Sample records for reuse organization department

  1. Community Reuse Organization | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment. CashDay-JuneOfficeFresno U.S.of

  2. Department of Energy Awards $345,000 to the Eight Northern Indian Pueblos Council Community Reuse Organization

    Broader source: Energy.gov [DOE]

    Department of Energy Awards $345,000 to the Eight Northern Indian Pueblos Council Community Reuse Organization

  3. Beneficial Reuse | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:WhetherNovember 13, 2009OakDepartment of

  4. Personal Property Disposition - Community Reuse Organizations...

    Broader source: Energy.gov (indexed) [DOE]

    Owen (signed) Director, Office of Worker and Community Transition Department of Energy Washington, DC 20505 January 22, 2003 Disposition of Excess Personal Property...

  5. Supporting Knowledge Reuse: A Field Study of Service Engineers in a High-Reliability Organization

    E-Print Network [OSTI]

    Lutters, Wayne G.

    Supporting Knowledge Reuse: A Field Study of Service Engineers in a High-Reliability Organization, lutters@ics.uci.edu Abstract This dissertation examines knowledge work in a high- reliability organization. Specifically, it explores the distributed problem solving behavior of service engineers, and their analytic

  6. Supporting Knowledge Reuse: A Field Study of Service Engineers in a High-Reliability Organization

    E-Print Network [OSTI]

    Lutters, Wayne G.

    Supporting Knowledge Reuse: A Field Study of Service Engineers in a High-Reliability Organization. A senior service engineer is already on the phone with the ground crew. She has dropped all other jobs of minutes. The plane is still loaded and sitting at the gate. The engineers at TransGulf and at Global

  7. Enterprise SRS Past Reuse Success | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof EnergyPublicArticle Enterprise SRS ArticlePast Reuse

  8. Enterprise SRS Past Reuse Success | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration | Department ofDecember 2014 |ReviewsOverviewPast

  9. Site Attracts Private Sector Investments for Reuse | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle|SecurityDepartmentShawn WangSioux Students Kindle

  10. Innovative Concepts for Beneficial Reuse of Carbon Dioxide | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReformManager (ISSM)Department of

  11. Hybrid Membrane System for Industrial Water Reuse | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e pShade YourHybirdBraking SystemofHybrid

  12. EA-1915: Conveyance of Approximately 1,641 Acres of Unimproved Land to the Tri-City Development Council, the Local Community Reuse Organization, Richland, WA

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of conveyance of approximately 1,641 acres of unimproved land at DOE’s Hanford Site, Richland, Washington to the Tri-City Development Council (TRIDEC), the local community reuse organization (CRO).

  13. Organization | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integrated and consistent with the Department-wide processes and requirements. Sustainability Performance Office The Sustainability Performance Office (SPO) oversees...

  14. Organization Chart and Contacts | Department of Energy

    Office of Environmental Management (EM)

    About the Fuel Cell Technologies Office Organization Chart and Contacts Organization Chart and Contacts Organization Chart and Contacts Contact Information U.S. Department of...

  15. Organization | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofCDepartmenttheOracleQUALITY

  16. Organization | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofCDepartmenttheOracleQUALITYOrganization

  17. Organization | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment

  18. Organization | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeekOMB Policies2.0 OpenOrganization

  19. Supplemental Release Limits for the Directed Reuse of Steel in Road Barriers and Lead in Shielding Products by the Department of Energy

    SciTech Connect (OSTI)

    Coleman, RL

    2006-04-07T23:59:59.000Z

    The DOE National Center of Excellence for Metals Recycle (NMR) proposes to define and implement a complex-wide directed reuse strategy for surplus radiologically impacted lead (Pb) and steel as part of the U.S. Department of Energy's commitment to the safe and cost-effective recycle or reuse of excess materials and equipment across the DOE complex. NMR will, under this proposal, act on behalf of the DOE Office of Environmental Management, Office of Technical Program Integration (specifically EM-22), as the Department's clearinghouse for DOE surplus lead, steel and products created from these materials by developing and maintaining a cost-effective commercially-based contaminated lead and steel recycle program. It is NMR's intention, through this directed reuse strategy, to mitigate the adverse environmental and economic consequences of managing surplus lead and steel as a waste within the complex. This approach promotes the safe and cost-effective reuse of scrap metals in support of the Department's goals of resource utilization, energy conservation, pollution prevention and waste minimization. This report discusses recommendations for supplemental radiological release limits for the directed reuse of contaminated lead and steel by the DOE within the nuclear industry. The limits were originally selected from the American National Standards Institute and Health Physics Society standard N13.12 titled ''Surface and Volume Radioactivity Standards for Clearance'' (Health Physics Society, 1999) but were subsequently modified as a result of application-specific issues. Both the health and measurement implications from the adoption and use of the limits for directed reuse scenarios are discussed within this report.

  20. A G E N D A Press Conference Savannah River Site Community Reuse Organization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugustDecember8threbuildA ComprehensiveachAAAA G

  1. Software reuse in defense electronics : a study of organization and architecture approaches in a challenging business and technical environment

    E-Print Network [OSTI]

    Davis, Jeffrey (Jeffrey Ethan)

    2010-01-01T23:59:59.000Z

    Although large scale software reuse has been studied and practiced in industry for more than 20 years, there are some practice areas where it has presented both technical and business challenges. A sector notable for ...

  2. Applicant Organization: | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque,APPENDIX A: Technical Support

  3. Applicant Organization: | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque,APPENDIX A: Technical Support DocumentAppliance

  4. Applicant Organization: | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque,APPENDIX A: Technical Support DocumentApplianceBlueFire

  5. Department of Energy Idaho - Organization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavid Turner David3 |AProgramLinks >Organization

  6. Estimating Systems Engineering Reuse

    E-Print Network [OSTI]

    Fortune, Jared

    2009-04-20T23:59:59.000Z

    Systems engineering reuse is the utilization of previously developed systems engineering products or artifacts such as

  7. Organic Photovoltaics Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8Organic Photovoltaics Research

  8. WIP Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships Toolkit VoluntaryHURRICANE * FLASHAWIP Organization

  9. Types of Reuse

    Broader source: Energy.gov [DOE]

    The following provides greater detail regarding the types of reuse pursued for LM sites. It should be noted that many actual reuses combine several types of the uses listed below.

  10. Our Organization and Employees | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartmentChart OrganizationalDependenceOrganization

  11. Department of Energy Recognizes Six Leading Organizations for...

    Broader source: Energy.gov (indexed) [DOE]

    2007 National Green Power Supplier Award Winners WASHINGTON, DC - The U.S. Department of Energy (DOE) will recognize six leading organizations at the Seventh Annual Green Power...

  12. Reusing Property Resulting from Analytical Laboratory Closure

    SciTech Connect (OSTI)

    Elmer, J. [S.M. Stoller Corporation, Grand Junction, CO 81503 (United States); DePinho, D.; Wetherstein, P. [Battelle Memorial Institute, Grand Junction, CO 81503 (United States)

    2006-07-01T23:59:59.000Z

    The U.S. Department of Energy Office of Legacy Management (DOE-LM) site in Grand Junction, Colorado, faced the problem of reusing an extensive assortment of laboratory equipment and supplies when its on-site analytical chemistry laboratory closed. This challenge, undertaken as part of the Grand Junction site's pollution prevention program, prioritized reuse of as much of the laboratory equipment and supplies as possible during a 9-month period in fiscal year 2004. Reuse remedies were found for approximately $3 million worth of instrumentation, equipment, chemicals, precious metals, and other laboratory items through other Grand Junction site projects, Federal Government databases, and extensive contact with other DOE facilities, universities, and colleges. In 2005, the DOE-LM Grand Junction site received two prestigious DOE pollution prevention awards for reuse of the laboratory's equipment and supplies. (authors)

  13. Month HT OCC O. Paper OPF SS CG&MP SW/MP Reused Organics Hazardous E-waste Scrap Skids Misc Recovered Landfilled Total Diversion Jan-09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0%

    E-Print Network [OSTI]

    Waterloo, University of

    ) Diversion Diversion Rate (Recycled / Total) SS Secure Shredding Scrap Scrap Metals (All) CG&MP Cans, GlassMonth HT OCC O. Paper OPF SS CG&MP SW/MP Reused Organics Hazardous E-waste Scrap Skids Misc: Month HT OCC O. Paper OPF SS CG&MP SW/MP Reused Organics Hazardous E-waste Scrap Skids Misc Recovered

  14. Analysis of Desalination Processes for Treatment of Produced Water for Re-use as Irrigation Water 

    E-Print Network [OSTI]

    Bradt, Laura

    2012-04-20T23:59:59.000Z

    Produced water is a major side product of onshore oil and gas production. This water contains a mixture of organic and inorganic compounds and requires treatment for beneficial reuse. One option for the reuse of this water is irrigation. Treatment...

  15. Chairman, SRS Community Reuse Organization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMSStaffCerium OxideChair Summaries fromRemarks

  16. Reuse in Systems Engineering

    E-Print Network [OSTI]

    Wang, Gan

    Reuse in systems engineering is a frequent but poorly understood phenomenon. Nevertheless, it has a significant impact on system development and on estimating the appropriate amount of systems engineering effort with models ...

  17. Department of Finance Programs and Majors STUDENT ORGANIZATIONS

    E-Print Network [OSTI]

    Gallo, Linda C.

    Department of Finance Programs and Majors STUDENT ORGANIZATIONS Finance & Investment Society http students http://cbaweb.sdsu.edu/finance/aef AVAILABLE BUSINESS/FINANCIAL DATA Bloomberg Terminals (Wells PROGRAMS Undergraduate majors: Finance; Financial Services; Real Estate Graduate programs: Finance

  18. Human Capital Organization | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P.Department of Energy Internet ExplorerDepartmentHC

  19. Standards Development Organizations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Staffing Model Staffing

  20. WIP Organization Chart | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy MicrosoftVOLUME INovemberSeptemberchargedWho

  1. 2012 Supporting Organizations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S.Energy19.xlsx2EnergySmart Grid Peer Review2012

  2. Workplace Charging Challenge Partner: Organic Valley | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | DepartmentDepartment of Energy Lewis & ClarkNetAppDepartmentOrganic

  3. Organic Rankine Cycle for Light Duty Passenger Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8Organic Photovoltaics

  4. Metal Organic Heat Carriers for Enhanced Geothermal Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMayEnergy Metal Organic Heat Carriers for

  5. Reuse of Verification Results Conditional Model Checking, Precision Reuse,

    E-Print Network [OSTI]

    Beyer, Dirk

    further verification runs of the system; information about the level of abstraction in the abstract modelReuse of Verification Results Conditional Model Checking, Precision Reuse, and Verification checker which parts of the system should be verified; thus, later verification runs can use the output

  6. COOPERATIVE LAND REUSE PROGRAM

    SciTech Connect (OSTI)

    Unknown

    1999-07-30T23:59:59.000Z

    The objective of this study was to determine what financial return, if any, DOE would realize if they invest solely in removal of the asbestos from these three Hanford steam plants and the associated large bore distribution piping at the site. Once the asbestos was removed the strategy was to bring in companies that specialize in salvage and material re-use and have them remove, at no cost to DOE, the plants and the associated large bore piping. The salvage companies we contacted had said that if they didn't have to remove asbestos, they may be able to realize enough value from these plants to offset their demolition and/or dismantling cost. The results were not what we expected but they do offer DOE some favorable financial alternatives to their present approach. The study concluded that there was very little salvage and/or re-use value remaining in the steam plant material that could be used to offset the demolition and/or dismantling cost. The notable exception to this is the removal of the 24 inch steam piping that runs from 200E to 200W areas (see IDM executive summary under Dismantling cost). It is estimated that the re-use value of the 24-inch piping would more than pay for the dismantling cost of this piping. On a more favorable note, it does appear as though the cost of conventional demolition can be reduced by a factor of 3 to 5 if the asbestos is removed first and the demolition is performed using competitive and commercial practices. Both estimates in this study are similar except that IDM did not include floor slab removal nor remove the same quantity of piping. This is why we are using a range of 3 to 5 as a reduction factor. The IDM estimate (using union labor) for demolition after removal of asbestos was approximately $1.5M versus $10.0M for accomplishing the work using Hanford practices and rates.

  7. Month HT OCC O. Paper OPF SS CG&MP SW/MP Reused Organics Hazardous E-waste Scrap Skids Misc Recovered Landfilled Total Diversion Jan-10 0.00 0.00 0.00 15.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.50 0.00 15.50 100.0%

    E-Print Network [OSTI]

    Waterloo, University of

    Materials OPF Office Paper Fibre E-Waste Waste Electronic and Electrical Equipment (Incl. Toner CartridgesMonth HT OCC O. Paper OPF SS CG&MP SW/MP Reused Organics Hazardous E-waste Scrap Skids Misc Organics Hazardous E-waste Scrap Skids Misc Recovered Landfilled Total Diversion Jan-09 0.00 0.00 0.00 0

  8. Control of the accumulation of non-process elements and organic compounds in pulp mills with bleach filtrate reuse. Quarterly report 3, January--March, 1997

    SciTech Connect (OSTI)

    Frederick, W.J.; Laver, M.L.; Rorrer, G.L.

    1997-05-01T23:59:59.000Z

    Progress during this quarter is described on four tasks. The first task involves the recovery of organic matter from bleach effluents and black liquors, separation of carbohydrates and lignin degradation products, analysis of functional groups, and characterization of carbohydrate polymers. Progress in the second task was made in the selection of model compounds. Several subtasks are complete in Task 3, but the paper summarizes progress made in the determination of the residual hemicellulose content in the pulp samples. Finally, results are given for the measurement of metal adsorption isotherms on wood pulp. Goals for the next quarter are listed.

  9. Combined Loop Transformation and Hierarchy Allocation for Data Reuse Optimization

    E-Print Network [OSTI]

    Cong, Jason "Jingsheng"

    transformation framework was established based on parametric integer linear programming [6-8]. Data dependenceCombined Loop Transformation and Hierarchy Allocation for Data Reuse Optimization Jason Cong, Peng Zhang, Yi Zou Computer Science Department University of California, Los Angeles Los Angeles, CA 90095

  10. Quality and Reuse in Industrial Software Engineering Greg Butler

    E-Print Network [OSTI]

    Butler, Gregory

    Quality and Reuse in Industrial Software Engineering Greg Butler Department of Computer Science on the costs and benefits of the approaches, and the criteria which determine a successful transfer the effort and costs of maintenance and understanding are the primary means to increased productivity

  11. Re-using products saves budget dollars and reduces waste

    E-Print Network [OSTI]

    Re-using products saves budget dollars and reduces waste Rutgers Environmental Health and Safety Department (REHS) sponsors an unused chemical exchange program to reduce chemical waste and save your recycling program, we have saved over $2,000,000 in landfill costs. We recycled over 32,000 tons of our

  12. Customizing AOSE Methodologies by Reusing AOSE Thomas Juan Leon Sterling

    E-Print Network [OSTI]

    Mascardi, Viviana

    Customizing AOSE Methodologies by Reusing AOSE Features Thomas Juan Leon Sterling Department of Computer Science and Software Engineering, The University of Melbourne 221 Bouverie Street Carlton engineering support for a diverse range of software quality attributes, such as privacy and openness

  13. Efficiency Projects and Water Reuse

    E-Print Network [OSTI]

    Pannell, B.

    2011-01-01T23:59:59.000Z

    Efficiency In A Small Utility Bill Pannell bill.pannell@cleburne.net City of Cleburne ESL-KT-11-11-36 ?Efficiency In A Small Utility Are We As Efficient As We Can Be?? Reduce Water ?Loss? Thru Better Auditing And Metering Improvements... Saving $$$ With Efficient Aeration Question And Answer Session Water Loss Energy Q&A Reuse Expanding Water System Capacity By Creative Reuse Water Development ESL-KT-11-11-36 ? What is ?Loss?? ? What is ?Real loss?? ? ?Apparent Loss...

  14. Automating component reuse and adaptation

    E-Print Network [OSTI]

    Alexander, Perry; Morel, B.

    2004-09-01T23:59:59.000Z

    by B. Frakes. For information on obtaining reprints of this article, please send e-mail to: tse@computer.org, and reference IEEECS Log Number TSE-0115-0803. 0098-5589/04/$20.00 C223 2004 IEEE Published by the IEEE Computer Society systems. The framework... Ejecutivos (CADE-14), July 1997. [7] W. Frakes and C. Terry, ?Software Reuse: Metrics and Models,? ACM Computing Surveys, vol. 28, no. 2, pp. 415-435, June 1996. [8] W.B. Frakes and C.J. Fox, ?Sixteen Questions About Software Reuse,? Comm. ACM, vol. 38, no. 6...

  15. Personal Property Disposition - Community Reuse Organizations (CROs) |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5Parabolic Trough ParabolicPerformance Audit

  16. Treatment and reuse of coal conversion wastewaters

    SciTech Connect (OSTI)

    Luthy, R.G.

    1980-01-01T23:59:59.000Z

    This paper presents a synopsis of recent experimental activities to evaluate processing characteristics of coal conversion wastewaters. Treatment studies have been performed with high-BTU coal gasification process quench waters to assess enhanced removal of organic compounds via powdered activated carbon-activated sludge treatment, and to evaluate a coal gasification wastewater treatment train comprised of sequential processing by ammonia removal, biological oxidation, lime-soda softening, granular activated carbon adsorption, and reverse osmosis. In addition, treatment studies are in progress to evaluate solvent extraction of gasification process wastewater to recover phenolics and to reduce wastewater loading of priority organic pollutants. Biological oxidation of coal gasification wastewater has shown excellent removal efficiencies of major and trace organic contaminants at moderate loadings, addition of powdered activated carbon provides lower effluent COD and color. Gasification process wastewater treated through biological oxidation, lime-soda softening and activated carbon adsorption appears suitable for reuse as cooling tower make-up water. Solvent extraction is an effective means to reduce organic loadings to downstream processing units. In addition, preliminary results have shown that solvent extraction removes chromatographable organic contaminants to low levels.

  17. Beneficial Reuse of San Ardo Produced Water

    SciTech Connect (OSTI)

    Robert A. Liske

    2006-07-31T23:59:59.000Z

    This DOE funded study was performed to evaluate the potential for treatment and beneficial reuse of produced water from the San Ardo oilfield in Monterey County, CA. The potential benefits of a successful full-scale implementation of this project include improvements in oil production efficiency and additional recoverable oil reserves as well as the addition of a new reclaimed water resource. The overall project was conducted in two Phases. Phase I identified and evaluated potential end uses for the treated produced water, established treated water quality objectives, reviewed regulations related to treatment, transport, storage and use of the treated produced water, and investigated various water treatment technology options. Phase II involved the construction and operation of a small-scale water treatment pilot facility to evaluate the process's performance on produced water from the San Ardo oilfield. Cost estimates for a potential full-scale facility were also developed. Potential end uses identified for the treated water include (1) agricultural use near the oilfield, (2) use by Monterey County Water Resources Agency (MCWRA) for the Salinas Valley Water Project or Castroville Seawater Intrusion Project, (3) industrial or power plant use in King City, and (4) use for wetlands creation in the Salinas Basin. All of these uses were found to have major obstacles that prevent full-scale implementation. An additional option for potential reuse of the treated produced water was subsequently identified. That option involves using the treated produced water to recharge groundwater in the vicinity of the oil field. The recharge option may avoid the limitations that the other reuse options face. The water treatment pilot process utilized: (1) warm precipitation softening to remove hardness and silica, (2) evaporative cooling to meet downstream temperature limitations and facilitate removal of ammonia, and (3) reverse osmosis (RO) for removal of dissolved salts, boron, and organics. Pilot study results indicate that produced water from the San Ardo oilfield can be treated to meet project water quality goals. Approximately 600 mg/l of caustic and 100 mg/l magnesium dosing were required to meet the hardness and silica goals in the warm softening unit. Approximately 30% of the ammonia was removed in the cooling tower; additional ammonia could be removed by ion exchange or other methods if necessary. A brackish water reverse osmosis membrane was effective in removing total dissolved solids and organics at all pH levels evaluated; however, the boron treatment objective was only achieved at a pH of 10.5 and above.

  18. DOE Organization Chart - June 25, 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009) | DepartmentDepartment

  19. ICT reuse in socio-economic enterprises

    SciTech Connect (OSTI)

    Ongondo, F.O., E-mail: f.ongondo@soton.ac.uk [Centre for Environmental Sciences, Faculty of Engineering and the Environment, Lanchester Building, University of Southampton, University Rd., Highfield, Southampton, Hampshire SO17 1BJ (United Kingdom); Williams, I.D. [Centre for Environmental Sciences, Faculty of Engineering and the Environment, Lanchester Building, University of Southampton, University Rd., Highfield, Southampton, Hampshire SO17 1BJ (United Kingdom); Dietrich, J. [Technische Universität Berlin, Centre for Scientific Continuing Education and Cooperation, Cooperation and Consulting for Environmental Questions (kubus) FH10-1, Fraunhoferstraße 33-36, 10587 Berlin (Germany); Carroll, C. [Centre for Environmental Sciences, Faculty of Engineering and the Environment, Lanchester Building, University of Southampton, University Rd., Highfield, Southampton, Hampshire SO17 1BJ (United Kingdom)

    2013-12-15T23:59:59.000Z

    Highlights: • We analyse ICT equipment reuse operations of socio-economic enterprises. • Most common ICT products dealt with are computers and related equipment. • In the UK in 2010, ?143,750 appliances were reused. • Marketing and legislative difficulties are the common hurdles to reuse activities. • Socio-economic enterprises can significantly contribute to resource efficiency. - Abstract: In Europe, socio-economic enterprises such as charities, voluntary organisations and not-for-profit companies are involved in the repair, refurbishment and reuse of various products. This paper characterises and analyses the operations of socio-economic enterprises that are involved in the reuse of Information and Communication Technology (ICT) equipment. Using findings from a survey, the paper specifically analyses the reuse activities of socio-economic enterprises in the UK from which Europe-wide conclusions are drawn. The amount of ICT products handled by the reuse organisations is quantified and potential barriers and opportunities to their operations are analysed. By-products from reuse activities are discussed and recommendations to improve reuse activities are provided. The most common ICT products dealt with by socio-economic enterprises are computers and related equipment. In the UK in 2010, an estimated 143,750 appliances were reused. However, due to limitations in data, it is difficult to compare this number to the amount of new appliances that entered the UK market or the amount of waste electrical and electronic equipment generated in the same period. Difficulties in marketing products and numerous legislative requirements are the most common barriers to reuse operations. Despite various constraints, it is clear that organisations involved in reuse of ICT could contribute significantly to resource efficiency and a circular economy. It is suggested that clustering of their operations into “reuse parks” would enhance both their profile and their products. Reuse parks would also improve consumer confidence in and subsequently sales of the products. Further, it is advocated that industrial networking opportunities for the exchange of by-products resulting from the organisations’ activities should be investigated. The findings make two significant contributions to the current literature. One, they provide a detailed insight into the reuse operations of socio-economic enterprises. Previously unavailable data has been presented and analysed. Secondly, new evidence about the by-products/materials resulting from socio-economic enterprises’ reuse activities has been obtained. These contributions add substantially to our understanding of the important role of reuse organisations.

  20. DOE Organization Chart - January 17, 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009) | DepartmentDepartment of||April

  1. DOE Organization Chart - May 1, 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009) | DepartmentDepartmentDOE

  2. DOE Organization Chart - May 2, 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009) | DepartmentDepartmentDOE, 2014 DOE

  3. DOE Organization Chart - May 21, 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009) | DepartmentDepartmentDOE, 2014

  4. Sandia National Laboratories: domestic reuse of wastewater

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    domestic reuse of wastewater Sandia, the Atlantic Council, and NM Water Resource Research Institute Sponsor Roundtable on Western Water Scarcity On October 4, 2013, in Climate,...

