National Library of Energy BETA

Sample records for retention head burner

  1. Residential oil burners with low input and two stages firing

    SciTech Connect (OSTI)

    Butcher, T.; Krajewski, R.; Leigh, R.

    1997-12-31

    The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

  2. Startup burner

    DOE Patents [OSTI]

    Zhao, Jian Lian; Northrop, William F.; Bosco, Timothy; Rizzo, Vincent; Kim, Changsik

    2009-08-18

    A startup burner for rapidly heating a catalyst in a reformer, as well as related methods and modules, is disclosed.

  3. Diesel fuel burner for diesel emissions control system

    DOE Patents [OSTI]

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  4. Burner systems

    DOE Patents [OSTI]

    Doherty, Brian J. (Marblehead, MA)

    1984-07-10

    A burner system particularly useful for downhole deployment includes a tubular combustion chamber unit housed within a tubular coolant jacket assembly. The combustion chamber unit includes a monolithic tube of refractory material whose inner surface defines the combustion zone. A metal reinforcing sleeve surrounds and extends the length of the refractory tube. The inner surface of the coolant jacket assembly and outer surface of the combustion chamber unit are dimensioned so that those surfaces are close to one another in standby condition so that the combustion chamber unit has limited freedom to expand with that expansion being stabilized by the coolant jacket assembly so that compression forces in the refractory tube do not exceed about one-half the safe compressive stress of the material; and the materials of the combustion chamber unit are selected to establish thermal gradient parameters across the combustion chamber unit to maintain the refractory tube in compression during combustion system start up and cool down sequences.

  5. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect (OSTI)

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

  6. Front Burner- Issue 14

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 14 highlights the 2013 National Cybersecurity Awareness Month (NCSAM) Campaign and Phishing Scams.

  7. Front Burner- Issue 15

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 15 addresses the DOE eSCRM Program and Secure Online Shopping.

  8. Rotary Burner Demonstration

    SciTech Connect (OSTI)

    Paul Flanagan

    2003-04-30

    The subject technology, the Calcpos Rotary Burner (CRB), is a burner that is proposed to reduce energy consumption and emission levels in comparison to currently available technology. burners are used throughout industry to produce the heat that is required during the refining process. Refineries seek to minimize the use of energy in refining while still meeting EPA regulations for emissions.

  9. Front Burner- Issue 13

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 13 contained a message from the Associate Chief Information Officer (ACIO) for Cybersecurity as well as a listing of recommended cybersecurity practices.

  10. Front Burner- Issue 18

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 18 addresses keeping kids safe on the Internet, cyber crime, and DOE Cyber awareness and training initiatives.

  11. Variable capacity gasification burner

    SciTech Connect (OSTI)

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  12. Combustor burner vanelets

    DOE Patents [OSTI]

    Lacy, Benjamin (Greer, SC); Varatharajan, Balachandar (Loveland, OH); Kraemer, Gilbert Otto (Greer, SC); Yilmaz, Ertan (Albany, NY); Zuo, Baifang (Simpsonville, SC)

    2012-02-14

    The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

  13. Pulverized coal burner

    DOE Patents [OSTI]

    Sivy, Jennifer L. (Alliance, OH); Rodgers, Larry W. (Canton, OH); Koslosy, John V. (Akron, OH); LaRue, Albert D. (Uniontown, OH); Kaufman, Keith C. (Canton, OH); Sarv, Hamid (Canton, OH)

    1998-01-01

    A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.

  14. Pulverized coal burner

    DOE Patents [OSTI]

    Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

    1998-11-03

    A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

  15. CHP Integrated with Burners for Packaged Boilers

    SciTech Connect (OSTI)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.

  16. Ultralean low swirl burner

    DOE Patents [OSTI]

    Cheng, Robert K. (Kensington, CA)

    1998-01-01

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame.

  17. Ultralean low swirl burner

    DOE Patents [OSTI]

    Cheng, R.K.

    1998-04-07

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame. 11 figs.

  18. FRONT BURNER - ISSUE 19 | Department of Energy

    Office of Environmental Management (EM)

    FRONT BURNER - ISSUE 19 FRONT BURNER - ISSUE 19 The Cybersecurity Front Burner Issue No. 19 is the 2014 DOE NCSAM event newsletter, which examines Securing the Internet of Things, Facebook Messenger Application, and implementation of the Contractor Training Site. PDF icon Cybersecurity Front Burner Issue No. 19 More Documents & Publications FRONT BURNER - Issue 20 2012 NCSAM Campaign

  19. Front Burner - Issue 16 | Department of Energy

    Office of Environmental Management (EM)

    Front Burner - Issue 16 Front Burner - Issue 16 The Cybersecurity Front Burner Issue No. 16 addresses Malware, the Worst Passwords of 2013, and the Flat Stanley and Stop.Think.Connect. Campaign. PDF icon Cybersecurity Front Burner Newsletter Issue 16 More Documents & Publications April 2014 Cybersecurity Awareness Campaign - Malware FRONT BURNER - Issue 20

  20. High efficiency gas burner

    DOE Patents [OSTI]

    Schuetz, Mark A. (Belmont, MA)

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  1. Rotary Burner Demonstration Fact Sheet

    SciTech Connect (OSTI)

    2003-07-01

    A new Calcpos rotary burner (CRB), eliminates electric motors, providing a simple, cost effective means of retrofitting existing fired heaters for energy and environmental reasons.

  2. High capacity oil burner

    SciTech Connect (OSTI)

    Pedrosa, O.A. Jr.; Couto, N.C.; Fanqueiro, R.C.C.

    1983-11-01

    The present invention relates to a high capacity oil burner comprising a cylindrical atomizer completely surrounded by a protective cylindrical housing having a diameter from 2 to 3 times greater than the diameter of said atomizer; liquid fuels being injected under pressure into said atomizer and accumulating within said atomizer in a chamber for the accumulation of liquid fuels, and compressed air being injected into a chamber for the accumulation of air; cylindrical holes communicating said chamber for the accumulation of liquid fuels with the outside and cylindrical holes communicating said chamber for the accumulation of air with said cylindrical holes communicating the chamber for the accumulation of liquids with the outside so that the injection of compressed air into said liquid fuel discharge holes atomizes said fuel which is expelled to the outside through the end portions of said discharge holes which are circumferentially positioned to be burnt by a pilot flame; said protecting cylindrical housing having at its ends perforated circular rings into which water is injected under pressure to form a protecting fan-like water curtain at the rear end of the housing and a fan-like water curtain at the flame to reduce the formation of soot; the burning efficiency of said burner being superior to 30 barrels of liquid fuel per day/kg of the apparatus.

  3. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  4. Burner balancing Salem Harbor Station

    SciTech Connect (OSTI)

    Sload, A.W.; Dube, R.J.

    1995-12-31

    The traditional method of burner balancing is first to determine the fuel distribution, then to measure the economizer outlet excess oxygen distribution and to adjust the burners accordingly. Fuel distribution is typically measured by clean and dirty air probing. Coal pipe flow can then be adjusted, if necessary, through the use of coal pipe orificing or by other means. Primary air flow must be adjusted to meet the design criteria of the burner. Once coal pipe flow is balanced to within the desired criteria, secondary air flow to individual burners can be changed by adjusting windbox dampers, burner registers, shrouds or other devices in the secondary air stream. This paper discusses problems encountered in measuring excess O{sub 2} at the economizer outlet. It is important to recognize that O{sub 2} measurements at the economizer outlet, by themselves, can be very misleading. If measurement problems are suspected or encountered, an alternate approach similar to that described should be considered. The alternate method is not only useful for burner balancing but also can be used to help in calibrating the plant excess O{sub 2} instruments and provide an on line means of cross-checking excess air measurements. Balanced burners operate closer to their design stoichiometry, providing better NO{sub x} reduction. For Salem Harbor Station, this means a significant saving in urea consumption.

  5. Catalyzed Ceramic Burner Material

    SciTech Connect (OSTI)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  6. GNEP Element:Develop Advanced Burner Reactors | Department of...

    Office of Environmental Management (EM)

    Develop Advanced Burner Reactors GNEP Element:Develop Advanced Burner Reactors An article describing burner reactors and the role in GNEP. PDF icon GNEP Element:Develop Advanced...

  7. Burner ignition system

    DOE Patents [OSTI]

    Carignan, Forest J. (Bedford, MA)

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  8. FRONT BURNER - Issue 20 | Department of Energy

    Office of Environmental Management (EM)

    Issue 20 FRONT BURNER - Issue 20 Cybersecurity Front Burner Issue No. 20 examines Phishing and provides tips for protecting yourself from this common and clever security threat. You'll also see information on wireless networks, supply chains, training events, and cybersecurity resources. PDF icon Cybersecurity Front Burner Issue No. 20 More Documents & Publications 2013 NCSAM Campaign Cybersecurity Flyers/Pamphlets Front Burner - Issue 16

  9. Cybersecurity Front Burner | Department of Energy

    Office of Environmental Management (EM)

    Services » Training » Cybersecurity Training Warehouse » DOE Cybersecurity Awareness Program » Cybersecurity Front Burner Cybersecurity Front Burner Documents Available for Download January 15, 2015 FRONT BURNER - Issue 20 The Cybersecurity Front Burner Issue No. 20 examines Phishing to include defining Phishing and related terms and how to protect yourself from this very common and clever security threat. The newsletter also addresses wireless networks, supply chains, training events, and

  10. Uniform-burning matrix burner

    DOE Patents [OSTI]

    Bohn, Mark S. (Golden, CO); Anselmo, Mark (Arvada, CO)

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  11. Sediment Retention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediment Retention Sediment Retention Tour LANL maintains hundreds of wells, stream sampling stations and stormwater control structures to protect waters.

  12. Porous radiant burners having increased radiant output

    DOE Patents [OSTI]

    Tong, Timothy W. (Tempe, AZ); Sathe, Sanjeev B. (Tempe, AZ); Peck, Robert E. (Tempe, AZ)

    1990-01-01

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  13. Sediment Retention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediment Retention Sediment Retention Tour LANL maintains hundreds of wells, stream sampling stations and stormwater control structures to protect waters. Open full screen to view...

  14. Catalytic reactor with improved burner

    DOE Patents [OSTI]

    Faitani, Joseph J.; Austin, George W.; Chase, Terry J.; Suljak, George T.; Misage, Robert J.

    1981-01-01

    To more uniformly distribute heat to the plurality of catalyst tubes in a catalytic reaction furnace, the burner disposed in the furnace above the tops of the tubes includes concentric primary and secondary annular fuel and air outlets. The fuel-air mixture from the primary outlet is directed towards the tubes adjacent the furnace wall, and the burning secondary fuel-air mixture is directed horizontally from the secondary outlet and a portion thereof is deflected downwardly by a slotted baffle toward the tubes in the center of the furnace while the remaining portion passes through the slotted baffle to another baffle disposed radially outwardly therefrom which deflects it downwardly in the vicinity of the tubes between those in the center and those near the wall of the furnace.

  15. Reverberatory screen for a radiant burner

    DOE Patents [OSTI]

    Gray, Paul E. (North East, MD)

    1999-01-01

    The present invention relates to porous mat gas fired radiant burner panels utilizing improved reverberatory screens. The purpose of these screens is to boost the overall radiant output of the burner relative to a burner using no screen and the same fuel-air flow rates. In one embodiment, the reverberatory screen is fabricated from ceramic composite material, which can withstand higher operating temperatures than its metallic equivalent. In another embodiment the reverberatory screen is corrugated. The corrugations add stiffness which helps to resist creep and thermally induced distortions due to temperature or thermal expansion coefficient differences. As an added benefit, it has been unexpectedly discovered that the corrugations further increase the radiant efficiency of the burner. In a preferred embodiment, the reverberatory screen is both corrugated and made from ceramic composite material.

  16. Check Burner Air to Fuel Ratios

    Broader source: Energy.gov [DOE]

    This tip sheet discusses when to check and reset burner air to fuel ratios as well as why it's a simply way to maximize the efficiency of process heating equipment.

  17. Silane-propane ignitor/burner

    DOE Patents [OSTI]

    Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

    1983-05-26

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  18. Silane-propane ignitor/burner

    DOE Patents [OSTI]

    Hill, Richard W. (Livermore, CA); Skinner, Dewey F. (Livermore, CA); Thorsness, Charles B. (Livermore, CA)

    1985-01-01

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  19. Burners and combustion apparatus for carbon nanomaterial production

    DOE Patents [OSTI]

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  20. Burners and combustion apparatus for carbon nanomaterial production

    DOE Patents [OSTI]

    Alford, J. Michael (Lakewood, CO); Diener, Michael D. (Denver, CO); Nabity, James (Arvada, CO); Karpuk, Michael (Boulder, CO)

    2007-10-09

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  1. Sealed, nozzle-mix burners for silica deposition

    DOE Patents [OSTI]

    Adler, Meryle D. M.; Brown, John T.; Misra, Mahendra K.

    2003-07-08

    Burners (40) for producing fused silica boules are provided. The burners employ a tube-in-tube (301-306) design with flats (56, 50) on some of the tubes (305, 301) being used to limit the cross-sectional area of certain passages (206, 202) within the burner and/or to atomize a silicon-containing, liquid source material, such as OMCTS. To avoid the possibility of flashback, the burner has separate passages for fuel (205) and oxygen (204, 206), i.e., the burner employs nozzle mixing, rather than premixing, of the fuel and oxygen. The burners are installed in burner holes (26) formed in the crown (20) of a furnace and form a seal with those holes so that ambient air cannot be entrained into the furnace through the holes. An external air cooled jacket (60) can be used to hold the temperature of the burner below a prescribed upper limit, e.g., 400.degree. C.

  2. J.R. Simplot: Burner Upgrade Project Improves Performance and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant J.R. Simplot: Burner Upgrade Project Improves Performance and Saves ...

  3. Low NO.sub.x burner system

    DOE Patents [OSTI]

    Kitto, Jr., John B. (North Canton, OH); Kleisley, Roger J. (Plain Twp., Stark County, OH); LaRue, Albert D. (Summit, OH); Latham, Chris E. (Knox Twp., Columbiana County, OH); Laursen, Thomas A. (Canton, OH)

    1993-01-01

    A low NO.sub.x burner system for a furnace having spaced apart front and rear walls, comprises a double row of cell burners on each of the front and rear walls. Each cell burner is either of the inverted type with a secondary air nozzle spaced vertically below a coal nozzle, or the non-inverted type where the coal nozzle is below the secondary air port. The inverted and non-inverted cells alternate or are provided in other specified patterns at least in the lower row of cells. A small percentage of the total air can be also provided through the hopper or hopper throat forming the bottom of the furnace, or through the boiler hopper side walls. A shallow angle impeller design also advances the purpose of the invention which is to reduce CO and H.sub.2 S admissions while maintaining low NO.sub.x generation.

  4. Upgrade Boilers with Energy-Efficient Burners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrade Boilers with Energy-Efficient Burners Upgrade Boilers with Energy-Efficient Burners This tip sheet on upgrading boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #24 PDF icon Upgrade Boilers with Energy-Efficient Burners (January 2012) More Documents & Publications Improve Your Boiler's Combustion Efficiency Minimize Boiler Short Cycling Losses J.R. Simplot: Burner Upgrade Project Improves

  5. Ultra-Low NOx Premixed Industrial Burner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-Low NOx Premixed Industrial Burner Ultra-Low NOx Premixed Industrial Burner Reduction of Burner NOx Production with Premixed Combustion Industries that are dependant on combustion processes are faced with more stringent environmental regulations to reduce NOx emissions. Some states require NOx emissions reductions as great as 90% for chemical and refining industries. The recently developed M-PAKT(tm) Ultra-Low NOx Burner uses lean premixed combustion gases and low swirl flow of combustion

  6. Fuel burner and combustor assembly for a gas turbine engine

    DOE Patents [OSTI]

    Leto, Anthony (Franklin Lakes, NJ)

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  7. Refinery burner simulation design architecture summary.

    SciTech Connect (OSTI)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  8. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    SciTech Connect (OSTI)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  9. Coal-water mixture fuel burner

    DOE Patents [OSTI]

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  10. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner

    Energy Savers [EERE]

    Reactors | Department of Energy Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that consume transuranic elements (plutonium and other long-lived radioactive material) while extracting their energy. The development of ABRs will allow us to build an improved nuclear fuel cycle that recycles used fuel. Accordingly, the U.S. will work with participating

  11. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOE Patents [OSTI]

    Butcher, Thomas A. (Port Jefferson, NY); Celebi, Yusuf (Middle Island, NY); Fisher, Leonard (Colrain, MA)

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  12. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    Ray Chamberland; Aku Raino; David Towle

    2006-09-30

    For more than two decades, ALSTOM Power Inc. (ALSTOM) has developed a range of low cost, in-furnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes ALSTOM's internally developed TFS 2000 firing system, and various enhancements to it developed in concert with the U.S. Department of Energy (DOE). As of 2004, more than 200 units representing approximately 75,000 MWe of domestic coal fired capacity have been retrofit with ALSTOM low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coals to 0.10 lb/MMBtu for subbituminous coals, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing (retrofit) boiler equipment. If enacted, proposed Clear Skies legislation will, by 2008, require an average, effective, domestic NOx emissions rate of 0.16 lb/MMBtu, which number will be reduced to 0.13 lb/MMBtu by 2018. Such levels represent a 60% and 67% reduction, respectively, from the effective 2000 level of 0.40 lb/MMBtu. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. In light of these needs, ALSTOM, in cooperation with the DOE, is developing an enhanced combustion, low NOx pulverized coal burner which, when integrated with ALSTOM's state-of-the-art, globally air staged low NOx firing systems, will provide a means to achieve less than 0.15 lb/MMBtu NOx at less than 3/4 the cost of an SCR with low to no impact on balance of plant issues when firing a high volatile bituminous coal. Such coals can be more economic to fire than subbituminous or Powder River Basin (PRB) coals, but are more problematic from a NOx control standpoint as existing firing system technologies do not provide a means to meet current or anticipated regulations absent the use of an SCR. The DOE/ALSTOM program performed large pilot scale combustion testing in ALSTOM's Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut. During this work, the near-field combustion environment was optimized to maximize NOx reduction while minimizing the impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down under globally reducing conditions. Initially, ALSTOM utilized computational fluid dynamic modeling to evaluate a series of burner and/or near field stoichiometry controls in order to screen promising design concepts in advance of the large pilot scale testing. The third and final test, to be executed, will utilize several variants of the best nozzle tip configuration and compare performance with 3 different coals. The fuels to be tested will cover a wide range of coals commonly fired at US utilities. The completion of this work will provide sufficient data to allow ALSTOM to design, construct, and demonstrate a commercial version of an enhanced combustion low NOx pulverized coal burner. A preliminary cost/performance analysis of the developed enhanced combustion low NOx burner applied to ALSTOM's state-of-the-art TFS 2000 firing system was performed to show that the burner enhancements is a cost effective means to reduce NOx.

  13. Combined Heat and Power Integrated with Burners for Packaged Boilers

    SciTech Connect (OSTI)

    2010-10-01

    This factsheet describes a project that will seamlessly integrate a gas-fired simple-cycle 100 kWe microturbine with a new ultra-low NOx gas-fired burner to develop a CHP assembly called the Boiler Burner Energy System Technology.

  14. Fuel burner having a intermittent pilot with pre-ignition testing

    SciTech Connect (OSTI)

    Peterson, S.M.

    1991-07-30

    This patent describes improvement in a fuel burner having a main burner and a pilot burner for lighting the main burner, an electrically-powered igniter for lighting the pilot burner, a source of electric energy, an igniter power supply receiving a demand signal and supplying power to the igniter responsive to the demand signal, a pilot sensor adjacent to the pilot burner and supplying a pilot signal responsive to presence of a pilot flame, and a main burner valve controlling flow of fuel to the main burner and opening responsive to the pilot signal. The improvement comprises: a pilot burner valve controlling flow of fuel to the pilot burner and opening responsive to a pilot valve control signal; igniter sensing means in sensing relation to the igniter for providing an igniter signal responsive to operation of the igniter; and pilot valve control means receiving the igniter signal, for providing the pilot valve control signal responsive to the igniter signal.

  15. Low-Emissions Burner Technology using Biomass-Derived Liquid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This factsheet describes a project that developed fuel-flexible, low-emissions burner technology capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as ...

  16. SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste SEP Success Story: ... loan. | Courtesy of Helios USA, LLC. SEP Success Story: Not a Long Time Ago in an Energy ...

  17. Scalable, Efficient Solid Waste Burner System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Scalable, Efficient Solid Waste Burner System Colorado State University Contact CSU About This Technology Technology Marketing Summary A system that effectively burns solid human waste where traditional waste management practices are not viable, such as forward-operation military bases. Description This innovation is a semi-gasifier, burner device to process solid waste, particularly solid human waste. Developed by

  18. SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from

    Energy Savers [EERE]

    Lumber Mill Waste | Department of Energy Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 - 11:20am Addthis Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S.

  19. Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste |

    Energy Savers [EERE]

    Department of Energy Burner Cogenerates Jobs and Electricity from Lumber Mill Waste Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 - 3:57pm Addthis Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of Washington DNR.

  20. Advanced burner test reactor preconceptual design report.

    SciTech Connect (OSTI)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

  1. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to beh

  2. Dual-water mixture fuel burner

    DOE Patents [OSTI]

    Brown, Thomas D. (Finleyville, PA); Reehl, Douglas P. (Pittsburgh, PA); Walbert, Gary F. (Library, PA)

    1986-08-05

    A coal-water mixture (CWM) burner includes a conically shaped rotating cup into which fuel comprised of coal particles suspended in a slurry is introduced via a first, elongated inner tube coupled to a narrow first end portion of the cup. A second, elongated outer tube is coaxially positioned about the first tube and delivers steam to the narrow first end of the cup. The fuel delivery end of the inner first tube is provided with a helical slot on its lateral surface for directing the CWM onto the inner surface of the rotating cup in the form of a uniform, thin sheet which, under the influence of the cup's centrifugal force, flows toward a second, open, expanded end portion of the rotating cup positioned immediately adjacent to a combustion chamber. The steam delivered to the rotating cup wets its inner surface and inhibits the coal within the CWM from adhering to the rotating cup. A primary air source directs a high velocity air flow coaxially about the expanded discharge end of the rotating cup for applying a shear force to the CWM in atomizing the fuel mixture for improved combustion. A secondary air source directs secondary air into the combustion chamber adjacent to the outlet of the rotating cup at a desired pitch angle relative to the fuel mixture/steam flow to promote recirculation of hot combustion gases within the ignition zone for increased flame stability.

  3. Advanced Burner Reactor Preliminary NEPA Data Study.

    SciTech Connect (OSTI)

    Briggs, L. L.; Cahalan, J. E.; Deitrich, L. W.; Fanning, T. H.; Grandy, C.; Kellogg, R.; Kim, T. K.; Yang, W. S.; Nuclear Engineering Division

    2007-10-15

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly documents the extensive evaluation which was performed on the anticipated environmental impacts of that plant. This source can be referenced in the open literature and is publicly available. The CRBRP design was also of a commercial demonstration plant size - 975 MWth - which falls in the middle of the range of ABR plant sizes being considered (250 MWth to 2000 MWth). At the time the project was cancelled, the CRBRP had progressed to the point of having completed the licensing application to the Nuclear Regulatory Commission (NRC) and was in the process of receiving NRC approval. Therefore, it was felt that [CRBRP, 1977] provides some of the best available data and information as input to the GNEP PEIS work. CRBRP was not the source of all the information in this document. It is also expected that the CRBRP data will be bounding from the standpoint of commodity usage because fast reactor vendors will develop designs which will focus on commodity and footprint reduction to reduce the overall cost per kilowatt electric compared with the CRBR plant. Other sources used for this datacall information package are explained throughout this document and in Appendix A. In particular, see Table A.1 for a summary of the data sources used to generate the datacall information.

  4. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  5. Flame quality monitor system for fixed firing rate oil burners

    DOE Patents [OSTI]

    Butcher, Thomas A.; Cerniglia, Philip

    1992-01-01

    A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

  6. Slurry burner for mixture of carbonaceous material and water

    DOE Patents [OSTI]

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  7. CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 CMCE, Inc., in collaboration with Altex Technologies Corporation, developed the Boiler Burner Energy System Technology (BBEST), a CHP assembly of a gas-fired simple-cycle 100 kilowatt (kW) microturbine and a new ultra-low NOx gas-fired burner, to increase acceptance of small CHP systems. PDF icon

  8. Study of oil combustion in the TGMP-314 boiler with hearth burners

    SciTech Connect (OSTI)

    Usman, Yu.M.; Shtal'man, S.G.; Enyakin, Yu.P.; Abryutin, A.A.; Levin, M.M.; Taran, O.E.; Chuprov, V.V.; Antonov, A.Yu.

    1983-01-01

    Studies of the TGMP-314 boiler with hearth configured burners included the gas mixture in the boiler, the degree of fuel combustion at various heights in the boiler, hydrogen sulfide content in the near-wall zones of the boiler, and temperature distribution fields. Experimental data showed that the hearth burners, in conjunction with steam-mechanical atomizing burners, operate with the least possible excess air over a wide range of load changes. The operation and performance of the hearth burners are discussed.

  9. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    Broader source: Energy.gov [DOE]

    Factsheet summarizing Univ. of Alabama project to save energy and reduce emissions with fuel-flexible burners

  10. Development of quick repairing technique for ceramic burner in hot stove of blast furnace

    SciTech Connect (OSTI)

    Kondo, Atsushi; Doura, Kouji; Nakamura, Hirofumi

    1997-12-31

    Refractories of ceramic burner in hot stoves at Wakayama No. 4 blast furnace were damaged. There are only three hot stoves, so repairing must be done in a short. Therefore, a quick repairing technique for ceramic burners has been developed, and two ceramic burners were repaired in just 48 hours.

  11. The zero age main sequence of WIMP burners

    SciTech Connect (OSTI)

    Fairbairn, Malcolm; Scott, Pat; Edsjoe, Joakim

    2008-02-15

    We modify a stellar structure code to estimate the effect upon the main sequence of the accretion of weakly-interacting dark matter onto stars and its subsequent annihilation. The effect upon the stars depends upon whether the energy generation rate from dark matter annihilation is large enough to shut off the nuclear burning in the star. Main sequence weakly-interacting massive particles (WIMP) burners look much like proto-stars moving on the Hayashi track, although they are in principle completely stable. We make some brief comments about where such stars could be found, how they might be observed and more detailed simulations which are currently in progress. Finally we comment on whether or not it is possible to link the paradoxically hot, young stars found at the galactic center with WIMP burners.

  12. Downhole burner systems and methods for heating subsurface formations

    DOE Patents [OSTI]

    Farmayan, Walter Farman (Houston, TX); Giles, Steven Paul (Damon, TX); Brignac, Jr., Joseph Phillip (Katy, TX); Munshi, Abdul Wahid (Houston, TX); Abbasi, Faraz (Sugarland, TX); Clomburg, Lloyd Anthony (Houston, TX); Anderson, Karl Gregory (Missouri City, TX); Tsai, Kuochen (Katy, TX); Siddoway, Mark Alan (Katy, TX)

    2011-05-31

    A gas burner assembly for heating a subsurface formation includes an oxidant conduit, a fuel conduit, and a plurality of oxidizers coupled to the oxidant conduit. At least one of the oxidizers includes a mix chamber for mixing fuel from the fuel conduit with oxidant from the oxidant conduit, an igniter, and a shield. The shield includes a plurality of openings in communication with the oxidant conduit. At least one flame stabilizer is coupled to the shield.

  13. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Caner Yurteri

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  14. 01-12-1998 - Bench Top FIre Involving Use of Alcohol and Burner...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1998 - Bench Top FIre Involving Use of Alcohol and Burner Document Number: NA Effective Date: 011998 File (public): PDF icon 01-12-1998...

  15. Solid State eBurner for Supplying Power to Laptops, Cellphones...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Electricity Transmission Find More Like This Return to Search Solid State eBurner for Supplying Power to Laptops, Cellphones Oak Ridge National Laboratory...

  16. Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers

    Office of Environmental Management (EM)

    | Department of Energy Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency This project integrated a gas-fired, simple-cycle 100 kilowatt (kW) microturbine (SCMT) with a new ultra-low nitrogen oxide (NOx) gas-fired burner (ULNB) to develop a combined heat and power (CHP) assembly called the Boiler Burner Energy

  17. Slurry burner for mixture of carbonaceous material and water

    DOE Patents [OSTI]

    Nodd, Dennis G.; Walker, Richard J.

    1987-01-01

    A carbonaceous material-water slurry burner includes a high pressure tip-emulsion atomizer for directing a carbonaceous material-water slurry into a combustion chamber for burning therein without requiring a support fuel or oxygen enrichment of the combustion air. Introduction of the carbonaceous material-water slurry under pressure forces it through a fixed atomizer wherein the slurry is reduced to small droplets by mixing with an atomizing air flow and directed into the combustion chamber. The atomizer includes a swirler located immediately adjacent to where the fuel slurry is introduced into the combustion chamber and which has a single center channel through which the carbonaceous material-water slurry flows into a plurality of diverging channels continuous with the center channel from which the slurry exits the swirler immediately adjacent to an aperture in the combustion chamber. The swirler includes a plurality of slots around its periphery extending the length thereof through which the atomizing air flows and by means of which the atomizing air is deflected so as to exert a maximum shear force upon the carbonaceous material-water slurry as it exits the swirler and enters the combustion chamber. A circulating coolant system or boiler feed water is provided around the periphery of the burner along the length thereof to regulate burner operating temperature, eliminate atomizer plugging, and inhibit the generation of sparklers, thus increasing combustion efficiency. A secondary air source directs heated air into the combustion chamber to promote recirculation of the hot combustion gases within the combustion chamber.

  18. J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BestPractices Case Study BENEFITS * Saves $299,000 in annual energy costs * Saves 52,000 MMBtu of natural gas annually * Improves boiler performance * Saves 526,000 kWh per year * Achieves a simple payback of less than 14 months APPLICATIONS Worn or inefficient burners and burner control systems can lead to boiler malfunctions, production downtime, and excessive energy costs. Upgrading the efficiency of burners and burner control systems can improve a boiler's efficiency and reliability in order

  19. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    SciTech Connect (OSTI)

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  20. Drug Retention Times

    SciTech Connect (OSTI)

    Center for Human Reliability Studies

    2007-05-01

    The purpose of this monograph is to provide information on drug retention times in the human body. The information provided is based on plausible illegal drug use activities that might be engaged in by a recreational drug user.

  1. Drug Retention Times

    SciTech Connect (OSTI)

    Center for Human Reliability Studies

    2007-05-01

    The purpose of this monograph is to provide information on drug retention times in the human body. The information provided is based on plausible illegal drug use activities that might be engaged in by a recreational drug user

  2. Process and apparatus for igniting a burner in an inert atmosphere

    DOE Patents [OSTI]

    Coolidge, Dennis W. (Katy, TX); Rinker, Franklin G. (Perrysburg, OH)

    1994-01-01

    According to this invention there is provided a process and apparatus for the ignition of a pilot burner in an inert atmosphere without substantially contaminating the inert atmosphere. The process includes the steps of providing a controlled amount of combustion air for a predetermined interval of time to the combustor then substantially simultaneously providing a controlled mixture of fuel and air to the pilot burner and to a flame generator. The controlled mixture of fuel and air to the flame generator is then periodically energized to produce a secondary flame. With the secondary flame the controlled mixture of fuel and air to the pilot burner and the combustion air is ignited to produce a pilot burner flame. The pilot burner flame is then used to ignited a mixture of main fuel and combustion air to produce a main burner flame. The main burner flame then is used to ignite a mixture of process derived fuel and combustion air to produce products of combustion for use as an inert gas in a heat treatment process.

  3. Upgrade Boilers with Energy-Efficient Burners, Energy Tips: STEAM, Steam Tip Sheet #24 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Upgrade Boilers with Energy-Efficient Burners Background The purpose of the burner is to mix molecules of fuel with molecules of air. A boiler will run only as well as the burner performs. A poorly designed boiler with an effcient burner may perform better than a well-designed boiler with a poor burner. Burners are designed to maximize combustion effciency while minimizing the release of emissions. A power burner mechanically mixes fuel and combustion air and injects the mixture into the

  4. J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at a Large Food Processing Plant | Department of Energy J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant This case study describes how the J.R. Simplot Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho. PDF icon J.R. Simplot: Burner Upgrade Project

  5. Optimization of burners for firing solid fuel and natural gas for boilers with impact pulverizers

    SciTech Connect (OSTI)

    G.T. Levit; V.Ya. Itskovich; A.K. Solov'ev (and others) [ORGRES Company (Russian Federation)

    2003-01-15

    The design of a burner with preliminary mixing of fuel and air for alternate or joint firing of coal and natural gas on a boiler is described. The burner provides steady ignition and economical combustion of coal, low emission of NOx in both operating modes, and possesses an ejecting effect sufficient for operation of pulverizing systems with a shaft mill under pressure. The downward inclination of the burners makes it possible to control the position of the flame in the furnace and the temperature of the superheated steam.

  6. 01-12-1998 - Bench Top FIre Involving Use of Alcohol and Burner | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory 1998 - Bench Top FIre Involving Use of Alcohol and Burner Document Number: NA Effective Date: 01/1998 File (public): PDF icon 01-12-1998

  7. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Work on process design and LNS Burner design was deferred during this period, pending a reassessment of the project by TransAlta prior to commencement of Budget Period II, and only limited Balance of Plant engineering work was done.

  8. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    SciTech Connect (OSTI)

    2010-07-01

    The University of Alabama will develop fuel-flexible, low-emissions burner technology for the metal processing industry that is capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. By replacing a fossil fuel with biomass fuels, this new burner will enable a reduction in energy consumption and greenhouse gas emissions and an increase in fuel flexibility.

  9. Low No sub x /SO sub x burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative's (SIPC's) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC's Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner's SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  10. Preliminary safety evaluation of the advanced burner test reactor.

    SciTech Connect (OSTI)

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  11. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that aims to predict the conversion of char-nitrogen to nitric oxide should allow for the conversion of char-nitrogen to HCN. The extent of the HCN conversion to NO or N{sub 2} will depend on the composition of the atmosphere surrounding the particle. A pilot-scale testing campaign was carried out to evaluate the impact of multiburner firing on NO{sub x} emissions using a three-burner vertical array. In general, the results indicated that multiburner firing yielded higher NO{sub x} emissions than single burner firing at the same fuel rate and excess air. Mismatched burner operation, due to increases in the firing rate of the middle burner, generally demonstrated an increase in NO{sub x} over uniform firing. Biased firing, operating the middle burner fuel rich with the upper and lower burners fuel lean, demonstrated an overall reduction in NO{sub x} emissions; particularly when the middle burner was operated highly fuel rich. Computational modeling indicated that operating the three burner array with the center burner swirl in a direction opposite to the other two resulted in a slight reduction in NO{sub x}.

  12. Technetium Retention During LAW Vitrification

    Office of Environmental Management (EM)

    Technetium Retention During LAW Vitrification Ian L. Pegg Vitreous State Laboratory The Catholic University of America Washington, DC November 18, 2010 Overview * Tc in borosilcate glass structure * Re as a surrogate for Tc * Summary of previous data on Tc incorporation into LAW glass * Summary of results from ongoing test program * Single-pass retention vs. retention with recycle * Tc volatilization during container filling Tc in LAW Glass Structure * Tc is present as Tc 7+ and Tc 4+ * Tc 7+ is

  13. Protections: Sediment Control = Contaminant Retention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediment Control Protections: Sediment Control Contaminant Retention LANL maintains hundreds of wells, stream sampling stations and stormwater control structures to protect...

  14. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    DOE Patents [OSTI]

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  15. Low No{sub x}/SO{sub x} burner retrofit for utility cyclone boilers. Baseline test report: Issue A

    SciTech Connect (OSTI)

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative`s (SIPC`s) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC`s Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner`s SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  16. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE's Clean Coal Technology Program Round II.

  17. Technetium Retention During LAW Vitrification

    Office of Environmental Management (EM)

    (1% I) for LAWE7H (AN-102, high organics) * 18% Tc (22% I) for LAWE3 (AP-101, high K) * Sugar most effective organic reductant for Tc and I retention * 15-20% absolute increase...

  18. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    SciTech Connect (OSTI)

    Cygan, David

    2006-12-28

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases blast furnace gas (BFG) and coke-oven gas (COG) are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTIs highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non-catalytic reduction. The FIR burner was previously demonstrated on firetube and watertube boilers, and these units are still operating at several industrial and commercial boiler sites in sizes ranging from 2.5 to 60 million Btu/h. This report covers the development of an innovative combustion system suitable for natural gas or coke-oven gas firing within the steel industry. The prototype FIR burner was evaluated on a 20 million Btu/h watertube boiler. Acceptable burner performance was obtained when firing natural gas and simulated coke-oven gas doped with ammonia. The laboratory data reveals a direct relationship between NOx formation and the ammonia concentration in the fuel. In addition, NOx formation increases as the primary stoichiometric ratio (PSR) increases. Representative ammonia concentrations, as documented in the steel industry, ranged from 200 to 500 vppm. When the laboratory burner/boiler was operated with 500 vppm ammonia in the fuel, NOx emissions ranged from 50 to 75 vppm. This, conservatively, is 75% less than state-of-the-art burner performance. When the burner is operated with 200 vppm ammonia in the fuel, the corresponding NOx emissions would range from 30 to 45 vppm, 84% less than present burner technology. During field evaluation on a 174 million Btu/h industrial prototype burner both natural gas and actual COG from on-site generation were tested. Despite the elevated hydrogen cyanide and ammonia content in the COG throughout the test program, the FIR burner showed an improvement over baseline emissions. At full load; 167 million Btu/h, NOx emissions were relatively low at 169 vppm. This represents a 30% reduction compared to baseline emissions not accounting for the higher hydrogen cyanide content in the COG. CO emissions remained below 20 vppm and were stable across the firing range. This represents a 68% reduction compared to baseline CO emissions. When firing natural gas, emissions were stable as firing rate increased over the range. At low fire; 45 million Btu/h, NOx emissions where 33 vppm and increased at full load; 144 million Btu

  19. Deposition head for laser

    DOE Patents [OSTI]

    Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

    1999-01-01

    A deposition head for use as a part of apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. The deposition head delivers the laser beam and powder to a deposition zone, which is formed at the tip of the deposition head. A controller comprised of a digital computer directs movement of the deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which the deposition head moves along the tool path.

