominant movement, however, appears to be vertical with no evidence for significant strike-slip movements. Pleistocene deposits do not exhibit offsets across the fault zone, indicating that no tectonic activity has occurred since the beginning of that epoch. The trend of the fault zone changes abruptly from east-west in southern Gallatin and easternmost Saline Counties to south-southwest in southern Saline and northeastern Pope Counties, where it joins the Fluorspar area fault complex. Here the zone widens and develops a braided pattern as the amount of displacement along individual faults decreases. The Shawneetown fault zone and Flourspar area fault complex in part are younger than the Cottage Grove fault system to the northwest and the Wabash Valley fault system to the north. The hope of finding structural traps near the junctions of the fuel systems has spurred recent oil exploration in the area.

Lumm, D.K.; Nelson, W.J.

1983-09-01T23:59:59.000Z

179

Automating Power System Fault Diagnosis through Multi-Agent System Technology  

Science Conference Proceedings (OSTI)

Fault diagnosis within electrical power systems is a time consuming and complex task. SCADA systems, digital fault recorders, travelling wave fault locators and other monitoring devices are drawn upon to inform the engineers of incidents, problems and ...

S. D. J. McArthur; E. M. Davidson; J. A. Hossack; J. R. McDonald

2004-01-01T23:59:59.000Z

180

Feng shui of supercomputer memory: positional effects in DRAM and SRAM faults  

Science Conference Proceedings (OSTI)

Several recent publications confirm that faults are common in high-performance computing systems. Therefore, further attention to the faults experienced by such computing systems is warranted. In this paper, we present a study of DRAM and SRAM faults ...

Vilas Sridharan, Jon Stearley, Nathan DeBardeleben, Sean Blanchard, Sudhanva Gurumurthi

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

First step towards automatic correction of firewall policy faults  

Science Conference Proceedings (OSTI)

Firewalls are critical components of network security and have been widely deployed for protecting private networks. A firewall determines whether to accept or discard a packet that passes through it based on its policy. However, most real-life firewalls ... Keywords: Automatic fault fixing, firewall faults, firewall policy

Fei Chen; Alex X. Liu; Jeehyun Hwang; Tao Xie

2012-07-01T23:59:59.000Z

182

Fault Diagnosis of Transformer Based on Random Forest  

Science Conference Proceedings (OSTI)

Fault diagnosis of transformer in power system is studied in this paper. Considering the excellent performances of Random Forest (RF) in pattern recognition, we apply RF to construct a diagnosis model to predict the situation of transformer. The experiments ... Keywords: Rondom Forest, fault diagnosis of transformer, classification model

Xi Chen; Hongmei Cui; Linkai Luo

2011-03-01T23:59:59.000Z

183

ANFIS based sensor fault detection for continuous stirred tank reactor  

Science Conference Proceedings (OSTI)

In this paper, an Adaptive Neuro-Fuzzy Inference System (ANFIS) based Sensor fault detection and isolation for Continuous Stirred Tank Reactor (CSTR) is proposed. CSTR is a highly nonlinear process exhibiting stable and unstable steady state at different ... Keywords: ANFIS observer, Continuous stirred tank reactor, Dedicated observer, Fault detection

U. Sabura Banu; G. Uma

2011-03-01T23:59:59.000Z

184

Increasing fault-tolerance in cellular automata-based systems  

Science Conference Proceedings (OSTI)

In the light of emergence of cellular computing, new cellular computing systems based on yet-unknown methods of fabrication need to address the problem of fault tolerance in a way which is not tightly connected to used technology. This may not be possible ... Keywords: Byl's loop, Game of Life, TMR, cellular automata, cellular computing, fault tolerance, rule 30, static module redundance

Lud?k Žaloudek; Lukáš Sekanina

2011-06-01T23:59:59.000Z

185

Symbolic identification for fault detection in aircraft gas turbine engines  

E-Print Network (OSTI)

Symbolic identification for fault detection in aircraft gas turbine engines S Chakraborty, S Sarkar and computationally inexpensive technique of component-level fault detection in aircraft gas-turbine engines identification, gas turbine engines, language-theoretic analysis 1 INTRODUCTION The propulsion system of modern

Ray, Asok

186

CUDA accelerated fault tree analysis with C-XSC  

Science Conference Proceedings (OSTI)

Fault tree analysis is a widespread mathematical method for determining the failure probability of observed real-life systems. In addition to failure probability defined by wear, the system model has to take into account intrinsic and extrinsic system ... Keywords: C-XSC, CUDA, DSI, fault tree analysis

Gabor Rebner; Michael Beer

2012-09-01T23:59:59.000Z

187

GPS satellite oscillator faults mimicking ionospheric phase scintillation  

Science Conference Proceedings (OSTI)

It is possible for unreported Global Positioning System satellite faults to cause phase variations mimicking the effect of ionospheric scintillation. A case study of an event on 17 May, 2011 is presented. For approximately 695 s, the L1 signal from the ... Keywords: Anomaly, Fault, Navstar 43, PRN 13, Scintillation, Sigma-phi

Christopher J. Benton; Cathryn N. Mitchell

2012-10-01T23:59:59.000Z

188

Towards Robustness in Neural Network Based Fault Diagnosis  

Science Conference Proceedings (OSTI)

Challenging design problems arise regularly in modern fault diagnosis systems. Unfortunately, classical analytical techniques often cannot provide acceptable solutions to such difficult tasks. This explains why soft computing techniques such as neural ... Keywords: Dynamic Neural Network, Fault Diagnosis, Gmdh Neural Network, Robustness

Krzysztof Patan; Marcin Witczak; JóZef Korbicz

2008-12-01T23:59:59.000Z

189

Fault detection in multivariate signals with applications to gas turbines  

Science Conference Proceedings (OSTI)

This paper proposes a fault detection method for multivariate signals. The method assesses whether or not the multivariate autocovariance functions of two independently sampled system signals coincide. If the first signal is known to be sampled from ... Keywords: autocovariances, fault detection, spectral analysis, stationary time series

Hany Bassily; Robert Lund; John Wagner

2009-03-01T23:59:59.000Z

190

COMPLETE FAULT ANALYSIS FOR LONG TRANSMISSION LINE USING  

E-Print Network (OSTI)

Plants and Power Systems Control, Kananaskis, Canada, 2006 #12;Area Measurement System (WAMS) and Phasor variables. Methods based on traveling waves and recently based on fault- generated high-frequency transients of the fault location. This method will be more attractive when the concept of Wide IFAC Symposium on Power

191

Online Fault Detection and Tolerance for Photovoltaic Energy Harvesting Systems  

E-Print Network (OSTI)

Online Fault Detection and Tolerance for Photovoltaic Energy Harvesting Systems Xue Lin 1 , Yanzhi, yanzhiwa, dizhu, pedram}@usc.edu, 2 naehyuck@elpl.snu.ac.kr ABSTRACT Photovoltaic energy harvesting systems (PV systems) are subject to PV cell faults, which decrease the efficiency of PV systems and even

Pedram, Massoud

192

Soft computing approach to fault diagnosis of centrifugal pump  

Science Conference Proceedings (OSTI)

Fault detection and isolation in rotating machinery is very important from an industrial viewpoint as it can help in maintenance activities and significantly reduce the down-time of the machine, resulting in major cost savings. Traditional methods have ... Keywords: Centrifugal pump, Decision tree algorithm, Fault diagnosis, Gene expression programming, Proximal support vector machine, Statistical features, Support vector machine

N. R. Sakthivel; Binoy.B.Nair; V. Sugumaran

2012-05-01T23:59:59.000Z

193

Effects of unbalanced faults on transient stability of cogeneration system  

Science Conference Proceedings (OSTI)

This paper evaluates the effects of unbalanced faults on the transient stability of a real cogeneration plant. First, a brief is given for the structure of the cogeneration system. Use of the electromagnetic transient program (EMTP) constructs the cogeneration ... Keywords: CCT curve, EMTP, cogeneration plant, transient stability, unbalanced faults

Wei-Neng Chang; Chia-Han Hsu

2011-10-01T23:59:59.000Z

194

Automatic Fault Characterization via Abnormality-Enhanced Classification  

Science Conference Proceedings (OSTI)

Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help to identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.

Bronevetsky, G; Laguna, I; de Supinski, B R

2010-12-20T23:59:59.000Z

195

Research on Fault Location of Power Cable with Wavelet Analysis  

Science Conference Proceedings (OSTI)

This article researChes for 10kV transmission cable form the ground substation to the underground central substation in the coal mine. The transient traveLing wave signal of the cable fault is disposed by the wavelet transformation based on the cable ... Keywords: Wavelet analysis, Fault Location, TraveLing wave

Ji-meng Zhang; Shuo Liang

2011-08-01T23:59:59.000Z

196

Dating of major normal fault systems using thermochronology- An example  

Open Energy Info (EERE)

Dating of major normal fault systems using thermochronology- An example Dating of major normal fault systems using thermochronology- An example from the Raft River detachment, Basin and Range, western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Dating of major normal fault systems using thermochronology- An example from the Raft River detachment, Basin and Range, western United States Details Activities (1) Areas (1) Regions (0) Abstract: Application of thermochronological techniques to major normal fault systems can resolve the timing of initiation and duration of extension, rates of motion on detachment faults, timing of ductile mylonite formation and passage of rocks through the crystal-plastic to brittle transition, and multiple events of extensional unroofing. Here we determine

197

Recent earthquake sequences at Coso: Evidence for conjugate faulting and  

Open Energy Info (EERE)

earthquake sequences at Coso: Evidence for conjugate faulting and earthquake sequences at Coso: Evidence for conjugate faulting and stress loading near a geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Recent earthquake sequences at Coso: Evidence for conjugate faulting and stress loading near a geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: Two recent earthquake sequences near the Coso geothermal field show clear evidence of faulting along conjugate planes. We present results from analyzing an earthquake sequence occurring in 1998 and compare it with a similar sequence that occurred in 1996. The two sequences followed mainshocks that occurred on 27 November 1996 and 6 March 1998. Both mainshocks ruptured approximately colocated regions of the same fault

198

Definition: Apex or Salient of Normal Fault | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Apex or Salient of Normal Fault Jump to: navigation, search Dictionary.png Apex or Salient of Normal Fault Normal faults may intersect in the subsurface to form a fault apex or salient. Apices or salients of normal faults account for 3% of structural controls in the Great Basin.[2] View on Wikipedia Wikipedia Definition References ↑ James E. Faulds,Nicholas H. Hinz,Mark F. Coolbaugh,Patricia H. Cashman,Christopher Kratt,Gregory Dering,Joel Edwards,Brett Mayhew,Holly McLachlan. 2011. Assessment of Favorable Structural Settings of Geothermal Systems in the Great Basin, Western USA. In: Transactions. GRC Anual Meeting; 2011/10/23; San Diego, CA. Davis, CA: Geothermal Resources Council; p. 777-783

199

Probability Estimation of CO2 Leakage Through Faults at Geologic Carbon Sequestration Sites  

E-Print Network (OSTI)

for Geologic Carbon Sequestration Based on EffectiveFaults at Geologic Carbon Sequestration Sites Yingqi Zhang*,faults at geologic carbon sequestration (GCS) sites is a

Zhang, Yingqi

2009-01-01T23:59:59.000Z

200

Fault Analysis at a Wind Power Plant for One Year of Observation: Preprint  

DOE Green Energy (OSTI)

This paper analyzes the fault characteristics observed at a wind power plant, and the behavior of the wind power plant under fault events.

Muljadi, E.; Mills, Z.; Foster, R.; Conto, J.; Ellis, A.

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Gravity controlled anti-reverse rotation device  

DOE Patents (OSTI)

A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.

Dickinson, Robert J. (Shaler Township, Allegheny County, PA); Wetherill, Todd M. (Lower Burrell, PA)

1983-01-01T23:59:59.000Z

202

Feb. 11, 2008 Advanced Fault Tolerance Solutions for High Performance Computing 1/47 Advanced Fault Tolerance Solutions  

E-Print Network (OSTI)

Feb. 11, 2008 Advanced Fault Tolerance Solutions for High Performance Computing 1/47 RAS RAS Advanced Fault Tolerance Solutions for High Performance Computing Christian Engelmann Oak Ridge National Solutions for High Performance Computing 2/47 · Nation's largest energy laboratory · Nation's largest

Engelmann, Christian

203

TIME REVERSAL ACOUSTIC NONCONTACT SOURCE - Energy Innovation ...  

The present invention provides a flexible noncontact source of wave energy through the use of time reversal. In the preferred embodiment a ...

204

Spatial diversity in passive time reversal communications  

E-Print Network (OSTI)

Song et al. : Spatial diversity in passive time reversaland J. Ritcey, “Spatial diversity equalization applied toSpatial diversity in passive time reversal communications H.

2006-01-01T23:59:59.000Z

205

Steps toward fault-tolerant quantum chemistry.  

SciTech Connect

Developing quantum chemistry programs on the coming generation of exascale computers will be a difficult task. The programs will need to be fault-tolerant and minimize the use of global operations. This work explores the use a task-based model that uses a data-centric approach to allocate work to different processes as it applies to quantum chemistry. After introducing the key problems that appear when trying to parallelize a complicated quantum chemistry method such as coupled-cluster theory, we discuss the implications of that model as it pertains to the computational kernel of a coupled-cluster program - matrix multiplication. Also, we discuss the extensions that would required to build a full coupled-cluster program using the task-based model. Current programming models for high-performance computing are fault-intolerant and use global operations. Those properties are unsustainable as computers scale to millions of CPUs; instead one must recognize that these systems will be hierarchical in structure, prone to constant faults, and global operations will be infeasible. The FAST-OS HARE project is introducing a scale-free computing model to address these issues. This model is hierarchical and fault-tolerant by design, allows for the clean overlap of computation and communication, reducing the network load, does not require checkpointing, and avoids the complexity of many HPC runtimes. Development of an algorithm within this model requires a change in focus from imperative programming to a data-centric approach. Quantum chemistry (QC) algorithms, in particular electronic structure methods, are an ideal test bed for this computing model. These methods describe the distribution of electrons in a molecule, which determine the properties of the molecule. The computational cost of these methods is high, scaling quartically or higher in the size of the molecule, which is why QC applications are major users of HPC resources. The complexity of these algorithms means that MPI alone is insufficient to achieve parallel scaling; QC developers have been forced to use alternative approaches to achieve scalability and would be receptive to radical shifts in the programming paradigm. Initial work in adapting the simplest QC method, Hartree-Fock, to this the new programming model indicates that the approach is beneficial for QC applications. However, the advantages to being able to scale to exascale computers are greatest for the computationally most expensive algorithms; within QC these are the high-accuracy coupled-cluster (CC) methods. Parallel coupledcluster programs are available, however they are based on the conventional MPI paradigm. Much of the effort is spent handling the complicated data dependencies between the various processors, especially as the size of the problem becomes large. The current paradigm will not survive the move to exascale computers. Here we discuss the initial steps toward designing and implementing a CC method within this model. First, we introduce the general concepts behind a CC method, focusing on the aspects that make these methods difficult to parallelize with conventional techniques. Then we outline what is the computational core of the CC method - a matrix multiply - within the task-based approach that the FAST-OS project is designed to take advantage of. Finally we outline the general setup to implement the simplest CC method in this model, linearized CC doubles (LinCC).

Taube, Andrew Garvin

2010-05-01T23:59:59.000Z

206

Self field triggered superconducting fault current limiter  

DOE Patents (OSTI)

A superconducting fault current limiter array with a plurality of superconductor elements arranged in a meanding array having an even number of supconductors parallel to each other and arranged in a plane that is parallel to an odd number of the plurality of superconductors, where the odd number of supconductors are parallel to each other and arranged in a plane that is parallel to the even number of the plurality of superconductors, when viewed from a top view. The even number of superconductors are coupled at the upper end to the upper end of the odd number of superconductors. A plurality of lower shunt coils each coupled to the lower end of each of the even number of superconductors and a plurality of upper shunt coils each coupled to the upper end of each of the odd number of superconductors so as to generate a generally orthoganal uniform magnetic field during quenching using only the magenetic field generated by the superconductors.

Tekletsadik, Kasegn D. (Rexford, NY)

2008-02-19T23:59:59.000Z

207

Fault tolerant hypercube computer system architecture  

SciTech Connect

This patent describes a fault-tolerant multi-processor computer system of the hypercube type. It comprises: a plurality of first computing nodes; a first network of message conducting path means for interconnecting the first computing nodes as a hypercube. The first network providing a path for message transfer between the first computing nodes; a first watch dog node; and, a second network of message conducting path means for directly connecting each of the first computing nodes to the first watch dog node independent from the first network. The second network providing an independent path for test message and reconfiguration affecting transfers between respective ones of the first computing nodes and the first watch dog node.

Madan, H.S.; Chow, E.

1989-09-19T23:59:59.000Z

208

Wavelet analysis for gas turbine fault diagnostics  

SciTech Connect

The application of wavelet analysis to diagnosing faults in gas turbines is examined in the present paper. Applying the wavelet transform to time signals obtained from sensors placed on an engine gives information in correspondence to their Fourier transform. Diagnostic techniques based on Fourier analysis of signals can therefore be transposed to the wavelet analysis. In the paper the basic properties of wavelets, in relation to the nature of turbomachinery signals, are discussed. The possibilities for extracting diagnostic information by means of wavelets are examined, by studying the applicability to existing data from vibration, unsteady pressure, and acoustic measurements. Advantages offered, with respect to existing methods based on harmonic analysis, are discussed as well as particular requirements related to practical application.

Aretakis, N.; Mathioudakis, K. [National Technical Univ. of Athens (Greece). Lab. of Thermal Turbomachines

1997-10-01T23:59:59.000Z

209

Development of Characterization Technology for Fault Zone Hydrology  

SciTech Connect

Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio

2010-08-06T23:59:59.000Z

210

Iterative Time Reversal with Tunable Convergence  

E-Print Network (OSTI)

We propose and test an iterative technique for improving the temporal focusing of a time reversal mirror. A single amplification parameter is introduced to tune the convergence of the iteration. The tunable iterative technique is validated by tests on an experimental electromagnetic time reversal mirror, as well as on a novel numerical model.

Biniyam Tesfaye Taddese; Thomas M. Antonsen; Edward Ott; Steven M. Anlage

2011-07-07T23:59:59.000Z

211

Fuel cell system with coolant flow reversal  

DOE Patents (OSTI)

Method and apparatus for cooling electrochemical fuel cell system components. Periodic reversal of the direction of flow of cooling fluid through a fuel cell stack provides greater uniformity and cell operational temperatures. Flow direction through a recirculating coolant fluid circuit is reversed through a two position valve, without requiring modulation of the pumping component.

Kothmann, Richard E. (Pittsburgh, PA)

1986-01-01T23:59:59.000Z

212

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN  

Open Energy Info (EERE)

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Details Activities (1) Areas (1) Regions (0) Abstract: High precision earthquake locations and subsurface velocity structure provide potential insights into fracture system geometry, fluid conduits and fluid compartmentalization critical to geothermal reservoir management. We analyze 16 years of seismicity to improve hypocentral locations and simultaneously invert for the seismic velocity structure within the Coso Geothermal Field (CGF). The CGF has been continuously

213

Soft Computing Application in Fault Detection of Induction Motor  

Science Conference Proceedings (OSTI)

The paper investigates the effectiveness of different patter classifier like Feed Forward Back Propagation (FFBPN), Radial Basis Function (RBF) and Support Vector Machine (SVM) for detection of bearing faults in Induction Motor. The steady state motor current with Park's Transformation has been used for discrimination of inner race and outer race bearing defects. The RBF neural network shows very encouraging results for multi-class classification problems and is hoped to set up a base for incipient fault detection of induction motor. SVM is also found to be a very good fault classifier which is highly competitive with RBF.

Konar, P.; Puhan, P. S.; Chattopadhyay, P. Dr. [Electrical Engineering Department, BESUS, Shibpur (India)

2010-10-26T23:59:59.000Z

214

A core-based assessment of the spatial relationship of small faults associated with a basement-controlled, large normal fault in the Hickory Sandstone  

E-Print Network (OSTI)

This research characterized a system of small faults (displacement < 0.3 m) in seven closely-spaced continuous 2.4 inch (6.1 cm) diameter cores. Cores were obtained from central Texas, on the western edge of the Llano Uplift. Cores penetrate a dip-slip dominant, normal fault (Nobles Fault) with 18.3 m (60 ft) of stratigraphic throw. The spatial, geometric and kinematic attributes of small faults within the Nobles Fault system were characterized to explore potential cause-and-effect relationships. To quantify spatial distributions, a "density" measure based on individual small fault magnitude was utilized. Approximately half of the small faults in the core possessed no discernible offset markers; thus displacement amount for these faults could not be measured directly. Using a nonparametric method in which an alternating conditional expectation determined optimal transformations for the data, a statistically significant empirical correlation was established for faults with measurable gouge thickness, displacement, protolith mean grain size and sorting. Gouge thickness of small faults was found to be dependant upon the displacement amount of the small fault and the textural characteristics of the host protolith. The role of protolith lithology, proximity to crystalline basement, and structural position relative to the Nobles Fault system were examined to explain observed ubiquitous spatial distribution of small faults. Small faults were found to occur in clusters and the number of faults per foot only weakly correlates to the cumulative displacement of the corresponding faults. The amount of mudstone present is the dominant factor controlling small fault formation. Intervals with only minor quantities of mudstone have the largest number of faults per foot as well as largest associated cumulative displacement per foot. Frequency of occurrence of small faults near the basement is greater when compared to similar lithologies higher in the core. Intensity of small faults do not universally increase with proximity to large faults. To observe an increase in small faults, it is necessary to use a mean global cumulative displacement approach. Zones of greater than average cumulative displacement of small faults in close proximity to large faults were observed in zones that are compatible with faultfault interaction.

Graff, Mitchell C

2006-08-01T23:59:59.000Z

215

Fault Detection and Isolation of a Cryogenic Rocket Engine Combustion Chamber Using a Parity Space Approach  

Science Conference Proceedings (OSTI)

his paper presents a parity space (PS) approach for fault detection and isolation (FDI) of a cryogenic rocket engine combustion chamber. Nominal and non-nominal simulation data for three engine set points have been provided. The PS approach uses three ... Keywords: Fault Detection, Fault Isolation, Fault Diagnosis, Parity Space, Rocket Engine

Paul van Gelder; André Bos

2009-07-01T23:59:59.000Z

216

A Systematic Stochastic Petri Net Based Methodology for Transformer Fault Diagnosis and Repair Actions  

Science Conference Proceedings (OSTI)

Transformer fault diagnosis and repair is a complex task that includes many possible types of faults and demands special trained personnel. Moreover, the minimization of the time needed for transformer fault diagnosis and repair is an important task ... Keywords: power system reliability, stochastic petri nets, transformer fault diagnosis

P. S. Georgilakis; J. A. Katsigiannis; K. P. Valavanis; A. T. Souflaris

2006-02-01T23:59:59.000Z

217

Analysis of the growth of strike-slip faults using effective medium theory  

SciTech Connect

Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum fault slip. The field observations indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault's core and between neighboring fault segments by faulting-related fractures. In this paper, using field observations together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young's, shear, and quasi-pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture densities or the equivalent spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area. These findings should be helpful for a better understanding of the fracture density/spacing distribution around faults and the transition from discrete fracturing to cataclastic deformation associated with fault growth and the related instabilities.

Aydin, A.; Berryman, J.G.

2009-10-15T23:59:59.000Z

218

Fault-based test suite prioritization for specification-based testing  

Science Conference Proceedings (OSTI)

Context: Existing test suite prioritization techniques usually rely on code coverage information or historical execution data that serve as indicators for estimating the fault-detecting ability of test cases. Such indicators are primarily empirical in ... Keywords: Fault class hierarchy, Fault-based prioritization, Fault-based testing, Software testing, Specification-based testing, Test suite prioritization

Yuen Tak Yu; Man Fai Lau

2012-02-01T23:59:59.000Z

219

A Power Transmission Line Fault Distance Estimation VLSI Chip: Design and Defect Tolerance  

Science Conference Proceedings (OSTI)

This paper presents a system-on-a-chip for fault detection and fault-distance-estimation for power transmission lines in the smart grid. Toward this goal we have designed and fabricated three chips: PGS4, PGS5 and PGS6, each successively more advanced ... Keywords: Smart grid, fault distance, arcing fault, system on a chip, defect tolerance, Radojevic algorithm.

E. MacLean; V. K. Jain

2011-10-01T23:59:59.000Z

220

Chemical reactions in reverse micelle systems  

DOE Patents (OSTI)

This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

Matson, Dean W. (Kennewick, WA); Fulton, John L. (Richland, WA); Smith, Richard D. (Richland, WA); Consani, Keith A. (Richland, WA)

1993-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Recency Of Faulting And Neotechtonic Framework In The Dixie Valley  

Open Energy Info (EERE)

Of Faulting And Neotechtonic Framework In The Dixie Valley Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Recency Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Details Activities (6) Areas (3) Regions (0) Abstract: We studied the role that earthquake faults play in redistributing stresses within in the earths crust near geothermal fields. The geographic foci of our study were the sites of geothermal plants in Dixie Valley, Beowawe, and Bradys Hot Springs, Nevada. Our initial results show that the past history of earthquakes has redistributed stresses at these 3 sites in a manner to open and maintain fluid pathways critical for geothermal

222

Understanding Fault Characteristics And Sediment Depth For Geothermal  

Open Energy Info (EERE)

Understanding Fault Characteristics And Sediment Depth For Geothermal Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The Southern Walker Lake Basin, situated in the Walker Lake structural domain, consists of primarily E-W directed extension along N-NNW striking normal faults. Water well drilling on the eastern slopes of the Wassuk Range, west of the city of Hawthorne, Nevada showed elevated temperatures. Two recent drill holes reaching downhole depths of more than 4000 ft give some insight to the geologic picture, but more information

223

Fault Detection and Isolation in Low-Voltage DC Distribution ...  