  5. DOE Organization Chart - April 8, 2014 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE FitsEnergyMessageinDepartmentApril 8,

  6. DOE Organization Chart - July 15, 2013 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE FitsEnergyMessageinDepartmentApril

  7. Wind Program Contacts and Organization | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of EnergyThe U.S. DepartmentEnergyWilliam

  8. Membranes for Reverse-Organic Air Separations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MW ElectrolysisCharlesDry,

  9. Inorganic-Organic Hybrid Thermoelectrics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of Energy Investing for EnergyState-of-the-Art

  10. Linear Programming Uses for Recycling and Product Reuse

    E-Print Network [OSTI]

    Nagurney, Anna

    Linear Programming Uses for Recycling and Product Reuse Tara Demeyer Management Science I #12;Outline Introduction Construction Waste Recycling Paper Waste Recycling Printer Component Reuse #12;Reverse Logistics Returns/ Damaged Product Recycling of waste materials Reuse of product components #12

  11. Reuse Knowns and Unknowns Bill Frakes

    E-Print Network [OSTI]

    Christian, Eric

    . You need to measure reuse and document the payoff. 3. A phased implementation model is often a good plan. 4. You need to provide education. 5. Methods for domain engineering.. 6. Reuse design guidelines measures in finance models. 4. How to assure component safety. 5. How to measure component reliability. 6

  12. OFFICE OF ENVIRONMENTAL MANAGEMENT (EM) ORGANIZATION CHART | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 FederalTransformers | Department ofBIOLOGICAL

  13. DOE Organization Chart - October 22, 2012 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE

  14. Project Management Coordination Office Organization Chart | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring Solar forProject DevelopsDepartment

  15. Office of Management Organization Chart | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofC T OEnergyOfficeEnergy

  16. Office of the Chief Financial Officer Organization Chart | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofCDepartment

  17. Office of the General Counsel Organization Chart | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofCDepartmentthe Chief Human

  18. PIA - Historical Data for Legal Organizations | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartmentChartForumsETTPHistorical Data for Legal

  19. DOE Organization Chart - February 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department of Energy81stEnforcement Effort with 20 NewinHeatDOE

  20. DOE Organization Chart - June 25, 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department of Energy81stEnforcement Effort with 20 NewinHeatDOEJune 25,

  1. DOE Organization Chart - May 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department of Energy81stEnforcement Effort with 20 NewinHeatDOEJuneDOE

  2. DOE Organization Chart - October 6, 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department of Energy81stEnforcement Effort with 202, 2012 DOE

  3. Vehicle Technologies Office: Organization and Contacts | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy MicrosoftVOLUME I AThe VehicleSeveral of the

  4. Water Power Program Contacts and Organization | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy MicrosoftVOLUMEWORKFORCENovember 5, 2014waterU.S.Wind

  5. Project Management Coordination Office Organization Chart | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 | Department ofPlantLong Island HTS -

  6. TEC Working Group Member Organizations Representatives | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the Passing ofDepartmentRenewableArbitraryMARCH9 TEC14

  7. Department of Energy Recognizes Six Leading Organizations for Helping the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| DepartmentStatement DelphiGeothermalAmerica 2011aViolationsU.S. 'Go Green' |

  8. Improved Organics for Power Electronics and Electric Motors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy PetroleumEnergyImplementingImproveMethods forEnergy

  9. Improved Organics for Power Electronics and Electric Motors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy PetroleumEnergyImplementingImproveMethods

  10. Recycled Water Reuse Permit Renewal Application for the Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Mike Lewis

    2014-09-01T23:59:59.000Z

    This renewal application for a Recycled Water Reuse Permit is being submitted in accordance with the Idaho Administrative Procedures Act 58.01.17 “Recycled Water Rules” and the Municipal Wastewater Reuse Permit LA-000141-03 for continuing the operation of the Central Facilities Area Sewage Treatment Plant located at the Idaho National Laboratory. The permit expires March 16, 2015. The permit requires a renewal application to be submitted six months prior to the expiration date of the existing permit. For the Central Facilities Area Sewage Treatment Plant, the renewal application must be submitted by September 16, 2014. The information in this application is consistent with the Idaho Department of Environmental Quality’s Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater and discussions with Idaho Department of Environmental Quality personnel.

  11. Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics," on May 26-27,2011, in Bethesda, MD (Washington, DC area). This workshop is organized by the Department of Energy's Offices of Nuclear Physics (NP) and Advanced...

  12. Beneficial Reuse at Bodo Canyon Site

    Broader source: Energy.gov [DOE]

    The George Washington UniversityEnvironmental Resource Policy Graduate Program Capstone ProjectBeneficial Reuse at Bodo Canyon SiteFeasibility and Community Support for Photovoltaic ArrayMay 2012

  13. Convert! : the adaptive reuse of churches

    E-Print Network [OSTI]

    Kiley, Christopher John, 1972-

    2004-01-01T23:59:59.000Z

    This thesis examines the phenomenon of vacated churches and analyzes the major issues underlying their adaptive reuse in order to help promulgate an awareness of the range of successful strategies and solutions that are ...

  14. Partnering with NREL Through partnerships with companies and organizations, the U.S. Department of

    E-Print Network [OSTI]

    Partnering with NREL Through partnerships with companies and organizations, the U.S. DepartmentXtron taps into R&D expertise and capabilities to optimize our process for making solar cells more efficient Rehn, 303-275-4418 Renewable Electricity and End Use Systems Solar and Photovoltaics John Benner, 303

  15. MECHANICAL ENGINEERING DEPARTMENT ELECTIVES* CHEM 109A (4) Organic Chemistry Bruice

    E-Print Network [OSTI]

    Fygenson, Deborah Kuchnir

    MECHANICAL ENGINEERING DEPARTMENT ELECTIVES* 2013-2014 Fall 2013 CHEM 109A (4) Organic Chemistry in Engineering Staff ME 110 Aerodynamics and Aeronautical Engineering Meinhart ME 125BE Energy Modeling Bruice ENGR 101 Ethics in Engineering Walling ENGR 103(4) Advanced Engineering Writing Holms MATRL 100A

  16. MECHANICAL ENGINEERING DEPARTMENT ELECTIVES CHEM 109A (4) Organic Chemistry Bruice

    E-Print Network [OSTI]

    Fygenson, Deborah Kuchnir

    6/19/2013 MECHANICAL ENGINEERING DEPARTMENT ELECTIVES 2013-2014 Fall 2013 CHEM 109A (4) Organic 101 Ethics in Engineering Staff ENV S 105 (4) Solar and Renewable Energy Staff MATRL 100C Fundamentals Chemistry Bruice ENGR 101 Ethics in Engineering Walling ENGR 103(4) Advanced Engineering Writing Holms MATRL

  17. Int. Symposium on Recycling and Reuse of Glass Cullet 19-20 March, 2001

    E-Print Network [OSTI]

    Meyer, Christian

    Int. Symposium on Recycling and Reuse of Glass Cullet 19-20 March, 2001 University of Dundee, Scotland Recycled Glass ­ From Waste Material to Valuable Resource By Christian Meyer Department of Civil are finite. This awareness, coupled with the scarcity of suitable landfills, has led to the increasing

  18. An Innovative System for the Efficient and Effective Treatment of Non-Traditional Waters for Reuse in Thermoelectric Power Generation

    SciTech Connect (OSTI)

    John Rodgers; James Castle

    2008-08-31T23:59:59.000Z

    This study assessed opportunities for improving water quality associated with coal-fired power generation including the use of non-traditional waters for cooling, innovative technology for recovering and reusing water within power plants, novel approaches for the removal of trace inorganic compounds from ash pond effluents, and novel approaches for removing biocides from cooling tower blowdown. This research evaluated specifically designed pilot-scale constructed wetland systems for treatment of targeted constituents in non-traditional waters for reuse in thermoelectric power generation and other purposes. The overall objective of this project was to decrease targeted constituents in non-traditional waters to achieve reuse criteria or discharge limitations established by the National Pollutant Discharge Elimination System (NPDES) and Clean Water Act (CWA). The six original project objectives were completed, and results are presented in this final technical report. These objectives included identification of targeted constituents for treatment in four non-traditional water sources, determination of reuse or discharge criteria for treatment, design of constructed wetland treatment systems for these non-traditional waters, and measurement of treatment of targeted constituents in non-traditional waters, as well as determination of the suitability of the treated non-traditional waters for reuse or discharge to receiving aquatic systems. The four non-traditional waters used to accomplish these objectives were ash basin water, cooling water, flue gas desulfurization (FGD) water, and produced water. The contaminants of concern identified in ash basin waters were arsenic, chromium, copper, mercury, selenium, and zinc. Contaminants of concern in cooling waters included free oxidants (chlorine, bromine, and peroxides), copper, lead, zinc, pH, and total dissolved solids. FGD waters contained contaminants of concern including arsenic, boron, chlorides, selenium, mercury, chemical oxygen demand (COD), and zinc. Similar to FGD waters, produced waters contained contaminants of concern that are predominantly inorganic (arsenic, cadmium, chlorides, chromium, copper, lead, mercury, nickel, sulfide, zinc, total dissolved solids), but also contained some organics (benzene, PAHs, toluene, total organic carbon, total suspended solids, and oil and grease). Constituents of concern that may cause chemical scaling, biofouling and corrosion, such as pH, hardness and ionic strength, and nutrients (P, K, and N) may also be found in all four non-traditional waters. NPDES permits were obtained for these non-traditional waters and these permit limits are summarized in tabular format within this report. These limits were used to establish treatment goals for this research along with toxicity values for Ceriodaphnia dubia, water quality criteria established by the US EPA, irrigation standards established by the United States Department of Agriculture (USDA), and reuse standards focused on minimization of damage to the power plant by treated waters. Constructed wetland treatment systems were designed for each non-traditional water source based on published literature reviews regarding remediation of the constituents of concern, biogeochemistry of the specific contaminants, and previous research. During this study, 4 non-traditional waters, which included ash basin water, cooling water, FGD water and produced water (PW) were obtained or simulated to measure constructed wetland treatment system performance. Based on data collected from FGD experiments, pilot-scale constructed wetland treatment systems can decrease aqueous concentrations of elements of concern (As, B, Hg, N, and Se). Percent removal was specific for each element, including ranges of 40.1% to 77.7% for As, 77.6% to 97.8% for Hg, 43.9% to 88.8% for N, and no measureable removal to 84.6% for Se. Other constituents of interest in final outflow samples should have aqueous characteristics sufficient for discharge, with the exception of chlorides (<2000 mg/L). Based on total dissolved solids, co-

  19. Reusing Personal Computer Devices - Good or Bad for the Environment?

    E-Print Network [OSTI]

    Sahni, Sahil

    The energy saving potential of reusing / reselling personal computer (PC) devices was evaluated relative to the choice of buying new. Contrary to the common belief of reuse leading to energy savings, with the advent of ...

  20. The economics of cell phone reuse and recycling

    E-Print Network [OSTI]

    Geyer, Roland; Doctori Blass, Vered

    2010-01-01T23:59:59.000Z

    for the disposal of WEEE. EngD Thesis, Centre forphones in the context of WEEE. Proceedings of Going Greena by-product of reuse. Keywords WEEE . Cell phones . Reuse .

  1. FeatureOriented Classification for Software Reuse Jrgen Brstler

    E-Print Network [OSTI]

    Börstler, Jürgen

    (preci­ sion = 100%). A study of typical reuse approaches by Frakes and Pole show numbers in the range

  2. Case Study of Maturing and Reusing

    E-Print Network [OSTI]

    Christensen, Henrik Bærbak

    Case Study of Maturing and Reusing a Framework COT/3-32-V1.0 C O T * Centre for Object Technology concerned with research, application and implementation of object technology in Danish companies-data, Rambøll, Danfoss, Systematic Software Engineering, Odense Steel Shipyard, A.P. Møller, University

  3. Reinvention through reuse : strategies for the adaptive reuse of large-scale buildings

    E-Print Network [OSTI]

    Ozik, Dana

    2006-01-01T23:59:59.000Z

    The practice of adaptive reuse has grown in popularity in the United States over the past few decades, with now about 90% of architect-commissioned work involving some interaction with an existing structure. While the ...

  4. SA Water Centre for Water Management and Reuse

    E-Print Network [OSTI]

    Li, Jiuyong "John"

    SA Water Centre for Water Management and Reuse #12;' Our Mission The SA Water Centre for Water Management and Reuse aims to advance the science and technology of sustainable water management through fundamental and applied research. Our Vision To be Australia's leading research centre for water reuse

  5. Control of the accumulation of non-process elements and organic compounds in pulp mills with bleach filtrate reuse. Milestones and progress, Quarter 9 (July 1--September 30, 1998)

    SciTech Connect (OSTI)

    Frederick, W.J.; Laver, M.L.; Rorrer, G.L.; Rudie, A.W.; Schmidl, W.

    1998-12-31T23:59:59.000Z

    The two approach changes that were discussed and recommended in the Quarter 8 (April 1--June 30, 1998) progress report have been implemented in the current project plan. The OLI software has been used to develop a preliminary process model for predicting the distribution of NPE`s in a two stage brownstock washer, and the OLI database has been upgraded to include improved chemical equilibrium data for metal-organic interactions. This exercise served as a tool to evaluate the data and methods developed in this study, and to demonstrate its utility to industry. The Weyerhaeuser-NAELS software has also been applied to predicting inorganic solubility behavior. Task C-1.2, Estimation of unavailable thermodynamic parameters (scheduled completion date: 12/97), has been combined with Task D-2.1, Evaluation of the estimation procedure (scheduled completion date: 3/99) with a new scheduled completion date of 8/99. A model for the adsorption of metal ions on wood pulp fibers will include transport effects as well as adsorption equilibrium, and will be combined with a brownstock washer model to evaluate its predictive capability in comparison with mill data, and to demonstrate the applicability of the results obtained in this project. Three tasks are behind schedule: Task A-2.3, Measurement of stability constants for wood organics with metal ions (scheduled completion date: 6/98), Task B-2.1, Measure metal adsorption isotherms on wood pulp (scheduled completion date: 9/97), and Task B-2.3, Measure metal ion adsorption kinetics for strongly adsorbing metal species (scheduled completion date: 3/98). The reasons and expected completion dates are discussed in the Performance Variances and Open Items section. All other tasks are either completed, on, or ahead of schedule.

  6. Control of the accumulation of non-process elements and organic compounds in pulp mills with bleach filtrate reuse. Milestones and progress, Quarter 8 (April 1--June 30, 1998)

    SciTech Connect (OSTI)

    Frederick, W.J.; Laver, M.L.; Rorrer, G.L.; Rudie, A.W.; Schmidl, W.

    1998-08-01T23:59:59.000Z

    Overall, this project is on schedule and proceeding as planned. Two approach changes are recommended. One is to rely on commercially developed software, in particular that developed by OLI Systems, Inc., and now being expanded in a collaborative effort between OLI Systems, Inc. and IPST to provide a simulation package for the pulp and paper industry and to integrate it with existing process simulation tools used by that industry. The second is the development of a detailed brownstock/bleached fiber washer model as a tool to evaluate the data and methods developed in this study, and to demonstrate its utility to industry. Both of these are discussed in more detail in the Approach Changes section of this report. Two tasks are behind schedule. They are Task A-2.3, Measurement of stability constants for wood organics with metal ions (scheduled completion date: 6/98), and Task C-1.2, Estimation of unavailable thermodynamic parameters (scheduled completion date: 12/97). The reasons and expected completion dates for these tasks are discussed in the Performance Variances and Open Items section of this report. All other tasks are either completed, or on or ahead of schedule.

  7. CO{sub 2} Reuse in Petrochemical Facilities

    SciTech Connect (OSTI)

    Jason Trembly; Brian Turk; Maruthi Pavani; Jon McCarty; Chris Boggs; Aqil Jamal; Raghubir Gupta

    2010-12-31T23:59:59.000Z

    To address public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is actively funding a CO{sub 2} management program to develop technologies capable of mitigating CO{sub 2} emissions from power plant and industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE/NETL launched an alternative CO{sub 2} mitigation program focused on beneficial CO{sub 2} reuse to support the development of technologies that mitigate emissions by converting CO{sub 2} into valuable chemicals and fuels. RTI, with DOE/NETL support, has been developing an innovative beneficial CO{sub 2} reuse process for converting CO{sub 2} into substitute natural gas (SNG) by using by-product hydrogen (H{sub 2)-containing fuel gas from petrochemical facilities. This process leveraged commercial reactor technology currently used in fluid catalytic crackers in petroleum refining and a novel nickel (Ni)-based catalyst developed by RTI. The goal was to generate an SNG product that meets the pipeline specifications for natural gas, making the SNG product completely compatible with the existing natural gas infrastructure. RTI's technology development efforts focused on demonstrating the technical feasibility of this novel CO{sub 2} reuse process and obtaining the necessary engineering information to design a pilot demonstration unit for converting about 4 tons per day (tons/day) of CO{sub 2} into SNG at a suitable host site. This final report describes the results of the Phase I catalyst and process development efforts. The methanation activity of several commercial fixed-bed catalysts was evaluated under fluidized-bed conditions in a bench-scale reactor to identify catalyst performance targets. RTI developed two fluidizable Ni-based catalyst formulations (Cat-1 and Cat-3) that demonstrated equal or better performance than that of commercial methanation catalysts. The Cat-1 and Cat-3 formulations were successfully scaled up using commercial manufacturing equipment at the Sud-Chemie Inc. pilot-plant facility in Louisville, KY. Pilot transport reactor testing with RTI's Cat-1 formulation at Kellog Brown & Root's Technology Center demonstrated the ability of the process to achieve high single-pass CO{sub 2} conversion. Using information acquired from bench- and pilot-scale testing, a basic engineering design package was prepared for a 4-ton/day CO{sub 2} pilot demonstration unit, including process and instrumentation diagrams, equipment list, control philosophy, and preliminary cost estimate.

  8. Reuse of steel and aluminium without melting

    E-Print Network [OSTI]

    Cooper, Daniel

    2014-01-07T23:59:59.000Z

    -of-life metal components that could be reused for each product, the catalogue formed the basis of a set of semi-structured interviews with industrial experts. The results suggest that approximately 30% of steel and aluminium used in current products could... Allwood J.M., Cullen J.M., Cooper D.R., Milford R.L., Patel A.C.H., Carruth M.A., McBrien M., 2010. Conserving our metal energy: avoiding melting steel and aluminium scrap to save energy and carbon. University of Cambridge, ISBN 978-0-903428-30-9 Allwood...

  9. Improving Reuse & Recycling | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP » Important Trinity /EnergyImproving Reuse

  10. Water reuse and technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRatesAbout Us >WasteWater Reuse

  11. Sandia National Laboratories: Pollution Prevention: Reuse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home AboutMeeting: ProgramFebruaryJune 26,RecyclingReuse

  12. REGIONAL WORKFORCE STUDY PREPARED FOR THE SRS COMMUNITY REUSE ORGANIZATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmart SensorsData - NOREGIONAL

  13. Salary savings scheme 2011 (ING BANK) 11-10-2010 Personnel and Organization Department 1/1

    E-Print Network [OSTI]

    Franssen, Michael

    Salary savings scheme 2011 (ING BANK) 11-10-2010 Personnel and Organization Department 1!! The undersigned hereby declares not to participate in a "course-of-life" arrangement or a salary savings scheme-year and you can only participate in a salary savings scheme via one employer Alteration as of (enter date

  14. Polyhedral-Based Data Reuse Optimization for Configurable Computing

    E-Print Network [OSTI]

    Jalali. Bahram

    Polyhedral-Based Data Reuse Optimization for Configurable Computing Louis-No¨el Pouchet,1 Peng with careful software-based data reuse and communication scheduling techniques. We present a fully automated C Zhang,1 P. Sadayappan,2 Jason Cong1 1 University of California, Los Angeles {pouchet

  15. SA Water Centre for Water Management and Reuse

    E-Print Network [OSTI]

    Li, Jiuyong "John"

    SA Water Centre for Water Management and Reuse #12;2 The SA Water Centre for Water Management and Reuse was established in 2004 as a joint venture between the South Australian Water Corporation and the University of South Australia (UniSA), adding significant expertise to the water research capability in South

  16. From Local to Global Coordination: Lessons from Software Reuse

    E-Print Network [OSTI]

    Grinter, Rebecca Elizabeth

    From Local to Global Coordination: Lessons from Software Reuse Rebecca E. Grinter Xerox PARC 3333 Coyote Hill Road Palo Alto, CA 94304 USA grinter@parc.xerox.com http://www.parc by making it possible to share code. However, software reuse in practice has proved much harder. This paper

  17. Reusing Shares in Secret Sharing Schemes Yuliang Zheng

    E-Print Network [OSTI]

    Zheng, Yuliang

    Reusing Shares in Secret Sharing Schemes Yuliang Zheng Thomas Hardjono Jennifer Seberry The Centre for The Computer Journal 1 #12;Reusing Shares in Secret Sharing Schemes Abstract A (t w) threshold scheme is a method for sharing a secret among w shareholders so that the collaboration of at least t shareholders

  18. Water purification using organic salts

    DOE Patents [OSTI]

    Currier, Robert P.

    2004-11-23T23:59:59.000Z

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  19. Clean-out and Reuse of GCEP Facilities at Portsmouth

    SciTech Connect (OSTI)

    Franz, William; Hickman, Mark [LATA/Parallax Portsmouth, LLC, 3930 U.S. Rt. 23 South, P.O. Box 855, Piketon, Ohio 45661 (United States); Wiehle, Kristi [U.S. Department of Energy, Portsmouth/Paducah Project Office, 3930 U.S. Rt. 23 South, P.O. Box 628, Piketon, Ohio 45661 (United States)

    2008-01-15T23:59:59.000Z

    PORTS began operations in 1956 to enrich uranium for both civilian and military use. It operated under Goodyear Atomic Corporation and Lockheed-Martin as a government-owned contractor-operated facility until the formation of the United States Enrichment Corporation (USEC) as a government corporation in 1993. In 1998, USEC was privatized as a publicly traded corporation. USEC leases the Portsmouth and Paducah GDPs from the U.S. Department of Energy (DOE). Enrichment operations were terminated at Portsmouth in 2001, although USEC continues to lease and maintain the Portsmouth GDP in Cold Shutdown and conduct some DOE projects there. LPP found that removal of old equipment to allow reuse of a facility can present unexpected challenges. Classified components create significant logistics issues. In this case, teamwork and attention to detail by USEC, LATA/Parallax, and DOE resulted in solutions and success. Lessons learnt: - Transportation logistics are particularly important when shipping waste streams with special requirements. - Investment in extra equipment yields tangible benefits where other resources (cleared drivers) are scarce. - An early start to providing specially qualified drivers, in this case providing security clearances, is essential. Availability is limited, and the time required to qualify new drivers may be lengthy. - A dedicated communications station, rather than reliance on existing resources (shift superintendent), is invaluable.

  20. Charlotte Green Supply Chain: Reduce, Reuse, Recycle | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Oare Former New Media Strategist, Office of Public Affairs Three years ago at Sacred Heart grade school in Norfolk, Neb., efforts to recycle were grim. "When I got here, we had...

  1. Land and Asset Transfer for Beneficial Reuse | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturingJune 17, 2015LMLand and Asset Transfer for

  2. Hybrid Membrane System for Industrial Water Reuse | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar PowerCommercialEnergySandy-Nor'easter SituationHyPRO

  3. Site Attracts Private Sector Investments for Reuse | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWork Force Retention WorkStephenLED CostThisStudentsThis

  4. Improving reuse of semiconductor equipment through benchmarking, standardization, and automation

    E-Print Network [OSTI]

    Silber, Jacob B. (Jacob Bradley)

    2006-01-01T23:59:59.000Z

    The 6D program at Intel® Corporation was set up to improve operations around capital equipment reuse, primarily in their semiconductor manufacturing facilities. The company was faced with a number of challenges, including ...

  5. Fermilab | Director's Policy Manual | No. 36.000 Facility Reuse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    36.000 Rev. 0 Facility Reuse Program 2.0 Effective Date 22805 3.0 Scope This policy covers all facilities at Fermilab 4.0 Applicability All Fermilab facilities and operations....

  6. Radical reuse : from the superfluous to the exquisite

    E-Print Network [OSTI]

    Marraccini, Marco

    2006-01-01T23:59:59.000Z

    This thesis focuses on the systematic possibilities for the intricate architectural reuse and reconfiguration of the radial tire and the PET plastic bottle. Both waste products demonstrate significant structural and ...

  7. Walter Baker Chocolate Factory : an adaptive reuse exploration

    E-Print Network [OSTI]

    Castro, Fernando D

    1981-01-01T23:59:59.000Z

    This thesis explores the processes of building evolution and the methods in which old buildings are recycled for continued use. Reuse is the process in which a building's life is extended through a preservation or alteration ...

  8. High temperature ceramic membrane for CO? reuse and syngas production

    E-Print Network [OSTI]

    Chang, Le, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    In recent years, membrane based technologies have attracted much attention thanks to their simplicity in reactor design. The concept proposed is to use mixed ionic-electronic conducting membrane (MIEC) in CO2 reuse and ...

  9. Organization Chart - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LSD Logo About Us People & Organization Research News & Events Safety Internal Resources Organization Chart Departments Scientific Staff Directory Committees Organization Chart...

  10. A Process Reference Model for Reuse in Industrial Engineering: Enhancing the ISO/IEC 15504 Framework to Cope with Organizational Reuse Maturity

    E-Print Network [OSTI]

    Mössenböck, Hanspeter

    A Process Reference Model for Reuse in Industrial Engineering: Enhancing the ISO/IEC 15504 in industrial engineering for solution providers is more and more recognized as a key to economic success for reuse in industrial engineering. Based on an overview and the background of the GDES-Reuse improvement

  11. Calendar Year 1998 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    September 3, 1998 Audit Report: IG-0426 Disposal of Low-Level and Low-Level Mixed Waste August 20, 1998 Audit Report: IG-0425 The U.S. Department of Energy's Facility Reuse at the...