  20. Bottom head assembly

    DOE Patents [OSTI]

    Fife, A.B.

    1998-09-01

    A bottom head dome assembly is described which includes, in one embodiment, a bottom head dome and a liner configured to be positioned proximate the bottom head dome. The bottom head dome has a plurality of openings extending there through. The liner also has a plurality of openings extending there through, and each liner opening aligns with a respective bottom head dome opening. A seal is formed, such as by welding, between the liner and the bottom head dome to resist entry of water between the liner and the bottom head dome at the edge of the liner. In the one embodiment, a plurality of stub tubes are secured to the liner. Each stub tube has a bore extending there through, and each stub tube bore is coaxially aligned with a respective liner opening. A seat portion is formed by each liner opening for receiving a portion of the respective stub tube. The assembly also includes a plurality of support shims positioned between the bottom head dome and the liner for supporting the liner. In one embodiment, each support shim includes a support stub having a bore there through, and each support stub bore aligns with a respective bottom head dome opening. 2 figs.

  1. Bottom head assembly

    DOE Patents [OSTI]

    Fife, Alex Blair (San Jose, CA)

    1998-01-01

    A bottom head dome assembly which includes, in one embodiment, a bottom head dome and a liner configured to be positioned proximate the bottom head dome is described. The bottom head dome has a plurality of openings extending therethrough. The liner also has a plurality of openings extending therethrough, and each liner opening aligns with a respective bottom head dome opening. A seal is formed, such as by welding, between the liner and the bottom head dome to resist entry of water between the liner and the bottom head dome at the edge of the liner. In the one embodiment, a plurality of stub tubes are secured to the liner. Each stub tube has a bore extending therethrough, and each stub tube bore is coaxially aligned with a respective liner opening. A seat portion is formed by each liner opening for receiving a portion of the respective stub tube. The assembly also includes a plurality of support shims positioned between the bottom head dome and the liner for supporting the liner. In one embodiment, each support shim includes a support stub having a bore therethrough, and each support stub bore aligns with a respective bottom head dome opening.

  2. Method for reducing NOx during combustion of coal in a burner

    DOE Patents [OSTI]

    Zhou, Bing (Cranbury, NJ); Parasher, Sukesh (Lawrenceville, NJ); Hare, Jeffrey J. (Provo, UT); Harding, N. Stanley (North Salt Lake, UT); Black, Stephanie E. (Sandy, UT); Johnson, Kenneth R. (Highland, UT)

    2008-04-15

    An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

  3. Evaluation of Fluid Conduction and Mixing within a Subassembly of the Actinide Burner Test Reactor

    SciTech Connect (OSTI)

    Cliff B. Davis

    2007-09-01

    The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of the Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid, including axial and radial heat conduction and subchannel mixing, that are not currently represented with internal code models. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor.

  4. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-06-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  5. Coal Particle Flow Patterns for O2 Enriched, Low NOx Burners

    SciTech Connect (OSTI)

    Jennifer Sinclair Curtis

    2005-08-01

    This project involved a systematic investigation examining the effect of near-flame burner aerodynamics on standoff distance and stability of turbulent diffusion flames and the resultant NO{sub x} emissions from actual pulverized coal diffusion flames. Specifically, the scope of the project was to understand how changes in near-flame aerodynamics and transport air oxygen partial pressure can influence flame attachment and coal ignition, two properties essential to proper operation of low NO{sub x} burners. Results from this investigation utilized a new 2M tall, 0.5m in diameter combustor designed to evaluate near-flame combustion aerodynamics in terms of transport air oxygen partial pressure (Po{sub 2}), coal fines content, primary fuel and secondary air velocities, and furnace wall temperature furnish insight into fundamental processes that occur during combustion of pulverized coal in practical systems. Complementary cold flow studies were conducted in a geometrically similar chamber to analyze the detailed motion of the gas and particles using laser Doppler velocimetry. This final technical report summarizes the key findings from our investigation into coal particle flow patterns in burners. Specifically, we focused on the effects of oxygen enrichment, the effect of fines, and the effect of the nozzle velocity ratio on the resulting flow patterns. In the cold flow studies, detailed measurements using laser Doppler velocimetry (LDV) were made to determine the details of the flow. In the hot flow studies, observations of flame stability and measurements of NO{sub x} were made to determine the effects of the flow patterns on burner operation.

  6. Optimization of Coal Particle Flow Patterns in Low N0x Burners

    SciTech Connect (OSTI)

    Caner Yurteri; Gregory E. Ogden; Jennifer Sinclair; Jost O.L. Wendt

    1998-03-06

    The proposed research is directed at evaluating the effect of flame aerodynamics on NOX emissions tlom coal fired burners in a systematic manner. This fimdamental research includes both experimental and modeling efforts being petiormed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NOX burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow fhrnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The fhrnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NOX burner geometry's.

  7. Large eddy simulation of forced ignition of an annular bluff-body burner

    SciTech Connect (OSTI)

    Subramanian, V.; Domingo, P.; Vervisch, L.

    2010-03-15

    The optimization of the ignition process is a crucial issue in the design of many combustion systems. Large eddy simulation (LES) of a conical shaped bluff-body turbulent nonpremixed burner has been performed to study the impact of spark location on ignition success. This burner was experimentally investigated by Ahmed et al. [Combust. Flame 151 (2007) 366-385]. The present work focuses on the case without swirl, for which detailed measurements are available. First, cold-flow measurements of velocities and mixture fractions are compared with their LES counterparts, to assess the prediction capabilities of simulations in terms of flow and turbulent mixing. Time histories of velocities and mixture fractions are recorded at selected spots, to probe the resolved probability density function (pdf) of flow variables, in an attempt to reproduce, from the knowledge of LES-resolved instantaneous flow conditions, the experimentally observed reasons for success or failure of spark ignition. A flammability map is also constructed from the resolved mixture fraction pdf and compared with its experimental counterpart. LES of forced ignition is then performed using flamelet fully detailed tabulated chemistry combined with presumed pdfs. Various scenarios of flame kernel development are analyzed and correlated with typical flow conditions observed in this burner. The correlations between, velocities and mixture fraction values at the sparking time and the success or failure of ignition, are then further discussed and analyzed. (author)

  8. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect (OSTI)

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18%. The performance goal of 70/40 reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18%.

  9. Development of the Radiation Stabilized Distributed Flux Burner, Phase II Final Report

    SciTech Connect (OSTI)

    Webb, A.; Sullivan, J.D.

    1997-06-01

    This report covers progress made during Phase 2 of a three-phase DOE-sponsored project to develop and demonstrate the Radiation Stabilized Distributed Flux burner (also referred to as the Radiation Stabilized Burner, or RSB) for use in industrial watertube boilers and process heaters. The goal of the DOE-sponsored work is to demonstrate an industrial boiler burner with NOx emissions below 9 ppm and CO emissions below 50 ppm (corrected to 3% stack oxygen). To be commercially successful, these very low levels of NOx and CO must be achievable without significantly affecting other measures of burner performance such as reliability, turndown, and thermal efficiency. Phase 1 of the project demonstrated that sub-9 ppm NOx emissions and sub-50 ppm CO emissions (corrected to 3% oxygen) could be achieved with the RSB in a 3 million Btu/Hr laboratory boiler using several methods of NOx reduction. The RSB was also tested in a 60 million Btu/hr steam generator used by Chevron for Thermally Enhanced Oil Recovery (TEOR). In the larger scale tests, fuel staging was demonstrated, with the RSB consistently achieving sub-20 ppm NOx and as low as 10 ppm NOx. Large-scale steam generator tests also demonstrated that flue gas recirculation (FGR) provided a more predictable and reliable method of achieving sub-9 ppm NOx levels. Based on the results of tests at San Francisco Thermal and Chevron, the near-term approach selected by Alzeta for achieving low NOx is to use FGR. This decision was based on a number of factors, with the most important being that FGR has proved to be an easier approach to transfer to different facilities and boiler designs. In addition, staging has proved difficult to implement in a way that allows good combustion and emissions performance in a fully modulating system. In Phase 3 of the project, the RSB will be demonstrated as a very low emissions burner product suitable for continuous operation in a commercial installation. As such, the Phase 3 field demonstration will represent the first installation in which the RSB will be operated continuously with a sub-9 ppm guarantee.

  10. Maneuvering impact boring head

    DOE Patents [OSTI]

    Zollinger, W. Thor (Idaho Falls, ID); Reutzel, Edward W. (Idaho Falls, ID)

    1998-01-01

    An impact boring head may comprise a main body having an internal cavity with a front end and a rear end. A striker having a head end and a tail end is slidably mounted in the internal cavity of the main body so that the striker can be reciprocated between a forward position and an aft position in response to hydraulic pressure. A compressible gas contained in the internal cavity between the head end of the striker and the front end of the internal cavity returns the striker to the aft position upon removal of the hydraulic pressure.

  11. Maneuvering impact boring head

    DOE Patents [OSTI]

    Zollinger, W.T.; Reutzel, E.W.

    1998-08-18

    An impact boring head may comprise a main body having an internal cavity with a front end and a rear end. A striker having a head end and a tail end is slidably mounted in the internal cavity of the main body so that the striker can be reciprocated between a forward position and an aft position in response to hydraulic pressure. A compressible gas contained in the internal cavity between the head end of the striker and the front end of the internal cavity returns the striker to the aft position upon removal of the hydraulic pressure. 8 figs.

  12. Workforce Retention Work Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Retention Work Group Workforce Retention Work Group The Workforce Retention Work Group was established to collaboratively address the needs of the Department to maintain a skilled work force in the face of anticipated retirements and to address the specific health and safety concerns of that work force that could impede retention. Due to the broad nature of the issues reflected within this working group, the chartered objectives and outcomes have been moved forward to be worked by the

  13. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect (OSTI)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 μm, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  14. Protections: Sediment Control = Contaminant Retention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediment Control Protections: Sediment Control = Contaminant Retention LANL maintains hundreds of wells, stream sampling stations and stormwater control structures to protect waters. August 1, 2013 Los Alamos Canyon weir Los Alamos Canyon weir thumbnail of Protection #2: Trap and Remove Sediment Sediment behind LA Canyon weir is sampled and excavated regularly. As of 2012, no sediment required disposal as hazardous or radioactive waste. RELATED IMAGES

  15. COAL PARTICLE FLOW PATTERNS FOR O2 ENRICHED, LOW NOx BURNERS

    SciTech Connect (OSTI)

    Jennifer L. Sinclair

    2001-09-30

    Over the past year, the hot flow studies have focused on the validation of a novel 2M near-flame combustion furnace. The 2M furnace was specifically designed to investigate burner aerodynamics and flame stability phenomena. Key accomplishments include completion of coal & oxygen mass balance calculations and derivation of emission conversion equations, upgrade of furnace equipment and flame safety systems, shakedown testing and partial completion of a parametric flame stability study. These activities are described in detail below along with a description of the 2M furnace and support systems.

  16. Hot repair of ceramic burner on hot blast stoves at USS/Kobe`s {number_sign}3 blast furnace

    SciTech Connect (OSTI)

    Bernarding, T.F.; Chemorov, M.; Shimono, S.; Phillips, G.R.

    1997-12-31

    During the 1992 reline of the No. 3 blast furnace, three new stoves were constructed. The design of the stoves, equipped with internal ceramic burners, was for providing a hot blast temperature of 2,000 F at a wind rate of 140,000 SCFM. After 3 years the performance had deteriorated so the burners were cleaned. When a second cleaning did not improve the performance of No. 3 blast furnace, it was decided to repair the refractory while still hot. The paper describes the hot repair procedures, taking a stove off for repairs, maintenance heat up during repairs, two stove operation, stove commissioning, repair of a ceramic burner, and wet gas prevention.

  17. Combustion characteristics and NOx emissions of two kinds of swirl burners in a 300-MWe wall-fired pulverized-coal utility boiler

    SciTech Connect (OSTI)

    Li, Z.Q.; Jing, J.P.; Chen, Z.C.; Ren, F.; Xu, B.; Wei, H.D.; Ge, Z.H.

    2008-07-01

    Measurements were performed in a 300-MWe wall-fired pulverized-coal utility boiler. Enhanced ignition-dual register (EI-DR) burners and centrally fuel rich (CFR) swirl coal combustion burners were installed in the bottom row of the furnace during experiments. Local mean concentrations of O{sub 2}, CO, CO{sub 2} and NOx gas species, gas temperatures, and char burnout were determined in the region of the two types of burners. For centrally fuel rich swirl coal combustion burners, local mean CO concentrations, gas temperatures and the temperature gradient are higher and mean concentrations of O{sub 2} and NOx along the jet flow direction in the burner region are lower than for the enhanced ignition-dual register burners. Moreover, the mean O{sub 2} concentration is higher and the gas temperature and mean CO concentration are lower in the side wall region. For centrally fuel rich swirl coal combustion burners in the bottom row, the combustion efficiency of the boiler increases from 96.73% to 97.09%, and NOx emission decreases from 411.5 to 355 ppm at 6% O{sub 2} compared to enhanced ignition-dual register burners and the boiler operates stably at 110 MWe without auxiliary fuel oil.

  18. A Metal Fuel Core Concept for 1000 MWt Advanced Burner Reactor

    SciTech Connect (OSTI)

    Yang, W.S.; Kim, T.K.; Grandy, C.

    2007-07-01

    This paper describes the core design and performance characteristics of a metal fuel core concept for a 1000 MWt Advanced Burner Reactor. A ternary metal fuel form of U-TRU-Zr was assumed with weapons grade plutonium feed for the startup core and TRU recovered from LWR spent fuel for the recycled equilibrium core. A compact burner core was developed by trade-off between the burnup reactivity loss and TRU conversion ratio, with a fixed cycle length of one-year. In the startup core, the average TRU enrichment is 15.5%, the TRU conversion ratio is 0.81, and the burnup reactivity loss over a cycle is 3.6% {delta}k. The heavy metal and TRU inventories are 13.1 and 2.0 metric tons, respectively. The average discharge burnup is 93 MWd/kg, and the TRU consumption rate is 55.5 kg/year. For the recycled equilibrium core, the average TRU enrichment is 22.1 %, the TRU conversion ratio is 0.73, and the burnup reactivity loss is 2.2% {delta}k. The TRU inventory and consumption rate are 2.9 metric tons and 81.6 kg/year, respectively. The evaluated reactivity coefficients provide sufficient negative feedbacks. The control systems provide shutdown margins that are more than adequate. The integral reactivity parameters for quasi-static reactivity balance analysis indicate favorable passive safety features, although detailed safety analyses are required to verify passive safety behavior. (authors)

  19. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOE Patents [OSTI]

    Tuthill, Richard Sterling (Bolton, CT); Bechtel, II, William Theodore (Scotia, NY); Benoit, Jeffrey Arthur (Scotia, NY); Black, Stephen Hugh (Duanesburg, NY); Bland, Robert James (Clifton Park, NY); DeLeonardo, Guy Wayne (Scotia, NY); Meyer, Stefan Martin (Troy, NY); Taura, Joseph Charles (Clifton Park, NY); Battaglioli, John Luigi (Glenville, NY)

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  20. Multi-ported, internally recuperated burners for direct flame impingement heating applications

    DOE Patents [OSTI]

    Abbasi, Hamid A. (Naperville, IL); Kurek, Harry (Dyer, IN); Chudnovsky, Yaroslav (Skokie, IL); Lisienko, Vladimir G. (Ekaterinburg, RU); Malikov, German K. (Ekaterinburg, RU)

    2010-08-03

    A direct flame impingement method and apparatus employing at least one multi-ported, internally recuperated burner. The burner includes an innermost coaxial conduit having a first fluid inlet end and a first fluid outlet end, an outermost coaxial conduit disposed around the innermost coaxial conduit and having a combustion products outlet end proximate the first fluid inlet end of the innermost coaxial conduit and a combustion products inlet end proximate the first fluid outlet end of the innermost coaxial conduit, and a coaxial intermediate conduit disposed between the innermost coaxial conduit and the outermost coaxial conduit, whereby a second fluid annular region is formed between the innermost coaxial conduit and the intermediate coaxial conduit and a combustion products annular region is formed between the intermediate coaxial conduit and the outermost coaxial conduit. The intermediate coaxial conduit has a second fluid inlet end proximate the first fluid inlet end of the innermost coaxial conduit and a second fluid outlet end proximate the combustion products inlet end of the outermost coaxial conduit.

  1. Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners

    SciTech Connect (OSTI)

    Lobscheid, Agnes; Singer, Brett C.; Klepeis, Neil E.

    2011-06-01

    We developed a physics-based data-supported model to investigate indoor pollutant exposure distributions resulting from use of natural gas cooking appliances across households in California. The model was applied to calculate time-resolved indoor concentrations of CO, NO2 and formaldehyde resulting from cooking burners and entry with outdoor air. Exposure metrics include 1-week average concentrations and frequency of exceeding ambient air quality standards. We present model results for Southern California (SoCal) using two air-exchange scenarios in winter: (1) infiltration-only, and (2) air exchange rate (AER) sampled from lognormal distributions derived from measurements. In roughly 40percent of homes in the SoCal cohort (N=6634) the 1-hour USEPA NO2 standard (190 ?g/m3) was exceeded at least once. The frequency of exceeding this standard was largely independent of AER assumption, and related primarily to building volume, emission rate and amount of burner use. As expected, AER had a more substantial impact on one-week average concentrations.

  2. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    SciTech Connect (OSTI)

    Choudhuri, Ahsan

    2013-05-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO{sub 2} from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H{sub 2} concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO{sub 2} and H{sub 2}O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient g{sub F}) values for CH{sub 4}-O{sub 2}-CO{sub 2} flames. The scaling relation (𝐠{sub F} = 𝐜 𝐒{sub 𝐋}{sup 2}/𝛂) for different burner diameters was obtained for various diameter burners. The report shows that results correlated linearly with a scaling value of c =0.0174. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH{sub 4}/21%O{sub 2}/79%N{sub 2} and CH{sub 4}/38%O{sub 2}/72%CO{sub 2} mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of CH{sub 4}/air and CH{sub 4}/38%O{sub 2}/72%CO{sub 2} combustion. The velocity fluctuations, turbulence intensities and local propagation velocities along the combustion chamber have been determined. The turbulent intensities increase as we move away from the combustor axis. CH{sub 4}-38%O{sub 2}-72%CO{sub 2} flames have low radial velocity and turbulent intensity distributions at different axial distances when compared with CH{sub 4}-Air flames.

  3. Reactor pressure vessel vented head

    DOE Patents [OSTI]

    Sawabe, James K. (San Jose, CA)

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell.

  4. Radionuclide Retention in Concrete Wasteforms

    SciTech Connect (OSTI)

    Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.; Cordova, Elsa A.

    2012-09-24

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  5. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Bai, T.; Yeboah, Y.D.; Sampath, R.

    1995-10-01

    The objective of this investigation is to characterize the operation of fan powered infrared burner (PIR) at various gas compositions and ambient conditions and develop design guidelines for appliances in containing PIR burners for satisfactory performance. During this period, experimental setup with optical and electronic instrumentation that is necessary for measuring the radiant heat output and the emission gas output of the burner has been established. The radiation measurement instrument, an FTIR, has been purchased and installed in the porous burner experimental system. The radiation measurement capability of the FTIR was tested and found to be satisfactory. A standard blackbody source, made by Graseby Infrared, was employed to calibrate the FTIR. A collection duct for emission gas measurement was fabricated and connected to the existing Horiba gas analyzer. Test runs are being conducted for flue gas analysis. A number of published research papers on modeling of porous burners were reviewed. The physical mechanism and theoretical analysis of the combustion process of the PIR burner was formulated. The numerical modeling, and implementation of a PIR burner code at CAU`s computing facility is in progress.

  6. Click to add heading

    Office of Environmental Management (EM)

    Prefabricated High-Strength Rebar Systems with High-Performance Concrete for Accelerated Construction of Nuclear Concrete Structures Primary Objective Reduce field construction times and fabrication costs of reinforced concrete nuclear structures through: 1) High-strength reinforcing steel bars (rebar) 2) Prefabricated rebar assemblies, including headed anchorages 3) High-strength concrete 1 Collaboration 2 Yahya C. Kurama, Ph.D., P.E. Ashley P. Thrall, Ph.D. Professor Myron and Rosemary Noble

  7. Radionuclide Retention in Concrete Wasteforms

    SciTech Connect (OSTI)

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.; Wood, Marcus I.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.

  8. Mechanical swirler for a low-NO.sub.x, weak-swirl burner

    DOE Patents [OSTI]

    Cheng, Robert K. (Kensington, CA); Yegian, Derek T. (Berkeley, CA)

    1999-01-01

    Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen.

  9. Mechanical swirler for a low-NO{sub x}, weak-swirl burner

    DOE Patents [OSTI]

    Cheng, R.K.; Yegian, D.T.

    1999-03-09

    Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen. 16 figs.

  10. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    SciTech Connect (OSTI)

    Jon Carmack; Kemal O. Pasamehmetoglu; David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  11. Pollutant exposures from unvented gas cooking burners: A Simulation-based Assessment for Southern California

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-01-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. In this study, LBNL researchers quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes.The simulation model estimated thatin homes using NGCBs without coincident use of venting range hoods -- 62%, 9%, and 53% of occupants are routinely exposed to NO2, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3,000, and 20 ppb for NO2, CO, and HCHO, respectively. The study recommends that reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  12. A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility

    SciTech Connect (OSTI)

    S. Khericha

    2010-12-01

    The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.

  13. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, July--September 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    Work on process design and LNS Burner design was deferred during this period, pending a reassessment of the project by TransAlta prior to commencement of Budget Period II, and only limited Balance of Plant engineering work was done.

  14. EISPC White Paper on "State Approaches to Retention of Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EISPC White Paper on "State Approaches to Retention of Nuclear Power Plants" Now Available EISPC White Paper on "State Approaches to Retention of Nuclear Power Plants" Now ...

  15. Reactor pressure vessel vented head

    DOE Patents [OSTI]

    Sawabe, J.K.

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell. 6 figures.

  16. Experimental study on NOx emission and unburnt carbon of a radial biased swirl burner for coal combustion

    SciTech Connect (OSTI)

    Shan Xue; Shi'en Hui; Qulan Zhou; Tongmo Xu

    2009-07-15

    Pilot tests were carried out on a 1 MW thermal pulverized coal fired testing furnace. Symmetrical combustion was implemented by use of two whirl burners with dual air adjustment. The burnout air device was installed in various places at the top of the main burner, which consists of a primary air pipe with a varying cross-section and an impact ring. In the primary air pipe, the air pulverized coal (PC) stream was separated into a whirling stream that was thick inside and thin outside, thus realizing the thin-thick distribution at the burner nozzle in the radial direction. From the comparative combustion tests of three coals with relatively great characteristic differences, Shaanbei Shenhua high rank bituminous coal (SH coal), Shanxi Hejin low rank bituminous coal (HJ coal), and Shanxi Changzhi meager coal (CZ coal), were obtained such test results as the primary air ratio, inner secondary air ratio, outer secondary air ratio, impact of the change of outer secondary air, change of the relative position for the layout of burnout air, change of the swirling intensity of the primary air and secondary air, etc., on the NOx emission, and unburnt carbon content in fly ash (CFA). At the same time, the relationship between the NOx emission and burnout ratio and affecting factors of the corresponding test items on the combustion stability and economic results were also acquired. The results may provide a vital guiding significance to engineering designs and practical applications. According to the experimental results, the influence of each individual parameter on NOx formation and unburned carbon in fly ash agrees well with the existing literature. In this study, the influences of various combinations of these parameters are also examined, thus providing some reference for the design of the radial biased swirl burner, the configuration of the furnace, and the distribution of the air. 23 refs., 14 figs., 2 tabs.

  17. DOE Handbook on Recruitment and Retention Incentives | Department of Energy

    Office of Environmental Management (EM)

    Recruitment and Retention Incentives DOE Handbook on Recruitment and Retention Incentives This desk reference contains sample recruitment, relocation, retention, and student loan incentive plans and service agreements for eligible employees; sample worksheets to assist in documenting the justification and approvals for all types of recruitment and retention incentives; information on superior qualification determinations; guidance and sample documents regarding crediting directly-related service

  18. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    SciTech Connect (OSTI)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  19. Laminar burn rates of gun propellants measured in the high-pressure strand burner

    SciTech Connect (OSTI)

    Reaugh, J. E., LLNL

    1997-10-01

    The pressure dependence of the laminar burn rate of gun propellants plays a role in the design and behavior of high-performance guns. We have begun a program to investigate the effects of processing variables on the laminar burn rates, using our high-pressure strand burner to measure these rates at pressures exceeding 700 MPa. We have burned JA2 and M43 propellant samples, provided by Dr. Arpad Juhasz, ARL, from propellant lots previously used in round-robin tests. Our results at room temperature are in accord with other measurements. In addition, we present results measured for propellant that has been preheated to 50 C before burning. We used our thermochemical equilibrium code, CHEETAH, to help interpret the simultaneous pressure and temperature measurements taken during the testing, and show examples of its use. It has been modified to provide performance measures and equations of state for the products that are familiar to the gun-propellant community users of BLAKE.

  20. Work Force Retention Work Group Charter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Force Retention Work Group Charter Work Force Retention Work Group Charter The Work force Retention Work Group is established to support the Department's critical focus on maintaining a high-performing work force at a time when a significant number of the workers needed to support DOE's national security mission are reaching retirement age. PDF icon Work Force Retention Work Group Charter More Documents & Publications Workforce Retention Work Group Status Overview - September 2012 Training

  1. Safeguards Workforce Repatriation, Retention and Utilization

    SciTech Connect (OSTI)

    Gallucci, Nicholas; Poe, Sarah

    2015-10-01

    Brookhaven National Laboratory was tasked by NA-241 to assess the transition of former IAEA employees back to the United States, investigating the rate of retention and overall smoothness of the repatriation process among returning safeguards professionals. Upon conducting several phone interviews, study authors found that the repatriation process went smoothly for the vast majority and that workforce retention was high. However, several respondents expressed irritation over the minimal extent to which their safeguards expertise had been leveraged in their current positions. This sentiment was pervasive enough to prompt a follow-on study focusing on questions relating to the utilization rather than the retention of safeguards professionals. A second, web-based survey was conducted, soliciting responses from a larger sample pool. Results suggest that the safeguards workforce may be oversaturated, and that young professionals returning to the United States from Agency positions may soon encounter difficulties finding jobs in the field.

  2. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    SciTech Connect (OSTI)

    S. T. Khericha

    2007-04-01

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to Data Call for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

  3. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  4. Heater head for stirling engine

    DOE Patents [OSTI]

    Corey, John A. (R.D. #2, Box 101 E, North Troy, NY 12182)

    1985-07-09

    A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.

  5. Check Burner Air to Fuel Ratios; Industrial Technologies Program (ITP) Process Heating Tip Sheet #2 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    checking and resetting of air-fuel ratios for burners is one of the simplest ways to get maximum efficiency out of fuel-fired process heating equipment such as furnaces, ovens, heaters, and boilers. Most high temperature direct-fired furnaces, radiant tubes, and boilers operate with about 10% to 20% excess combustion air at high fire to prevent the formation of dangerous carbon monoxide and soot deposits on heat transfer surfaces and inside radiant tubes. For the fuels most commonly used by U.S.

  6. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    SciTech Connect (OSTI)

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. Toward the end of the program, a Second Generation gas injection system was installed. Higher injector gas pressures were used that eliminated the need for flue gas recirculation as used in the first generation design. The Second Generation GR resulted in similar NOX reduction performance as that for the First Generation. With an improvement in the LNB performance in combination with the new gas injection system , the reburn gas could be reduced to 12.5% of the total boiler heat input to achieve al 64?40 reduction in NO, emissions. In addition, the OFA injectors were modified to provide for better mixing to lower CO emissions.

  7. Use of freeze-casting in advanced burner reactor fuel design

    SciTech Connect (OSTI)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary results show that criticality is achievable with freeze-cast fuel pins despite the significant amount of inert fuel matrix. Freeze casting is a promising method to achieve very precise fuel placement within fuel pins. (authors)

  8. Workforce Retention Work Group Status Overview - September 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy September 2012 Workforce Retention Work Group Status Overview - September 2012 Documents Available for Download PDF icon September 2012 Status Overviews More Documents & Publications Workforce Retention Work Group Status Overview - July 2012 Work Force Retention Work Group Charter Work Group Telecon (Final Charters)

  9. Preliminary core design studies for the advanced burner reactor over a wide range of conversion ratios.

    SciTech Connect (OSTI)

    Hoffman, E. A.; Yang, W. S.; Hill, R. N.; Nuclear Engineering Division

    2008-05-05

    A consistent set of designs for 1000 MWt commercial-scale sodium-cooled Advance Burner Reactors (ABR) have been developed for both metal and oxide-fueled cores with conversion ratios from breakeven (CR=1.0) to fertile-free (CR=0.0). These designs are expected to satisfy thermal and irradiation damage limits based on the currently available data. The very low conversion ratio designs require fuel that is beyond the current fuel database, which is anticipated to be qualified by and for the Advanced Burned Test Reactor. Safety and kinetic parameters were calculated, but a safety analysis was not performed. Development of these designs was required to achieve the primary goal of this study, which was to generate representative fuel cycle mass flows for system studies of ABRs as part of the Global Nuclear Energy Partnership (GNEP). There are slight variations with conversion ratio but the basic ABR configuration consists of 144 fuel assemblies and between 9 and 22 primary control assemblies for both the metal and oxide-fueled cores. Preliminary design studies indicated that it is feasible to design the ABR to accommodate a wide range of conversion ratio by employing different assembly designs and including sufficient control assemblies to accommodate the large reactivity swing at low conversion ratios. The assemblies are designed to fit within the same geometry, but the size and number of fuel pins within each assembly are significantly different in order to achieve the target conversion ratio while still satisfying thermal limits. Current irradiation experience would allow for a conversion ratio of somewhat below 0.75. The fuel qualification for the first ABR should expand this experience to allow for much lower conversion ratios and higher bunrups. The current designs were based on assumptions about the performance of high and very high enrichment fuel, which results in significant uncertainty about the details of the designs. However, the basic fuel cycle performance trends such as conversion ratio and mass flow parameters are less sensitive to these parameters and the current results should provide a good basis for static and dynamic system analysis. The conversion ratio is fundamentally a ratio of the macroscopic cross section of U-238 capture to that of TRU fission. Since the microscopic cross sections only change moderately with fuel design and isotopic concentration for the fast reactor, a specific conversion ratio requires a specific enrichment. The approximate average charge enrichment (TRU/HM) is 14%, 21%, 33%, 56%, and 100% for conversion ratios of 1.0, 0.75, 0.50, 0.25, and 0.0 for the metal-fueled cores. The approximate average charge enrichment is 17%, 25%, 38%, 60%, and 100% for conversion ratios of 1.0, 0.75, 0.50, 0.25, and 0.0 for the oxide-fueled core. For the split batch cores, the maximum enrichment will be somewhat higher. For both the metal and oxide-fueled cores, the reactivity feedback coefficients and kinetics parameters seem reasonable. The maximum single control assembly reactivity faults may be too large for the low conversion ratio designs. The average reactivity of the primary control assemblies was increased, which may cause the maximum reactivity of the central control assembly to be excessive. The values of the reactivity coefficients and kinetics parameters show that some values appear to improve significantly at lower conversion ratios while others appear far less favorable. Detailed safety analysis is required to determine if these designs have adequate safety margins or if appropriate design modifications are required. Detailed system analysis data has been generated for both metal and oxide-fueled core designs over the entire range of potential burner reactors. Additional data has been calculated for a few alternative fuel cycles. The systems data has been summarized in this report and the detailed data will be provided to the systems analysis team so that static and dynamic system analyses can be performed.

  10. Rotating head and piston engine

    SciTech Connect (OSTI)

    Gomm, T.J.; Messick, N.C.

    1992-07-21

    This patent describes a rotary piston combustion engine. It comprises a housing means, an engine block housing a single toroidal bore, a piston carrier ring spaced outwardly along the entire perimeter of the toroidal bore with at least one finger extending inwardly for piston attachment, a power transfer cylinder, a power output shaft, an auxiliary shaft with driven gearing means meshing with the driving gearing means, a rotating head with windows for piston passage, a trapezoidal porting means in the engine block and in the rotating head, an exhaust port means.

  11. Rotary head type reproducing apparatus

    DOE Patents [OSTI]

    Takayama, Nobutoshi (Kanagawa, JP); Edakubo, Hiroo (Tokyo, JP); Kozuki, Susumu (Tokyo, JP); Takei, Masahiro (Kanagawa, JP); Nagasawa, Kenichi (Kanagawa, JP)

    1986-01-01

    In an apparatus of the kind arranged to reproduce, with a plurality of rotary heads, an information signal from a record bearing medium having many recording tracks which are parallel to each other with the information signal recorded therein and with a plurality of different pilot signals of different frequencies also recorded one by one, one in each of the recording tracks, a plurality of different reference signals of different frequencies are simultaneously generated. A tracking error is detected by using the different reference signals together with the pilot signals which are included in signals reproduced from the plurality of rotary heads.

  12. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, June--September 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE`s Clean Coal Technology Program Round II.

  13. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion for Sodium-Cooled Fast Reactors/Advanced Burner Reactors

    SciTech Connect (OSTI)

    Sienicki, James J.; Moisseytsev, Anton; Cho, Dae H.; Momozaki, Yoichi; Kilsdonk, Dennis J.; Haglund, Robert C.; Reed, Claude B.; Farmer, Mitchell T.

    2007-07-01

    An optimized supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle power converter has been developed for the 100 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) eliminating the potential for sodium-water reactions and achieving a small power converter and turbine generator building. Cycle and plant efficiencies of 39.1 and 38.3 %, respectively, are calculated for the ABTR core outlet temperature of 510 deg. C. The ABTR S-CO{sub 2} Brayton cycle will incorporate Printed Circuit Heat Exchanger{sup TM} units in the Na-to-CO{sub 2} heat exchangers, high and low temperature recuperators, and cooler. A new sodium test facility is being completed to investigate the potential for transient plugging of narrow sodium channels typical of a Na-to-CO{sub 2} heat exchanger under postulated off-normal or accident conditions. (authors)

  14. Combustor with non-circular head end

    DOE Patents [OSTI]

    Kim, Won -Wook; McMahan, Kevin Weston

    2015-09-29

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a head end with a non-circular configuration, a number of fuel nozzles positioned about the head end, and a transition piece extending downstream of the head end.

  15. Sealed head access area enclosure

    DOE Patents [OSTI]

    Golden, Martin P.; Govi, Aldo R.

    1978-01-01

    A liquid-metal-cooled fast breeder power reactor is provided with a sealed head access area enclosure disposed above the reactor vessel head consisting of a plurality of prefabricated structural panels including a center panel removably sealed into position with inflatable seals, and outer panels sealed into position with semipermanent sealant joints. The sealant joints are located in the joint between the edge of the panels and the reactor containment structure and include from bottom to top an inverted U-shaped strip, a lower layer of a room temperature vulcanizing material, a separator strip defining a test space therewithin, and an upper layer of a room temperature vulcanizing material. The test space is tapped by a normally plugged passage extending to the top of the enclosure for testing the seal or introducing a buffer gas thereinto.

  16. Hot gas engine heater head

    DOE Patents [OSTI]

    Berntell, John O. (Staffanstorp, SE)

    1983-01-01

    A heater head for a multi-cylinder double acting hot gas engine in which each cylinder is surrounded by an annular regenerator unit, and in which the tops of each cylinder and its surrounding regenerator are interconnected by a multiplicity of heater tubes. A manifold for the heater tubes has a centrally disposed duct connected to the top of the cylinder and surrounded by a wider duct connecting the other ends of the heater tubes with the regenerator unit.

  17. Liquid Effluent Retention Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid Effluent Retention Facility About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal

  18. July 2012, Work Force Retention Work Group Status Overview

    Office of Environmental Management (EM)

    Work Force Retention Work Group Status Overview Accomplishments: 1. Progress on the completion of the 10 CFR 1046 modifications to address barriers to workforce retention. Written response to public comment is being drafted by HS-51. 2. Pro-Force (PF) union representative, Randy Lawson, identified this accomplishment as the single most significant step toward PF workforce retention in over 20 years. 3. Draft re-charter of PF Career Options Committee (PFCOC) to establish a PF Working Group

  19. Radionuclide Retention in Concrete Wasteforms - FY13

    SciTech Connect (OSTI)

    Snyder, Michelle MV; Golovich, Elizabeth C.; Wellman, Dawn M.; Crum, Jarrod V.; Lapierre, Robert; Dage, Denomy C.; Parker, Kent E.; Cordova, Elsa A.

    2013-10-15

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of low-level waste and mixed low-level waste, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  20. Cooking utensil with improved heat retention

    DOE Patents [OSTI]

    Potter, Thomas F. (Denver, CO); Benson, David K. (Golden, CO); Burch, Steven D. (Golden, CO)

    1997-01-01

    A cooking utensil with improved heat retention includes an inner pot received within an outer pot and separated in a closely spaced-apart relationship to form a volume or chamber therebetween. The chamber is evacuated and sealed with foil leaves at the upper edges of the inner and outer pot. The vacuum created between the inner and outer pot, along with the minimum of thermal contact between the inner and outer pot, and the reduced radiative heat transfer due to low emissivity coatings on the inner and outer pot, provide for a highly insulated cooking utensil. Any combination of a plurality of mechanisms for selectively disabling and re-enabling the insulating properties of the pot are provided within the chamber. These mechanisms may include: a hydrogen gas producing and reabsorbing device such as a metal hydride, a plurality of metal contacts which can be adjusted to bridge the gap between the inner and outer pot, and a plurality of bimetallic switches which can selectively bridge the gap between the inner and outer pot. In addition, phase change materials with superior heat retention characteristics may be provided within the cooking utensil. Further, automatic and programmable control of the cooking utensil can be provided through a microprocessor and associated hardware for controlling the vacuum disable/enable mechanisms to automatically cook and save food.