A University of Colorado research team led by Jae-Do Park has developed a fault detection and isolation scheme for a low-voltage DC-bus microgrid system, ...

224

Recency of Faulting and Neotectonic Framework in the Dixie Valley  

Open Energy Info (EERE)

of Faulting and Neotectonic Framework in the Dixie Valley of Faulting and Neotectonic Framework in the Dixie Valley Geothermal Field and Other Geothermal Fields of the Basin and Range Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Recency of Faulting and Neotectonic Framework in the Dixie Valley Geothermal Field and Other Geothermal Fields of the Basin and Range Abstract We studied the role that earthquake faults play in redistributing stresses within in the earths crust near geothermal fields. The geographic foci of our study were the sites of geothermal plants in Dixie Valley, Beowawe, and Bradys Hot Springs, Nevada. Our initial results show that the past history of earthquakes has redistributed stresses at these 3 sites in a manner to open and maintain fluid pathways critical for geothermal development. The

225

Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance To The  

Open Energy Info (EERE)

Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance To The Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance To The Hydrocarbon Exploration In The Tuz Golu (Salt Lake) Basin, Central Anatolia, Turkey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance To The Hydrocarbon Exploration In The Tuz Golu (Salt Lake) Basin, Central Anatolia, Turkey Details Activities (0) Areas (0) Regions (0) Abstract: Due to activitiy of the Aksaray and Ecemis Faults, volcanic intrusion and westward movement of the Anatolian plate, diapiric salt structures were occurred in the Tuz Golu (Salt Lake) basin in central Anatolia, Turkey. With the collisions of the Arabian and Anatolian plates during the late Cretaceous and Miocene times, prominent ophiolitic

226

Fusing strategies for the dual-voltage fault  

E-Print Network (OSTI)

This thesis focuses on the 42V - 14V fault in a dual voltage system and discusses the possibility of effective fusing. A simple model for the system had been created from technical documentation. Based on the model and the ...

Shrivastava, Rupam, 1981-

2005-01-01T23:59:59.000Z

227

Local discriminant bases in machine fault diagnosis using vibration signals  

Science Conference Proceedings (OSTI)

Wavelets and local discriminant bases (LDB) selection algorithm is applied to vibration signals in a single-cylinder spark ignition engine for feature extraction and fault classification. LDB selects a complete orthogonal basis from a wavelet packet ...

R. Tafreshi; F. Sassani; H. Ahmadi; G. Dumont

2005-04-01T23:59:59.000Z

228

Adaptive Control and Fault Detection of HVAC Equipment in Commercial...  

NLE Websites -- All DOE Office Websites (Extended Search)

Adaptive Control and Fault Detection of HVAC Equipment in Commercial Buildings Speaker(s): John Seem Date: February 27, 2002 - 12:00pm Location: Bldg. 90 Seminar HostPoint of...

229

Non-intrusive fault detection in reciprocating compressors  

E-Print Network (OSTI)

This thesis presents a set of techniques for non-intrusive sensing and fault detection in reciprocating compressors driven by induction motors. The procedures developed here are "non-intrusive" because they rely only on ...

Schantz, Christopher James

2011-01-01T23:59:59.000Z

230

Discretized streams: fault-tolerant streaming computation at scale  

Science Conference Proceedings (OSTI)

Many "big data" applications must act on data in real time. Running these applications at ever-larger scales requires parallel platforms that automatically handle faults and stragglers. Unfortunately, current distributed stream processing models provide ...

Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, Ion Stoica

2013-11-01T23:59:59.000Z

231

High-Resolution Aeromagnetic Survey to Image Shallow Faults,...  

Open Energy Info (EERE)

Number 02-384 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for High-Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley...

232

Understanding Fault Characteristics And Sediment Depth For Geothermal...  

Open Energy Info (EERE)

of primarily E-W directed extension along N-NNW striking normal faults. Water well drilling on the eastern slopes of the Wassuk Range, west of the city of Hawthorne, Nevada...

233

Characteristics of Wind Turbines Under Normal and Fault Conditions: Preprint  

SciTech Connect

This paper investigates the characteristics of a variable-speed wind turbine connected to a stiff or weak grid under normal and fault conditions and the role of reactive power compensation.

Muljadi, E.; Butterfield, C. P.; Parsons, B.; Ellis, A.

2007-02-01T23:59:59.000Z

234

CAPRI: A Common Architecture for Distributed Probabilistic Internet Fault Diagnosis  

E-Print Network (OSTI)

This thesis presents a new approach to root cause localization and fault diagnosis in the Internet based on a Common Architecture for Probabilistic Reasoning in the Internet (CAPRI) in which distributed, heterogeneous ...

Lee, George J.

2007-06-04T23:59:59.000Z

235

Dating of major normal fault systems using thermochronology-...  

Open Energy Info (EERE)

River detachment fault and shear zone by study of spatial gradients in 40Ar39 A and fission track cooling ages of footwall rocks and cooling histories and by comparison of...

236

Development of Hydrologic Characterization Technology of Fault Zones  

E-Print Network (OSTI)

one example being Dixie Valley, Nevada, an active normalrock at various sites: Dixie Valley, Nevada; Wasatch, Utah;20 m in parts of the Dixie Valley and Wasatch fault zones.

Karasaki, Kenzi

2009-01-01T23:59:59.000Z

237

Microgrid Fault Protection Based on Symmetrical and Differential Current Components  

E-Print Network (OSTI)

Microgrid Fault Protection Based on Symmetrical and Differential Current Components Prepared.........................................................................................8 2. AEP CERTS MICROGRID .........................................................................9 ........................................................................67 #12;3 Index of Figures Figure 1: Schematic representation of the AEP CERTS microgrid

238

A Fault Detection and Diagnosis Method for HVAC Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

A Fault Detection and Diagnosis Method for HVAC Systems A Fault Detection and Diagnosis Method for HVAC Systems Speaker(s): Peng Xu Date: December 2, 2002 - 12:00pm Location: Bldg. 90 There is a growing consensus that most buildings do not perform as well as intended and that faults in HVAC systems are widespread in commercial buildings. An automated fault detection and diagnosis tool for HVAC systems is being developed, based on an integrated, life-cycle, approach to commissioning and performance monitoring. The tool uses component-level HVAC equipment models implemented in the SPARK equation-based simulation environment. The models are configured using design information and component manufacturers' data and then fine-tuned to match the actual performance of the equipment by using data measured during functional tests

239

Fault Mapping At Coso Geothermal Area (1980) | Open Energy Information  

Open Energy Info (EERE)

Fault Mapping At Coso Geothermal Area (1980) Fault Mapping At Coso Geothermal Area (1980) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fault Mapping At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fault Mapping Activity Date 1980 Usefulness useful DOE-funding Unknown Exploration Basis To determine the Late Cenozoic volcanism, geochronology, and structure of the Coso Range Notes This system apparently is heated by a reservoir of silicic magma at greater than or equal to 8-km depth, itself produced and sustained through partial melting of crustal rocks by thermal energy contained in mantle-derived basaltic magma that intrudes the crust in repsonse to lithospheric extension. References Duffield, W.A.; Bacon, C.R.; Dalrymple, G.B. (10 May 1980) Late

240

Dynamic transient fault detection and recovery for embedded processor datapaths  

Science Conference Proceedings (OSTI)

As microprocessors continue to evolve and grow in functionality, the use of smaller nanometer technology scaling coupled with high clock frequencies and exponentially increasing transistor counts dramatically increases the susceptibility of transient ... Keywords: datapath, embedded, fault tolerance, reliability, soft errors

Garo Bournoutian; Alex Orailoglu

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Transmission Line Fault Inspection and Root Cause Analysis Approach  

Science Conference Proceedings (OSTI)

Transmission lines are designed to transfer electric power from source locations, sometimes over great distances through different terrains and exposed to several influences. These challenges include faulty equipment, misoperation, human errors, and aging of components, as well as meteorological and ecological factors such as storms, lightning, and the effects of plants and animals. A number of techniques are currently used to isolate the faulting line and provide the fault position. Sustained or ...

2013-12-20T23:59:59.000Z

242

The application of satellite time references to HVDC fault location  

Science Conference Proceedings (OSTI)

An HVdc fault location scheme is described which relies on very precise detection of the time of arrival of fault created surges at both ends of the line. Such detection is achieved by a very accurate data acquisition and processing system combined with the time reference signals provided by a global positioning system receiver. Extensive digital simulation is carried out to determine the voltage and current waveforms, to identify the main sources of error and suggest possible compensation techniques.

Dewe, M.B.; Sankar, S.; Arrillaga, J. (Univ. of Canterbury, Christchurch (New Zealand))

1993-07-01T23:59:59.000Z

243

Transmission Line Fault Inspection and Root Cause Analysis Approach  

Science Conference Proceedings (OSTI)

Transmission lines are designed to transfer electric power from source locations sometimes over great distances through different terrains and exposed to several influences. These challenges include faulty equipment, misoperation, human errors, and aging of components, and meteorological and ecological factors such as storms, lightning, and the effects of plants and animals. A number of techniques are currently used to isolate the faulting line and provide the fault position. Sustained or permanent ...

2012-12-20T23:59:59.000Z

244

Are all Quasi-static Processes Reversible?  

E-Print Network (OSTI)

A process, carried out in a stepwise manner, becomes quasi-static when the number of intermediate steps tends to infinity. Usually, the net entropy production approaches zero under this limiting condition. Hence, such cases are termed reversible. A favorite example is the introduction of an infinite number of intermediate-temperature reservoirs in between the source and the sink for a non-isothermal heat transfer process. We analyze the situation and conclude that such quasi-static processes are not reversible. Indeed, no non-isothermal heat transfer process can ever be made reversible due to an extraneous work term.

Mukhopadhyay, Debasis

2009-01-01T23:59:59.000Z

245

Fault-tolerance for exascale systems.  

Science Conference Proceedings (OSTI)

Periodic, coordinated, checkpointing to disk is the most prevalent fault tolerance method used in modern large-scale, capability class, high-performance computing (HPC) systems. Previous work has shown that as the system grows in size, the inherent synchronization of coordinated checkpoint/restart (CR) limits application scalability; at large node counts the application spends most of its time checkpointing instead of executing useful work. Furthermore, a single component failure forces an application restart from the last correct checkpoint. Suggested alternatives to coordinated CR include uncoordinated CR with message logging, redundant computation, and RAID-inspired, in-memory distributed checkpointing schemes. Each of these alternatives have differing overheads that are dependent on both the scale and communication characteristics of the application. In this work, using the Structural Simulation Toolkit (SST) simulator, we compare the performance characteristics of each of these resilience methods for a number of HPC application patterns on a number of proposed exascale machines. The result of this work provides valuable guidance on the most efficient resilience methods for exascale systems.

Riesen, Rolf E.; Varela, Maria Ruiz (University of Delaware); Ferreira, Kurt Brian

2010-08-01T23:59:59.000Z

246

Algorithmic Based Fault Tolerance Applied to High Performance Computing  

E-Print Network (OSTI)

We present a new approach to fault tolerance for High Performance Computing system. Our approach is based on a careful adaptation of the Algorithmic Based Fault Tolerance technique (Huang and Abraham, 1984) to the need of parallel distributed computation. We obtain a strongly scalable mechanism for fault tolerance. We can also detect and correct errors (bit-flip) on the fly of a computation. To assess the viability of our approach, we have developed a fault tolerant matrix-matrix multiplication subroutine and we propose some models to predict its running time. Our parallel fault-tolerant matrix-matrix multiplication scores 1.4 TFLOPS on 484 processors (cluster jacquard.nersc.gov) and returns a correct result while one process failure has happened. This represents 65% of the machine peak efficiency and less than 12% overhead with respect to the fastest failure-free implementation. We predict (and have observed) that, as we increase the processor count, the overhead of the fault tolerance drops significantly.

Bosilca, George; Dongarra, Jack; Langou, Julien

2008-01-01T23:59:59.000Z

247

Designing fault-tolerant manipulators: How many degrees of freedom?  

SciTech Connect

One of the most important parameters to consider when designing a manipulator is the number of degrees of freedom (DOFs). This article focuses on the question: How many DOFs are necessary and sufficient for fault tolerance, and how should these DOFs be distributed along the length of the manipulator? A manipulator is fault tolerant if it can complete its task even when one of its joints fails and is immobilized. The number of DOFs needed for fault tolerance strongly depends on the knowledge available about the task. In this article, two approaches are explored. First, for the design of a general purpose fault-tolerant manipulator, it is assumed that neither the exact task trajectory nor the redundancy resolution algorithm are known a priori and the manipulator has no joint limits. In this case, two redundant DOFs are necessary and sufficient to sustain one joint failure, as is demonstrated in two design templates for spatial fault-tolerant manipulators. In this second approach, both the Cartesian task path and the redundancy resolution algorithm are assumed to be known. The design of such a task-specific fault-tolerant manipulator requires only one degree of redundancy. 22 refs., 11 figs., 2 tabs.

Paredis, C.J.J.; Khosla, P.K. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

1996-12-01T23:59:59.000Z

248

Palaeoseismology of the North Anatolian Fault near the Marmara Sea: implications for fault segmentation and seismic hazard  

E-Print Network (OSTI)

Diego, CA 92182, USA 2 Institute of Geological and Nuclear Sciences, PO Box 30-368, Lower Hutt, New fault to the city of Istanbul, one of the largest cities in the Middle East. Across the 1912 rupture

Klinger, Yann

249

Evaluation of faulting characteristics and ground acceleration associated with recent movement along the Meers Fault, Southwestern Oklahoma  

E-Print Network (OSTI)

Recent studies have shown that a 27 km section of the Meers Fault was reactivated during Holocene time. Although these studies have proven the occurrence of recent fault activity, many basic characteristics of the faulting remain unresolved, For instance, the issue of whether recent deformation was dominantly vertical or laterally oriented is still a source of disagreement among many researchers. The number of events associated with recent movement is another area of uncertainty, with I to 4 events being cited as responsible for the Meers Fault scarp. Earthquakes of magnitude 7 to 8 occurring in conjunction with recent reactivation of the fault have been calculated. However, evidence found within the Wichita Mountains just south of the fault exhibits strong evidence against large recent earthquake events. Investigation of stream channel pathways where they cross the fault revealed that many streams previously identified as left-laterally offset are instead left-laterally deflected by folding on the upthrown block. These streams are in every case deflected much farther than any true lateral displacement recognized on the fault. Inclusion of the streams in past studies has apparently contributed to over-estimation of the recent component of left-lateral displacement. Exposure development into the Meers Fault scarp revealed deformed units and colluvial wedges that indicate 4 recent movements produced a total of 1.46 m of brittle deformation and another 1.04 m of monoclinal warping. A previously unidentified conglomerate uncovered in the exposure exhibits evidence for a lateral component of displacement during possible Late Pleistocene deformation. subsequent events identified in the exposure. Reconnaissance of the Wichita Mountains granitic terrain just south of the Meers Fault resulted in the identification of 27 precariously balanced rocks (tors). These geomorphic features lie within 18 km of the fault and have apparently been sitting in their present positions on the order of thousands of years. Quantitative analysis of the tors indicates that most could not have withstood the ground accelerations generated by magnitude 7 or above earthquakes estimated to have occurred with recent deformation.

Burrell, Richard Dennis

1997-01-01T23:59:59.000Z

250

Energy drift in reversible time integration  

E-Print Network (OSTI)

Energy drift is commonly observed in reversible integrations of systems of molecular dynamics. We show that this drift can be modelled as a diffusion and that the typical energy error after time T is O(?T).

R I McLachlan; M Perlmutter

2004-01-01T23:59:59.000Z

251

Direct Imaging of Asymmetric Magnetization Reversal  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Imaging of Asymmetric Magnetization Reversal Print Direct Imaging of Asymmetric Magnetization Reversal Print The phenomenon of exchange bias has transformed how data is read on magnetic hard disks and created an explosion in their information storage density. However, it remains poorly understood, and even the fundamental mechanism of magnetic reversal for exchange-biased systems in changing magnetic fields is unclear. By using x-ray photoemission electron microscopy at the ALS to directly image the magnetic structure of an exchange-biased film, a team from the University of Washington and the Stanford Synchrotron Radiation Laboratory has identified separate magnetic-reversal mechanisms in the two branches of a hysteresis loop. This advance in fundamental understanding will provide new insights for developing the next generation of information storage and sensing devices where exchange bias is expected to play a critical role.

252

Reversing the Circulation of Magnetic Vortices  

NLE Websites -- All DOE Office Websites (Extended Search)

Reversing the Circulation of Reversing the Circulation of Magnetic Vortices Reversing the Circulation of Magnetic Vortices Print Wednesday, 31 July 2013 00:00 In magnetic media, information is stored in binary form-one or zero, depending on which way the electronic spins are aligned in a given section of the medium. Recently, however, magnetic vortices have drawn scientists toward a new possibility: multibit storage in which each logic unit has four states instead of two and can store twice the information. Each tiny magnetic whirl has a polarity that can point up or down and a circulation that can be oriented clockwise or counterclockwise. Previous studies have shown that the polarity can be flipped on command. Now, using time-resolved magnetic soft x-ray microscopy at the ALS, researchers have shown for the first time how to use pulsed magnetic fields to reverse the circulation.

253

Low Cost Reversible fuel cell systems  

DOE Green Energy (OSTI)

This final report summarizes a 3-phase program performed from March 2000 through September 2003 with a particular focus on Phase III. The overall program studied TMI's reversible solid oxide stack, system concepts, and potential applications. The TMI reversible (fuel cell-electrolyzer) system employs a stack of high temperature solid-oxide electrochemical cells to produce either electricity (from a fuel and air or oxygen) or hydrogen (from water and supplied electricity). An atmospheric pressure fuel cell system operates on natural gas (or other carbon-containing fuel) and air. A high-pressure reversible electrolyzer system is used to make high-pressure hydrogen and oxygen from water and when desired, operates in reverse to generate electricity from these gases.

Technology Management Inc.

2003-12-30T23:59:59.000Z

254

Original article: An efficient, simplified multiple-coupled circuit model of the induction motor aimed to simulate different types of stator faults  

Science Conference Proceedings (OSTI)

This paper proposes an original simplified model aimed to simulate, an easy way, inter turns short circuit fault, phase to phase fault and phase to ground fault. In this model, the stator is considered as six magnetically coupled windings and the rotor ... Keywords: Fault diagnosis, Inter turns short circuit fault, Phase to ground fault, Phase to phase fault, Symmetrical components

M. Bouzid, G. Champenois

2013-04-01T23:59:59.000Z

255

MODIFIED BOROHYDRIDES FOR REVERSIBLE HYDROGEN STORAGE  

DOE Green Energy (OSTI)

This paper reports the results in the effort to destabilize lithium borohydride for reversible hydrogen storage. A number of metals, metal hydrides, metal chlorides and complex hydrides were selected and evaluated as the destabilization agents for reducing dehydriding temperature and generating dehydriding-rehydriding reversibility. It is found that some additives are effective. The Raman spectroscopic analysis shows the change of B-H binding nature.

Au, Ming

2006-05-10T23:59:59.000Z

256

Fault Oblivious eXascale Whitepaper  

Science Conference Proceedings (OSTI)

In this paper we present a software system which supports dynamic, irregular, adaptive applications. Data objects are created and structured in a hierarchical manner, with replication as needed to provide a high degree of redundancy. The data objects can contain data, code, tasks (work descriptors with references to data, code, and other tasks) and higher level structures such as work queues. The higher level structures benefit from the properties of the data objects: redundant storage to support resiliency in the face of hardware failure; hierarchical structure to optimize use of the HPC system; and a presence of object names, available in the per-user file system name space, which allows any application, not just specially written HPC applications, to make use of the data even while it is on the HPC system. Our use of hierarchy will make the runtime scalable to very large systems. Our use of redundancy will allow programs to be written in a fault-oblivious manner, eliminating the need for system-level checkpointing. Putting data object names into the file system name space allows for interactive use of the system by users. With this approach, we will be able to finally leave the batch era behind, a half-century after the invention of time sharing. We will be able to stop bounding program through- put by the checkpoint interval. Application data will be accessible at any time, not hidden behind opaque 128-bit pointers or MPI ranks, but given a name that is visible everywhere. Programmers can stop laying out data, and thinking about where the data is, and the code is, and the nodes are, and stick with the problem of what the application is supposed to be doing. This work, if it succeeds, will enable scientific computing to scale to the next generation of machines.

Minnich, Ronald G.; Janssen, Curtis L.; Krishnamoorthy, Sriram; Marquez, Andres; Gokhale, Maya; Sadayappan, Ponnuswamy; Van Hensbergen, Eric; McKie, Jim; Appavoo, Jonathan

2011-06-01T23:59:59.000Z

257

Fuel Cell Technologies Office: Reversible Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Reversible Fuel Cells Reversible Fuel Cells Workshop to someone by E-mail Share Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Facebook Tweet about Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Twitter Bookmark Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Google Bookmark Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Delicious Rank Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Digg Find More places to share Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

258

GEOMAGNETIC REVERSALS DRIVEN BY ABRUPT SEA LEVEL CHANGES  

E-Print Network (OSTI)

sea-level changes and geomagnetic reversals, then we have athe dynamo theory of the geomagnetic field is incorrect.preprint LBL-20131 Geomagnetic Reversals Driven by Abrupt

Muller, R.A.

2011-01-01T23:59:59.000Z

259

Variability management of safety and reliability models: an intermediate model towards systematic reuse of component fault trees  

Science Conference Proceedings (OSTI)

Reuse of fault trees helps in reducing costs and effort when conducting Fault Tree Analyses (FTAs) for a set of similar systems. Some approaches have been proposed for the systematic reuse of fault trees along with the development of a product line of ... Keywords: component fault trees, fault tree analysis, product line engineering, safety and reliability, variability management

Carolina Gómez; Peter Liggesmeyer; Ariane Sutor

2010-09-01T23:59:59.000Z

260

Risking fault seal in the Gulf Coast: A joint industry study  

SciTech Connect

Analysis of more than 200 faults in a joint-industry study of the Gulf Coast provides a database of actual fault seal behavior in producing fields. This empirical database demonstrates that fault seal behavior is predictable rather than random and that faults are more important than is commonly thought in controlling hydrocarbon accumulations. Quantitative fault seal analysis demonstrates that seal behavior is empirically related to the amount of sand and shale incorporated in the fault zone. Faults with sand-rich gouge leak. Faults with shale-rich gouge seal. An empirically defined threshold allows prediction of fault seal behavior with a high degree of confidence. Fewer than 10% of the faults in the Gulf Coast are exceptions to the rule. Exceptions are a result of other factors including low permeability and high displacement pressure sands, and thin-bedded sand/shale sequences. Examples from these Gulf Coast fields demonstrate the fundamental importance of faults in controlling hydrocarbon accumulations. Faults and fault seal behavior control the presence or absence of hydrocarbons, percent fill, hydrocarbon column heights, entrapment of oil versus gas, and high-side and low-side trap risk. Faults control the lateral distribution of hydrocarbon within fault compartments as well as the vertical distribution of hydrocarbon among stacked sands. Faults control fluid flow during both field development and hydrocarbon migration. Bypassed residual accumulations and unnecessary production wells result from neglecting routine fault seal analysis during field development. Dry holes and mistaken reserves assessments result from neglecting routine fault seal analysis during exploration.

Skerlec, G.M. (PetroQuest International Inc., Franklin, PA (United States))

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

New approach to the fault location problem using synchronized sampling  

E-Print Network (OSTI)

This thesis presents a new approach to solving the problem of fault location on a transmission line using synchronized data from both ends of the line. The synchronized phase voltage and current samples taken during the fault transient are used to calculate the location of the fault. Time domain models of lines are used as a basis for derivation of two different algorithms. One algorithm is developed using the RL line model and the other one is developed using the traveling wave based line model. The main idea of the fault location concept is based on the general characteristics of any transmission line. At any location along the unfaulted line, the instantaneous values of voltage and current signals are related to the instantaneous values of the corresponding values of voltage and current signals at both ends of the line, line parameters, and distance between that particular location and each of the line ends. This enables the derivation of the generic fault location equation of the following form: [ ] where Lv is the linear operator, VA, t'A, VB, z'B are vectors of voltage and current samples at line ends, d is the length of the line, and x is the unknown distance to the fault point. For a particular transmission line, the generic equation has a unique form that determines the way it is solved. In any case, the Minimum Square Error Estimation Method is used since an overspecified system of linear equations needs to be solved. The performance evaluation of both algorithms was done using the Electromagnetic Transient Program (EMTP) generated data [1]. Obtained results indicate the high accuracy of the approach and its robustness regarding various fault conditions. The following are the conclusions based on the results presented in this thesis: The error of the approach is rather small and almost invariant to the various fault conditions and, hence, the technique provides a robust solution to the fault location problem. The new approach has high accuracy while the computational burden is still kept relatively low. The synchronized sampling technique required for this approach is emerging as a reliable and cost effective practice.

Mrkic, Jasna

1994-01-01T23:59:59.000Z

262

Accident Fault Trees for Defense Waste Processing Facility  

Science Conference Proceedings (OSTI)

The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

Sarrack, A.G.