  12. Reduce, reuse, recycle, for robust cluster state generation

    E-Print Network [OSTI]

    Clare Horsman; Katherine L. Brown; William J. Munro; Vivien M. Kendon

    2011-05-03T23:59:59.000Z

    Efficient generation of cluster states is crucial for engineering large-scale measurement-based quantum computers. Hybrid matter-optical systems offer a robust, scalable path to this goal. Such systems have an ancilla which acts as a bus connecting the qubits. We show that by generating smaller cluster "Lego bricks", reusing one ancilla per brick, the cluster can be produced with maximal efficiency, requiring fewer than half the operations compared with no bus reuse. By reducing the time required to prepare sections of the cluster, bus reuse more than doubles the size of the computational workspace that can be used before decoherence effects dominate. A row of buses in parallel provides fully scalable cluster state generation requiring only 20 CPhase gates per bus use.

  13. V-058: Microsoft Internet Explorer CDwnBindInfo Object Reuse...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Microsoft Internet Explorer CDwnBindInfo Object Reuse Flaw Lets Remote Users Execute Arbitrary Code V-058: Microsoft Internet Explorer CDwnBindInfo Object Reuse Flaw Lets Remote...

  14. Transforming trash: reuse as a waste management and climate change mitigation strategy

    E-Print Network [OSTI]

    Vergara, Sintana Eugenia

    2011-01-01T23:59:59.000Z

    Composting energy production, composting, or direct reuse. Using wastepathways, to humus via composting, or it can be used

  15. Asset Revitalization Initiative Guide for Sustainable Asset Management and Reuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-03-11T23:59:59.000Z

    The Guide is intended to assist sites in sustainable planning, management, and reuse of assets that allows effective mission execution, optimizes federal and public resources, and supports local and national goals for economic growth and diversification in support of DOE O 430.1B.

  16. PRODUCTION PLANNING BASED ON RELIABILITY MODELS FOR PART REUSE

    E-Print Network [OSTI]

    Shu, Lily H.

    PRODUCTION PLANNING BASED ON RELIABILITY MODELS FOR PART REUSE Takeshi Murayama, Hiroshi Obata, Canada Abstract: This paper describes a production planning procedure addressing the issue that the timings and quantities of returned products and reusable components included in them is unknown

  17. Reusing and Composing Tests with Traits Stphane Ducasse1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , and Damien Cassou2 1 RMoD team, INRIA Lille ­ Nord Europe & University of Lille 1 Parc Scientifique de la developers to duplicate code and logic. This widely recognized situation affects both business code and tests-Testing 1 The Case One fundamental software engineering principle is to favor code reuse over code

  18. General Guidelines for Sustainable Purchasing 3R's -Reduce, Reuse, Recycle

    E-Print Network [OSTI]

    Jiang, Huiqiang

    ......................................................... 3R's - Reduce, Reuse, Recycle In order to conserve natural resources and to protect the environment considerations o Made of recycled materials, maximizing post-consumer content. o Remanufactured products, such as laser toner cartridges, tires, furniture, equipment and automotive parts whenever practicable and cost

  19. Software Reuse in High Performance Computing Shirley Browne

    E-Print Network [OSTI]

    Dongarra, Jack

    Software Reuse in High Performance Computing Shirley Browne University of Tennessee 107 Ayres Hall high performance computing architectures in the form of distributed memory mul­ tiprocessors have and cost of programming applications to run on these machines. Economical use of high performance computing

  20. Software Reuse in High Performance Computing Shirley Browne

    E-Print Network [OSTI]

    Hawick, Ken

    Software Reuse in High Performance Computing Shirley Browne University of Tennessee 107 Ayres Hall high performance computing architectures in the form of distributed memorymul- tiprocessors have become of programming applications to run on these machines. Economical use of high performance computing and subsequent

  1. HIRICH et al. Wastewater reuse in the Mediterranean region: Case

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    are also, the most vulnerable to global climate change. Studies have shown that the peopleHIRICH et al. Wastewater reuse in the Mediterranean region: Case of Morocco Abdelaziz HIRICH, Morocco. (E-mail: hirich_aziz@yahoo.fr ; redouane53@yahoo.fr ) Abstract The southern Mediterranean region

  2. Flexible Generators for Software Reuse and Evolution (NIER Track)

    E-Print Network [OSTI]

    Jarzabek, Stan

    Flexible Generators for Software Reuse and Evolution (NIER Track) Stan Jarzabek and Ha Duy Trung of sync with code, any future re-generation of code overrides manual modifications. We propose a flexible modifications into the generation process, rather than modify already generated code. A flexible generator

  3. The Dalhousie Guide to Waste Management on Campus Look for the four bin system around campus designated for paper, recyclables, organics and garbage.

    E-Print Network [OSTI]

    Brownstone, Rob

    for the four bin system around campus designated for paper, recyclables, organics.) · Ceramics · Potato chip bags & candy wrappers · Styrofoam Not acceptable: · Organics · Recyclables and dry. Organic Waste No liquids. Garbage Reconsider all waste for potential reuse before discarding

  4. DOE Issues Energy Sector Cyber Organization NOI, Feb 2010 | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2Million) GoDOEMedical

  5. DOE Issues Energy Sector Cyber Organization NOI, Feb 2010 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartment of EnergyFederal

  6. Department

    Office of Legacy Management (LM)

    but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain...

  7. FACT SHEET: Energy Department Actions to Deploy Combined Heat...

    Energy Savers [EERE]

    reuses excess heat to warm Frito-Lay's chip fryer oil - cutting costs and reduce harmful air pollution. The Department is also supporting new CHP technologies that are cleaner,...

  8. Scrap tire reuse through surface-modification technology

    SciTech Connect (OSTI)

    Bauman, B.D.

    1991-01-01T23:59:59.000Z

    Air Products and Chemicals, Inc. is developing a novel approach for reusing scrap tire rubber. The process involves the combination of scrap tire rubber particles with other materials to form higher value and higher performance composites. The process begins by grinding scrap tire to a fine particle size, and removing steel and fabric. The key to this approach is a proprietary surface-modification step which is critical for enhancing the compatibility with and bonding to other continuous phase matrix materials. Of all approaches for scrap tire rubber reuse, this approach offers the potential to recover (or save) the greatest amount of energy. Furthermore, this is the only approach which is clearly economically viable with current pricing and without a scrap tire tax. The process is environmentally innocuous, and capital requirements for large scale processing plants are projected to be modest. 7 figs.

  9. Method of stripping metals from organic solvents

    DOE Patents [OSTI]

    Todd, Terry A. (Aberdeen, ID); Law, Jack D. (Pocatello, ID); Herbst, R. Scott (Idaho Falls, ID); Romanovskiy, Valeriy N. (St. Petersburg, RU); Smirnov, Igor V. (St.-Petersburg, RU); Babain, Vasily A. (St-Petersburg, RU); Esimantovski, Vyatcheslav M. (St-Petersburg, RU)

    2009-02-24T23:59:59.000Z

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  10. Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2010-October 31, 2011

    SciTech Connect (OSTI)

    David Frederick

    2012-02-01T23:59:59.000Z

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (No.LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  11. Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: May 1, 2010-October 31, 2010

    SciTech Connect (OSTI)

    David B. Frederick

    2011-02-01T23:59:59.000Z

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (#LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  12. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2012-October 31, 2013

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01T23:59:59.000Z

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  13. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012

    SciTech Connect (OSTI)

    Mike lewis

    2013-02-01T23:59:59.000Z

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  14. Microsoft Word - 2014 CO2 Use and Reuse - Intro.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in achieving program goals. Key technology research within the Carbon Use and Reuse Technology Area includes: Polycarbonate Plastics MineralizationCements Chemicals...

  15. Reuse and Refactoring of GPU Kernels to Design Complex Applications Santonu Sarkar, Sayantan Mitra, Ashok Srinivasan

    E-Print Network [OSTI]

    Srinivasan, Ashok

    Reuse and Refactoring of GPU Kernels to Design Complex Applications Santonu Sarkar, Sayantan Mitra, Ashok Srinivasan Infosys Labs, Infosys Ltd. Bangalore 560100, India Email: {santonu sarkar01,sayantan

  16. Leadership, Organizations

    E-Print Network [OSTI]

    Palmeri, Thomas

    Leadership, Policy & Organizations #12;2 At Peabody students have the opportunity to develop new College, in the Department of Leadership, Policy and Organizations (LPO). The faculty believes Patricia and Rodes Hart Chair, and Professor of Education Policy and Leadership, Ellen Goldring also serves

  17. Rig-site system allows water reuse, cuts cleanup costs

    SciTech Connect (OSTI)

    Neidhardt, D.

    1985-03-04T23:59:59.000Z

    A new well-site treatment system is described which extends the use of solids control equipment to help solve the common drilling problems of water supply and/or wastewater disposal. The new closed-loop system combines water treatment with more conventional solids handling to continuously create clean water. The results include: re-use of water for rig cleaning, mud, and even cement makeup with no need to eject liquid to the environment; greatly reduced water-input requirements; and division of the conventional wastewater pit into an active treatment operations pit and an overflow reserve pit for emergency storage.

  18. Asset Revitalization Guide for Asset Management and Reuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-07-16T23:59:59.000Z

    Pursuant to the objectives of the Order, the “Asset Revitalization (AR) Guide for Asset Management and Reuse” (AR Guide) was developed to assist DOE and NNSA sites and program offices offer unneeded assets with remaining capacity to the public or other government agencies. DOE continually refines strategies and tools, enabling it to share unique assets, including land, facilities, infrastructure, equipment, and technologies with the public. Real property planning, acquisition, sustainment, and disposal decisions are balanced to accomplish DOE’s mission; reduce risks to workers, the public, and the environment; and minimize lifecycle costs.

  19. Organization | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeekOMB Policies2.0 Open

  20. Organization | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeekOMB Policies2.0

  1. Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalTo help ensure that\. '. Department

  2. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2012 through October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2013 reporting year, an estimated 9.64 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.

  3. DECONTAMINATION AND BENEFICIAL REUSE OF DREDGED MATERIAL USING EXISTING INFRASTRUCTURE FOR THE MANUFACTURE OF LIGHTWEIGHT

    E-Print Network [OSTI]

    Brookhaven National Laboratory

    1 DECONTAMINATION AND BENEFICIAL REUSE OF DREDGED MATERIAL USING EXISTING INFRASTRUCTURE an environmentally acceptable and economically beneficial reuse option for the management of dredged material is self/UPCYCLE Associates' technological and commercial approach focuses on the utilization of dredged material

  4. Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalTo help ensure that\. '. Department of Energy

  5. Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalTo help ensure that\. '. Department of

  6. Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalTo help ensure that\. '. Department ofCertified

  7. Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalTo help ensure that\. '. DepartmentMarch 25,2010

  8. Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalTo help ensure that\. '. DepartmentMarch

  9. Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalTo help ensure that\. '. DepartmentMarchRichland

  10. The Dalhousie Employee Guide to Materials Management on Campus Look for the 4 system bins around campus designated for recyclables, paper/cardboard, organics and garbage.

    E-Print Network [OSTI]

    Brownstone, Rob

    can on bid on excess goods for reuse, please visit the Purchasing Department website ( http://purchasing.dal.ca/Surplus all waste for potential reuse before discarding! HAZARDOUS WASTE On-campus, contact Environmental cartons and drink trays Not Acceptable: Coffee cups (garbage) Carbon paper (garbage) Soiled paper

  11. Environmental assessment for the reuse of TNX as a multi-purpose pilot plant campus at the Savannah River Site

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental and safety impacts of DOE planning to allow asset reuse of the TNX Area at the Savannah River Site (SRS) located near Aiken, South Carolina. The proposed action would include providing for a location for the Centers of Excellence at or adjacent to SRS and entering into a cooperative agreement with a non-profit management and operations (management firm) contractor to operate and market the TNX facilities and equipment. The area (formerly TNX) would be called a Multi-Purpose Pilot Plant Campus (MPPC) and would be used: (1) as location for technology research, development, demonstration, and commercial operations; (2) to establish partnerships with industry to develop applied technologies for commercialization; and (3) serve as administrative headquarters for Centers of Excellence in the program areas of soil remediation, radioecology, groundwater contamination, and municipal solid waste minimization.

  12. Right-Sized Reuse - Use a Systematic Process, and Design for a Specialized, Yet Flexible Result - 13558

    SciTech Connect (OSTI)

    Cusick, Lesley T. [Restoration Services, Inc. - RSI, Oak Ridge, Tennessee (United States)] [Restoration Services, Inc. - RSI, Oak Ridge, Tennessee (United States); Schiesswohl, Steven R. [Pheasant Tail Consulting LLC, Boulder Colorado (United States)] [Pheasant Tail Consulting LLC, Boulder Colorado (United States)

    2013-07-01T23:59:59.000Z

    The process of transferring real property from the U.S. Department of Energy (DOE) is always the same - except when it's not. The most frequently asked questions in the process are: how can this take so long and be so complex, and why is it different every time? The process of transferring real property from the Department of Energy is always the same - except when it's not. Repeat as needed. The authority for DOE to transfer property is found in the Atomic Energy Act of 1954 (AEA). Specifically, the transfer of real property for mission-related purposes is done pursuant to the AEA Section 161(g). Another rule that can provide certain unique benefits to the transferee is found in 10 Code of Federal Regulations (CFR) Part 770, Transfer of Real Property at Defense Nuclear Facilities for Economic Development; it can be followed for economic development purposes at defense nuclear facilities. All federal real property transfers include at minimum a National Environmental Policy Act (NEPA) review and a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) chap. 120(h) environmental due diligence evaluation. The end-point objective is to be able to demonstrate that a transfer is protective of human health and the environment - typically attained via a risk evaluation. That's it...mostly. None of these requirements are new; their processes are well-known. So, why is it different every time there is a transfer and what can be done to move things along? Time and the perception of open-ended schedules kill projects. Economic development projects that are proposed by Community Reuse Organizations (CROs) and others or by parties who need private capital are especially time-sensitive. It is not reasonable to expect business interests or investors to wait two years while the property transfer process is carried out. Lenders are also risk-sensitive and not solely business-risk sensitive. After all, these are federal properties where contamination is a factor. What are some of the things you can do to address those time and risk issues? Issues of time and complexity arise from several variables. Short-sighted vision and lack of project definition lead to wasted effort and lengthy delays. Some variability on the input side of the process can be controlled in a way that will save you time and actually work to your advantage. Steps can be taken to systematize the transfer process on the agency's part and on the requester/grantee's part. Having the right mix of dedicated people from the beginning, planning with flexibility, coordinating with the clean-up program at your site, knowing the interests and issues of your stakeholders, and working with the CRO/economic development authorities - all of these measures and others can and will help you. The key is not simply knowing the steps and making a punch-list, but understanding the steps and how to work with and use them. These concepts can be applied to create a vision of success for those engaged in real property transfer. (authors)

  13. Using the Conceptual Site Model to Remediate Two Sites in New England and Reach License Termination and Site Reuse

    SciTech Connect (OSTI)

    Glucksberg, Nadia; Peters, Jay [MACTEC Engineering and Consulting, Inc., Portland, Maine, 04112 and Wakefield, Massachusetts, 01880 (United States)

    2008-01-15T23:59:59.000Z

    The Conceptual Site Model (CSM) is a powerful tool for understanding the link between contamination sources, cleanup objectives, and ultimate site reuse. The CSM describes the site setting, geology, hydrogeology, potential sources, release mechanisms and migration pathways of contaminants. The CSM is needed to understand the extent of contamination and how receptors may be exposed to both radiological and chemical constituents. A key component of the CSM that is often overlooked concerns how the regulatory requirements drive remediation and how each has to be integrated into the CSM to ensure that all stakeholder requirements are understood and addressed. This paper describes how the use of the CSM helped reach closure and reuse at two facilities in Connecticut that are pursuing termination of their Nuclear Regulatory Commission (NRC) license. The two facilities are the Combustion Engineering Site, located in Windsor, Connecticut, (CE Windsor Site) and the Connecticut Yankee Atomic Power Company, located in Haddam Neck, Connecticut (CYAPCO). The closure of each of these facilities is regulated by four agencies: - Nuclear Regulatory Commission (NRC) - which requires cleanup levels for radionuclides to be protective of public health; - US Environmental Protection Agency (USEPA) - which requires cleanup levels for chemicals to be protective of public health and the environment; - Connecticut Department of Environmental Protection (CTDEP) Bureau of Air Management, Radiation Division - which requires cleanup levels for radionuclides to be protective of public health; and - Connecticut Department of Environmental Protection (CTDEP) Bureau of Water Protection and Land Reuse - which requires cleanup levels for chemicals to be protective of public health and the environment. Some of the radionuclides at the CE Windsor Site are also regulated under the Formerly Utilized Site Remedial Action Program (FUSRAP) under the Army Corps of Engineers. The remainder of this paper presents the similarities and differences between the CSMs for these two sites and how each site used the CSM to reach closure. Although each of these site have unique histories and physical features, the CSM approach was used to understand the geology, hydrogeology, migration and exposure pathways, and regulatory requirements to successfully characterize and plan closure of the sites. A summary of how these attributes affected site closure is provided.

  14. UAF Green Department Certification UAF OFFICE OF SUSTAINABILITY

    E-Print Network [OSTI]

    Hartman, Chris

    battery recycling. (1 point) Description/Documentation: Department utilized furniture that is reused. __________________________________________________________________________________________ Energy and Climate There are no CRT monitors in use by the department. CRTs can be recycled through items, electronics, batteries pick up instead of discarding them. (1 point) Description

  15. Boston's South Station : the process and consequences of preservation and reuse

    E-Print Network [OSTI]

    Tenney, Daniel Gleason

    1984-01-01T23:59:59.000Z

    This thesis examines some of the basic issues involved in the preservation and reuse of old buildings. In particular. the work is an exploration in three parts of the ways in which people perceive and respond to the general ...

  16. Considerations for understanding one`s cooling system prior to reuse water implementation

    SciTech Connect (OSTI)

    Chmelovski, M.J. [Nalco Chemical Co., Naperville, IL (United States)

    1996-10-01T23:59:59.000Z

    Water reuse situations are growing due to the need or desire to minimize water discharge from an industrial facility. Most of these applications are retrofits or system redesigns. Many times information is required to make decisions about the reuse application. Real-time or diagnostic studies provide improved information about the water systems. Addition of very low concentrations of a chemical tracer can provide improved information about the system. Useful and unique functions of chemical tracers are that they can provide one with the following information: system volume, quantifying previously unaccounted blowdown, holding time index, water distribution, leakage, and flowrate. These are important parameters when considering water reuse and system redesign. The chemical tracers discussed in this paper represent a significant improvement over compounds previously used in reuse applications.

  17. A preliminary examination of variables which influence the public acceptance of potable water reuse applications

    E-Print Network [OSTI]

    Foss, Michele Garteiser

    1997-01-01T23:59:59.000Z

    Water resource management in Texas is maturing from an era of project development to one of water supply management through conservation, reallocation, and reuse as a means of meeting water supply needs. As opportunities for conventional water...

  18. Cooling Water Systems - Energy Savings/Lower Costs By Reusing Cooling Tower Blowdown

    E-Print Network [OSTI]

    Puckorius, P. R.

    1981-01-01T23:59:59.000Z

    Reuse of cooling tower blow down cannot only provide energy conservation, but can provide water conservation and chemical conservation. To be effective, it is critical that the water treatment program be coordinated with the treatment of the blow...

  19. Integration of public access : the adaptive re-use of Alcoa's waterworks

    E-Print Network [OSTI]

    Tsigounis, Simone

    1990-01-01T23:59:59.000Z

    This thesis is about the re-use of Alcoa's Waterworks. The exciting spatial attributes of the buildings which compose the plant, along with the views they offer to Manhattan, inspired the design of a journey through the ...

  20. CO Capture, Reuse, and Storage Technologies2 for Mitigating Global Climate Change

    E-Print Network [OSTI]

    CO Capture, Reuse, and Storage Technologies2 for Mitigating Global Climate Change A White Paper Final Report DOE Order No. DE-AF22-96PC01257 Energy Laboratory Massachusetts Institute of Technology 77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5. Geological Storage Technology

  1. Boundary Objects, Information Flows, and Organizational Memory: Supporting Knowledge Reuse in a High-

    E-Print Network [OSTI]

    Lutters, Wayne G.

    in a High- Reliability Organization Wayne G. Lutters Department of Information and Computer Science of the distributed problem solving behavior of service engineers in a world-class aircraft manufacturer. ExaminesGulf request is quickly relayed to Global Airframe, the manufacturer. A senior service engineer is already

  2. Cave swallow (Petrochelidon fulva) nest reuse in east-central Texas

    E-Print Network [OSTI]

    Byerly, Margaret Elizabeth

    2005-02-17T23:59:59.000Z

    ......................................................................................... 8 2 Number of Cave Swallow nests from each bridge used in analysis along with types and quantities of Barn, Cave, and Cliff Swallow nests present at all 19 study bridges during the 2003 breeding season... reuse, as Cliff Swallows (Petrochelidon pyrrhonata) (Brown and Brown 1986), Barn Swallows (Hirundo rustica) (Samuel 1971, Shields 1984, Barclay 1988), and Cave Swallows (P. fulva) (Kosciuch 2002) all may reuse their mud nests. Collias and Collias...

  3. Design of Recycle/Reuse Networks with Thermal Effects and Variable Sources

    E-Print Network [OSTI]

    Zavala Oseguera, Jose Guadalupe

    2010-10-12T23:59:59.000Z

    DESIGN OF RECYCLE/REUSE NETWORKS WITH THERMAL EFFECTS AND VARIABLE SOURCES A Thesis by JOSE GUADALUPE ZAVALA OSEGUERA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2009 Major Subject: Chemical Engineering DESIGN OF RECYCLE/REUSE NETWORKS WITH THERMAL EFFECTS AND VARIABLE SOURCES A Thesis by JOSE GUADALUPE ZAVALA OSEGUERA Submitted...

  4. Presentation The Department of organization of business of the University of Alicante is located on the ground floor of the

    E-Print Network [OSTI]

    Escolano, Francisco

    and research work in the area of organization of enterprises. Currently teaches at 5 degrees, 5 diplomas and 2 in management of SMEs, Master's degree in management and human resource management, Master in management of restaurants and F & B Hotel, University expert in management of SMEsUniversity expert in management of human

  5. Paducah-Area Community Reuse Organization To Receive $300,000 Block Grant |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5 Accretion-of-DutiesPROPERTY3-0127Paducah

  6. THEORY INTO PRACTICE PAG REGIONAL WORKFORCE STUDY PREPARED FOR THE SRS COMMUNITY REUSE ORGANIZATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...SuccessSurprisingSynchrotronsPlasmaSTANFORDTHEORY INTO

  7. U.S. Department of Energy, Office of Legacy Management Post Competition Accountability Report: High Performing Organization Proposal May 2012

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success| DepartmentEnergyFeed Reporting Period: Fiscal Years

  8. Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    No Name

    2014-10-01T23:59:59.000Z

    ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  9. Office of Legacy Management Real Property Reuse Strategy, August...

    Broader source: Energy.gov (indexed) [DOE]

    Quarterly EMS Performance FY 2013 Second Quarter Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy...

  10. U.S. Department of Energy, Office of Legacy Management Program Update, April-June 2009

    SciTech Connect (OSTI)

    None

    2009-04-01T23:59:59.000Z

    Welcome to the April-June 2009 issue of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Program Update. This publication is designed to provide a status of activities within LM. The Legacy Management goals are: (1) Protect human health and the environment through effective and efficient long-term surveillance and maintenance - This goal highlights DOE's responsibility to ensure long-term protection of people, the environment, and the integrity of engineered remedies and monitoring systems. (2) Preserve, protect, and make accessible legacy records and information - This goal recognizes LM's commitment to successfully manage records, information, and archives of legacy sites under its authority. (3) Support an effective and efficient work force structured to accomplish Departmental missions and assure continuity of contractor worker pension and medical benefits - This goal recognizes DOE's commitment to its contracted work force and the consistent management of pension and health benefits. As sites continue to close, DOE faces the challenges of managing pension plan and health benefits liability. (4) Manage legacy land and assets, emphasizing protective real and personal property reuse and disposition - This goal recognizes a DOE need for local collaborative management of legacy assets, including coordinating land use planning, personal property disposition to community reuse organizations, and protecting heritage resources (natural, cultural, and historical). (5) Improve program effectiveness through sound management - This goal recognizes that LM's goals cannot be attained efficiently unless the federal and contractor work force is motivated to meet requirements and work toward continuous performance improvement.