  1. Cooking utensil with improved heat retention

    DOE Patents [OSTI]

    Potter, T.F.; Benson, D.K.; Burch, S.D.

    1997-07-01

    A cooking utensil with improved heat retention includes an inner pot received within an outer pot and separated in a closely spaced-apart relationship to form a volume or chamber there between. The chamber is evacuated and sealed with foil leaves at the upper edges of the inner and outer pot. The vacuum created between the inner and outer pot, along with the minimum of thermal contact between the inner and outer pot, and the reduced radiative heat transfer due to low emissivity coatings on the inner and outer pot, provide for a highly insulated cooking utensil. Any combination of a plurality of mechanisms for selectively disabling and re-enabling the insulating properties of the pot are provided within the chamber. These mechanisms may include: a hydrogen gas producing and reabsorbing device such as a metal hydride, a plurality of metal contacts which can be adjusted to bridge the gap between the inner and outer pot, and a plurality of bimetallic switches which can selectively bridge the gap between the inner and outer pot. In addition, phase change materials with superior heat retention characteristics may be provided within the cooking utensil. Further, automatic and programmable control of the cooking utensil can be provided through a microprocessor and associated hardware for controlling the vacuum disable/enable mechanisms to automatically cook and save food. 26 figs.

  2. Retention of Halogens in Waste Glass

    SciTech Connect (OSTI)

    Hrma, Pavel R.

    2010-05-01

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ?100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  3. Now Available: Interim Report on Customer Acceptance, Retention...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the Consumer Behavior Studies Now Available: Interim Report on Customer Acceptance, Retention, and Response to Time-Based Rates from the Consumer Behavior Studies June 26, ...

  4. Analytical Estimations for Thermal Crosstalk Retention and Scaling...

    Office of Scientific and Technical Information (OSTI)

    and Scaling Limits in Resistive Memory. Citation Details In-Document Search Title: Analytical Estimations for Thermal Crosstalk Retention and Scaling Limits in Resistive Memory. ...

  5. Volatile Species Retention During Metallic Fuel Casting

    SciTech Connect (OSTI)

    Randall S. Fielding; Douglas L. Proter

    2013-10-01

    Metallic nuclear fuels are candidate transmutation fuel forms for advanced fuel cycles. Through the operation of the Experimental Breeder Reactor II metallic nuclear fuels have been shown to be robust and easily manufactured. However, concerns have been raised concerning loss of americium during the casting process because of its high vapor pressure. In order to address these concerns a gaseous diffusion model was developed and a series of experiments using both manganese and samarium as surrogates for americium were conducted. The modeling results showed that volatility losses can be controlled to essentially no losses with a modest overpressure. Experimental results also showed volatile species retention down to no detectable losses through overpressure, although the loss values varied from the model results the same trend was seen. Bases on these results it is very probably that americium losses through volatility can be controlled to no detectable losses through application of a modest overpressure during casting.

  6. ORDER 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC |

    Energy Savers [EERE]

    Department of Energy 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC ORDER 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC OPINION AND ORDER GRANTING LONG-TERM, MULTI-CONTRACT AUTHORIZATION TO EXPORT U.S.-SOURCED NATURAL GAS BY PIPELINE TO CANADA FOR LIQUEFACTION AND RE-EXPORT IN THE FORM OF LIQUEFIED NATURAL GAS TO NON-FREE TRADE AGREEMENT COUNTRIES On February 5, 2016, the Energy Department issued an authorization to Bear Head LNG Corporation and Bear Head LNG

  7. Disposal options for burner ash from spent graphite fuel. Final study report November 1993

    SciTech Connect (OSTI)

    Pinto, A.P.

    1994-08-01

    Three major disposal alternatives are being considered for Fort St. Vrain Reactor (FSVR) and Peach Bottom Reactor (PBR) spent fuels: direct disposal of packaged, intact spent fuel elements; (2) removal of compacts to separate fuel into high-level waste (HLW) and low-level waste (LLW); and (3) physical/chemical processing to reduce waste volumes and produce stable waste forms. For the third alternative, combustion of fuel matrix graphite and fuel particle carbon coatings is a preferred technique for head-end processing as well as for volume reduction and chemical pretreatment prior to final fixation, packaging, and disposal of radioactive residuals (fissile and fertile materials together with fission and activation products) in a final repository. This report presents the results of a scoping study of alternate means for processing and/or disposal of fissile-bearing particles and ash remaining after combustion of FSVR and PBR spent graphite fuels. Candidate spent fuel ash (SFA) waste forms in decreasing order of estimated technical feasibility include glass-ceramics (GCs), polycrystalline ceramic assemblages (PCAs), and homogeneous amorphous glass. Candidate SFA waste form production processes in increasing order of estimated effort and cost for implementation are: low-density GCs via fuel grinding and simultaneous combustion and waste form production in a slagging cyclone combustor (SCC); glass or low-density GCs via fluidized bed SFA production followed by conventional melting of SFA and frit; PCAs via fluidized bed SFA production followed by hot isostatic pressing (HIPing) of SFA/frit mixtures; and high-density GCs via fluidized bed SFA production followed by HIPing of Calcine/Frit/SFA mixtures.

  8. Workforce Retention Work Group Status Overview - July 2012 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy July 2012 Workforce Retention Work Group Status Overview - July 2012 Documents Available for Download PDF icon July 2012 Status Overviews More Documents & Publications Workforce Retention Work Group Status Overview - September 2012 Strategic Initiatives Work Group Status Overview - July 2012 10 CFR 851 Work Group Status Overview - July 2012

  9. Low NO{sub x} combustion system with DSVS{trademark} rotating classifier retrofit for a 630 MW{sub e} cell burner unit

    SciTech Connect (OSTI)

    Bryk, S.A.; Maringo, G.J.; Shah, A.I.; Madden, V.F.

    1996-12-31

    New England Power Company`s (NEP) 630 MW{sub e} Brayton Point Unit 3 is a universal pressure (UP) type supercritical boiler originally equipped with pulverized coal (PC) fired cell burners. In order to comply with the Phase 1 NO{sub x} emissions requirements under Title I of the 1990 Clean Air Act Amendments, the unit has been retrofitted with a low NO{sub x} staged combustion system during the spring 1995 outage. The unit was restarted in early May 1995 and was operating under the State Compliance emission levels by the end of the month. Additional optimization testing was performed in August, 1995. The retrofit scope consisted of replacing the cell burners with low NO{sub x} DRB-XCL{reg_sign} type PC/oil burners and overfire air ports within the existing open windbox, with no change in the firing pattern. A 70% NO{sub x} reduction from baseline levels was achieved while maintaining acceptable unburned carbon (UBC) and carbon monoxide (CO) emission levels. To maintain low UBC levels, the scope included modifying the MPS-89 pulverizers by replacing the existing stationary classifiers with the B and W DSVS{trademark} (Dynamically Staged Variable Speed) two stage rotating classifiers. The DSVS{trademark} classifiers provide higher fineness for UBC control without derating the mill capacity. This paper will describe the project and discuss the retrofit emissions data. The paper will conclude with recommendations for retrofitting other similarly designed units.

  10. Flame-synthesis limits and self-catalytic behavior of carbon nanotubes using a double-faced wall stagnation flow burner

    SciTech Connect (OSTI)

    Woo, S.K.; Hong, Y.T.; Kwon, O.C.

    2009-10-15

    Flame-synthesis limits of carbon nanotubes (CNTs) are measured using a double-faced wall stagnation flow (DWSF) burner that shows potential in mass production of CNTs. With nitrogen-diluted premixed ethylene-air flames established on the nickel-coated stainless steel double-faced plate wall, the limits of CNT formation are determined using field-emission scanning and transmission electron microscopies and Raman spectroscopy. Also, self-catalytic behavior of the synthesized CNTs is evaluated using the DWSF burner with a CNT-deposited stainless steel double-faced plate wall. Results show narrow fuel-equivalence ratio limits of multi-walled CNT (MWCNT)-synthesis at high flame stretch rates and substantially extended limits at low flame stretch rates. This implies that the synthesis limits are very sensitive to the fuel-equivalence ratio variation for the high stretch rate conditions, yielding a lot of impurities and soot rather than MWCNTs. The enhanced ratio of tube inner diameter to wall thickness of the MWCNTs synthesized using a CNT self-catalytic flame-synthesis process is observed, indicating that the quality of metal-catalytic, flame-synthesized MWCNTs can be much improved via the process. Thus, using a DWSF burner with the CNT self-catalytic process has potential in mass production of MWCNTs with improved quality. (author)

  11. Water retention and gas relative permeability of two industrial concretes

    SciTech Connect (OSTI)

    Chen Wei; Liu Jian; Brue, Flore; Skoczylas, Frederic; Davy, C.A.; Bourbon, Xavier; Talandier, Jean

    2012-07-15

    This experimental study aims at identifying the water retention properties of two industrial concretes to be used for long term underground nuclear waste storage structures. Together with water retention, gas transfer properties are identified at varying water saturation level, i.e. relative gas permeability is assessed directly as a function of water saturation level S{sub w}. The influence of the initial de-sorption path and of the subsequent re-saturation are analysed both in terms of water retention and gas transfer properties. Also, the influence of concrete microstructure upon water retention and relative gas permeability is assessed, using porosity measurements, analysis of the BET theory from water retention properties, and MIP. Finally, a single relative gas permeability curve is proposed for each concrete, based on Van Genuchten-Mualem's statistical model, to be used for continuous modelling approaches of concrete structures, both during drying and imbibition.

  12. In-vessel coolability and retention of a core melt. Volume 2

    SciTech Connect (OSTI)

    Theofanous, T.G.; Liu, C.; Additon, S.; Angelini, S.; Kymaelaeinen, O.; Salmassi, T.

    1996-10-01

    The efficacy of external flooding of a reactor vessel as a severe accident management strategy is assessed for an AP600-like reactor design. The overall approach is based on the Risk Oriented Accident Analysis Methodology (ROAAM), and the assessment includes consideration of bounding scenarios and sensitivity studies, as well as arbitrary parametric evaluations that allow the delineation of the failure boundaries. Quantification of the input parameters is carried out for an AP600-like design, and the results of the assessment demonstrate that lower head failure is physically unreasonable. Use of this conclusion for any specific application is subject to verifying the required reliability of the depressurization and cavity-flooding systems, and to showing the appropriateness (in relation to the database presented here, or by further testing as necessary) of the thermal insulation design and of the external surface properties of the lower head, including any applicable coatings. The AP600 is particularly favorable to in-vessel retention. Some ideas to enhance the assessment basis as well as performance in this respect, for applications to larger and/or higher power density reactors are also provided.

  13. In-Vessel Retention of Molten Corium: Lessons Learned and Outstanding Issues

    SciTech Connect (OSTI)

    J.L. Rempe; K.Y. Suh; F. B. Cheung; S. B. Kim

    2008-03-01

    In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors (ALWRs). If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Advanced 600 MWe Pressurized Water Reactor (PWR) designed by Westinghouse (AP600), which relied upon External Reactor Vessel Cooling (ERVC) for IVR, resulted in the U.S. Nuclear Regulatory Commission (US NRC) approving the design without requiring certain conventional features common to existing Light Water Reactors (LWRs). However, it is not clear that the ERVC proposed for the AP600 could provide sufficient heat removal for higher-power reactors (up to 1500 MWe) without additional enhancements. This paper reviews efforts made and results reported regarding the enhancement of IVR in LWRs. Where appropriate, the paper identifies what additional data or analyses are needed to demonstrate that there is sufficient margin for successful IVR in high power thermal reactors.

  14. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    SciTech Connect (OSTI)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating text. 38 39 Information provided in this Liquid Effluent Retention Facility and 40 200 Area Effluent Treatment Facility permit application documentation is 41 current as of June 1, 1997.

  15. Formation and retention of methane in coal

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  16. Recommendation 204: Unique assest retention | Department of Energy

    Office of Environmental Management (EM)

    4: Unique assest retention Recommendation 204: Unique assest retention We recommend that DOE identify these unique assets. Further, we recommend that DOE and stakeholders (e.g. local communities, tribal governments, and the public) review these unique assets for their potential future use before they are gone forever. PDF icon Recommendation 204 PDF icon DOE response to recommendation 204 More Documents & Publications EM SSAB Recommendations and Letters - 2011-01 EM SSAB Recommendations and

  17. Interim Report on Customer Acceptance, Retention, and Response to

    Energy Savers [EERE]

    Time-Based Rates from the Consumer Behavior Studies (June 2015) | Department of Energy Interim Report on Customer Acceptance, Retention, and Response to Time-Based Rates from the Consumer Behavior Studies (June 2015) Interim Report on Customer Acceptance, Retention, and Response to Time-Based Rates from the Consumer Behavior Studies (June 2015) Since 2009, the U.S. Department of Energy, using funds from the American Recovery and Reinvestment Act, and the electric power industry have jointly

  18. Analytical Estimations for Thermal Crosstalk Retention and Scaling Limits

    Office of Scientific and Technical Information (OSTI)

    in Resistive Memory. (Journal Article) | SciTech Connect Analytical Estimations for Thermal Crosstalk Retention and Scaling Limits in Resistive Memory. Citation Details In-Document Search Title: Analytical Estimations for Thermal Crosstalk Retention and Scaling Limits in Resistive Memory. Abstract not provided. Authors: Lohn, Andrew ; Mickel, Patrick R. ; Marinella, Matthew Publication Date: 2014-04-01 OSTI Identifier: 1141816 Report Number(s): SAND2014-2997J 507562 DOE Contract Number:

  19. Immobilization of azurin with retention of its native electrochemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties at alkylsilane self-assembled monolayer modified indium tin oxide Immobilization of azurin with retention of its native electrochemical properties at alkylsilane self-assembled monolayer modified indium tin oxide Authors: Ashur, I. and Jones, A. K. Title: Immobilization of azurin with retention of its native electrochemical properties at alkylsilane self-assembled monolayer modified indium tin oxide Source: Electrochimica Acta Year: 2012 Volume: 85 Pages: 169-174 ABSTRACT: Indium

  20. September 2012, Work Force Retention Work Group Status Overview

    Energy Savers [EERE]

    Work Force Retention Work Group Status Overview 2 Subgroups: Pro-Force and Non-Pro-Force Pro-Force Subgroup: Accomplishments: 1. Completion of 10 CFR 1046 [Protective Force Personnel Medical, Physical Readiness, Training, and Access Authorization Standards] as a final rule that includes modification efforts to address barriers to workforce retention. 2. Pro-Force (PF) union representative, Randy Lawson, identified this accomplishment as the single most significant step toward PF workforce

  1. Compact organic vapor jet printing print head

    DOE Patents [OSTI]

    Forrest, Stepehen R; McGraw, Gregory

    2015-01-27

    A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print head further includes a first layer further comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.

  2. Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion

    SciTech Connect (OSTI)

    Wayne Penrod

    2006-12-31

    The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

  3. Bear Head LNG Corporation and Bear Head LNG (USA), LLC- FE Dkt No. 15-14-NG

    Broader source: Energy.gov [DOE]

    On January 23, 2015, Bear Head LNG Corporation and Bear Head LNG (USA), LLC (together, “Bear Head LNG”), filed an application for long-term, multi-contract authorization to engage in imports from,...

  4. Laboratory Demonstration of a New American Low-Head Hydropower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New ...

  5. Head of Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO...

    National Nuclear Security Administration (NNSA)

    Head of Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Preparatory Commission ... Home Library Press Releases Head of Comprehensive Nuclear-Test-Ban Treaty ...

  6. DOE Head of Contracting Activity and Procurement Directors' Directory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Head of Contracting Activity and Procurement Directors' Directory - Sept 25 2015 DOE Head of Contracting Activity and Procurement Directors' Directory - Sept 25 2015 File HCA and...

  7. Nags Head, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nags Head, North Carolina: Energy Resources (Redirected from Nags Head, NC) Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.9573922, -75.6240619 Show Map...

  8. Los Alamos names new head of stockpile manufacturing and support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New head of stockpile manufacturing and support Los Alamos names new head of stockpile manufacturing and support Carl Beard is the new associate director for stockpile...

  9. Advanced wall-fired boiler combustion techniques for the reduction of nitrogen oxides (NO[sub x]): Low NO[sub x] burner test phase results

    SciTech Connect (OSTI)

    Sorge, J.N. ); Baldwin, A.L. ); Smith, L.L. )

    1992-06-02

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide(NO[sub x]) emissions from coal-fired boilers. The primary objective of the demonstration is to determine the performance of two low NO[sub x] combustion technologies applied in a stepwise fashion to a 500 MW boiler. A target of achieving 50 percent NO[sub x] reductions has been established for the project. The main focus of this paper is the presentation of the low NO[sub x] burner (LNB) short and long-term tests results.

  10. Advanced wall-fired boiler combustion techniques for the reduction of nitrogen oxides (NO{sub x}): Low NO{sub x} burner test phase results

    SciTech Connect (OSTI)

    Sorge, J.N.; Baldwin, A.L.; Smith, L.L.

    1992-06-02

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide(NO{sub x}) emissions from coal-fired boilers. The primary objective of the demonstration is to determine the performance of two low NO{sub x} combustion technologies applied in a stepwise fashion to a 500 MW boiler. A target of achieving 50 percent NO{sub x} reductions has been established for the project. The main focus of this paper is the presentation of the low NO{sub x} burner (LNB) short and long-term tests results.

  11. Liquid Effluent Retention Facility (LERF) Final Hazard Category Determination

    SciTech Connect (OSTI)

    HUTH, L.L.

    2001-06-06

    The Liquid Effluent Retention Facility was designed to store 242-A Evaporator process condensate and other liquid waste streams for treatment at the 200 East Area Effluent Treatment Facility. The Liquid Effluent Retention Facility has been previously classified as a Category 3 Nonreactor Nuclear Facility. As defined in Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports (DOE 1992, DOE 1997), Category 3 Nuclear Facilities have the potential for significant localized (radiological) consequences. However, based on current facility design, operations, and radioactive constituent concentrations, the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences and is categorized as a Radiological Facility. This report documents the final hazard categorization process performed in accordance with DOE Order 5480.23, Nuclear Safety Analysis Reports. This report describes the current configuration and operations of the Liquid Effluent Retention Facility. Also included is a preliminary hazard categorization, which is based on current and proposed radioactive and hazardous material inventories, a preliminary hazards and accident analysis, and a final hazard category determination. The results of the hazards and accident analysis, based on the current configuration and operations of the Liquid Effluent Retention Facility and the current and proposed radioactive and hazardous material inventories, demonstrate that the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences. Based on the final hazard category analysis, the Liquid Effluent Retention Facility is a Radiological Facility. The final hazard category determination is based on a comparative evaluation of the consequence basis for the Category 3 threshold quantities to the calculated consequences for credible releases The basis for the Category 3 threshold quantities is 10 rem-equivalent man at 30 meters (98 feet) (DOE 1992, DOE 1997). The calculated 12 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, are 3.50 rem and 1.32 rem, respectively, which based upon the original hazard categorization criteria (DOE 1992) classified the Liquid Effluent Retention Facility as a Radiological Facility. Comparison of the calculated 24 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, 7.00 rem and 2.64 rem respectively, confirmed the Liquid Effluent Retention Facility classification as a Radiological Facility under the current hazard categorization criteria (DOE 1997). Both result in dose consequence values less than the allowable, 10 rem, meeting the requirements for categorizing the Liquid Effluent Retention Facility as a Radiological Facility.

  12. Vacuum compatible miniature CCD camera head

    DOE Patents [OSTI]

    Conder, Alan D. (Tracy, CA)

    2000-01-01

    A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close(0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.

  13. Heater head for a Stirling engine

    SciTech Connect (OSTI)

    Darooka, D.K.

    1988-09-06

    A heater head is described for a compound Stirling engine modules, each including a displacer cylinder coaxially aligned with the displacer cylinder of the other of the engine modules, a displacer piston mounted for reciprocation in the displacer cylinder.

  14. Head, Engineering Department | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Head, Engineering Department Department: Engineering Supervisor(s): Deputy Director for Operations Staff: ENG 10 Requisition Number: 1600061 Position Summary: The Head of Engineering is responsible for planning and directing all engineering activities within the Princeton Plasma Physics Laboratory, and supporting the Laboratory mission by designing and operating world class fusion and plasma science experiments and engineering research. The successful candidate will be responsible for recruiting

  15. Colorado Students Head to National Science Competition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Head to National Science Competition For more information contact: e:mail: Public Affairs Golden, Colo., April 9, 1999 — Two teams of Colorado high school students will head to our nation's capital to compete in the U.S. Department of Energy's (DOE) National Science Bowl April 30 - May 3. Students from Smoky Hill High School in Aurora and Fairview High School in Boulder placed first in regional Science Bowl competitions earlier this year and will represent Colorado at the national competition.

  16. Martin P. Head-Gordon - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    martin p. head-gordon Principal Investigator Email: mhg@cchem.berkeley.edu Dr. Martin Head-Gordon is an electronic structure theorist who is known for development of linear scaling methods for performing density functional theory calculations, for new methods for calculating electronic excited states, and for advances in electron correlation methods, including the development of widely used density functionals and many-electron wavefunction theory. He is one of the driving forces behind the

  17. Electro-optic voltage sensor head

    DOE Patents [OSTI]

    Crawford, Thomas M.; Davidson, James R.; Woods, Gregory K.

    1999-01-01

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers.

  18. Electro-optic voltage sensor head

    DOE Patents [OSTI]

    Crawford, T.M.; Davidson, J.R.; Woods, G.K.

    1999-08-17

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers. 6 figs.

  19. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect (OSTI)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process. Computer simulations for coal: LB blends were performed by modifying an existing computer code to include the drying and phosphorus (P) oxidation models. The gasification studies revealed that there is bed agglomeration in the case of chicken litter biomass due to its higher alkaline oxide content in the ash. Finally, the results of the economic analysis show that considerable fuel cost savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings is reduced.

  20. Portable conduit retention apparatus for releasably retaining a conduit therein

    DOE Patents [OSTI]

    Metzger, Richard H. (West Seneca, NY)

    1998-01-01

    Portable conduit retention apparatus for releasably retaining a conduit therein. The apparatus releasably retains the conduit out of the way of nearby personnel and equipment. The apparatus includes a portable support frame defining a slot therein having an open mouth portion in communication with the slot for receiving the conduit through the open mouth portion and into the slot. A retention bar is pivotally connected to the support frame adjacent the mouth portion for releasably retaining the conduit in the slot. The retention bar freely pivots to a first position, so that the mouth portion is unblocked in order that the conduit is received through the mouth portion and into the slot. In addition, the retention bar freely pivots to a second position, so that the mouth portion is blocked in order that the conduit is retained in the slot. The conduit is released from the slot by pivoting the retention bar to the first position to unblock the mouth portion and thereafter manipulating the conduit from the slot and through the mouth portion. The apparatus may further include a mounting member attached to the support frame for mounting the apparatus on a vertical support surface. Another embodiment of the apparatus includes a shoe assembly of predetermined weight removably connected to the support frame for resting the apparatus on a floor in such a manner that the apparatus is substantially stationary on the floor.

  1. Portable conduit retention apparatus for releasably retaining a conduit therein

    DOE Patents [OSTI]

    Metzger, R.H.

    1998-07-07

    Portable conduit retention apparatus is described for releasably retaining a conduit therein. The apparatus releasably retains the conduit out of the way of nearby personnel and equipment. The apparatus includes a portable support frame defining a slot therein having an open mouth portion in communication with the slot for receiving the conduit through the open mouth portion and into the slot. A retention bar is pivotally connected to the support frame adjacent the mouth portion for releasably retaining the conduit in the slot. The retention bar freely pivots to a first position, so that the mouth portion is unblocked in order that the conduit is received through the mouth portion and into the slot. In addition, the retention bar freely pivots to a second position, so that the mouth portion is blocked in order that the conduit is retained in the slot. The conduit is released from the slot by pivoting the retention bar to the first position to unblock the mouth portion and thereafter manipulating the conduit from the slot and through the mouth portion. The apparatus may further include a mounting member attached to the support frame for mounting the apparatus on a vertical support surface. Another embodiment of the apparatus includes a shoe assembly of predetermined weight removably connected to the support frame for resting the apparatus on a floor in such a manner that the apparatus is substantially stationary on the floor. 6 figs.

  2. Retention of elemental mercury in fly ashes in different atmospheres

    SciTech Connect (OSTI)

    M.A. Lopez-Anton; M. Diaz-Somoano; M.R. Martinez-Tarazona

    2007-01-15

    Mercury is an extremely volatile element, which is emitted from coal combustion to the environment mostly in the vapor phase. To avoid the environmental problems that the toxic species of this element may cause, control technologies for the removal of mercury are necessary. Recent research has shown that certain fly ash materials have an affinity for mercury. Moreover, it has been observed that fly ashes may catalyze the oxidation of elemental mercury and facilitate its capture. However, the exact nature of Hg-fly ash interactions is still unknown, and mercury oxidation through fly ash needs to be investigated more thoroughly. In this work, the influence of a gas atmosphere on the retention of elemental mercury on fly ashes of different characteristics was evaluated. The retention capacity was estimated comparatively in inert and two gas atmospheres containing species present in coal gasification and coal combustion. Fly ashes produced in two pulverized coal combustion (PCC) plants, produced from coals of different rank (CTA and CTSR), and a fly ash (CTP) produced in a fluidized bed combustion (FBC) plant were used as raw materials. The mercury retention capacity of these fly ashes was compared to the retention obtained in different activated carbons. Although the capture of mercury is very similar in the gasification atmosphere and N{sub 2}, it is much more efficient in a coal combustion retention, being greater in fly ashes from PCC than those from FBC plants. 22 refs., 6 figs., 3 tabs.

  3. Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner

    SciTech Connect (OSTI)

    Hancock, R.D.; Bertagnolli, K.E.; Lucht, R.P.

    1997-05-01

    Coherent anti-Stokes Raman scattering (CARS) spectroscopy of diatomic nitrogen and hydrogen was used to measure flame temperatures in hydrogen/air flames produced using a nonpremixed, near-adiabatic, flat-flame Hencken burner. The CARS temperature measurements are compared with adiabatic flame temperatures calculated by the NASA-Lewis equilibrium code for equivalence ratios from 0.5--2.5. The nitrogen CARS temperatures are in excellent agreement with the equilibrium code calculations. Comparison of nitrogen CARS data and the equilibrium code calculations confirms that for sufficiently high flow rates the Hencken burner produces nearly adiabatic flames. Hydrogen CARS temperature measurements are compared to both nitrogen CARS temperature measurements and equilibrium code predictions in order to evaluate and improve the accuracy of hydrogen CARS as a temperature diagnostic tool. Hydrogen CARS temperatures for fuel-rich flames are on average 70 K ({approximately}3%) above the equilibrium code predictions and nitrogen CARS temperatures. The difference between temperatures measured using hydrogen and nitrogen CARS is probably due primarily to uncertainties in hydrogen linewidths and line-broadening mechanisms at these conditions.

  4. Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner

    SciTech Connect (OSTI)

    Selle, L.; Ferret, B. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); Poinsot, T. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); CERFACS, Toulouse (France)

    2011-01-15

    Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames. (author)

  5. PARTICULATE CHARACTERIZATION AND ULTRA LOW-NOx BURNER FOR THE CONTROL OF NO{sub x} AND PM{sub 2.5} FOR COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Ralph Bailey; Hamid Sarv; Jim Warchol; Debi Yurchison

    2001-09-30

    In response to the serious challenge facing coal-fired electric utilities with regards to curbing their NO{sub x} and fine particulate emissions, Babcock and Wilcox and McDermott Technology, Inc. conducted a project entitled, ''Particulate Characterization and Ultra Low-NO{sub x} Burner for the Control of NO{sub x} and PM{sub 2.5} for Coal Fired Boilers.'' The project included pilot-scale demonstration and characterization of technologies for removal of NO{sub x} and primary PM{sub 2.5} emissions. Burner development and PM{sub 2.5} characterization efforts were based on utilizing innovative concepts in combination with sound scientific and fundamental engineering principles and a state-of-the-art test facility. Approximately 1540 metric tonnes (1700 tons) of high-volatile Ohio bituminous coal were fired. Particulate sampling for PM{sub 2.5} emissions characterization was conducted in conjunction with burner testing. Based on modeling recommendations, a prototype ultra low-NO{sub x} burner was fabricated and tested at 100 million Btu/hr in the Babcock and Wilcox Clean Environment Development Facility. Firing the unstaged burner with a high-volatile bituminous Pittsburgh 8 coal at 100 million Btu/hr and 17% excess air achieved a NO{sub x} goal of 0.20 lb NO{sub 2}/million Btu with a fly ash loss on ignition (LOI) of 3.19% and burner pressure drop of 4.7 in H{sub 2}O for staged combustion. With the burner stoichiometry set at 0.88 and the overall combustion stoichiometry at 1.17, average NO{sub x} and LOI values were 0.14 lb NO{sub 2}/million Btu and 4.64% respectively. The burner was also tested with a high-volatile Mahoning 7 coal. Based on the results of this work, commercial demonstration is being pursued. Size classified fly ash samples representative of commercial low-NO{sub x} and ultra low-NO{sub x} combustion of Pittsburgh 8 coal were collected at the inlet and outlet of an ESP. The mass of size classified fly ash at the ESP outlet was sufficient to evaluate the particle size distribution, but was of insufficient size to permit reliable chemical analysis. The size classified fly ash from the inlet of the ESP was used for detailed chemical analyses. Chemical analyses of the fly ash samples from the ESP outlet using a high volume sampler were performed for comparison to the size classified results at the inlet. For all test conditions the particulate removal efficiency of the ESP exceeded 99.3% and emissions were less than the NSPS limits of {approx}48 mg/dscm. With constant combustion conditions, the removal efficiency of the ESP increased as the ESP voltage and Specific Collection Area (SCA) increased. The associated decrease in particle emissions occurred in size fractions both larger and smaller than 2.5 microns. For constant ESP voltage and SCA, the removal efficiency for the ultra low-NO{sub x} combustion ash (99.4-99.6%) was only slightly less than for the low-NO{sub x} combustion ash (99.7%). The decrease in removal efficiency was accompanied by a decrease in ESP current. The emission of PM{sub 2.5} from the ESP did not change significantly as a result of the change in combustion conditions. Most of the increase in emissions was in the size fraction greater than 2.5 microns, indicating particle re-entrainment. These results may be specific to the coal tested in this program. In general, the concentration of inorganic elements and trace species in the fly ash at the ESP inlet was dependent on the particle size fraction. The smallest particles tended to have higher concentrations of inorganic elements/trace species than larger particles. The concentration of most elements by particle size range was independent of combustion condition and the concentration of soluble ions in the fly ash showed little change with combustion condition when evaluated on a carbon free basis.

  6. Most Workers Who Suffer Head Injuries- Were Not Wearing Head Protection

    Broader source: Energy.gov [DOE]

    A survey by the U.S. Department of Labor’s Bureau of Labor Statistics (BLS) of accidents and injuries noted that most workers who suffered impact injuries to the head were not wearing head protection. In addition, the same survey showed that the majority of workers were injured while performing their normal jobs at their regular worksites.

  7. Pyrolysis with cyclone burner

    DOE Patents [OSTI]

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.

    1978-07-25

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue and separating out the fines.

  8. Now Available: Interim Report on Customer Acceptance, Retention, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Response to Time-Based Rates from the Consumer Behavior Studies | Department of Energy Interim Report on Customer Acceptance, Retention, and Response to Time-Based Rates from the Consumer Behavior Studies Now Available: Interim Report on Customer Acceptance, Retention, and Response to Time-Based Rates from the Consumer Behavior Studies June 26, 2015 - 5:30pm Addthis Since 2009, the U.S. Department of Energy, using funds from the American Recovery and Reinvestment Act, and the electric power

  9. Head assembly for multiposition borehole extensometer

    DOE Patents [OSTI]

    Frank, Donald N. (Livermore, CA)

    1983-01-01

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

  10. Compact organic vapor jet printing print head

    DOE Patents [OSTI]

    Forrest, Stephen R; McGraw, Gregory

    2013-12-24

    A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print header further includes a first layer comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.

  11. Fission gas retention and axial expansion of irradiated metallic fuel

    SciTech Connect (OSTI)

    Fenske, G.R.; Emerson, J.E.; Savoie, F.E.; Johanson, E.W.

    1986-05-01

    Out-of-reactor experiments utilizing direct electrical heating and infrared heating techniques were performed on irradiated metallic fuel. The results indicate accelerated expansion can occur during thermal transients and that the accelerated expansion is driven by retained fission gases. The results also demonstrate gas retention and, hence, expansion behavior is a function of axial position within the pin.

  12. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    SciTech Connect (OSTI)

    Cooper, Marcia A.; Oliver, Michael S.

    2012-08-01

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.

  13. Gas cushion control of OVJP print head position

    DOE Patents [OSTI]

    Forrest, Stephen R

    2014-10-07

    An OVJP apparatus and method for applying organic vapor or other flowable material to a substrate using a printing head mechanism in which the print head spacing from the substrate is controllable using a cushion of air or other gas applied between the print head and substrate. The print head is mounted for translational movement towards and away from the substrate and is biased toward the substrate by springs or other means. A gas cushion feed assembly supplies a gas under pressure between the print head and substrate which opposes the biasing of the print head toward the substrate so as to form a space between the print head and substrate. By controlling the pressure of gas supplied, the print head separation from the substrate can be precisely controlled.

  14. MFRSR Head Refurbishment, Data Logger Upgrade and Calibration Improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MFRSR Head Refurbishment, Data Logger Upgrade and Calibration Improvements Gary Hodges, CIRES/NOAA and John Schmelzer, PNL gary.hodges@noaa.gov, john.schmelzer@pnl.gov 17th Annual ARM Science Team Meeting 26-30 March 2006 Monterey, CA Head Refurbishment The Process Includes: * New filter detectors * Relocate internal thermistors * New connectors * Gain resistors moved to head * Improved insulation The Finished Heads: * Are lamp calibrated * Have filter profiles measured * Cosine characterized *

  15. Account Sponsorship & Retention Policy | Argonne Leadership Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Allocations Mira/Cetus/Vesta Cooley Policies Accounts Policy Account Sponsorship & Retention Policy ALCC Quarterly Report Policy ALCF Acknowledgment Policy Data Policy INCITE Quarterly Report Policy Job Scheduling Policy on BG/Q Job Scheduling Policies on Cooley Pullback Policy Refund Policy Software Policy User Authentication Policy Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback

  16. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    SciTech Connect (OSTI)

    Simiele, G.A.

    1994-09-29

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  17. Optical fiber head for providing lateral viewing

    DOE Patents [OSTI]

    Everett, Matthew J. (Livermore, CA); Colston, Billy W. (Livermore, CA); James, Dale L. (Tracy, CA); Brown, Steve (Livermore, CA); Da Silva, Luiz (Danville, CA)

    2002-01-01

    The head of an optical fiber comprising the sensing probe of an optical heterodyne sensing device includes a planar surface that intersects the perpendicular to axial centerline of the fiber at a polishing angle .theta.. The planar surface is coated with a reflective material so that light traveling axially through the fiber is reflected transverse to the fiber's axial centerline, and is emitted laterally through the side of the fiber. Alternatively, the planar surface can be left uncoated. The polishing angle .theta. must be no greater than 39.degree. or must be at least 51.degree.. The emitted light is reflected from adjacent biological tissue, collected by the head, and then processed to provide real-time images of the tissue. The method for forming the planar surface includes shearing the end of the optical fiber and applying the reflective material before removing the buffer that circumscribes the cladding and the core.

  18. Surface treatment of magnetic recording heads

    DOE Patents [OSTI]

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, C.S.

    1998-11-17

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances. 22 figs.

  19. Surface treatment of magnetic recording heads

    DOE Patents [OSTI]

    Komvopoulos, Kyriakos (Orinda, CA); Brown, Ian G. (Berkeley, CA); Wei, Bo (Albany, CA); Anders, Simone (Albany, CA); Anders, Andre (Albany, CA); Bhatia, C. Singh (Morgan Hill, CA)

    1998-01-01

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances.

  20. Surface treatment of magnetic recording heads

    DOE Patents [OSTI]

    Komvopoulos, Kyriakos (Orinda, CA); Brown, Ian G. (Berkeley, CA); Wei, Bo (Albany, CA); Anders, Simone (Albany, CA); Anders, Andre (Albany, CA); Bhatia, Singh C. (Morgan Hill, CA)

    1995-01-01

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances.

  1. Surface treatment of magnetic recording heads

    DOE Patents [OSTI]

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, S.C.

    1995-12-19

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances. 15 figs.