1999-06-22T23:59:59.000Z

263

Identifying Efficiency Degrading Faults in Split Air Conditioning Systems  

E-Print Network (OSTI)

Studies estimate that as much as 50% of packaged air conditioning systems operate in faulty conditions that degrade system efficiency. Common faults include: under- and over-charged systems (too much or too little refrigerant), faulty expansions valves (stuck valves, valve hunting, poorly tuned valve controllers), and fouled evaporators and condensers. Furthermore, air conditioning systems can often be adjusted to improve efficiency while continuing to meet cooling loads (adjusting system pressures, decreasing superheat setpoints). This study presents the design of a low cost device that can non-invasively measure system operating conditions, diagnose faults, estimate potential energy savings, and provide recommendations on how the system should be adjusted or repaired. Using eight external temperature measurements, the device potentially can detect and diagnose up to ten faults commonly found in HVAC systems. Steady state temperatures are compared to threshold values obtained from literature and HVAC manufacturers to detect and determine the severity of faults and subsequent reductions in coefficient of performance. Preliminary tests reveal the potential for the device to detect and diagnose common efficiency-degrading faults in HVAC systems.

Terrill, T. J.; Brown, M. L.; Cheyne, R. W. Jr.; Cousins, A. J.; Daniels, B. P.; Erb, K. L.; Garcia, P. A.; Leutermann, M. J.; Nel, A. J.; Robert, C. L.; Widger, S. B.; Williams, A. G.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

264

Low cost fault detection system for railcars and tracks  

E-Print Network (OSTI)

A "low cost fault detection system" that identifies wheel flats and defective tracks is explored here. This is achieved with the conjunction of sensors, microcontrollers and Radio Frequency (RF) transceivers. The objective of the proposed research is to identify faults plaguing railcars and to be able to clearly distinguish the faults of a railcar from the inherent faults in the track. The focus of the research though, is mainly to identify wheel flats and defective tracks. The thesis has been written with the premise that the results from the simulation software GENSYS are close to the real time data that would have been obtained from an actual railcar. Based on the results of GENSYS, a suitable algorithm is written that helps segregate a fault in a railcar from a defect in a track. The above code is implemented using hardware including microcontrollers, accelerometers, RF transceivers and a real time monitor. An enclosure houses the system completely, so that it is ready for application in a real environment. This also involves selection of suitable hardware so that there is a uniform source of power supply that reduces the cost and assists in building a robust system.

Vengalathur, Sriram T.

2003-08-01T23:59:59.000Z

265

New fault locating system for air-insulated substations using optical current detector  

Science Conference Proceedings (OSTI)

This paper deals with a newly developed fault locating system. This fault locating system helps to shorten the time required for restoration of service after the occurrence of a busbar fault in an air-insulated distribution substation. Recent optical and electronic technologies allow highly accurate and compact fault locating system, which consists of optical current detectors using Faraday effect and a fault locating processor employing digital data processing technique. The fault location is made by discriminating the direction of zero-sequence currents. Through various tests and field operations it has been confirmed that the system has sufficient performance for practical application.

Yoshida, Y.; Kawazoe, S. (Kansai Electric Power Co., Inc., Osaka (Japan)); Ibuki, K.; Yamada, K.; Ochi, N. (Mitsubishi Electric Corp., Amagasaki, Hyogo (Japan). Itami Works)

1992-10-01T23:59:59.000Z

266

Detection of Rooftop Cooling Unit Faults Based on Electrical Measurements  

Science Conference Proceedings (OSTI)

Non-intrusive load monitoring (NILM) is accomplished by sampling voltage and current at high rates and reducing the resulting start transients or harmonic contents to concise ''signatures''. Changes in these signatures can be used to detect, and in many cases directly diagnose, equipment and component faults associated with roof-top cooling units. Use of the NILM for fault detection and diagnosis (FDD) is important because (1) it complements other FDD schemes that are based on thermo-fluid sensors and analyses and (2) it is minimally intrusive (one measuring point in the relatively protected confines of the control panel) and therefore inherently reliable. This paper describes changes in the power signatures of fans and compressors that were found, experimentally and theoretically, to be useful for fault detection.

Armstrong, Peter R.; Laughman, C R.; Leeb, S B.; Norford, L K.

2006-01-31T23:59:59.000Z

267

Adiabatic Quantum Programming: Minor Embedding With Hard Faults  

SciTech Connect

Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into the hardware or logical fabric. An essential programming step is the embedding of problem-specific information into the logical fabric to define the quantum computational transformation. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. Our methods are shown to be extensible in fabric growth, linear in time, and quadratic in logical footprint. In addition, we provide methods for accommodating hard faults in the logical fabric without invoking approximations to the original problem. These hard fault-tolerant embedding algorithms are expected to prove useful for benchmarking the adiabatic quantum optimization algorithm on existing quantum logical hardware. We illustrate this versatility through numerical studies of embeddabilty versus hard fault rates in square lattices of complete bipartite unit cells.

Klymko, Christine F [ORNL] [ORNL; Sullivan, Blair D [ORNL] [ORNL; Humble, Travis S [ORNL] [ORNL

2013-01-01T23:59:59.000Z

268

Optimizing automated gas turbine fault detection using statistical pattern recognition  

SciTech Connect

A method enabling the automated diagnosis of Gas Turbine Compressor blade faults, based on the principles of statistical pattern recognition is initially presented. The decision making is based on the derivation of spectral patterns from dynamic measurements data and then the calculation of discriminants with respect to reference spectral patterns of the faults while it takes into account their statistical properties. A method of optimizing the selection of discriminants using dynamic measurements data is also presented. A few scalar discriminants are derived, in such a way that the maximum available discrimination potential is exploited. In this way the success rate of automated decision making is further improved, while the need for intuitive discriminant selection is eliminated. The effectiveness of the proposed methods is demonstrated by application to data coming from an Industrial Gas Turbine while extension to other aspects of Fault Diagnosis is discussed. 9 refs.

Loukis, E.; Mathioudakis, K.; Papailiou, K. (Athens National Technical Univ. (Greece))

1992-01-01T23:59:59.000Z

269

Optimizing automated gas turbine fault detection using statistical pattern recognition  

SciTech Connect

A method enabling the automated diagnosis of gas turbine compressor blade faults, based on the principles of statistical pattern recognition, is initially presented. The decision making is based on the derivation of spectral patterns from dynamic measurement data and then the calculation of discriminants with respect to reference spectral patterns of the faults while it takes into account their statistical properties. A method of optimizing the selection of discriminants using dynamic measurement data is also presented. A few scalar discriminants are derived, in such a way that the maximum available discrimination potential is exploited. In this way the success rate of automated decision making is further improved, while the need for intuitive discriminant selection is eliminated. The effectiveness of the proposed methods is demonstrated by application to data coming from an industrial gas turbine while extension to other aspects of fault diagnosis is discussed.

Loukis, E.; Mathioudakis, K.; Papailiou, K. (National Technical Univ. of Athens (Greece). Lab. of Thermal Turbomachines)

1994-01-01T23:59:59.000Z

270

Reversing the Circulation of Magnetic Vortices  

NLE Websites -- All DOE Office Websites (Extended Search)

Reversing the Circulation of Magnetic Vortices Print Reversing the Circulation of Magnetic Vortices Print In magnetic media, information is stored in binary form-one or zero, depending on which way the electronic spins are aligned in a given section of the medium. Recently, however, magnetic vortices have drawn scientists toward a new possibility: multibit storage in which each logic unit has four states instead of two and can store twice the information. Each tiny magnetic whirl has a polarity that can point up or down and a circulation that can be oriented clockwise or counterclockwise. Previous studies have shown that the polarity can be flipped on command. Now, using time-resolved magnetic soft x-ray microscopy at the ALS, researchers have shown for the first time how to use pulsed magnetic fields to reverse the circulation.

271

Reversing the Circulation of Magnetic Vortices  

NLE Websites -- All DOE Office Websites (Extended Search)

Reversing the Circulation of Magnetic Vortices Print Reversing the Circulation of Magnetic Vortices Print In magnetic media, information is stored in binary form-one or zero, depending on which way the electronic spins are aligned in a given section of the medium. Recently, however, magnetic vortices have drawn scientists toward a new possibility: multibit storage in which each logic unit has four states instead of two and can store twice the information. Each tiny magnetic whirl has a polarity that can point up or down and a circulation that can be oriented clockwise or counterclockwise. Previous studies have shown that the polarity can be flipped on command. Now, using time-resolved magnetic soft x-ray microscopy at the ALS, researchers have shown for the first time how to use pulsed magnetic fields to reverse the circulation.

272

Reversing the Circulation of Magnetic Vortices  

NLE Websites -- All DOE Office Websites (Extended Search)

Reversing the Circulation of Magnetic Vortices Print Reversing the Circulation of Magnetic Vortices Print In magnetic media, information is stored in binary form-one or zero, depending on which way the electronic spins are aligned in a given section of the medium. Recently, however, magnetic vortices have drawn scientists toward a new possibility: multibit storage in which each logic unit has four states instead of two and can store twice the information. Each tiny magnetic whirl has a polarity that can point up or down and a circulation that can be oriented clockwise or counterclockwise. Previous studies have shown that the polarity can be flipped on command. Now, using time-resolved magnetic soft x-ray microscopy at the ALS, researchers have shown for the first time how to use pulsed magnetic fields to reverse the circulation.

273

Reversing the Circulation of Magnetic Vortices  

NLE Websites -- All DOE Office Websites (Extended Search)

Reversing the Circulation of Magnetic Vortices Print Reversing the Circulation of Magnetic Vortices Print In magnetic media, information is stored in binary form-one or zero, depending on which way the electronic spins are aligned in a given section of the medium. Recently, however, magnetic vortices have drawn scientists toward a new possibility: multibit storage in which each logic unit has four states instead of two and can store twice the information. Each tiny magnetic whirl has a polarity that can point up or down and a circulation that can be oriented clockwise or counterclockwise. Previous studies have shown that the polarity can be flipped on command. Now, using time-resolved magnetic soft x-ray microscopy at the ALS, researchers have shown for the first time how to use pulsed magnetic fields to reverse the circulation.

274

Reversing the Circulation of Magnetic Vortices  

NLE Websites -- All DOE Office Websites (Extended Search)

Reversing the Circulation of Magnetic Vortices Print Reversing the Circulation of Magnetic Vortices Print In magnetic media, information is stored in binary form-one or zero, depending on which way the electronic spins are aligned in a given section of the medium. Recently, however, magnetic vortices have drawn scientists toward a new possibility: multibit storage in which each logic unit has four states instead of two and can store twice the information. Each tiny magnetic whirl has a polarity that can point up or down and a circulation that can be oriented clockwise or counterclockwise. Previous studies have shown that the polarity can be flipped on command. Now, using time-resolved magnetic soft x-ray microscopy at the ALS, researchers have shown for the first time how to use pulsed magnetic fields to reverse the circulation.

275

What happens when the geomagnetic field reverses?  

E-Print Network (OSTI)

During geomagnetic field reversals the radiation belt high-energy proton populations become depleted. Their energy spectra become softer, with the trapped particles of highest energies being lost first, and eventually recovering after a field reversal. The radiation belts rebuild in a dynamical way with the energy spectra flattening on the average during the course of many millennia, but without ever reaching complete steady state equilibrium between successive geomagnetic storm events determined by southward turnings of the IMF orientation. Considering that the entry of galactic cosmic rays and the solar energetic particles with energies above a given threshold are strongly controlled by the intensity of the northward component of the interplanetary magnetic field, we speculate that at earlier epochs when the geomagnetic dipole was reversed, the entry of these energetic particles into the geomagnetic field was facilitated when the interplanetary magnetic field was directed northward. Unlike in other compleme...

Lemaire, Joseph F

2012-01-01T23:59:59.000Z

276

Time reversal signal processing for communication.  

SciTech Connect

Time-reversal is a wave focusing technique that makes use of the reciprocity of wireless propagation channels. It works particularly well in a cluttered environment with associated multipath reflection. This technique uses the multipath in the environment to increase focusing ability. Time-reversal can also be used to null signals, either to reduce unintentional interference or to prevent eavesdropping. It does not require controlled geometric placement of the transmit antennas. Unlike existing techniques it can work without line-of-sight. We have explored the performance of time-reversal focusing in a variety of simulated environments. We have also developed new algorithms to simultaneously focus at a location while nulling at an eavesdropper location. We have experimentally verified these techniques in a realistic cluttered environment.

Young, Derek P.; Jacklin, Neil; Punnoose, Ratish J.; Counsil, David T.

2011-09-01T23:59:59.000Z

277

Correlated magnetic reversal in periodic stripe patterns  

Science Conference Proceedings (OSTI)

The magnetization reversal in a periodic magnetic stripe array has been studied with a combination of direct and reciprocal space methods: Kerr microscopy and polarized neutron scattering. Kerr images show that during magnetization reversal over a considerable magnetic-field range a ripple domain state occurs in the stripes with magnetization components perpendicular to the stripes. Quantitative analysis of polarized neutron specular reflection, Bragg diffraction, and off-specular diffuse scattering provides a detailed picture of the mean magnetization direction in the ripple domains as well as longitudinal and transverse fluctuations, and reveals a strong correlation of those components over a number of stripes.

Theis-Broehl, Katharina; Toperverg, Boris P.; Leiner, Vincent; Westphalen, Andreas; Zabel, Hartmut; McCord, Jeffrey; Rott, Karsten; Brueckl, Hubert [Department of Physics, Ruhr-University Bochum, 44780 Bochum (Germany); Leibniz Institute for Solid State and Materials Research Dresden, Institute for Metallic Materials, Helmholtzstr. 20, D-01169 Dresden (Germany); Department of Physics, University Bielefeld, Universitaetsstr. 25, 33615 Bielefeld (Germany)

2005-01-01T23:59:59.000Z

278

New Limits on Fault-Tolerant Quantum Computation  

E-Print Network (OSTI)

We show that quantum circuits cannot be made fault-tolerant against a depolarizing noise level of approximately 45%, thereby improving on a previous bound of 50% (due to Razborov). Our precise quantum circuit model enables perfect gates from the Clifford group (CNOT, Hadamard, S, X, Y, Z) and arbitrary additional one-qubit gates that are subject to that much depolarizing noise. We prove that this set of gates cannot be universal for arbitrary (even classical) computation, from which the upper bound on the noise threshold for fault-tolerant quantum computation follows.

Harry Buhrman; Richard Cleve; Monique Laurent; Noah Linden; Alexander Schrijver; Falk Unger

2006-04-19T23:59:59.000Z

279

Fault detection of multivariable system using its directional properties  

E-Print Network (OSTI)

A novel algorithm for making the combination of outputs in the output zero direction of the plant always equal to zero was formulated. Using this algorithm and the result of MacFarlane and Karcanias, a fault detection scheme was proposed which utilizes the directional property of the multivariable linear system. The fault detection scheme is applicable to linear multivariable systems. Results were obtained for both continuous and discrete linear multivariable systems. A quadruple tank system was used to illustrate the results. The results were further verified by the steady state analysis of the plant.

Pandey, Amit Nath

2004-12-01T23:59:59.000Z

280

The dynamics of oceanic transform faults : constraints from geophysical, geochemical, and geodynamical modeling  

E-Print Network (OSTI)

Segmentation and crustal accretion at oceanic transform fault systems are investigated through a combination of geophysical data analysis and geodynamical and geochemical modeling. Chapter 1 examines the effect of fault ...

Gregg, Patricia Michelle Marie

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sherlock—a system for diagnosing power distribution ring network faults  

Science Conference Proceedings (OSTI)

This paper reports the development of a software system, SHERLOCK, for fault diagnosis in power distribution ring networks. The system consists of a fault diagnosis subsystem implemented using Prolog and a user interface subsystem developed in the SmallTalk ...

Kit Po Wong; Chi Ping Tsang; Wan Yee Chan

1988-06-01T23:59:59.000Z

282

Model Acceptability Measure for the Identification of Failures in Qualitative Fault Monitoring Systems  

E-Print Network (OSTI)

This paper deals with two of the main tasks of Fault Monitoring Systems (FMS): fault detection and fault identification. During fault detection, the FMS should recognize that the plant behavior is abnormal, and therefore, that the plant is not working properly. During fault identification, the FMS should conclude which type of failure has occurred. The first goal of this work is to consolidate a new fault detection technique, called enveloping, that was developed in the context of the Fuzzy Inductive Reasoning Fault Monitoring System (FIRFMS). The second and primary goal of this paper is to introduce the model acceptability measure as a tool to enhance and make more robust the fault identification process in the context of FIRFMS. The enveloping technique and the model acceptability measure are applied to an electric circuit model previously used for such purpose in the literature. It is shown that the new methods outperform the ones previously advocated in FIRFMS for that purpose 1 ...

Antoni Escobet Angela; Angela Nebot; Francois E. Cellier

1999-01-01T23:59:59.000Z

283

FERRARI: A Flexible Software-Based Fault and Error Injection System  

Science Conference Proceedings (OSTI)

Abstract¿A major step toward the development offault-tolerant computer systems is the validation of the dependability properties of these systems. Fault/error injection has been recognized as a powerful approach to validate the fault tolerance mechanisms ...

Ghani A. Kanawati; Nasser A. Kanawati; Jacob A. Abraham

1995-02-01T23:59:59.000Z

284

Slip on ridge transform faults : insights from earthquakes and laboratory experiments  

E-Print Network (OSTI)

The relatively simple tectonic environment of mid-ocean ridge transform fault (RTF) seismicity provides a unique opportunity for investigation of earthquake and faulting processes. We develop a scaling model that is complete ...

Boettcher, Margaret S

2005-01-01T23:59:59.000Z

285

Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system  

E-Print Network (OSTI)

lat- ter would imply subsidence to the east of the fault.indicate uplift, rather subsidence, to the east of the faultlikely involves ground subsidence to the west of the fault.

Fialko, Y

2006-01-01T23:59:59.000Z

286

Nail-it-down: nailing and fixing configuration faults in cloud environments  

Science Conference Proceedings (OSTI)

Faults due to configuration of resources account for majority of errors in distributed software systems. Yet, the problem of identifying faulty configuration remains at large. Current approaches for fault identification are focused on event correlation ...

Kalapriya Kannan; Anuradha Bhamidipaty

2013-05-01T23:59:59.000Z

287

Wetland Loss Is Not The Fault of Any One Company | America's ...  

U.S. Energy Information Administration (EIA)

Wetland Loss Is Not The Fault of Any One Company. By: Berwick Duvall II, Houma Courrier | 9.28.2007 September 28, 2007 Wetlands loss is not the fault ...

288

A COTS Wrapping Toolkit for Fault Tolerant Applications under Windows NT  

Science Conference Proceedings (OSTI)

This paper presents a software toolkit that allows enhancing the fault tolerant characteristics of a user application running under a Windows NT platform through sets of interchangeable and customizable Fault Tolerant Interposition Agents (FTI Agents). ...

Alfredo Benso; Silvia Chiusano; Paolo Prinetto

2000-07-01T23:59:59.000Z

289

Observations on Faults and Associated Permeability Structures in Hydrogeologic Units at the Nevada Test Site  

SciTech Connect

Observational data on Nevada Test Site (NTS) faults were gathered from a variety of sources, including surface and tunnel exposures, core samples, geophysical logs, and down-hole cameras. These data show that NTS fault characteristics and fault zone permeability structures are similar to those of faults studied in other regions. Faults at the NTS form complex and heterogeneous fault zones with flow properties that vary in both space and time. Flow property variability within fault zones can be broken down into four major components that allow for the development of a simplified, first approximation model of NTS fault zones. This conceptual model can be used as a general guide during development and evaluation of groundwater flow and contaminate transport models at the NTS.

Prothro, Lance B.; Drellack, Sigmund L.; Haugstad, Dawn N.; Huckins-Gang, Heather E.; Townsend, Margaret J.

2009-03-30T23:59:59.000Z

290

A general method for calculating co-seismic gravity changes in complex fault systems  

Science Conference Proceedings (OSTI)

A general method for calculating the total, dilatational, and free-air gravity for fault systems with arbitrary geometry, slip motion, and number of fault segments is presented. The technique uses a Green's function approach for a fault buried within ... Keywords: 91.10.-v, 91.10.Kg, 91.10.Op, 91.30.Px, Alaska, California, Fault network, Time-variable gravity

T. J. Hayes; K. F. Tiampo; J. B. Rundle; J. Fernández

2008-11-01T23:59:59.000Z

291

A model for the evaluation of fault tolerance in the FERMI system  

Science Conference Proceedings (OSTI)

Experiments of high energy physics planned at the Large Hadron Collider (LHC) at CERN (CH) require digital data acquisition systems with high throughput. Such systems need also be fault tolerant to the permanent and transient faults induced by radiation, ... Keywords: FERMI microsystem, Large Hadron Collider, VLSI, VLSI devices, data acquisition, digital data acquisition system, fault tolerance, fault tolerant computing, high energy physics, high energy physics instrumentation computing, model, nuclear electronics, radiation effects

A. Antola; L. Breveglieri

1995-11-01T23:59:59.000Z

292

Fault analysis of a semisubmersible's ballast control system  

SciTech Connect

This paper presents a practical ballast system for a twinhull design semisubmersible as an answer to the problems which could result from faults both interior and exterior to the system. The design presented is then examined through a fault analysis technique common to other industries and applicable to the life-sustaining ballast system. This examination confirms the design philosophy that a single fault or reasonable multiple faults should not lead to destabilization of the vessel.

Hock, C.J.; Balaban, E.G.

1984-05-01T23:59:59.000Z

293

Computer Aided Fault Tree Analysis System (CAFTA), Version 6.0 Demo  

Science Conference Proceedings (OSTI)

CAFTA is a computer software program used for developing reliability models of large complex systems, using fault tree and event tree methodology.DescriptionCAFTA is designed to meet the many needs of reliability analysts while performing fault tree/event tree analysis on a system or group of systems.  It includes:Fault Tree Editor for building, updating and printing fault tree modelsEvent Tree Editor for building, ...

2013-02-18T23:59:59.000Z

294

Compound nucleus studies withy reverse kinematics  

SciTech Connect

Reverse kinematics reactions are used to demonstrate the compound nucleus origin of intermediate mass particles at low energies and the extension of the same mechanism at higher energies. No evidence has appeared in our energy range for liquid-vapor equilibrium or cold fragmentation mechanisms. 11 refs., 12 figs.

Moretto, L.G.

1985-06-01T23:59:59.000Z

295

Modified borohydrides for reversible hydrogen storage  

DOE Green Energy (OSTI)

In attempt to develop lithium borohydrides as the reversible hydrogen storage materials with the high capacity, the feasibility to reduce dehydrogenation temperature of the lithium borohydride and moderate rehydrogenation condition has been explored. The commercial available lithium borohydride has been modified by ball milling with metal oxides and metal chlorides as the additives. The modified lithium borohydrides release 9 wt% hydrogen starting from 473K. The dehydrided modified lithium borohydrides absorb 7-9 wt% hydrogen at 873K and 7 MPa. The additive modification reduces dehydriding temperature from 673K to 473K and moderates rehydrogenation conditions to 923K and 15 MPa. XRD and SEM analysis discovered the formation of the intermediate compound TiB{sub 2} that may plays the key role in change the reaction path resulting the lower dehydriding temperature and reversibility. The reversible hydrogen storage capacity of the oxide modified lithium borohydrides decreases gradually during hydriding-dehydriding cycling due to the lost of the boron during dehydrogenation. But, it can be prevented by selecting the suitable additive, forming intermediate boron compounds and changing the reaction path. The additives reduce dehydriding temperature and improve the reversibility, it also reduces the hydrogen storage capacity. The best compromise can be reached by optimization of the additive loading and introducing new process other than ball milling.