  11. Water Reclamation and Reuse at Fort Carson: Best Management Practice Case Study #14 - Alternate Water Sources (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01T23:59:59.000Z

    FEMP Water Efficiency Best Management Practice #14 Case Study: Overview of the water reclamation and reuse program at the U.S. Army's Fort Carson.

  12. Radium Disposition Options for the Department of Energy

    SciTech Connect (OSTI)

    Parks, D. L.; Thiel, E. C.; Seidel, B. R.

    2002-02-26T23:59:59.000Z

    The Department of Energy (DOE) has developed plans to disposition its excess nuclear materials, including radium-containing materials. Within DOE, there is no significant demand for radium at this time. However, DOE is exploring reuse options, including uses that may not exist at this time. The Nonactinide Isotopes and Sealed Sources Management Group (NISSMG) has identified 654 radium-containing items, and concluded that there are no remaining radium items that do not have a pathway to disposition. Unfortunately, most of these pathways end with disposal, whereas reuse would be preferable. DOE has a number of closure sites that must remove the radium at their sites as part of their closure activities. NISSMG suggests preserving the larger radium sources that can easily be manufactured into targets for future reuse, and disposing the other items. As alternatives to disposal, there exist reuse options for radium, especially in nuclear medicine. These options were identified by NISSMG. The NISSMG recommends that DOE set up receiver sites to store these radium materials until reuse options become available. The NISSMG recommends two pathways for dispositioning radium sources, depending on the activity and volume of material. Low activity radium sources can be managed as low level radioactive waste per DOE Order 5820.2A. Higher activity radium sources are more appropriate for reuse in nuclear medicine applications and other applications.

  13. Abstract --The energy saving potential of reusing / reselling personal computer (PC) devices was evaluated relative to the

    E-Print Network [OSTI]

    Gutowski, Timothy

    Abstract -- The energy saving potential of reusing / reselling personal computer (PC) devices personal computer device can lead to relative energy expenditure. We found that in certain scenarios, it is essential to assess the reuse of personal computer devices more critically, incorporating the different

  14. Transferring the Wayne, NJ, Site to Beneficial Reuse | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactiveITransactional NetworkTransferring the

  15. Route Throughput Analysis with Spectral Reuse for Multi-Rate Mobile Ad Hoc Networks

    E-Print Network [OSTI]

    Tseng, Yu-Chee

    networks (MANETs) have received a lot of attention for its flexible network architecture. While many network (MANET) is a flexible and dynamic architecture that is attractive due to its ease in network1 Route Throughput Analysis with Spectral Reuse for Multi-Rate Mobile Ad Hoc Networks Lien-Wu Chen

  16. DECONTAMINATION AND BENEFICIAL REUSE OF DREDGED ESTUARINE SEDIMENT: THE WESTINGHOUSE PLASMA VITRIFICATION PROCESS

    E-Print Network [OSTI]

    Brookhaven National Laboratory

    DECONTAMINATION AND BENEFICIAL REUSE OF DREDGED ESTUARINE SEDIMENT: THE WESTINGHOUSE PLASMA of the New York/New Jersey Harbor requires regular dredging. The offshore dumping facility has been closed, dredged material disposal, demonstration testing, process design. 1 McLaughlin, D. F., Fellow Engineer

  17. CMDB -Yet Another MIB? On Reusing Management Model Concepts in ITIL

    E-Print Network [OSTI]

    CMDB - Yet Another MIB? On Reusing Management Model Concepts in ITIL Configuration Management|garschha|sailer|schaaf}@mnm-team.org Abstract. According to ITIL, a CMDB (Configuration Management Database), containing a logical model. To this end, a criteria catalog based on core CMDB concepts and basic information requirements of ITIL

  18. Exploiting Instruction Reuse to Enhance Microprocessor Simulation Ravi Bhargava, Lizy K. John, Francisco Matus

    E-Print Network [OSTI]

    John, Lizy Kurian

    Exploiting Instruction Reuse to Enhance Microprocessor Simulation Ravi Bhargava, Lizy K. John,ljohn,matusg@ece.utexas.edu Abstract The use of software simulation to model modern high-performance microprocessors is becoming increas- ingly challenging as microprocessors grow in complexity. Accurate and meaningful performance

  19. Recovery and reuse of cellulase catalyst in an enzymatic cellulose hydrolysis process

    DOE Patents [OSTI]

    Woodward, J.

    1987-09-18T23:59:59.000Z

    A process for recovering cellulase from the hydrolysis of cellulose, and reusing it in subsequent hydrolyois procedures. The process utilizes a commercial adsorbent that efficiently removes cellulase from reaction products which can be easily removed by simple decantation. 1 fig., 4 tabs.

  20. Safety Cases for Software Application Reuse P Fenelon, T P Kelly, J A McDermid

    E-Print Network [OSTI]

    Kelly, Tim

    on an analysis of a reactor protection system. 1 Introduction There is a long-established principle. These principles have been applied retrospectively to the safety case for a reactor protection system (the Stage 9. These principles have been adopted in developing safety-critical software, but often only through the reuse of low

  1. Water conservation and reuse has become a major issue in aquacul-

    E-Print Network [OSTI]

    Watson, Craig A.

    Water conservation and reuse has become a major issue in aquacul- ture in recent years. Concern enhancing water circula- tion in ponds and developing intensive, recirculating tank sys- tems of water and lower invest- ment and production costs have contributed to the present expanse of pond

  2. The effects of the implementation of grey water reuse systems on construction cost and project schedule

    E-Print Network [OSTI]

    Kaduvinal Varghese, Jeslin

    2009-05-15T23:59:59.000Z

    of the United States due to their effects on construction cost and project schedules. Even though a project could get one or multiple points upon successful implementation of a grey water reuse system and conserving potable water, the following factors may have...

  3. A Product-Line Approach to Promote Asset Reuse in Multi-Agent Systems

    E-Print Network [OSTI]

    Lutz, Robyn R.

    lifecycle so that software assets can be reused in the development lifecycle and during system evolution. We a driving force in significantly reducing both the time and cost of software specification, development specification, development, maintenance and evolution. Industry's continuous demand for shorter software

  4. Information Reuse and System Integration in the Development of a Hurricane Simulation System*

    E-Print Network [OSTI]

    Chen, Shu-Ching

    , the insurance industry was totally shaken to the tune of $15.5 billion losses caused by Hurricane Andrew [20Information Reuse and System Integration in the Development of a Hurricane Simulation System* Shu@fiu.edu * ©©©© 2003 IEEE Abstract - This paper presents our effort in designing and implementing an advanced hurricane

  5. Practices in the Creative Reuse of e-Waste Sunyoung Kim & Eric Paulos

    E-Print Network [OSTI]

    Mankoff, Jennifer

    }@cs.cmu.edu ABSTRACT E-waste is a generic term embracing various forms of electric and electronic equipmentPractices in the Creative Reuse of e-Waste Sunyoung Kim & Eric Paulos Human-Computer Interaction that is loosely discarded, surplus, obsolete, or broken [27]. When e-waste is improperly discarded as trash

  6. The water concept in the self-sufficient house Drinking rainwater and reusing wastewater

    E-Print Network [OSTI]

    Wehrli, Bernhard

    the chance to do just that. Lack of drinking water hygiene is one of the main sources of disease transmissionThe water concept in the self-sufficient house Drinking rainwater and reusing wastewater Decentralized systems for drinking water processing could make a significant contribution to the Millennium

  7. REUSE AND RECYCLE OF BIO-RESIDUE (PERCOLATE) FROM CONSTRUCTED WETLAND TREATING SEPTAGE

    E-Print Network [OSTI]

    Richner, Heinz

    REUSE AND RECYCLE OF BIO-RESIDUE (PERCOLATE) FROM CONSTRUCTED WETLAND TREATING SEPTAGE by Sukon of percolate from constructed wetland (CW) treating septage in agricultural application with the specific focus CW treating septage could exhibit positive responses of the plant growth which increase seed yield

  8. Empirical Comparison of Incremental Reuse Strategies in Genetic Programming for Keep-Away Soccer

    E-Print Network [OSTI]

    Fernandez, Thomas

    comparable or better overall fit- ness than monolithic simple GP. A key unresolved issue dealt with hybrid re achieved by identifying goals and fitness functions for subproblems of the overall problem. Solutions. In this paper, we compare monolithic (simple GP and GP with ADFs) and easy missions reuse to two types of GP

  9. T-696: RSA Adaptive Authentication Has Unspecified Remote Authenticated Session Re-use Flaw

    Broader source: Energy.gov [DOE]

    An issue with Adaptive Authentication (On-Premise) was discovered which in certain circumstances might affect the out-of-the-box available authentication methods. In certain circumstances, when authentication information is compromised, and with the knowledge of additional session information, the authentication information might be reused within an active session.

  10. SoC Energy Savings = Reduce+Reuse+Recycle: A Case Study Using a 660MHz DC-DC Converter with Integrated Output Filter

    E-Print Network [OSTI]

    Lemieux, Guy

    SoC Energy Savings = Reduce+Reuse+Recycle: A Case Study Using a 660MHz DC-DC Converter, mehdia, samad, prp, shahriar } @ ece.ubc.ca Abstract ­ This paper advocates `reduce, reuse, recycle to emphasize reuse and recycling as well. We design a DC-DC buck converter to demonstrate the 3 techniques

  11. Advanced heat pump for the recovery of volatile organic compounds

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The Toxic-Release Inventory'' of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy's (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M's work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

  12. Department of Mathematics: Student Organizations

    E-Print Network [OSTI]

    The Purdue Actuary Club assists students interested in a career as an actuary, a business person who uses math and statistics to assess the financial ...

  13. Our Organization | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergy Online1ofGeothermal

  14. Helpful Organizations | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,GlenLearning andDesign inImage of13-EnergyCouncil

  15. Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctober 2014FundsOpti-MNRESPONSE |About Energy.gov »

  16. Organization Chart | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeedingthis siteOrgLeadership »

  17. Adsorption -capacity data for 283 organic compounds

    SciTech Connect (OSTI)

    Yaws, C.L.; Bu, L.; Nijhawan, S. [Lamar Univ., Beaumont, TX (United States)

    1995-05-01T23:59:59.000Z

    Adsorption on activated carbon is a widely used method for removing volatile organic compounds (VOCs) from gases and other exhaust streams. This article presents a compilation of adsorption-capacity data as a function of the VOC concentration in the gas. The results are useful in engineering and environmental studies, and in the design of carbon-based adsorption systems to remove unwanted organic pollutants from gases. For vapor control, carbon-based systems typically combine a carbon-adsorption unit with a secondary control method to reclaim or destroy the vapors desorbed during carbon-bed regeneration. To remove organics dissolved in wastewater, air stripping is typically used to transfer the organics to a vapor stream. Carbon adsorption is then used to separate the organics from the stripper exhaust. Collected vapors can be recovered for reuse or destroyed, depending on their value.

  18. Towards the Net-Zero Data Center: Development and Application of an Energy Reuse Metric

    SciTech Connect (OSTI)

    Patterson, M. K.; VanGeet, O.; Tschudi, W.; Azevedo, D.

    2011-01-01T23:59:59.000Z

    Data Centers are an ever increasing user of energy in our economy. While the performance per watt of our IT equipment continues to increase exponentially, this energy performance improvement is still outstripped by increasing demand. Because of this, the efficiency of data centers must continue to improve. Beyond just efficiency, many data centers now are working towards reuse of their waste energy in other areas in the data center or on the site or campus. How to account for this, through metrics and measurements, is the topic of this paper. The Energy Reuse Effectiveness metric or ERE is discussed; both the development and application of the metric are looked at in detail. The use of ERE in conjunction with PUE (Power Usage Effectiveness) is also considered.

  19. Reducing the solid waste stream: reuse and recycling at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Wilson, K. L.

    1997-08-01T23:59:59.000Z

    In Fiscal Year (FY) 1996 Lawrence Livermore National Laboratory (LLNL) increased its solid waste diversion by 365 percent over FY 1992 in five solid waste categories - paper, cardboard, wood, metals, and miscellaneous. (LLNL`s fiscal year is from October 1 to September 30.) LLNL reused/ recycled 6,387 tons of waste, including 340 tons of paper, 455 tons of scrap wood, 1,509 tons of metals, and 3,830 tons of asphalt and concrete (Table1). An additional 63 tons was diverted from landfills by donating excess food, selling toner cartridges for reconditioning, using rechargeable batteries, redirecting surplus equipment to other government agencies and schools, and comporting plant clippings. LLNL also successfully expanded its demonstration program to recycle and reuse construction and demolition debris as part of its facility-wide, comprehensive solid waste reduction programs.

  20. Tools for Reusing Earth Science Software Robert R. Downs", Neal F. Most#, James J. Marshall#, Chris A. Mattmann$%&

    E-Print Network [OSTI]

    Mattmann, Chris

    ! ! ! ! Tools for Reusing Earth Science Software Robert R. Downs", Neal F. Most#, James J. Marshall.9 Greenbelt, Maryland 20771 USA James.J.Marshall@nasa.gov 3 Jet Propulsion Laboratory California Institute

  1. The highest and best use assessment of an adaptive reuse development : a former Agere Systems campus redevelopment plan

    E-Print Network [OSTI]

    Hsu, Jin-Hsiao

    2007-01-01T23:59:59.000Z

    Fix it up or give it up and start over? This interviews and case studies based research was conducted to determine important factors in a successful adaptive reuse development and applied them to a sizable and well maintained ...

  2. Departmental Organization Management System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-08-27T23:59:59.000Z

    Public Law 95-91, 42 United States Code 7101, Department of Energy Organization Act, Section 642 gives to the Secretary of the Department of Energy the responsibility to approve organization changes affecting the number, designation, or mission of Departmental Elements and to approve the addition, deletion, or transfer of missions and/or functions of or between Departmental Elements. In order to streamline the organizational change process, the Secretary has delegate to the Heads of Departmental Headquarters and Field Elements the authority to approve organization changes. No cancellations.

  3. El Paso landscape perspective: Researchers study water conservation, plant-tolerance, and water reuse 

    E-Print Network [OSTI]

    Kalisek, Danielle

    2011-01-01T23:59:59.000Z

    -largest city in Texas and the #26;#19;th-largest in the United States,? Michelsen said. El Paso landscape perspective Researchers study water conservation, plant-tolerance, and water reuse 16 tx H2O Summer 2011 El Paso landscape perspective Continued... ?Landscape irrigation typically accounts for half of annual residential water use,? he said. ?Finding and developing low water use, drought- and salt-tolerant plants are critical to conserving and protecting our limited freshwater supplies to ensure...

  4. Main changes to LHC layout for reuse as FCC-hh High Energy Booster

    E-Print Network [OSTI]

    Brennan Goddard; Werner Herr; Philippe Lebrun; Attilio Milanese

    2015-01-01T23:59:59.000Z

    Reuse of the LHC is one option being investigated for a High Energy Booster for injection of 3.3 TeV protons (and heavy ions at equivalent rigidity) into the proposed 100 TeV centre of mass FCC-hh collider. In this note the major changes required to the LHC layout are listed, assuming beam transfer to the FCC collider is required from both LHC Points 1 and 8.

  5. El Paso landscape perspective: Researchers study water conservation, plant-tolerance, and water reuse

    E-Print Network [OSTI]

    Kalisek, Danielle

    2011-01-01T23:59:59.000Z

    , reclaimed wastewater is being used on larger public areas as a way to reuse water resources and conserve potable, or drinkable, freshwater supplies. Dr. Ari Michelsen, El Paso center director, recognizes the importance of water as well as managing... limited water resources in El Paso?s desert environment. ?Water is essential and one of the most important resources for human health, economic growth, quality of life, and environment, especially in the desert conditions of El Paso, the #18;#31;h...

  6. Design of flexible manufacturing systems with reuse in a KB simulation environment

    SciTech Connect (OSTI)

    Kovacs, G.L.; Kopacsi, S.; Kmecs, I. [Hungarian Academy of Sciences, Budapest (Croatia)

    1996-12-31T23:59:59.000Z

    In this paper object-oriented design and the reuse of FMS components in new applications using a hybrid simulation and scheduling system (SSS) will be introduced. The goal of this research is to provide methods and tools to build up FMS simulation models easily, fast and reliable. Simulation is one of the most effective tools for assisting in the design of FMS. SSS has been implemented as a combination of a traditional simulation language (SIMAN/Cinema) and an intelligent expert environment (G2). The application of the real-time, intelligent G2 environment points to one of our recent R&D goal, to intelligent, real-time control of FMS. Reuse in SIMAN/Cinema and in G2 will be analyzed separately and together in general, and in the context of FMS to get acceptable solutions, to build up new simulation models fast and reliable reusing elements of previous, different other models. The design methodology used for model development is based on the object-oriented Rational Rose CASE tool and on use-case design of the OOSE methodology.

  7. Nuclear Organization and Genome Function

    E-Print Network [OSTI]

    Corces, Victor G.

    Nuclear Organization and Genome Function Kevin Van Bortle and Victor G. Corces Department-range interactions and have proposed roles in nuclear organization. In this review, we explore recent findings for the roles of insulators in nuclear organization. 163 Annu.Rev.CellDev.Biol.2012.28:163-187.Downloadedfromwww

  8. 0980_001.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENT OF ENERGY' S FACILITY REUSE0980_001.pdf

  9. Low band gap polymers Organic Photovoltaics

    E-Print Network [OSTI]

    Low band gap polymers for Organic Photovoltaics Eva Bundgaard Ph.D. Dissertation Risø National Bundgaard Title: Low band gap polymers for Organic photovoltaics Department: The polymer department Report the area of organic photovoltaics are focusing on low band gap polymers, a type of polymer which absorbs

  10. Beneficial reuse of oilfield waste outside of the oil and gas industry

    SciTech Connect (OSTI)

    Marinello, S.A.; Herbert, B.F.; Lillo, H. [and others

    1995-12-31T23:59:59.000Z

    If a beneficial reuse of an oilfield waste can be found, that specific byproduct is no longer a waste, but a product. With such downstream use, the environmental liabilities of the former waste are, except for any packaging or transportation requirements, potentially eliminated. There is a problem, however, with the lack of an active infrastructure to implement the process. Some states have limited programs, but participation is a problem. It is apparent that a {open_quotes}Waste Clearinghouse{close_quotes} addressing oilfield waste in conjunction with major industrial waste and feed streams is needed, but implementation remains in the future. An active network of participating suppliers and users would be the goal of such action. The benefits for industry would be a reduction in waste disposal and associated liabilities and {open_quotes}virgin{close_quotes} feedstock requirements. From the operators viewpoint, this scenario would require a compilation of the different waste/byproduct streams and their characteristics and a prioritizing of those wastes by characteristics that might affect their reuse potential. These might include: (1) the greatest likelihood of finding a market; (2) the highest potential waste volume reduction; (3) the highest cost of disposal and (4) the greatest associated hazards. For the industry as a whole, an inventorying of these byproducts and characteristics would be tied to the identification of consumers/outlets for specific byproducts. This might be accomplished through the funding of consultants/contractors specializing in clearinghouse activities and/or research into potential applications and uses. The industry needs to change it`s view of waste/byproduct streams in order to be more aware of potential downstream uses. Existing examples of reuse can be used as models for further efforts.

  11. Reusing Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResources Resources About1 Sign In About | Careers

  12. Department of Energy Awards $71 Million to Accelerate Innovative Carbon Capture Project

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today announced that Arizona Public Service (APS), Phoenix, Ariz., has been awarded $70.5 million from the American Recovery and Reinvestment Act (ARRA) to expand an existing industrial and innovative reuse carbon mitigation project.

  13. Investigation of a pulsed current annealing method in reusing MOSFET dosimeters for in vivo IMRT dosimetry

    SciTech Connect (OSTI)

    Luo, Guang-Wen; Qi, Zhen-Yu, E-mail: qizhy@sysucc.org.cn; Deng, Xiao-Wu [Department of Radiation Oncology, Sun Yat-Sen University Cancer Center and State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China)] [Department of Radiation Oncology, Sun Yat-Sen University Cancer Center and State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Rosenfeld, Anatoly [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)] [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2014-05-15T23:59:59.000Z

    Purpose: To explore the feasibility of pulsed current annealing in reusing metal oxide semiconductor field-effect transistor (MOSFET) dosimeters forin vivo intensity modulated radiation therapy (IMRT) dosimetry. Methods: Several MOSFETs were irradiated atd{sub max} using a 6 MV x-ray beam with 5 V on the gate and annealed with zero bias at room temperature. The percentage recovery of threshold voltage shift during multiple irradiation-annealing cycles was evaluated. Key dosimetry characteristics of the annealed MOSFET such as the dosimeter's sensitivity, reproducibility, dose linearity, and linearity of response within the dynamic range were investigated. The initial results of using the annealed MOSFETs for IMRT dosimetry practice were also presented. Results: More than 95% of threshold voltage shift can be recovered after 24-pulse current continuous annealing in 16 min. The mean sensitivity degradation was found to be 1.28%, ranging from 1.17% to 1.52%, during multiple annealing procedures. Other important characteristics of the annealed MOSFET remained nearly consistent before and after annealing. Our results showed there was no statistically significant difference between the annealed MOSFETs and their control samples in absolute dose measurements for IMRT QA (p = 0.99). The MOSFET measurements agreed with the ion chamber results on an average of 0.16% ± 0.64%. Conclusions: Pulsed current annealing provides a practical option for reusing MOSFETs to extend their operational lifetime. The current annealing circuit can be integrated into the reader, making the annealing procedure fully automatic.

  14. Statistical Review of California's Organic Agriculture

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Statistical Review of California's Organic Agriculture 2005 ­ 2009 Karen Klonsky Kurt Richter Agricultural Issues Center University of California March 2011 #12;Statistical Review of California's Organic Agriculture 2005 ­ 2009 Karen Klonsky Extension Specialist Department of Agricultural and Resource Economics

  15. DOE Organization Chart- February 2015

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energy’s structure along with the relationships and relative ranks of its parts and positions/jobs.

  16. DOE Organization Chart- May 2015

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energy’s structure along with the relationships and relative ranks of its parts and positions/jobs.

  17. Long-Term Need for New Nuclear Workers The SRS Community Reuse Organization (SRSCRO) Region of Georgia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenterLogging in Logging

  18. Cost Effective Recovery of Low-TDS Frac Flowback Water for Re-use

    SciTech Connect (OSTI)

    Claire Henderson; Harish Acharya; Hope Matis; Hareesh Kommepalli; Brian Moore; Hua Wang

    2011-03-31T23:59:59.000Z

    The project goal was to develop a cost-effective water recovery process to reduce the costs and envi-ronmental impact of shale gas production. This effort sought to develop both a flowback water pre-treatment process and a membrane-based partial demineralization process for the treatment of the low-Total Dissolved Solids (TDS) portion of the flowback water produced during hydrofracturing operations. The TDS cutoff for consideration in this project is < 35,000 {approx} 45,000 ppm, which is the typical limit for economic water recovery employing reverse osmosis (RO) type membrane desalination processes. The ultimate objective is the production of clean, reclaimed water suitable for re-use in hydrofracturing operations. The team successfully compiled data on flowback composition and other attributes across multiple shale plays, identified the likely applicability of membrane treatment processes in those shales, and expanded the proposed product portfolio to include four options suitable for various reuse or discharge applications. Pretreatment technologies were evaluated at the lab scale and down-selected based upon their efficacy in removing key contaminants. The chosen technologies were further validated by performing membrane fouling studies with treated flowback water to demonstrate the technical feasibility of flowback treatment with RO membranes. Process flow schemes were constructed for each of the four product options based on experimental performance data from actual flowback water treatment studies. For the products requiring membrane treatment, membrane system model-ing software was used to create designs for enhanced water recovery beyond the typical seawater desalination benchmark. System costs based upon vendor and internal cost information for all process flow schemes were generated and are below target and in line with customer expectations. Finally, to account for temporal and geographic variability in flowback characteristics as well as local disposal costs and regulations, a parametric value assessment tool was created to assess the economic attractiveness of a given flowback recovery process relative to conventional disposal for any combination of anticipated flowback TDS and local disposal cost. It is concluded that membrane systems in combination with appropriate pretreatment technologies can provide cost-effective recovery of low-TDS flow-back water for either beneficial reuse or safe surface discharge.