  2. TO: Procurement Directors Heads of Contracting Activities

    Energy Savers [EERE]

    8 DATE: December 29, 2015 TO: Procurement Directors Heads of Contracting Activities FROM: Acting Chief Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition Management SUBJECT: Archival of Policy Flashes and attachments SUMMARY: This office is reviewing all its energy.gov websites to ensure current guidance is easily accessible and previous guidance is archived for future reference. To that end, all Policy Flashes and attachments from FY2001 - FY2014 have been

  3. TO: Procurement Directors Heads of Contracting Activities

    Energy Savers [EERE]

    3 DATE: February 04, 2016 TO: Procurement Directors Heads of Contracting Activities FROM: Acting Chief Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition Management SUBJECT: New Policy Flash Distribution Process SUMMARY: This office is automating the policy flash (PF) distribution process by using a listserv. As of February 18, 2016, the listserv will send PF notifications without attachments. PFs will no longer be sent via the email distribution list. PFs

  4. TO: Procurement Directors Heads of Contracting Activities

    Energy Savers [EERE]

    7 DATE: March 16, 2016 TO: Procurement Directors Heads of Contracting Activities FROM: Acting Chief Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition Management SUBJECT: Acquisition Letters Remaining in Effect SUMMARY: Acquisition letter 2016-04 has been issued. It lists ALs currently in effect and discontinued ALs, along with the reason why the AL is no longer in effect. This flash will be available online at the following website:

  5. TO: Procurement Directors Heads of Contracting Activities

    Energy Savers [EERE]

    1 DATE: January 15, 2016 TO: Procurement Directors Heads of Contracting Activities FROM: Chief Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition Management SUBJECT: Streamlining DOE's Oversight of Compensation and Benefits SUMMARY: The purpose of Acquisition Letter (AL) 2016-01 is to provide guidance regarding required actions to move from DOE traditional transactional approach for approving certain costs relating to compensation and benefits, to a risk

  6. TO: Procurement Directors Heads of Contracting Activities

    Energy Savers [EERE]

    2 DATE: February 2, 2016 TO: Procurement Directors Heads of Contracting Activities FROM: Chief Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition Management SUBJECT: Clarifying Guidance for Audits of "For-Profit" Financial Assistance Awards SUMMARY: The purpose of this policy flash is to provide clarifying guidance relating to certain provisions set forth in DOE Regulation 2 CFR 910.515. The clarifying guidance is as follows: * DOE Regulation 2 CFR

  7. TO: Procurement Directors Heads of Contracting Activities

    Energy Savers [EERE]

    6 DATE: March 15, 2016 TO: Procurement Directors Heads of Contracting Activities FROM: Acting Chief Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition Management SUBJECT: Clarifying Guidance for Audits of "For-Profit" Financial Assistance Awards SUMMARY: The purpose of this policy flash is to provide clarifying guidance relating to the requirement of rendering an opinion on the Schedule of Expenditures as set forth in DOE Regulation 2 CFR 910.514.

  8. ADDITIVE TESTING FOR IMPROVED SULFUR RETENTION: PRELIMINARY REPORT

    SciTech Connect (OSTI)

    Amoroso, J.; Fox, K.

    2011-09-07

    The Savannah River National Laboratory is collaborating with Alfred University to evaluate the potential for additives in borosilicate glass to improve sulfur retention. This preliminary report provides further background on the incorporation of sulfur in glass and outlines the experiments that are being performed by the collaborators. A simulated waste glass composition has been selected for the experimental studies. The first phase of experimental work will evaluate the impacts of BaO, PbO, and V{sub 2}O{sub 5} at concentrations of 1.0, 2.0, and 5.0 wt % on sulfate retention in simulated high level waste borosilicate glass. The second phase of experimental work will evaluate the effects of time at the melt temperature on sulfur retention. The resulting samples will be characterized to determine the amount of sulfur remaining as well as to identify the formation of any crystalline phases. The results will be used to guide the future selection of frits and glass forming chemicals in vitrifying Department of Energy wastes containing high sulfur concentrations.

  9. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    SciTech Connect (OSTI)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  10. The retention time of inorganic mercury in the brain — A systematic review of the evidence

    SciTech Connect (OSTI)

    Rooney, James P.K.

    2014-02-01

    Reports from human case studies indicate a half-life for inorganic mercury in the brain in the order of years—contradicting older radioisotope studies that estimated half-lives in the order of weeks to months in duration. This study systematically reviews available evidence on the retention time of inorganic mercury in humans and primates to better understand this conflicting evidence. A broad search strategy was used to capture 16,539 abstracts on the Pubmed database. Abstracts were screened to include only study types containing relevant information. 131 studies of interest were identified. Only 1 primate study made a numeric estimate for the half-life of inorganic mercury (227–540 days). Eighteen human mercury poisoning cases were followed up long term including autopsy. Brain inorganic mercury concentrations at death were consistent with a half-life of several years or longer. 5 radionucleotide studies were found, one of which estimated head half-life (21 days). This estimate has sometimes been misinterpreted to be equivalent to brain half-life—which ignores several confounding factors including limited radioactive half-life and radioactive decay from surrounding tissues including circulating blood. No autopsy cohort study estimated a half-life for inorganic mercury, although some noted bioaccumulation of brain mercury with age. Modelling studies provided some extreme estimates (69 days vs 22 years). Estimates from modelling studies appear sensitive to model assumptions, however predications based on a long half-life (27.4 years) are consistent with autopsy findings. In summary, shorter estimates of half-life are not supported by evidence from animal studies, human case studies, or modelling studies based on appropriate assumptions. Evidence from such studies point to a half-life of inorganic mercury in human brains of several years to several decades. This finding carries important implications for pharmcokinetic modelling of mercury and potentially for the regulatory toxicology of mercury.

  11. EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas

    Broader source: Energy.gov [DOE]

    The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower’s Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NOx control technologies.

  12. Integrating low-NO{sub x} burners, overfire air, and selective non-catalytic reduction on a utility coal-fired boiler

    SciTech Connect (OSTI)

    Hunt, T.; Muzio, L.; Smith, R.

    1995-05-01

    Public Service Company of Colorado (PSCo), in cooperation with the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI), is testing the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control system. This system combines low-NO{sub x} burners, overfire air, selective non-catalytic reduction (SNCR), and dry sorbent injection with humidification to reduce by up to 70% both NO{sub x} and SO{sub 2} emissions from a 100 MW coal-fired utility boiler. The project is being conducted at PSCo`s Arapahoe Unit 4 located in Denver, Colorado as part of the DOE`s Clean Coal Technology Round 3 program. The urea-based SNCR system, supplied by Noell, Inc., was installed in late 1991 and was tested with the unmodified boiler in 1992. At full load, it reduced NO{sub x} emissions by about 35% with an associated ammonia slip limit of 10 ppm. Babcock & Wilcox XLS{reg_sign} burners and a dual-zone overfire air system were retrofit to the top-fired boiler in mid-1992 and demonstrated a NO{sub x} reduction of nearly 70% across the load range. Integrated testing of the combustion modifications and the SNCR system were conducted in 1993 and showed that the SNCR system could reduce NO{sub x} emissions by an additional 45% while maintaining 10 ppm of ammonia slip limit at full load. Lower than expect4ed flue-gas temperatures caused low-load operation to be less effective than at high loads. NO{sub x} reduction decreased to as low as 11% at 60 MWe at an ammonia slip limit of 10 ppm. An ammonia conversion system was installed to improve performance at low loads. Other improvements to increase NO{sub x} removal at low-loads are planned. The combined system of combustion modifications and SNCR reduced NO{sub x} emissions by over 80% from the original full-load baseline. 11 figs.

  13. Mars mission laser tool heads to JPL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mars mission laser tool Mars mission laser tool heads to JPL Curiosity will carry the newly delivered laser instrument to reveal which elements are present in Mars' rocks and soils. September 21, 2010 A bright ball of plasma is produced by ChemCam's invisible laser beam striking a rock within the Mars sample chamber. A bright ball of plasma is produced by ChemCam's invisible laser beam striking a rock within the Mars sample chamber. Contact Nancy Ambrosiano Communications Office (505) 667-0471

  14. Integrated head package for top mounted nuclear instrumentation

    DOE Patents [OSTI]

    Malandra, Louis J. (McKeesport, PA); Hornak, Leonard P. (Forest Hills, PA); Meuschke, Robert E. (Monroeville, PA)

    1993-01-01

    A nuclear reactor such as a pressurized water reactor has an integrated head package providing structural support and increasing shielding leading toward the vessel head. A reactor vessel head engages the reactor vessel, and a control rod guide mechanism over the vessel head raises and lowers control rods in certain of the thimble tubes, traversing penetrations in the reactor vessel head, and being coupled to the control rods. An instrumentation tube structure includes instrumentation tubes with sensors movable into certain thimble tubes disposed in the fuel assemblies. Couplings for the sensors also traverse penetrations in the reactor vessel head. A shroud is attached over the reactor vessel head and encloses the control rod guide mechanism and at least a portion of the instrumentation tubes when retracted. The shroud forms a structural element of sufficient strength to support the vessel head, the control rod guide mechanism and the instrumentation tube structure, and includes radiation shielding material for limiting passage of radiation from retracted instrumentation tubes. The shroud is thicker at the bottom adjacent the vessel head, where the more irradiated lower ends of retracted sensors reside. The vessel head, shroud and contents thus can be removed from the reactor as a unit and rested safely and securely on a support.

  15. Katie Antypas Named New Head of NERSC Services Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Katie Antypas Named New Head of NERSC Services Department Katie Antypas Named New Head of NERSC Services Department September 3, 2013 katie2 Katie Antypas Katie Antypas, who has led NERSC's User Services Group since October 2010, has been named as the new Services Department Head, effective September 23. Antypas succeeds Francesca Verdier, who will serve as Allocations Manager until her planned retirement in June 2014. Antypas is also the project lead for the NERSC-8 system procurement, a

  16. Department of Energy Contractor Diana Lewis Heading to National Small

    Office of Environmental Management (EM)

    Business Week | Department of Energy Department of Energy Contractor Diana Lewis Heading to National Small Business Week Department of Energy Contractor Diana Lewis Heading to National Small Business Week June 10, 2013 - 8:50am Addthis Department of Energy Contractor Diana Lewis Heading to National Small Business Week John Hale III John Hale III Director, Office of Small and Disadvantaged Business Utilization National Small Business Week is around the corner, kicking off on June 17 across

  17. Nuclear reactor melt-retention structure to mitigate direct containment heating

    DOE Patents [OSTI]

    Tutu, Narinder K. (Manorville, NY); Ginsberg, Theodore (East Setauket, NY); Klages, John R. (Mattituck, NY)

    1991-01-01

    A light water nuclear reactor melt-retention structure to mitigate the extent of direct containment heating of the reactor containment building. The structure includes a retention chamber for retaining molten core material away from the upper regions of the reactor containment building when a severe accident causes the bottom of the pressure vessel of the reactor to fail and discharge such molten material under high pressure through the reactor cavity into the retention chamber. In combination with the melt-retention chamber there is provided a passageway that includes molten core droplet deflector vanes and has gas vent means in its upper surface, which means are operable to deflect molten core droplets into the retention chamber while allowing high pressure steam and gases to be vented into the upper regions of the containment building. A plurality of platforms are mounted within the passageway and the melt-retention structure to direct the flow of molten core material and help retain it within the melt-retention chamber. In addition, ribs are mounted at spaced positions on the floor of the melt-retention chamber, and grid means are positioned at the entrance side of the retention chamber. The grid means develop gas back pressure that helps separate the molten core droplets from discharged high pressure steam and gases, thereby forcing the steam and gases to vent into the upper regions of the reactor containment building.

  18. Council on Environmental Quality - Memorandum for Heads of Federal...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Memorandum: Council on Environmental Quality - Memorandum for Heads of Federal Departments and Agencies...

  19. Optimizing Cluster Heads for Energy Efficiency in Large-Scale...

    Office of Scientific and Technical Information (OSTI)

    Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks Gu, Yi; Wu, Qishi; Rao, Nageswara S. V. Hindawi Publishing Corporation None...

  20. Raft River Geothermal Field Well Head Brine Sample

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tim Lanyk

    2015-12-18

    Raw data and data workup of assay for real-world brine sample. Brine sample was taken at the well head.

  1. Owls Head, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Owls Head, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.082303, -69.0572612 Show Map Loading map... "minzoom":false,"mappingservic...

  2. Indian Head Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Head Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7703092, -87.9022808 Show Map Loading map... "minzoom":false,"mappingse...

  3. MHK Projects/Brough Head Wave Farm | Open Energy Information

    Open Energy Info (EERE)

    homepage Retrieved from "http:en.openei.orgwindex.php?titleMHKProjectsBroughHeadWaveFarm&oldid680140" Feedback Contact needs updating Image needs updating Reference...

  4. MHK Projects/Kendall Head Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    Kendall Head Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"R...

  5. Closure head for a nuclear reactor

    DOE Patents [OSTI]

    Wade, Elman E. (South Huntingdon, PA)

    1980-01-01

    A closure head for a nuclear reactor includes a stationary outer ring integral with the reactor vessel with a first rotatable plug disposed within the stationary outer ring and supported from the stationary outer ring by a bearing assembly. A sealing system is associated with the bearing assembly to seal the annulus defined between the first rotatable plug and the stationary outer ring. The sealing system comprises tubular seal elements disposed in the annulus with load springs contacting the tubular seal elements so as to force the tubular seal elements against the annulus in a manner to seal the annulus. The sealing system also comprises a sealing fluid which is pumped through the annulus and over the tubular seal elements causing the load springs to compress thereby reducing the friction between the tubular seal elements and the rotatable components while maintaining a gas-tight seal therebetween.

  6. Head Observation Organizer (HObO)

    SciTech Connect (OSTI)

    Steven Predmore

    2008-03-06

    The Head Observation Organizer, HObO, is a computer program that stores and manages measured ground-water levels. HObO was developed to help ground-water modelers compile, manage, and document water-level data needed to calibrate ground-water models. Well-construction and water-level data from the U.S. Geological Survey National Water Database (NWIS) easily can be imported into HObO from the NWIS web site (NWISWeb). The water-level data can be flagged to determine which data will be included in the calibration data set. The utility program HObO_NWISWeb was developed to simplify the down loading of well and water-level data from NWISWeb. An ArcGIS NWISWeb Extension was developed to retrieve site information from NWISWeb. A tutorial is presented showing the basic elements of HObO.

  7. Static ferroelectric memory transistor having improved data retention

    DOE Patents [OSTI]

    Evans, Jr., Joseph T. (13609 Verbena Pl., N.E., Albuquerque, NM 87112); Warren, William L. (7716 Wm. Moyers Ave., NE., Albuquerque, NM 87112); Tuttle, Bruce A. (12808 Lillian Pl., NE., Albuquerque, NM 87112)

    1996-01-01

    An improved ferroelectric FET structure in which the ferroelectric layer is doped to reduce retention loss. A ferroelectric FET according to the present invention includes a semiconductor layer having first and second contacts thereon, the first and second contacts being separated from one another. The ferroelectric FET also includes a bottom electrode and a ferroelectric layer which is sandwiched between the semiconductor layer and the bottom electrode. The ferroelectric layer is constructed from a perovskite structure of the chemical composition ABO.sub.3 wherein the B site comprises first and second elements and a dopant element that has an oxidation state greater than +4 in sufficient concentration to impede shifts in the resistance measured between the first and second contacts with time. The ferroelectric FET structure preferably comprises Pb in the A-site. The first and second elements are preferably Zr and Ti, respectively. The preferred B-site dopants are Niobium, Tantalum, and Tungsten at concentrations between 1% and 8%.

  8. RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS

    SciTech Connect (OSTI)

    Fox, K.

    2010-09-07

    High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

  9. Assessment of gas accumulation and retention -- Tank 241-SY-101

    SciTech Connect (OSTI)

    Alleman, R.T.; Burke, T.M.; Reynolds, D.A.; Simpson, D.E.

    1993-03-01

    An approximate analysis has been carried out to assess and estimate the maximum quantity of gas that is likely to be accumulated within waste tank 241-SY-101, and the maximum quantity which is likely to be retained after gas release events (GRE). According to the phenomenological models used for this assessment, based on interpretation of current and recent operational data, the estimated gas generation rate in the tank is approximately 4 m{sup 3}/day (147 ft{sup 3}/day). About half of this gas is released as it is generated, which is (essentially) continuously. The remainder is accumulated within the slurry layer of settled solids at the bottom of the tank, and released episodically in GREs, known as ``burps,`` that are induced by unstable buoyant conditions which develop when sufficient gas accumulates in the slurry. Calculations based on gas volumes to cause neutral buoyancy in the slurry predict the following: the maximum gas accumulation (at 1 atm pressure) that can occur without triggering a GRE is in the range of 606 to 1,039 m{sup 3} (21,400 to 36,700 ft{sup 3}); and the maximum gas retention immediately after a GRE is equal to the maximum accumulation minus the gas released in the GRE. GREs do not necessarily involve all of the slurry. In the largest GREs, which are assumed to involve all of the slurry, the minimum gas release (at 1 atm pressure) is calculated to be in the range of 193 to 328 m{sup 3} (6,800 to 11,600 ft{sup 3}). The corresponding maximum gas retention would be 413 to 711 m{sup 3} (14,600 to 25,100 ft{sup 3}).

  10. Heading off the permanent oil crisis

    SciTech Connect (OSTI)

    MacKenzie, J.J.

    1996-11-01

    The 1996 spike in gasoline prices was not a signal of any fundamental worldwide shortage of crude oil. But based on a review of many studies of recoverable crude oil that have been published since the 1950s, it looks as though such a shortfall is now within sight. With world demand for oil growing at 2 percent per year, global production is likely to peak between the years 2007 and 2014. As this time approaches, we can expect prices to rise markedly and, most likely, permanently. Policy changes are needed now to ease the transition to high-priced oil. Oil production will continue, though at a declining rate, for many decades after its peak, and there are enormous amounts of coal, oil sands, heavy oil, and oil shales worldwide that could be used to produce liquid or gaseous substitutes for crude oil, albeit at higher prices. But the facilities for making such synthetic fuels are costly to build and environmentally damaging to operate, and their use would substantially increase carbon dioxide emissions (compared to emissions from products made from conventional crude oil). This paper examines ways of heading of the impending oil crisis. 8 refs., 3 figs.

  11. Scalable Low-head Axial-type Venturi-flow Energy Scavenger |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scalable Low-head Axial-type Venturi-flow Energy Scavenger Scalable Low-head Axial-type Venturi-flow Energy Scavenger Scalable Low-head Axial-type Venturi-flow Energy Scavenger...

  12. Tracking Santa: An Interview with the Head Researcher | Department of

    Energy Savers [EERE]

    Energy Santa: An Interview with the Head Researcher Tracking Santa: An Interview with the Head Researcher December 23, 2010 - 11:12am Addthis Tracking Santa: An Interview with the Head Researcher Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What does this mean for me? You'll be able to start monitoring St. Nick's journey starting at 6 AM ET on Christmas Eve. Every year since 1998, the Department of Energy's Los Alamos lab has been using state of

  13. NNSA Sites Host Head of Comprehensive Nuclear-Test-Ban Treaty...

    National Nuclear Security Administration (NNSA)

    Sites Host Head of Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) | National ... Home NNSA Blog NNSA Sites Host Head of Comprehensive Nuclear-Test-Ban ... NNSA Sites ...

  14. Formation and retention of methane in coal. Final report

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  15. Pilot-Scale Benzene Retention and Release Demonstration

    SciTech Connect (OSTI)

    Marek, J.C.

    2003-11-10

    During the initial months of In-Tank Precipitation radioactive operation in 1995 the process experienced high rates of tetraphenylborate decomposition with assumed corresponding high rates of benzene generation. In March 1996 after a two month quiescent period, a water addition to Tank 48H resulted in an unexpected benzene release to the tank vapor phase. This was the first time a low energy input resulted in a significant release rate. This led to questions about how benzene, generated in-situ by TPB decomposition, was retained in the surrounding potassium tetraphenylborate slurry. It was postulated the retention mechanism may have changed during the quiescent period prior to March so the benzene present became readily releasable to the vapor phase with low energy input to the slurry or that enough benzene accumulated that some of it was in a different, more releasable form. Readily releasable is a qualitative term defined as a rapid release of benzene at a rate approaching evaporation of a free benzene layer. It is intended to distinguish between benzene in a form with high liquid phase resistance to mass transfer diffusion controlled from benzene in a form with minimal liquid phase resistance to mass transfer free benzene layer evaporation. If a readily releasable form of benzene was present, the vapor space profile during release tests was anticipated to have an initial benzene vapor space concentration peak followed by a lower vapor concentration, longer duration release.

  16. LIQUID EFFLUENT RETENTION FACILITY (LERF) BASIN 42 STUDIES

    SciTech Connect (OSTI)

    DUNCAN JB

    2004-10-29

    This report documents laboratory results obtained under test plan RPP-21533 for samples submitted by the Effluent Treatment Facility (ETF) from the Liquid Effluent Retention Facility (LERF) Basin 42 (Reference 1). The LERF Basin 42 contains process condensate (PC) from the 242-A Evaporator and landfill leachate. The ETF processes one PC campaign approximately every 12 to 18 months. A typical PC campaign volume can range from 1.5 to 2.5 million gallons. During the September 2003 ETF Basin 42 processing campaign, a recurring problem with 'gelatinous buildup' on the outlet filters from 60A-TK-I (surge tank) was observed (Figure 1). This buildup appeared on the filters after the contents of the surge tank were adjusted to a pH of between 5 and 6 using sulfuric acid. Biological activity in the PC feed was suspected to be the cause of the gelatinous material. Due to this buildup, the filters (10 {micro}m CUNO) required daily change out to maintain process throughput.

  17. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    SciTech Connect (OSTI)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong E-mail: suo@seas.harvard.edu; Chen, Baohong; Zhou, Jinxiong; Suo, Zhigang E-mail: suo@seas.harvard.edu

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  18. EISPC White Paper on "State Approaches to Retention of Nuclear Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants" Now Available | Department of Energy EISPC White Paper on "State Approaches to Retention of Nuclear Power Plants" Now Available EISPC White Paper on "State Approaches to Retention of Nuclear Power Plants" Now Available October 22, 2015 - 12:11pm Addthis The Eastern Interconnection States' Planning Collaborative (EISPC) has released a white paper on "State Approaches to Retention of Nuclear Power Plants" that examines operational, economic, and

  19. Type B Accident Investigation Board Report on the Head Injury...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Mexico - August 25, 2004 Type B Accident Investigation Board Report on the Head Injury to a Miner at the Waste Isolation Pilot Plant, Carlsbad, New Mexico - August 25, ...

  20. Steam Generator Group Project. Task 6. Channel head decontamination

    SciTech Connect (OSTI)

    Allen, R.P.; Clark, R.L.; Reece, W.D.

    1984-08-01

    The Steam Generator Group Project utilizes a retired-from-service pressurized-water-reactor steam generator as a test bed and source of specimens for research. An important preparatory step to primary side research activities was reduction of the radiation field in the steam generator channel head. This task report describes the channel head decontamination activities. Though not a programmatic research objective it was judged beneficial to explore the use of dilute reagent chemical decontamination techniques. These techniques presented potential for reduced personnel exposure and reduced secondary radwaste generation, over currently used abrasive blasting techniques. Two techniques with extensive laboratory research and vendors prepared to offer commercial application were tested, one on either side of the channel head. As indicated in the report, both techniques accomplished similar decontamination objectives. Neither technique damaged the generator channel head or tubing materials, as applied. This report provides details of the decontamination operations. Application system and operating conditions are described.

  1. Tony Reilly appointed to be SRF Operations Department Head |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to be SRF Operations Department Head Following the appointment of Joe Preble to be the LCLS II Project Lead for Jefferson Lab, we initiated a search to replace Joe as SRF...

  2. Katie Antypas Named New Head of NERSC Services Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Katie Antypas Named New Head of NERSC Services Department September 3, 2013 katie2 Katie Antypas Katie Antypas, who has led NERSC's User Services Group since October 2010, has been ...

  3. Printed circuit board for a CCD camera head

    DOE Patents [OSTI]

    Conder, Alan D. (Tracy, CA)

    2002-01-01

    A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close (0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.

  4. Raft River monitor well potentiometric head responses and water...

    Open Energy Info (EERE)

    flow system Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Raft River monitor well potentiometric head responses and water quality as related to the...

  5. LANL names new head of Nuclear and High Hazard Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Lab operations LANL names new head of Nuclear and High Hazard Operations Charles Anderson joined the Laboratory in 2009 as the deputy associate director in ADNHHO. March 7,...

  6. Design and Test of the CC Cryostat Head Cart

    SciTech Connect (OSTI)

    Jaques, Al; /Fermilab

    1989-08-08

    This Engineering Note documents the design of the stand to be used to transport the CC Cryostat heads into the D-Zero clean room. Due to the width of the clean room access door, the heads will have to be upright to fit through. This head cart will hold the heads upright and wheel them into the clean room on a guided track. Before the wheels are placed on the heat cart, it will be used as a stand to place the heads on for the purpose of test fitting the super insulation. The head cart will not only be structurally sufficient to support the weight of the heads but also stiff enough to allow a maximum deflection of 1/2-inch at the end of the 48-inch cylinder. The heaviest head assembly weighs about 9000 pounds. Following A.I.S.C. specifications and using a 9000 pound design load, the head cart was initially designed and built and later modified in order to meet the deflection requirements. Bending and tension stresses were limited to two thirds the yield strength. Weld and shear stresses are limited to 0.4*Fy. The C7 X 12.25 channels, the L2.5 X 2.5 X 0.25 angles adn the 1/2-inch plate are all A36 steel. In order to validate the need for an end plate in the 48-inch cylinder, an ANSYS model was created of the cylinder itself to determine it's rigidity under a point load applied at it's outer end. Appendix D contains the results which demonstrate the rigidity of the cylinder-end plate assembly. Also included is a Frame-Mac simulation of the head cart which was used to estimate the deflection at the cylinder end. A load test was performed to 133% of the rated capacity, or 12,000 pounds. The test load was incrementally applied using a crane and hook scale. A graph of deflection vs. load is shown in Appendix E. A spreader beam was designed and built to properly test the head cart. Stress calculations for this test spreader beam are included in Appendix C.

  7. Andrew Hutton Named Head of Jefferson Lab's Accelerator Division |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Andrew Hutton Named Head of Jefferson Lab's Accelerator Division March 23, 2007 Newport News, Va. - Andrew Hutton has been appointed as the new Associate Director of the Accelerator Division of the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility (DOE's Jefferson Lab). Jefferson Lab's accelerator provides the world's most precise electron beam for exploring the fundamental nature of matter. As head of the Accelerator Division, Hutton will supervise the

  8. New Theory Head to join PPPL | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Theory Head to join PPPL By John Greenwald August 27, 2012 Tweet Widget Google Plus One Share on Facebook Amitava Bhattacharjee (Photo by Kristi Donahue, University of New Hampshire Institute for the Study of Earth, Oceans and Space ) Amitava Bhattacharjee Physicist Amitava Bhattacharjee is returning to his academic roots. He arrives as the new head of the Theory Department at the Princeton Plasma Physics Laboratory (PPPL) on August 27, more than 30 years after completing his doctoral work

  9. Los Alamos names new head of stockpile manufacturing and support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New head of stockpile manufacturing and support Los Alamos names new head of stockpile manufacturing and support Carl Beard is the new associate director for stockpile manufacturing and support. Beard has held this position in an acting capacity since June 2007. January 22, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  10. Los Alamos National Laboratory names new head of weapons programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory names new head of weapons programs Los Alamos National Laboratory names new head of weapons programs Bret Knapp has been acting in that position since June 2011. December 1, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a

  11. Cooling Boiling in Head Region - PACCAR Integrated Underhood Thermal and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    External Aerodynamics- Cummins | Department of Energy Cooling Boiling in Head Region - PACCAR Integrated Underhood Thermal and External Aerodynamics- Cummins Cooling Boiling in Head Region - PACCAR Integrated Underhood Thermal and External Aerodynamics- Cummins 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss004_routbort_2010_o.pdf More Documents & Publications Integrated External

  12. Cylinder Head Gasket with Integrated Combustion Pressure Sensors |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cylinder Head Gasket with Integrated Combustion Pressure Sensors Cylinder Head Gasket with Integrated Combustion Pressure Sensors Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon p-17_wlodarczyk.pdf More Documents & Publications Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Flex Fuel Optimized SI and HCCI Engine Heavy-Duty HCCI Development

  13. DOE Head of Contracting Activity and Procurement Directors' Directory -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sept 25 2015 | Department of Energy Head of Contracting Activity and Procurement Directors' Directory - Sept 25 2015 DOE Head of Contracting Activity and Procurement Directors' Directory - Sept 25 2015 File HCA and PD List Sept 25 2015.xlsx PDF icon Other DOE HCA List May 26 2015.pdf More Documents & Publications DOE Site Facility Management Contracts Internet Posting High Risk Plan Microsoft Word - AcqGuide71pt1.doc

  14. Memorandum for Heads of Federal Departments and Agencies: Emergencies and

    Office of Environmental Management (EM)

    NEPA | Department of Energy Heads of Federal Departments and Agencies: Emergencies and NEPA Memorandum for Heads of Federal Departments and Agencies: Emergencies and NEPA With this Memorandum, the Council on Environmental Quality reiterates its previous guidance on the National Environmental Policy Act (NEPA) environmental review of proposed emergency response actions.This memorandum clarifies that the previous guidance remains applicable to current situations and provides guidance on

  15. Bear Head LNG Corporation and Bear Head LNG (USA), LLC- FE Dkt. No.- 15-33-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 25, 2015, by Bear Head LNG, requesting long-term multi-contract authority as further described in their...

  16. Variations in the Retention and Excretion of {sup 137}Cs with Age and Sex

    SciTech Connect (OSTI)

    Boni, A.L.

    2001-08-29

    This report discusses the effects of age and sex on the retention and excretion of {sup 137}Cs in the body in a cross section of the general population over a four-year period.

  17. Mercury retention by fly ashes from coal combustion: Influence of the unburned carbon content

    SciTech Connect (OSTI)

    Lopez-Anton, M.A.; Diaz-Somoano, M.; Martinez-Tarazona, M.R.

    2007-01-31

    The objective of this study was to evaluate the effect of unburned carbon particles present in fly ashes produced by coal combustion on mercury retention. To achieve this objective, the work was divided into two parts. The aim of the first part of the study was to estimate the amount of mercury captured by the fly ashes during combustion in power stations and the relationship of this retention to the unburned carbon content. The second part was a laboratory-scale study aimed at evaluating the retention of mercury concentrations greater than those produced in power stations by fly ashes of different characteristics and by unburned carbon particles. From the results obtained it can be inferred that the unburned carbon content is not the only variable that controls mercury capture in fly ashes. The textural characteristics of these unburned particles and of other components of fly ashes also influence retention.

  18. Transport and Retention of Engineered Nanoporous Particles in Porous Media: Effects of Concentration and Flow Dynamics

    SciTech Connect (OSTI)

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming

    2013-01-20

    Engineered nanoporous particles are an important class of nano-structured materials that can be functionalized in their internal surfaces for various applications including groundwater contaminant sequestration. This paper reported a study of transport and retention of engineered nanoporous silicate particles (ENSPs) that are designed for treatment and remediation of contaminants such as uranium in groundwater and sediments. The transport and retention of ENSPs were investigated under variable particle concentrations and dynamic flow conditions in a synthetic groundwater that mimics field groundwater chemical composition. The dynamic flow condition was achieved using a flow-interruption (stop-flow) approach with variable stop-flow durations to explore particle retention and release kinetics. The results showed that the ENSPs transport was strongly affected by the particle concentrations and dynamic flow conditions. A lower injected ENSPs concentration and longer stop-flow duration led to a more particle retention. The experimental data were used to evaluate the applicability of various kinetic models that were developed for colloidal particle retention and release in describing ENSPs transport. Model fits suggested that the transport and retention of ENSPs were subjected to a complex coupling of reversible attachment/detachment and straining/liberation processes. Both experimental and modeling results indicated that dynamic groundwater flow condition is an important parameter to be considered in exploring and modeling engineered particle transport in subsurface porous media.

  19. Laboratory Demonstration of a New American Low-Head Hydropower Turbine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine Office presentation icon 68b_hydrogreen_small_hydro_ch_11.ppt More Documents & Publications Real World Demonstration of a New American Low-Head Hydropower Unit Turbine Aeration Physical Modeling and Software Design Scalable Low-head Axial-type Venturi-flow

  20. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    SciTech Connect (OSTI)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high-flow operation to natural circulation. Low-flow coolant events are the most difficult to design for because they involve the most complex thermal-hydraulic behavior induced by the dominance of thermal-buoyancy forces acting on the coolants. Such behavior can cause multiple-component flow interaction phenomena, which are not adequately understood or appreciated by reactor designers as to their impact on reactor performance and safety. Since the early 1990s, when DOE canceled the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program, little has been done experimentally to further understand the importance of the complex thermal-buoyancy phenomena and their impact on reactor design or to improve the ability of three-dimensional (3-D) transient computational fluid dynamics (CFD) and structures codes to model the phenomena. An improved experimental data base and the associated improved validated codes would provide needed design tools to the reactor community. The improved codes would also facilitate scale-up from small-scale testing to prototype size and would facilitate comparing performance of one reactor/component design with another. The codes would also have relevance to the design and safety of water-cooled reactors. To accomplish the preceding, it is proposed to establish a national GNEP-LMR research and development center at Argonne having as its foundation state-of-art science-based infrastructure consisting of: (a) thermal-hydraulic experimental capabilities for conducting both water and sodium testing of individual reactor components and complete reactor in-vessel models and (b) a computational modeling development and validation capability that is strongly interfaced with the experimental facilities. The proposed center would greatly advance capabilities for reactor development by establishing the validity of high-fidelity (i.e., close to first principles) models and tools. Such tools could be used directly for reactor design or for qualifying/tuning of lower-fidelity models, which now require costly experimental qualification for each different type of design

  1. In-vessel tritium retention and removal in ITER

    SciTech Connect (OSTI)

    Federici, G.; Anderl, R.A.; Andrew, P.

    1998-06-01

    The International Thermonuclear Experimental Reactor (ITER) is envisioned to be the next major step in the world`s fusion program from the present generation of tokamaks and is designed to study fusion plasmas with a reactor relevant range of plasma parameters. During normal operation, it is expected that a fraction of the unburned tritium, that is used to routinely fuel the discharge, will be retained together with deuterium on the surfaces and in the bulk of the plasma facing materials (PFMs) surrounding the core and divertor plasma. The understanding of he basic retention mechanisms (physical and chemical) involved and their dependence upon plasma parameters and other relevant operation conditions is necessary for the accurate prediction of the amount of tritium retained at any given time in the ITER torus. Accurate estimates are essential to assess the radiological hazards associated with routine operation and with potential accident scenarios which may lead to mobilization of tritium that is not tenaciously held. Estimates are needed to establish the detritiation requirements for coolant water, to determine the plasma fueling and tritium supply requirements, and to establish the needed frequency and the procedures for tritium recovery and clean-up. The organization of this paper is as follows. Section 2 provides an overview of the design and operating conditions of the main components which define the plasma boundary of ITER. Section 3 reviews the erosion database and the results of recent relevant experiments conducted both in laboratory facilities and in tokamaks. These data provide the experimental basis and serve as an important benchmark for both model development (discussed in Section 4) and calculations (discussed in Section 5) that are required to predict tritium inventory build-up in ITER. Section 6 emphasizes the need to develop and test methods to remove the tritium from the codeposited C-based films and reviews the status and the prospects of the most attractive techniques. Section 7 identifies the unresolved issues and provides some recommendations on potential R and D avenues for their resolution. Finally, a summary is provided in Section 8.

  2. Integrated head package cable carrier for a nuclear power plant

    DOE Patents [OSTI]

    Meuschke, Robert E. (Monroeville, PA); Trombola, Daniel M. (Murrysville, PA)

    1995-01-01

    A cabling arrangement is provided for a nuclear reactor located within a containment. Structure inside the containment is characterized by a wall having a near side surrounding the reactor vessel defining a cavity, an operating deck outside the cavity, a sub-space below the deck and on a far side of the wall spaced from the near side, and an operating area above the deck. The arrangement includes a movable frame supporting a plurality of cables extending through the frame, each connectable at a first end to a head package on the reactor vessel and each having a second end located in the sub-space. The frame is movable, with the cables, between a first position during normal operation of the reactor when the cables are connected to the head package, located outside the sub-space proximate the head package, and a second position during refueling when the cables are disconnected from the head package, located in the sub-space. In a preferred embodiment, the frame straddles the top of the wall in a substantially horizontal orientation in the first position, pivots about an end distal from the head package to a substantially vertically oriented intermediate position, and is guided, while remaining about vertically oriented, along a track in the sub-space to the second position.

  3. Canfield to head APS Condensed Matter Division | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Canfield to head APS Condensed Matter Division Ames Laboratory physicist Paul Canfield has always been a vocal proponent of his field, condensed matter physics, but he's about to take it up a notch. In March, Canfield will begin a four-year leadership stint heading up the Condensed Matter Physics Division of the American Physical Society. APS recently announced that Canfield had been elected vice-chair of the CMP division. "I just finished up a three-year tour as a member-at-large for the

  4. National Clean Energy Business Plan Competition: Five Regional Winners Head

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Final Round in Washington, D.C. | Department of Energy Five Regional Winners Head to Final Round in Washington, D.C. National Clean Energy Business Plan Competition: Five Regional Winners Head to Final Round in Washington, D.C. June 10, 2015 - 3:45pm Addthis Five student-led start-up companies that won regional competitions across the United States will travel to Washington, D.C., on June 24 to compete for a $50,000 prize in the National Clean Energy Business Plan Competition. |

  5. Retention system and method for the blades of a rotary machine

    DOE Patents [OSTI]

    Pedersen, Poul D. (Cincinnati, OH); Glynn, Christopher C. (Hamilton, OH); Walker, Roger C. (Piedmont, SC)

    2002-01-01

    A retention system and method for the blades of a rotary machine for preventing forward or aft axial movement of the rotor blades includes a circumferential hub slot formed about a circumference of the machine hub. The rotor blades have machined therein a blade retention slot which is aligned with the circumferential hub slot when the blades are received in correspondingly shaped openings in the hub. At least one ring segment is secured in the blade retention slots and the circumferential hub slot to retain the blades from axial movement. A key assembly is used to secure the ring segments in the aligned slots via a hook portion receiving the ring segments and a threaded portion that is driven radially outwardly by a nut. A cap may be provided to provide a redundant back-up load path for the centrifugal loads on the key. Alternatively, the key assembly may be formed in the blade dovetail.