Au, Ming

2005-08-29T23:59:59.000Z

296

Fault diagnosis of regenerative water heater based-on multi-class support vector machines  

Science Conference Proceedings (OSTI)

The main idea of multi-class support vector machines (SVMs) is described. a multi-class model for regenerative water heater fault diagnosis is presented combining the fuzzy logic and SVMs. The typical faults set of regenerative water heater is built ... Keywords: fault diagnosis, fuzzy rules, regenerative water heater, steam turbine, support vector machines

Lei Wang; Rui-Qing Zhang

2009-08-01T23:59:59.000Z

297

Ant Colony Clustering Procedure Used in Vibration Fault Diagnosis of Beam Pumping Unit  

Science Conference Proceedings (OSTI)

The study of vibration fault diagnosis of beam pumping unit is an important task to reasonable production, scientific management and improvement of the oil recovery. The vibration fault diagnosis is a good method with direct result. In view of measurement ... Keywords: ant colony algorithm, clustering procedure, beam pumping unit, fault, diagnosis

Wuguang Li; Shenglai Yang; Ranran Xu; Xiaoxu Sun; Xing Zhang

2011-10-01T23:59:59.000Z

298

Modeling and experimental validation of internal faults in salient pole synchronous machines including space harmonics  

Science Conference Proceedings (OSTI)

Considering the space harmonics caused by the faulted windings, a simulation model of internal faults in salient pole synchronous machines is proposed in this paper. The model is based on the winding function approach, which makes no assumption for sinusoidal ... Keywords: Internal faults, Space harmonics, Synchronous machines, Winding function

X. Tu; L. -A. Dessaint; M. El Kahel; A. Barry

2006-06-01T23:59:59.000Z

299

A CONTROLLER FOR HVAC SYSTEMS WITH FAULT DETECTION CAPABILITIES BASED ON SIMULATION MODELS  

E-Print Network (OSTI)

1 A CONTROLLER FOR HVAC SYSTEMS WITH FAULT DETECTION CAPABILITIES BASED ON SIMULATION MODELS T. I describes a control scheme with fault detection capabilities suitable for application to HVAC systems as a reference of correct operation. Faults that occur in the HVAC system under control cause the PI

300

Automatic fault diagnosis of internal combustion engine based on spectrogram and artificial neural network  

Science Conference Proceedings (OSTI)

This paper presents a signal analysis technique for internal combustion (IC) engine fault diagnosis based on the spectrogram and artificial neural network (ANN). Condition monitoring and fault diagnosis of IC engine through acoustic signal analysis is ... Keywords: acoustic analysis, fault diagnosis, internal combustion engine

Sandeep Kumar Yadav; Prem Kumar Kalra

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A systematic review of design diversity-based solutions for fault-tolerant SOAs  

Science Conference Proceedings (OSTI)

Context: Over recent years, software developers have been evaluating the benefits of both Service-Oriented Architecture and software fault tolerance techniques based on design diversity by creating fault-tolerant composite services that leverage ... Keywords: SLR, SOA, composite services, fault tolerance

Amanda S. Nascimento; Cecília M. F. Rubira; Rachel Burrows; Fernando Castor

2013-04-01T23:59:59.000Z

302

A SVDD approach of fuzzy classification for analog circuit fault diagnosis with FWT as preprocessor  

Science Conference Proceedings (OSTI)

In this paper, a new approach of fault diagnosis in analog circuits, which employs the Fractional Wavelet Transform (FWT) to extract fault features and adopts a fuzzy multi-classifier based on the Support Vector Data Description (SVDD) to diagnose circuit ... Keywords: Analog circuit, Fault diagnosis, Feature extraction, Fractional wavelet transform, KFCM, SVDD

Hui Luo; Youren Wang, Jiang Cui

2011-08-01T23:59:59.000Z

303

Current Practice and a Direction Forward in Checkpoint/Restart Implementations for Fault Tolerance  

Science Conference Proceedings (OSTI)

Checkpoint/restart is a general idea for which particular implementations enable various functionalities in computer systems, including process migration, gang scheduling, hibernation, and fault tolerance. For fault tolerance, in current practice, implementations ... Keywords: Fault tolerance, checkpoint/restart, autonomic computing, Linux

Jose Carlos Sancho; Fabrizio Petrini; Kei Davis; Roberto Gioiosa; Song Jiang

2005-04-01T23:59:59.000Z

304

Assessment of power-frequency based algorithms for fault location in power grids  

Science Conference Proceedings (OSTI)

The increased accuracy of the faults' location is a very actual request of the power grids' operation and management, reason to develop new and as precise as possible techniques for the estimation of the short-circuits' location. The actual fault locating ... Keywords: ATP simulation, fault location, power grids, power-frequency based algorithms

Marcel Istrate

2010-10-01T23:59:59.000Z

305

High impedance fault location in transmission line using nonlinear frequency analysis  

Science Conference Proceedings (OSTI)

The detection and location of high impedance faults on power system has been one of the most difficult problems in power transmission and distribution systems. According to a very highly nonlinear behavior of high impedance faults, a methodology is presented ... Keywords: high impedance fault, nonlinear frequency analysis, power line carrier, transmission line

Min-You Chen; Jin-Qian Zhai; Zi-Qiang Lang; Ju-Cheng Liao; Zhao-Yong Fan

2010-09-01T23:59:59.000Z

306

Dynamic behaviour of a DFIG wind turbine subjected to power system faults  

E-Print Network (OSTI)

Dynamic behaviour of a DFIG wind turbine subjected to power system faults Gabriele Michalke+, Anca of the dynamic interaction between variable speed DFIG wind turbines and the power system subjected to disturbances, such as short circuit faults. Focus of the paper is the fault ride-through capability of DFIG

307

A general noise-reduction framework for fault localization of Java programs  

Science Conference Proceedings (OSTI)

Context: Existing fault-localization techniques combine various program features and similarity coefficients with the aim of precisely assessing the similarities among the dynamic spectra of these program features to predict the locations of faults. ... Keywords: Fault localization, Key block chain, Noise reduction, Program debugging

Jian Xu; Zhenyu Zhang; W. K. Chan; T. H. Tse; Shanping Li

2013-05-01T23:59:59.000Z

308

A Survey of NASA and Military Standards on Fault Tolerance and Reliability Applied to Robotics  

E-Print Network (OSTI)

. There are Hand­ books (Reliability of Electronic Equipment [7], MIL­HDBK­217F, Fault Tree Handbook [25], NUREG Com­ mission as NUREG­0492, the Fault Tree Hand­ book [25]. 2.2 Parts Specifications In addition and Mission Quality, Washington, DC, April 1991. [25] NUREG­0492. Fault Tree Handbook. Technical report

Rice University - Center for Cooperative Autonomous Robots for Hazardous Environments

309

Power Transformer Fault Diagnosis Based on Integrated of Rough Set Theory and Evidence Theory  

Science Conference Proceedings (OSTI)

When using chromatography data analysis in diagnosis of power transformer fault, fault information cannot be make full use, which can't effectively discover knowledge hidden in data. In this paper a method integreted of rough set theory and evidence ... Keywords: Rough Set, Evidence Theory, Power Transformer, Fault Diagnosis

Zhou Ai-Hua, Yao Yi, Song Hong, Zeng Xiao-Hui

2013-01-01T23:59:59.000Z

310

Fault Diagnosis of Regenerative Water Heater Based-On Multi-class Support Vector Machines  

Science Conference Proceedings (OSTI)

The main idea of multi-class support vector machines (SVMs) is described. a multi-class model for regenerative water heater fault diagnosis is presented combining the fuzzy logic and SVMs. The typical faults set of regenerative water heater is built ... Keywords: steam turbine, regenerative water heater, fuzzy rules, support vector machines, fault diagnosis

Lei Wang; Rui-qing Zhang

2009-08-01T23:59:59.000Z

311

Fault conditions classification of automotive generator using an adaptive neuro-fuzzy inference system  

Science Conference Proceedings (OSTI)

In this paper, an adaptive neuro-fuzzy inference system (ANFIS) was proposed for condition monitoring and fault diagnosis of an automotive generator. Conventional fault indication of an automotive generator generally uses an indicator to inform the driver ... Keywords: Adaptive neuro-fuzzy inference system, Automotive generator, Discrete wavelet transform, Fault diagnosis system

Jian-Da Wu; Jun-Ming Kuo

2010-12-01T23:59:59.000Z

312

Solid-state fault current limiter for voltage sag mitigation and its parameters design  

Science Conference Proceedings (OSTI)

Due to the difficulty in electric distribution network reinforcement and the interconnection of more distributed generations, fault current level has become a serious problem in system operations. The utilization of solid-state fault current limiters ... Keywords: power quality, simulation, solid-state fault current limiter, voltage sag

B. Boribun; T. Kulworawanichpong

2010-07-01T23:59:59.000Z

313

Review article: Achieving maximum reliability in fault tolerant network design for variable networks  

Science Conference Proceedings (OSTI)

The objective of this paper is to present a novel method to achieve maximum reliability for fault tolerant optimal network design when network has variable size. Reliability calculation is most important and critical component when fault tolerant optimal ... Keywords: Fault tolerant optimal design, Fixed and varying link reliability, Maximizing reliability, Neural networks, Variable network size

B. Kaushik, N. Kaur, A. K. Kohli

2013-07-01T23:59:59.000Z

314

A systematic fuzzy rule based approach for fault classification in transmission lines  

Science Conference Proceedings (OSTI)

The paper presents a new approach for fault classification in transmission line using a systematic fuzzy rule based approach. Fault classification is one of the important requirements in distance relaying for identifying the accurate phases involved ... Keywords: DT-fuzzy rule base, Decision Tree, Distance relaying, Fault classification, Heuristic fuzzy system, S-transform, Wavelet transform

S. R. Samantaray

2013-02-01T23:59:59.000Z

315

Yemanja—A Layered Fault Localization System for Multi-Domain Computing Utilities  

Science Conference Proceedings (OSTI)

Yemanja is a model-based event correlation engine for multi-layer fault diagnosis. It targets complex propagating fault scenarios, and can smoothly correlate low-level network events with high-level application performance alerts related to quality-of-service ... Keywords: Problem determination, event correlation, fault and performance management, service level agreements

K. Appleby; G. Goldszmidt; M. Steinder

2002-06-01T23:59:59.000Z

316

Bearing fault prognosis based on health state probability estimation  

Science Conference Proceedings (OSTI)

In condition-based maintenance (CBM), effective diagnostic and prognostic tools are essential for maintenance engineers to identify imminent fault and predict the remaining useful life before the components finally fail. This enables remedial actions ... Keywords: Degradation stage, High pressure LNG pump, Prognosis, Remaining useful life (RUL), Support Vector Machine (SVM)

Hack-Eun Kim; Andy C. C. Tan; Joseph Mathew; Byeong-Keun Choi

2012-04-01T23:59:59.000Z

317

Conditional edge-fault-tolerant Hamiltonicity of dual-cubes  

Science Conference Proceedings (OSTI)

The dual-cube is an interconnection network for linking a large number of nodes with a low node degree. It uses low-dimensional hypercubes as building blocks and keeps the main desired properties of the hypercube. A dual-cube DC(n) has n+1 links per ... Keywords: Conditional fault-tolerant, Dual-cubes, Hamiltonian cycle, Hypercube, Interconnection network

Jheng-Cheng Chen; Chang-Hsiung Tsai

2011-02-01T23:59:59.000Z

318

Modeling of switching operations using fault matrix method  

Science Conference Proceedings (OSTI)

Switching operations in energy supply networks are either modeled by adding or removing artificial nodes which results in state dependent grid topology or by setting the switch impedance to high or low value. This procedure is not very accurate and can ... Keywords: admittance matrix, fault matrix method, power system, switching operation, transmission lines

Martin Wolter; Bernd R. Oswald

2007-05-01T23:59:59.000Z

319

Hybrid simulation of large electrical networks with assymmetrical fault modelling  

Science Conference Proceedings (OSTI)

Owing to the increasing attention placed on dynamic security assessment in the light of recent blackouts, hybrid simulation, involving the interfacing of electromagnetic transients (EMT) simulators and transient stability (TS) simulators for the more ... Keywords: asymmetrical fault modelling, electromagnetic transients, hybrid simulation, interaction protocol, transient stability

H. T. Su; K. W. Chan; L. A. Snider

2008-03-01T23:59:59.000Z

320

Sensor Fault Detection in Power Plants Andrew Kusiak1  

E-Print Network (OSTI)

and Soroush 2003 . Any false reading could lead to di- sastrous outcomes. In a coal-fired power plant, faultySensor Fault Detection in Power Plants Andrew Kusiak1 and Zhe Song2 Abstract: This paper presents approach handles data from temporal processes by periodic updates of the knowledge base. An industrial

Kusiak, Andrew

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A fault-tolerant strategy for virtualized HPC clusters  

Science Conference Proceedings (OSTI)

Virtualization is a common strategy for improving the utilization of existing computing resources, particularly within data centers. However, its use for high performance computing (HPC) applications is currently limited despite its potential for both ... Keywords: Benchmark, Checkpointing, Fault-tolerance, MPI, Virtualization

John Paul Walters; Vipin Chaudhary

2009-12-01T23:59:59.000Z

322

IEEE TRANSACTION ON COMPUTERS 1 Adaptive Fault Management of Parallel  

E-Print Network (OSTI)

of high performance computing (HPC) continues to grow, application fault resilience becomes crucial- tions, High performance computing, Large-scale systems. I. INTRODUCTION IN the field of high performance Performance Computing Zhiling Lan, Member, IEEE, and Yawei Li, Student Member, IEEE Abstract--As the scale

Lan, Zhiling

323

Fault tolerance using lower fidelity data in adaptive mesh applications  

Science Conference Proceedings (OSTI)

Many high performance scientific simulation codes use checkpointing for multiple reasons. In addition to having the flexibility to complete the simulation in multiple job submissions, it has also provided an adequate recovery mechanism up to the current ... Keywords: AMR, fault tolerance, flash

Anshu Dubey; Prateeti Mohapatra; Klaus Weide

2013-06-01T23:59:59.000Z

324

Dominant Feature Identification for Industrial Fault Detection and Isolation Applications  

Science Conference Proceedings (OSTI)

Fault Detection and Isolation (FDI) is crucial to reduce production costs and down-time in industrial machines. In this paper, we show how to find a reduced feature subset which is optimal in both estimation and clustering least square errors using a ... Keywords: Least Square Error (LSE), Neural Network (NN), Principal Component Analysis (PCA), Principal Feature Analysis (PFA), Singular Value Decomposition (SVD)

Jun-Hong Zhou; Chee Khiang Pang; Frank L. Lewis; Zhao-Wei Zhong

2011-08-01T23:59:59.000Z

325

Using Write Protected Data Structures To Improve Software Fault Tolerance  

E-Print Network (OSTI)

Using Write Protected Data Structures To Improve Software Fault Tolerance in Highly Available critical DBMS data structures against software errors. Guarding (write-protecting) DBMS data improves protection to new data structures very easy. To implement the expose segment update model in Sprite, we

California at Irvine, University of

326

RIS-M-2326 FAULT TREE AND CAUSE CONSEQUENCE ANALYSIS  

E-Print Network (OSTI)

and control, nuclear reactor safety systems and aircraft landing systems. For systems of failure in operations. For example a nuclear reactor shutdown system should fail at a rate which Abstract. A theory underlying application of automatic fault tree analysis to computer programs

327

Distributed Fault Diagnosis Using Bayesian Reasoning in MAGNETO  

Science Conference Proceedings (OSTI)

Many of the emerging telecom services make use of Outer Edge Networks, in particular Home Area Networks. The configuration and maintenance of such services may not be under full control of the telecom operator which still needs to guarantee the service ... Keywords: Bayesian inference, distributed fault diagnosis, outer edge, agents, self-learning

Pablo Arozarena; Raquel Toribio; Alvaro Carrera

2011-10-01T23:59:59.000Z

328

Differential energy based microgrid protection against fault conditions  

Science Conference Proceedings (OSTI)

A differential energy based fault protection in microgrid is presented in this paper. Initially the currents at the respective buses are retrieved and processed through a novel time-frequency transform known as S-transform to generate time-frequency ...

S. R. Samantaray; Geza Joos; I. Kamwa

2012-01-01T23:59:59.000Z

329

Embedded holonic fault diagnosis of complex transportation systems  

Science Conference Proceedings (OSTI)

The use of electronic equipment and embedded computing technologies in modern complex transportation systems continues to grow in a highly competitive market, in which product maintainability and availability is vital. These technological advances also ... Keywords: Cooperative fault diagnosis, Corrective maintenance, Embedded diagnosis, Holonic architecture, Model-based diagnosis, Railway transportation system

Antoine Le Mortellec; Joffrey Clarhaut; Yves Sallez; Thierry Berger; Damien Trentesaux

2013-01-01T23:59:59.000Z

330

Critique of Fault-Tolerant Quantum Information Processing  

E-Print Network (OSTI)

This is a chapter in a book \\emph{Quantum Error Correction} edited by D. A. Lidar and T. A. Brun, and published by Cambridge University Press (2013)\\\\ (http://www.cambridge.org/us/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-error-correction)\\\\ presenting the author's view on feasibility of fault-tolerant quantum information processing.

Robert Alicki

2013-10-31T23:59:59.000Z

331

Fault trees for decision making in systems analysis  

SciTech Connect

The application of fault tree analysis (FTA) to system safety and reliability is presented within the framework of system safety analysis. The concepts and techniques involved in manual and automated fault tree construction are described and their differences noted. The theory of mathematical reliability pertinent to FTA is presented with emphasis on engineering applications. An outline of the quantitative reliability techniques of the Reactor Safety Study is given. Concepts of probabilistic importance are presented within the fault tree framework and applied to the areas of system design, diagnosis and simulation. The computer code IMPORTANCE ranks basic events and cut sets according to a sensitivity analysis. A useful feature of the IMPORTANCE code is that it can accept relative failure data as input. The output of the IMPORTANCE code can assist an analyst in finding weaknesses in system design and operation, suggest the most optimal course of system upgrade, and determine the optimal location of sensors within a system. A general simulation model of system failure in terms of fault tree logic is described. The model is intended for efficient diagnosis of the causes of system failure in the event of a system breakdown. It can also be used to assist an operator in making decisions under a time constraint regarding the future course of operations. The model is well suited for computer implementation. New results incorporated in the simulation model include an algorithm to generate repair checklists on the basis of fault tree logic and a one-step-ahead optimization procedure that minimizes the expected time to diagnose system failure. (80 figures, 20 tables) (auth)

Lambert, H.E.

1975-10-01T23:59:59.000Z

332

Microstructures and Rheology of a Limestone-Shale Thrust Fault  

E-Print Network (OSTI)

The Copper Creek thrust fault in the southern Appalachians places Cambrian over Ordovician sedimentary strata. The fault accommodated displacement of 15-20 km at 100-180 °C. Along the hanging wall-footwall contact, microstructures within a ~2 cm thick calcite and shale shear zone suggest that calcite, not shale, controlled the rheology of the shear zone rocks. While shale deformed brittley, plasticity-induced fracturing in calcite resulted in ultrafine-grained (shale into the shear zone, shows the evolution of rheology within the shear zone. Sedimentary laminations 1 cm below the shear zone are cut by minor faults, stylolites, and fault-parallel and perpendicular calcite veins. At vein intersections, calcite grain size is reduced (to ~0.3 ?m), and microstructures include inter-and-intragranular fractures, four-grain junctions, and interpenetrating boundaries. Porosity rises to 6 percent from shale clasts (5-350 ?m) lie within an ultrafine-grained calcite (shale matrix. Ultrafinegrained calcite (shale. Calcite vein microstructures suggest veins continued to form during deformation. Fractures at twin-twin and twin-grain boundary intersections suggest grain size reduction by plasticity-induced fracturing, resulting in <1 ?m grains. Interpenetrating boundaries, four-grain junctions, and no LPO indicate the ultrafine-grained calcite deformed by viscous grain boundary sliding. The evolution of the ultrafine-grain shear zone rocks by a combination of plastic and brittle processes and the deformation of the interconnected network of ultrafine-grained calcite by viscous GBS enabled a large displacement along a narrow fault zone.

Wells, Rachel Kristen

2010-12-01T23:59:59.000Z

333

Absolute dating of brittle fault movements: Late Permian and late Jurassic extensional fault breccias in western Norway  

E-Print Network (OSTI)

events has ad- vanced significantly since the quintes- sential fault-rock classification schemes metamorphosed, allochthonous units with broadly Ordovician, white-mica cooling ages. On Atlùy, the NSD was cut) and from the palaeomagnetic study of Torsvik et al. (1992) (`Site' prefixes). Paper 128 Disc #12

Andersen, Torgeir Bjørge

334

Analysis of Fault Permeability Using Mapping and Flow Modeling, Hickory Sandstone Aquifer, Central Texas  

Science Conference Proceedings (OSTI)

Reservoir compartments, typical targets for infill well locations, are commonly created by faults that may reduce permeability. A narrow fault may consist of a complex assemblage of deformation elements that result in spatially variable and anisotropic permeabilities. We report on the permeability structure of a km-scale fault sampled through drilling a faulted siliciclastic aquifer in central Texas. Probe and whole-core permeabilities, serial CAT scans, and textural and structural data from the selected core samples are used to understand permeability structure of fault zones and develop predictive models of fault zone permeability. Using numerical flow simulation, it is possible to predict permeability anisotropy associated with faults and evaluate the effect of individual deformation elements in the overall permeability tensor. We found relationships between the permeability of the host rock and those of the highly deformed (HD) fault-elements according to the fault throw. The lateral continuity and predictable permeability of the HD fault elements enhance capability for estimating the effects of subseismic faulting on fluid flow in low-shale reservoirs.

Nieto Camargo, Jorge E., E-mail: jorge.nietocamargo@aramco.com; Jensen, Jerry L., E-mail: jjensen@ucalgary.ca [University of Calgary, Department of Chemical and Petroleum Engineering (Canada)

2012-09-15T23:59:59.000Z

335

Active Fault Controls At High-Temperature Geothermal Sites- Prospecting For  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Active Fault Controls At High-Temperature Geothermal Sites- Prospecting For New Faults Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Active Fault Controls At High-Temperature Geothermal Sites- Prospecting For New Faults Details Activities (1) Areas (1) Regions (0) Abstract: Our previous studies found spatial associations between seismically active faults and high-temperature geothermal resources in the western Basin and Range, suggesting that recency of fault movement may be a useful criterion for resource exploration. We have developed a simple conceptual model in which recently active (Holocene) faults are preferred conduits for migration of thermal water from deep crustal depths, and we

336

Locating an active fault zone in Coso geothermal field by analyzing seismic  

Open Energy Info (EERE)

Locating an active fault zone in Coso geothermal field by analyzing seismic Locating an active fault zone in Coso geothermal field by analyzing seismic guided waves from microearthquake data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Locating an active fault zone in Coso geothermal field by analyzing seismic guided waves from microearthquake data Details Activities (1) Areas (1) Regions (0) Abstract: Active fault systems usually provide high-permeability channels for hydrothermal outflow in geothermal fields. Locating such fault systems is of a vital importance to plan geothermal production and injection drilling, since an active fault zone often acts as a fracture-extensive low-velocity wave guide to seismic waves. We have located an active fault zone in the Coso geothermal field, California, by identifying and analyzing

337

Analysis of Test Generation Complexity for Stuck-At and Path Delay Faults Based on ?k-Notation  

Science Conference Proceedings (OSTI)

In this paper, we discuss the relationship between the test generation complexity for path delay faults (PDFs) and that for stuck-at faults (SAFs) in combinational and sequential circuits using the recently introduced ?k-notation. On ... Keywords: easily testable, path delay faults, stuck-at faults, test generation complexity

Chia Yee Ooi; Thomas Clouqueur; Hideo Fujiwara

2007-08-01T23:59:59.000Z

338

High Efficiency Electrical Energy Storage Using Reversible Solid ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Storage III: Materials, Systems and Applications Symposium. Presentation Title, High Efficiency Electrical Energy Storage Using Reversible ...

339

Control and Stabilization of the Nonlinear Schroedinger Equation on Rectangles  

E-Print Network (OSTI)

This paper studies the local exact controllability and the local stabilization of the semilinear Schr\\"odinger equation posed on a product of $n$ intervals ($n\\ge 1$). Both internal and boundary controls are considered, and the results are given with periodic (resp. Dirichlet or Neumann) boundary conditions. In the case of internal control, we obtain local controllability results which are sharp as far as the localization of the control region and the smoothness of the state space are concerned. It is also proved that for the linear Schr\\"odinger equation with Dirichlet control, the exact controllability holds in $H^{-1}(\\Omega)$ whenever the control region contains a neighborhood of a vertex.

Rosier, Lionel

2010-01-01T23:59:59.000Z

340

A heuristic approach for packing rectangles in convex regions  

E-Print Network (OSTI)

Jun 1, 2010 ... state the fact that we aim at minimizing the waste. This can ...... lowest energy structures of Lennard-Jones clusters containing up to 110 atoms ...

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Dynamic analysis for reverse engineering and program understanding  

Science Conference Proceedings (OSTI)

The main focus of program understanding and reverse engineering research has been on modeling the structure of a program by examining its code. This has been the result of the nature of the systems investigated and the perceived goals of the reverse ... Keywords: dynamic analysis, reverse engineering

Eleni Stroulia; Tarja Systä

2002-04-01T23:59:59.000Z

342

Intelligent reversible watermarking in integer wavelet domain for medical images  

Science Conference Proceedings (OSTI)

The prime requirement of reversible watermarking scheme is that the system should be able to restore the cover work to its original state after extracting the hidden information. Reversible watermarking approaches, therefore, have wide applications in ... Keywords: Genetic algorithm (GA), Histogram recovery, Integer wavelet transform (IWT), Medical images, Reversible watermarking

Muhammad Arsalan; Sana Ambreen Malik; Asifullah Khan

2012-04-01T23:59:59.000Z

343

Testing of 3-meter Prototype Fault Current Limiting Cables  

Science Conference Proceedings (OSTI)

Two 3-m long, single-phase cables have been fabricated by Ultera from second generation (2G) superconductor supplied by American Superconductor. The first cable was made with two layers of 2G tape conductor and had a critical current of 5,750 A while the second cable had four layers and a critical current of 8,500 A. AC loss was measured for both cables at ac currents of up to 4 kArms. Ultera performed initial fault current studies of both cables in Denmark with limited currents in the range from 9.1 to 44 kA. Results from these tests will provide a basis for a 25-m long, three-phase, prototype cable to be tested at ORNL early next year and a 300-m long, fault current limiting, superconducting cable to be installed in a ConEd substation in New York City.

Gouge, Michael J [ORNL; Duckworth, Robert C [ORNL; Demko, Jonathan A [ORNL; Rey, Christopher M [ORNL; Thompson, James R [ORNL; Lindsay, David T [ORNL; Tolbert, Jerry Carlton [ORNL; Willen, Dag [Ultera; Lentge, Heidi [Ultera; Thidemann, Carsten [Ultera; Carter, Bill [AMSC

2009-01-01T23:59:59.000Z

344

Time Reversal in Solids (Linear and Nonlinear Elasticity): Multimedia Resources in Time Reversal  

DOE Data Explorer (OSTI)

Dynamic nonlinear elastic behavior, nonequilibrium dynamics, first observed as a curiosity in earth materials has now been observed in a great variety of solids. The primary manifestations of the behavior are characteristic wave distortion, and slow dynamics, a recovery process to equilibrium that takes place linearly with the logarithm of time, over hours to days after a wave disturbance. The link between the diverse materials that exhibit nonequilibrium dynamics appears to be the presence of soft regions, thought to be 'damage' at many scales, ranging from order 10-9 m to 10-1 m at least. The regions of soft matter may be distributed as in a rock sample, or isolated, as in a sample with a single crack [LANLhttp://www.lanl.gov/orgs/ees/ees11/geophysics/nonlinear/nonlinear.shtml]. The Geophysics Group (EES-11) at Los Alamos National Laboratory has posted two or more multimedia items under each of the titles below to demonstrate aspects of their work: 1) Source Reconstruction Using Time Reversal; 2) Robustness and Efficiency of Time Reversal Acoustics in Solid Media; 3) Audio Example of Time Reversal - Speech Privacy; 4) Crack Imagining with Time Reversal - Experimental Results; 5) Time Reversal of the 2004 (M9.0) Sumatra Earthquake.