  19. 104 October 1996/Vol. 39, No. 10 COMMUNICATIONS OF THE ACM LTHOUGH reuse is assumed to be especially

    E-Print Network [OSTI]

    Basili, Victor R.

    in an OO framework in light of currently available technology. Data was collected for four months against a quantitative and objective base- line of comparison. Software reuse can help produce quality a reusable artifact · Adapting it to the purpose of the application · Integrating it into the software

  20. Integrating Software Process Reuse and Automation Emmanuelle Rouill, Benot Combemale, Olivier Barais, David Touzet and Jean-Marc Jzquel

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Integrating Software Process Reuse and Automation Emmanuelle Rouillé, Benoît Combemale, Olivier that captures their commonalities and variabilities) and automating their execution is a way to reduce is to automate the execution of a process whose variability is only partially resolved (i.e., a value is not set

  1. Article DOI: 10.1111/j.1468-0394.2012.00631.x Reusing knowledge in embedded systems modelling

    E-Print Network [OSTI]

    Wieringa, Roel

    ) Neopost Technologies, Drachten, The Netherlands Email: Y.Lucas@neopost.com Abstract: Model-based design. Keywords: model-based design, plant modelling, reuse 1. Introduction Embedded software is part of a larger the parts of the composite system outside the embedded software the plant. The purpose of the embedded

  2. DRAFT - DOE G 430.1-8, Asset Revitalization Initiative Guide for Sustainable Asset Management and Reuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Guide is intended to assist sites in sustainable planning, management, and reuse of assets that allows effective mission execution, optimizes federal and public resources, and supports local and national goals for economic growth and diversification in support of DOE O 430.1B.

  3. 978-1-4244-2794-9/09/$25.00 2009 IEEE SMC 2009 Open and Scalable Accumulation and Reuse of

    E-Print Network [OSTI]

    Hsu, Cheng

    978-1-4244-2794-9/09/$25.00 ©2009 IEEE SMC 2009 Open and Scalable Accumulation and Reuse of Common-intensive systems. A new method, called Modelbase, accumulates reusable models (e.g., information, mathematical resources. Every significant company can be assumed to have accumulated a vast amount of slides (charts

  4. Evaluation of Membrane Treatment Technology to Optimize and Reduce Hypersalinity Content of Produced Brine for Reuse in Unconventional Gas Wells 

    E-Print Network [OSTI]

    Eboagwu, Uche

    2012-10-19T23:59:59.000Z

    Over 18 billion barrels of waste fluids are generated annually from oil and gas production in the United States. As a large amount of water is used for oilfield operations, treating and reusing produced water can cut the consumption of fresh water...

  5. Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment

    SciTech Connect (OSTI)

    Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

    1995-07-01T23:59:59.000Z

    Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed.

  6. Effort minimization in UI development by reusing existing DGML based UI design for qualitative software development

    E-Print Network [OSTI]

    Suri, P K

    2010-01-01T23:59:59.000Z

    This paper addresses the methodology for achieving the user interface design reusability of a qualitative software system and effort minimization by applying the inference on the stored design documents. The pictorial design documents are stored in a special format in the form of keyword text [DGML tag based design]. The design document storage mechanism will expose the keywords per design stored. This methodology is having an inference engine. Inference mechanism search for the requirements and find the match for them in the available design repository. A match found will success in reusing it after checking the quality parameters of the found design module in the result set. DGML notations produces qualitative designs which helps in minimizing the efforts of software development life cycle.

  7. Advanced heat pump for the recovery of volatile organic compounds. Phase 1, Conceptual design of an advanced Brayton cycle heat pump for the recovery of volatile organic compounds: Final report

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The ``Toxic-Release Inventory`` of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy`s (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M`s work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

  8. Cost and Performance Report for the ASTD Reuse of Concrete Within DOE from D&D Projects

    SciTech Connect (OSTI)

    Kamboj, S.; Arnish, J.; Chen, S. Y.; Phillips, Ann Marie; Meservey, Richard Harlan; Tripp, Julia Lynn

    2000-09-01T23:59:59.000Z

    This cost and performance report describes the Accelerated Site Technology Deployment project that developed the Protocol for Development of Authorized Release Limits for Concrete at U.S. DOE Sites, which identifies the steps for obtaining approval to reuse concrete from Deactivation and Decommissioning of facilities. This protocol compares the risk and cost of various disposition paths for the concrete and follows the authorized release approach described in the DOE's draft handbook, Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material. This approach provides for the development of authorized release limits through a series of prescribed steps before approval for release is granted. A case study was also completed on a previously decommissioned facility.

  9. Co-operation Agreement between the European Organization for Nuclear Research and the Department of Energy of the United States of America and the National Science Foundation of the United States of America concerning Scientific and Technical Co-operation in Nuclear and Particle Physics

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Co-operation Agreement between the European Organization for Nuclear Research and the Department of Energy of the United States of America and the National Science Foundation of the United States of America concerning Scientific and Technical Co-operation in Nuclear and Particle Physics

  10. Radiation Impact of Very Low Level Radioactive Steel Reused in Building Industry with Emphasis on External Exposure Pathway - 12569

    SciTech Connect (OSTI)

    Panik, Michal; Hrncir, Tomas; Necas, Vladimir [Slovak University of Technology in Bratislava, Bratislava (Slovakia)

    2012-07-01T23:59:59.000Z

    Considerable quantities of various materials are accumulated during the decommissioning process of nuclear installations. Some of arising materials are activated or contaminated. However, many of them continue to have an economic value and exist in a form that can be recycled or reused for special purposes. Furthermore much of the material generated during decommissioning process will contain only small amounts of radionuclides. For these materials there exist environmental and economic incentives to maximize the use of the concept of clearance from further regulatory control. This impact analysis is devoted to mentioned incentives. The aim is to conditionally clear maximum amount of the scrap steel and consequently recycle and reuse it in form of reinforcing components in tunnel and bridge building scenarios. Recent calculations relevant for external exposure pathway indicate that concept of conditional clearance represent a feasible option for the management of radioactive materials. Even in chosen specific industrial applications it is possible to justify new, approximately one order of magnitude higher, clearance levels. However analysis of other possible exposure pathways relevant for particular scenario of reuse of conditionally cleared materials has to be performed in order to confirm indications from partially obtained results. Basically, the concept of conditional clearance can bring two basic benefits. Firstly it is saving of considerable funds, which would be otherwise used for treatment, conditioning and disposal of materials at appropriate radioactive waste repository. Moreover materials with intrinsic value (particularly metals) can be recycled and reused in industrial applications instead of investing resources on mining and production process in order to obtain new, 'fresh' materials. (authors)

  11. Preozonation of primary-treated municipal wastewater for reuse in biofuel feedstock generation

    SciTech Connect (OSTI)

    Mondala, Andro H.; Hernandez, Rafael; French, William Todd; Estevez, L. Antonio; Meckes, Mark; Trillo, Marlene; Hall, Jacqueline

    2011-12-01T23:59:59.000Z

    The results of a laboratory scale investigation on ozone pretreatment of primary-treated municipal wastewater for potential reuse in fermentation processes for the production of biofuels and bio-based feedstock chemicals were presented. Semi-batch preozonation with 3.0% (w/w) ozone at 1 L min -1 resulted into a considerable inactivation of the indigenous heterotrophic bacteria in the wastewater with less than 0.0002% comprising the ozone-resistant fraction of the microbial population. The disinfection process was modeled using first-order inactivation kinetics with a rate constant of 4.39 Ã?Â?Ã?Â? 10 -3 s -1. Chemical oxygen demand (COD) levels were reduced by 30% in 1-h experiments. COD depletion was also modeled using a pseudo-first-order kinetics at a rate constant of 9.50 Ã?Â?Ã?Â? 10 -5 s -1. Biological oxygen demand (BOD 5) values were reduced by 60% up to 20 min of ozonation followed by a plateau and some slight increases attributed to partial oxidation of recalcitrant materials. Ozone also had no substantial effect on the concentration of ammonium and phosphate ions, which are essential for microbial growth and metabolism. Preliminary tests indicated that oleaginous microorganisms could be cultivated in the ozonated wastewater, resulting in relatively higher cell densities than in raw wastewater and comparable results with autoclave-sterilized wastewater. This process could potentially produce significant quantities of oil for biofuel production from municipal wastewater streams.

  12. Thermokinetic/mass-transfer analysis of carbon capture for reuse/sequestration.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Brady, Patrick Vane; Staiger, Chad Lynn; Luketa, Anay Josephine

    2010-09-01T23:59:59.000Z

    Effective capture of atmospheric carbon is a key bottleneck preventing non bio-based, carbon-neutral production of synthetic liquid hydrocarbon fuels using CO{sub 2} as the carbon feedstock. Here we outline the boundary conditions of atmospheric carbon capture for recycle to liquid hydrocarbon fuels production and re-use options and we also identify the technical advances that must be made for such a process to become technically and commercially viable at scale. While conversion of atmospheric CO{sub 2} into a pure feedstock for hydrocarbon fuels synthesis is presently feasible at the bench-scale - albeit at high cost energetically and economically - the methods and materials needed to concentrate large amounts of CO{sub 2} at low cost and high efficiency remain technically immature. Industrial-scale capture must entail: (1) Processing of large volumes of air through an effective CO{sub 2} capture media and (2) Efficient separation of CO{sub 2} from the processed air flow into a pure stream of CO{sub 2}.

  13. Our Organization

    Broader source: Energy.gov [DOE]

    Mission StatementThe Office of Inspector General promotes the effective, efficient, and economical operation of the Department of Energy's programs and operations through audits, inspections,...

  14. A threshold area ratio of organic to conventional agriculture causes recurrent pathogen outbreaks in organic agriculture

    E-Print Network [OSTI]

    Kolokolnikov, Theodore

    A threshold area ratio of organic to conventional agriculture causes recurrent pathogen outbreaks in organic agriculture S. Adl a, , D. Iron b , T. Kolokolnikov b a Department of Biology, Dalhousie Fungal spores Organic agriculture Pathogen dispersal Conventional agriculture uses herbicides, pesticides

  15. Exploring Electron Transfer in Organic Semiconductors | MIT-Harvard...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Transfer in Organic Semiconductors January 28, 2009 at 3pm36-428 Troy Van Voorhis Department of Chemistry, Massachusetts Institute of Technology vanvoorhis2000 abstract:...

  16. STUDENT ORGANIZATION FOOD/BEVERAGE HANDLING REQUEST FOR

    E-Print Network [OSTI]

    Oklahoma, University of

    STUDENT ORGANIZATION FOOD/BEVERAGE HANDLING REQUEST FOR HEALTH DEPARTMENT APPROVAL Please submit. PLEASE ALLOW AT LEAST 10 working days for approval. Student Organization: ___________________________________________________________ Student Responsible for Event/Food Handling: _______________________________________ Phone Number

  17. 2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Mike lewis

    2011-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of special compliance conditions • Discussion of the facility’s environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  18. 2011 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Michael G. Lewis

    2012-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2010, through October 31, 2011. The report contains the following information: (1) Site description; (2) Facility and system description; (3) Permit required monitoring data and loading rates; (4) Status of special compliance conditions and activities; and (5) Discussion of the facility's environmental impacts. During the 2011 permit year, approximately 1.22 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  19. 2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

  20. DOE Organization Chart- December 16, 2013

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energy’s structure along with the relationships and relative ranks of its parts and positions/jobs.

  1. DOE Organization Chart- August 7, 2013

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energy’s structure along with the relationships and relative ranks of its parts and positions/jobs.

  2. Organic Superconductors

    SciTech Connect (OSTI)

    Charles Mielke

    2009-02-27T23:59:59.000Z

    Intense magnetic fields are an essential tool for understanding layered superconductors. Fundamental electronic properties of organic superconductors are revealed in intense (60 tesla) magnetic fields. Properties such as the topology of the Fermi surface and the nature of the superconducting order parameter are revealed. With modest maximum critical temperatures~13K the charge transfer salt organic superconductors prove to be incredibly valuable materials as their electronically clean nature and layered (highly anisotropic) structures yield insights to the high temperature superconductors. Observation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillatory phenomena, magnetic field induced superconductivity and re-entrant superconductivity are some of the physical phenomena observed in the charge transfer organic superconductors. In this talk, I will discuss the nature of organic superconductors and give an overview of the generation of intense magnetic fields; from the 60 tesla millisecond duration to the extreme 1000 tesla microsecond pulsed magnetic fields.

  3. Treatment of domestic wastewater for reuse with activated silica and magnesia

    E-Print Network [OSTI]

    Lindner, John Howard

    1985-01-01T23:59:59.000Z

    which are of concern in treat- ment for potable purposes are organics and trace inorganics. This research project was conducted in an attempt to determine if organic oxides such as activated silica and magnesia in various combinations with alum... in Wastewater Toxic Inorganics in Wastewater Existing Technology Coagulation and Flocculation Lime Coagulation . . ~ Alum Coagulation . ~ ~ ~ ~ Activated Silica Magnesia 5 6 8 9 10 13 14 15 16 III EXPERIMENTAL PLAN Was tewater ~ ~ ~ ~ ~ Jar...

  4. Sustainable and Organic Horticulture Department of

    E-Print Network [OSTI]

    Farming Principles and Practices HRT 253 (1) Compost Production and Use HRT 258 (3) Study A Farm C5S 360

  5. Models for Tribal Energy Development Organizations | Department...

    Energy Savers [EERE]

    that significantly contribute to community economic development. Learn about available business models such as the Section 17 corporation and the tribal utility. Also, get tips...

  6. PI Organization Chart | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergyOutreach toOverviewOverviewPHOENIXPI

  7. PPPO Organization Chart | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5 Accretion-of-Duties POLICYSpecialistPOlicy Flash8006

  8. OSDBU Organization Chart | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeekOMB Policies OMB PoliciesAbout Us »

  9. HC Organization Chart | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment ofofthePerformanceofPathwaySeptember

  10. HC Organization Chart | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneralGuiding Documents and Links GuidingTank Farm6

  11. Our Organization and Employees | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctober 2014FundsOpti-MNRESPONSEDecember 6,Our

  12. AU Organization Chart | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 2010 ARRAAATTACHMENTfLASH2011-6(2)-OPAMATVM FAQsAdvancedAU

  13. Transportation Organization and Functions | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnologyfact sheetTransferring thefor07Transportation

  14. Deuterium enrichment by selective photo-induced dissociation of an organic carbonyl compound

    DOE Patents [OSTI]

    Marling, John B. (Livermore, CA)

    1981-01-01T23:59:59.000Z

    A method for producing a deuterium enriched material by photoinduced dissociation which uses as the working material a gas phase photolytically dissociable organic carbonyl compound containing at least one hydrogen atom bonded to an atom which is adjacent to a carbonyl group and consisting of molecules wherein said hydrogen atom is present as deuterium and molecules wherein said hydrogen atom is present as another isotope of hydrogen. The organic carbonyl compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of the deuterium containing species to yield a deuterium enriched stable molecular product. Undissociated carbonyl compound, depleted in deuterium, is preferably redeuterated for reuse.

  15. Sources and Formation of OrganicSources and Formation of Organic Aerosols in our AtmosphereAerosols in our Atmosphere

    E-Print Network [OSTI]

    Einat, Aharonov

    Sources and Formation of OrganicSources and Formation of Organic Aerosols in our AtmosphereAerosols Department of Chemical Engineering University of Patras, Greece #12;Sources of Organic AerosolSources of Organic Aerosol Primary Secondary Anthropogenic ·Gasoline ·Diesel ·Biomass burning ·Meat Cooking Biogenic

  16. Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2Partners in the SpotlightEnergyEleanorAdvanced,

  17. Environment and Earth Sciences Department The Environment and Earth Sciences Department was created in 1993 from the Department of Environmental

    E-Print Network [OSTI]

    Escolano, Francisco

    Environment and Earth Sciences Department The Environment and Earth Sciences Department was created of the Earth and Vegetal Biology. Following the extension of the educational staff went incorporating of the Geological Society of Spain. It will be organized by the Department of Earth Sciences and the environment

  18. The Software Technology of the 21st Century: From Software Reuse to Collaborative Software Design

    E-Print Network [OSTI]

    Fischer, Gerhard

    Gerhard Fischer University of Colorado, Center for LifeLong Learning and Design (L3D) Department supports evolution [Dawkins, 1987]. Various types of software artifacts, such as design knowledge a cognitive and social problem [Fischer, 1987]. Designers must locate reusable software artifacts relevant

  19. Assessment of Reusing 14-ton, Thin-Wall, Depleted UF{sub 6} Cylinders as LLW Disposal Containers

    SciTech Connect (OSTI)

    O'Connor, D.G.

    2000-11-30T23:59:59.000Z

    Approximately 700,000 MT of DUF{sub 6} is stored, or will be produced under a current agreement with the USEC, at the Paducah site in Kentucky, Portsmouth site in Ohio, and ETTP site in Tennessee. On July 21, 1998, the 105th Congress approved Public Law 105-204 (Ref; 1), which directed that facilities be built at the Kentucky and Ohio sites to convert DUF{sub 6} to a stable form for disposition. On July 6, 1999, the Department of Energy (DOE) issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as Required by Public Law 105-204 (Ref. 2), in which DOE committed to develop a Depleted Uranium Hexafluoride Materials Use Roadmap''. On September 1, 2000, DOE issued the Draft Depleted Uranium Hexafluoride Materials Use Roadmap (Ref. 3) (Roadmap), which provides alternate paths for the long-term storage, beneficial use, and eventual disposition of each product form and material that will result from the DUF{sub 6} conversion activity. One of the paths being considered for DUF{sub 6} cylinders is to reuse the empty cylinders as containers to transport and dispose of LLW, including the converted DU. The Roadmap provides results of the many alternate uses and disposal paths for conversion products and the empty DUF{sub 6} storage cylinders. As a part of the Roadmap, evaluations were conducted of cost savings, technical maturity, barriers to implementation, and other impacts. Results of these evaluations indicate that using the DUF{sub 6} storage cylinders as LLW disposal containers could provide moderate cost savings due to the avoided cost of purchasing LLW packages and the avoided cost of disposing of the cylinders. No significant technical or institutional issues were identified that would make using cylinders as LLW packages less effective than other disposition paths. Over 58,000 cylinders have been used, or will be used, to store DUF{sub 6}. Over 51,000 of those cylinders are 14TTW cylinders with a nominal wall thickness of 5/16-m (0.79 cm). These- 14TTW cylinders, which have a nominal diameter of 48 inches and nominally contain 14 tons (12.7 MT) of DUF{sub 6}, were originally designed and fabricated for temporary storage of DUF{sub 6}. They were fabricated from pressure-vessel-grade steels according to the provisions of the ASME Boiler and Pressure Vessel Code (Ref. 4). Cylinders are stored in open yards at the three sites and, due to historical storage techniques, were subject to corrosion. Roughly 10,000 of the 14TTW cylinders are considered substandard (Ref. 5) due to corrosion and other structural anomalies caused by mishandling. This means that approximately 40,000 14TTW cylinders could be made available as containers for LLW disposal In order to demonstrate the use of 14TTW cylinders as LLW disposal containers, several qualifying tasks need to be performed. Two demonstrations are being considered using 14TTW cylinders--one demonstration using contaminated soil and one demonstration using U{sub 3}O{sub 8}. The objective of this report are to determine how much information is known that could be used to support the demonstrations, and how much additional work will need to be done in order to conduct the demonstrations. Information associated with the following four qualifying tasks are evaluated in this report. (1) Perform a review of structural assessments that have been conducted for 14TTW. (2) Develop a procedure for filling 14TTW cylinders with LLW that have been previously washed. (3) Evaluate the transportation requirements for shipping 14TTW cylinders containing LLW. (4) Evaluate the WAC that will be imposed by the NTS. Two assumptions are made to facilitate this evaluation of using DUF{sub 6} cylinders as LLW disposal containers. (1) Only 14TTW cylinders will be considered for use as LLW containers, and (2) The NTS will be the LLW disposal site.

  20. 02 10 15 NEI Questions DOE Workshop final | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENT OF ENERGY' S FACILITY REUSE AT THE ROCKY002

  1. 07.20.11_SEAB_Agenda.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENT OF ENERGY' S FACILITY REUSE AT

  2. 07.20.11_SEAB_Agenda_FINAL.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENT OF ENERGY' S FACILITY REUSE

  3. Recycling Guide: Reduce, Reuse, Recycle Recycling Information Call 301-496-7990 or visit the NEMS Website at http://www.nems.nih.gov

    E-Print Network [OSTI]

    Baker, Chris I.

    Recycling Guide: Reduce, Reuse, Recycle Recycling Information ­ Call 301-496-7990 or visit the NEMS in COMMINGLED bin Rinse food/beverage containers before recycling No Pyrex or Styrofoam Printer and Copier Toner Cartridges in TONER CARTRIDGE bin Recycle packaging material in appropriate bin NIH charities

  4. Reuse Tools to Help Enable Climate Research in NASA Missions Chris A. Mattmann"#$, Robert R. Downs%, James J. Marshall&, Neal F. Most&

    E-Print Network [OSTI]

    Mattmann, Chris

    the mission lifecycle. Exploring and incorporating software assets into a software development project also development lifecycles and to form a framework for the effective and efficient development of mission software of the development of mission software. Incorporating reuse practices in the software development process enables its

  5. 2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

  6. Quantum Cryptography II: How to re-use a one-time pad safely even if P=NP

    E-Print Network [OSTI]

    Charles H. Bennett; Gilles Brassard; Seth Breidbart

    2014-07-02T23:59:59.000Z

    When elementary quantum systems, such as polarized photons, are used to transmit digital information, the uncertainty principle gives rise to novel cryptographic phenomena unachievable with traditional transmission media, e.g. a communications channel on which it is impossible in principle to eavesdrop without a high probability of being detected. With such a channel, a one-time pad can safely be reused many times as long as no eavesdrop is detected, and, planning ahead, part of the capacity of these uncompromised transmissions can be used to send fresh random bits with which to replace the one-time pad when an eavesdrop finally is detected. Unlike other schemes for stretching a one-time pad, this scheme does not depend on complexity-theoretic assumptions such as the difficulty of factoring.

  7. Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Radisav Vidic; David Dzombak; Ming-Kai Hsieh; Heng Li; Shih-Hsiang Chien; Yinghua Feng; Indranil Chowdhury; Jason Monnell

    2009-06-30T23:59:59.000Z

    This study evaluated the feasibility of using three impaired waters - secondary treated municipal wastewater, passively treated abandoned mine drainage (AMD), and effluent from ash sedimentation ponds at power plants - for use as makeup water in recirculating cooling water systems at thermoelectric power plants. The evaluation included assessment of water availability based on proximity and relevant regulations as well as feasibility of managing cooling water quality with traditional chemical management schemes. Options for chemical treatment to prevent corrosion, scaling, and biofouling were identified through review of current practices, and were tested at bench and pilot-scale. Secondary treated wastewater is the most widely available impaired water that can serve as a reliable source of cooling water makeup. There are no federal regulations specifically related to impaired water reuse but a number of states have introduced regulations with primary focus on water aerosol 'drift' emitted from cooling towers, which has the potential to contain elevated concentrations of chemicals and microorganisms and may pose health risk to the public. It was determined that corrosion, scaling, and biofouling can be controlled adequately in cooling systems using secondary treated municipal wastewater at 4-6 cycles of concentration. The high concentration of dissolved solids in treated AMD rendered difficulties in scaling inhibition and requires more comprehensive pretreatment and scaling controls. Addition of appropriate chemicals can adequately control corrosion, scaling and biological growth in ash transport water, which typically has the best water quality among the three waters evaluated in this study. The high TDS in the blowdown from pilot-scale testing units with both passively treated mine drainage and secondary treated municipal wastewater and the high sulfate concentration in the mine drainage blowdown water were identified as the main challenges for blowdown disposal. Membrane treatment (nanofiltration or reverse osmosis) can be employed to reduce TDS and sulfate concentrations to acceptable levels for reuse of the blowdown in the cooling systems as makeup water.

  8. Investigation of temperature dependence of fracture toughness in high-dose HT9 steel using small-specimen reuse technique

    SciTech Connect (OSTI)

    Baek, Jong-Hyuk [KAERI] [KAERI; Byun, Thak Sang [ORNL] [ORNL; Maloy, S [Los Alamos National Laboratory (LANL)] [Los Alamos National Laboratory (LANL); Toloczko, M [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL)

    2014-01-01T23:59:59.000Z

    The temperature dependence of fracture toughness in HT9 steel irradiated to 3 145 dpa at 380 503 C was investigated using miniature three-point bend (TPB) fracture specimens. A miniature-specimen reuse technique has been established: the tested halves of subsize Charpy impact specimens with dimensions of 27 mm 3mm 4 mm were reused for this fracture test campaign by cutting a notch with a diamond-saw in the middle of each half, and by fatigue-precracking to generate a sharp crack tip. It was confirmed that the fracture toughness of HT9 steel in the dose range depends more strongly on the irradiation temperature than the irradiation dose. At an irradiation temperature <430 C, the fracture toughness of irradiated HT9 increased with the test temperature, reached an upper shelf of 180 200 MPa ffiffiffiffiffi m p at 350 450 C, and then decreased with the test temperature. At an irradiation temperatureP430 C, the fracture toughness was nearly unchanged up to about 450 C and decreased slowly with test temperatures in a higher temperature range. Such a rather monotonic test temperature dependence after high-temperature irradiation is similar to that observed for an archive material generally showing a higher degree of toughness. A brittle fracture without stable crack growth occurred in only a few specimens with relatively lower irradiation and test temperatures. In this discussion, these TPB fracture toughness data are compared with previously published data from 12.7 mm diameter disc compact tension (DCT) specimens.