  6. Simultaneous multi-headed imager geometry calibration method

    DOE Patents [OSTI]

    Tran, Vi-Hoa (Newport News, VA); Meikle, Steven Richard (Penshurst, AU); Smith, Mark Frederick (Yorktown, VA)

    2008-02-19

    A method for calibrating multi-headed high sensitivity and high spatial resolution dynamic imaging systems, especially those useful in the acquisition of tomographic images of small animals. The method of the present invention comprises: simultaneously calibrating two or more detectors to the same coordinate system; and functionally correcting for unwanted detector movement due to gantry flexing.

  7. Head-Tail Modes for Strong Space Charge

    SciTech Connect (OSTI)

    Burov, Alexey

    2008-12-01

    Head-tail modes are described here for the space charge tune shift significantly exceeding the synchrotron tune. General equation for the modes is derived. Spatial shapes of the modes, their frequencies, and coherent growth rates are explored. The Landau damping rates are also found. Suppression of the transverse mode coupling instability by the space charge is explained.

  8. Head of Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)

    National Nuclear Security Administration (NNSA)

    Preparatory Commission Visits NNSA's Nevada National Security Site (NNSS) for First Time | National Nuclear Security Administration Head of Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Preparatory Commission Visits NNSA's Nevada National Security Site (NNSS) for First Time | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our

  9. Competing retention pathways of uranium upon reaction with Fe(II)

    SciTech Connect (OSTI)

    Massey, Michael S.; Lezama Pacheco, Juan S.; Jones, Morris; Ilton, Eugene S.; Cerrato, Jose M.; Bargar, John R.; Fendorf, Scott

    2014-10-01

    Biogeochemical retention processes, including adsorption, reductive precipitation, and incorporation into host minerals, are important in contaminant transport, remediation, and geologic deposition of uranium. Recent work has shown that U can become incorporated into iron (hydr)oxide minerals, with a key pathway arising from Fe(II)-induced transformation of ferrihydrite, (Fe(OH)3nH2O) to goethite (?-FeO(OH)); this is a possible U retention mechanism in soils and sediments. Several key questions, however, remain unanswered regarding U incorporation into iron (hydr)oxides and this pathways contribution to U retention, including: (i) the competitiveness of U incorporation versus reduction to U(IV) and subsequent precipitation of UO2; (ii) the oxidation state of incorporated U; (iii) the effects of uranyl aqueous speciation on U incorporation; and, (iv) the mechanism of U incorporation. Here we use a series of batch reactions conducted at pH ~7, [U(VI)] from 1 to 170 ?M, [Fe(II)] from 0 to 3 mM, and [Ca] at 0 or 4 mM) coupled with spectroscopic examination of reaction products of Fe(II)-induced ferrihydrite transformation to address these outstanding questions. Uranium retention pathways were identified and quantified using extended x-ray absorption fine structure (EXAFS) spectroscopy, x-ray powder diffraction, x-ray photoelectron spectroscopy, and transmission electron microscopy. Analysis of EXAFS spectra showed that 14 to 89% of total U was incorporated into goethite, upon reaction with Fe(II) and ferrihydrite. Uranium incorporation was a particularly dominant retention pathway at U concentrations ? 50 ?M when either uranyl-carbonato or calcium-uranyl-carbonato complexes were dominant, accounting for 64 to 89% of total U. With increasing U(VI) and Fe(II) concentrations, U(VI) reduction to U(IV) became more prevalent, but U incorporation remained a functioning retention pathway. These findings highlight the potential importance of U(V) incorporation within iron oxides as a retention process of U across a wide range of biogeochemical environments and the sensitivity of uranium retention processes to operative (bio)geochemical conditions.

  10. SEMI-ANNUAL REPORTS FOR - BEAR HEAD LNG CORPORATION AND BEAR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEMI-ANNUAL REPORTS FOR - BEAR HEAD LNG CORPORATION AND BEAR HEAD (USA) LLC - FE DKT. NO. ... REPORTS FOR LNG DEVELOPMENT COMPANY, LLC (DBA Oregon LNG) - FE DKT. NO. 12-48-LNG - ...

  11. Development of Advanced Head-End Systems in 'NEXT' Process

    SciTech Connect (OSTI)

    Washiya, Tadahiro; Komaki, Jun; Funasaka, Hideyuki

    2007-07-01

    Japan Atomic Energy Agency (JAEA) has been developing the new aqueous reprocessing system named 'NEXT' (New Extraction system for TRU recovery)1-2, which provides many advantages as waste volume reduction, cost savings by advanced components and simplification of process operation. Advanced head-end systems in the 'NEXT' process consist of fuel disassembly system, fuel shearing system and continuous dissolver system. We developed reliable fuel disassembly system with innovative procedure, and short-length shearing system and continuous dissolver system can be provided highly concentrated dissolution to adapt to the uranium crystallization process. We have carried out experimental studies, and fabrication of engineering-scale test devices to confirm the systems performance. In this paper, research and development of advanced head-end systems are described. (authors)

  12. Strong-Sludge Gas Retention and Release Mechanisms in Clay Simulants

    SciTech Connect (OSTI)

    Gauglitz, Phillip A.; Buchmiller, William C.; Probert, Samuel G.; Owen, Antionette T.; Brockman, Fred J.

    2012-02-24

    The Hanford Site has 28 double-shell tanks (DSTs) and 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. The mission of the Department of Energy's River Protection Project is to retrieve and treat the Hanford tank waste for disposal and close the tank farms. A key aspect of the mission is to retrieve and transfer waste from the SSTs, which are at greater risk for leaking, into DSTs for interim storage until the waste is transferred to and treated in the Waste Treatment and Immobilization Plant. There is, however, limited space in the existing DSTs to accept waste transfers from the SSTs, and approaches to overcoming the limited DST space will benefit the overall mission. The purpose of this study is to summarize and analyze the key previous experiment that forms the basis for the relaxed controls and to summarize progress and results on new experiments focused on understanding the conditions that result in low gas retention. The previous large-scale test used about 50 m3 of sediment, which would be unwieldy for doing multiple parametric experiments. Accordingly, experiments began with smaller-scale tests to determine whether the desired mechanisms can be studied without the difficulty of conducting very large experiments. The most significant results from the current experiments are that progressively lower gas retention occurs in tests with progressively deeper sediment layers and that the method of gas generation also affects the maximum retention. Based on the results of this study, it is plausible that relatively low gas retention could occur in sufficiently deep tank waste in DSTs. The current studies and previous work, however, have not explored how gas retention and release will behave when two or more layers with different properties are present.

  13. Field Soil Water Retention of the Prototype Hanford Barrier and Its Variability with Space and Time

    SciTech Connect (OSTI)

    Zhang, Z. F.

    2015-08-14

    Engineered surface barriers are used to isolate underlying contaminants from water, plants, animals, and humans. To understand the flow processes within a barrier and the barriers ability to store and release water, the field hydraulic properties of the barrier need to be known. In situ measurement of soil hydraulic properties and their variation over time is challenging because most measurement methods are destructive. A multiyear test of the Prototype Hanford Barrier (PHB) has yielded in situ soil water content and pressure data for a nine-year period. The upper 2 m layer of the PHB is a silt loam. Within this layer, water content and water pressure were monitored at multiple depths at 12 water balance stations using a neutron probe and heat dissipation units. Valid monitoring data from 1995 to 2003 for 4 depths at 12 monitoring stations were used to determine the field water retention of the silt loam layer. The data covered a wide range of wetness, from near saturation to the permanent wilt point, and each retention curve contained 51 to 96 data points. The data were described well with the commonly used van Genuchten water retention model. It was found that the spatial variation of the saturated and residual water content and the pore size distribution parameter were relatively small, while that of the van Genuchten alpha was relatively large. The effects of spatial variability of the retention properties appeared to be larger than the combined effects of added 15% w/w pea gravel and plant roots on the properties. Neither of the primary hydrological processes nor time had a detectible effect on the water retention of the silt loam barrier.

  14. ESnet Update Steve Cotter, Dept Head Lawrence Berkeley National Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Update Steve Cotter, Dept Head Lawrence Berkeley National Lab Winter 2011 Joint Techs Clemson, SC Feb 2, 2011 Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science @ESnet: It's all about the Science * More bandwidth to DOE facilities and Labs at lower costs * Richer network services in support of distributed science - Develop network aware' integrated services that deliver end-to-end' high- performance data transfer, HPC/cloud computing, and science collaborative

  15. Bauer named Facilities, Infrastructure and Services head | Y-12 National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Complex Bauer named Facilities, ... Bauer named Facilities, Infrastructure and Services head Posted: August 27, 2012 - 1:01pm B&W Y-12 President and General Manager Chuck Spencer has named Linda Bauer as vice president of Facilities, Infrastructure and Services (FI&S). Bauer most recently served as senior vice president with Los Alamos Technical Associates, Inc. helping direct large-scale government and private endeavors, such as the Portsmouth Environmental Restoration

  16. Bret Knapp to head combined Weapons Engineering, Weapons Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directorates at Los Alamos National Laboratory Weapons Engineering, Weapons Physics Directorates Bret Knapp to head combined Weapons Engineering, Weapons Physics Directorates at Los Alamos National Laboratory New leadership position will allow for greater integration in the planning and execution of the stockpile stewardship program. August 18, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and

  17. Integrated hydraulic cooler and return rail in camless cylinder head

    DOE Patents [OSTI]

    Marriott, Craig D. (Clawson, MI); Neal, Timothy L. (Ortonville, MI); Swain, Jeff L. (Flushing, MI); Raimao, Miguel A. (Colorado Springs, CO)

    2011-12-13

    An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.

  18. TO: Procurement Directors Head of Contracting Activities FROM: Director

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 DATE: August 21, 2014 TO: Procurement Directors Head of Contracting Activities FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management SUBJECT: Initiatives to Achieve Strategic Plan 2014-2018 Performance Goal Focused on Cost Savings SUMMARY: The Department of Energy (DOE) Strategic Plan 2014-2018 includes language designed to expand the use of strategic sourcing across the Department for both federal procurement and

  19. MEMORANDUM FOR HEADS OF DEPARTMENTAL ELEMENTS FROM: IN GRID^,,

    Office of Environmental Management (EM)

    ,2011 MEMORANDUM FOR HEADS OF DEPARTMENTAL ELEMENTS FROM: IN GRID^,, DIRECT SUBJECT: Working Effectively with Contractors The Department of Energy (DOE) depends on contractors to provide vital support in achieving our mission. Their contributions are critical t o accomplishing our goals in such important areas as energy research and development, weapons production, stockpile management, and environmental remediation and restoration. Although contractors are integral to our mission

  20. MEMORANDUM FOR HEADS OF DEPARTMENTAL ELEMENTS OTHER THAN THE

    Office of Environmental Management (EM)

    , 2013 MEMORANDUM FOR HEADS OF DEPARTMENTAL ELEMENTS OTHER THAN THE NA TI ON AL NUCLEAR SECURITY ADMINISTRATION FROM: SUBJECT: ROBERT C. GIBBS ~Mb CHIEF HUMAN CAPITAL OFFICER W AIYER OF THE BI-WEEKLY PAY LIMITATION FOR EMERGENCY RESPONSE ACTIVITIES This memorandum replaces: 1) the January 31, 2002, memorandum from Timothy M. Dirks, (former) Director of Human Resources Management, subject: Waiver of Bi-Weekly Premium Pay Limitation, pertaining to "emergency work in connection with the

  1. In-vessel Retention Strategy for High Power Reactors - K-INERI Final Report (includes SBLB Test Results for Task 3 on External Reactor Vessel Cooling (ERVC) Boiling Data and CHF Enhancement Correlations)

    SciTech Connect (OSTI)

    F. B. Cheung; J. Yang; M. B. Dizon; J. Rempe

    2005-01-01

    In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors (ALWRs). If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Westinghouse Advanced 600 MWe PWR (AP600), which relied upon External Reactor Vessel Cooling (ERVC) for IVR, resulted in the U.S. Nuclear Regulatory Commission (US NRC) approving the design without requiring certain conventional features common to existing LWRs. However, it is not clear that currently proposed external reactor vessel cooling (ERVC) without additional enhancements could provide sufficient heat removal for higher-power reactors (up to 1500 MWe). Hence, a collaborative, three-year, U.S. - Korean International Nuclear Energy Research Initiative (INERI) project was completed in which the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korea Atomic Energy Research Institute (KAERI) investigated the performance of ERVC and an in-vessel core catcher (IVCC) to determine if IVR is feasible for reactors up to 1500 MWe.

  2. Real World Demonstration of a New American Low-Head Hydropower Unit |

    Energy Savers [EERE]

    Department of Energy Real World Demonstration of a New American Low-Head Hydropower Unit Real World Demonstration of a New American Low-Head Hydropower Unit Real World Demonstration of a New American Low-Head Hydropower Unit Office presentation icon 69d_hydrogreen_hydro_demonstration_12.ppt More Documents & Publications Laboratory Demonstration of a New American Low-Head Hydropower Turbine Turbine Aeration Physical Modeling and Software Design Scalable Low-head Axial-type Venturi-flow

  3. Reactor pressure vessel head vents and methods of using the same

    DOE Patents [OSTI]

    Gels, John L; Keck, David J; Deaver, Gerald A

    2014-10-28

    Internal head vents are usable in nuclear reactors and include piping inside of the reactor pressure vessel with a vent in the reactor upper head. Piping extends downward from the upper head and passes outside of the reactor to permit the gas to escape or be forcibly vented outside of the reactor without external piping on the upper head. The piping may include upper and lowers section that removably mate where the upper head joins to the reactor pressure vessel. The removable mating may include a compressible bellows and corresponding funnel. The piping is fabricated of nuclear-reactor-safe materials, including carbon steel, stainless steel, and/or a Ni--Cr--Fe alloy. Methods install an internal head vent in a nuclear reactor by securing piping to an internal surface of an upper head of the nuclear reactor and/or securing piping to an internal surface of a reactor pressure vessel.

  4. A Discussion of SY-101 Crust Gas Retention and Release Mechanisms

    SciTech Connect (OSTI)

    SD Rassat; PA Gauglitz; SM Caley; LA Mahoney; DP Mendoza

    1999-02-23

    The flammable gas hazard in Hanford waste tanks was made an issue by the behavior of double-shell Tank (DST) 241-SY-101 (SY-101). Shortly after SY-101 was filled in 1980, the waste level began rising periodically, due to the generation and retention of gases within the slurry, and then suddenly dropping as the gases were released. An intensive study of the tank's behavior revealed that these episodic releases posed a safety hazard because the released gas was flammable, and, in some cases, the volume of gas released was sufficient to exceed the lower flammability limit (LFL) in the tank headspace (Allemann et al. 1993). A mixer pump was installed in SY-101 in late 1993 to prevent gases from building up in the settled solids layer, and the large episodic gas releases have since ceased (Allemann et al. 1994; Stewart et al. 1994; Brewster et al. 1995). However, the surface level of SY-101 has been increasing since at least 1995, and in recent months the level growth has shown significant and unexpected acceleration. Based on a number of observations and measurements, including data from the void fraction instrument (VFI), we have concluded that the level growth is caused largely by increased gas retention in the floating crust. In September 1998, the crust contained between about 21 and 43% void based on VFI measurements (Stewart et al. 1998). Accordingly, it is important to understand the dominant mechanisms of gas retention, why the gas retention is increasing, and whether the accelerating level increase will continue, diminish or even reverse. It is expected that the retained gas in the crust is flammable, with hydrogen as a major constituent. This gas inventory would pose a flammable gas hazard if it were to release suddenly. In May 1997, the mechanisms of bubble retention and release from crust material were the subject of a workshop. The evaluation of the crust and potential hazards assumed a more typical void of roughly 15% gas. It could be similar to percolati on in single-shell tank (SST) waste forms. The much higher void being currently observed in SY-101 represents essentially a new crust configuration, and the mechanisms for sudden gas release need to be evaluated. The purpose of this study is to evaluate the situation of gas bubbles in crust based on the previous work on gas bubble retention, migration, and release in simulants and actual waste. We have also conducted some visual observations of bubble migration through simulated crusts to help understand the interaction of the various mechanisms.

  5. Retention sleeve for a thermal medium carrying tube in a gas turbine

    DOE Patents [OSTI]

    Lathrop, Norman Douglas (Ballston Lake, NY); Czachor, Robert Paul (Cincinnati, OH)

    2003-01-01

    Multiple tubes are connected to steam supply and spent cooling steam return manifolds for supplying cooling steam to buckets and returning spent cooling steam from the buckets to the manifolds, respectively. The tubes are prevented from axial movement in one direction by flanges engaging end faces of the spacer between the first and second-stage wheels. Retention sleeves are disposed about cantilevered ends of the tubes. One end of the retention sleeve engages an enlarged flange on the tube, while an opposite end is spaced axially from an end face of the adjoining wheel, forming a gap, enabling thermal expansion of the tubes and limiting axial displacement of the tube in the opposite direction.

  6. Rayleigh-Taylor Instability within Sediment Layers Due to Gas Retention: Preliminary Theory and Experiments

    SciTech Connect (OSTI)

    Gauglitz, Phillip A.; Wells, Beric E.; Buchmiller, William C.; Rassat, Scot D.

    2013-03-21

    In Hanford underground waste storage tanks, a typical waste configuration is settled beds of waste particles beneath liquid layers. The settled beds are typically composed of layers, and these layers can have different physical and chemical properties. One postulated configuration within the settled bed is a less-dense layer beneath a more-dense layer. The different densities can be a result of different gas retention in the layers or different degrees of settling and compaction in the layers. This configuration can experience a Rayleigh-Taylor (RT) instability where the less dense lower layer rises into the upper layer. Previous studies of gas retention and release have not considered potential buoyant motion within a settle bed of solids. The purpose of this report is to provide a review of RT instabilities, discuss predictions of RT behavior for sediment layers, and summarize preliminary experimental observations of RT instabilities in simulant experiments.

  7. Effects of Globally Waste Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    SciTech Connect (OSTI)

    Stewart, Charles W.; Fountain, Matthew S.; Huckaby, James L.; Mahoney, Lenna A.; Meyer, Perry A.; Wells, Beric E.

    2005-08-02

    Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

  8. Geotechnical Analysis of Five Shelby Tube Samples from H-Area Retention Basin

    SciTech Connect (OSTI)

    Langton, C.A.

    1999-06-02

    Geotechnical and geochemical analyses were performed on five Shelby tube samples collected in the H-Area Retention Basin (HRB) during July and August of 1998. The samples were collected as part of the HRB characterization study. The test results, which are documented in this report, will be used to support the HRB contaminant fate and transport modeling/analysis and to evaluate remedial options. The results will also be used as a base line for future treatability studies.

  9. November 13 - 15, 2012 HSS Work Group Leadership Meeting Summary - Work Force Retention

    Energy Savers [EERE]

    Work Force Retention Work Group Co-Lead Telecom November 16, 2012 DRAFT Discussion Overview Purpose: This HSS Focus Group Work Group telecom was held with the Work Group Co-Leads to discuss change elements and strategic direction to support accelerated efforts to advancing progress, productivity and performance within each of the Work Groups. Although current roles within all of the Work Groups and Focus Group efforts remain the same, the addition of centralized leadership and oversight by

  10. Deuterium Retention in Tungsten-Coated Reduced Activation Ferritic/Martensitic Steel

    Office of Environmental Management (EM)

    Deuterium Retention in Tungsten-Coated Reduced Activation Ferritic/Martensitic Steel Yuji Yamauchi, Marco Armando, Naoto Nihei, Yuji Nobuta, Tomoaki Hino Division of Quantum Science and Engineering Faculty of engineering, Hokkaido University 1 Faculty of Engineering, Hokkaido University Background 2 INTRODUCTION 1 Tungsten (W) Good candidate as plasma-facing material (PFM) in fusion reactor Development of tungsten coating on PFM (such as F82H) Bulk W is heavy  Influences density control of

  11. Extreme high-head portables provide more pumping options

    SciTech Connect (OSTI)

    Fiscor, S.

    2006-10-15

    Three years ago, Godwin Pumps, one of the largest manufacturers of portable pumps, introduced its Extreme Duty High Lift (HL) series of pumps and more mines are finding unique applications for these pumps. The Extreme HL series is a range single-stage Dri-Prime pumps with heads up to 600 feet and flows up to 5,000 gallons per minute. The American Coal Co.'s Galatia mine, an underground longwall mine in southern Illinois, used an HL 160 to replace a multiple-staged centrifugal pump. It provided Galatia with 1,500 gpm at 465 ft. 3 photos.

  12. LANL names new head of Plutonium Science and Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jeff Yarbrough joins Los Alamos from B&W Pantex LANL names new head of Plutonium Science and Manufacturing Jeff Yarbrough joins Los Alamos from the B&W Pantex plant in Amarillo, Texas. March 2, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory

  13. Flame Arrival Measurement By Instrumented Spark Plug or Head Gasket

    Energy Science and Technology Software Center (OSTI)

    1995-04-10

    PLUGBIN was developed to support Sandia technologies involving instrumented head gaskets and spark plugs for engine research and development. It acquires and processes measurements of flame arrival and pressure from a spark ignition. Flame arrival is determined from analog ionization-probe or visible-emission signals, and/or digitial signals from a dedicated flame arrival measurement processor. The pressure measurements are analyzed to determine the time of peak pressure and the time to burn 10 and 90 percent ofmore » the charge. Histograms are then calculated and displayed for each measurement.« less

  14. Low hydrostatic head electrolyte addition to fuel cell stacks

    DOE Patents [OSTI]

    Kothmann, Richard E. (Churchill Boro, PA)

    1983-01-01

    A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces.

  15. Imaging system for cardiac planar imaging using a dedicated dual-head gamma camera

    DOE Patents [OSTI]

    Majewski, Stanislaw (Morgantown, VA); Umeno, Marc M. (Woodinville, WA)

    2011-09-13

    A cardiac imaging system employing dual gamma imaging heads co-registered with one another to provide two dynamic simultaneous views of the heart sector of a patient torso. A first gamma imaging head is positioned in a first orientation with respect to the heart sector and a second gamma imaging head is positioned in a second orientation with respect to the heart sector. An adjustment arrangement is capable of adjusting the distance between the separate imaging heads and the angle between the heads. With the angle between the imaging heads set to 180 degrees and operating in a range of 140-159 keV and at a rate of up to 500kHz, the imaging heads are co-registered to produce simultaneous dynamic recording of two stereotactic views of the heart. The use of co-registered imaging heads maximizes the uniformity of detection sensitivity of blood flow in and around the heart over the whole heart volume and minimizes radiation absorption effects. A normalization/image fusion technique is implemented pixel-by-corresponding pixel to increase signal for any cardiac region viewed in two images obtained from the two opposed detector heads for the same time bin. The imaging system is capable of producing enhanced first pass studies, bloodpool studies including planar, gated and non-gated EKG studies, planar EKG perfusion studies, and planar hot spot imaging.

  16. Integrated titer plate-injector head for microdrop array preparation, storage and transfer

    DOE Patents [OSTI]

    Swierkowski, Stefan P. (Livermore, CA)

    2000-01-01

    An integrated titer plate-injector head for preparing and storing two-dimensional (2-D) arrays of microdrops and for ejecting part or all of the microdrops and inserting same precisely into 2-D arrays of deposition sites with micrometer precision. The titer plate-injector head includes integrated precision formed nozzles with appropriate hydrophobic surface features and evaporative constraints. A reusable pressure head with a pressure equalizing feature is added to the titer plate to perform simultaneous precision sample ejection. The titer plate-injector head may be utilized in various applications including capillary electrophoresis, chemical flow injection analysis, microsample array preparation, etc.

  17. Real World Demonstration of a New American Low-Head Hydropower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real World Demonstration of a New American Low-Head Hydropower Unit Office presentation icon 69dhydrogreenhydrodemonstration12.ppt More Documents & Publications Laboratory ...

  18. Are We Heading Towards a Reversal of the Trend for Ever-Greater...

    Open Energy Info (EERE)

    Mobility? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Are We Heading Towards a Reversal of the Trend for Ever-Greater Mobility? AgencyCompany Organization:...

  19. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    SciTech Connect (OSTI)

    Fox, K.; Edwards, T.

    2012-05-08

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude necessary to have a dramatic impact on blending, washing, or waste loading strategies for DWPF) for the glasses studied here. In general, the concentrations of those species that significantly improve sulfate solubility in a borosilicate glass must be added in relatively large concentrations (e.g., 13 to 38 wt % or more of the frit) in order to have a substantial impact. For DWPF, these concentrations would constitute too large of a portion of the frit to be practical. Therefore, it is unlikely that specific additives may be introduced into the DWPF glass via the frit to significantly improve sulfate solubility. The results presented here continue to show that sulfate solubility or retention is a function of individual glass compositions, rather than a property of a broad glass composition region. It would therefore be inappropriate to set a single sulfate concentration limit for a range of DWPF glass compositions. Sulfate concentration limits should continue to be identified and implemented for each sludge batch. The current PCCS limit is 0.4 wt % SO{sub 4}{sup 2-} in glass, although frit development efforts have led to an increased limit of 0.6 wt % for recent sludge batches. Slightly higher limits (perhaps 0.7-0.8 wt %) may be possible for future sludge batches. An opportunity for allowing a higher sulfate concentration limit at DWPF may lay lie in improving the laboratory experiments used to set this limit. That is, there are several differences between the crucible-scale testing currently used to define a limit for DWPF operation and the actual conditions within the DWPF melter. In particular, no allowance is currently made for sulfur partitioning (volatility versus retention) during melter processing as the sulfate limit is set for a specific sludge batch. A better understanding of the partitioning of sulfur in a bubbled melter operating with a cold cap as well as the impacts of sulfur on the off-gas system may allow a higher sulfate concentration limit to be established for the melter feed. This approach would have to be taken carefully to ensure that a

  20. Method for training honeybees to respond to olfactory stimuli and enhancement of memory retention therein

    DOE Patents [OSTI]

    McCade, Kirsten J.; Wingo, Robert M.; Haarmann, Timothy K.; Sutherland, Andrew; Gubler, Walter D.

    2015-12-15

    A specialized conditioning protocol for honeybees that is designed for use within a complex agricultural ecosystem. This method ensures that the conditioned bees will be less likely to exhibit a conditioned response to uninfected plants, a false positive response that would render such a biological sensor unreliable for agricultural decision support. Also described is a superboosting training regime that allows training without the aid of expensive equipment and protocols for training in out in the field. Also described is a memory enhancing cocktail that aids in long term memory retention of a vapor signature. This allows the bees to be used in the field for longer durations and with fewer bees trained overall.

  1. Radionuclide Retention Mechanisms in Secondary Waste-Form Testing: Phase II

    SciTech Connect (OSTI)

    Um, Wooyong; Valenta, Michelle M.; Chung, Chul-Woo; Yang, Jungseok; Engelhard, Mark H.; Serne, R. Jeffrey; Parker, Kent E.; Wang, Guohui; Cantrell, Kirk J.; Westsik, Joseph H.

    2011-09-26

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate candidate stabilization technologies that have the potential to successfully treat liquid secondary waste stream effluents produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). WRPS is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF, a multi-waste, treatment-and-storage unit that has been permitted under the Resource Conservation and Recovery Act (RCRA), can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid waste generated during operation of the WTP. The STU will provide the additional capacity needed for ETF to process the increased volume of secondary waste expected to be produced by WTP. This report on radionuclide retention mechanisms describes the testing and characterization results that improve understanding of radionuclide retention mechanisms, especially for pertechnetate, {sup 99}TcO{sub 4}{sup -} in four different waste forms: Cast Stone, DuraLith alkali aluminosilicate geopolymer, encapsulated fluidized bed steam reforming (FBSR) product, and Ceramicrete phosphate bonded ceramic. These data and results will be used to fill existing data gaps on the candidate technologies to support a decision-making process that will identify a subset of the candidate waste forms that are most promising and should undergo further performance testing.

  2. RETENTION AND CHEMICAL SPECIATION OF URANIUM IN A WETLAND ON THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Li, D.; CHANG, H.: SEAMAN, J.; Jaffe, P.; Groos, P.; Jiang, D.; Chen, N.; Lin, J.; Arthur, Z.; Scheckel, K.; Kaplan, D.

    2013-06-17

    Uranium speciation and retention mechanism onto Savannah River Site (SRS) wetland sediments was studied using batch (ad)sorption experiments, sequential extraction desorption tests and U L{sub 3}-edge X-ray absorption near-edge structure (XANES) spectroscopy of contaminated wetland sediments. U was highly retained by the SRS wetland sediments. In contrast to other similar but much lower natural organic matter (NOM) sediments, significant sorption of U onto the SRS sediments was observed at pH <4 and pH >8. Sequential extraction tests indicated that the U(VI) species were primarily associated with the acid soluble fraction (weak acetic acid extractable) and NOM fraction (Na-pyrophosphate extractable). Uranium L3- edge XANES spectra of the U-retained sediments were nearly identical to that of uranyl acetate. The primary oxidation state of U in these sediments was as U(VI), and there was little evidence that the high sorptive capacity of the sediments could be ascribed to abiotic or biotic reduction to the less soluble U(IV) species. The molecular mechanism responsible for the high U retention in the SRS wetland sediments is likely related to the chemical bonding of U to organic carbon.

  3. Reactive amendment saltstone (RAS). A novel approach for improved sorption/retention of radionuclides such as technetium and iodine

    SciTech Connect (OSTI)

    Dixon, K. L.; Knox, A. S.; Cozzi, A. D.; Flach, G. P.; Hill, K. A.

    2015-09-30

    This study examined the use of reactive amendments (hydroxyapatite, activated carbon, and two types of organoclays) that prior research suggests may improve retention of 99Tc and 129I. Tests were conducted using surrogates for 99Tc (NaReO4) and 129I (NaI). Results showed that adding up to 10% of organoclay improved the retention of Re without adversely impacting hydraulic properties. To a lesser extent, iodine retention was also improved by adding up to 10% organoclay. Numerical modeling showed that using organoclay as a reactive barrier may significantly retard 99Tc release from saltstone disposal units.

  4. Type B Accident Investigation Board Report on the Head Injury to a Miner at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Waste Isolation Pilot Plant, Carlsbad, New Mexico - August 25, 2004 | Department of Energy on the Head Injury to a Miner at the Waste Isolation Pilot Plant, Carlsbad, New Mexico - August 25, 2004 Type B Accident Investigation Board Report on the Head Injury to a Miner at the Waste Isolation Pilot Plant, Carlsbad, New Mexico - August 25, 2004 October 15, 2004 On August 25, 2004, an employee of Washington TRU Solution, LLC (WTS) sustained a head injury when he was struck by a C-clamp and

  5. Uptake and Retention of Cs137 by a Blue-Green Alga in Continuous Flow and Batch Culture Systems

    SciTech Connect (OSTI)

    Watts, J.R.

    2003-02-18

    Since routine monitoring data show that blue-green algae concentrate radioactivity from water by factors as great as 10,000, this study was initiated to investigate the uptake and retention patterns of specific radionuclides by the dominant genera of blue-green algae in the reactor effluents. Plectonema purpureum was selected for this study.

  6. Flex-flame burner and combustion method

    DOE Patents [OSTI]

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  7. High Luminosity, Low-NOx Burner

    Broader source: Energy.gov [DOE]

    Glass melters use combustion systems to produce molten glass. While significant progress has been made in developing oxy-fuel combustion systems, current technologies provide low flame luminosity...

  8. SU-E-J-127: Real-Time Dosimetric Assessment for Adaptive Head...

    Office of Scientific and Technical Information (OSTI)

    127: Real-Time Dosimetric Assessment for Adaptive Head-And-Neck Treatment Via A GPU-Based ... Citation Details In-Document Search Title: SU-E-J-127: Real-Time Dosimetric Assessment for ...

  9. Omni Jaw 5(tm) licensed, headed to market | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shear and trap bolt heads during demolition projects, has been licensed by Y-12 to Green Arc Labs of Chattanooga. A patented, portable, high-powered hydraulic tool, invented to...

  10. Simulations of coherent beam-beam effects with head-on compensation

    SciTech Connect (OSTI)

    White S.; Fischer, W.; Luo. Y.

    2012-05-20

    Electron lenses are under construction for installation in RHIC in order to mitigate the head-on beam-beam effects. This would allow operation with higher bunch intensity and result in a significant increase in luminosity. We report on recent strong-strong simulations and experiments that were carried out using the RHIC upgrade parameters to assess the impact of coherent beam-beam effects in the presence of head-on compensation.

  11. Energy Department Accepting Small Business Grant Applications for Low-Head

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Turbines and MHK Monitoring Systems | Department of Energy Accepting Small Business Grant Applications for Low-Head Hydropower Turbines and MHK Monitoring Systems Energy Department Accepting Small Business Grant Applications for Low-Head Hydropower Turbines and MHK Monitoring Systems November 26, 2014 - 2:57pm Addthis The Energy Department began accepting applications on November 24 for its FY 2015 Phase 1 grant topics, including two Water Power Program topics, under the Small

  12. SU-E-J-127: Real-Time Dosimetric Assessment for Adaptive Head-And-Neck

    Office of Scientific and Technical Information (OSTI)

    Treatment Via A GPU-Based Deformable Image Registration Framework (Journal Article) | SciTech Connect 127: Real-Time Dosimetric Assessment for Adaptive Head-And-Neck Treatment Via A GPU-Based Deformable Image Registration Framework Citation Details In-Document Search Title: SU-E-J-127: Real-Time Dosimetric Assessment for Adaptive Head-And-Neck Treatment Via A GPU-Based Deformable Image Registration Framework Purposes: To systematically monitor anatomic variations and their dosimetric

  13. Retention and release of tritium in aluminum clad, Al-Li alloys

    SciTech Connect (OSTI)

    Louthan, M.R. Jr.

    1991-12-31

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the {sup 6}Li(n,{alpha}){sup 3}He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs.

  14. Retention and release of tritium in aluminum clad, Al-Li alloys

    SciTech Connect (OSTI)

    Louthan, M.R. Jr.

    1991-01-01

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the {sup 6}Li(n,{alpha}){sup 3}He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs.

  15. Effect of morphology of sulfurized materials in the retention of mercury from gas streams

    SciTech Connect (OSTI)

    Guijarro, M.I.; Mendioroz, S.; Munoz, V.

    1998-03-01

    Mercury pollution sources are chloralkali industries, metal sulfide ore smelting, gold refining, cement production, industrial applications of metals, and, especially, fossil fuel combustion and incineration of sewage sludge or municipal garbage. The retention of mercury vapor by sulfur supported on sepiolite has been studied, and the utility of sepiolite as a dispersant for the active phase, sulfur, has been thoroughly ascertained. Samples with 10% S supported on sepiolite of varying size and shape have been prepared from powders sulfurized by reaction/deposit, and their efficiency in depurating air streams with 95 ppm mercury has been tested in a dynamic system using a fixed-bed glass reactor and fluid velocities ranging from 3.1 to 18.9 cm/s. From breakthrough curves under various sets of conditions, the importance of mass transfer under the process conditions has been proven. The progress of the reaction is limited by the resistance to reactant diffusion inside the solid through the layer of product formed. Sulfur reaction to HgS is reduced to an external zone of the solid, giving rise to an egg-shell deposit whose extension is related to sulfur dispersion and porosity of the adsorbent. Then, conversion and capacity of the samples are related to their porosity and S/V ratio. The use of SEM helps to confirm those statements. The 10% S samples compare well with the more conventional S/activated carbon, with their use being advantageous for the low price and abundance of the substrate.

  16. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    SciTech Connect (OSTI)

    Krause, David L.; Kantzos, Pete T.

    2006-01-20

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110-watt Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  17. May 21, 2012, Office of Health, Safety and Security (HSS) Focus Group Work Force Retention Work Group Charter

    Office of Environmental Management (EM)

    Work Force Retention Work Group Charter In an ongoing effort to further the improvement of health, safety, environmental, and security performance within the Department, DOE is engaged in the establishment of work groups to pursue health and safety improvements across the DOE Complex. These efforts support DOE's responsibility as owner/manager to protect its greatest asset: the worker. The work groups support DOE's integrated safety management system and further DOE's best interests by fostering

  18. Double-stranded DNA organization in bacteriophage heads: An alternative toroid-based model

    SciTech Connect (OSTI)

    Hud, N.V.

    1995-10-01

    Studies of the organization of double-stranded DNA within bacteriophage heads during the past four decades have produced a wealth of data. However, despite the presentation of numerous models, the true organization of DNA within phage heads remains unresolved. The observations of toroidal DNA structures in electron micrographs of phage lysates have long been cited as support for the organization of DNA in a spool-like fashion. This particular model, like all other models, has not been found to be consistent with all available data. Recently, the authors proposed that DNA within toroidal condensates produced in vitro is organized in a manner significantly different from that suggested by the spool model. This new toroid model has allowed the development of an alternative model for DNA organization within bacteriophage heads that is consistent with a wide range of biophysical data. Here the authors propose that bacteriophage DNA is packaged in a toroid that is folded into a highly compact structure.

  19. Dynamic structural analysis of a head assembly for a large loop-type LMFBR

    SciTech Connect (OSTI)

    Kulak, R.F.; Fiala, C.

    1984-01-01

    An investigation is presented on the dynamic structural response of the primary vessel's head closure to slug impact loadings generated from a 1000 MJ source term. The reference reactor considered was designed in a loop configuration. The head structure consisted of a deck and a triple rotatable plug assembly. Two designs were considered for the deck structure: a reference design and an alternate design. The reference deck was designed as a single flat annular plate. For the alternate design, the deck plate was reinforced by adding an extender cylinder with a flange and flanged webs between the deck-plate and cylinder. The investigation showed that the reference design cannot maintain containment integrity when subjected to slug loading generated by a 1000 MJ source term. It was determined that the head deformed excessively.