345

Gravity and fault structures, Long Valley caldera, California  

DOE Green Energy (OSTI)

The main and catastrophic phase of eruption in Long Valley occurred 0.73 m.y. ago with the eruption of over 600 km/sup 3/ of rhyolitic magma. Subsequent collapse of the roof rocks produced a caldera which is now elliptical in shape, 32 km east-west by 17 km north-south. The caldera, like other large Quarternary silicic ash-flow volcanoes that have been studied by various workers, has a nearly coincident Bouguer gravity low. Earlier interpretations of the gravity anomaly have attributed the entire anomaly to lower density rocks filling the collapsed structure. However, on the basis of many additional gravity stations and supporting subsurface data from several new holes, a much more complex and accurate picture has emerged of caldera structure. From a three-dimensional inversion of the residual Bouguer gravity data we can resolve discontinuities that seem to correlate with extensions of pre-caldera faults into the caldera and faults associated with the ring fracture. Some of these faults are believed related to the present-day hydrothermal upflow zone and the zone of youngest volcanic activity within the caldera.

Carle, S.F.; Goldstein, N.E.

1987-07-01T23:59:59.000Z

346

Detachment Faulting and Geothermal Resources - An Innovative Integrated  

Open Energy Info (EERE)

Detachment Faulting and Geothermal Resources - An Innovative Integrated Detachment Faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation in Fish Lake Valley, Nevada Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Detachment Faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation in Fish Lake Valley, Nevada Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This program is designed to provide valuable new subsurface information about one of the Nation's arguably most promising high-temperature geothermal targets. Until now, the Emigrant Geothermal Prospect has been tested by only shallow and relatively shallow thermal-gradient boreholes and a small number of exploration wells, all of which have lacked any detailed 2-D or 3-D structural context. The applicants propose to conduct an innovative integration of detailed 2- D and 3-D structural reconstructions (structural mapping and reflection/refraction source seismology integrated with available data).

347

Age and magnitude of dip-slip faulting deduced from differential cooling histories: An example from the Hope fault, northwest Montana  

Science Conference Proceedings (OSTI)

Determination of the age of fault motion poses a challenge in tectonics, yet rarely produces satisfactory results. The authors describe a new method in which the age and magnitude of dip-slip faulting are estimated from contrasting cooling histories of footwall and hanging wall rocks adjacent to the Hope fault, northwest Montana. The Hope fault has been interpreted in the past as a mostly right-slip fault. New kinematic data, {sup 40}Ar/{sup 39}Ar thermochronometry, and geobarometry indicate that cooling of footwall rocks at {approximately}40 Ma resulted from dip-slip movement. This movement caused vertical separation of about 3 to 5 km between footwall and hanging wall rocks, suggesting that a minimum dip-slip component of 4 km developed during the Late Eocene. These results indicate that the Hope fault experienced substantial normal slip in the Late Eocene, making it coeval with other normal and detachment-style faults in the northern U.S. Cordillera. The western Lewis and Clark line, which in part may share a common tectonic history with the Hope fault, should be re-evaluated for its role in transferring Tertiary extension between the Priest River and Bitterroot core complexes. 45 refs., 10 figs., 1 tab.

Fillipone, J.A.; Yin, An; Harrison, T.M. [Univ. of California, Los Angeles, CA (United States)] [and others

1995-03-01T23:59:59.000Z

348

Cascade Reverse Osmosis Air Conditioning System: Cascade Reverse Osmosis and the Absorption Osmosis Cycle  

SciTech Connect

BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant with a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.

None

2010-09-01T23:59:59.000Z

349

Enhancement of power system transient stability using superconducting fault current limiters  

E-Print Network (OSTI)

Abstract|Transient stability investigations consist in studying the rotor oscillations of generators (electro-mechanic oscillations, 0.1-2 Hz) followed by a fault of large amplitude, e.g. short circuit. The goal is to indicate if the generators are capable to stay synchronous after a fault has occurred. The fault duration is one of the most important factors to be given an answer. In fact, the shorter the fault, the more the maintaining of synchronisation can be guaranteed. Now in case of a fault, a fault current limiter has an extremely fast current transition in comparison with electro-mechanic time constants. This implies a quasi-instantaneous elimination of the fault through a limitation of the current and consequently a better ability to maintain the synchronisation of the system. We recall, in a classic system the elimination of a fault, by opening a circuit breaker, is carried out in two or three cycles in the best case. We have here studied a simple, radial electric network con guration with a machine and an in nite network. The study covers simulations of di erent faults that can occur in a network and the consequences of the recovery time of the fault current limiter. I.

Marten Sjostrom; Rachid Cherkaoui

1999-01-01T23:59:59.000Z

350

Study of a Fault Analysis System for a Heat Supply Network Based on GIS  

E-Print Network (OSTI)

Conventional methods cannot satisfy the request of the layout and operation management in a heating system. The geographical information system (GIS) in a heat supply network can realize information conformity and information share roundly, which makes management of information improve to a new level in district heating. When fault of the heat supply network occurs, the traditional methods make fault reaction time long and the efficiency low, and enlarge the fault harm. The system of fault analysis in a heat supply network based on GIS mainly simulates and calculates according to various fault conditions. By selection of valve shut-off schemes in fault conditions and simulation of various fault conditions, the fault treatment scheme can be optimized. The results of simulation can be shown in the GIS graphics with the aid of advanced image display function of GIS. The application of this system brings great significance to heating system on the management enhancing, fault number-reducing, quick decision-making and influence area diminishing in case of fault.

Zou, P.; Liu, M.; Tang, H.; Wang, X.; Li, N.; Wang, W.

2006-01-01T23:59:59.000Z

351

Reversible (unitized) PEM fuel cell devices  

DOE Green Energy (OSTI)

Regenerative fuel cells (RFCs) are enabling for many weight-critical portable applications, since the packaged specific energy (>400 Wh/kg) of properly designed lightweight RFC systems is several-fold higher than that of the lightest weight rechargeable batteries. RFC systems can be rapidly refueled (like primary fuel cells), or can be electrically recharged (like secondary batteries) if a refueling infrastructure is not conveniently available. Higher energy capacity systems with higher performance, reduced weight, and freedom from fueling infrastructure are the features that RFCs promise for portable applications. Reversible proton exchange membrane (PEM) fuel cells, also known as unitized regenerative fuel cells (URFCs), or reversible regenerative fuel cells, are RFC systems which use reversible PEM cells, where each cell is capable of operating both as a fuel cell and as an electrolyzer. URFCs further economize portable device weight, volume, and complexity by combining the functions of fuel cells and electrolyzers in the same hardware, generally without any system performance or efficiency reduction. URFCs are being made in many forms, some of which are already small enough to be portable. Lawrence Livermore National Laboratory (LLNL) has worked with industrial partners to design, develop, and demonstrate high performance and high cycle life URFC systems. LLNL is also working with industrial partners to develop breakthroughs in lightweight pressure vessels that are necessary for URFC systems to achieve the specific energy advantages over rechargeable batteries. Proton Energy Systems, Inc. (Proton) is concurrently developing and commercializing URFC systems (UNIGEN' product line), in addition to PEM electrolyzer systems (HOGEN' product line), and primary PEM fuel cell systems. LLNL is constructing demonstration URFC units in order to persuade potential sponsors, often in their own conference rooms, that advanced applications based on URFC s are feasible. Safety and logistics force these URFC demonstration units to be small, transportable, and easily set up, hence they already prove the viability of URFC systems for portable applications.

Mitlitsky, F; Myers, B; Smith, W F; Weisberg, Molter, T M

1999-06-01T23:59:59.000Z

352

Time reversal invariance in polarized neutron decay  

SciTech Connect

An experiment to measure the time reversal invariance violating (T-violating) triple correlation (D) in the decay of free polarized neutrons has been developed. The detector design incorporates a detector geometry that provides a significant improvement in the sensitivity over that used in the most sensitive of previous experiments. A prototype detector was tested in measurements with a cold neutron beam. Data resulting from the tests are presented. A detailed calculation of systematic effects has been performed and new diagnostic techniques that allow these effects to be measured have been developed. As the result of this work, a new experiment is under way that will improve the sensitivity to D to 3 {times} 10{sup {minus}4} or better. With higher neutron flux a statistical sensitivity of the order 3 {times} 10{sup {minus}5} is ultimately expected. The decay of free polarized neutrons (n {yields} p + e + {bar v}{sub e}) is used to search for T-violation by measuring the triple correlation of the neutron spin polarization, and the electron and proton momenta ({sigma}{sub n} {center_dot} p{sub p} {times} p{sub e}). This correlation changes sign under reversal of the motion. Since final state effects in neutron decay are small, a nonzero coefficient, D, of this correlation indicates the violation of time reversal invariance. D is measured by comparing the numbers of coincidences in electron and proton detectors arranged symmetrically about a longitudinally polarized neutron beam. Particular care must be taken to eliminate residual asymmetries in the detectors or beam as these can lead to significant false effects. The Standard Model predicts negligible T-violating effects in neutron decay. Extensions to the Standard Model include new interactions some of which include CP-violating components. Some of these make first order contributions to D.

Wasserman, E.G.

1994-03-01T23:59:59.000Z

353

Energy by reverse electrodialysis. Final report  

DOE Green Energy (OSTI)

The principles and history of converting the difference between the chemical potentials of concentrated and dilute salt solutions to useful energy by reverse electrodialysis (RED) are discussed. The potential sources of brines discussed include the brines of oil and natural gas fields, the brines from flooding of salt domes, the brines of salt lakes, seawater, and geothermal brines. Equations for predicting the performance of RED units are presented and discussed. A study of the effects of variables on power output from RED cells is given, and estimates of capital and operating costs of RED power units are detailed. (WHK)

Not Available

1978-07-14T23:59:59.000Z

354

Analysis of the Impurity Flow Reversal Experiment  

DOE Green Energy (OSTI)

Experiments performed on the Impurity Study Experiment (ISX-A) tokamak have shown that poloidally asymmetric injection of hydrogen gas can alter the inward transport of injected impurity atoms. We have compared the observed transport times and the magnitude of the flow reversal effect with a model based on the neoclassical theory of impurity transport and find that the observations are consistent with the theory. However, uncertainities in the radial profiles and the atomic rate coefficients do not permit a truly definitive test of the theory.

Burrell, K.H.; Wong, S.K.; Amano, T.

1979-03-01T23:59:59.000Z

355

High-Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley  

Open Energy Info (EERE)

Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: High-Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada Abstract N/A Author V. J. S. Grauch Published U.S. Geological Survey, 2002 Report Number 02-384 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for High-Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada Citation V. J. S. Grauch. 2002. High-Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada. (!) : U.S. Geological Survey. Report No.: 02-384. Retrieved from "http://en.openei.org/w/index.php?title=High-Resolution_Aeromagnetic_Survey_to_Image_Shallow_Faults,_Dixie_Valley_Geothermal_Field,_Nevada&oldid=682601"

356

Modeling fault-zone guided waves of microearthquakes in a geothermal  

Open Energy Info (EERE)

fault-zone guided waves of microearthquakes in a geothermal fault-zone guided waves of microearthquakes in a geothermal reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Modeling fault-zone guided waves of microearthquakes in a geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Fault-zone guided waves have been identified in microearthquake seismograms recorded at the Coso Geothermal Field, California. The observed guided waves have particle motions and propagation group velocities similar to Rayleigh wave modes. A numerical method has been employed to simulate the guided-wave propagation through the fault zone. By comparing observed and synthetic waveforms the fault-zone width and its P- and S-wave velocity structure have been estimated. It is suggested here that the identification

357

Effect of HVDC line faults on transient torsional torques of turbine-generator shafts  

SciTech Connect

This paper investigates the effects of HVdc line faults, line de-energization, and line re-energization on the transient torsional stresses of steam turbine-generator (T-G) units. The studies are conducted on a bipole HVdc system which connects a T-G set to a large ac system. The shaft transient stresses of the T-G set as a result of HVac line fault, fault clearing, and automatic reclosure are also determined when the HVdc transmission system is replaced by an equivalent double-line HVac system. The EMTDC program is used for the simulation studies. The studies conclude that transient shaft stresses as a result of HVdc line fault and its subsequent switching events are (1) significantly less severe than those of HVac faults and subsequent switchings, and (2) not sensitive to the fault location and disturbance duration.

Shi, W. (Xi'an Jiaotong Univ. (China). Dept. of Electrical Engineering); Iravani, M.R. (Univ. of Toronto, Ontario (Canada). Dept. of Electrical Engineering)

1994-08-01T23:59:59.000Z

358

Computer programs for fault studies using symmetrical components in undergraduate and postgraduate teaching  

Science Conference Proceedings (OSTI)

The paper first reviews development of a digital fault studies program for use in undergraduate and postgraduate teaching, highlighting aspects of program design. System data details: arrays containing details of system data: fault data; positive-negative-, and zero-sequence network data; voltage arrays which store node voltages before and after the fault; corresponding current arrays; in addition to the file editor; routines for printing system data on screen or on paper; modifying system data; together with line data; and diagnostics are discussed for various shunt and series faults. Improves routines which employ complex impedances to represent generators, transformers and transmission lines on the more common PC's are explained. Phase voltages and currents for both shunt and series faults which illustrate the effect of the more common approximations such as neglecting system resistance or approximating complex impedance to constant angle impedance in shunt and series faults are made.

Hammons, T.J.; Flett, A. (Glasgow Univ. (United Kingdom)); Kacejko, P. (Technical Univ. of Lublin, Lublin 20-618 (Poland))

1992-01-01T23:59:59.000Z

359

A High-Resolution Aeromagnetic Survey to Identify Buried Faults at Dixie Valley, Nevada  

Science Conference Proceedings (OSTI)

Preliminary results from a high-resolution aeromagnetic survey (200m line spacing) acquired in Dixie Valley early in 2002 provide confirmation of intra-basin faulting based on subtle surface indications. In addition the data allow identification of the locations and trends of many faults that have not been recognized at the surface, and provide a picture of intrabasin faulting patterns not possible using other techniques. The data reveal a suite of northeasterly-trending curving and branching faults that surround a relatively coherent block in the area of Humboldt Salt Marsh, the deepest part of the basin. The producing reservoir occurs at the north end of this coherent block, where rampart faults from the northwest side of the valley merge with anthithetic faults from the central and southeast parts of the valley.

Smith, Richard Paul; Grauch, V. J. S.; Blackwell, David D.

2002-09-01T23:59:59.000Z

360

A Hierarchical Rule-Based Fault Detection and Diagnostic Method for HVAC Systems  

E-Print Network (OSTI)

A rule-based, system-level fault detection and diagnostic (FDD) method for HVAC systems was developed. It functions as an interface between multiple, equipment-specific FDD tools and a human operator. The method resolves and prioritizes conflicting fault reports from equipment-specific FDD tools, performs FDD at the system level, and presents an integrated view of an HVAC system’s fault status to an operator. A simulation study to test and evaluate the method was conducted.

Jeffrey Schein; Steven T. Bushby

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Single event upset tests of a RISC-based fault-tolerant computer  

Science Conference Proceedings (OSTI)

The project successfully demonstrated that dual lock-step comparison of commercial RISC processors is a viable fault-tolerant approach to handling SEU in space environment. The fault tolerant approach on orbit error rate was 38 times less than the single processor error rate. The random nature of the upsets and appearance in critical code section show it is essential to incorporate both hardware and software in the design and operation of fault-tolerant computers.

Kimbrough, J.R.; Butner, D.N.; Colella, N.J.; Kaschmitter, J.L.; Shaeffer, D.L.; McKnett, C.L.; Coakley, P.G.; Casteneda, C.

1996-03-23T23:59:59.000Z

362

Paleoseismology of latest Pleistocene and Holocene fault activity in central Oregon  

SciTech Connect

Latest Pleistocene and Holocene fault activity in Oregon concentrates along four zones that splay northward from seismically active faults along the Central Nevada and Eastern California seismic zones. The Central Oregon fault zone is one of these zones, which splays northward from dextral faults of the Walker Lane, stretching across the flanks of several ranges in south-central Oregon along a N20[degree]W trend, and ultimately merges with the Cascade volcanic arc near Newberry volcano. Aerial-photo interpretations and field investigations reveal fault scarps with, on average about 4 m, but in places as much as [approximately]10 m of vertical expression across latest Pleistocene pluvial lake deposits and geomorphic surfaces. Trenches across three different faults in the Central Oregon zone reveal evidence for multiple episodes of faulting in the form of fault-related colluvial deposits and deformed horizons which have been cut by younger fault movements. Trench exposures reveal faults with relatively steep dips and anastomosing traces, which are interpreted locally as evidence for a small oblique-slip component. Vertical offsets measured in the trenches are [approximately]2 m or more for each event. Radiocarbon analyses and preliminary tephra correlations indicate that the exposed deposits are [approximately]30,000 yr in age and younger, and record the decline of latest Pleistocene pluvial lakes. Commonly, reworked or deformed lacustrine deposits and interlayered and faulted colluvial deposits mark the second and third events back, which probably occurred in the Latest Pleistocene, at a time during low to moderate lake levels. If offsets of the past 18,000 yr are representative of the long-term average, then faults along this zone have slip rates of from 0.2 mm/yr to 0.6 mm/yr and recurrence intervals that range from [approximately]4,000 yr to 11,000 yr.

Pezzopane, S.K.; Weldon, R.J. II (Univ. of Oregon, Eugene, OR (United States). Dept. of Geological Sciences)

1993-04-01T23:59:59.000Z

363

Groundwater penetrating radar and high resolution seismic for locating shallow faults in unconsolidated sediments  

Science Conference Proceedings (OSTI)

Faults in shallow, unconsolidated sediments, particularly in coastal plain settings, are very difficult to discern during subsurface exploration yet have critical impact to groundwater flow, contaminant transport and geotechnical evaluations. This paper presents a case study using cross-over geophysical technologies in an area where shallow faulting is probable and known contamination exists. A comparison is made between Wenner and dipole-dipole resistivity data, ground penetrating radar, and high resolution seismic data. Data from these methods were verified with a cone penetrometer investigation for subsurface lithology and compared to existing monitoring well data. Interpretations from these techniques are compared with actual and theoretical shallow faulting found in the literature. The results of this study suggests that (1) the CPT study, combined with the monitoring well data may suggest that discontinuities in correlatable zones may indicate that faulting is present (2) the addition of the Wenner and dipole-dipole data may further suggest that offset zones exist in the shallow subsurface but not allow specific fault planes or fault stranding to be mapped (3) the high resolution seismic data will image faults to within a few feet of the surface but does not have the resolution to identify the faulting on the scale of our models, however it will suggest locations for upward continuation of faulted zones (4) offset 100 MHz and 200 MHz CMP GPR will image zones and features that may be fault planes and strands similar to our models (5) 300 MHz GPR will image higher resolution features that may suggest the presence of deeper faults and strands, and (6) the combination of all of the tools in this study, particularly the GPR and seismic may allow for the mapping of small scale, shallow faulting in unconsolidated sediments.

Wyatt, D.E. [Westinghouse Savannah River Co., Aiken, SC (United States)]|[South Carolina Univ., Columbia, SC (United States). Earth Sciences and Resources Inst.; Waddell, M.G. [South Carolina Univ., Columbia, SC (United States). Earth Sciences and Resources Inst.; Sexton, B.G. [Microseeps Ltd., Pittsburgh, PA (United States)

1993-12-31T23:59:59.000Z

364

Data Acquisition-Manipulation At San Jacinto Fault Geothermal Area (1982) |  

Open Energy Info (EERE)

Fault Geothermal Area (1982) Fault Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At San Jacinto Fault Geothermal Area (1982) Exploration Activity Details Location San Jacinto Fault Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1982 Usefulness useful DOE-funding Unknown Exploration Basis Develop parameters to identify geothermal region Notes Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related events are identified by the distribution of the interoccurrence times.

365

Wind Power Plant Enhancement with a Fault-Current Limiter: Preprint  

DOE Green Energy (OSTI)

This paper investigates the capability of a saturable core fault-current limiter to limit the short circuit current of different types of wind turbine generators.

Muljadi, E.; Gevorgian, V.; DeLaRosa, F.

2011-03-01T23:59:59.000Z

366

Dynamic Modeling, Sensor Placement Design, and Fault Diagnosis of Nuclear Desalination Systems.  

E-Print Network (OSTI)

??Fault diagnosis of sensors, devices, and equipment is an important topic in the nuclear industry for effective and continuous operation of nuclear power plants. All… (more)

Li, Fan

2011-01-01T23:59:59.000Z

367

Non-invasive Trigger-free Fault Injection Method Based on ...  

Science Conference Proceedings (OSTI)

... [2] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whe- lan, “The sorcerer's apprentice guide to fault attack,” IACR ePrint archive, vol. ...

2011-09-21T23:59:59.000Z

368

Timing of late Quaternary faulting in the 1954 Dixie Valley earthquake area, central Nevada  

Science Conference Proceedings (OSTI)

The 1954 Dixie Valley earthquake (M 6.9) in central Nevada produced about 3 m of total vertical displacement distributed across two principal fault zones along the east flank of the Stillwater Range. Most of the 1954 displacement was along the range-front fault with minor amounts on the piedmont fault zone, in contrast to an earlier Holocene displacement that was restricted to the piedmont fault. Detailed chronostratigraphic, exploratory drilling, and trenching studies indicate that faulting events have migrated back and forth between the range-front and piedmont fault zones in the late Quaternary. Prior to the 1954 earthquake, the range-front fault last ruptured in the late Pleistocene, during a large-magnitude event here called the IXL event. The northern half of the piedmont fault zone last ruptured between 1.5 and 6.8 ka during a large-magnitude event here called the Bend event. On the basis of 6 m total slip since the deposition of shoreline gravels at {approximately} 12 ka, the estimated Holocene vertical-slip rate is 0.5 mm/yr for the Dixie Valley rupture zone. Overlapping and migratory patterns of late Quaternary faulting indicate that the Dixie Valley zone does not fit a simple segmentation model.

Bell, J.W. (Univ. of Nevada, Reno (USA)); Katzer, T. (Las Vegas Valley Water District, NV (USA))

1990-07-01T23:59:59.000Z

369

Core analysis of Chattanooga shale structures west of Pine Mountain fault, Whitley County, Kentucky  

SciTech Connect

A 100-ft oriented core from the Chandler 1 well in Whitley County, Kentucky, sampled the entire Chattanooga Shale section 10 mi west of the Pine Mountain fault. Cored slickenlined structures include 76 bedding-plane faults, four strike-slip faults, and 44 thrust faults. One interpreted kink band was encountered. Slickenline trends, fault geometry, interpreted paleo-stress fields, and chronology of structural evolution do not reflect the N30/sup 0/W transposition direction of the Pine Mountain sheet (seated in Chattanooga Shale) or N60/sup 0/E strike of the Pine Mountain fault. For example, 62% of 81 bedding-fault slickenline orientations trend N20/sup 0/-90/sup 0/W with N60/sup 0/-70/sup 0/W dominant. A secondary direction (32% of bedding slickenlines) strikes N40/sup 0/-80/sup 0/E with N60/sup 0/-70/sup 0/E dominant. Only 9% of bedding-fault slickenlines trend N25/sup 0/-35/sup 0/W. In addition, northwest-trending slickenlines formed first on four of five bedding faults containing both major trends. Thrust faults group into five mean attitudes. Four orientations (N31/sup 0/W, 38/sup 0/NE); N40/sup 0/W, 36/sup 0/SW; N15/sup 0/E, 45/sup 0/SE); and N46/sup 0/1E, 42/sup 0/NW) may define two conjugate shear sets that imply horizontal maximum compressive stress directions of N58/sup 0/W and N54/sup 0/E, respectively. The fifth trend (N88/sup 0/W, 48/sup 0/NE) may relate genetically to strike-slip faults oriented N20/sup 0/W and N60/sup 0/E that indicate horizontal maximum compressive stresses oriented N2/sup 0/-18/sup 0/E. Overprinted thrust-fault slickenlines and faults offsetting faults suggest that maximum compressive stresses first acted northwest-southeast, then northeast-southwest and, finally in a north-northeast-south-southwest direction. Furthermore, bedding faults preceded thrust faults. Differences between Pine Mountain sheet structures and those in the core may reflect local Chattanooga thickness variations or the absence of Chattanooga decollement structures.

Kulander, B.R.; Dean, S.L.; Kirr, J.; Feiler, J.

1987-09-01T23:59:59.000Z

370

A study of the robustness of magic state distillation against Clifford gate faults.  

E-Print Network (OSTI)

??Quantum error correction and fault-tolerance are at the heart of any scalable quantum computation architecture. Developing a set of tools that satisfy the requirements of… (more)

Jochym-O'Connor, Tomas Raphael

2012-01-01T23:59:59.000Z

371

Methodology for fault detection and diagnostics in an ocean turbine using vibration analysis and modeling.  

E-Print Network (OSTI)

??This thesis describes a methodology for mechanical fault detection and diagnostics in an ocean turbine using vibration analysis and modeling. This methodology relies on the… (more)

Mjit, Mustapha.