  9. Investigation of temperature dependence of fracture toughness in high-dose HT9 steel using small-specimen reuse technique

    SciTech Connect (OSTI)

    Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, Stuart A.; Toloczko, Mychailo B.

    2014-01-01T23:59:59.000Z

    The temperature dependence of fracture toughness in HT9 steel irradiated to 3–145 dpa at 380–503 degrees*C was investigated using miniature three-point bend (TPB) fracture specimens. A miniature-specimen reuse technique has been established: the tested halves of subsize Charpy impact specimens with dimensions of 27 mm *3mm* 4 mm were reused for this fracture test campaign by cutting a notch with a diamond-saw in the middle of each half, and by fatigue-precracking to generate a sharp crack tip. It was confirmed that the fracture toughness of HT9 steel in the dose range depends more strongly on the irradiation temperature than the irradiation dose. At an irradiation temperature <430 *degreesC, the fracture toughness of irradiated HT9 increased with the test temperature, reached an upper shelf of 180—200 MPa*m^.5 at 350–450 degrees*C, and then decreased with the test temperature. At an irradiation temperature >430 degrees*C, the fracture toughness was nearly unchanged up to about 450 *degreesC and decreased slowly with test temperatures in a higher temperature range. Such a rather monotonic test temperature dependence after high-temperature irradiation is similar to that observed for an archive material generally showing a higher degree of toughness. A brittle fracture without stable crack growth occurred in only a few specimens with relatively lower irradiation and test temperatures. In this discussion, these TPB fracture toughness data are compared with previously published data from 12.7 mm diameter disc compact tension (DCT) specimens.

  10. Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram Overview 20151SolicitationAdvancedDepartment ofLora Toy

  11. Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram Overview 20151SolicitationAdvancedDepartment ofLora ToyLora

  12. Microsoft Word - (Revised) Final Land Asset Transfer for Beneficial Reuse Report 6 9 15.docx

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft PowerPoint4:Department ofi TABLE OF

  13. To be an organization valued for our staff, support, and supply chain expertise.

    E-Print Network [OSTI]

    and measuring use of recycled content paper · Reducing CO2 emissions through consolidated truck routes · Reusing

  14. Asset Revitalization Guide for Asset Management and Reuse (For Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-05-29T23:59:59.000Z

    This draft has been scheduled for final review before the Directives Review Board on 6-18-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-1014). All major comments and concerns should be submitted by COB 6-17-15.

  15. Reclaiming a valuable, clean resource Texas cities increasingly embracing potable reuse

    E-Print Network [OSTI]

    Wythe, Kathy

    2013-01-01T23:59:59.000Z

    in this increased interest, Dr. Ellen McDonald, a principal at Alan Plummer Associates, Inc., said because of research conducted over the last #29;#30; to #29;#26; years, the research and profes- sional community has become more comfortable with the fact... disease and to remove organic and inorganic compounds that might be toxic,? he said. #27;e treatment processes used at the Big Spring plant ?have been tested and used elsewhere and shown to be e#21;ective,? McDonald said. As interest in direct...

  16. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbon AboutOrganizing Committee

  17. NDN, VOLUME TRANSMISSION, AND SELF-ORGANIZATION IN BRAIN DYNAMICS

    E-Print Network [OSTI]

    Freeman, Walter J.

    with neural network theory as proposed by Hebb in his 1949 classic The Organization of Behavior where heNDN, VOLUME TRANSMISSION, AND SELF- ORGANIZATION IN BRAIN DYNAMICS WALTER J FREEMAN Department chemical gradients; and order parameters that control self-organization of large populations of neurons

  18. Energy Department Broadens Public-Private Initiative to Help...

    Energy Savers [EERE]

    Department is releasing a sector-neutral version of the model that can be used by any business or organization, regardless of size, function, or ownership structure....

  19. 2002 Federal Energy and Water Management Award Winners | Department...

    Broader source: Energy.gov (indexed) [DOE]

    readiness. Alternative Financing Awards to Organizations Veterans Affairs Salt Lake City Health Care System Department of Veterans Affairs Salt Lake City, Utah During FY 2001, the...

  20. DEPARTMENT OF ENERGY Privacy Awareness Training | Department...

    Energy Savers [EERE]

    DEPARTMENT OF ENERGY Privacy Awareness Training DEPARTMENT OF ENERGY Privacy Awareness Training DEPARTMENT OF ENERGY Privacy Awareness Training DEPARTMENT OF ENERGY Privacy...

  1. From association to organization

    E-Print Network [OSTI]

    Mandler, George

    2011-01-01T23:59:59.000Z

    S.M. (1978). Organization theory and memory for prose: Aand summarize organization theory and relevant empiricalexplained in terms of organization theory. The hierarchical

  2. Control of the accumulation of non-process elements and organic compounds in pulp mills with bleach filtrate reuse. Quarterly report, October--December 1996

    SciTech Connect (OSTI)

    Frederick, W.J.; Laver, M.L.; Rorrer, G.L.

    1996-12-31T23:59:59.000Z

    A portion of each filtrate sample was freeze-dried and the resulting solids were analyzed for ash content. Adsorption experiments with calcium and barium were carried at 70{degrees}C in a temperature controlled incubator under continuous mixing in order to simulate the environment experienced by brownstock as it moves through the Q stage. In the calcium experiments, it was difficult to accurately determine the calcium adsorbed on the pulp by measuring the depletion of calcium in the aqueous phase. Consequently, the technique was modified. In the modified technique, the calcium-adsorbed pulp is acid washed again to release the calcium. The calcium concentration in the washings is measured, and the calcium adsorbed on the pulp is estimated by material balance. Measurement of calcium adsorption on the brownstock pulp fibers from the L-P/Samoa mill have been obtained.

  3. Frequently Asked Questions about Organic Food The organic food industry is one of the fastest growing markets in the U.S. With the

    E-Print Network [OSTI]

    Frequently Asked Questions about Organic Food The organic food industry is one of the fastest growing markets in the U.S. With the establishment of organic food standards by the U.S. Department choosing organic food, know the answers to consumer's most frequently asked questions. Q: What is meant

  4. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    David B. Frederick

    2011-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  5. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    David Frederick

    2012-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  6. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2012 reporting year, an estimated 11.84 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  7. Metering Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMayEnergy Metal OrganicDepartmentProcess

  8. Brownfield reuse of dredged New York Harbor sediment by cement-based solidification/stabilization

    SciTech Connect (OSTI)

    Loest, K. [ECDC Environmental L.C., Pembroke, MA (United States). Eastern Operations; Wilk, C.M. [Portland Cement Association, Skokie, IL (United States)

    1998-12-31T23:59:59.000Z

    Newly effective federal regulations restrict the ocean disposal of sediments dredged from the harbors of New York and Newark. The New York Port Authority is faced with a critical situation: find land-based disposal/uses for 10`s of millions cubic yards of sediments or lose standing as a commercial port for ocean-going ships. One of the technologies now being employed to manage the sediments is portland cement-based solidification/stabilization (S/S) treatment. At least 4 million cubic yards of the sediments will undergo cement-based S/S treatment. This treatment will immobilize heavy metals, dioxin, PCBs and other organic contaminants in the sediment. The treatment changes the sediment from a environmental liability into a valuable structural fill. This structural fill is being used at two properties. The first property is an old municipal landfill in Port Newark, New Jersey. The treated sediments are being used as structural fill to cover about 20 acres of the landfill. This will allow planned redevelopment of the landfill property into a shopping mall. The second property called the Seaboard site, was the location of a coal gasification facility and later a wood preservation facility. This 160-acre property has been designated for brownfield redevelopment. Over 4 million cubic yards of treated sediments will eventually cover this site. Portland cement is the selected S/S binding reagent. Nearly 500,000 tons of cement will eventually be used to treat the sediments. Cement was selected for its ability to (a) change the peanut butter-like consistency of the sediments into a structural material and (b) to physically and chemically immobilize hazardous constituents in the sediment.

  9. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  10. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2012-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  11. How to reuse a one-time pad and other notes on authentication, encryption, and protection of quantum information

    SciTech Connect (OSTI)

    Oppenheim, Jonathan [Racah Institute of Theoretical Physics, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904 (Israel); Institute of Theoretical Physics and Astrophysics, University of Gdansk (Poland); Horodecki, Michal [Institute of Theoretical Physics and Astrophysics, University of Gdansk (Poland)

    2005-10-15T23:59:59.000Z

    Quantum information is a valuable resource which can be encrypted in order to protect it. We consider the size of the one-time pad that is needed to protect quantum information in a number of cases. The situation is dramatically different from the classical case: we prove that one can recycle the one-time pad without compromising security. The protocol for recycling relies on detecting whether eavesdropping has occurred, and further relies on the fact that information contained in the encrypted quantum state cannot be fully accessed. We prove the security of recycling rates when authentication of quantum states is accepted, and when it is rejected. We note that recycling schemes respect a general law of cryptography which we introduce relating the size of private keys, sent qubits, and encrypted messages. We discuss applications for encryption of quantum information in light of the resources needed for teleportation. Potential uses include the protection of resources such as entanglement and the memory of quantum computers. We also introduce another application: encrypted secret sharing and find that one can even reuse the private key that is used to encrypt a classical message. In a number of cases, one finds that the amount of private key needed for authentication or protection is smaller than in the general case.

  12. Burbank Transportation Management Organization: Impact Analysis

    SciTech Connect (OSTI)

    Brown, E.; Aabakken, J.

    2006-11-01T23:59:59.000Z

    The Burbank Transportation Management Organization (BTMO), a private, membership-based, nonprofit organization dedicated to traffic reduction and air quality improvement, contracted with the National Renewable Energy Laboratory (NREL), a U.S. Department of Energy-owned, contractor-operated national laboratory, to analyze its member programs and their benefits and effects. This report uses trip data collected by the BTMO, and defines and implements a methodology for quantifying non-traffic benefits such as gasoline savings, productivity, and pollution reduction.

  13. Implementation of Department of Energy Oversight Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-15T23:59:59.000Z

    This Order provides direction for implementing Department of Energy (DOE) P 226.1, Department of Energy Oversight Policy, dated 6-10-05, which establishes DOE policy for assurance systems and processes established by DOE contractors and oversight programs performed by DOE line management and independent oversight organizations. Cancels DOE P 450.5. Canceled by DOE O 226.1A.

  14. Caltech Facilities Department Sustainability Statement

    E-Print Network [OSTI]

    Dervan, Peter B.

    Building Best Management Practices Consider lifecycle costs during design, construction and operation non-potable water reuse on campus Employ active storm water retention/collection methods Establish management plan Strategies Planned: Green Building Best Management

  15. Sample Internship Posting Department Name

    E-Print Network [OSTI]

    Bordenstein, Seth

    Sample Internship Posting Department Name: Internship Title: Location: Description of Organization are examples from other internship postings Interns will: · Analyze potential investments · Shadow team members(s) in ________ is desirable For a list of majors see http://admissions.vanderbilt.edu/major Internship Period: The following

  16. Research Profile a Department of

    E-Print Network [OSTI]

    Kim, Tae-Kyun

    in this area embraces fundamentals and applications, including work on novel materials synthesis (including characterization and applications of inorganic and hybrid inorganic-organic framework materials), on corrosionResearch Profile a Department of Materials Science and Metallurgy Research Profile #12;b Research

  17. Optimizing Organ Allocation and Acceptance OGUZHAN ALAGOZ

    E-Print Network [OSTI]

    Schaefer, Andrew

    it is transplanted is called the cold ischemia time (CIT). During this time, organs are bathed in storage solutions J. SCHAEFER Departments of Industrial Engineering and Medicine University of Pittsburgh Pittsburgh of Transplant Recipients states that the acceptable cold ischemia time limit for a liver is 12 to 18 hours [22

  18. SHIP3QARD ORGANIC GEOCHEMISTRY JOIDES RESOLUTION

    E-Print Network [OSTI]

    with the National Science Foundation. Funding for the program is provided by the following agencies: DepartmentSHIP3QARD ORGANIC GEOCHEMISTRY ON JOIDES RESOLUTION Kay-Christian Bneis Ocean Drilling Program 345 Middlefield Road Menlo Park, CA 94025 OCEAN DRILLING PROGRAM TEXAS A&MUNIVERSITY TECHNICAL NOTE

  19. Ris National Laboratory Optics and Plasma Reserch Department

    E-Print Network [OSTI]

    Optics and Plasma Research Department, Risø National Laboratory Required publisher statement Copyright: Optics and Plasma Research Department Division: Risoe National National Laboratory Address: P.O. Box 49Name: R. Suffix: Organization: Optics and Plasma Research Department Division: Risoe National National

  20. Jonesboro Metropolitan Planning Organization 2030 Long Range Transportation Plan

    E-Print Network [OSTI]

    Jonesboro Metropolitan Planning Organization

    southern boundary. The airport is connected to the roadway system by Airport Road connecting Nettleton Avenue and US 49 (Johnson Avenue). According to the Federal Aviation Administration (FAA) information dated July 7, 2005, there are about 123...Jonesboro Metropolitan Planning Organization In cooperation with the Arkansas State Highway and Transportation Department United States Department of Transportation Federal Highway Administration Federal Transit Administration...

  1. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrophobic Primary Organic Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of ?-Pinene. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic...

  2. Organic Photovoltaics Philip Schulz

    E-Print Network [OSTI]

    Firestone, Jeremy

    Field Effect Transistors Organic Light Emitting Diodes Organic Solar Cells .OFET, OTFT .RF-ID tag 1977 ­ Conductivity in polymers 1986 ­ First heterojunction OPV 1987 ­ First organic light emitting diode (OLED) 1993 ­ First OPV from solution processing 2001 ­ First certified organic solar cell with 2

  3. Departmental Organization and Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-06-10T23:59:59.000Z

    Effective immediately, the Departmental organization structure reflected in the chart at Attachment 1 has been approved.

  4. Reuse of activated alumina

    SciTech Connect (OSTI)

    Hobensack, J.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31T23:59:59.000Z

    Activated alumina is used as a trapping media to remove trace quantities of UF{sub 6} from process vent streams. The current uranium recovery method employs concentrated nitric acid which destroys the alumina pellets and forms a sludge which is a storage and disposal problem. A recently developed technique using a distilled water rinse followed by three dilute acid rinses removes on average 97% of the uranium, and leaves the pellets intact with crush strength and surface area values comparable with new material. Trapping tests confirm the effectiveness of the recycled alumina as UF{sub 6} trapping media.

  5. Innovative Water Reuse

    E-Print Network [OSTI]

    Hoffman, W.

    2011-01-01T23:59:59.000Z

    Air Conditioning & Refrigeration ? Energy Meets Water H.W. (Bill)Hoffman, P.E. H.W. (Bill)Hoffman & Associates, LLC 512-294-7193 billhoffmantx@earthlink.net Cooling Towers The purpose of a cooling tower is to get rid of unwanted... energy! By evaporating Water! Cooling Towers 43% Boilers 4%Toilets 20% Other Plumbing 8% Food Service 8% Sterilizers 6% Dialysis 3% Leaks 3% Cleaning 3% Other 2% A Large Hospital in Florida Cooling 50% Indoor 40% Irrigation 10...

  6. Innovative Water Reuse

    E-Print Network [OSTI]

    Jaber, F. H.

    2011-01-01T23:59:59.000Z

    Concern? Urban BMPs ? Rain garden- bioretention areas ? Porous pavements ? Green roofs ? Rainwater harvesting Home Rain Garden Rain Garden in Parking Lot Types of Permeable Pavement Paver blocks Porous asphalt Porous concrete Turf Paver... management 1.Rain gardens 2.Porous pavement 3.Green roofs Hydrologic Cycle ISSUES ? Water Conservation ? Is there enough? ? Can conservation make a difference? ? Water Quality ? Contamination/pollution due to runoff Eagle...

  7. DOE (Department of Energy) funds awarded for scrap tire research

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    After promising initial results in demonstrating the technical and commercial feasibility of modifying the surface of finely ground scrap tires to produce adhesion properties needed for reuse in polymers such as polyurethanes and epoxies, the US Department of Energy increased its research contract with Air Products and Chemicals to $850,000. The additional monies will be used to evaluate a second approach to surface modification that will extend the use of the rubber to other polymers and rubber formulations. Supplies to the surface-modified rubber particles should be available by late summer for customer evaluation. The initial applications for the new rubber particles are expected to include polyurethane, for the manufacture of carpet underlayment, shoe soles and newly developed polyurethane spare tires, improving the impact resistance of polystyrene, PVC and engineering plastics and automotive belts, gaskets and seals.

  8. Metering Approaches | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMayEnergy Metal Organic

  9. Organe und Gremien Organe der Stiftung

    E-Print Network [OSTI]

    , Batavia IL (USA) Prof. Dr. F. Krausz BESSY GmbH, Berlin Prof. Dr. B. Naroska Universität Hamburg Prof. Dr. F. Pauss European Organization for Particle Physics CERN, Geneva (CH) Dr. N. Roe Lawrence Berkeley Organization for Particle Physics CERN, Geneva (CH) Dr. A. Wrulich Paul Scherrer Institut, Villigen (CH) 14 #12

  10. Organe und Gremien Organe der Stiftung

    E-Print Network [OSTI]

    Medizinische Forschung, Heidelberg Prof. Dr. E. Jaeschke BESSY GmbH, Berlin Prof. Dr. W. Jentschke Institut für Experimentalphysik, Universität Hamburg (Ehrenmitglied) Dr. K.-H. Kissler European Organization for Particle Physics Organization for Particle Physics CERN, Geneva (CH) Prof. Dr. W. Sandner Max-Born-Institut, Berlin Dr. M

  11. Organe und Gremien Organe der Stiftung

    E-Print Network [OSTI]

    Kassel Prof. Dr. S. Großmann Fachbereich Physik, Universität Marburg Prof. Dr. E. Jaeschke BESSY Gmb Organization for Particle Physics CERN, Genf (CH) Prof. Dr. V. Metag Gesellschaft für Schwerionenforschung GSI, Darmstadt Dr. D. Möhl European Organization for Particle Physics CERN, Genf (CH) Prof. Dr. J. Stachel

  12. Organe und Gremien Organe der Stiftung

    E-Print Network [OSTI]

    BESSY GmbH, Berlin Prof. Dr. W. Jentschke II. Institut für Experimentalphysik, Universität Hamburg (Ehrenmitglied) Dr. K.-H. Kissler European Organization for Particle Physics CERN, Geneva (CH) Prof. Dr. K. Königsmann Albert-Ludwigs-Universität Freiburg Dr. J. May European Organization for Particle Physics CERN

  13. An assessment and evaluation for recycle/reuse of contaminated process and metallurgical equipment at the DOE Rocky Flats Plant Site -- Building 865. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    An economic analysis of the potential advantages of alternatives for recycling and reusing equipment now stored in Building 865 at the Rocky Flats Plant (RFP) in Colorado has been conducted. The inventory considered in this analysis consists primarily of metallurgical and process equipment used before January 1992, during development and production of nuclear weapons components at the site. The economic analysis consists of a thorough building inventory and cost comparisons for four equipment dispositions alternatives. The first is a baseline option of disposal at a Low Level Waste (LLW) landfill. The three alternatives investigated are metal recycling, reuse with the government sector, and release for unrestricted use. This report provides item-by-item estimates of value, disposal cost, and decontamination cost. The economic evaluation methods documented here, the simple cost comparisons presented, and the data provided as a supplement, should provide a foundation for D&D decisions for Building 865, as well as for similar D&D tasks at RFP and at other sites.

  14. Mixed crystal organic scintillators

    DOE Patents [OSTI]

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16T23:59:59.000Z

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  15. Department of Mathematics

    E-Print Network [OSTI]

    The Department of Mathematics is one of seven departments making up Purdue's College of Science. The Department has an international reputation as an ...

  16. Hon. Daniel B. Poneman Deputy Secretary U.S. Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Introduction Since its creation in 1999, the National Nuclear Security Administration (NNSA) has served as a separately-organized entity within the U.S. Department of Energy,...

  17. Organic photovoltaics and concentrators

    E-Print Network [OSTI]

    Mapel, Jonathan King

    2008-01-01T23:59:59.000Z

    The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

  18. DEPARTMENT CODE Department of Computer Science

    E-Print Network [OSTI]

    DEPARTMENT CODE Department of Computer Science College of Natural Sciences Colorado State and Amendment of this Code 19 #12;1 MISSION AND OBJECTIVES 3 Preamble This Code of the Department of Computer

  19. Organizing and Personalizing Intelligence

    E-Print Network [OSTI]

    Tan, Ah-Hwee

    Vista). More sophis- ticated ones, such as Northern Light, BullsEye and Copernic go a step further organize

  20. Organic photosensitive devices

    DOE Patents [OSTI]

    Rand, Barry P; Forrest, Stephen R

    2013-11-26T23:59:59.000Z

    The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.

  1. CCPPolicyBriefing Organization

    E-Print Network [OSTI]

    Feigon, Brooke

    . METHODOLOGY · The author incorporates the economic theory of organizations into the framework of public law to establish the theory of cartel organization, and calls for further studies to disclose the sophisticatedCCPPolicyBriefing September 2008 Cartel Organization and Antitrust Enforcement W: www

  2. "Managing Department Climate Change"

    E-Print Network [OSTI]

    Sheridan, Jennifer

    "Managing Department Climate Change" #12;Presenters · Ronda Callister Professor, Department Department Climate? · Assesment is essential for determining strategies for initiating change · In a research climate · Each panelist will describe an intervention designed to improve department climate ­ Ronda

  3. Simulation of the Buxton-Clarke Model for Organic Photovoltaic Cells

    E-Print Network [OSTI]

    Jerome, Joseph W.

    Simulation of the Buxton-Clarke Model for Organic Photovoltaic Cells J.W. Jerome Department 02912 USA Abstract--Modeling of organic photovoltaic (OPV) cells can be achieved by adaptation of drift-V curves and carrier current densities. I. INTRODUCTION Organic solar cells are the topic of extensive

  4. Organic solvent technical basis document

    SciTech Connect (OSTI)

    SANDGREN, K.R.

    2003-03-22T23:59:59.000Z

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for the organic solvent fire representative and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described in this report.

  5. Milk is a common ingredient in many fried foods. Allergen cross contact can occur through the use of shared frying oil. Analytical methods are needed to determine the level of protein contamination in re-used oil. This study

    E-Print Network [OSTI]

    Heller, Barbara

    the use of shared frying oil. Analytical methods are needed to determine the level of protein contamination in re-used oil. This study evaluated the performance of four ELISA test kits in comparison with a total protein assay for detection of milk protein residues in spiked oils that have been subjected

  6. From Population to Organization Thinking

    E-Print Network [OSTI]

    Lane, David; Maxfield, Robert; Read, Dwight W; van der Leeuw, Sander E

    2009-01-01T23:59:59.000Z

    Herbert Simon developed a theory of organization for complexin need of a theory of organization. As we have alreadya deeper theory of organization: complex networks,

  7. Glassy dynamics distinguishes chromosome organization across organisms

    E-Print Network [OSTI]

    Hongsuk Kang; Young-Gui Yoon; D. Thirumalai; Changbong Hyeon

    2015-06-03T23:59:59.000Z

    Recent experiments showing scaling of the intrachromosomal contact probability, $P(s)\\sim s^{-1}$ with the genomic distance $s$, are interpreted to mean a self-similar fractal-like chromosome organization. However, scaling of $P(s)$ varies across organisms, requiring an explanation. We illustrate that dynamical arrest in a highly confined space as a discriminating marker for genome organization, by modeling chromosome inside a nucleus as a self-avoiding homopolymer confined to a sphere of varying sizes. Brownian dynamics simulations show that the chain dynamics slows down as the polymer volume fraction ($\\phi$) inside the confinement approaches a critical value $\\phi_c$. Using finite size scaling analysis, we determine $\\phi_c^{\\infty}\\approx 0.44$ for a sufficiently long polymer ($N\\gg 1$). Our study shows that the onset of glassy dynamics is the reason for the formation of segregated organization in human chromosomes ($N\\approx 3\\times 10^9$, $\\phi\\gtrsim\\phi_c^{\\infty}$), whereas chromosomes of budding yeast ($N\\approx 1.2\\times 10^7$, $\\phi<\\phi_c^{\\infty}$) are equilibrated with no clear signature of such organization.

  8. Sociology: Computational Organization Theory Sociology: Computational Organization Theory

    E-Print Network [OSTI]

    Sadeh, Norman M.

    Sociology: Computational Organization Theory Sociology: Computational Organization Theory Kathleen; organization theory; organizational learning; social networks; expert systems Citation: Kathleen Carley, 1994, "Sociology: Computational Organization Theory." Social Science Computer Review, 12(4): 611-624. #12;Sociology

  9. Theory of Organic Magnetoresistance in Disordered Organic Semiconductors

    E-Print Network [OSTI]

    Flatte, Michael E.