  20. Results of head-on beam-beam compensation studies at the Tevatron

    SciTech Connect (OSTI)

    Valishev, A.; Stancari, G.; /Fermilab

    2011-03-01

    At the Tevatron collider, we studied the feasibility of suppressing the antiproton head-on beam-beamtune spread using a magnetically confined 5-keV electron beam with Gaussian transverse profile overlapping with the circulating beam. When electron cooling of antiprotons is applied in regular Tevatron operations, the head-on beam-beam effect on antiprotons is small. Therefore, we first focused on the operational aspects, such as beam alignment and stability, and on fundamental observations of tune shifts, tune spreads, lifetimes, and emittances. We also attempted two special collider stores with only 3 proton bunches colliding with 3 antiproton bunches, to suppress long-range forces and enhance head-on effects. We present here the results of this study and a comparison between numerical simulations and observations, in view of the planned application of this compensation concept to RHIC.

  1. Stability of Single Particle Motion with Head-On Beam-Beam Compensation in the RHIC

    SciTech Connect (OSTI)

    Luo,Y.; Fischer, W.; Abreu, N.

    2008-05-01

    To compensate the large tune shift and tune spread generated by the head-on beam-beam interactions in the polarized proton run in the Relativistic Heavy Ion Collider (RHIC), we proposed a low energy electron beam with a Gaussian transverse profiles to collide head-on with the proton beam. In this article, with a weak-strong beam-beam interaction model, we investigate the stability of single particle motion in the presence of head-on beam-beam compensation. Tune footprints, tune diffusion, Lyapunov exponents, and 10{sup 6} turn dynamic apertures are calculated and compared between the cases without and with beam-beam compensation. A tune scan is performed and the possibility of increasing the bunch intensity is studied. The cause of tune footprint foldings is discussed, and the tune diffusion and Lyapunov exponent analysis are compared.

  2. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOE Patents [OSTI]

    Boggs, D.L.; Baraszu, D.J.; Foulkes, D.M.; Gomes, E.G.

    1998-12-29

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine`s crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages. 4 figs.

  3. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOE Patents [OSTI]

    Boggs, David Lee (Bloomfield Hills, MI); Baraszu, Daniel James (Plymouth, MI); Foulkes, David Mark (Erfstadt, DE); Gomes, Enio Goyannes (Ann Arbor, MI)

    1998-01-01

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

  4. Numerical Simulation of Earth Pressure on Head Chamber of Shield Machine with FEM

    SciTech Connect (OSTI)

    Li Shouju; Kang Chengang [State Key Laboratory of structural analysis for industrial equipment, Dalian University of Technology, Dalian 116023 (China); Sun, Wei [School of Mechanical Engineering, Dalian University of Technology, Dalian 116023 (China); Shangguan Zichang [School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116023 (China); Institute of Civil Engineering, Dalian Fishery University, Dalian 116023 (China)

    2010-05-21

    Model parameters of conditioned soils in head chamber of shield machine are determined based on tree-axial compression tests in laboratory. The loads acting on tunneling face are estimated according to static earth pressure principle. Based on Duncan-Chang nonlinear elastic constitutive model, the earth pressures on head chamber of shield machine are simulated in different aperture ratio cases for rotating cutterhead of shield machine. Relationship between pressure transportation factor and aperture ratio of shield machine is proposed by using aggression analysis.

  5. 103 Teams to Head to DOE's National Science Bowl in Washington, D.C. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3 Teams to Head to DOE's National Science Bowl in Washington, D.C. 103 Teams to Head to DOE's National Science Bowl in Washington, D.C. April 23, 2009 - 12:00am Addthis WASHINGTON, DC- Students from 67 high school teams and 36 middle school teams from across the nation will compete next weekend for championship titles in the U.S. Department of Energy's (DOE) National Science Bowl in Washington D.C. The National Science Bowl is the nation's largest academic competition of

  6. Head Erosion with Emittance Growth in PWFA (Conference) | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference: Head Erosion with Emittance Growth in PWFA Citation Details In-Document Search Title: Head Erosion with Emittance Growth in PWFA Authors: Li, S.Z. ; /SLAC ; Adli, E. ; /SLAC /U. Oslo ; England, R.J. ; Frederico, J. ; Gessner, S.J. ; Hogan, M.J. ; Litos, M.D. ; Walz, D.R. ; /SLAC ; Muggli, P. ; /Munich, Max Planck Inst. ; An, W. ; Clayton, C.E. ; Joshi, C. ; Lu, W. ; Marsh, K.A. ; Mori, W. ; Vafaei, N. more »; /UCLA « less Publication Date: 2012-08-08 OSTI Identifier: 1053431 Report

  7. First Person -- George Neil Named Head of FEL Program (Inside Business) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab first-person-george-neil-named-head-fel-program-inside-business First Person -- George Neil By Lakeshia Artis, Inside Business March 3, 2008 George Neil, head of the Free-Electron Laser Program at Thomas Jefferson National Accelerator Facility has been named associate director of the program. Born April 11, 1948 in Springfield, Mo. 1972-1977 Received Ph. D. in nuclear engineering from the University of Wisconsin in Madison, Wis. 1979-1990 Worked as a staff scientist, FEL

  8. STATUS OF THE RHIC HEAD-ON BEAM-BEAM COMPENSATION PROJECT

    SciTech Connect (OSTI)

    Fischer, W.; Luo, Y.; Pikin, A.; Beebe, E.; Bruno, D.; Gassner, D.; Hocke, J.; Jain, A.; Lambiase, R.; Mapes, M.; Meng, W.; Montag, C.; Oerter, B.; Okamura, M.; Raparia, D.; Than, R.; Tuozzolo, J.

    2010-05-23

    In polarized proton operation the luminosity of RHIC is limited by the head-on beam-beam effect, and methods that mitigate the effect will result in higher peak and average luminosities. Two electron lenses, one for each ring, are being constructed to partially compensate the head-on beam-beam effect in the two rings. An electron lens consists of a low energy electron beam that creates the same amplitude dependent transverse kick as the proton beam. We discuss design considerations and present the main parameters.

  9. Multi-particle weak-strong simulation of RHIC head-on beam-beam compensation.

    SciTech Connect (OSTI)

    Luo,Y.; Abreu, N.; Beebe-Wang, J.; FischW; Robert-Demolaize, G.

    2008-06-23

    To compensate the large tune spread generated by the beam-beam interactions in the polarized proton (pp) run in the Relativistic Heavy Ion Collider (RHIC), a low energy round Gaussian electron beam or electron lens is proposed to collide head-on with the proton beam. Using a weakstrong beam-beam interaction model, we carry out multiparticle simulations to investigate the effects of head-on beam-beam compensation on the proton beam's lifetime and emittance growth. The simplectic 6-D element-by-element tracking code SixTrack is adopted and modified for this study. The code benchmarking and preliminary simulation results are presented.

  10. Head of UN Economic Commission for Europe: "Capture the Carbon" |

    Office of Environmental Management (EM)

    Department of Energy Head of UN Economic Commission for Europe: "Capture the Carbon" Head of UN Economic Commission for Europe: "Capture the Carbon" January 13, 2015 - 10:40am Addthis Dr. Julio Friedmann Dr. Julio Friedmann Principal Deputy Assistant Secretary for Fossil Energy Visit CCSNetwork for more information on CCS in Europe. The increased urgency of global climate change has focused the attention of many leaders around the world. While the Department of Energy

  11. Hurricane Earl - Where Is It Headed and What Does It Have to Do With

    Office of Environmental Management (EM)

    Energy? | Department of Energy Earl - Where Is It Headed and What Does It Have to Do With Energy? Hurricane Earl - Where Is It Headed and What Does It Have to Do With Energy? September 1, 2010 - 5:50pm Addthis Dr. Richard Newell Dr. Richard Newell Hurricane Earl has the East Coast of the United States in his sights. Earl is moving northward from the Bahamas, and is expected to skirt the U.S. Atlantic coast from Cape Hatteras to New England, before making landfall in Nova Scotia over the

  12. Hydrogen Gas Retention and Release from WTP Vessels: Summary of Preliminary Studies

    SciTech Connect (OSTI)

    Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Mahoney, Lenna A.; Rassat, Scot D.; Wells, Beric E.; Bao, Jie; Boeringa, Gregory K.; Buchmiller, William C.; Burns, Carolyn A.; Chun, Jaehun; Karri, Naveen K.; Li, Huidong; Tran, Diana N.

    2015-07-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) is currently being designed and constructed to pretreat and vitrify a large portion of the waste in the 177 underground waste storage tanks at the Hanford Site. A number of technical issues related to the design of the pretreatment facility (PTF) of the WTP have been identified. These issues must be resolved prior to the U.S. Department of Energy (DOE) Office of River Protection (ORP) reaching a decision to proceed with engineering, procurement, and construction activities for the PTF. One of the issues is Technical Issue T1 - Hydrogen Gas Release from Vessels (hereafter referred to as T1). The focus of T1 is identifying controls for hydrogen release and completing any testing required to close the technical issue. In advance of selecting specific controls for hydrogen gas safety, a number of preliminary technical studies were initiated to support anticipated future testing and to improve the understanding of hydrogen gas generation, retention, and release within PTF vessels. These activities supported the development of a plan defining an overall strategy and approach for addressing T1 and achieving technical endpoints identified for T1. Preliminary studies also supported the development of a test plan for conducting testing and analysis to support closing T1. Both of these plans were developed in advance of selecting specific controls, and in the course of working on T1 it was decided that the testing and analysis identified in the test plan were not immediately needed. However, planning activities and preliminary studies led to significant technical progress in a number of areas. This report summarizes the progress to date from the preliminary technical studies. The technical results in this report should not be used for WTP design or safety and hazards analyses and technical results are marked with the following statement: “Preliminary Technical Results for Planning – Not to be used for WTP Design or Safety Analyses.”

  13. Simulation study of dynamic aperture with head-on beam-beam compensation in the RHIC

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.

    2010-08-01

    In this note we summarize the calculated 10{sup 6} turn dynamic apertures with the proposed head-on beam-beam compensation in the Relativistic Heavy Ion Collider (RHIC). To compensate the head-on beam-beam effect in the RHIC 250 GeV polarized proton run, we are planning to introduce a DC electron beam with the same transverse profile as the proton beam to collide with the proton beam. Such a device to provide the electron beam is called an electron lens (e-lens). In this note we first present the optics and beam parameters and the tracking setup. Then we compare the calculated dynamic apertures without and with head-on beam-beam compensation. The effects of adjusted phase advances between IP8 and the center of e-lens and second order chromaticity correction are checked. In the end we will scan the proton and electron beam parameters with head-on beam-beam compensation.

  14. NNSA Sites Host Head of Comprehensive Nuclear-Test-Ban Treaty Organization

    National Nuclear Security Administration (NNSA)

    (CTBTO) | National Nuclear Security Administration Sites Host Head of Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios

  15. CHARACTERIZATION OF PHASE AND EMULSION BEHAVIOR, SURFACTANT RETENTION, AND OIL RECOVERY FOR NOVEL ALCOHOL ETHOXYCARBOXYLATE SURFACTANTS

    SciTech Connect (OSTI)

    Lebone T. Moeti; Ramanathan Sampath

    2001-09-28

    This final technical report describes work performed under DOE Grant No. DE-FG26-97FT97278 during the period October 01, 1997 to August 31, 2001 which covers the total performance period of the project. During this period, detailed information on optimal salinity, temperature, emulsion morphologies, effectiveness for surfactant retention and oil recovery was obtained for an Alcohol Ethoxycarboxylate (AEC) surfactant to evaluate its performance in flooding processes. Tests were conducted on several AEC surfactants and NEODOX (23-4) was identified as the most suitable hybrid surfactant that yielded the best proportion in volume for top, middle, and bottom phases when mixed with oil and water. Following the selection of this surfactant, temperature and salinity scans were performed to identify the optimal salinity and temperature, and the temperature and salinity intervals in which all three phases coexisted. NEODOX 23-4 formed three phases between 4 and 52.5 C. It formed an aqueous rich microemulsion phase at high temperatures and an oleic rich microemulsion phase at low temperatures--a characteristic of the ionic part of the surfactant. The morphology measurement system was set-up successfully at CAU. The best oil/water/surfactant system defined by the above phase work was then studied for emulsion morphologies. Electrical conductivities were measured for middle and bottom phases of the NEODOX 23-4/dodecane/10mM water system and by mixing measured volumes of the middle phase into a fixed volume of the bottom phase and vice versa at room temperature. Electrical conductivity of the mixture decreased as the fraction of volume of the middle phase was increased and vice versa. Also inversion phenomena was observed. These experiments were then repeated for bottom/middle (B/M) and middle/bottom (M/B) conjugate pair phases at 10, 15, 25, 30, 35, 40, and 45 C. Electrical conductivity measurements were then compared with the predictions of the conductivity model developed in this project. The M/B and B/M morphologies and their inversion hysteresis lines conformed to the previously postulated dispersion morphology diagram; that is, within experimental uncertainties, the two emulsion inversion lines in phase volume-temperature space met at a critical point that coincided with the upper critical end point for the phases. Coreflooding measurements were performed by our industrial partner in this project, Surtek, Golden, CO which showed poor hydrocarbon recovery (38.1%) for NEODOX 23-4. It was also found that NEODOX 23-4 surfactant adsorbed too much to the rock (97.1% surfactant loss to the core), a characteristic of the non-ionic part of the surfactant.

  16. Water energy resources of the United States with emphasis on low head/low power resources

    SciTech Connect (OSTI)

    Hall, Douglas G.; Cherry, Shane J.; Reeves, Kelly S.; Lee, Randy D.; Carroll, Gregory R.; Sommers, Garold L.; Verdin, Kristine L.

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for each of the 20 hydrologic regions are presented in Appendix A, and similar presentations for each of the 50 states are made in Appendix B.

  17. Results of Large-Scale Testing on Effects of Anti-Foam Agent on Gas Retention and Release

    SciTech Connect (OSTI)

    Stewart, Charles W.; Guzman-Leong, Consuelo E.; Arm, Stuart T.; Butcher, Mark G.; Golovich, Elizabeth C.; Jagoda, Lynette K.; Park, Walter R.; Slaugh, Ryan W.; Su, Yin-Fong; Wend, Christopher F.; Mahoney, Lenna A.; Alzheimer, James M.; Bailey, Jeffrey A.; Cooley, Scott K.; Hurley, David E.; Johnson, Christian D.; Reid, Larry D.; Smith, Harry D.; Wells, Beric E.; Yokuda, Satoru T.

    2008-01-03

    The U.S. Department of Energy (DOE) Office of River Protections Waste Treatment Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. The waste treatment process in the pretreatment facility will mix both Newtonian and non-Newtonian slurries in large process tanks. Process vessels mixing non-Newtonian slurries will use pulse jet mixers (PJMs), air sparging, and recirculation pumps. An anti-foam agent (AFA) will be added to the process streams to prevent surface foaming, but may also increase gas holdup and retention within the slurry. The work described in this report addresses gas retention and release in simulants with AFA through testing and analytical studies. Gas holdup and release tests were conducted in a 1/4-scale replica of the lag storage vessel operated in the Pacific Northwest National Laboratory (PNNL) Applied Process Engineering Laboratory using a kaolin/bentonite clay and AZ-101 HLW chemical simulant with non-Newtonian rheological properties representative of actual waste slurries. Additional tests were performed in a small-scale mixing vessel in the PNNL Physical Sciences Building using liquids and slurries representing major components of typical WTP waste streams. Analytical studies were directed at discovering how the effect of AFA might depend on gas composition and predicting the effect of AFA on gas retention and release in the full-scale plant, including the effects of mass transfer to the sparge air. The work at PNNL was part of a larger program that included tests conducted at Savannah River National Laboratory (SRNL) that is being reported separately. SRNL conducted gas holdup tests in a small-scale mixing vessel using the AZ-101 high-level waste (HLW) chemical simulant to investigate the effects of different AFAs, their components, and of adding noble metals. Full-scale, single-sparger mass transfer tests were also conducted at SRNL in water and AZ-101 HLW simulant to provide data for PNNLs WTP gas retention and release modeling.

  18. Recent studies related to head-end fuel processing at the Hanford PUREX plant

    SciTech Connect (OSTI)

    Swanson, J.L.

    1988-08-01

    This report presents the results of studies addressing several problems in the head-end processing (decladding, metathesis, and core dissolution) of N Reactor fuel elements in the Hanford PUREX plant. These studies were conducted over 2 years: FY 1986 and FY 1987. The studies were divided into three major areas: 1) differences in head-end behavior of fuels having different histories, 2) suppression of /sup 106/Ru volatilization when the ammonia scrubber solution resulting from decladding is decontaminated by distillation prior to being discharged, and 3) suitability of flocculating agents for lowering the amount of transuranic (TRU) element-containing solids that accompany the decladding solution to waste. 16 refs., 43 figs.

  19. LOCA analyses for nuclear steam supply systems with upper head injection. [PWR

    SciTech Connect (OSTI)

    Byers, R.K.; Bartel, T.J.

    1980-01-01

    The term Upper Head Injection describes a relatively new addition to a nuclear reactor's emergency cooling system. With this feature, water is delivered directly to the top of the reactor vessel during a loss-of-coolant accident, in addition to the later injection of coolant into the primary operating loops. Established computer programs, with various modifications to models for heat transfer and two-phase flow, were used to analyze a transient following a large break in one of the main coolant loops of a reactor equipped with upper head injection. The flow and heat transfer modifications combined to yield fuel cladding temperatures during blowdown which were as much as 440K (800/sup 0/F) lower than were obtained with standard versions of the codes (for best estimate calculations). The calculations also showed the need for more uniformity of applications of heat transfer models in the computer programs employed.

  20. Head-on beam-beam compensation with electron lenses in the RHIC.

    SciTech Connect (OSTI)

    Luo,Y.; FischW; Abreu, N.; Beebe, E.; Montag, C.; Okamura, M.; Pikin, A.; Robert-Demolaize, G.

    2008-06-23

    The working point for the polarized proton run in the Relativistic Heavy Ion Collider is constrained between 2/3 and 7/10 in order to maintain good beam lifetime and polarization. To further increase the bunch intensity to improve the luminosity, a low energy Gaussian electron beam, or an electron lens is proposed to head-on collide with the proton beam to compensate the large tune shift and tune spread generated by the proton-proton beam-beam interactions at IP6 and IP8. In this article, we outline the scheme of head-on beam-beam compensation in the RHIC and give the layout of e-lens installation and the parameters of the proton and electron beams. The involved physics and engineering issues are shortly discussed.

  1. Active test of head-end facility at Rokkasho reprocessing plant

    SciTech Connect (OSTI)

    Yamamoto, Yoshiro; Tanaka, Satoshi; Kawabe, Shuji; Kamada, Yoshiaki

    2007-07-01

    During the first step, the second and the third step of Active Test (AT) at Rokkasho Reprocessing Plant (RRP), the performances of the Head-end Facility were checked, mainly for shearing and dissolution: shearing force and shearing time were the values as expected and concentration of U and Pu in dissolution solution were the values as expected. And safety requirement for acidity in dissolution solution was satisfied. (authors)

  2. Natural gas inventories heading to record levels at start of winter heating season

    Gasoline and Diesel Fuel Update (EIA)

    Natural gas inventories heading to record levels at start of winter heating season U.S. natural gas inventories are expected to be at record levels to start the winter heating season. In its new forecast, the U.S. Energy Information Administration said the amount of natural gas stored underground should total almost 4 trillion cubic feet by the beginning of November, reflecting record high natural gas production. Inventories could go even higher if heating demand is not strong during October

  3. Lattice design for head-on beam-beam compensation at RHIC

    SciTech Connect (OSTI)

    Montag, C.

    2011-03-28

    Electron lenses for head-on beam-beam compensation will be installed in IP 10 at RHIC. Compensation of the beam-beam effect experienced at IP 8 requires betatron phase advances of {Delta}{psi} = k {center_dot} {pi} between the proton-proton interaction point at IP 8, and the electron lens at IP 10. This paper describes the lattice solutions for both the BLUE and the YELLOW ring to achieve this goal.

  4. MEMORANDUM FOR J.E. SURASH FROM: SUBJECT: HEAD OF CONTRACTING ACTIVITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Washington, DC 20585 March 17, 2015 MEMORANDUM FOR J.E. SURASH FROM: SUBJECT: HEAD OF CONTRACTING ACTIVITY OFFICE OF ENVIRONMENTAL MANAGEMENT BENJAMIN ZASLOW CHIEF FIELD ASSISTANCE AND OVERSIGHT DIVISION OFFICE OF CONTRACT MANAGEMENT OFFICE OF ACQUISITION AND PROJECT MANAGEMENT Contract Management Plan for the Waste Treatment and Immobilization Plant Project (WTP) In accordance with Acquisition Guide chapter 71.1, we have reviewed the subject Contract Management Plan for

  5. Head of EM Program Tours Hanford Site Facilities | Department of Energy

    Energy Savers [EERE]

    Program Tours Hanford Site Facilities Head of EM Program Tours Hanford Site Facilities November 26, 2014 - 12:00pm Addthis EM Office of River Protection (ORP) Manager Kevin Smith, right, discusses the Low-Activity Waste Facility design and construction with Waste Treatment and Immobilization Project Assistant Manager Bill Hamel, left; EM Acting Assistant Secretary Mark Whitney, second from left; and EM Waste Treatment Plant/Tank Farms Program Director Todd Shrader during a tour of the facility.

  6. Head of EM Visits Waste Isolation Pilot Plant for First Underground Tour

    Energy Savers [EERE]

    Since February Incidents | Department of Energy Visits Waste Isolation Pilot Plant for First Underground Tour Since February Incidents Head of EM Visits Waste Isolation Pilot Plant for First Underground Tour Since February Incidents October 16, 2014 - 12:00pm Addthis CBFO Manager Joe Franco, left, and EM Acting Assistant Secretary Mark Whitney discuss points of interest on a map of the WIPP underground. CBFO Manager Joe Franco, left, and EM Acting Assistant Secretary Mark Whitney discuss

  7. Robotic real-time translational and rotational head motion correction during frameless stereotactic radiosurgery

    SciTech Connect (OSTI)

    Liu, Xinmin; Belcher, Andrew H.; Grelewicz, Zachary; Wiersma, Rodney D.

    2015-06-15

    Purpose: To develop a control system to correct both translational and rotational head motion deviations in real-time during frameless stereotactic radiosurgery (SRS). Methods: A novel feedback control with a feed-forward algorithm was utilized to correct for the coupling of translation and rotation present in serial kinematic robotic systems. Input parameters for the algorithm include the real-time 6DOF target position, the frame pitch pivot point to target distance constant, and the translational and angular Linac beam off (gating) tolerance constants for patient safety. Testing of the algorithm was done using a 4D (XY Z + pitch) robotic stage, an infrared head position sensing unit and a control computer. The measured head position signal was processed and a resulting command was sent to the interface of a four-axis motor controller, through which four stepper motors were driven to perform motion compensation. Results: The control of the translation of a brain target was decoupled with the control of the rotation. For a phantom study, the corrected position was within a translational displacement of 0.35 mm and a pitch displacement of 0.15° 100% of the time. For a volunteer study, the corrected position was within displacements of 0.4 mm and 0.2° over 98.5% of the time, while it was 10.7% without correction. Conclusions: The authors report a control design approach for both translational and rotational head motion correction. The experiments demonstrated that control performance of the 4D robotic stage meets the submillimeter and subdegree accuracy required by SRS.

  8. NNSA Appoints Kim Davis Lebak to Head Los Alamos Field Office | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Appoints Kim Davis Lebak to Head Los Alamos Field Office | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters

  9. Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gu, Yi; Wu, Qishi; Rao, Nageswara S. V.

    2010-01-01

    Many complex sensor network applications require deploying a large number of inexpensive and small sensors in a vast geographical region to achieve quality through quantity. Hierarchical clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy consumption for prolonged lifetime. Judicious selection of cluster heads for data integration and communication is critical to the success of applications based on hierarchical sensor networks organized as layered clusters. We investigate the problem of selecting sensor nodes in a predeployed sensor network to be the cluster headsmore » to minimize the total energy needed for data gathering. We rigorously derive an analytical formula to optimize the number of cluster heads in sensor networks under uniform node distribution, and propose a Distance-based Crowdedness Clustering algorithm to determine the cluster heads in sensor networks under general node distribution. The results from an extensive set of experiments on a large number of simulated sensor networks illustrate the performance superiority of the proposed solution over the clustering schemes based on k -means algorithm.« less

  10. Of Boys and girls and Bumps on the Head (414th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Biegon, Anat

    2006-04-19

    If you are a young man driving your wife and her parents, be very careful. If you are involved in a serious car accident, you and your mother-in-law are most likely to survive. This 'warning' is one conclusion of Anat Biegon's upcoming 414th Brookhaven Lecture, entitled 'Of Boys and Girls and Bumps on the Head.' Joanna Fowler of the Chemistry Department, Director of BNL's Translational Neuroimaging Center, will introduce the lecturer. Biegon, a senior medical scientist in the Medical Department, will detail how research has refined scientists view of gender differences in the prevalence and outcome of diseases affecting the brain. Although it has been well documented that gender affects the prevalence of disorders such as depression and Attention deficit-hyperactivity disorder, recent head injury trials suggest that both age and sex affect the likelihood and degree of recovery from injuries to the brain. While girls are more likely to die following a traumatic brain injury than boys, that result is reversed after the age of 50, when men die twice as often. Although it has been well documented that gender affects the prevalence of disorders such as depression and Attention deficit-hyperactivity disorder, recent head injury trials suggest that both age and sex affect the likelihood and degree of recovery from injuries to the brain. While girls are more likely to die following a traumatic brain injury than boys, that result is reversed after the age of 50, when men die twice as often.

  11. Marginal Misses After Postoperative Intensity-Modulated Radiotherapy for Head and Neck Cancer

    SciTech Connect (OSTI)

    Chen, Allen M.; Farwell, D. Gregory; Luu, Quang; Chen, Leon M.; Vijayakumar, Srinivasan; Purdy, James A.

    2011-08-01

    Purpose: To describe the spatial distribution of local-regional recurrence (LRR) among patients treated postoperatively with intensity-modulated radiotherapy (IMRT) for head and neck cancer. Methods and Materials: The medical records of 90 consecutive patients treated by gross total resection and postoperative IMRT for squamous cell carcinoma of the head and neck from January 2003 to July 2009 were reviewed. Sites of disease were the oral cavity (43 patients), oropharynx (20 patients), larynx (15 patients), and hypopharynx (12 patients). Fifty patients (56%) received concurrent chemotherapy. Results: Seventeen of 90 patients treated with postoperative IMRT experienced LRR, yielding a 2-year estimate of local regional control of 80%. Among the LRR patients, 11 patients were classified as in-field recurrences, occurring within the physician-designated clinical target volume, and 6 patients were categorized as marginal recurrences. There were no out-of-field geographical misses. Sites of marginal LRRs included the contralateral neck adjacent to the spared parotid gland (3 patients), the dermal/subcutaneous surface (2 patients), and the retropharyngeal/retrostyloid lymph node region (1 patient). Conclusions: Although the incidence of geographical misses was relatively low, the possibility of this phenomenon should be considered in the design of target volumes among patients treated by postoperative IMRT for head and neck cancer.

  12. Primary Radiation Therapy for Head-and-Neck Cancer in the Setting of Human Immunodeficiency Virus

    SciTech Connect (OSTI)

    Klein, Emily A.; Guiou, Michael; Farwell, D. Gregory; Luu, Quang; Lau, Derick H.; Stuart, Kerri; Vaughan, Andrew; Vijayakumar, Srinivasan; Chen, Allen M.

    2011-01-01

    Purpose: To analyze outcomes after radiation therapy for head-and-neck cancer among a cohort of patients with human immunodeficiency virus (HIV). Methods and Materials: The medical records of 12 patients with serologic evidence of HIV who subsequently underwent radiation therapy to a median dose of 68 Gy (range, 64-72 Gy) for newly diagnosed squamous cell carcinoma of the head and neck were reviewed. Six patients (50%) received concurrent chemotherapy. Intensity-modulated radiotherapy was used in 6 cases (50%). All patients had a Karnofsky performance status of 80 or 90. Nine patients (75%) were receiving antiretroviral therapies at the time of treatment, and the median CD4 count was 460 (range, 266-800). Toxicity was graded according to the Radiation Therapy Oncology Group / European Organization for the Treatment of Cancer toxicity criteria. Results: The 3-year estimates of overall survival and local-regional control were 78% and 92%, respectively. Acute Grade 3+ toxicity occurred in 7 patients (58%), the most common being confluent mucositis (5 patients) and moist skin desquamation (4 patients). Two patients experienced greater than 10% weight loss, and none experienced more than 15% weight loss from baseline. Five patients (42%) experienced treatment breaks in excess of 10 cumulative days, although none required hospitalization. There were no treatment-related fatalities. Conclusions: Radiation therapy for head-and-neck cancer seems to be relatively well tolerated among appropriately selected patients with HIV. The observed rates of toxicity were comparable to historical controls without HIV.

  13. Rapidly re-computable EEG (electroencephalography) forward models for realistic head shapes

    SciTech Connect (OSTI)

    Ermer, J. J.; Mosher, J. C.; Baillet, S.; Leahy, R. M.

    2001-01-01

    Solution of the EEG source localization (inverse) problem utilizing model-based methods typically requires a significant number of forward model evaluations. For subspace based inverse methods like MUSIC [6], the total number of forward model evaluations can often approach an order of 10{sup 3} or 10{sup 4}. Techniques based on least-squares minimization may require significantly more evaluations. The observed set of measurements over an M-sensor array is often expressed as a linear forward spatio-temporal model of the form: F = GQ + N (1) where the observed forward field F (M-sensors x N-time samples) can be expressed in terms of the forward model G, a set of dipole moment(s) Q (3xP-dipoles x N-time samples) and additive noise N. Because of their simplicity, ease of computation, and relatively good accuracy, multi-layer spherical models [7] (or fast approximations described in [1], [7]) have traditionally been the 'forward model of choice' for approximating the human head. However, approximation of the human head via a spherical model does have several key drawbacks. By its very shape, the use of a spherical model distorts the true distribution of passive currents in the skull cavity. Spherical models also require that the sensor positions be projected onto the fitted sphere (Fig. 1), resulting in a distortion of the true sensor-dipole spatial geometry (and ultimately the computed surface potential). The use of a single 'best-fitted' sphere has the added drawback of incomplete coverage of the inner skull region, often ignoring areas such as the frontal cortex. In practice, this problem is typically countered by fitting additional sphere(s) to those region(s) not covered by the primary sphere. The use of these additional spheres results in added complication to the forward model. Using high-resolution spatial information obtained via X-ray CT or MR imaging, a realistic head model can be formed by tessellating the head into a set of contiguous regions (typically the scalp, outer skull, and inner skull surfaces). Since accurate in vivo determination of internal conductivities is currently not currently possible, the head is typically assumed to consist of a set of contiguous isotropic regions, each with constant conductivity.

  14. Status of RHIC head-on beam-beam compensation project

    SciTech Connect (OSTI)

    Fischer, W.; Anerella, M.; Beebe, E.; Bruno, D.; Gassner, D.M.; Gu, X.; Gupta, R.C.; Hock, J.; Jain, A.K.; Lambiase, R.; Liu, C.; Luo, Y.; Mapes, M.; Montag, C.; Oerter, B.; Okamura, M.; Pikin, A.I.; Raparia, D.; Tan, Y.; Than, R.; Thieberger, P.; Tuozzolo, J.; Zhang, W.

    2011-03-28

    Two electron lenses are under construction for RHIC to partially compensate the head-on beam-beam effect in order to increase both the peak and average luminosities. The final design of the overall system is reported as well as the status of the component design, acquisition, and manufacturing. An overview of the RHIC head-on beam-beam compensation project is given in [1], and more details in [2]. With 2 head-on beam-beam interactions in IP6 and IP8, a third interaction with a low-energy electron beam is added near IP10 to partially compensate the the head-on beam-beam effect. Two electron lenses are under construction, one for each ring. Both will be located in a region common to both beams, but each lens will act only on one beam. With head-on beam-beam compensation up to a factor of two improvement in luminosity is expected together with a polarized source upgrade. The current RHIC polarized proton performance is documented in Ref. [4]. An electron lens (Fig. 1) consists of an DC electron gun, warm solenoids to focus the electron beam during transport, a superconducting main solenoid in which the interaction with the proton beam occurs, steering magnets, a collector, and instrumentation. The main developments in the last year are given below. The experimental program for polarized program at 100 GeV was expected to be finished by the time the electron lenses are commissioned. However, decadal plans by the RHIC experiments STAR and PHENIX show a continuing interest at both 100 GeV and 250 GeV, and a larger proton beam size has been accommodated in the design (Tab. 1). Over the last year beam and lattice parameters were optimized, and RHIC proton lattices are under development for optimized electron lens performance. The effect of the electron lens magnetic structure on the proton beam was evaluated, and found to be correctable. Experiments were done in RHIC and the Tevatron.

  15. Heading 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-1642 Unlimited Release Printed June 2001 LIST/BMI Turbines Instrumentation and Infrastructure Perry L. Jones, Herbert J. Sutherland, and Byron A. Neal Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by

  16. Soft Landing of Mass-Selected Gold Clusters: Influence of Ion and Ligand on Charge Retention and Reactivity

    SciTech Connect (OSTI)

    Johnson, Grant E.; Laskin, Julia

    2015-02-01

    Herein, we employ a combination of reduction synthesis in solution, soft landing of mass-selected precursor and product ions, and in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) to examine the influence of ion and the length of diphosphine ligands on the charge retention and reactivity of ligated gold clusters deposited onto self-assembled monolayer surfaces (SAMs). Product ions (Au10L42+, (10,4)2+, L = 1,3-bis(diphenyl-phosphino)propane, DPPP) were prepared through in-source collision induced dissociation (CID) and precursor ions [(8,4)2+, L = 1,6-bis(diphenylphosphino)hexane, DPPH] were synthesized in solution for comparison to (11,5)3+ precursor ions ligated with DPPP investigated previously (ACS Nano 2012, 6, 573 and J. Phys. Chem. C. 2012, 116, 24977). Similar to (11,5)3+ precursor ions, the (10,4)2+ product ions are shown to retain charge on 1H,1H,2H,2H-perfluorodecanethiol monolayers (FSAMs). Additional abundant peaks at higher m/z indicative of reactivity are observed in the TOF-SIMS spectrum of (10,4)2+ product ions that are not seen for (11,5)3+ precursor ions. The abundance of (10,4)2+ on 16-mercaptohexadecanoic acid (COOH-SAMs) is demonstrated to be lower than on FSAMs, consistent with partial reduction of charge. The (10,4)2+ product ion on 1-dodecanethiol (HSAMs) exhibits peaks similar to those seen on the COOH-SAM. On the HSAM, higher m/z peaks indicative of reactivity are observed similar to those on the FSAM. The (8,4)2+ DPPH precursor ions are shown to retain charge on FSAMs similar to (11,5)3+ precursor ions prepared with DPPP. An additional peak corresponding to attachment of one gold atom to (8,4)2+ is observed at higher m/z for DPPH-ligated clusters. On the COOH-SAM, (8,4)2+ is less abundant than on the FSAM consistent with partial neutralization. The results indicate that although retention of charge by product ions generated by CID is similar to precursor ions their reactivity during analysis with SIMS is different resulting in the formation of peaks corresponding to reaction products. The length of the ligand exerts only a minor influence on the charge retention and reactivity of gold clusters. Based on the observed reactivity of (10,4)2+ it is anticipated that in-source CID will be increasingly applied for the preparation of a distribution of product ions, including undercoordinated and reactive species, for soft landing onto surfaces.

  17. Inhibition of Hsp27 Radiosensitizes Head-and-Neck Cancer by Modulating Deoxyribonucleic Acid Repair

    SciTech Connect (OSTI)

    Guttmann, David M.; Hart, Lori; Du, Kevin; Seletsky, Andrew; Koumenis, Constantinos

    2013-09-01

    Purpose: To present a novel method of tumor radiosensitization through Hsp27 knockdown using locked nucleic acid (LNA) and to investigate the role of Hsp27 in DNA double strand break (DSB) repair. Methods and Materials: Clonogenic survival assays, immunoblotting, the proximity ligation assay, and ?H2AX foci analysis were conducted in SQ20B and FaDu human head-and-neck cancer cell lines treated with Hsp27 LNA and Hsp27 short hairpin RNA (shRNA). Additionally, nude mice with FaDu flank tumors were treated with fractionated radiation therapy after pretreatment with Hsp27 LNA and monitored for tumor growth. Results: Hsp27 LNA and Hsp27 shRNA radiosensitized head-and-neck cancer cell lines in an Hsp27-dependent manner. Ataxia-Telangectasia Mutated-mediated DNA repair signaling was impaired in irradiated cells with Hsp27 knockdown. ATM kinase inhibition abrogated the radiosensitizing effect of Hsp27. Furthermore, Hsp27 LNA and shRNA both attenuated DNA repair kinetics after radiation, and Hsp27 was found to colocalize with ATM in both untreated and irradiated cells. Last, combined radiation and Hsp27 LNA treatment in tumor xenografts in nude mice suppressed tumor growth compared with either treatment alone. Conclusions: These results support a radiosensitizing property of Hsp27 LNA in vitro and in vivo, implicate Hsp27 in double strand break repair, and suggest that Hsp27 LNA might eventually serve as an effective clinical agent in the radiotherapy of head-and-neck cancer.