2009-01-01T23:59:59.000Z

372

Integration of InSAR and GIS in the Study of Surface Faults Caused by Subsidence-Creep-Fault Processes in Celaya, Guanajuato, Mexico  

Science Conference Proceedings (OSTI)

In Celaya city, Subsidence-Creep-Fault Processes (SCFP) began to become visible at the beginning of the 1980s with the sprouting of the crackings that gave rise to the surface faults 'Oriente' and 'Poniente'. At the present time, the city is being affected by five surface faults that display a preferential NNW-SSE direction, parallel to the regional faulting system 'Taxco-San Miguel de Allende'. In order to study the SCFP in the city, the first step was to obtain a map of surface faults, by integrating in a GIS field survey and an urban city plan. The following step was to create a map of the current phreatic level decline in city with the information of deep wells and using the 'kriging' method in order to obtain a continuous surface. Finally the interferograms maps resulted of an InSAR analysis of 9 SAR images covering the time interval between July 12 of 2003 and May 27 of 2006 were integrated to a GIS. All the maps generated, show how the surface faults divide the city from North to South, in two zones that behave in a different way. The difference of the phreatic level decline between these two zones is 60 m; and the InSAR study revealed that the Western zone practically remains stable, while sinkings between the surface faults 'Oriente' and 'Universidad Pedagogica' are present, as well as in portions NE and SE of the city, all of these sinkings between 7 and 10 cm/year.

Avila-Olivera, Jorge A. [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, C.U., 04510 Mexico D.F. (Mexico); Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, C.U., 58030 Morelia, Michoacan (Mexico); Farina, Paolo [Dipartimento di Scienze della Terra, Universita degli Studi di Firenze, Via G. La Pira 4, 50121 Firenze (Italy); Garduno-Monroy, Victor H. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, C.U., 58030 Morelia, Michoacan (Mexico)

2008-05-07T23:59:59.000Z

373

Reverse Auction Bidding - Multiple Group Study  

E-Print Network (OSTI)

Reverse Auction Bidding is a recently developed auction method. In this form of bidding process, the roles of the bidders and the owner are interchanged in terms of the form of the economic transaction. The owner's objective is to drive the unit rates down and the bidder's objective is to maintain an acceptable profit level. A study into Reverse Auction Bidding commenced at Texas A&M University in 2004 and continues to this time, with this the eighteenth study in the series. This study is the second multi-group study in the research. In this study, a multiple group comparison was made between different numbers of bidders, with Games One, Two and Three having three, four and ten bidders respectively. All participants were faculty and students from the Department of Construction Science. The critical requirement for the participants is that they should have no prior experience using the Reverse Auction Bidding system. The eighteen studies have concentrated on new players, with future studies planned for repeat participants. A number of the recent case studies have shown personality has an impact on the performance of the bidders. However, this work was not controlled for personality, as the research objective was to determine the impact of a different number of bidders in a game. The Keirsey Temperament Sorter test was completed by all participants so that the results could be understood in terms of personality impact on the level of return to each participant. The results showed the number of bidders has a significant impact on the individual returns confirming the earlier work on varying the number of bidders. An increase in the number of bidders was shown to lead to a more competitive economic environment, which given usual economic circumstances lead to a reduction in the number of firms interested in bidding, for the self-evident economic reasons. This work points to the need to investigate a bidding group size of five or six, which is likely to be the self-constrained upper limit in a real economic system. Some interesting observations on the personality types suggest that further work is required in this area.

Zhou, Xun

2012-08-01T23:59:59.000Z

374

Constructions of fault tolerant linear compressors and linear decompressors  

E-Print Network (OSTI)

Abstract — The constructions of optical buffers is one of the most critically sought after optical technologies in all-optical packet-switched networks, and constructing optical buffers directly via optical Switches and fiber Delay Lines (SDL) has received a lot of attention recently in the literature. A practical and challenging issue of the constructions of optical buffers that has not been addressed before is on the fault tolerant capability of such constructions. In this paper, we focus on the constructions of fault tolerant linear compressors and linear decompressors. The basic network element for our constructions is scaled optical memory cell, which is constructed by a 2 × 2 optical crossbar switch and a fiber delay line. We give a multistage construction of a self-routing linear compressor by a concatenation of scaled optical memory cells. We also show that if the delays, say d1, d2,..., dM, of the fibers in the scaled optical memory cells satisfy a certain condition (specifically, the condition in (A2) given in Section I), then our multistage construction can be operated as a self-routing linear compressor with maximum delay ? M?F even after up to F of the M scaled optical memory cells fail to function properly, where 0 ? F ? M ? 1. Furthermore, we prove that our multistage construction with the fiber delays d1, d2,..., dM given by the generalized Fibonacci series of order F is the best among all constructions of a linear compressor that can tolerate up to F faulty scaled optical memory cells by using M scaled optical memory cells. Similarly results are also obtained for the constructions of fault tolerant linear decompressors. I.

Cheng-shang Chang; Tsz-hsuan Chao; Jay Cheng; Duan-shin Lee

2007-01-01T23:59:59.000Z

375

Compact reversed-field pinch reactors (CRFPR)  

Science Conference Proceedings (OSTI)

The unique confinement properties of the Reversed-Field Pinch (RFP) are exploited to examine physics and technical issues related to a compact, high-power-density fusion reactor. This resistive-coil, steady-state, toroidal device would use a dual-media power cycle driven by a fusion power core (FPC, i.e., plasma chamber, first wall, blanket, shield, and coils) with a power density and mass approaching values characteristic of pressurized-water fission rectors. A 1000-MWe(net) base case is selected from a comprehensive trade-off study to examine technological issues related to operating a high-power-density FPC. After describing the main physics and technology issues for this base-case reactor, directions for future study are suggested.

Krakowski, R.A.; Miller, R.L.; Bathke, C.G.; Hagenson, R.L.; Copenhaver, C.; Werley, K.A.

1986-01-01T23:59:59.000Z

376

Small power plant reverse trade mission  

DOE Green Energy (OSTI)

This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

Not Available

1989-09-06T23:59:59.000Z

377

Direct observation of time reversal violation  

SciTech Connect

A direct evidence for Time Reversal Violation (TRV) means an experiment that, considered by itself, clearly shows TRV independent of, and unconnected to, the results for CP Violation. No existing result before the recent BABAR experiment with entangled neutral B mesons had demonstrated TRV in this sense. There is a unique opportunity for a search of TRV with unstable particles thanks to the Einstein-Podolsky-Rosen (EPR) Entanglement between the two neutral mesons in B, and PHI, Factories. The two quantum effects of the first decay as a filtering measurement and the transfer of information to the still living partner allow performing a genuine TRV asymmetry with the exchange of 'in' and 'out' states. With four independent TRV asymmetries, BABAR observes a large deviation of T-invariance with a statistical significance of 14 standard deviations, far more than needed to declare the result as a discovery. This is the first direct observation of TRV in the time evolution of any system.

Bernabeu, J. [Department of Theoretical Physics, University of Valencia, and IFIC, Joint Centre Univ. Valencia-CSIC (Spain)

2013-06-12T23:59:59.000Z

378

Coordinated Fault-Tolerance for High-Performance Computing Final Project Report  

Science Conference Proceedings (OSTI)

With the Coordinated Infrastructure for Fault Tolerance Systems (CIFTS, as the original project came to be called) project, our aim has been to understand and tackle the following broad research questions, the answers to which will help the HEC community analyze and shape the direction of research in the field of fault tolerance and resiliency on future high-end leadership systems. #15; Will availability of global fault information, obtained by fault information exchange between the different HEC software on a system, allow individual system software to better detect, diagnose, and adaptively respond to faults? If fault-awareness is raised throughout the system through fault information exchange, is it possible to get all system software working together to provide a more comprehensive end-to-end fault management on the system? #15; What are the missing fault-tolerance features that widely used HEC system software lacks today that would inhibit such software from taking advantage of systemwide global fault information? #15; What are the practical limitations of a systemwide approach for end-to-end fault management based on fault awareness and coordination? #15; What mechanisms, tools, and technologies are needed to bring about fault awareness and coordination of responses on a leadership-class system? #15; What standards, outreach, and community interaction are needed for adoption of the concept of fault awareness and coordination for fault management on future systems? Keeping our overall objectives in mind, the CIFTS team has taken a parallel fourfold approach. #15; Our central goal was to design and implement a light-weight, scalable infrastructure with a simple, standardized interface to allow communication of fault-related information through the system and facilitate coordinated responses. This work led to the development of the Fault Tolerance Backplane (FTB) publish-subscribe API specification, together with a reference implementation and several experimental implementations on top of existing publish-subscribe tools. #15; We enhanced the intrinsic fault tolerance capabilities representative implementations of a variety of key HPC software subsystems and integrated them with the FTB. Targeting software subsystems included: MPI communication libraries, checkpoint/restart libraries, resource managers and job schedulers, and system monitoring tools. #15; Leveraging the aforementioned infrastructure, as well as developing and utilizing additional tools, we have examined issues associated with expanded, end-to-end fault response from both system and application viewpoints. From the standpoint of system operations, we have investigated log and root cause analysis, anomaly detection and fault prediction, and generalized notification mechanisms. Our applications work has included libraries for fault-tolerance linear algebra, application frameworks for coupled multiphysics applications, and external frameworks to support the monitoring and response for general applications. #15; Our final goal was to engage the high-end computing community to increase awareness of tools and issues around coordinated end-to-end fault management.

Panda, Dhabaleswar Kumar [The Ohio State University; Beckman, Pete

2011-07-01T23:59:59.000Z

379

Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report  

Science Conference Proceedings (OSTI)

This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. The Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as straight as possible. One interpretation suggests that the Wildcat Fault is westerly dipping. This could imply that the Wildcat Fault may merge with the Hayward Fault at depth. However, due to the complex geology of the Berkeley Hills, multiple interpretations of the geophysical surveys are possible. iv An effort to construct a 3D GIS model is under way. The model will be used not so much for visualization of the existing data because only surface data are available thus far, but to conduct investigation of possible abutment relations of the buried formations offset by the fault. A 3D model would be useful to conduct 'what if' scenario testing to aid the selection of borehole drilling locations and configurations. Based on the information available thus far, a preliminary plan for borehole drilling is outlined. The basic strategy is to first drill boreholes on both sides of the fault without penetrating it. Borehole tests will be conducted in these boreholes to estimate the property of the fault. Possibly a slanted borehole will be drilled later to intersect the fault to confirm the findings from the boreholes that do not intersect the fault. Finally, the lessons learned from conducting the trenching and geophysical surveys are listed. It is believed that these lessons will be invaluable information for NUMO when it conducts preliminary investigations at yet-to-be selected candidate sites in Japan.

Karasaki, Kenzi; Onishi, Tiemi; Black, Bill; Biraud, Sebastien

2009-03-31T23:59:59.000Z

380

Aging, Fragility and Reversibility Window in Bulk Alloy Glasses  

E-Print Network (OSTI)

Non-reversing relaxation enthalpies (DHnr) at glass transitions Tg(x) in the PxGexSe1-2x ternary display wide, sharp and deep global minima (~ 0) in the 0.09 age, in contrast to aging observed for fragile glass compositions outside the window. Thermal reversibility and lack of aging seem to be paradigms of self-organization which molecular glasses share with protein structures which repetitively and reversibly change conformation near Tg and the folding temperature respectively.

S. Chakravarty; D. G. Georgiev; P. Boolchand; M. Micoulaut

2007-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Discrimination among mechanical fault types in induction motors using electrical measurements  

E-Print Network (OSTI)

Rotating machine failures are a major cause of downtime in a wide variety of industrial processes and are a burden on maintenance personnel and facilities. Some of these failures occur suddenly and are seemingly unpredictable. However, the overwhelming majority develop slowly over time and produce characteristic warning signs. A system capable of detecting and diagnosing these incipient faults before they become critical would significantly reduce downtime and serve to facilitate maintenance and repair of these machines. The ability to accurately distinguish between different types of incipient faults would be a critical aspect of such a system. In this research, a model-based method for diagnosing motor faults is examined and tested using two squirrel-cage AC induction motors with staged fault conditions. The proposed method involves the multi-resolution signal analysis of the current residuals. These residuals are generated by comparing the measured motor current with the current predicted by a recurrent neural network. The frequency content of the distortion of the residuals is used to identify the type of fault present. Although "steady-state" conditions are examined exclusively in this research, the nonstationarities of the current signals are sufficient to warrant the use of multi-resolution analysis. The fault diagnosis system is tested using data taken from an 800 hp motor and a 3 hp motor. The method is successful in identifying residual distortion in the frequency range expected for broken-bar faults. Because the magnitude of the distortion grows with increasing fault severity, the method is also useful for evaluating fault severity for broken-bar faults. However, the current distortions caused by rotor eccentricities and damaged bearings are too small to be identified in a statistically significant manner using this approach. Nevertheless, this research demonstrates the feasibility of a general method by which the characteristic frequencies produced by a particular type of fault can be identified in the output of a system.

McFatter, Justin Robert

2002-01-01T23:59:59.000Z

382

Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report  

SciTech Connect

The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility or control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack?from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.

Lumsdaine, Andrew

2013-03-08T23:59:59.000Z

383

Recruiting Suppliers for Reverse Production Systems: an MDP ...  

E-Print Network (OSTI)

Key words Recruiting, Reverse Production System, MDP Heuristics. 1. ...... It is very important to select an action wisely as this is the exploration part of the RL.

384

Search for Time Reversal Violation in Polarized Neutron ...  

Science Conference Proceedings (OSTI)

Search for Time Reversal Violation in Polarized Neutron Decay (emiT). Summary: The "emiT" experiment searches for - or will set an improved ...

2013-07-30T23:59:59.000Z

385

Fuel Cell Technologies Office: Reversible Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

of Reversible Fuel Cell Systems at Proton Energy, Mr. Everett Anderson, PROTON ON SITE Regenerative Fuel Cells for Energy Storage, Mr. Corky Mittelsteadt, Giner Electrochemical...

386

Reversible computation as a model for the quantum measurement process  

E-Print Network (OSTI)

One-to-one reversible automata are introduced. Their applicability to a modelling of the quantum mechanical measurement process is discussed.

Karl Svozil

2009-04-15T23:59:59.000Z

387

Oil Markets After the Hurricanes: Reversion to the Mean or ...  

U.S. Energy Information Administration (EIA)

Oil Markets After the Hurricanes: Reversion to the Mean or Return to Recent Trend? Macroeconomic Advisers Quarterly Meeting December 2005 Oil Markets After the ...

388

Reversible mechanism for spin crossover in transition-metal cyanides  

E-Print Network (OSTI)

We report the mechanisms for reversible and repeatable spin transition in a Prussian blue analog crystal, KCo[Fe(CN)[subscript 6

Kabir, Mohammad Mukul

389

Reverse osmosis desalination and reclamation : control of colloidal and biofouling.  

E-Print Network (OSTI)

??The focus of this thesis work was on the fundamentals of colloidal and biofouling in reverse osmosis (RO) desalination and reclamation. A novel sodium chloride… (more)

Chong, Tzyy Haur.

2008-01-01T23:59:59.000Z

390

Fault current limiter and alternating current circuit breaker  

DOE Patents (OSTI)

A solid-state circuit breaker and current limiter are disclosed for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time. 9 figs.

Boenig, H.J.

1998-03-10T23:59:59.000Z

391

Restoration and testing of an HTS fault current controller  

Science Conference Proceedings (OSTI)

A three-phase, 1200 A, 12.5 kV fault current controller using three HTS 4 mH coils, was built by industry and tested in 1999 at the Center Substation of Southern California Edison in Norwalk, CA. During the testing, it appeared that each of the three single-phase units had experienced a voltage breakdown, one externally and two internally. Los Alamos National Laboratory (LANL) was asked by DOE to restore the operation of the fault current controller provided the HTS coils had not been damaged during the initial substation tests. When the internally-failed coil vacuum vessels were opened it became evident that in these two vessels, a flashover had occurred at the high voltage bus section leading to the terminals of the superconducting coil. An investigation into the failure mechanism resulted in six possible causes for the flashover. Based on these causes, the high voltage bus was completely redesigned. Single-phase tests were successfully performed on the modified unit at a 13.7 kV LANL substation. This paper presents the postulated voltage flashover failure mechanisms, the new high voltage bus design which mitigates the failure mechanisms, the sequence of tests used to validate the new design, and finally, the results of variable load and short-circuit tests with the single-phase unit operating on the LANL 13.7 kV substation.

Waynert, J. A. (Joseph A.); Boenig, H. (Heinrich E.); Mielke, C. H. (Charles H.); Willis, J. O. (Jeffrey O.); Burley, B. L. (Burt L.)

2002-01-01T23:59:59.000Z

392

Fault current limiter and alternating current circuit breaker  

Science Conference Proceedings (OSTI)

A solid-state circuit breaker and current limiter for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time.

Boenig, Heinrich J. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

393

Multi-level logic minimization through fault dictionary analysis  

E-Print Network (OSTI)

This thesis presents the results of the study of a new ics. algorithm for multi-level logic minimization. This study is based upon the premises that an investable node is a redundant node and that nodes that do not demonstrably cause conflicting behavior at primary outputs may be compatible. Using fault simulation data, compatible nodes are identified and merged. While offering some improvement, this technique by itself leaves many potential reductions undiscovered. As has been noted in (1), adding wires may allow more gated to be eliminated. Using similar fault data to those used to identify compatible bates, implied gate functions are identified and injected. The addition of these new implicant functions creates more compatible pairs, which in some cases can then be eliminated. Data gathered using these techniques show that matrix analysis is a powerful tool that produces minimization results in selected benchmark circuits superior to any previously published academic work. The algorithm developed in this study, Texas Aggies Logic Optimizing Netlister (TALON), is shown to be competitive with, and complimentary to, other methodologies. TALON can be used by itself to reduce the size of a logic network, or it can be used as a preprocessor or postprocessor for other tools, giving superior results to those obtained by any of them working independently.

Mehler, Ronald W

1998-01-01T23:59:59.000Z

394

Recurrent neuro-fuzzy system for fault detection and isolation in nuclear reactors  

Science Conference Proceedings (OSTI)

This paper presents an application of recurrent neuro-fuzzy systems to fault detection and isolation in nuclear reactors. A general framework is adopted, in which a fuzzification module is linked to an inference module that is actually a neural network ... Keywords: Diagnostic system, Fault detection and isolation, Human-machine integration, Neuro-fuzzy systems, Nuclear power plants, Recurrent neural networks

Alexandre Evsukoff; Sylviane Gentil

2005-01-01T23:59:59.000Z

395

Effects of Capcitor Bank on Fault Ride Through Capibility of Induction Generator Hu, Y; Chen, Zhe  

E-Print Network (OSTI)

Effects of Capcitor Bank on Fault Ride Through Capibility of Induction Generator Hu, Y; Chen, Zhe Published in: Proceedings of the Asia-Pacific Power and Energy Engineering Conference, APPEEC 2010 DOI: 10., & Chen, Z. (2010). Effects of Capcitor Bank on Fault Ride Through Capibility of Induction Generator Based

Chen, Zhe

396

Fault Diagnosis of an Air-Conditioning System Using LS-SVM  

Science Conference Proceedings (OSTI)

This paper describes fault diagnosis of an air-conditioning system for improving reliability and guaranteeing the thermal comfort and energy saving. To achieve this goal, we proposed a technique which is model based fault diagnosis technique. Here, a ... Keywords: Air-Conditioning System, FDD, LS-SVM, Residuals generator

Mahendra Kumar; I. N. Kar

2009-12-01T23:59:59.000Z

397

Distributed sensor system for fault detection and isolation in multistage manufacturing systems  

Science Conference Proceedings (OSTI)

With rapid innovations in sensing technology and the rising complexity in manufacturing processes, increasingly less expensive and smart devices with multiple heterogeneous on-board sensors, networked through wired or wireless links and deployable ... Keywords: DSS, MMS, data management, decision making, distributed control, distributed sensor systems, fault detection, fault isolation, industrial automation, information processing, multistage manufacturing systems, optimal design, sensor networks

Du Shi-Chang; Xi Li-Feng; Shi Jian-Jun

2006-03-01T23:59:59.000Z

398

Integrated Fault Detection and Isolation: Application to a Winery's Wastewater Treatment Plant  

Science Conference Proceedings (OSTI)

In this paper, an integrated object-oriented fuzzy logic fault detection and isolation (FDI) module for a biological wastewater treatment process is presented. The defined FDI strategy and the software implementation are detailed. Using experimental ... Keywords: anaerobic digestion, fuzzy logic, object-oriented programming, on-line fault detection and isolation (FDI), wastewater treatment

Antoine Genovesi; Jérôme Harmand; Jean-Philippe Steyer

2000-07-01T23:59:59.000Z

399

Analyzing the techniques that improve fault tolerance of aggregation trees in sensor networks  

Science Conference Proceedings (OSTI)

Sensor networks are finding significant applications in large scale distributed systems. One of the basic operations in sensor networks is in-network aggregation. Among the various approaches to in-network aggregation, such as gossip and tree, including ... Keywords: Aggregation, Fault tolerance, Modeling faults, Reliability, Sensor network

Laukik Chitnis; Alin Dobra; Sanjay Ranka

2009-12-01T23:59:59.000Z

400

Lossy Electric Transmission Line Soft Fault Diagnosis: an Inverse Scattering Approach  

E-Print Network (OSTI)

1 Lossy Electric Transmission Line Soft Fault Diagnosis: an Inverse Scattering Approach Huaibin diagnosis is the reflectometry, which consists in analyzing the reflection and the transmission of electric Tang and Qinghua Zhang Abstract--In this paper, the diagnosis of soft faults in lossy electric

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Sliding mode for detection and accommodation of computation time delay fault  

Science Conference Proceedings (OSTI)

Computation time delay in digital control systems reduces its robustness as well as degrades its performance. In this paper, the computation time delay is assumed to be constant and smaller than the sampling time and is treated as a fault to be detected, ... Keywords: Computation time delay, Discrete-time sliding mode control, Fault detection, Sliding mode observer

José Paulo F. Garcia; Lizete Maria C. F. Garcia; Gisele C. Apolinário; Fernando B. Rodrigues

2009-10-01T23:59:59.000Z

402

Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems Massieh Najafi1  

E-Print Network (OSTI)

Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems Massieh Najafi1 , David for determining HVAC diagnostics, methods to detect faults in HVAC systems are still generally undeveloped. Most in a substantial increase in energy use. For example, failure of an HVAC fan may prevent cool air from one

403

Embryonics: A Bio-Inspired Cellular Architecture with Fault-Tolerant Properties  

Science Conference Proceedings (OSTI)

This paper details and expands the work on Embryonics, a recently proposed fault-tolerant cellular architecture with reconfiguration properties inspired by the ontogenetic development of multicellular systems. The design of a selector-based embryonic ... Keywords: FPGAs, bio-inspired systems, embryonics, fault-tolerant systems, reliability models

Cesar Ortega-Sanchez; Daniel Mange; Steve Smith; Andy Tyrrell

2000-07-01T23:59:59.000Z

404

Rollout strategy-based probabilistic causal model approach for the multiple fault diagnosis  

Science Conference Proceedings (OSTI)

Multiple fault diagnosis (MFD) is used as an effective measure to tackle the problems of real-shop floor environment for reducing the total lifetime maintenance cost of the system. It is a well-known computationally complex problem, where computational ... Keywords: Multiple fault diagnosis, Probabilistic causal model, Rollout strategy

Nishikant Mishra; Alok Kumar Choudhary; M. K. Tiwari; Ravi Shankar

2010-08-01T23:59:59.000Z

405

A Second Replicated Quantitative Analysis of Fault Distributions in Complex Software Systems  

Science Conference Proceedings (OSTI)

Background: Software engineering is searching for general principles that apply across contexts, for example, to help guide software quality assurance. Fenton and Ohlsson presented such observations on fault distributions, which have been replicated ... Keywords: Testing,Measurement,Context,Software,Software engineering,Complexity theory,Telecommunications,replication,Software fault distributions,software metrics,empirical research

Tihana Galinac Grbac, Per Runeson, Darko Huljenic

2013-04-01T23:59:59.000Z

406

Simultaneous fault and mode switching identification for hybrid systems based on particle swarm optimization  

Science Conference Proceedings (OSTI)

This paper describes a methodology for simultaneous identification of fault parameters and mode switching events for hybrid systems. The method is developed based on the notion of Global Analytical Redundancy Relations (GARRs) from the bond graph model ... Keywords: Bond graph, Fault parameter, Global analytical redundancy relation, Hybrid system, Mode switching time stamps, Particle swarm optimization

Ming Yu; Ming Luo; Danwei Wang; Shai Arogeti; Xinzheng Zhang

2010-04-01T23:59:59.000Z

407

Improving Model-Based Gas Turbine Fault Diagnosis Using Multi-Operating Point Method  

Science Conference Proceedings (OSTI)

A comprehensive gas turbine fault diagnosis system has been designed using a full nonlinear simulator developed in Turbotec company for the V94.2 industrial gas turbine manufactured by Siemens AG. The methods used for detection and isolation of faulty ... Keywords: monitoring, fault diagnosis, extended Kalman filter, gas turbine, simulator

Amin Salar; Seyed Mehrdad Hosseini; Behnam Rezaei Zangmolk; Ali Khaki Sedigh

2010-11-01T23:59:59.000Z

408

Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept  

E-Print Network (OSTI)

307 Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept: aircraft propulsion, gas turbine engines, fault detection and isolation, statistical pattern recognition 1 INTRODUCTION Performance and reliability of aircraft gas turbine engines gradually deteriorate over the service