    Theory of Organic Magnetoresistance in Disordered Organic Semiconductors Nicholas J. Harmon semiconductors, disordered semiconductors, organic magnetoresistance, percolation theory, spin transport organic semiconductors. The theory proposed here maps the complex phenomena of spin-dependent hopping onto

  10. Feasibility of Organizations -A Refinement of Chemical Organization Theory

    E-Print Network [OSTI]

    Hinze, Thomas

    Feasibility of Organizations - A Refinement of Chemical Organization Theory with Application to P a theorem providing a criteria for an unfeasible organization. This is a refinement of organization theory organization. Key words: reaction networks, constructive dynamical systems, chem- ical organization theory

  11. Food Exemption Request Organization Information

    E-Print Network [OSTI]

    Food Exemption Request Organization Information Organization Received ______ Organizations are permitted one food exemption per semester. Requests must be submitted): ___________________________________________________________________________________________________________________________________________ ___________________________________________________________________________________________________________________________________________ Only homemade food may be provided by your organization. Initial ______ No prepared food may

  12. Astatinated organic compounds

    DOE Patents [OSTI]

    Milius, R.A.; Lambrecht, R.M.; Bloomer, W.D.

    1989-05-02T23:59:59.000Z

    Methods and kits for incorporating a radioactive astatine isotope (particularly [sup 211]At) into an organic compound by electrophilic astatodestannylation of organostannanes. 3 figs.

  13. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R

    2012-10-23T23:59:59.000Z

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  14. Capture and release of mixed acid gasses with binding organic liquids

    DOE Patents [OSTI]

    Heldebrant, David J. (Richland, WA); Yonker, Clement R. (Kennewick, WA)

    2010-09-21T23:59:59.000Z

    Reversible acid-gas binding organic liquid systems that permit separation and capture of one or more of several acid gases from a mixed gas stream, transport of the liquid, release of the acid gases from the ionic liquid and reuse of the liquid to bind more acid gas with significant energy savings compared to current aqueous systems. These systems utilize acid gas capture compounds made up of strong bases and weak acids that form salts when reacted with a selected acid gas, and which release these gases when a preselected triggering event occurs. The various new materials that make up this system can also be included in various other applications such as chemical sensors, chemical reactants, scrubbers, and separators that allow for the specific and separate removal of desired materials from a gas stream such as flue gas.

  15. Glassy dynamics distinguishes chromosome organization across organisms

    E-Print Network [OSTI]

    Kang, Hongsuk; Thirumalai, D; Hyeon, Changbong

    2015-01-01T23:59:59.000Z

    Recent experiments showing scaling of the intrachromosomal contact probability, $P(s)\\sim s^{-1}$ with the genomic distance $s$, are interpreted to mean a self-similar fractal-like chromosome organization. However, scaling of $P(s)$ varies across organisms, requiring an explanation. We illustrate that dynamical arrest in a highly confined space as a discriminating marker for genome organization, by modeling chromosome inside a nucleus as a self-avoiding homopolymer confined to a sphere of varying sizes. Brownian dynamics simulations show that the chain dynamics slows down as the polymer volume fraction ($\\phi$) inside the confinement approaches a critical value $\\phi_c$. Using finite size scaling analysis, we determine $\\phi_c^{\\infty}\\approx 0.44$ for a sufficiently long polymer ($N\\gg 1$). Our study shows that the onset of glassy dynamics is the reason for the formation of segregated organization in human chromosomes ($N\\approx 3\\times 10^9$, $\\phi\\gtrsim\\phi_c^{\\infty}$), whereas chromosomes of budding yea...

  16. CX-008617: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    is to convert the existing 735-13A storage facility into a shop for use by Nevada Test Site Engineering. It will reuse equipment installed per E-MT-A-00008 & TC-A-2012-0034 for...

  17. Penn State Consortium for Building Energy Innovation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The Center for Building Energy...

  18. New York building stands out, saves energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and other features, the building mitigates heat radiation. A rain water harvesting unit reduces runoff into the sewage system, and the water is reused for nonpotable purposes...

  19. Analysis of alternative marketing organizations for improving rice producer income

    E-Print Network [OSTI]

    Guillot, Patrick Dale

    1975-01-01T23:59:59.000Z

    of Depart nt) (Member) (Member) (Member) (Member) December 1975 ABSTRACT Analysis of Alternative Marketing Organizations for Improving Rice Producer income. (December 1975) Patrick Dale Guillot, B. S. , Louisiana State University Chairman of Advisory... of the Blue Ribbon Rice Mills, Inc. This gives ARI milling and storage facilities. Also, AGA has acquired control and ownership of the MGC facilities. Both of these actions are definite moves toward a fully integrated and producer operated organization...

  20. Effective Presentations Organization

    E-Print Network [OSTI]

    Shull, David H.

    1 Pericles Effective Presentations · Content · Organization · Delivery · Visual aids and graphics Be brave Graphics · KISS · Powerpoint: ­ Font · Bigger than you'd expect · San serif ­ Lines · Thicker than · Organization · Energy · Clarity · Poise Key: Practice Web Resources · http

  1. U.S. Department of Energy National Center of Excellence for Metals Recycle

    SciTech Connect (OSTI)

    Adams, V.; Bennett, M.; Bishop, L. [Dept. of Energy, Oak Ridge, TN (United States)] [and others

    1998-05-01T23:59:59.000Z

    The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-l2 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer programs, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, provide pollution prevention information and documentation, and produce independent government estimates. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrapyard, and disposition of PCB-contaminated drums.

  2. Office of the General Counsel Organization Chart | Department...

    Energy Savers [EERE]

    Counsel. The office is separated into four major departmental groups: Litigation, Regulation and Enforcement (GC-30) Environment and Compliance (GC-50) Transactions, Technology...

  3. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN A&B DEPARTMENT

    E-Print Network [OSTI]

    McDonald, Kirk

    of a secondary particle flux production detection system. Employed detectors are polycrystalline diamond of a secondary particle flux production detection sys- tem. Employed detectors are polycrystalline diamond production detection sys- tem. Employed detectors are polycrystalline diamond detectors and electron mul

  4. Approved Department Electives (4) Chem 109A Organic Chemistry

    E-Print Network [OSTI]

    Fabrikant, Sara Irina

    Development (4) Env S 105 ­ Solar and Renewable Energy (3) Matrl 100A ­ Structure and Properties I (3) Matrl) ME 112 ­ Energy Conversion (3) ME 114 ­ Water Supply and Pollution Control (3) ME 119 ­ Intro Topics (please mark specific course letter on form) (3) ME 128 ­ Design of Biomedical Devices (3) ME 134

  5. DEPARTMENT OF LEADERSHIP, POLICY AND ORGANIZATIONS PROGRAM OF STUDIES

    E-Print Network [OSTI]

    Bordenstein, Seth

    Economics of Education 3 EDP 3150 Public Leadership 3 EDP 3120 Ed. Policy and School Reform OR* 3 EDP 3130 Issues in K-12 Policy Reform 3 IEPM 3140 Education and Economic Development 3 IEPM 3130 Comparative Issues in Higher Education Policy Reform 3 OR OTHERS CHOSEN IN CONSULTATION WITH ADVISER Specialty

  6. Electrofuels: Tiny Organisms Making a Big Impact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6:Energy|Electrifying Your Drive

  7. Office of International Affairs Organization Chart | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOf EnvironmentalGuide, July 29,Office ofInternational

  8. Office of Policy and International Affairs Organization Chart | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOf EnvironmentalGuide, July 29,Office0 -Public Worksof

  9. Outreach to Faith--Based Organizations | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergy

  10. Department of Energy Recognizes Six Leading Organizations for Helping the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics4 VolumeAgua Caliente SolarU.S. 'Go Green' |

  11. EPA Honors Organizations for Supporting Green Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics4DimitriJune 30, 2015 Cement

  12. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN BE Department

    E-Print Network [OSTI]

    Keil, Eberhard

    ], ZGOUBI [5] results of M´eot [6], Machida's results [7], stand-alone PTC [8] results from Kelliher [9

  13. Federal Energy Management Program Organization Chart | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDThe data dashboardA A NA NAofDecember 17,

  14. DOE ORGANIZATION CHART - JULY 2015 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010ConferencingOperational

  15. Electrofuels: Tiny Organisms Making a Big Impact | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome | Documents

  16. Fuel Cell Technologies Office Organization Chart and Contacts | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartmentaboutInformation Resources »

  17. Portsmouth Paducah Project Office (PPPO) Organization | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth Site » Portsmouth Community Outreach » Portsmouth EventsEnergy

  18. Office of Environmental Management (EM) Organization Chart | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctober 2014 National IdlingRollout -Leads, April

  19. OCIO Organization Chart (printable version) | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal RegisterImplementation3DPhotostatLBL - 5OCIO

  20. DOE Organization Chart - December 2014 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU WasteAdministrator |20.1C BriefingHeat Pump

  1. DOE Organization Chart - July 15, 2013 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU WasteAdministrator |20.1C BriefingHeat PumpJanuaryDOE

  2. DOE Organization Chart - July 23, 2013 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU WasteAdministrator |20.1C BriefingHeat

  3. DOE Organization Chart - June 6, 2013 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU WasteAdministrator |20.1C BriefingHeatJune 6, 2013

  4. DOE Organization Chart - May 1, 2013 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU WasteAdministrator |20.1C BriefingHeatJune 6, 20131,

  5. DOE Organization Chart - October 2014 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU WasteAdministrator |20.1C BriefingHeatJune 6,October

  6. DOE Organization Chart - October 22, 2012 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU WasteAdministrator |20.1C BriefingHeatJune

  7. DOE Organization Chart - October 6, 2011 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU WasteAdministrator |20.1C BriefingHeatJune6, 2011 DOE

  8. Home Energy Score: Information for Interested Organizations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar PowerCommercial ColdEnergySavvyResearchHome EnergyEnergy

  9. Home Energy Score: Information for Interested Organizations | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FYAffairs,AssessmentInteractive Graphic

  10. EPA Honors Organizations for Supporting Green Power | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office ofEnergyFinalEnergy Boosts Efforts7 Federal Register303 FederalEPA

  11. leveraging_partnerships_with_faith-based_organizations.doc | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want to followSuite 600, 1901 North MoorePRESERVE THE IViJ lI

  12. Modifications and Optimization of the Organic Rankine Cycle | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil &315_ArnibanPriorityof Energy Poneman ||ProgramsEnergy

  13. COMPUTER ENGINEERING EECS Department

    E-Print Network [OSTI]

    COMPUTER ENGINEERING EECS Department The Electrical Engineering and Computer Science (EECS) Department at WSU offers undergraduate degrees in electrical engineering, computer engineering and computer science. The EECS Department offers Master of Science degrees in computer science, electrical engineering

  14. Department of Engineering.

    E-Print Network [OSTI]

    Department of Civil & Structural Engineering. Vibration based Structural Health Monitoring James views of the same spectrum Department of Civil & Structural Engineering. Structural health monitoring of Sheffield, United Kingdom Department of Civil & Structural Engineering. HEALTH and PERFORMANCE are different

  15. ELECTRICAL ENGINEERING EECS Department

    E-Print Network [OSTI]

    ELECTRICAL ENGINEERING EECS Department The Electrical Engineering and Computer Science (EECS) Department at WSU offers undergraduate degrees in electrical engineering, computer engineering and computer science. The EECS Department offers master of science degrees in computer science, electrical engineering

  16. COMPUTER SCIENCE EECS Department

    E-Print Network [OSTI]

    COMPUTER SCIENCE EECS Department The Electrical Engineering and Computer Science (EECS) Department at WSU offers undergraduate degrees in electrical engineering, computer engineering and computer science. The EECS Department offers master of science degrees in computer science, electrical engineering

  17. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    and the Department of Mechanical Engineering Tufts University Retooling Our Energy Ecosystem: challengesMechanical engineering Department Seminar Robert J. Hannemann The Gordon Institute and Chair of the Tufts Department of Mechanical Engineering. His technical and academic interests

  18. Departement Umweltwissenschaften Department of Environmental Sciences

    E-Print Network [OSTI]

    Fischlin, Andreas

    Departement Umweltwissenschaften Department of Environmental Sciences Environmental Sciences .......................................................................10 3 The impact of Environmental Sciences graduates on Swiss economy, public administration.............................................................................................................................................. 15 3.1 Four statements on the impact of Environmental Sciences graduates on Swiss economy, public

  19. Organic Separation Test Results

    SciTech Connect (OSTI)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-09-22T23:59:59.000Z

    Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations, could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.

  20. Loans | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    from the Energy Department and other U.S. government agencies. May 22, 2013 Moniz: Tesla Repayment Shows the Strength of Energy Department's Overall Loan Portfolio Tesla...

  1. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    Research Center. Currently he is an Assistant Prof. in the Aerospace and Ocean Engineering DepartmentMechanical engineering Department Seminar Cornel Sultan Virginia Tech Design for Control

  2. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, P.

    1993-12-28T23:59:59.000Z

    A process is presented of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube. The solvent is capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus is presented for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium. The apparatus includes a composite tube comprised of a blend of a polyolefin and a polyester. The composite tube has an internal diameter of from about 0.1 to about 2.0 millimeters and has sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube. 2 figures.

  3. ENVIRONMENTAL BIOTECHNOLOGY Electricity generation from model organic wastewater

    E-Print Network [OSTI]

    ENVIRONMENTAL BIOTECHNOLOGY Electricity generation from model organic wastewater in a cassette-008-1516-0 T. Shimoyama :S. Komukai :K. Watanabe Laboratory of Applied Microbiology, Marine Biotechnology, Tobitakyu, Chofu, Tokyo 182-0036, Japan B. E. Logan Department of Civil and Environmental Engineering

  4. Evidence for light perception in a bioluminescent organ

    E-Print Network [OSTI]

    McFall-Ngai, Margaret

    Evidence for light perception in a bioluminescent organ Deyan Tonga , Natalia S. Rozasb , Todd H of Wisconsin, Madison, WI 53706; cDepartment of Ecology, Evolution, and Marine Biology, University species have been implicated in the perception and control of light emission, particularly

  5. On organization1 Walter Fontana

    E-Print Network [OSTI]

    Fontana, Walter

    membranes in the syrinx, situated in the trachea at the tracheobronchial junction [16]. We2 Department

  6. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012–October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Noncompliance issues • Discussion of the facility’s environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  7. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    mike lewis

    2011-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2009 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Discussion of the facility’s environmental impacts During the 2010 permit year, approximately 164 million gallons of wastewater were discharged to the Cold Waste Pond. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  8. UNDERGRADUATE DEPARTMENT OF ELECTRICAL

    E-Print Network [OSTI]

    Tam, Vincent W. L.

    UNDERGRADUATE HANDBOOK 2008-2009 DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING #12;Undergraduate Handbook 2008-2009 DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING THE UNIVERSITY OF HONG KONG © Department of Electrical & Electronic Engineering, The University of Hong Kong #12;Head of Department Prof. Y

  9. FY 2006 Control Table by Organization

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment of EnergyME-0035Organization

  10. Abiotic immobilization/detoxification of recalcitrant organics

    SciTech Connect (OSTI)

    Whelan, G. (Pacific Northwest Lab., Richland, WA (USA)); Sims, R.C. (Utah State Univ., Logan, UT (USA))

    1990-11-01T23:59:59.000Z

    In contrast to many remedial techniques that simply transfer hazardous wastes from one part of the environment to another (e.g., off-site landfilling), in situ restoration may offer a safe and cost-effective solution through transformation (to less hazardous products) or destruction of recalcitrant organics. Currently, the US Environmental Protection Agency and US Department of Energy are encouraging research that addresses the development of innovative alternatives for hazardous-waste control. One such alternative is biotic and abiotic immobilization and detoxification of polynuclear aromatic hydrocarbons (PNAs) as associated with the soil humification process. This paper discusses (1) the possibility of using abiotic catalysis (with manganese dioxide) to polymerize organic substances; (2) aspects associated with the thermodynamics and kinetics of the process, and (3) a simple model upon which analyses may be based. 36 refs., 7 figs., 3 tabs.

  11. Instrumentation and Controls Division, Technical Support Department Management Plan, FY 1993--FY 1996

    SciTech Connect (OSTI)

    Adkisson, B.P.; Kunselman, C.W.; Effler, R.P.; Miller, D.R.; Millet, A.J.; Stansberry, C.T.

    1993-08-01T23:59:59.000Z

    This report describes the organization, key functions, and major activities of the Technical Support Department The Department is the programmatic support element of the Instrumentation and Controls Division. The Department`s primary focus is the support of existing equipment and systems at Oak Ridge National Laboratory that are generally characterized as instrumentation and controls. The support takes the form of repair, calibration, fabrication, field engineering, preventive maintenance, software support, and record keeping.

  12. Organic aerogel microspheres

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Kong, Fung-Ming (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01T23:59:59.000Z

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  13. Organic aerogel microspheres

    DOE Patents [OSTI]

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01T23:59:59.000Z

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  14. Outdoor Solar Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8OrganicOsmoticOutdoor Solar Lighting

  15. Learn from Web Search Logs to Organize Search Results Xuanhui Wang

    E-Print Network [OSTI]

    Zhai, ChengXiang

    and Subject Descriptors: H.3.3 [Informa- tion Search and Retrieval]: Clustering, Search process General TermsLearn from Web Search Logs to Organize Search Results Xuanhui Wang Department of Computer Science Effective organization of search results is critical for improv- ing the utility of any search engine

  16. Department of Energy Wind Vision: An Industry Preview | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Wind Vision: An Industry Preview Department of Energy Wind Vision: An Industry Preview The "Department of Energy Wind Vision: An Industry Preview,"...

  17. Organic solvent topical report

    SciTech Connect (OSTI)

    Cowley, W.L.

    1998-04-30T23:59:59.000Z

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel.

  18. Special Report Management Challenges at the Department of Energy

    SciTech Connect (OSTI)

    None

    2008-12-01T23:59:59.000Z

    With an annual appropriation of approximately $24 billion, the Department of Energy (Department) is a multi-faceted agency that encompasses a broad range of national security, scientific, and environmental activities. Since the passage of the Department of Energy Organization Act in 1977, the Department has shifted its emphasis and priorities over time as the energy and security needs of the Nation have changed. In recent years, the Department has refocused its efforts in areas such as energy efficiency and conservation, environmental cleanup, nuclear nonproliferation, and weapons stewardship. In order to accomplish its mission, the Department employs approximately 110,000 Federal and contractor personnel and manages assets valued at more than $134 billion, including a complex of national laboratories.

  19. Department of Energy Home Page

    Office of Scientific and Technical Information (OSTI)

    US DEPARTMENT OF ENERGY Search Home Page Contents ABOUT DOE About The Department of Energy (Learn about the Department of Energy, its mission, plans, organizational structure,...

  20. 314 Department of Physics Department of Physics

    E-Print Network [OSTI]

    Nagle, John F.

    314 Department of Physics Department of Physics Physics, one of the basic sciences, has its origin led to the detailed understanding of a remarkable variety of physical phenomena. Our knowledge now comprehension of the physical world forms an impressive part of the intellectual and cultural heritage of our

  1. WARWICK ECONOMICS DEPARTMENT WARWICK ECONOMICS DEPARTMENT

    E-Print Network [OSTI]

    Davies, Christopher

    WARWICK ECONOMICS DEPARTMENT twenty thirteen- fourteen Prospectus #12;WARWICK ECONOMICS DEPARTMENT-being worldwide." "Economics is the issue of the times in which we live." Contents ninety-four The percent Inspirational instruction 11 Highlighted Research 13 Behavioural Economics 14 Development 16 Economic History 18

  2. Lead Department/ORU Fax # Project Organization # Lead Department/ORU Contact Phone # Copying Index #

    E-Print Network [OSTI]

    Krstic, Miroslav

    # Email Yes No Yes No Grant New Revision Basic Research Public Service Contract Continuation Resubmission

  3. TECHMRT The Center for Multidisciplinary Research in Transportation (TechMRT) at Texas Tech University is dedicated to serving as a focal point for communica-tion between Texas Tech University and various transportation research funding organizations and

    E-Print Network [OSTI]

    Gelfond, Michael

    TECHMRT The Center for Multidisciplinary Research in Transportation (TechMRT) at Texas Tech and various transportation research funding organizations and programs. A genuinely multidisciplinary facility, Department of Plant and Soil Science, Department of Landscape Architecture, the TTU Library

  4. Department of MINING ENGINEERING

    E-Print Network [OSTI]

    Simons, Jack

    AS A MINING ENGINEER IMAGINE IMAGINE Department of MINING ENGINEERING THE UNIVERSITY OF UTAH www.mining

  5. Department of Mathematics

    E-Print Network [OSTI]

    The Department of Mathematics offers a comprehensive educational program in applied and computational mathematics, and promotes both fundamental ...

  6. Department of Mathematics

    E-Print Network [OSTI]

    The Department of Mathematics offers a comprehensive educational program in applied and computational mathematics, promotes both fundamental research ...

  7. Energy Department Small Business Partner Success Stories | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Partner Success Stories Energy Department Small Business Partner Success Stories Energy Department Small Business Partner Success Stories...

  8. Allies in Sport Organizations

    E-Print Network [OSTI]

    Melton, Elizabeth

    2012-10-19T23:59:59.000Z

    Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOSPHY Approved by: Chair of Committee, George B. Cunningham Committee Members, Kathi Miner Gregg... Chair of Advisory Committee: Dr. George B. Cunningham Employee support is a key factor in creating more welcoming and accepting work environments for lesbian, gay, bisexual, and transgender (LGBT) individuals in sport. As such, organizations need...

  9. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    Mechanical engineering Department Seminar Domitilla Del Vecchio Department of Mechanical. A near future is envisioned in which re- engineered bacteria will turn waste into energy and kill cancer, she joined the Department of Mechanical Engineering and the Laboratory for Information and Decision

  10. Characterizing the formation of secondary organic aerosols

    SciTech Connect (OSTI)

    Lunden, Melissa; Black, Douglas; Brown, Nancy

    2004-02-01T23:59:59.000Z

    Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the concentrations of important gas phase nitrogen compounds. Experiments have been ongoing at the Blodgett field site since the fall of 2000, and have included portions of the summer and fall of 2001, 2002, and 2003. Analysis of both the gas and particle phase data from the year 2000 show that the particle loading at the site correlates with both biogenic precursors emitted in the forest and anthropogenic precursors advected to the site from Sacramento and the Central Valley of California. Thus the particles at the site are affected by biogenic processing of anthropogenic emissions. Size distribution measurements show that the aerosol at the site has a geometric median diameter of approximately 100 nm. On many days, in the early afternoon, growth of nuclei mode particles (<20 nm) is also observed. These growth events tend to occur on days with lower average temperatures, but are observed throughout the summer. Analysis of the size resolved data for these growth events, combined with typical measured terpene emissions, show that the particle mass measured in these nuclei mode particles could come from oxidation products of biogenic emissions, and can serve as a significant route for SOA partitioning into the particle phase. During periods of each year, the effect of emissions for forest fires can be detected at the Blodgett field location. During the summer of 2002 emissions from the Biscuit fire, a large fire located in Southwest Oregon, was detected in the aerosol data. The results show that increases in particle scattering can be directly related to increased black carbon concentration and an appearance of a larger mode in the aerosol size distribution. These results show that emissions from fires can have significant impact on visibility over large distances. The results also reinforce the view that forest fires can be a significant source of black carbon in the atmosphere, which has important climate and visibility. Continuing work with the 2002 data set, particularly the combination of the aerosol and gas phase data, will continue to provide important information o

  11. A safety program design for state highway departments

    E-Print Network [OSTI]

    Hudlow, Chester Dow

    1973-01-01T23:59:59.000Z

    Specialists Safety Library VI. RECORDS AND STATISTICS Status of Recordkeeping Fleet Safety Fleet Safety Program 62 62 66 66 68 69 69 70 70 Chapter Accident Records Quantitative Evaluation of Performance Recommended Quantitative Method... prevention effort I 16) . In order to fully evaluate the safety situation of the State Highway Departments some parameter was needed as to the Departments' organizational 18 Table 1 Features of Safety Program Components 1. SAFETY ORGANIZATION...

  12. WOLFGANG PESENDORFER Department of Economics

    E-Print Network [OSTI]

    WOLFGANG PESENDORFER Department of Economics Princeton University (609) 258 4017 DATE May 2014. EMPLOYMENT Assistant Professor, Department of Economics, Northwestern University, 1992-96. Associate Professor, Department of Economics, Northwestern University, 1996-97 Professor, Department of Economics

  13. Outreach Letter Template for Ambassador Organizations Promoting the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8OrganicOsmoticOutdoor

  14. Business Operations Organization Chart

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState andGreenhouse GasesConstructionPhoto

  15. Public Affairs Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program90803| DepartmentPseudogaps, Polarons,

  16. Department of Energy 1977--1994: A summary history

    SciTech Connect (OSTI)

    Fehner, T.R.; Holl, J.M.