  18. Tobacco Smoking During Radiation Therapy for Head-and-Neck Cancer Is Associated With Unfavorable Outcome

    SciTech Connect (OSTI)

    Chen, Allen M.; Chen, Leon M.; Vaughan, Andrew; Sreeraman, Radhika; Farwell, D. Gregory; Luu, Quang; Lau, Derick H.; Stuart, Kerri; Purdy, James A.; Vijayakumar, Srinivasan

    2011-02-01

    Purpose: To evaluate the effect of continued cigarette smoking among patients undergoing radiation therapy for head-and-neck cancer by comparing the clinical outcomes among active smokers and quitters. Methods and Materials: A review of medical records identified 101 patients with newly diagnosed squamous cell carcinoma of the head and neck who continued to smoke during radiation therapy. Each active smoker was matched to a control patient who had quit smoking before initiation of radiation therapy. Matching was based on tobacco history (pack-years), primary site, age, sex, Karnofsky Performance Status, disease stage, radiation dose, chemotherapy use, year of treatment, and whether surgical resection was performed. Outcomes were compared by use of Kaplan-Meier analysis. Normal tissue effects were graded according to the Radiation Therapy Oncology Group/European Organization for the Treatment of Cancer toxicity criteria. Results: With a median follow-up of 49 months, active smokers had significantly inferior 5-year overall survival (23% vs. 55%), locoregional control (58% vs. 69%), and disease-free survival (42% vs. 65%) compared with the former smokers who had quit before radiation therapy (p < 0.05 for all). These differences remained statistically significant when patients treated by postoperative or definitive radiation therapy were analyzed separately. The incidence of Grade 3 or greater late complications was also significantly increased among active smokers compared with former smokers (49% vs. 31%, p = 0.01). Conclusions: Tobacco smoking during radiation therapy for head-and-neck cancer is associated with unfavorable outcomes. Further studies analyzing the biologic and molecular reasons underlying these differences are planned.

  19. Simulations of Head-On Beam-Beam Compensation at RHIC and LHC

    SciTech Connect (OSTI)

    Valishev, A.; /Fermilab

    2010-05-19

    Electron lenses are proposed as a way to mitigate head-on beam-beam effects for RHIC and LHC upgrades. An extensive effort was put together within the US LARP in order to develop numerical simulations of beam-beam effects in the presence of electron lenses. In this report the results of numerical beam-beam simulations for RHIC and LHC are presented. The effect of electron lenses is demonstrated and sensitivity of beam-beam compensation to machine parameters is discussed.

  20. Read/write head for a magnetic tape device having grooves for reducing tape floating

    DOE Patents [OSTI]

    Aoki, Kenji (Kawasaki, JP)

    2005-08-09

    A read/write head for a magnetic tape includes an elongated chip assembly and a tape running surface formed in the longitudinal direction of the chip assembly. A pair of substantially spaced parallel read/write gap lines for supporting read/write elements extend longitudinally along the tape running surface of the chip assembly. Also, at least one groove is formed on the tape running surface on both sides of each of the read/write gap lines and extends substantially parallel to the read/write gap lines.

  1. Head of EM to Kick Off Congressional Nuclear Cleanup Caucus | Department of

    Energy Savers [EERE]

    Energy to Kick Off Congressional Nuclear Cleanup Caucus Head of EM to Kick Off Congressional Nuclear Cleanup Caucus April 22, 2013 - 12:00pm Addthis WASHINGTON, D.C. - EM Senior Advisor Dave Huizenga will provide an overview of EM's proposed fiscal year 2014 budget Thursday in the first of six briefings for the 19th annual U.S. House Nuclear Cleanup Caucus. Huizenga rolled out the $5.622 billion budget request earlier this month. The proposal, which requires approval by Congress, enables EM

  2. Selective evaporation of focusing fluid in two-fluid hydrodynamic print head.

    SciTech Connect (OSTI)

    Keicher, David M.; Cook, Adam W.

    2014-09-01

    The work performed in this project has demonstrated the feasibility to use hydrodynamic focusing of two fluid steams to create a novel micro printing technology for electronics and other high performance applications. Initial efforts focused solely on selective evaporation of the sheath fluid from print stream provided insight in developing a unique print head geometry allowing excess sheath fluid to be separated from the print flow stream for recycling/reuse. Fluid flow models suggest that more than 81 percent of the sheath fluid can be removed without affecting the print stream. Further development and optimization is required to demonstrate this capability in operation. Print results using two-fluid hydrodynamic focusing yielded a 30 micrometers wide by 0.5 micrometers tall line that suggests that the cross-section of the printed feature from the print head was approximately 2 micrometers in diameter. Printing results also demonstrated that complete removal of the sheath fluid is not necessary for all material systems. The two-fluid printing technology could enable printing of insulated conductors and clad optical interconnects. Further development of this concept should be pursued.

  3. Proceedings of the IAEA specialists` meeting on cracking in LWR RPV head penetrations

    SciTech Connect (OSTI)

    Pugh, C.E.; Raney, S.J.

    1996-07-01

    This report contains 17 papers that were presented in four sessions at the IAEA Specialists` meeting on Cracking in LWR RPV Head Penetrations held at ASTM Headquarters in Philadelphia on May 2-3, 1995. The papers are compiled here in the order that presentations were made in the sessions, and they relate to operational observations, inspection techniques, analytical modeling, and regulatory control. The goal of the meeting was to allow international experts to review experience in the field of ensuring adequate performance of reactor pressure vessel (RPV) heads and penetrations. The emphasis was to allow a better understanding of RPV material behavior, to provide guidance supporting reliability and adequate performance, and to assist in defining directions for further investigations. The international nature of the meeting is illustrated by the fact that papers were presented by researchers from 10 countries. There were technical experts present form other countries who participated in discussions of the results presented. This present document incorporates the final version of the papers as received from the authors. The final chapter includes conclusions and recommendations. Individual papers have been cataloged separately.

  4. Optimizing the electron beam parameters for head-on beam-beam compensation in RHIC

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.; Pikin, A.; Gu, X.

    2011-03-28

    Head-on beam-beam compensation is adopted to compensate the large beam-beam tune spread from the protonproton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). Two e-lenses are being built and to be in stalled near IP10 in the end of 2011. In this article we perform numeric simulation to investigate the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse profile, size, current, offset and random errors in them. In this article we studied the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse shape, size, current, offset and their random errors. From the study, we require that the electron beam size can not be smaller than the proton beam's. And the random noise in the electron current should be better than 0.1%. The offset of electron beam w.r.t. the proton beam center is crucial to head-on beam-beam compensation. Its random errors should be below {+-}8{micro}m.

  5. Bottom head to shell junction assembly for a boiling water nuclear reactor

    DOE Patents [OSTI]

    Fife, Alex Blair (San Jose, CA); Ballas, Gary J. (San Jose, CA)

    1998-01-01

    A bottom head to shell junction assembly which, in one embodiment, includes an annular forging having an integrally formed pump deck and shroud support is described. In the one embodiment, the annular forging also includes a top, cylindrical shaped end configured to be welded to one end of the pressure vessel cylindrical shell and a bottom, conical shaped end configured to be welded to the disk shaped bottom head. Reactor internal pump nozzles also are integrally formed in the annular forging. The nozzles do not include any internal or external projections. Stubs are formed in each nozzle opening to facilitate welding a pump housing to the forging. Also, an upper portion of each nozzle opening is configured to receive a portion of a diffuser coupled to a pump shaft which extends through the nozzle opening. Diffuser openings are formed in the integral pump deck to provide additional support for the pump impellers. The diffuser opening is sized so that a pump impeller can extend at least partially therethrough. The pump impeller is connected to the pump shaft which extends through the nozzle opening.

  6. Bottom head to shell junction assembly for a boiling water nuclear reactor

    DOE Patents [OSTI]

    Fife, A.B.; Ballas, G.J.

    1998-02-24

    A bottom head to shell junction assembly which, in one embodiment, includes an annular forging having an integrally formed pump deck and shroud support is described. In the one embodiment, the annular forging also includes a top, cylindrical shaped end configured to be welded to one end of the pressure vessel cylindrical shell and a bottom, conical shaped end configured to be welded to the disk shaped bottom head. Reactor internal pump nozzles also are integrally formed in the annular forging. The nozzles do not include any internal or external projections. Stubs are formed in each nozzle opening to facilitate welding a pump housing to the forging. Also, an upper portion of each nozzle opening is configured to receive a portion of a diffuser coupled to a pump shaft which extends through the nozzle opening. Diffuser openings are formed in the integral pump deck to provide additional support for the pump impellers. The diffuser opening is sized so that a pump impeller can extend at least partially therethrough. The pump impeller is connected to the pump shaft which extends through the nozzle opening. 5 figs.

  7. Observations of supra-arcade fans: instabilities at the head of reconnection jets

    SciTech Connect (OSTI)

    Innes, D. E.; Guo, L.-J.; Schmit, D.; Bhattacharjee, A.; Huang, Y.-M.

    2014-11-20

    Supra-arcade fans are bright, irregular regions of emission that develop during eruptive flares above flare arcades. The underlying flare arcades are thought to be a consequence of magnetic reconnection along a current sheet in the corona. At the same time, theory predicts plasma jets from the reconnection sites which are extremely difficult to observe directly because of their low densities. It has been suggested that the dark supra-arcade downflows (SADs) seen falling through supra-arcade fans may be low-density jet plasma. The head of a low-density jet directed toward higher-density plasma would be Rayleigh-Taylor unstable, and lead to the development of rapidly growing low- and high-density fingers along the interface. Using Solar Dynamics Observatory/Atmospheric Imaging Assembly 131 images, we show details of SADs seen from three different orientations with respect to the flare arcade and current sheet, and highlight features that have been previously unexplained, such as the splitting of SADs at their heads, but are a natural consequence of instabilities above the arcade. Comparison with three-dimensional magnetohydrodynamic simulations suggests that SADs are the result of secondary instabilities of the Rayleigh-Taylor type in the exhaust of reconnection jets.

  8. Effects of radio transmitters on the behavior of Red-headed Woodpeckers.

    SciTech Connect (OSTI)

    Vukovich, Mark; Kilgo, John, C.

    2009-05-01

    ABSTRACT. Previous studies have revealed that radio-transmitters may affect bird behaviors, including feeding rates, foraging behavior, vigilance, and preening behavior. In addition, depending on the method of attachment, transmitters can potentially affect the ability of cavity-nesting birds to use cavities. Our objective was to evaluate effects of transmitters on the behavior of and use of cavities byRed-headedWoodpeckers (Melanerpes erythrocephalus). Using backpack harnesses, we attached 2.1-g transmitter packages that averaged 3.1% of body weight (range = 2.53.6%) to Red-headed Woodpeckers. We observed both radio-tagged (N = 23) and nonradio-tagged (N = 28) woodpeckers and determined the percentage of time spent engaged in each of five behaviors: flight, foraging, perching, preening, and territorial behavior. We found no difference between the two groups in the percentage of time engaged in each behavior. In addition, we found that transmitters had no apparent effect on use of cavities for roosting by radio-tagged woodpeckers (N = 25).We conclude that backpack transmitters weighing less than 3.6% of body weight had no impact on either their behavior or their ability to use cavities.

  9. SU-E-T-603: Analysis of Optical Tracked Head Inter-Fraction Movements Within Masks to Access Intracranial Immobilization Techniques in Proton Therapy

    SciTech Connect (OSTI)

    Hsi, W; Zeidan, O

    2014-06-01

    Purpose: We present a quantitative methodology utilizing an optical tracking system for monitoring head inter-fraction movements within brain masks to assess the effectiveness of two intracranial immobilization techniques. Methods and Materials: A 3-point-tracking method was developed to measure the mask location for a treatment field at each fraction. Measured displacement of mask location to its location at first fraction is equivalent to the head movement within the mask. Head movements for each of treatment fields were measured over about 10 fractions at each patient for seven patients; five treated in supine and two treated in prone. The Q-fix Base-of-Skull head frame was used in supine while the CIVCO uni-frame baseplate was used in prone. Displacements of recoded couch position of each field post imaging at each fraction were extracted for those seven patients. Standard deviation (S.D.) of head movements and couch displacements was scored for statistical analysis. Results: The accuracy of 3PtTrack method was within 1.0 mm by phantom measurements. Patterns of head movement and couch displacement were similar for patients treated in either supine or prone. In superior-inferior direction, mean value of scored standard deviations over seven patients were 1.6 mm and 3.4 mm for the head movement and the couch displacement, respectively. The result indicated that the head movement combined with a loose fixation between the mask-to-head frame results large couch displacements for each patient, and also large variation between patients. However, the head movement is the main cause for the couch displacement with similar magnitude of around 1.0 mm in anterior-posterior and lateral directions. Conclusions: Optical-tracking methodology independently quantifying head movements could improve immobilization devices by correctly acting on causes for head motions within mask. A confidence in the quality of intracranial immobilization techniques could be more efficient by eliminating the need for frequent imaging.

  10. Long-range and head-on beam-beam compensation studies in RHIC with lessons for the LHC

    SciTech Connect (OSTI)

    Fischer, W.; Luo, Y.; Abreu, N.; Calaga, R.; Montag, C.; Robert-Demolaize, G.; Dorda, U.; Koutchouk, J.-P.; Sterbini, G.; Zimmermann, F.; Kim, H.-J.; Sen, T.; Shiltsev, V.; Valishev, A.; Qiang, J.; Kabel, A.

    2009-01-12

    Long-range as well as head-on beam-beam effects are expected to limit the LHC performance with design parameters. They are also important consideration for the LHC upgrades. To mitigate long-range effects, current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. Electron lenses were proposed for both RHIC and the LHC to reduce the head-on beam-beam effect. We present the experimental long-range beam-beam program at RHIC and report on head-on compensations studies based on simulations.

  11. Long-range and head-on beam-beam compensation studies in RHIC with lessons for the LHC

    SciTech Connect (OSTI)

    Fischer,W.; Luo, Y.; Abreu, N.; Calaga, R.; Montag, C.; Robert-Demolaize, G.; Dorda, U.; Koutchouk, J. -P.; Sterbini, G.; Zimmermann, F.; Kim, H. -J.; Sen, T.; Shiltsev, V.; Valishev, A.; Qiang, J.; Kabel, A.

    2008-11-24

    Long-range as well as head-on beam-beam effects are expected to limit the LHC performance with design parameters. They are also important consideration for the LHC upgrades. To mitigate long-range effects current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. To reduce the head-on beam-beam effect electron lenses were proposed for both RIDC and the LHC. We present the experimental long-range beam-beam program at RHIC and report on head-on compensations studies based on simulations.

  12. Long-Range And Head-On Beam-Beam Compensation Studies in RHIC With Lessons for the LHC

    SciTech Connect (OSTI)

    Fischer, W.; Luo, Y.; Abreu, N.; Calaga, R.; Montag, C.; Robert-Demolaize, G.; Dorda, U.; Koutchouk, J.P.; Sterbini, G.; Zimmermann, F.; Kim, H.J.; Sen, T.; Shiltsev, V.; Valishev, A.; Qiang, J.; Kabel, A.; /SLAC

    2011-11-28

    Long-range as well as head-on beam-beam effects are expected to limit the LHC performance with design parameters. They are are also important consideration for the LHC upgrades. To mitigate long-range effects, current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. Electron lenses were proposed for both RHIC and the LHC to reduce the head-on beam-beam effect. We present the experimental long-range beam-beam program at RHIC and report on head-on compensations studies based on simulations.

  13. Retention of prolyl hydroxylase PHD2 in the cytoplasm prevents PHD2-induced anchorage-independent carcinoma cell growth

    SciTech Connect (OSTI)

    Jokilehto, Terhi; Turku Graduate School of Biomedical Sciences, Turku ; Hoegel, Heidi; Heikkinen, Pekka; Turku Graduate School of Biomedical Sciences, Turku ; Rantanen, Krista; Elenius, Klaus; Department of Medical Biochemistry and Genetics, University of Turku and Turku University Hospital, Turku ; Sundstroem, Jari; Jaakkola, Panu M.; Department of Oncology and Radiotherapy, University of Turku and Turku University Hospital, Turku

    2010-04-15

    Cellular oxygen tension is sensed by a family of prolyl hydroxylases (PHD1-3) that regulate the degradation of hypoxia-inducible factors (HIF-1{alpha} and -2{alpha}). The PHD2 isoform is considered as the main downregulator of HIF in normoxia. Our previous results have shown that nuclear translocation of PHD2 associates with poorly differentiated tumor phenotype implying that nuclear PHD2 expression is advantageous for tumor growth. Here we show that a pool of PHD2 is shuttled between the nucleus and the cytoplasm. In line with this, accumulation of wild type PHD2 in the nucleus was detected in human colon adenocarcinomas and in cultured carcinoma cells. The PHD2 isoforms showing high nuclear expression increased anchorage-independent carcinoma cell growth. However, retention of PHD2 in the cytoplasm inhibited the anchorage-independent cell growth. A region that inhibits the nuclear localization of PHD2 was identified and the deletion of the region promoted anchorage-independent growth of carcinoma cells. Finally, the cytoplasmic PHD2, as compared with the nuclear PHD2, less efficiently downregulated HIF expression. Forced HIF-1{alpha} or -2{alpha} expression decreased and attenuation of HIF expression increased the anchorage-independent cell growth. However, hydroxylase-inactivating mutations in PHD2 had no effect on cell growth. The data imply that nuclear PHD2 localization promotes malignant cancer phenotype.

  14. Head-on collisions of binary white dwarf-neutron stars: Simulations in full general relativity

    SciTech Connect (OSTI)

    Paschalidis, Vasileios; Etienne, Zachariah; Liu, Yuk Tung; Shapiro, Stuart L.

    2011-03-15

    We simulate head-on collisions from rest at large separation of binary white dwarf-neutron stars (WDNSs) in full general relativity. Our study serves as a prelude to our analysis of the circular binary WDNS problem. We focus on compact binaries whose total mass exceeds the maximum mass that a cold-degenerate star can support, and our goal is to determine the fate of such systems. A fully general relativistic hydrodynamic computation of a realistic WDNS head-on collision is prohibitive due to the large range of dynamical time scales and length scales involved. For this reason, we construct an equation of state (EOS) which captures the main physical features of neutron stars (NSs) while, at the same time, scales down the size of white dwarfs (WDs). We call these scaled-down WD models 'pseudo-WDs (pWDs)'. Using pWDs, we can study these systems via a sequence of simulations where the size of the pWD gradually increases toward the realistic case. We perform two sets of simulations; One set studies the effects of the NS mass on the final outcome, when the pWD is kept fixed. The other set studies the effect of the pWD compaction on the final outcome, when the pWD mass and the NS are kept fixed. All simulations show that after the collision, 14%-18% of the initial total rest mass escapes to infinity. All remnant masses still exceed the maximum rest mass that our cold EOS can support (1.92M{sub {center_dot}}), but no case leads to prompt collapse to a black hole. This outcome arises because the final configurations are hot. All cases settle into spherical, quasiequilibrium configurations consisting of a cold NS core surrounded by a hot mantle, resembling Thorne-Zytkow objects. Extrapolating our results to realistic WD compactions, we predict that the likely outcome of a head-on collision of a realistic, massive WDNS system will be the formation of a quasiequilibrium Thorne-Zytkow-like object.

  15. Postradiation Metabolic Tumor Volume Predicts Outcome in Head-and-Neck Cancer

    SciTech Connect (OSTI)

    Murphy, James D.; La, Trang H.; Chu, Karen; Quon, Andrew; Fischbein, Nancy J.; Maxim, Peter G.; Graves, Edward E.; Loo, Billy W.; Le, Quynh-Thu

    2011-06-01

    Purpose: To explore the prognostic value of metabolic tumor volume measured on postradiation {sup 18}F-fluorodeoxyglucose positron emission tomography (PET) imaging in patients with head-and-neck cancer. Methods and Materials: Forty-seven patients with head-and-neck cancer who received pretreatment and posttreatment PET/computed tomography (CT) imaging along with definitive chemoradiotherapy were included in this study. The PET/CT parameters evaluated include the maximum standardized uptake value, metabolic tumor volume (MTV{sub 2.0}-MTV{sub 4.0}; where MTV{sub 2.0} refers to the volume above a standardized uptake value threshold of 2.0), and integrated tumor volume. Kaplan-Meier and Cox regression models were used to test for association between PET endpoints and disease-free survival and overall survival. Results: Multiple postradiation PET endpoints correlated significantly with outcome; however, the most robust predictor of disease progression and death was MTV{sub 2.0}. An increase in MTV{sub 2.0} of 21cm{sup 3} (difference between 75th and 25th percentiles) was associated with an increased risk of disease progression (hazard ratio [HR]= 2.5, p = 0.0001) and death (HR = 2.0, p = 0.003). In patients with nonnasopharyngeal carcinoma histology (n = 34), MTV{sub 2.0} <18 cm{sup 3} and MTV{sub 2.0} {>=}18 cm{sup 3} yielded 2-year disease-free survival rates of 100% and 63%, respectively (p = 0.006) and 2-year overall survival rates of 100% and 81%, respectively (p = 0.009). There was no correlation between MTV{sub 2.0} and disease-free survival or overall survival with nasopharyngeal carcinoma histology (n = 13). On multivariate analysis, only postradiation MTV{sub 2.0} was predictive of disease-free survival (HR = 2.47, p = 0.0001) and overall survival (HR = 1.98, p = 0.003). Conclusions: Postradiation metabolic tumor volume is an adverse prognostic factor in head-and-neck cancer. Biomarkers such as MTV are important for risk stratification and will be valuable in the future with risk-adapted therapies.

  16. An In-situ materials analysis particle probe (MAPP) diagnostic to study particle density control and hydrogenic fuel retention in NSTX

    SciTech Connect (OSTI)

    Allain, Jean-Paul

    2014-09-05

    A new materials analysis particle probe (MAPP) was designed, constructed and tested to develop understanding of particle control and hydrogenic fuel retention in lithium-based plasma-facing surfaces in NSTX. The novel feature of MAPP is an in-situ tool to probe the divertor NSTX floor during LLD and lithium-coating shots with subsequent transport to a post-exposure in-vacuo surface analysis chamber to measure D retention. In addition, the implications of a lithiated graphite-dominated plasma-surface environment in NSTX on LLD performance, operation and ultimately hydrogenic pumping and particle control capability are investigated in this proposal. MAPP will be an invaluable tool for erosion/redeposition simulation code validation.

  17. Head-on-collision of modulated dust acoustic waves in strongly coupled dusty plasma

    SciTech Connect (OSTI)

    El-Labany, S. K.; El-Depsy, A.; Zedan, N. A.; El-Taibany, W. F.; El-Shamy, E. F.

    2012-10-15

    The derivative expansion perturbation method is applied to a strongly coupled dusty plasma system consisting of negatively charged dust grains, electrons, and ions. The basic equations are reduced to a nonlinear Schroedinger type equation appropriate for describing the modulated dust acoustic (DA) waves. We have examined the modulation (in) stability and the dependence of the system physical parameters (angular frequency and group velocity) on the polarization force variation. Finally, the extended Poincare-Lighthill-Kuo technique is employed to investigate the head-on collision (HoC) between two DA dark solitons. The analytical phase shifts and the trajectories of these dark solitons after the collision are derived. The numerical illustrations show that the polarization effect has strong influence on the nature of the phase shifts and the trajectories of the two DA dark solitons after collision.

  18. Clinical experience transitioning from IMRT to VMAT for head and neck cancer

    SciTech Connect (OSTI)

    Studenski, Matthew T.; Bar-Ad, Voichita; Siglin, Joshua; Cognetti, David; Curry, Joseph; Tuluc, Madalina; Harrison, Amy S.

    2013-07-01

    To quantify clinical differences for volumetric modulated arc therapy (VMAT) versus intensity modulated radiation therapy (IMRT) in terms of dosimetric endpoints and planning and delivery time, twenty head and neck cancer patients have been considered for VMAT using Nucletron Oncentra MasterPlan delivered via an Elekta linear accelerator. Differences in planning time between IMRT and VMAT were estimated accounting for both optimization and calculation. The average delivery time per patient was obtained retrospectively using the record and verify software. For the dosimetric comparison, all contoured organs at risk (OARs) and planning target volumes (PTVs) were evaluated. Of the 20 cases considered, 14 had VMAT plans approved. Six VMAT plans were rejected due to unacceptable dose to OARs. In terms of optimization time, there was minimal difference between the two modalities. The dose calculation time was significantly longer for VMAT, 4 minutes per 358 degree arc versus 2 minutes for an entire IMRT plan. The overall delivery time was reduced by 9.2 3.9 minutes for VMAT (51.4 15.6%). For the dosimetric comparison of the 14 clinically acceptable plans, there was almost no statistical difference between the VMAT and IMRT. There was also a reduction in monitor units of approximately 32% from IMRT to VMAT with both modalities demonstrating comparable quality assurance results. VMAT provides comparable coverage of target volumes while sparing OARs for the majority of head and neck cases. In cases where high dose modulation was required for OARs, a clinically acceptable plan was only achievable with IMRT. Due to the long calculation times, VMAT plans can cause delays during planning but marked improvements in delivery time reduce patient treatment times and the risk of intra-fraction motion.

  19. Evaluation of Automatic Atlas-Based Lymph Node Segmentation for Head-and-Neck Cancer

    SciTech Connect (OSTI)

    Stapleford, Liza J.; Lawson, Joshua D.; Perkins, Charles; Edelman, Scott; Davis, Lawrence

    2010-07-01

    Purpose: To evaluate if automatic atlas-based lymph node segmentation (LNS) improves efficiency and decreases inter-observer variability while maintaining accuracy. Methods and Materials: Five physicians with head-and-neck IMRT experience used computed tomography (CT) data from 5 patients to create bilateral neck clinical target volumes covering specified nodal levels. A second contour set was automatically generated using a commercially available atlas. Physicians modified the automatic contours to make them acceptable for treatment planning. To assess contour variability, the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm was used to take collections of contours and calculate a probabilistic estimate of the 'true' segmentation. Differences between the manual, automatic, and automatic-modified (AM) contours were analyzed using multiple metrics. Results: Compared with the 'true' segmentation created from manual contours, the automatic contours had a high degree of accuracy, with sensitivity, Dice similarity coefficient, and mean/max surface disagreement values comparable to the average manual contour (86%, 76%, 3.3/17.4 mm automatic vs. 73%, 79%, 2.8/17 mm manual). The AM group was more consistent than the manual group for multiple metrics, most notably reducing the range of contour volume (106-430 mL manual vs. 176-347 mL AM) and percent false positivity (1-37% manual vs. 1-7% AM). Average contouring time savings with the automatic segmentation was 11.5 min per patient, a 35% reduction. Conclusions: Using the STAPLE algorithm to generate 'true' contours from multiple physician contours, we demonstrated that, in comparison with manual segmentation, atlas-based automatic LNS for head-and-neck cancer is accurate, efficient, and reduces interobserver variability.

  20. Factors affecting breeding season survival of Red-Headed Woodpeckers in South Carolina.

    SciTech Connect (OSTI)

    Kilgo, John, C.; Vukovich, Mark

    2011-11-18

    Red-headed woodpecker (Melanerpes erythrocephalus) populations have declined in the United States and Canada over the past 40 years. However, few demographic studies have been published on the species and none have addressed adult survival. During 2006-2007, we estimated survival probabilities of 80 radio-tagged red-headed woodpeckers during the breeding season in mature loblolly pine (Pinus taeda) forests in South Carolina. We used known-fate models in Program MARK to estimate survival within and between years and to evaluate the effects of foliar cover (number of available cover patches), snag density treatment (high density vs. low density), and sex and age of woodpeckers. Weekly survival probabilities followed a quadratic time trend, being lowest during mid-summer, which coincided with the late nestling and fledgling period. Avian predation, particularly by Cooper's (Accipiter cooperii) and sharp-shinned hawks (A. striatus), accounted for 85% of all mortalities. Our best-supported model estimated an 18-week breeding season survival probability of 0.72 (95% CI = 0.54-0.85) and indicated that the number of cover patches interacted with sex of woodpeckers to affect survival; females with few available cover patches had a lower probability of survival than either males or females with more cover patches. At the median number of cover patches available (n = 6), breeding season survival of females was 0.82 (95% CI = 0.54-0.94) and of males was 0.60 (95% CI = 0.42-0.76). The number of cover patches available to woodpeckers appeared in all 3 of our top models predicting weekly survival, providing further evidence that woodpecker survival was positively associated with availability of cover. Woodpecker survival was not associated with snag density. Our results suggest that protection of {ge}0.7 cover patches per ha during vegetation control activities in mature pine forests will benefit survival of this Partners In Flight Watch List species.

  1. SU-E-T-168: Evaluation of Normal Tissue Damage in Head and Neck Cancer Treatments

    SciTech Connect (OSTI)

    Ai, H; Zhang, H

    2014-06-01

    Purpose: To evaluate normal tissue toxicity in patients with head and neck cancer by calculating average survival fraction (SF) and equivalent uniform dose (EUD) for normal tissue cells. Methods: 20 patients with head and neck cancer were included in this study. IMRT plans were generated using EclipseTM treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The average SF for three different normal tissue cells of each concerned structure can be calculated from dose spectrum acquired from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant that represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Finally, EUDs for three types of normal tissue of each structure were calculated from average SF. Results: The EUDs of the brainstem, spinal cord, parotid glands, brachial plexus and etc were calculated. Our analysis indicated that the brainstem can absorb as much as 14.3% of prescription dose to the tumor if the cell line is radiosensitive. In addition, as much as 16.1% and 18.3% of prescription dose were absorbed by the brainstem for moderately radiosensitive and radio-resistant cells, respectively. For the spinal cord, the EUDs reached up to 27.6%, 35.0% and 42.9% of prescribed dose for the three types of radiosensitivities respectively. Three types of normal cells for parotid glands can get up to 65.6%, 71.2% and 78.4% of prescription dose, respectively. The maximum EUDs of brachial plexsus were calculated as 75.4%, 76.4% and 76.7% of prescription for three types of normal cell lines. Conclusion: The results indicated that EUD can be used to quantify and evaluate the radiation damage to surrounding normal tissues. Large variation of normal tissue EUDs may come from variation of target volumes and radiation beam orientations among the patients.

  2. Detailed Analysis of a Late-Phase Core-Melt Progression for the Evaluation of In-vessel Corium Retention

    SciTech Connect (OSTI)

    J. L. Rempe; R. J. Park; S. B. Kim; K. Y. Suh; F. B.Cheung

    2006-12-01

    Detailed analyses of a late-phase melt progression in the advanced power reactor (APR)1400 were completed to identify the melt and the thermal-hydraulic states of the in-vessel materials in the reactor vessel lower plenum at the time of reactor vessel failure to evaluate the candidate strategies for an in-vessel corium retention (IVR). Initiating events considered included high-pressure transients of a total loss of feed water (LOFW) and a station blackout (SBO) and low-pressure transients of a 0.0009-m2 small, 0.0093-m2 medium, and 0.0465-m2 large-break loss-of-coolant accident (LOCA) without safety injection. Best-estimate simulations for these low-probability events with conservative accident progression assumptions that lead to reactor vessel failure were performed by using the SCDAP/RELAP5/MOD3.3 computer code. The SCDAP/RELAP5/MOD3.3 results have shown that the pressurizer surge line failed before the reactor vessel failure, which results in a rapid decrease of the in-vessel pressure and a delay of the reactor vessel failure time of ~40 min in the high-pressure sequences of the total LOFW and the SBO transients. In all the sequences, ~80 to 90% of the core material was melted and relocated to the lower plenum of the reactor vessel at the time of reactor vessel failure. The maximum value of the volumetric heat source in the corium pool was estimated as 1.9 to 3.7 MW/m3. The corium temperature was ~2800 to 3400 K at the time of reactor vessel failure. The highest volumetric heat source sequence is predicted for the 0.0465-m2 large-break LOCA without safety injection in the APR1400, because this sequence leads to an early reactor vessel failure.

  3. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix C - Validation Study

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Surveys Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated.

  4. Method to improve cancerous lesion detection sensitivity in a dedicated dual-head scintimammography system

    DOE Patents [OSTI]

    Kieper, Douglas Arthur (Newport News, VA); Majewski, Stanislaw (Yorktown, VA); Welch, Benjamin L. (Hampton, VA)

    2008-10-28

    An improved method for enhancing the contrast between background and lesion areas of a breast undergoing dual-head scintimammographic examination comprising: 1) acquiring a pair of digital images from a pair of small FOV or mini gamma cameras compressing the breast under examination from opposing sides; 2) inverting one of the pair of images to align or co-register with the other of the images to obtain co-registered pixel values; 3) normalizing the pair of images pixel-by-pixel by dividing pixel values from each of the two acquired images and the co-registered image by the average count per pixel in the entire breast area of the corresponding detector; and 4) multiplying the number of counts in each pixel by the value obtained in step 3 to produce a normalization enhanced two dimensional contrast map. This enhanced (increased contrast) contrast map enhances the visibility of minor local increases (uptakes) of activity over the background and therefore improves lesion detection sensitivity, especially of small lesions.

  5. Head-on collision of dust-acoustic shock waves in strongly coupled dusty plasmas

    SciTech Connect (OSTI)

    EL-Shamy, E. F.; Al-Asbali, A. M.

    2014-09-15

    A theoretical investigation is carried out to study the propagation and the head-on collision of dust-acoustic (DA) shock waves in a strongly coupled dusty plasma consisting of negative dust fluid, Maxwellian distributed electrons and ions. Applying the extended PoincarLighthillKuo method, a couple of KortewegdeVriesBurgers equations for describing DA shock waves are derived. This study is a first attempt to deduce the analytical phase shifts of DA shock waves after collision. The impacts of physical parameters such as the kinematic viscosity, the unperturbed electron-to-dust density ratio, parameter determining the effect of polarization force, the ion-to-electron temperature ratio, and the effective dust temperature-to-ion temperature ratio on the structure and the collision of DA shock waves are examined. In addition, the results reveal the increase of the strength and the steepness of DA shock waves as the above mentioned parameters increase, which in turn leads to the increase of the phase shifts of DA shock waves after collision. The present model may be useful to describe the structure and the collision of DA shock waves in space and laboratory dusty plasmas.

  6. Thermal modeling of head disk interface system in heat assisted magnetic recording

    SciTech Connect (OSTI)

    Vemuri, Sesha Hari; Seung Chung, Pil; Jhon, Myung S., E-mail: mj3a@andrew.cmu.edu [Department of Chemical Engineering and Data Storage Systems Center, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States); Min Kim, Hyung [Department of Mechanical System Engineering, Kyonggi University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2014-05-07

    A thorough understanding of the temperature profiles introduced by the heat assisted magnetic recording is required to maintain the hotspot at the desired location on the disk with minimal heat damage to other components. Here, we implement a transient mesoscale modeling methodology termed lattice Boltzmann method (LBM) for phonons (which are primary carriers of energy) in the thermal modeling of the head disk interface (HDI) components, namely, carbon overcoat (COC). The LBM can provide more accurate results compared to conventional Fourier methodology by capturing the nanoscale phenomena due to ballistic heat transfer. We examine the in-plane and out-of-plane heat transfer in the COC via analyzing the temperature profiles with a continuously focused and pulsed laser beam on a moving disk. Larger in-plane hotspot widening is observed in continuously focused laser beam compared to a pulsed laser. A pulsed laser surface develops steeper temperature gradients compared to continuous hotspot. Furthermore, out-of-plane heat transfer from the COC to the media is enhanced with a continuous laser beam then a pulsed laser, while the temperature takes around 140 fs to reach the bottom surface of the COC. Our study can lead to a realistic thermal model describing novel HDI material design criteria for the next generation of hard disk drives with ultra high recording densities.

  7. Method to improve cancerous lesion detection sensitivity in a dedicated dual-head scintimammography system

    DOE Patents [OSTI]

    Kieper, Douglas Arthur (Seattle, WA); Majewski, Stanislaw (Morgantown, WV); Welch, Benjamin L. (Hampton, VA)

    2012-07-03

    An improved method for enhancing the contrast between background and lesion areas of a breast undergoing dual-head scintimammographic examination comprising: 1) acquiring a pair of digital images from a pair of small FOV or mini gamma cameras compressing the breast under examination from opposing sides; 2) inverting one of the pair of images to align or co-register with the other of the images to obtain co-registered pixel values; 3) normalizing the pair of images pixel-by-pixel by dividing pixel values from each of the two acquired images and the co-registered image by the average count per pixel in the entire breast area of the corresponding detector; and 4) multiplying the number of counts in each pixel by the value obtained in step 3 to produce a normalization enhanced two dimensional contrast map. This enhanced (increased contrast) contrast map enhances the visibility of minor local increases (uptakes) of activity over the background and therefore improves lesion detection sensitivity, especially of small lesions.

  8. Weak-strong simulation on head-on beam-beam compensation in the RHIC

    SciTech Connect (OSTI)

    Luo,Y.; Fischer, W.; McIntosh, E.; Robert-Demolaize, G.; Abreu, N.; Beebe-Wang, J.; Montag, C.

    2009-05-04

    In the Relativistic Heavy Ion Collider (RHIC) beams collide in the two interaction points IP6 and IP8. To further increase the bunch intensity above 2 x 10{sup 11} or further reduce the transverse emittance in polarized proton operation, there will not be enough tune space between the current working area [2/3, 7/10] to hold the beam-beam generated tune spread. We proposed a low energy DC electron beam (e-lens) with similar Gaussian transverse profiles to collide with the proton beam at IP10. Early studies have shown that e-lens does reduce the proton-proton beam-beam tune spread. In this article, we carried out numerical simulation to investigate the effects of the head-on beam-beam effect on the proton's colliding beam lifetime and emittance growth. The preliminary results including scans of compensation strength, phase advances between IP8 and IP10, electron beam transverse sizes are presented. In these studies, the particle loss in the multi-particle simulation is used for the comparison between different conditions.

  9. NUCLEAR DATA TARGET ACCURACY REQUIREMENTS FOR MA BURNERS

    SciTech Connect (OSTI)

    G. Palmiotti; M. Salvatores

    2011-06-01

    A nuclear data target accuracy assessment has been carried out for two types of transmuters: a critical sodium fast reactor(SFR) and an accelerator driven system (ADMAB). Results are provided for a 7 group energy structure. Considerations about fuel cycle parameters uncertainties illustrate their dependence from the isotope final densities at end of cycle.

  10. Saving Energy and Reducing Emissions with Fuel-Flexible Burners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude glycerin contains signifcant energy, but its high viscosity at room temperature and ... the fexibility for use with other high-viscosity fuels such as pyrolysis oil or vegetable ...