Ray, Asok

409

Applications of Wavelet-Packet in Fault Analysis of Hydroelectric Sets  

Science Conference Proceedings (OSTI)

This paper presents a new method using wavelet packet transform to fault diagnosis of the hydroelectric generating. The use of wavelet packet analysis unit to achieve multi-level vibration signals of wavelet packet decomposition, the analysis provides ... Keywords: wavelet packet, fault diagnosis, hydroelectric generating sets

Liu Haiying; Dai Luping

2010-06-01T23:59:59.000Z

410

Typical fault mode determination for rotor test rig based on correlation dimension and Kolmogorov entropy  

Science Conference Proceedings (OSTI)

This paper experimentally investigates the vibration faults of rotor, such as the unbalance, the loosening and the friction, using the rotor test rig. According to the theory of fractal and chaos, the vibration signal series are reconstructed. By the ... Keywords: Kolmogorov entropy, correlation dimension, fractal and chaos, vibration fault

Fengling Zhang; Yanting Ai; Fei Liu

2009-08-01T23:59:59.000Z

411

DFIG Driven Wind Turbine Grid Fault-Tolerance Using High-Order Sliding Mode Control  

E-Print Network (OSTI)

DFIG Driven Wind Turbine Grid Fault-Tolerance Using High-Order Sliding Mode Control Mohamed (DFIG), control, second-order sliding mode, grid fault-tolerance. Nomenclature WT = Wind Turbine; DFIG increased currents, which may lead to converter failure. Achieving ride-through requirement for DFIG

Brest, Université de

412

Bearing Fault Detection in DFIG-Based Wind Turbines Using the First Intrinsic Mode Function  

E-Print Network (OSTI)

Bearing Fault Detection in DFIG-Based Wind Turbines Using the First Intrinsic Mode Function Y become a focal point in the research of renewable energy sources. In order to make the DFIG-based wind for bearing fault detection in DFIG-based wind turbines. The proposed method uses the first Intrinsic Mode

Paris-Sud XI, Université de

413

Voltage grid support of DFIG wind turbines during grid faults Anca D. Hansen1  

E-Print Network (OSTI)

Voltage grid support of DFIG wind turbines during grid faults Anca D. Hansen1 , Gabriele Michalke2 Abstract The fault ride-through and grid support capabilities of the doubly fed induction generator (DFIG) wind turbines address primarily the design of DFIG wind turbine control with special focus on power

414

Computation of the split factor of earth fault currents by considering the proximity effects  

Science Conference Proceedings (OSTI)

To determine a safe substation grounding grid in power systems, it is important to compute the split factor for earth fault current including the proximity influences among the grid and the earthing systems of the incoming/outgoing transmission lines' ... Keywords: earth fault currents, grounding grid design, proximity effects, split factor, touch and step voltages

N. Ramezani; S. M. Shahrtash

2010-06-01T23:59:59.000Z

415

A compact CPN representation for embedded and control systems fault diagnosis and recovery  

Science Conference Proceedings (OSTI)

This paper describes how a reduced colored Petri net modeling approach can be used to represent faults and recovery action when designing embedded systems, control systems, real time hardware and other systems. The idea of the reduced CPN is to represent ... Keywords: Petri nets, colored Petri nets, control systems, embedded systems, fault diagnosis

Anthony Spiteri Staines

2009-02-01T23:59:59.000Z

416

Fault tree analysis and fuzzy expert systems: Early warning and emergency response of landfill operations  

Science Conference Proceedings (OSTI)

In this paper we argue that Early Warning Systems for engineering facilities can be developed by combining and integrating existing technologies and theories. As example, we present an efficient integration of fuzzy expert systems, fault tree analysis ... Keywords: Accidents, Early Warning System, Expert systems, Fault tree analysis, Fuzzy logic, Landfills, Operational problems, Possibility theory, Public Access to Environmental Information

I. M. Dokas; D. A. Karras; D. C. Panagiotakopoulos

2009-01-01T23:59:59.000Z

417

System for detecting and limiting electrical ground faults within electrical devices  

DOE Patents (OSTI)

An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

Gaubatz, Donald C. (Cupertino, CA)

1990-01-01T23:59:59.000Z

418

Optimal Bayesian estimation and control scheme for gear shaft fault detection  

Science Conference Proceedings (OSTI)

Fault detection and diagnosis of gear transmission systems have attracted a lot of attention in recent years, but there are very few papers dealing with the early detection of shaft cracks. In this paper, a new methodology for predicting failures of ... Keywords: EM algorithm, Gear shaft fault detection, Hidden Markov modeling, Multivariate Bayesian control, Time synchronous averaging, Wavelet transform

Rui Jiang; Jing Yu; Viliam Makis

2012-12-01T23:59:59.000Z

419

Measuring reliability growth of software by considering fault dependency, debugging time Lag functions and irregular fluctuation  

Science Conference Proceedings (OSTI)

The progress of software testing is influenced by various uncertainty factors like effort expenditure, skill of test personal, testing tool, defect density, irregular state of open source project, and irregular state of software fault-report phenomena ... Keywords: defect density, fault dependency, open source software (OSS), stochastic differential equations (SDE)

V. B. Singh; P. K. Kapur; Abhishek Tandon

2010-05-01T23:59:59.000Z

420

Countermeasures against fault attacks on software implemented AES: effectiveness and cost  

Science Conference Proceedings (OSTI)

In this paper we present software countermeasures specifically designed to counteract fault injection attacks during the execution of a software implementation of a cryptographic algorithm and analyze the efficiency of these countermeasures. We propose ... Keywords: countermeasures, fault attacks, side-channel attacks

Alessandro Barenghi; Luca Breveglieri; Israel Koren; Gerardo Pelosi; Francesco Regazzoni

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Fault identification in doubly fed induction generator using FFT and neural networks  

Science Conference Proceedings (OSTI)

This paper presents a fault identification system for doubly fed induction generator (DFIG). It considers cases of single phase short-circuits and load switching. The system uses the fast fourier transform (FFT) to preprocessor data, which consist by ... Keywords: fast fourier transform, fault identification, neural network

Marcelo Patrício de Santana; José Roberto Boffino de Almeida Monteiro; Geyverson Teixeira de Paula; Thales Eugenio Portes de Almeida; Gustavo Bueno Romero; Júlio César Faracco

2012-08-01T23:59:59.000Z

422

Reliability analysis of fault tolerant wind energy conversion system with doubly fed induction generator  

Science Conference Proceedings (OSTI)

This paper deals with the design of a reliable fault tolerant converter topology for grid connected Wind Energy Conversion System (WECS) with Double Fed Induction Generator (DFIG) based on functional redundancy. The main contribution of the developed ... Keywords: Markov chain model, fault tolerant system, reliability analysis, wind energy conversion system

Philippe Weber; Florent Becker; Antoine Mathias; Didier Theilliol; Youmin M. Zhang

2012-10-01T23:59:59.000Z

423

The security of the Fiat--Shamir scheme in the presence of transient hardware faults  

Science Conference Proceedings (OSTI)

Implementation cryptanalysis has emerged as a realistic threat for cryptographic systems. It consists of two classes of attacks: fault-injection and side-channel attacks. In this work, we examine the resistance of the Fiat--Shamir scheme to fault-injection ... Keywords: Bellcore attack, Fiat--Shamir identification scheme, cryptography, side-channel attacks, smartcards

Artemios G. Voyiatzis; Dimitrios N. Serpanos

2008-04-01T23:59:59.000Z

424

Boosting software fault injection for dependability analysis of real-time embedded applications  

Science Conference Proceedings (OSTI)

The design of complex embedded systems deployed in safety-critical or mission-critical applications mandates the availability of methods to validate the system dependability across the whole design flow. In this article we introduce a fault injection ... Keywords: Embedded systems, fault injection, real-time applications

Gianpiero Cabodi; Marco Murciano; Massimo Violante

2010-12-01T23:59:59.000Z

425

The Reliability of a Fault-Tolerant Configuration Having Variable Coverage  

Science Conference Proceedings (OSTI)

An expression is derived for the reliability of an r-on-m fault-tolerant configuration (r spares supporting m identical operating units) when both the hazard and the coverage probability are functions of time. In addition, the coverage probability is ... Keywords: reliability modeling, Fault coverage, redundancy

J. J. Stiffler

1978-12-01T23:59:59.000Z

426

Feature-based classifier ensembles for diagnosing multiple faults in rotating machinery  

Science Conference Proceedings (OSTI)

Recent researches in fault classification have shown the importance of accurately selecting the features that have to be used as inputs to the diagnostic model. In this work, a multi-objective genetic algorithm (MOGA) is considered for the feature selection ... Keywords: Ensemble, Fault diagnosis, Feature selection, Multi-objective genetic algorithms, Rotating machinery

E. Zio; P. Baraldi; G. Gola

2008-09-01T23:59:59.000Z

427

On-line Fault Diagnosis Model of the Hydropower Units Based on MAS  

Science Conference Proceedings (OSTI)

The paper introduced a novel on-line fault diagnosis system model of the hydropower units based on multi-agent system. In allusion to the classical MAS-based fault diagnosis model, it proposes a new function of information interactive between the mission-controlled ...

Liao Jiaping; Fu Bo; Chen Yu

2009-07-01T23:59:59.000Z

428

Fault Detection, Diagnosis and Prediction in Electrical Valves Using Self-Organizing Maps  

Science Conference Proceedings (OSTI)

This paper presents a proactive maintenance scheme for fault detection, diagnosis and prediction in electrical valves. The proposed scheme is validated with a case study, considering a specific valve used for controlling the oil flow in a distribution ... Keywords: Fault prediction, Proactive maintenance, Self-organizing maps, Test of electromechanical systems

Luiz Fernando Gonçalves; Jefferson Luiz Bosa; Tiago Roberto Balen; Marcelo Soares Lubaszewski; Eduardo Luis Schneider; Renato Ventura Henriques

2011-08-01T23:59:59.000Z

429

A compiler-based infrastructure for fault-tolerant co-design  

Science Conference Proceedings (OSTI)

The protection of processor-based systems to mitigate the harmful effects of transient faults (hardening) is gaining importance as technology shrinks. Hybrid hardware/software hardening approaches are promising alternatives in the design of such ... Keywords: co-design, fault-tolerance, hardening, single event effect (SEE), single event upset (SEU)

Felipe Restrepo-Calle; Antonio Martínez-Álvarez; Hipólito Guzmán-Miranda; F. R. Palomo; M. A. Aguirre; Sergio Cuenca-Asensi

2010-06-01T23:59:59.000Z

430

Spline regression based feature extraction for semiconductor process fault detection using support vector machine  

Science Conference Proceedings (OSTI)

Quality control is attracting more attention in semiconductor market due to harsh competition. This paper considers Fault Detection (FD), a well-known philosophy in quality control. Conventional methods, such as non-stationary SPC chart, PCA, PLS, and ... Keywords: Fault detection, Feature extraction, Semiconductor manufacturing, Spline regression, Support vector machine

Jonghyuck Park; Ick-Hyun Kwon; Sung-Shick Kim; Jun-Geol Baek

2011-05-01T23:59:59.000Z

431

Fault Modeling and Analysis for Resistive Bridging Defects in a Synchronizer  

Science Conference Proceedings (OSTI)

This paper presents fault modeling and analysis for bridging defects in a synchronizer that is implemented by two D flip-flops. Bridging defects are injected into any two nodes of the synchronizer, and HSPICE is used to perform circuit analysis. The ... Keywords: Bridging defect, Fault modeling, Synchronizer

Hyoung-Kook Kim; Wen-Ben Jone; Laung-Terng Wang

2010-06-01T23:59:59.000Z

432

A novel fault diagnosis method based-on modified neural networks for photovoltaic systems  

Science Conference Proceedings (OSTI)

The main purpose of this paper is to propose an intelligent fault diagnostic method for photovoltaic (PV) systems. First, Solar Pro software package was used to simulate a photovoltaic system for gathering power generation data of photovoltaic modules ... Keywords: extension theory, fault diagnosis, matter-element model, neural networks, photovoltaic (PV) system

Kuei-Hsiang Chao; Chao-Ting Chen; Meng-Hui Wang; Chun-Fu Wu

2010-06-01T23:59:59.000Z

433

Neural-network-based fault location estimator for transmission line protection  

Science Conference Proceedings (OSTI)

A classical task in the protection of transmission lines against short circuits is the estimation of the electrical distance to the fault and its comparison against a given threshold to determine whether the line is faulted or not. This paper presents ...

Héctor J. Altuve; Oscar L. Chacón; Ernesto Vázquez; Daniel Posadas; Edgar N. Sánchez

1999-04-01T23:59:59.000Z

434

NodeMD: diagnosing node-level faults in remote wireless sensor systems  

Science Conference Proceedings (OSTI)

Software failures in wireless sensor systems are notoriously difficult to debug. Resource constraints in wireless deployments substantially restrict visibility into the root causes of node-level system and application faults. At the same time, the high ... Keywords: deployment, diagnosis, software fault, wireless sensor networks

Veljko Krunic; Eric Trumpler; Richard Han

2007-06-01T23:59:59.000Z

435

A study of effectiveness of dynamic slicing in locating real faults  

Science Conference Proceedings (OSTI)

Dynamic slicing algorithms have been considered to aid in debugging for many years. However, as far as we know, no detailed studies on evaluating the benefits of using dynamic slicing for locating real faults present in programs have been carried out. ... Keywords: Data slicing, Dynamic program slicing, Exploring slices, Fault location, Full slicing

Xiangyu Zhang; Neelam Gupta; Rajiv Gupta

2007-04-01T23:59:59.000Z

436

Multi Agent System based fault location and isolation in a smart microgrid system  

Science Conference Proceedings (OSTI)

In this paper, a Multi Agent System (MAS) based on sequence current magnitudes and current direction is proposed for fault location and isolation in a smart microgrid system. Each of the fault types has a different impact on the sequence current components, ...

Seetaram Alwala; Ali Feliachi; M. A. Choudhry

2012-01-01T23:59:59.000Z

437

THE STABILITY AND REVERSIBILITY OF METALLIC BOROHYDRIDES  

DOE Green Energy (OSTI)

In effort to develop reversible metallic borohydrides with high hydrogen storage capacity and low dehydriding temperature, several new materials have been synthesized by modifying LiBH{sub 4} with various metal halides and hydrides. The investigation shows that the halide modification effectively reduced the dehydriding temperature through ion exchange interaction. The effective halides are TiCl{sub 3}, TiF{sub 3}, ZnF{sub 2} and AlF{sub 3}. The material LiBH{sub 4}+0.1TiF{sub 3} desorbs 3.5wt% and 8.5wt% hydrogen at 150 C and 450 C respectively. It re-absorbed 6wt% hydrogen at 500 C and 70 bar after dehydrogenation. The XRD of the rehydrided samples confirmed the formation of LiBH{sub 4}. It indicates that the materials are reversible at the conditions given. However, a number of other halides: MgF{sub 2}, MgCl{sub 2}, CaCl{sub 2}, SrCl{sub 2} and FeCl{sub 3}, did not reduce dehydriding temperature of LiBH{sub 4} significantly. TGA-RGA analysis indicated that some halide modified lithium borohydrides such as LiBH{sub 4}+0.1ZnF{sub 2} evolved diborane during dehydrogenation, but some did not such as LiBH{sub 4}+0.1TiCl{sub 3}. The formation of diborane caused unrecoverable capacity loss resulting in irreversibility. It is suggested that the lithium borohydrides modified by the halides containing the metals that can not form metal borides with boron are likely to evolve diborane during dehydriding. It was discovered that halide modification reduces sensitivity of LiBH{sub 4}. The materials such as LiBH{sub 4}+0.1TiCl{sub 3} and LiBH{sub 4}+0.5TiCl{sub 3} can be handled in open air without visible reaction.

Au, M

2007-07-27T23:59:59.000Z

438

Neogene carbonate exploration play concepts for Northern New Guinea: New iteration from field work and seismic stratigraphy along the Northern New Guinea Fault Zone  

Science Conference Proceedings (OSTI)

Recent field reconnaissance, petrography, nanno and foraminifera age determinations, and seismic stratigraphy of the Sepik and Piore subbasins of northern New Guinea reveal the existence of an extensive, tectonically unstable, Miocene-Pliocene carbonate shelf system. These findings represent the first recorded evidence of northern Papuan limestones coeval in age to those of the hydrocarbon productive Salawati Basin of Irian Jaya. Moreover, these observations also demonstrate the significance of episodic activities of the northern New Guinea fault zone upon the changes in carbonate sedimentation and diagenesis. During the Neogene, algal biosparites to foraminiferal biomicrites defined the clean portion of a mixed clastic-carbonate shelf system of the northern New Guinea basin, which began at the central New Guinea cordillera and deepened northward. This shelf was interrupted by coral-coralline algal boundstone fringing- to patch-reef buildups with associated skeletal grainstones. Clean carbonates were spatially and temporally restricted to basement blocks, which episodically underwent uplift while terrigenous dilutes carbonates were more common in adjacently subsiding basement block bathymetric lows. These tectonic expressions were caused by the spatially transient nature of constraining bends of the evolving north New Guinea faults. As shown by seismic stratigraphy, by the late Miocene to the early Pliocene the uplift of the Bewani-Torricelli Mountains sagittally divided the shelf of the northern New Guinea basin into the Ramu-Sepik and the Piore basins. Continued regional sinistral transpression between the Pacific and the New Guinea leading edge of the Indo-Australian plates led to the reverse tilting of the Piore basin, the shallowing of the former distal shelf with concomitant extensive biolithite development (e.g., on subsiding volcanic islands) eventual uplifting of the Oenake Range, and en echelon faulting of the Bewani-Torricelli Mountains.

Pigott, J.D.; Geiger, C. (Univ. of Oklahoma, Norman, OK (United States))

1994-07-01T23:59:59.000Z

439

Detection and diagnosis of faults and energy monitoring of HVAC systems with least-intrusive power analysis  

E-Print Network (OSTI)

Faults indicate degradation or sudden failure of equipment in a system. Widely existing in heating, ventilating, and air conditioning (HVAC) systems, faults always lead to inefficient energy consumption, undesirable indoor ...

Luo, Dong, 1966-

2001-01-01T23:59:59.000Z

440

Distributed fault management in WBEM-Based Inter-AS TE for qos guaranteed DiffServ-over–MPLS  

Science Conference Proceedings (OSTI)

Distributed fault management and event notification are essential in Inter-AS Traffic Engineering (TE). In this paper we design and implement distributed fault management for WBEM based inter-AS TE. We designed DMTF Managed Object Format (MOF) based ...

Abdurakhmon Abdurakhmanov; Shahnaza Tursunova; Shanmugham Sundaram; Young-Tak Kim

2006-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A Fault-Tolerant Home-Based Naming Service For Mobile Agents Camron Tolman and Carlos A. Varela  

E-Print Network (OSTI)

A Fault-Tolerant Home-Based Naming Service For Mobile Agents Camron Tolman and Carlos A. Varela at a sacrificed name resolution performance. We introduce a Fault-Tolerant Home-Based Naming Service (FHNS

Varela, Carlos

442

An object-oriented expert system for coal-fired MHD power plant fault monitoring and diagnosis  

Science Conference Proceedings (OSTI)

Abnormal process behaviors observed through sensor data values are symptomatic of process faults. It has been demonstrated that pattern recognition techniques that associate faults with the symptoms they produce can be successfully applied in performing ...

Eddie S. Washington; Moonis Ali

1989-06-01T23:59:59.000Z

443

System and method for bearing fault detection using stator current noise cancellation  

Science Conference Proceedings (OSTI)

A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

Zhou, Wei (Los Angeles, CA); Lu, Bin (Kenosha, WI); Habetler, Thomas G. (Snellville, GA); Harley, Ronald G. (Lawrenceville, GA); Theisen, Peter J. (West Bend, WI)

2010-08-17T23:59:59.000Z

444

System and method for motor fault detection using stator current noise cancellation  

Science Conference Proceedings (OSTI)

A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

Zhou, Wei (Los Angeles, CA); Lu, Bin (Kenosha, WI); Nowak, Michael P. (Menomonee Falls, WI); Dimino, Steven A. (Wauwatosa, WI)

2010-12-07T23:59:59.000Z

445

Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At  

Open Energy Info (EERE)

Geophysical Evidence For Intra-Basin And Footwall Faulting At Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Details Activities (1) Areas (1) Regions (0) Abstract: A 'nested graben' structural model, in which multiple faults successively displace rocks downward to the deepest part of the basin, is supported by recent field geologic analysis and correlation of results to geophysical data for Dixie Valley. Aerial photographic analysis and detailed field mapping provide strong evidence for a deep graben separated from the ranges to the east and west by multiple normal faults that affect the Tertiary/Quaternary basin-fill sediments. Correlation with seismic

446

Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso  

Open Energy Info (EERE)

Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso Geothermal Field, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso Geothermal Field, CA Details Activities (1) Areas (1) Regions (0) Abstract: cap rock, permeability, fault, fracture, clay, Coso Author(s): Davatzes, N.C.; Hickman, S.H. Published: Geothermal Resource Council Transactions 2005, 1/1/2005 Document Number: Unavailable DOI: Unavailable Conceptual Model At Coso Geothermal Area (2005-2007) Coso Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Controls_on_Fault-Hosted_Fluid_Flow:_Preliminary_Results_from_the_Coso_Geothermal_Field,_CA&oldid=473359"

447

Fault and joint geometry at Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

and joint geometry at Raft River geothermal area, Idaho and joint geometry at Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Fault and joint geometry at Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Raft River geothermal reservoir is formed by fractures in sedimentary strata of the Miocene and Pliocene Salt Lake Formation. The fracturing is most intense at the base of the Salt Lake Formation, along a decollement that dips eastward at less than 5 0 on top of metamorphosed Precambrian and Lower Paleozoic rocks. Core taken from less than 200 m above the decollement contains two sets of normal faults. The major set of faults dips between 50 0 and 70 0. These faults occur as conjugate pairs that are bisected by vertical extension fractures. The second set of faults

448

Shootthrough fault protection system for bipolar transistors in a voltage source transistor inverter  

SciTech Connect

Faulted bipolar transistors in a voltage source transistor inverter are protected against shootthrough fault current, from the filter capacitor of the d-c voltage source which drives the inverter over the d-c bus, by interposing a small choke in series with the filter capacitor to limit the rate of rise of that fault current while at the same time causing the d-c bus voltage to instantly drop to essentially zero volts at the beginning of a shootthrough fault. In this way, the load lines of the faulted transistors are effectively shaped so that they do not enter the second breakdown area, thereby preventing second breakdown destruction of the transistors.

Wirth, W.F.

1982-01-12T23:59:59.000Z

449

Monitoring Fault Condition During Manufacturing Using The Karhunen-Loève Transform  

E-Print Network (OSTI)

Monitoring the condition of parts and machine components is a crucial task in ensuring fault-free manufacturing. In this work, we propose an alternative condition monitoring technique, with great potential in extracting and isolating individual fault patterns from manufacturing signals. We propose that the Karhunen-Lo`eve transform provides the ability to decompose measured signals into decorrelated fault patterns, in the form of fundamental eigenvectors. These fundamental eigenvectors can then be monitored by means of coefficient vectors, which indicate any changes in the fault patterns. The technique can provide accurate fault information, whether the manufacturing signals are deterministic, stochastic, stationary, or nonstationary. This paper presents the fundamentals of the proposed technique and its extension to condition monitoring. The outputs of the Karhunen-Lo`eve transform are studied to interpret their physical significance. Then, a subset of general manufacturing signals i...

Irem Y. Tumer; Kristin L. Wood; Ilene J. Busch-vishniac

1997-01-01T23:59:59.000Z

450

Surface and subsurface fault and fracture systems with associated natural gas production in the Lower Mississippian and Upper Devonian, Price Formation, southern West Virginia.  

E-Print Network (OSTI)

??Production from natural gas deposits is often enhanced by fault and fracture systems associated with reservoirs. This study presents analyses of fault and fracture systems… (more)

Johnson, S. Reed.

2007-01-01T23:59:59.000Z

451

Liquid suspensions of reversible metal hydrides  

DOE Patents (OSTI)

The reversibility of the process M + x/2 H/sub 2/ ..-->.. MH/sub x/, where M is a metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under a liquid, thereby to reduce contamination, provide better temperature control and provide in situ mobility of the reactants. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen (at high pressures) and to release (at low pressures) previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the former is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the H/sub 2/ pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

Reilly, J.J.; Grohse, E.W.; Winsche, W.E.

1983-12-08T23:59:59.000Z

452

BIMETALLIC LITHIUM BOROHYDRIDES TOWARD REVERSIBLE HYDROGEN STORAGE  

DOE Green Energy (OSTI)

Borohydrides such as LiBH{sub 4} have been studied as candidates for hydrogen storage because of their high hydrogen contents (18.4 wt% for LiBH{sub 4}). Limited success has been made in reducing the dehydrogenation temperature by adding reactants such as metals, metal oxides and metal halides. However, full rehydrogenation has not been realized because of multi-step decomposition processes and the stable intermediate species produced. It is suggested that adding second cation in LiBH{sub 4} may reduce the binding energy of B-H. The second cation may also provide the pathway for full rehydrogenation. In this work, several bimetallic borohydrides were synthesized using wet chemistry, high pressure reactive ball milling and sintering processes. The investigation found that the thermodynamic stability was reduced, but the full rehydrogenation is still a challenge. Although our experiments show the partial reversibility of the bimetallic borohydrides, it was not sustainable during dehydriding-rehydriding cycles because of the accumulation of hydrogen inert species.

Au, M.