    1994-11-01T23:59:59.000Z

    The Department of Energy Organization Act of 1977 created perhaps the most interesting and diverse agency in the Federal Government. The new department brought together for the first time not only most of the government`s energy programs but also defense responsibilities that included the design, construction, and testing of nuclear weapons. The Department of Energy incorporated a score of organizational entities from a dozen departments and agencies, each with its own history and traditions. Uniting these seemingly disparate entities and programs was a common commitment to performing first rate science and technology. The Department of Energy sought--and continues to seek--to be one of the Nation`s premier science and technology organizations. The Department of Energy, 1977--1994, is a summary history of the origins, goals, and achievements of the Department and selected major programs. Beginning with the various fuels policies on the energy side and the Manhattan project on the defense side, the study details how the Department was born of the energy crisis of the early and mid-1970s. The history then surveys the Department and its programs from the Carter through the Clinton administrations. As the energy crisis eased, the Department played a central role on issues as dissimilar as the Strategic Defense Initiative and the Superconducting Super Collider. With the end of the Cold War, the Department of Energy further transformed itself, moving from the building of bombs to partial dismantlement of the nuclear weapons complex and to an increased emphasis on environmental activities and technology transfer efforts.

  17. A comparison of perceived effectiveness of technology projects from viewpoints of external nongovernmental organizations and host country beneficiaries in Haiti

    E-Print Network [OSTI]

    May, Donald Ray

    1998-01-01T23:59:59.000Z

    Three nongovernmental organizations sponsoring four projects in the Northern Department of Haiti were surveyed between May and July of 1998 to determine if their perceptions of the effectiveness of their projects correlated with the perceptions...

  18. Neighborhood Progress Through Organized Action.

    E-Print Network [OSTI]

    Newman, Eula; Cox, Bonnie; Martin, E. C.

    1955-01-01T23:59:59.000Z

    [Blank Page in Original Bulletin] ~ei~ h borhood Progress Through Organized Action E. C. MARTIN, Administrative Assistant BONNIE COX, Organization Specialist MRS. EULA NEWMAN, Specialist in Home Management TEXAS A. & M. COLLEGE SYSTEM "The... coord: lent r peo plt 1. mmunity organization is successful when all families erested groups participate. Such an organization may inate interest in the community and provide an excel- neans for channeling most programs. The interest...

  19. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01T23:59:59.000Z

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  20. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13T23:59:59.000Z

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  1. All Lab Organizations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologies | Blandine JeromeOrganizations All

  2. Persistent Organic By Steven Jackson

    E-Print Network [OSTI]

    Toohey, Darin W.

    Persistent Organic Pollutants By Steven Jackson #12;What are POP's? · POP's are organic compounds, rivers and surface ocean water. · Bio accumulation- POPs work their way through the food chain by accumulating in the body fat of living organisms and becoming more concentrated as they move from one creature

  3. Agricultural and Forest Entomology (2011), 13, 197204 DOI: 10.1111/j.1461-9563.2010.00511.x Arthropod food webs in organic and conventional wheat farming

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    2011-01-01T23:59:59.000Z

    Arthropod food webs in organic and conventional wheat farming systems of an agricultural long, Research Institute of Organic Agriculture (FiBL), Ackerstraße, 5070 Frick, Switzerland, Department (15N/14N and 13C/12C) of fertilizers, plants, prey and generalist predators in organic

  4. Microorganisms for producing organic acids

    DOE Patents [OSTI]

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30T23:59:59.000Z

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  5. Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program - 12189

    SciTech Connect (OSTI)

    Clayton, Christopher [U.S. Department of Energy Office of Legacy Management, Washington, DC (United States); Kothari, Vijendra [U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia (United States); Starr, Ken [U.S. Department of Energy Office of Legacy Management, Westminster, Colorado (United States); Gillespie, Joey; Widdop, Michael [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado (United States)

    2012-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP) was established in 1974 to address residual radiological contamination at sites where work was performed for the Manhattan Engineer District and U.S. Atomic Energy Commission. Initially, FUSRAP activities began with a records search for sites that had the potential to contain residual radiological contamination; 46 sites were identified that were eligible for and required remediation. Remedial action began in 1979. In 1997, Congress assigned responsibility for the remediation of FUSRAP sites to the U.S. Army Corps of Engineers (USACE). DOE retains responsibility for determining if sites are eligible for FUSRAP remediation and for providing long-term surveillance and maintenance (LTS and M) of remediated FUSRAP sites. DOE LTS and M activities are designed to ensure that FUSRAP sites remain protective of human health and the environment and to preserve knowledge regarding FUSRAP sites. Additional elements include eligibility determinations, transition of remediated sites from USACE to DOE, LTS and M operations such as inspections and institutional controls management, stakeholder support, preservation of records, and real property and reuse. DOE maintains close coordination with USACE and regulators to ensure there is no loss of protectiveness when sites transition to DOE for LTS and M. Over the life of the FUSRAP program from 1974 to the present, DOE's primary mission and responsibility has been to ensure that FUSRAP sites remain protective of human health and the environment. In fulfilling this mission, the DOE program includes the following key elements: eligibility determinations, transition of remediated sites from USACE to DOE, LTS and M operations such as inspections and institutional controls management, stakeholder support, preservation of records, and real property and reuse. DOE maintains close communication stakeholders as well as state and federal regulators. DOE programs are designed to preserve and present the information that future stewards and stakeholders will need to maintain site remedies and knowledge. (authors)

  6. U.S. Department of Energy National Center of Excellence for Metals Recycle

    SciTech Connect (OSTI)

    Adams, V.; Bennett, M.; Bishop, L. [Dept. of Energy, Oak Ridge, TN (United States)] [and others

    1998-06-01T23:59:59.000Z

    The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. The Center has gotten off to a fast start. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-12 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer software, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, produce pollution prevention information and documentation, manage their materials inventory, produce independent government estimates, and implement sale/service contracts. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrap yard, and disposition of PCB-contaminated drums. Members of the Center look forward to working with all DOE sites, regulatory authorities, the private sector, and other stakeholders to achieve the metals recycle goals.

  7. Chemistry of Organic Electronic Materials 6483-Fall

    E-Print Network [OSTI]

    Sherrill, David

    Chemistry of Organic Electronic Materials 6483- Fall Tuesdays organic materials. The discussion will include aspects of synthesis General introduction to the electronic structure of organic materials with connection

  8. The Agenda Setting Powers of Party Organizations /

    E-Print Network [OSTI]

    Waugh, Andrew Scott

    2013-01-01T23:59:59.000Z

    Theory of Parties and Party Organizations . . . . . . . . . .1984. “On the Theory of Party Organization. ” The Journal ofand I offer a new theory of party organizations that more

  9. 1 Managed by UT-Battelle for the U.S. Department of Energy

    E-Print Network [OSTI]

    1 Managed by UT-Battelle for the U.S. Department of Energy Objective · Understand the role of low;2 Managed by UT-Battelle for the U.S. Department of Energy Mechanisms by which dissolved organic matter (DOM

  10. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    Lin, Xi

    operating in microfluidic environment, which can dynamically diverge, collimate and focus surface plasmons in 2012, with a joint appointment in the Department of Mechanical & Industrial Engineering

  11. Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Home Energy Use Poneman visits Houston to review progress of CenterPoint Energy's Smart MeterIntelligent Grid Deployment November 17, 2010 Department of Energy Announces...

  12. Missouri | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    prices since 2006, coupled with increasing utility costs. The Missouri Department of Agriculture (MDA), along with other partners, is helping small farms upgrade inefficient farm...

  13. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  14. Department Sponsors Career Night

    E-Print Network [OSTI]

    Frank Nackel (M.S. 1981), Department Manager of the Software Development Lab at Raytheon Electronics in Bedford, MA, and Brian Haney, Business Manager ...

  15. Fossil | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    7, 2014 Funds Awarded to Historically Black Colleges and Universities for Fossil Energy Research The U.S. Department of Energy has selected four research projects that will...

  16. Department of Mathematics: Jobs

    E-Print Network [OSTI]

    Individuals seeking temporary or permanent employment within the Department of Mathematics or the Mathematics field in general, are encouraged to take ...

  17. DEPARTMENT OF MATHEMATICS

    E-Print Network [OSTI]

    2002-04-18T23:59:59.000Z

    To avoid repeating descriptions of the method as it is applied to each of the two ...... Department of Electrical Engineering and Computer Science, Northwestern ...

  18. Department of Energy Badges

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-05-26T23:59:59.000Z

    Establishes requirements for Department of Energy (DOE) badges. DOE N 251.40, dated 5/3/01, extends this directive until 12/31/01.

  19. Videos | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Wind Vision: An Industry Preview Testimonials - Partnerships in Solid-State Lighting - Soraa, Inc. Testimonials - Partnerships in Combined Heat and Power...

  20. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    December 19, 2013 Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth The Energy Department released three new reports showcasing strong...

  1. Staff | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A Livestream with our Latest Nobel Prize Winner Dr. Perlmutter presents, "Supernovae, Dark Energy and the Accelerating Universe: How the Energy Department Helped to Win (yet...

  2. Wind | Department of Energy

    Office of Environmental Management (EM)

    in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job...

  3. Department of Energy

    Energy Savers [EERE]

    Agreements and Acknowledgments 2013-09 06282013 Revision of Department of Energy (DOE) Order 350.1 and Special H Clause 2013-10 06192013 Nondisplacement of Qualified...

  4. The Field Museum Education Department Presents Educator Guide & Walking Map

    E-Print Network [OSTI]

    Patterson, Bruce D.

    The Field Museum Education Department Presents Educator Guide & Walking Map The Field Museum before and after your visit to the Museum. Darwin is organized by the American Museum of Natural History, New York, in collaboration with The Field Museum, Chicago; the Museum of Science, Boston; the Royal

  5. When your department is planning to move: An Ergonomics Checklist

    E-Print Network [OSTI]

    Jacobs, Lucia

    When your department is planning to move: An Ergonomics Checklist A proactive, organized approach for the move. Involve your computer workstation evaluator(s). Identify additional ergonomic evaluator evaluators. UC Berkeley's Ergonomics Program for Faculty and Staff ERGONOMICS@WORK (continues on page 2) #12

  6. Graduate Program in German Bylaws Administrative Home: Department of German

    E-Print Network [OSTI]

    Ullrich, Paul

    Program in German (henceforth referred to as GPG) is organized for the purpose of enhancing German. Membership in the GPG, which is directed by the Chair of the German Department, will consist of the faculty members of the GPG and voted upon by Senate and Federation Faculty. A majority vote is required

  7. Electrical and Computer Engineering Department of Electrical and Computer Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    Electrical and Computer Engineering Department of Electrical and Computer Engineering 103 Siegel of an undergraduate degree or its equivalent in electrical engineering, computer engineering, or other engineering organizations in the metropolitan Chicago area. Degrees Offered Master of Science in Electrical Engineering

  8. Department of Health and Human Services National Institutes of Health

    E-Print Network [OSTI]

    Rau, Don C.

    , M.D. Technology Richard Nakamura., Ph.D. Andrea T. Norris #12;ES-3 FY 2015 Budget Request National 2015 Budget Page No. Organization ChartES-1 Department of Health and Human Services National Institutes of Health Executive Summary FY

  9. Health and Wellness @ U.Va. Department of Student Health

    E-Print Network [OSTI]

    Acton, Scott

    Health and Wellness @ U.Va. Department of Student Health Counseling and Psychological Services "Without health there is no happiness. An attention to health, then, should take the place of every other on Accreditation of Healthcare Organizations 2013 Parents Handbook p. 36-41 #12;Student Health Services · 12:30am-2

  10. Page 1 of 1 Environmental Health and Safety Department

    E-Print Network [OSTI]

    Page 1 of 1 Environmental Health and Safety Department 1500 Illinois St, Golden, CO 80401 (303) 273-3316 REQUEST FOR RADIATION EXPOSURE HISTORY Organization: Previous employer or institution where radiation exposure was received Address: City: State: Zip: Phone #: Fax #: Attn: Radiation Safety Officer, Supervisor

  11. CHEMISTRY 1 Faculty of Natural Sciences, Department of

    E-Print Network [OSTI]

    CHEMISTRY 1 Faculty of Natural Sciences, Department of --Chemistry This publication refers.imperial.ac.uk/pgprospectus. Chemistry Interests in chemistry at Imperial College cover physical, organic, inorganic, analytical, polymer and biological chemistry and chemical crystallography, as well as intersectional and medical topics

  12. Supervisor: Professor Phillip Servio Department of Chemical Engineering

    E-Print Network [OSTI]

    Barthelat, Francois

    Supervisor: Professor Phillip Servio Department of Chemical Engineering PromotionGas Hydrates organisms 20% Fossil Fuels 27% Gas Hydrates 53% Journal of Petroleum Technology Online (2007) ² Certain substances may promote hydrate growth and enable the petroleum to be stored and transported as a solid

  13. Department of Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E L D * A L ALGAL 2010-07Department of

  14. Department of Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.Contamination ControlDecisionsGeothermalPolicy ActtoDepartment ofDepartment of

  15. The Economics Department of Economics

    E-Print Network [OSTI]

    The Economics Initiative Department of Economics #12;Economics at LSE The Department of Economics is the top ranked economics department in Europe and among the top 12 worldwide. It is one of the largest economics departments in the world, with over 60 faculty and 1,000 students and a department which makes

  16. Award Recipient National Institute of Standards and Technology U.S. Department of Commerce

    E-Print Network [OSTI]

    Magee, Joseph W.

    registered with the International Organization for Standardization (ISO), the Center serves as a leader2009 Award Recipient National Institute of Standards and Technology · U.S. Department of Commerce (VACSP) Clinical Research Pharmacy Coordinating Center (the Center) is a federal government organization

  17. Method of doping organic semiconductors

    DOE Patents [OSTI]

    Kloc,; Christian Leo (Constance, DE); Ramirez; Arthur Penn (Summit, NJ); So, Woo-Young (New Providence, NJ)

    2010-10-26T23:59:59.000Z

    An apparatus has a crystalline organic semiconducting region that includes polyaromatic molecules. A source electrode and a drain electrode of a field-effect transistor are both in contact with the crystalline organic semiconducting region. A gate electrode of the field-effect transistor is located to affect the conductivity of the crystalline organic semiconducting region between the source and drain electrodes. A dielectric layer of a first dielectric that is substantially impermeable to oxygen is in contact with the crystalline organic semiconducting region. The crystalline organic semiconducting region is located between the dielectric layer and a substrate. The gate electrode is located on the dielectric layer. A portion of the crystalline organic semiconducting region is in contact with a second dielectric via an opening in the dielectric layer. A physical interface is located between the second dielectric and the first dielectric.

  18. Embedding Sustainability into Manufacturing Organizations

    E-Print Network [OSTI]

    Tutterow, V.

    2014-01-01T23:59:59.000Z

    for Sustainability Ratings GISR standard (13) (under development) Accrediting other sustainability ratings, rankings, and indices International Organization for Standardization ISO 14001:2004 – Environmental Management Systems – Requirements with Guidance for Use (22...) Environmental management system criteria International Organization for Standardization ISO 14064:2006 – (parts 1,2,3) (23) Principles and requirements on GHG quantification, reporting, and verification International Organization for Standardization ISO 50001...

  19. Department of Energy Technology

    E-Print Network [OSTI]

    Risa-R-482 Department of Energy Technology Annual Progress Report 1 January - 31 December 1982 Ris.1. The Department of Energy Technology 5 1.2. System and Reliability Analysis 6 1.3. Reactor Physics and Dynamics 7 .. 27 2.10. Severe Accident Analysis 30 2.11. The Advanced BWR Emergency Core Cooling Program NOORCOOL

  20. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    Mechanical engineering Department Seminar Wynter J. Duncanson Department of Aerospace and Ocean Engineering Virginia Tech Smart' Bubbles for Acoustic Contrast in Oil Reservoirs 11:00 AM Friday, 19 April engineering from Boston University. Her doctoral research was devoted to designing surface architectures

  1. Department of Defense INSTRUCTION

    E-Print Network [OSTI]

    Staff, the Combatant Commands, the Office of the Inspector General of the Department of Defense (IG DoD automated export license system. 2. APPLICABILITY. This Instruction: a. Applies to Office of the Secretary of Defense, the Military Departments, the Office of the Chairman of the Joint Chiefs of Staff and the Joint

  2. United States Department of

    E-Print Network [OSTI]

    Brown, Gregory G.

    Assessment Thomas M. Quigley, Editor U.S. Department of Agriculture Forest Service Pacific Northwest Research, and Andy Wilson. Thomas M. Quigley Editor United States Department of Agriculture Forest Service United Service, Pacific Northwest Research Station. 120 p. (Quigley, Thomas M., ed.; Interior Columbia Basin

  3. Department of Computer Science

    E-Print Network [OSTI]

    Govindarajan, Ramaswamy

    , energy aware computing, operating systems, storage systems, database systems, distributed computing, Government of India. The department is ranked among the top 100 computer science departments in the world, Swarnajayanti Fellowship, Faculty Awards from global R&D companies, Young Scientist Awards, and Best Paper

  4. Department of Information Technology

    E-Print Network [OSTI]

    Flener, Pierre

    Department of Information Technology Human-Computer Interaction http://www.it.uu.se/research/hci #12;InformationTechnology-HCI Department of Information Technology | www.it.uu.se Today's menu Who we and collaboration Teaching KoF 2007, effects? Vision and plans Challenges #12;InformationTechnology

  5. Department of Science, Technology, &

    E-Print Network [OSTI]

    Acton, Scott

    Developing Leaders of Innovation Department of Science, Technology, & Society #12;Understanding the relationship between technology and society is crucial to becoming a successful leader in any field. #12;Our Students The University of Virginia Department of Science, Technology, and Society offers a comprehensive

  6. Economics Department Mission Statement

    E-Print Network [OSTI]

    Jiang, Huiqiang

    Economics Department Mission Statement The mission of the Economics Department at the University of Pittsburgh at Johnstown is to develop the ability of our students to understand economic concepts, and in public policy. The central goals of an education in economics are to acquire: -- an understanding of how

  7. Department of Civil, Environmental

    E-Print Network [OSTI]

    Giger, Christine

    Preface Preface 3 Our Focus 4 Conservation of Highway Bridges 6 Environmental data: A strategic resourceDepartment of Civil, Environmental and Geomatics Engineering Annual Report 2000 #12;In the world consequences of this, in October 1999 the former Departments of Civil and Environmental Engineering (D

  8. Department of Civil & Environmental

    E-Print Network [OSTI]

    Acton, Scott

    Developing Leaders of Innovation Department of Civil & Environmental Engineering #12;At the U.Va. Department of Civil and Environmental Engineering, our faculty and students serve society's need engineering, aviation, law, environmental policy, planning and more. In addition, over 40 percent of our

  9. CHEMISTRY DEPARTMENT HANDBOOKFOR STUDENTS

    E-Print Network [OSTI]

    Hardy, Christopher R.

    CHEMISTRY DEPARTMENT HANDBOOKFOR STUDENTS Millersville University Millersville, Pennsylvania in the ChemistryDepartment. It brings together material not collected in other places and is not meant Resources 2 Programs in Chemistry and The General Education Curriculum Record Form 3 The Major Requirements

  10. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    efficient energy systems. Evelyn N. Wang is an Associate Professor in the Mechanical Engineering DepartmentMechanical engineering Department Seminar Evelyn Wang Depaprtment of Mechanical Engineering MIT Nanoengineered Surfaces: Transport Phenomena and Energy Applications 11:00 AM Friday, 5 April 2013 Room 245, 110

  11. Department of Chemical Engineering

    E-Print Network [OSTI]

    Acton, Scott

    Developing Leaders of Innovation Department of Chemical Engineering #12;At the University of Virginia, we educate students in traditional and nontraditional areas of chemical engineering, giving them.Va. Department of Chemical Engineering benefit from a modern academic curriculum and state

  12. Digestive System general organization throughout

    E-Print Network [OSTI]

    Houde, Peter

    Digestive System general organization throughout: mucosa, submucosa, muscularis externa, serosa digestive glands salivary pancreas liver (lobes: right, left, caudate, quadrate, diaphragmatic surface, bare

  13. Before you print this document please consider the environmental impact. If you must print it, please print it double-sided or on re-used paper.

    E-Print Network [OSTI]

    Northern British Columbia, University of

    on how much food you need and set up recycling options to reduce waste. Use a water pitcher and reusable waste from the start with careful planning Recycle posters Recycle bottles and paper used for the event the school to dispose of organic waste (composting at UNBC is provided by PGPIRG) Remind guests to help keep

  14. Department of Mathematics Department of Electrical & Computer Engineering

    E-Print Network [OSTI]

    Guowei Wei Department of Mathematics Department of Electrical & Computer Engineering Michigan State equation and the Helmholtz equation with interfaces Complex irregular 3D interfaces without grid

  15. JOINT DEPARTMENT OF COMMERCE AND DEPARTMENT OF ENERGY SMART CITIES...

    Office of Environmental Management (EM)

    JOINT DEPARTMENT OF COMMERCE AND DEPARTMENT OF ENERGY SMART CITIES - SMART GROWTH BUSINESS DEVELOPMENT MISSION TO CHINA April 12-17, 2015 I. MISSION DESCRIPTION The United States...

  16. Notice of Intent to Develop DOE G 430.1-8, Asset Revitalization Initiative Guide for Sustainable Asset Management and Reuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-02-19T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 430.1B, Real Property Asset Management, calls for the agency to "establish a corporate, holistic, and performance-based approach to real property life-cycle asset management." It discusses requirements to properly plan, acquire, maintain, recapitalize, and dispose of assets, while recognizing the importance of stakeholder involvement, privatization, cultural and natural preservation, and local economic development.

  17. Notice of Intent to Develop DOE G 430.1-8, Asset Revitalization Initiative Guide for Sustainable Asset Management and Reuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    U.S. Department of Energy (DOE) Order 430.1B, Real Property Asset Management, calls for the agency to "establish a corporate, holistic, and performance-based approach to real property life-cycle asset management." It discusses requirements to properly plan, acquire, maintain, recapitalize, and dispose of assets, while recognizing the importance of stakeholder involvement, privatization, cultural and natural preservation, and local economic development.

  18. The Cosmic Organism Theory

    E-Print Network [OSTI]

    Ding-Yu Chung; Volodymyr Krasnoholovets

    2005-12-05T23:59:59.000Z

    We present the cosmic organism theory in which all visible and invisible matter has different cosmic genetic expressions. The cosmic gene includes codes for the object structure and the space structure. The cosmic digital code for the object structure consists of full object (1, 2, and 3 for particle, string, and membrane, respectively) and empty object (0) as anti de Sitter space (AdS). The tessellation lattice of empty objects is tessellattice. The decomposition of a full object in tessellattice results in the AdS/CFT (conformal field theory) duality. The digital code for the object structure accounts for the AdS/CFT duality, the dS/bulk duality, and gravity. The digital code for the space structure consists of 1 and 0 for attachment space and detachment space, respectively. Attachment space attaches to object permanently at zero speed or reversibly at the speed of light. Detachment space detaches from the object irreversibly at the speed of light. The combination of attachment space and detachment space results in miscible space, binary lattice space or binary partition space. Miscible space represents special relativity. Binary lattice space consists of multiple quantized units of attachment space separated from one another by detachment space. Binary lattice space corresponds to the nilpotent universal computational rewrite system (NUCRS) by Diaz and Rowlands. The gauge force fields and wavefunction are in binary lattice space. With tessellattice and binary lattice space, 11D brane is reducing to 4D particle surrounded by gravity and the gauge force fields. The cosmic dimension varies due to different speeds of light in different dimensional space-times and the increase of mass.

  19. Geothermal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 29, 2009 Department of Energy Awards 338 Million to Accelerate Domestic Geothermal Energy U.S. Department of Energy Secretary Steven Chu today announced up to 338...

  20. A study of the reaction between lead (II) bromide and organic amine hydrobromides

    E-Print Network [OSTI]

    Harris, Albert Zeke

    1963-01-01T23:59:59.000Z

    A STUDY OF THE REACTION BETWEEN LEAD(II) BROMIDE AND ORGANIC AMINE HYDROBROMIDES A Thesis by Albert Zeke Harris Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements... for the degree of Master of Science Major Subject: Chemistry A STUDY OF THE REACTION BETWEEN LEAD(jl) BROMIDE AND ORGANIC AMINE HYDROBROMIDES A Thesis by Albert Zeke Harris Approved as to style and content by: (Chai an of Committee) (Head of Department...