2010-10-21T23:59:59.000Z

453

POLAR FIELD REVERSAL OBSERVATIONS WITH HINODE  

Science Conference Proceedings (OSTI)

We have been monitoring yearly variation in the Sun's polar magnetic fields with the Solar Optical Telescope aboard Hinode to record their evolution and expected reversal near the solar maximum. All magnetic patches in the magnetic flux maps are automatically identified to obtain the number density and magnetic flux density as a function of the total magnetic flux per patch. The detected magnetic flux per patch ranges over four orders of magnitude (10{sup 15}-10{sup 20} Mx). The higher end of the magnetic flux in the polar regions is about one order of magnitude larger than that of the quiet Sun, and nearly that of pores. Almost all large patches ({>=}10{sup 18} Mx) have the same polarity, while smaller patches have a fair balance of both polarities. The polarity of the polar region as a whole is consequently determined only by the large magnetic concentrations. A clear decrease in the net flux of the polar region is detected in the slow rising phase of the current solar cycle. The decrease is more rapid in the north polar region than in the south. The decrease in the net flux is caused by a decrease in the number and size of the large flux concentrations as well as the appearance of patches with opposite polarity at lower latitudes. In contrast, we do not see temporal change in the magnetic flux associated with the smaller patches (<10{sup 18} Mx) and that of the horizontal magnetic fields during the years 2008-2012.

Shiota, D. [Advanced Science Institute, RIKEN (Institute of Physics and Chemical Research), Wako, Saitama 351-0198 (Japan); Tsuneta, S.; Shimojo, M.; Orozco Suarez, D.; Ishikawa, R. [National Astronomical Observatory of Japan (NAOJ), Mitaka, Tokyo 181-8588 (Japan); Sako, N., E-mail: shiota@riken.jp [Department of Astronomical Science, The Graduate University for Advanced Studies, Mitaka, Tokyo 181-8588 (Japan)

2012-07-10T23:59:59.000Z

454

Field testing of component-level model-based fault detection methods for mixing boxes and VAV fan systems  

E-Print Network (OSTI)

based methods of fault detection and diagnosis (FDD).Component-level FDD, which is the subject of the work

Xu, Peng; Haves, Philip

2002-01-01T23:59:59.000Z

455

A knowledge engineering exercise for accelerator fault diagnosis using the EMYCIN-based personal consultant (Texas Instruments)  

E-Print Network (OSTI)

A knowledge engineering exercise for accelerator fault diagnosis using the EMYCIN-based personal consultant (Texas Instruments)

Malandain, E

1987-01-01T23:59:59.000Z

456

Feature Extraction for Data-Driven Fault Detection in Nuclear Power Plants Xin Jin, Robert M. Edwards and Asok Ray  

E-Print Network (OSTI)

. Roberts, W. E. Vesely, D. F. Haasl, and F. F. Goldberg, Fault Tree Handbook. NUREG-0942, U. S. Nuclear

Ray, Asok

457

Field testing of component-level model-based fault detection methods for mixing boxes and VAV fan systems  

E-Print Network (OSTI)

and diagnosis for cooling towers. ASHRAE Trans. , vol.107,of faults in the cooling tower circuit of a central chilled

Xu, Peng; Haves, Philip

2002-01-01T23:59:59.000Z

458

Program on Technology Innovation: Application of a High Temperature Superconducting Fault Current Limiter at AEP's Sporn Substation  

Science Conference Proceedings (OSTI)

This report describes the application of a Superconducting Fault Current Limiter (SFCL) to address fault current over-duty problems in American Electric Power's 138kV Sporn Substation. EPRI is current developing SFCL technology targeted to address fault current over-duty problems at the transmission voltage level of 138kV and higher. The technology under development is termed the Matrix Fault Current Limiter (MFCL) due to the modular nature arrangements of its High Temperature Superconducting (HTS) eleme...

2007-10-30T23:59:59.000Z

459

Assessing Accelerator-Based HPC Reverse Time Migration  

Science Conference Proceedings (OSTI)

Oil and gas companies trust Reverse Time Migration (RTM), the most advanced seismic imaging technique, with crucial decisions on drilling investments. The economic value of the oil reserves that require RTM to be localized is in the order of 10^{13} ... Keywords: Reverse time migration, accelerators, GPU, Cell/B.E., FPGA, geophysics.

Mauricio Araya-Polo; Javier Cabezas; Mauricio Hanzich; Miquel Pericas; Felix Rubio; Isaac Gelado; Muhammad Shafiq; Enric Morancho; Nacho Navarro; Eduard Ayguade; Jose Maria Cela; Mateo Valero

2011-01-01T23:59:59.000Z

460

Air Reverse Circulation Bit Internal Fluid Simulation Based on CFD  

Science Conference Proceedings (OSTI)

The article instructs the work principle of the injector device and its application in the reverse-circulation sampling drilling bit. Then use the fluent fluid engineering emulator software to simulate the internal fluid territory of the injector when ... Keywords: air reverse circulation, bit, injector hole, optimization

Shuqing Hao; Hong-wei Huang; Kun Yin

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Faulting, fracturing, and sealing in foreland thrust belts: Examples from the subalpine chains  

SciTech Connect

The hydrocarbon potential of foreland thrust belts arises from source and reservoir rocks juxtaposed by the movement of thrust sheets, promoting maturation by loading and generating structural traps. Deformation in thrust belts can be localized on fault zones or distributed throughout thrust sheets; different deformation mechanisms operate to increase and decrease permeability. Migration and reservoir properties may be enhanced or reduced by faulting and fault-related deformation. These processes are examined in detail using examples from the northwest subalpine chains of France, a fold-and-thrust belt of well-differentiated Mesozoic shales and carbonates. Seeps of bitumen in foreland basin sediments indicate some migration of hydrocarbons along faults linking probable source and reservoir areas. Detailed examination of fault rocks and thrust sheets shows that fracture formation is an important strain mechanism which has the potential to form regions of enhanced permeability in structures such as hanging wall anticlines. However, the fractures observed are in general recemented, forming with crack-seal crystal growth. The faults themselves are complex zones up to tens of meters thick of subparallel anastomosing gouge, fractures, stylolites, and crystalline calcite, indicating synchronous cataclasis and pressure solution. The range of scales of fracturing suggests stick-slip (microseismic) fault activity. Permeability of the fault zones is enhanced during seismic fault slip and is otherwise steadily decreased by pressure solution and calcite deposition. The available migration pathways, and hence the location of potential reservoirs, is controlled by the timing, mechanisms, and extent of fault activity in this common and productive tectonic regime.

Bowler, S.; Butler, R.W.H.

1988-08-01T23:59:59.000Z

462

Fault-zone seals in siliciclastic strata of the Columbus Basin, offshore Trinidad  

Science Conference Proceedings (OSTI)

This study combines observations from outcrop and drill core with an analysis of the hydrocarbon distribution in two mature oil and gas fields to document the factors controlling the existence of fault seals in the Tertiary sandstone-shale sequence of the Columbus Basin. Juxtaposition of reservoir sandstones against shale intervals across normal faults cannot explain the oil and gas distribution in this area, indicating that fault zones serve as the lateral seals for these hydrocarbon accumulations. The fault-zone seals for the largest hydrocarbon columns (50-200 m) consist of shale smears formed by ductile deformation of shale beds during fault slip. Fault segments that do not meet the criteria for development of a shale smear appear to be transmissible or can seal only small columns (shale smears are discontinuous, such as where a sandstone body is partially juxtaposed against itself, column heights are cross-fault spill-point limited and can be analyzed using fault-plane sections combined with mapping of shale-smear continuity. These traps are likely to preferentially spill high-density hydrocarbons once trap capacity is reached. In contrast, traps bounded by spatially continuous shale smears probably leak through the pore network of the fault-zone material at the top of the trap, thus favoring preferential movement of low-density hydrocarbons in a two-phase system. Hydrocarbon migration through stratigraphic sections containing fault-sealed traps of these two types may result in geochemical fractionation and phase segregation, both of which are observed in the Columbus Basin fields.

Gibson, R.G. [Amoco Production Research, Tulsa, OK (United States)

1994-09-01T23:59:59.000Z

463

Nonlinear Time-Reversal of Classical Waves: Experiment and Model  

E-Print Network (OSTI)

We consider time-reversal of electromagnetic waves in a closed, wave-chaotic system containing a discrete, passive, harmonic-generating nonlinearity. An experimental system is constructed as a time-reversal mirror, in which excitations generated by the nonlinearity are gathered, time-reversed, transmitted, and directed exclusively to the location of the nonlinearity. Here we show that such nonlinear objects can be purely passive (as opposed to the active nonlinearities used in previous work), and develop a high-rate secure communication system based on nonlinear time-reversal. A model of the experimental system is developed, using a star-graph network of transmission lines, with one of the lines terminated by a model diode. The model simulates time-reversal of linear and nonlinear signals, demonstrates features seen in the experimental system, and supports our interpretation of the experimental results.

Matthew Frazier; Biniyam Taddese; Bo Xiao; Thomas Antonsen; Edward Ott; Steven M. Anlage

2013-08-15T23:59:59.000Z

464

Fault diagnosis of steam turbine-generator sets using CMAC neural network approach and portable diagnosis apparatus implementation  

Science Conference Proceedings (OSTI)

Based on the vibration spectrum analysis, this paper proposed a CMAC (Cerebellar Model Articulation Controller) neural network diagnosis technique to diagnose the fault type of turbine-generator sets. This novel fault diagnosis methodology contains an ... Keywords: CMAC, PIC, fault diagnosis, microcontroller, neural network, turbine-generator sets

Chin-Pao Hung; Wei-Ging Liu; Hong-Zhe Su

2009-09-01T23:59:59.000Z

465

Research on Fault Diagnosis of Marine Diesel Engine Based on Grey Relational Analysis and Kernel Fuzzy C-means Clustering  

Science Conference Proceedings (OSTI)

According to the problem of small samples and nonlinear feature in fault diagnosis of marine diesel engine, comprehensively using the methods of grey relational analysis and kernel fuzzy c-means clustering, a method solving fault diagnosis of marine ... Keywords: marine diesel engine, fault diagnosis, grey relational analysis, kernel fuzzy c-means clustering

Xiuyan Peng; Yanyou Chai; Yanyou Chai; Liufeng Xu; Xinjiang Man

2012-01-01T23:59:59.000Z

466

Integrated use of artificial neural networks and genetic algorithms for problems of alarm processing and fault diagnosis in power systems  

Science Conference Proceedings (OSTI)

This work approaches relative aspects to the alarm processing problem and fault diagnosis in system level, having as purpose filter the alarms generated during a outage and identify the equipment under fault. A methodology was developed using Artificial ... Keywords: alarm processing, fault diagnosis, genetic algorithms, neural network, supervision and control of electrical systems

Paulo Cícero Fritzen; Ghendy Cardoso, Jr.; João Montagner Zauk; Adriano Peres De Morais; Ubiratan H. Bezerra; Joaquim A. P. M. Beck

2010-03-01T23:59:59.000Z

467

SVM-Based Multiclass Cost-sensitive Classification with Reject Option for Fault Diagnosis of Steam Turbine Generator  

Science Conference Proceedings (OSTI)

The steam turbine generator faults not only damage the generator itself, but also cause outages and loss of profits, for this reason, many researchers work on the fault diagnosis. But misdiagnosing may also lead to serious losses. In order to improve ... Keywords: SVM, multiclass, cost-sensitive, fault diagnosis, reject option

Chao Zou; En-hui Zheng; Hong-wei Xu; Le Chen

2010-02-01T23:59:59.000Z

468

NSFCONACyT: Integration of Adaptive Fault Tolerance and Scheduling in RealTime Systems. Research Proposal  

E-Print Network (OSTI)

­CONACyT: Integration of Adaptive Fault Tolerance and Scheduling in Real­Time Systems. 1 Research Proposal Integration of Adaptive Fault Tolerance and Scheduling in Real­Time Systems Submitted to the National Science Foundation; ________________________________________________________________________________ NSF­CONACyT: Integration of Adaptive Fault Tolerance and Scheduling in Real­Time Systems. 2 Contents 1

Mejia-Alvarez, Pedro

469

Fault-tolerant Operations for Universal Blind Quantum Computation  

E-Print Network (OSTI)

Blind quantum computation is an appealing use of quantum information technology because it can conceal both the client's data and the algorithm itself from the server. However, problems need to be solved in the practical use of blind quantum computation and fault-tolerance is a major challenge. On an example circuit, the computational cost measured in T gates executed by the client is 97 times more than performing the original computation directly, without using the server, even before applying error correction. (The client still benefits due to drastically reduced memory requirements.) Broadbent et al. proposed running error correction over blind computation, but our first protocol applies one layer of Steane's [[7,1,3

Chia-Hung Chien; Rodney Van Meter; Sy-Yen Kuo

2013-06-16T23:59:59.000Z

470

Buffered coscheduling for parallel programming and enhanced fault tolerance  

DOE Patents (OSTI)

A computer implemented method schedules processor jobs on a network of parallel machine processors or distributed system processors. Control information communications generated by each process performed by each processor during a defined time interval is accumulated in buffers, where adjacent time intervals are separated by strobe intervals for a global exchange of control information. A global exchange of the control information communications at the end of each defined time interval is performed during an intervening strobe interval so that each processor is informed by all of the other processors of the number of incoming jobs to be received by each processor in a subsequent time interval. The buffered coscheduling method of this invention also enhances the fault tolerance of a network of parallel machine processors or distributed system processors

Petrini, Fabrizio (Los Alamos, NM); Feng, Wu-chun (Los Alamos, NM)

2006-01-31T23:59:59.000Z

471

Energy Bounds for Fault-Tolerant Nanoscale Designs  

E-Print Network (OSTI)

The problem of determining lower bounds for the energy cost of a given nanoscale design is addressed via a complexity theory-based approach. This paper provides a theoretical framework that is able to assess the trade-offs existing in nanoscale designs between the amount of redundancy needed for a given level of resilience to errors and the associated energy cost. Circuit size, logic depth and error resilience are analyzed and brought together in a theoretical framework that can be seamlessly integrated with automated synthesis tools and can guide the design process of nanoscale systems comprised of failure prone devices. The impact of redundancy addition on the switching energy and its relationship with leakage energy is modeled in detail. Results show that 99% error resilience is possible for fault-tolerant designs, but at the expense of at least 40% more energy if individual gates fail independently with probability of 1%.

Marculescu, Diana

2011-01-01T23:59:59.000Z

472

Advanced fault diagnosis techniques and their role in preventing cascading blackouts  

E-Print Network (OSTI)

This dissertation studied new transmission line fault diagnosis approaches using new technologies and proposed a scheme to apply those techniques in preventing and mitigating cascading blackouts. The new fault diagnosis approaches are based on two time-domain techniques: neural network based, and synchronized sampling based. For a neural network based fault diagnosis approach, a specially designed fuzzy Adaptive Resonance Theory (ART) neural network algorithm was used. Several ap- plication issues were solved by coordinating multiple neural networks and improving the feature extraction method. A new boundary protection scheme was designed by using a wavelet transform and fuzzy ART neural network. By extracting the fault gen- erated high frequency signal, the new scheme can solve the difficulty of the traditional method to differentiate the internal faults from the external using one end transmis- sion line data only. The fault diagnosis based on synchronized sampling utilizes the Global Positioning System of satellites to synchronize data samples from the two ends of the transmission line. The effort has been made to extend the fault location scheme to a complete fault detection, classification and location scheme. Without an extra data requirement, the new approach enhances the functions of fault diagnosis and improves the performance. Two fault diagnosis techniques using neural network and synchronized sampling are combined as an integrated real time fault analysis tool to be used as a reference of traditional protective relay. They work with an event analysis tool based on event tree analysis (ETA) in a proposed local relay monitoring tool. An interactive monitoring and control scheme for preventing and mitigating cascading blackouts is proposed. The local relay monitoring tool was coordinated with the system-wide monitoring and control tool to enable a better understanding of the system disturbances. Case studies were presented to demonstrate the proposed scheme. An improved simulation software using MATLAB and EMTP/ATP was devel- oped to study the proposed fault diagnosis techniques. Comprehensive performance studies were implemented and the test results validated the enhanced performance of the proposed approaches over the traditional fault diagnosis performed by the transmission line distance relay.

Zhang, Nan

2006-12-01T23:59:59.000Z

473

Paleoseismic investigations of Stagecoach Road fault, southeastern Yucca Mountain, Nye County, Nevada  

Science Conference Proceedings (OSTI)

This report summarizes the results of paleoseismic investigations at two trenches (SCR-T1 and SCR-T3) excavated across the Stagecoach Road (SCR) fault at the southeastern margin of Yucca Mountain. The results of these studies are based on detailed mapping or logging of geologic and structural relationships exposed in trench walls, combined with descriptions of lithologic units, associated soils, and fault-related deformation. The ages of trench deposits are determined directly from geochronologic dating of selected units and soils, supplemented by stratigraphic and soil correlations with other surficial deposits in the Yucca Mountain area. The time boundaries used in this report for subdivision of the Quaternary period are listed in a table. These data and interpretations are used to identify the number, amounts, timing, and approximately lengths of late to middle Quaternary (less than 200 ka) surface-faulting events associated with paleoearthquakes at the trench sites. This displacement history forms the basis for calculating paleoearthquake recurrence intervals and fault-slip rates for the Stagecoach Road fault and allows comparison with fault behavior on other Quaternary faults at or near Yucca Mountain.

Menges, C.M.; Oswald, J.A.; Coe, J.A.; Lundstrom, S.C.; Paces, J.B.; Mahan, S.A.; Widmann, B.; Murray, M.

1998-04-01T23:59:59.000Z

474

Investigation of Ground-Fault Protection Devices for Photovoltaic Power Systems Applications  

Science Conference Proceedings (OSTI)

Photovoltaic (PV) power systems, like other electrical systems, may be subject to unexpected ground faults. Installed PV systems always have invisible elements other than those indicated by their electrical schematics. Stray inductance, capacitance and resistance are distributed throughout the system. Leakage currents associated with the PV modules, the interconnected array, wires, surge protection devices and conduit add up and can become large enough to look like a ground-fault. PV systems are frequently connected to other sources of power or energy storage such as batteries, standby generators, and the utility grid. This complex arrangement of distributed power and energy sources, distributed impedance and proximity to other sources of power requires sensing of ground faults and proper reaction by the ground-fault protection devices. The different dc grounding requirements (country to country) often add more confusion to the situation. This paper discusses the ground-fault issues associated with both the dc and ac side of PV systems and presents test results and operational impacts of backfeeding commercially available ac ground-fault protection devices under various modes of operation. Further, the measured effects of backfeeding the tripped ground-fault devices for periods of time comparable to anti-islanding allowances for utility interconnection of PV inverters in the United States are reported.

BOWER,WARD I.; WILES,JOHN

2000-10-03T23:59:59.000Z

475

Evaluation of a Decoupling-Based Fault Detection and Diagnostic Technique - Part I: Field Emulation Evaluation  

E-Print Network (OSTI)

Existing methods addressing automated fault detection and diagnosis (FDD) for vapor compression air conditioning system have good performance for faults that occur individually, but they have difficulty in handling multiple-simultaneous faults. The decoupling-based (DB) FDD method explicitly addresses diagnostics for multiple-simultaneous faults for the first time. This paper is the first part of a two-part evaluation of the DB FDD technique whose intent is to validate the DB FDD performance and demonstrate its applications. The first part focuses on sensitivity and robustness evaluation through controlled field emulation testing. Sensitivity tests with artificially introduced faults show that individual faults can be identified before they cause a 5% of degradation in cooling capacity, EER and sensible heat ratio. Robustness tests for forty-one multiple-simultaneous-fault combinations demonstrate that no wrong diagnosis occurs with only two false alarms and two sensitivity losses for a liquid-line restriction. The second part, accompanying the first one, focuses on field applications in California.

Li, H.; Braun, J.

2006-01-01T23:59:59.000Z

476

Reversibility and Adiabatic Computation: Trading Time and Space for Energy  

E-Print Network (OSTI)

Future miniaturization and mobilization of computing devices requires energy parsimonious `adiabatic' computation. This is contingent on logical reversibility of computation. An example is the idea of quantum computations which are reversible except for the irreversible observation steps. We propose to study quantitatively the exchange of computational resources like time and space for irreversibility in computations. Reversible simulations of irreversible computations are memory intensive. Such (polynomial time) simulations are analysed here in terms of `reversible' pebble games. We show that Bennett's pebbling strategy uses least additional space for the greatest number of simulated steps. We derive a trade-off for storage space versus irreversible erasure. Next we consider reversible computation itself. An alternative proof is provided for the precise expression of the ultimate irreversibility cost of an otherwise reversible computation without restrictions on time and space use. A time-irreversibility trade-off hierarchy in the exponential time region is exhibited. Finally, extreme time-irreversibility trade-offs for reversible computations in the thoroughly unrealistic range of computable versus noncomputable time-bounds are given.

Ming Li; Paul Vitanyi

1997-03-13T23:59:59.000Z

477

Argonne CNM Highlight: Reverse Chemical Switching of a Ferroelectric Film  

NLE Websites -- All DOE Office Websites (Extended Search)

Reverse Chemical Switching of a Ferroelectric Film Reverse Chemical Switching of a Ferroelectric Film Reverse Chemmical Switching of a Ferroelectric Film Ferroelectric materials display a spontaneous electric polarization below the Curie temperature that can be reoriented, typically by applying an electric field. In this study, researchers from Argonne, Northern Illinois University, and The University of Pennsylvania have demonstrated that the chemical environment can control the polarization orientation in an ultrathin ferroelectric film. This is complementary to recent predictions that polarization can affect surface chemistry and illuminates potential applications in sublithographic patterning and electrically tunable catalysts. In situ synchrotron X-ray scattering measurements showed that high or low

478

A methodology for experimentally verifying simulation models for distribution transformer internal faults  

E-Print Network (OSTI)

Internal winding faults comprise 70-80% of modem transformer breakdown. In this era of deregulation, this phenomenon is likely to increase since loading transformers to their optimum capacity is becoming normal practice. These internal faults result from degradation of the transformer winding insulation, which tends to cause a breakdown in the dielectric strength. This breakdown either causes adjacent windings to short or a winding to be shorted to a grounded part of the transformer. Such faults can be very catastrophic and hence expensive. Utilities therefore welcome inexpensive methods employed to detect such faults in the incipient stage. The long-term objective of this research is the development of an inexpensive technique for the detection of transformer incipient winding faults. As part of this research, the thesis presents: 1. Internal winding models of single-phase, distribution transformers. These models are adapted from an earlier work of modeling internal winding faults of three-phase power transformers. They are compatible with the Alternative Transients Program and enable the transformer winding terminal parameters to be monitored. They allow the simulation of faults between any turn and the earth or between any two turns of the transformer windings. 2. Simulation of various internal winding faults of a single-phase distribution transformer using the models. 3. A general methodology to experimentally verify simulation models for distribution transformer internal winding faults including details of the design and layout of a field experimental setup containing a 25kVA, 7200V/240V/120V single-phase, custom-built transformer and a 25kW resistor load bank. 4. A comparison of the simulation and corresponding field experiment results. Although the simulation models neglected factors such as saturation and consequently transformer nonlinearities, the simulation and field results were very similar. As a contribution, the experimental setup presented in this work could generally be used for simulation model verification by following the proposed methodology with appropriate modifications. The validated models can be utilized to generate fault data for all kinds of scenarios including those that would be impossible to stage experimentally due to high levels of fault currents. These data can be used as a basis for a single-phase transformer incipient fault detection system.

Palmer-Buckle, Peter

1999-01-01T23:59:59.000Z

479

High Temperature Superconducting Matrix Fault Current Limiter: Proof-of-Concept Test Results  

Science Conference Proceedings (OSTI)

This report describes the design and proof-of-concept test results of a pre-prototype superconducting fault current limiter (FCL). The device employs SuperPower's Matrix Fault Current Limiter (MFCL) technology and BSCCO-2212 bulk material manufactured by Nexans SuperConductors' melt cast processing (MCP) technique. The MFCL technology is targeted to address fault current over-duty problems at the transmission voltage level of 138kV and higher. In addition to EPRI sponsorship, this $12M development progra...

2004-09-27T23:59:59.000Z

480

Structural styles of the Wilcox and Frio growth-fault trends in Texas: Constraints on geopressured reservoirs  

DOE Green Energy (OSTI)

The wide variability in structural styles within the growth-faulted, geopressured trends of the Texas Gulf Coast is illustrated by detailed structural maps of selected areas of the Wilcox and Frio growth-fault trends and quantified by statistical analysis of fault compartment geometries. Structural variability is a key determinant of the size of geopressured aquifers in the deep subsurface. Two major structural styles exist in the Wilcox trend. (1) In southeast and Central Texas, the trend consists of continuous, closely spaced faults that have little associated rollover despite moderate expansion of section; the fault plane flattens little with depth. (2) By contrast, in South Texas a narrow band of growth faults having high expansion and moderate rollover lies above and downdip of a ridge of deformed, overpressured shale but updip of a deep basin formed by withdrawal of overpressured shale. Frio fault systems generally display greater rollover and wider spacing than do Wilcox fault systems; however, the Frio trend displays distinctive features in each study area. Most of the Frio growth faults, however, have a similar geometry, showing substantial rollover, expansion of section, and a moderate flattening of the fault zone with depth, possibly related to a deep decollement surface. The local variability in style is related to the magnitude of Frio sedimentation and progradation and to the presence of thick salt or shale. Finding and developing a large geopressured aquifer require recognition of a favorable combination of sand-body geometry, reservoir quality, and fault compartment size and shape.

Ewing, T.E.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reverse fault rectangles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11