  11. Clinical, Laboratorial, and Urodynamic Findings of Prostatic Artery Embolization for the Treatment of Urinary Retention Related to Benign Prostatic Hyperplasia. A Prospective Single-Center Pilot Study

    SciTech Connect (OSTI)

    Antunes, Alberto A.; Carnevale, Francisco C. Motta Leal Filho, Joaquim M. da; Yoshinaga, Eduardo M.; Cerri, Luciana M. O.; Baroni, Ronaldo H.; Marcelino, Antonio S. Z.; Cerri, Giovanni G.; Srougi, Miguel

    2013-08-01

    PurposeThis study was designed to describe the clinical, laboratorial, and urodynamic findings of prostatic artery embolization (PAE) in patients with urinary retention due to benign prostatic hyperplasia (BPH).MethodsA prospective study of 11 patients with urinary retention due to BPH was conducted. Patients underwent physical examination, prostate specific antigen (PSA) measurement, transrectal ultrasound, and magnetic resonance imaging. International prostate symptom score (IPSS), quality of life (QoL), and urodynamic testing were used to assess the outcome before and after 1 year.ResultsClinical success was 91 % (10/11 patients) with a mean follow-up of 22.3 months (range, 12-41 months). At the first year follow-up, the mean IPSS score was 2.8 points (p = 0.04), mean QoL was 0.4 points (p = 0.001), mean PSA decreased from 10.1 to 4.3 ng/mL (p = 0.003), maximum urinary flow (Qmax) improved from 4.2 to 10.8 mL/sec (p = 0.009), and detrusor pressure (Pdet) decreased from 85.7 to 51.5 cm H{sub 2}O (p = 0.007). Before PAE, Bladder Outlet Obstruction Index (BOOI) showed values >40 in 100 % of patients. After PAE, 30 % of patients were >40 (obstructed), 40 % were between 20 and 40 (undetermined), and 30 % were <20 (unobstructed). Patients with a BOOI <20 had higher PSA values at 1-day after PAE.ConclusionsClinical and urodynamic parameters improved significantly after PAE in patients with acute urinary retention due to BPH. Total PSA at day 1 after PAE was higher in patients with unobstructed values in pressure flow studies.

  12. Head on collision of multi-solitons in an electron-positron-ion plasma having superthermal electrons

    SciTech Connect (OSTI)

    Roy, Kaushik; Chatterjee, Prasanta Roychoudhury, Rajkumar

    2014-10-15

    The head-on collision and overtaking collision of four solitons in a plasma comprising superthermal electrons, cold ions, and Boltzmann distributed positrons are investigated using the extended Poincare-Lighthill-Kuo (PLK) together with Hirota's method. PLK method yields two separate Korteweg-de Vries (KdV) equations where solitons obtained from any KdV equation move along a direction opposite to that of solitons obtained from the other KdV equation, While Hirota's method gives multi-soliton solution for each KdV equation all of which move along the same direction where the fastest moving soliton eventually overtakes the other ones. We have considered here two soliton solutions obtained from Hirota's method. Phase shifts acquired by each soliton due to both head-on collision and overtaking collision are calculated analytically.

  13. Read/write head having a GMR sensor biased by permanent magnets located between the GMR and the pole shields

    DOE Patents [OSTI]

    Yuan, Samuel W. (San Carlos, CA); Rottmayer, Robert Earl (Fremont, CA); Carey, Matthew J. (San Jose, CA)

    1999-01-01

    A compact read/write head having a biased giant magnetoresistive sensor. Permanent magnet films are placed adjacent to the giant magnetoresistive sensor operating in the current-perpendicular-to the-plane (Cpp) mode and spaced with respect to the sensor by conducting films. These permanent magnet films provide a magnetic bias. The bias field is substantial and fairly uniform across sensor height. Biasing of the giant magnetoresistive sensor provides distinguishable response to the rising and falling edges of a recorded pulse on an adjacent recording medium, improves the linearity of the response, and helps to reduce noise. This read/write head is much simpler to fabricate and pattern and provides an enhanced uniformity of the bias field throughout the sensor.

  14. The effect of head-on beam-beam compensation on the stochastic boundaries and particle diffusion in RHIC.

    SciTech Connect (OSTI)

    Abreu,N.; Beebe-Wang, J.; FischW; Luo, Y.; Robert-Demolaize, G.

    2008-06-23

    To compensate the effects from the head-on beam-beam interactions in the polarized proton operation in the Relativistic Heavy Ion Collider (RHIC), an electron lens (elens) is proposed to collide head-on with the proton beam. We used an extended version of SixTrack for multiparticle beam-beam simulation in order to study the effect of the e-lens on the stochastic boundary and also on diffusion. The stochastic boundary was analyzed using Lyapunov exponents and the diffusion was characterized as the increase in the rms spread of the action. For both studies the simulations were performed with and without the e-lens and with full and partial compensation. Using the simulated values of the diffusion an attempt to calculate the emittance growth rate is presented.

  15. Investigation of Head Burns in Adult Salmonids : Phase 1 : Examination of Fish at Lower Granite Dam, July 2, 1996. Final Report.

    SciTech Connect (OSTI)

    Elston, Ralph

    1996-08-01

    Head burn is a descriptive clinical term used by fishery biologists to describe exfoliation of skin and underlying connective tissue of the jaw and cranial region of salmonids, observed at fish passage facilities on the Columbia and Snake Rivers. The observations are usually made on upstream migrant adult salmon or steelhead. An expert panel, convened in 1996, to evaluate the risk and severity of gas bubble disease (GBD) in the Snake and Columbia River system believed that, while head burns appeared to be distinct from GBD, the relationship between dissolved gas saturation in the rivers and head burns was uncertain.

  16. MEMORANDUM FOR HEADS OF FEDERAL DEPARTMENTS AND AGENCIES FROM: NANCY H. SUTLEY, Chair, Council on Environmental Quality

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 18, 2010 MEMORANDUM FOR HEADS OF FEDERAL DEPARTMENTS AND AGENCIES FROM: NANCY H. SUTLEY, Chair, Council on Environmental Quality SUBJECT: DRAFT NEPA GUIDANCE ON CONSIDERATION OF THE EFFECTS OF CLIMATE CHANGE AND GREENHOUSE GAS EMISSIONS I. INTRODUCTION The Council on Environmental Quality (CEQ) provides this draft guidance memorandum for public consideration and comment on the ways in which Federal agencies can improve their consideration of the effects of greenhouse gas (GHG) emissions

  17. Report on a randomized trial comparing two forms of immobilization of the head for fractionated stereotactic radiotherapy

    SciTech Connect (OSTI)

    Bednarz, Greg; Machtay, Mitchell; Werner-Wasik, Maria; Downes, Beverly; Bogner, Joachim; Hyslop, Terry; Galvin, James; Evans, James; Curran, Walter Jr.; Andrews, David

    2009-01-15

    Fractionated stereotactic radiotherapy (SRT) requires accurate and reproducible immobilization of the patient's head. This randomized study compared the efficacy of two commonly used forms of immobilization used for SRT. Two routinely used methods of immobilization, which differ in their approach to reproduce the head position from day to day, are the Gill-Thomas-Cosman (GTC) frame and the BrainLab thermoplastic mask. The GTC frame fixates on the patient's upper dentition and thus is in direct mechanical contact with the cranium. The BrainLab mask is a two-part masking system custom fitted to the front and back of the patient's head. After patients signed an IRB-approved informed consent form, eligible patients were randomized to either GTC frame or mask for their course of SRT. Patients were treated as per standard procedure; however, prior to each treatment a set of digital kilovolt images (ExacTrac, BrainLabAB, Germany) was taken. These images were fused with reference digitally reconstructed radiographs obtained from treatment planning CT to yield lateral, longitudinal, and vertical deviations of isocenter and head rotations about respective axes. The primary end point of the study was to compare the two systems with respect to mean and standard deviations using the distance to isocenter measure. A total of 84 patients were enrolled (69 patients evaluable with detailed positioning data). A mixed-effect linear regression and two-tiled t test were used to compare the distance measure for both the systems. There was a statistically significant (p<0.001) difference between mean distances for these systems, suggesting that the GTC frame was more accurate. The mean 3D displacement and standard deviations were 3.17+1.95 mm for mask and 2.00+1.04 mm for frame. Both immobilization techniques were highly effective, but the GTC frame was more accurate. To optimize the accuracy of SRT, daily kilovolt image guidance is recommended with either immobilization system.

  18. Lower head creep rupture failure analysis associated with alternative accident sequences of the Three Mile Island Unit 2

    SciTech Connect (OSTI)

    Sang Lung, Chan

    2004-07-01

    The objective of this lower head creep rupture analysis is to assess the current version of MELCOR 1.8.5-RG against SCDAP/RELAP5 MOD 3.3kz. The purpose of this assessment is to investigate the current MELCOR in-vessel core damage progression phenomena including the model for the formation of a molten pool. The model for stratified molten pool natural heat transfer will be included in the next MELCOR release. Presently, MELCOR excludes the gap heat-transfer model for the cooling associated with the narrow gap between the debris and the lower head vessel wall. All these phenomenological models are already treated in SCDAP/RELAP5 using the COUPLE code to model the heat transfer of the relocated debris with the lower head based on a two-dimensional finite-element-method. The assessment should determine if current MELCOR capabilities adequately cover core degradation phenomena appropriate for the consolidated MELCOR code. Inclusion of these features should bring MELCOR much closer to a state of parity with SCDAP/RELAP5 and is a currently underway element in the MELCOR code consolidation effort. This assessment deals with the following analysis of the Three Mile Island Unit 2 (TMI-2) alternative accident sequences. The TMI-2 alternative accident sequence-1 includes the continuation of the base case of the TMI-2 accident with the Reactor Coolant Pumps (RCP) tripped, and the High Pressure Injection System (HPIS) throttled after approximately 6000 s accident time, while in the TMI-2 alternative accident sequence-2, the reactor coolant pumps is tripped after 6000 s and the HPIS is activated after 12,012 s. The lower head temperature distributions calculated with SCDAP/RELAP5 are visualized and animated with open source visualization freeware 'OpenDX'. (author)

  19. Operational head-on beam-beam compensation with electron lenses in the Relativistic Heavy Ion Collider

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fischer, W.; Gu, X.; Altinbas, Z.; Costanzo, M.; Hock, J.; Liu, C.; Luo, Y.; Marusic, A.; Michnoff, R.; Miller, T. A.; et al

    2015-12-23

    Head-on beam-beam compensation has been implemented in the Relativistic Heavy Ion Collider (RHIC) in order to increase the luminosity delivered to the experiments. We discuss the principle of combining a lattice for resonance driving term compensation and an electron lens for tune spread compensation. We describe the electron lens technology and its operational use. As of this date the implemented compensation scheme approximately doubled the peak and average luminosities.

  20. CD147 and AGR2 expression promote cellular proliferation and metastasis of head and neck squamous cell carcinoma

    SciTech Connect (OSTI)

    Sweeny, Larissa; Liu, Zhiyong; Bush, Benjamin D.; Hartman, Yolanda; Zhou, Tong; Rosenthal, Eben L.

    2012-08-15

    The signaling pathways facilitating metastasis of head and neck squamous cell carcinoma (HNSCC) cells are not fully understood. CD147 is a transmembrane glycoprotein known to induce cell migration and invasion. AGR2 is a secreted peptide also known to promote cell metastasis. Here we describe their importance in the migration and invasion of HNSCC cells (FADU and OSC-19) in vitro and in vivo. In vitro, knockdown of CD147 or AGR2 decreased cellular proliferation, migration and invasion. In vivo, knockdown of CD147 or AGR2 expression decreased primary tumor growth as well as regional and distant metastasis. -- Highlights: Black-Right-Pointing-Pointer We investigated AGR2 in head and neck squamous cell carcinoma for the first time. Black-Right-Pointing-Pointer We explored the relationship between AGR2 and CD147 for the first time. Black-Right-Pointing-Pointer AGR2 and CD147 appear to co-localize in head and squamous cell carcinoma samples. Black-Right-Pointing-Pointer Knockdown of both AGR2 and CD147 reduced migration and invasion in vitro. Black-Right-Pointing-Pointer Knockdown of both AGR2 and CD147 decreased metastasis in vivo.

  1. Impact of Concomitant Chemotherapy on Outcomes of Radiation Therapy for Head-and-Neck Cancer: A Population-Based Study

    SciTech Connect (OSTI)

    Gupta, Shlok; Kong, Weidong; Booth, Christopher M.; Mackillop, William J.

    2014-01-01

    Purpose: Clinical trials have shown that the addition of chemotherapy to radiation therapy (RT) improves survival in advanced head-and-neck cancer. The objective of this study was to describe the effectiveness of concomitant chemoradiation therapy (C-CRT) in routine practice. Methods and Materials: This was a population-based cohort study. Electronic records of treatment from all provincial cancer centers were linked to a population--based cancer registry to describe the adoption of C-CRT for head-and-neck cancer patients in Ontario, Canada. The study population was then divided into pre- and postadoption cohorts, and their outcomes were compared. Results: Between 1992 and 2008, 18,867 patients had diagnoses of head-and-neck cancer in Ontario, of whom 7866 (41.7%) were treated with primary RT. The proportion of primary RT cases that received C-CRT increased from 2.2% in the preadoption cohort (1992-1998) to 39.3% in the postadoption cohort (2003-2008). Five-year survival among all primary RT cases increased from 43.6% in the preadoption cohort to 51.8% in the postadoption cohort (P<.001). Over the same period, treatment-related hospital admissions increased significantly, but there was no significant increase in treatment-related deaths. Conclusions: C-CRT was widely adopted in Ontario after 2003, and its adoption was temporally associated with an improvement in survival.

  2. Installation of the Monitoring Site at the Los Alamos Canyon Low-Head Weir

    SciTech Connect (OSTI)

    W.J.Stone; D.L.Newell

    2002-08-01

    The Cerro Grande fire of 2000 had an enormously adverse impact on and around Los Alamos National Laboratory (LANL). Immediately there were concerns about the potential for enhanced runoff/offsite transport of contaminant-laden sediments because of watershed damage. In response to this concern, the U.S. Army Corps of Engineers installed a low-head weir in Los Alamos Canyon near the White Rock ''Y.'' However, the occurrence of fractured basalt at the surface and ponding of runoff behind the weir enhance the possibility of downward migration of contaminants. Therefore, three boreholes were drilled on the south bank of the channel by LANL to provide a means of monitoring the impact of the Cerro Grande fire and of the weir on water quality beneath the canyon. The boreholes and associated instrumentation are referred to as the Los Alamos Weir Site (LAWS). The three boreholes include a vertical hole and two angled holes (one at approximately 45{sup o} and one at approximately 30{sup o}). Since the basalt is highly fractured, the holes would not stay open. Plans called for inserting flexible liners into all holes. However, using liners in such unstable ground was problematic and, in the angled holes, required deployment through scalloped or perforated polyvinyl chloride (PVC) shield. The vertical hole (LAWS-01), drilled to a total depth of 281.5 ft below ground surface (bgs), was completed as a 278-ft deep monitoring well with four screens: one targeting shallow perched water encountered at 80 ft, two in what may correspond to the upper perched zone at regional groundwater characterization well R-9i (1/4 mi. to the west), and one in what may correspond to the lower perched zone at R-9i. A Water FLUTe{trademark} system deployed in the well isolates the screened intervals; associated transducers and sampling ports permit monitoring head and water quality in the screened intervals. The second hole (LAWS-02), drilled at an angle of 43{sup o} from horizontal, is 156 ft long and bottoms at a depth of 106 ft bgs. The shallow perched water seen at LAWS-01 (at 80 ft) was not encountered. A scalloped PVC shield was installed to keep the hole open while permitting flexible liners to contact the borehole wall. It was initially instrumented with a color-reactive liner to locate water-producing fractures. That was later replaced by an absorbent liner to collect water from the vadose zone. The third hole (LAWS-03), drilled at an angle of 34{sup o} from horizontal, initially had a length of 136 ft and bottomed at a depth of 76 ft bgs. However, the PVC shield rotated during installation such that scallops were at the top and rock debris repeatedly fell in, preventing liner insertion. While pulling the scalloped PVC to replace it with a perforated PVC shield that did not require orientation, the scalloped PVC broke and only 85 ft was recovered. The hole was blocked at that position and could not be drilled out with the equipment available. Thus, LAWS-03 was completed at a length of 85 ft and a depth of 40 ft bgs. An absorbent liner was installed at the outset in preparation for the 2002 summer monsoon season. The entire monitoring site is enclosed inside a locked, 8-ft-high chainlink fence for security. The liners used in the angled boreholes carry electrical wire pairs to detect soil-moisture changes. Surface-water data are provided by stream gages above and below the weir site. Depth of ponding behind the weir is provided by a gage installed just behind the structure.

  3. A dosimetric comparison of proton and photon therapy in unresectable cancers of the head of pancreas

    SciTech Connect (OSTI)

    Thompson, Reid F.; Zhai, Huifang; Both, Stefan; Metz, James M.; Plastaras, John P.; Ben-Josef, Edgar; Mayekar, Sonal U.; Apisarnthanarax, Smith

    2014-08-15

    Purpose: Uncontrolled local growth is the cause of death in ?30% of patients with unresectable pancreatic cancers. The addition of standard-dose radiotherapy to gemcitabine has been shown to confer a modest survival benefit in this population. Radiation dose escalation with three-dimensional planning is not feasible, but high-dose intensity-modulated radiation therapy (IMRT) has been shown to improve local control. Still, dose-escalation remains limited by gastrointestinal toxicity. In this study, the authors investigate the potential use of double scattering (DS) and pencil beam scanning (PBS) proton therapy in limiting dose to critical organs at risk. Methods: The authors compared DS, PBS, and IMRT plans in 13 patients with unresectable cancer of the pancreatic head, paying particular attention to duodenum, small intestine, stomach, liver, kidney, and cord constraints in addition to target volume coverage. All plans were calculated to 5500 cGy in 25 fractions with equivalent constraints and normalized to prescription dose. All statistics were by two-tailed paired t-test. Results: Both DS and PBS decreased stomach, duodenum, and small bowel dose in low-dose regions compared to IMRT (p < 0.01). However, protons yielded increased doses in the mid to high dose regions (e.g., 23.653.8 and 34.952.4 Gy for duodenum using DS and PBS, respectively; p < 0.05). Protons also increased generalized equivalent uniform dose to duodenum and stomach, however these differences were small (<5% and 10%, respectively; p < 0.01). Doses to other organs-at-risk were within institutional constraints and placed no obvious limitations on treatment planning. Conclusions: Proton therapy does not appear to reduce OAR volumes receiving high dose. Protons are able to reduce the treated volume receiving low-intermediate doses, however the clinical significance of this remains to be determined in future investigations.

  4. Adaptive Radiotherapy for Head-and-Neck Cancer: Initial Clinical Outcomes From a Prospective Trial

    SciTech Connect (OSTI)

    Schwartz, David L.; Garden, Adam S.; Thomas, Jimmy; Chen Yipei; Zhang Yongbin; Lewin, Jan; Chambers, Mark S.; Dong, Lei

    2012-07-01

    Purpose: To present pilot toxicity and survival outcomes for a prospective trial investigating adaptive radiotherapy (ART) for oropharyngeal squamous cell carcinoma. Methods and Materials: A total of 24 patients were enrolled in an institutional review board-approved clinical trial; data for 22 of these patients were analyzed. Daily CT-guided setup and deformable image registration permitted serial mapping of clinical target volumes and avoidance structures for ART planning. Primary site was base of tongue in 15 patients, tonsil in 6 patient, and glossopharyngeal sulcus in 1 patient. Twenty patients (91%) had American Joint Committee on Cancer (AJCC) Stage IV disease. T stage distribution was 2 T1, 12 T2, 3 T3, 5 T4. N stage distribution was 1 N0, 2 N1, 5 N2a, 12 N2b, and 2 N2c. Of the patients, 21 (95%) received systemic therapy. Results: With a 31-month median follow-up (range, 13-45 months), there has been no primary site failure and 1 nodal relapse, yielding 100% local and 95% regional disease control at 2 years. Baseline tumor size correlated with absolute volumetric treatment response (p = 0.018). Parotid volumetric change correlated with duration of feeding tube placement (p = 0.025). Acute toxicity was comparable to that observed with conventional intensity-modulated radiotherapy (IMRT). Chronic toxicity and functional outcomes beyond 1 year were tabulated. Conclusion: This is the first prospective evaluation of morbidity and survival outcomes in patients with locally advanced head-and-neck cancer treated with automated adaptive replanning. ART can provide dosimetric benefit with only one or two mid-treatment replanning events. Our preliminary clinical outcomes document functional recovery and preservation of disease control at 1-year follow-up and beyond.

  5. SU-E-T-460: Comparison of Proton and IMRT Planning for Head and Neck Cancer

    SciTech Connect (OSTI)

    Fontenla, S; Zhou, Y; Kowalski, A; Mah, D; Leven, T; Cahlon, O; Lee, N; Hunt, M; Mechalakos, J

    2014-06-01

    Purpose: A retrospective study comparing proton and intensity-modulated radiation therapy (IMRT) for head and neck cancer Methods: This study consists of six H and N cancer patients that underwent proton as well as IMRT planning. Patients analyzed had unilateral target volumes, one had prior RT. 3D-conformal proton therapy (3D-CPT) plans with multiple field uniform scanning were generated for delivery on the inclined beam line. IMRT was planned using fixed field sliding window. Final plan evaluations were performed by a radiation oncologist and a physicist. Metrics for comparison included tumor coverage, organ sparing with respect to spinal cord, brainstem, parotids, submandibulars, oral cavity, larynx, brachial plexus, cochleas, normal brain tissue, and skin using relevant indices for these structures. Dose volume histograms were generated as well as a qualitative comparison of isodose distributions between the two modalities. Planning and treatment delivery times were compared. Results: Results showed that IMRT plans offered better conformality in the high dose region as demonstrated by the conformality index for each plan. Ipsilateral cochlea, submandibular gland, and skin doses were lower with IMRT than proton therapy. There was significant sparing of larynx, oral cavity, and brainstem with proton therapy compared to IMRT. This translated into direct patient benefit with no evidence of hoarseness, mucositis, or nausea. Contralateral parotid and submandibular glands were equally spared. IMRT had shorter planning/parts fabrication and treatment times which needs to be taken into account when deciding modality. Conclusion: Sparing of clinically significant normal tissue structures such as oral cavity and larynx for unilateral H and N cancers was seen with 3D-CPT versus IMRT. However, this is at the expense of less conformality at the high dose region and higher skin dose. Future studies are needed with full gantry systems and pencil beam scanning as these deliveries would be expected to further improve conformality and normal tissue sparing.

  6. A deformable head and neck phantom with in-vivo dosimetry for adaptive radiotherapy quality assurance

    SciTech Connect (OSTI)

    Graves, Yan Jiang; Smith, Arthur-Allen; Mcilvena, David; Manilay, Zherrina; Lai, Yuet Kong; Rice, Roger; Mell, Loren; Cerviño, Laura E-mail: steve.jiang@utsouthwestern.edu; Jia, Xun; Jiang, Steve B. E-mail: steve.jiang@utsouthwestern.edu

    2015-04-15

    Purpose: Patients’ interfractional anatomic changes can compromise the initial treatment plan quality. To overcome this issue, adaptive radiotherapy (ART) has been introduced. Deformable image registration (DIR) is an important tool for ART and several deformable phantoms have been built to evaluate the algorithms’ accuracy. However, there is a lack of deformable phantoms that can also provide dosimetric information to verify the accuracy of the whole ART process. The goal of this work is to design and construct a deformable head and neck (HN) ART quality assurance (QA) phantom with in vivo dosimetry. Methods: An axial slice of a HN patient is taken as a model for the phantom construction. Six anatomic materials are considered, with HU numbers similar to a real patient. A filled balloon inside the phantom tissue is inserted to simulate tumor. Deflation of the balloon simulates tumor shrinkage. Nonradiopaque surface markers, which do not influence DIR algorithms, provide the deformation ground truth. Fixed and movable holders are built in the phantom to hold a diode for dosimetric measurements. Results: The measured deformations at the surface marker positions can be compared with deformations calculated by a DIR algorithm to evaluate its accuracy. In this study, the authors selected a Demons algorithm as a DIR algorithm example for demonstration purposes. The average error magnitude is 2.1 mm. The point dose measurements from the in vivo diode dosimeters show a good agreement with the calculated doses from the treatment planning system with a maximum difference of 3.1% of prescription dose, when the treatment plans are delivered to the phantom with original or deformed geometry. Conclusions: In this study, the authors have presented the functionality of this deformable HN phantom for testing the accuracy of DIR algorithms and verifying the ART dosimetric accuracy. The authors’ experiments demonstrate the feasibility of this phantom serving as an end-to-end ART QA phantom.

  7. American Recovery and Reinvestment Act of 2009. Interim Report on Customer Acceptance, Retention, and Response to Time-Based Rates from the Consumer Behavior Studies

    SciTech Connect (OSTI)

    Cappers, Peter; Hans, Liesel; Scheer, Richard

    2015-06-01

    Time-based rate programs1, enabled by utility investments in advanced metering infrastructure (AMI), are increasingly being considered by utilities as tools to reduce peak demand and enable customers to better manage consumption and costs. There are several customer systems that are relatively new to the marketplace and have the potential for improving the effectiveness of these programs, including in-home displays (IHDs), programmable communicating thermostats (PCTs), and web portals. Policy and decision makers are interested in more information about customer acceptance, retention, and response before moving forward with expanded deployments of AMI-enabled new rates and technologies. Under the Smart Grid Investment Grant Program (SGIG), the U.S. Department of Energy (DOE) partnered with several utilities to conduct consumer behavior studies (CBS). The goals involved applying randomized and controlled experimental designs for estimating customer responses more precisely and credibly to advance understanding of time-based rates and customer systems, and provide new information for improving program designs, implementation strategies, and evaluations. The intent was to produce more robust and credible analysis of impacts, costs, benefits, and lessons learned and assist utility and regulatory decision makers in evaluating investment opportunities involving time-based rates. To help achieve these goals, DOE developed technical guidelines to help the CBS utilities estimate customer acceptance, retention, and response more precisely.

  8. A Phase II trial of subcutaneous amifostine and radiation therapy in patients with head-and-neck cancer

    SciTech Connect (OSTI)

    Anne, Pramila Rani . E-mail: rani.anne@mail.tju.edu; Machtay, Mitchell; Rosenthal, David I.; Brizel, David M.; Morrison, William H.; Irwin, David H.; Chougule, Prakash B.; Estopinal, Noel C.; Berson, Anthony; Curran, Walter J.

    2007-02-01

    Purpose: Intravenous amifostine 200 mg/m{sup 2} reduces xerostomia in head-and-neck cancer patients. This Phase II study evaluated subcutaneous (s.c.) amifostine in a similar patient population. Patients and Methods: Patients received amifostine 500 mg, administered as two 250-mg s.c. injections 60 min before once-daily radiation for head-and-neck cancer (50-70 Gy in 5-7 weeks). The primary endpoint was the incidence of {>=}Grade 2 acute xerostomia. Results: Fifty-four patients received s.c. amifostine and radiotherapy. The incidence of {>=}Grade 2 acute xerostomia was 56% (95% CI, 43-69%) and the incidence of {>=}Grade 2 late xerostomia at 1 year was 45% (95% CI, 29-61%). The incidence of acute xerostomia was lower than reported previously with no amifostine in a controlled study; rates of acute xerostomia were similar between s.c. and i.v. amifostine in the two studies. The rate of late xerostomia with s.c. amifostine was intermediate between rates for i.v. amifostine and no amifostine, and not statistically significantly different from either historical control. Grades 1-2 nausea and emesis were the most common amifostine-related adverse events. Grade 3 amifostine-related adverse events reported by >1 patient included: dehydration (11%); rash (6%); and weight decrease, mucositis, dyspnea, and allergic reaction (each 4%). Seven patients (13%) had serious cutaneous adverse events outside the injection site. One-year rates of locoregional control, progression-free survival, and overall survival were 78%, 75%, and 85%, respectively. Conclusions: Subcutaneous amifostine provides a well-tolerated yet simpler alternative to i.v. amifostine for reducing acute xerostomia in head-and-neck cancer patients.

  9. Efficacy of Intra-Arterial Infusion Chemotherapy for Head and Neck Cancers Using Coaxial Catheter Technique: Initial Experience

    SciTech Connect (OSTI)

    Tsurumaru, Daisuke Kuroiwa, Toshiro; Yabuuchi, Hidetake; Hirata, Hideki; Higaki, Yuichiro; Tomita, Kichinobu

    2007-04-15

    The aim of this study was to evaluate the efficacy of intra-arterial infusion chemotherapy for head and neck cancers using a coaxial catheter technique: the superficial temporal artery (STA)-coaxial catheter method. Thirty-one patients (21 males and 10 females; 37-83 years of age) with squamous cell carcinoma of the head and neck (maxilla, 2; epipharynx, 4; mesopharynx, 8; oral floor, 4; tongue, 10; lower gingiva, 1; buccal mucosa, 2) were treated by intra-arterial infusion chemotherapy. Four patients were excluded from the tumor-response evaluation because of a previous operation or impossibility of treatment due to catheter trouble. Forty-eight sessions of catheterization were performed. A guiding catheter was inserted into the STA and a microcatheter was advanced into the tumor-feeding artery via the guiding catheter under angiographic guidance. When the location of the tumor or its feeding artery was uncertain on angiography, computed tomographic angiography was performed. The anticancer agent carboplatin (CBDCA) was continuously injected for 24 h through the microcatheter from a portable infusion pump attached to the patient's waist. The total administration dose was 300-1300 mg per body. External radiotherapy was administered during intra-arterial chemotherapy at a total dose of 21-70.5 Gy.The initial response was complete response in 15 patients, partial response in 7 patients, and no change in 5 patients; the overall response rate was 81.5% (22/27). Complication-related catheter maintenance was observed in 15 of 48 sessions of catheterization. Injury and dislocation of the microcatheter occurred 10 times in 7 patients. Catheter infection was observed three times in each of two patients, and catheter occlusion and vasculitis occurred in two patients. Intra-arterial infusion chemotherapy via the STA-coaxial catheter method could have potential as a favorable treatment for head and neck tumors.

  10. A Phase 1 Study of Everolimus + Weekly Cisplatin + Intensity Modulated Radiation Therapy in Head-and-Neck Cancer

    SciTech Connect (OSTI)

    Fury, Matthew G.; Lee, Nancy Y.; Sherman, Eric; Ho, Alan L.; Rao, Shyam; Heguy, Adriana; Shen, Ronglai; Korte, Susan; Lisa, Donna; Ganly, Ian; Patel, Snehal; Wong, Richard J.; Shaha, Ashok; Shah, Jatin; Haque, Sofia; Katabi, Nora; Pfister, David G.

    2013-11-01

    Purpose: Elevated expression of eukaryotic protein synthesis initiation factor 4E (eIF4E) in histologically cancer-free margins of resected head and neck squamous cell carcinomas (HNSCCs) is mediated by mammalian target of rapamycin complex 1 (mTORC1) and has been associated with increased risk of disease recurrence. Preclinically, inhibition of mTORC1 with everolimus sensitizes cancer cells to cisplatin and radiation. Methods and Materials: This was single-institution phase 1 study to establish the maximum tolerated dose of daily everolimus given with fixed dose cisplatin (30 mg/m{sup 2} weekly 6) and concurrent intensity modulated radiation therapy for patients with locally and/or regionally advanced head-and-neck cancer. The study had a standard 3 + 3 dose-escalation design. Results: Tumor primary sites were oral cavity (4), salivary gland (4), oropharynx (2), nasopharynx (1), scalp (1), and neck node with occult primary (1). In 4 of 4 cases in which resected HNSCC surgical pathology specimens were available for immunohistochemistry, elevated expression of eIF4E was observed in the cancer-free margins. The most common grade ?3 treatment-related adverse event was lymphopenia (92%), and dose-limiting toxicities (DLTs) were mucositis (n=2) and failure to thrive (n=1). With a median follow up of 19.4 months, 2 patients have experienced recurrent disease. The maximum tolerated dose was everolimus 5 mg/day. Conclusions: Head-and-neck cancer patients tolerated everolimus at therapeutic doses (5 mg/day) given with weekly cisplatin and intensity modulated radiation therapy. The regimen merits further evaluation, especially among patients who are status post resection of HNSCCs that harbor mTORC1-mediated activation of eIF4E in histologically negative surgical margins.

  11. Brachial Plexus-Associated Neuropathy After High-Dose Radiation Therapy for Head-and-Neck Cancer

    SciTech Connect (OSTI)

    Chen, Allen M.; Hall, William H.; Li, Judy; Beckett, Laurel; Farwell, D. Gregory; Lau, Derick H.; Purdy, James A.

    2012-09-01

    Purpose: To identify clinical and treatment-related predictors of brachial plexus-associated neuropathies after radiation therapy for head-and-neck cancer. Methods and Materials: Three hundred thirty patients who had previously completed radiation therapy for head-and-neck cancer were prospectively screened using a standardized instrument for symptoms of neuropathy thought to be related to brachial plexus injury. All patients were disease-free at the time of screening. The median time from completion of radiation therapy was 56 months (range, 6-135 months). One-hundred fifty-five patients (47%) were treated by definitive radiation therapy, and 175 (53%) were treated postoperatively. Radiation doses ranged from 50 to 74 Gy (median, 66 Gy). Intensity-modulated radiation therapy was used in 62% of cases, and 133 patients (40%) received concurrent chemotherapy. Results: Forty patients (12%) reported neuropathic symptoms, with the most common being ipsilateral pain (50%), numbness/tingling (40%), motor weakness, and/or muscle atrophy (25%). When patients with <5 years of follow-up were excluded, the rate of positive symptoms increased to 22%. On univariate analysis, the following factors were significantly associated with brachial plexus symptoms: prior neck dissection (p = 0.01), concurrent chemotherapy (p = 0.01), and radiation maximum dose (p < 0.001). Cox regression analysis confirmed that both neck dissection (p < 0.001) and radiation maximum dose (p < 0.001) were independently predictive of symptoms. Conclusion: The incidence of brachial plexus-associated neuropathies after radiation therapy for head-and-neck cancer may be underreported. In view of the dose-response relationship identified, limiting radiation dose to the brachial plexus should be considered when possible.

  12. Improved Dosimetric and Clinical Outcomes With Intensity-Modulated Radiotherapy for Head-and-Neck Cancer of Unknown Primary Origin

    SciTech Connect (OSTI)

    Chen, Allen M.; Li Baoqing; Farwell, D. Gregory; Marsano, Joseph; Vijayakumar, Srinivasan; Purdy, James A.

    2011-03-01

    Purpose: To compare differences in dosimetric, clinical, and quality-of-life endpoints among a cohort of patients treated by intensity-modulated radiotherapy (IMRT) and conventional radiotherapy (CRT) for head-and-neck cancer of unknown primary origin. Methods and Materials: The medical records of 51 patients treated by radiation therapy for squamous cell carcinoma of the head and neck presenting as cervical lymph node metastasis of occult primary origin were reviewed. Twenty-four patients (47%) were treated using CRT, and 27 (53%) were treated using IMRT. The proportions of patients receiving concurrent chemotherapy were 54% and 63%, respectively. Results: The 2-year estimates of overall survival, local-regional control, and disease-specific survival for the entire patient population were 86%, 89%, and84%, respectively. There were no significant differences in any of these endpoints with respect to radiation therapy technique (p > 0.05 for all). Dosimetric analysis revealed that the use of IMRT resulted in significant improvements with respect to mean dose and V30 to the contralateral (spared) parotid gland. In addition, mean doses to the ipsilateral inner and middle ear structures were significantly reduced with IMRT (p < 0.05 for all). The incidence of severe xerostomia in the late setting was 58% and 11% among patients treated by CRT and IMRT, respectively (p < 0.001). The percentages of patients who were G-tube dependent at 6 months after treatment were 42% and 11%, respectively (p < 0.001). Conclusions: IMRT results in significant improvements in the therapeutic ratio among patients treated by radiation therapy for head-and-neck cancer of unknown primary origin.

  13. Particle-in-cell simulation of the head-on collision between two ion acoustic solitary waves in plasmas

    SciTech Connect (OSTI)

    Qi, Xin; Xu, Yan-xia; Duan, Wen-shan E-mail: lyang@impcas.ac.cn; Zhang, Ling-yu; Yang, Lei E-mail: lyang@impcas.ac.cn

    2014-08-15

    The head-on collision of two ion acoustic solitary waves in plasmas composed of hot electrons and cold ions has been studied by using the Poincare-Lighthill-Kuo (PLK) perturbation method and one-dimensional Particle-in-Cell (PIC) simulation. Then the phase lags of ion acoustic solitary waves (IASWs) obtained from the two approaches have been compared and discussed. It has been found that: if the amplitudes of both the colliding IASWs are small enough, the phase lags obtained from PLK method are in good agreement with those obtained from PIC simulation. As the amplitudes of IASWs increase, the phase lags from PIC simulation become smaller than the analytical ones from PLK method. Besides, the PIC simulation shows the phase lag of an IASW involved in collision depends not only on the characteristics of the wave it collides with but also on itself, which disagrees with the prediction of the PLK method. Finally, the application scopes of the PLK method in studying both the single IASW and the head-on collisions of IASWs have been studied and discussed, and the latter turns out to be more strict.

  14. Percolation Cooling of the Three Mile Island Unit 2 Lower Head by Way of Thermal Cracking and Gap Formation

    SciTech Connect (OSTI)

    Thomsen, K.L.

    2002-01-15

    Two partial models have been developed to elucidate the Three Mile Island Unit 2 lower head coolability by water percolation from above into the thermally cracking debris bed and into a gap between the debris and the wall. The bulk permeability of the cracked top crust is estimated based on simple fracture mechanics and application of Poiseuille's law to the fractures. The gap is considered as an abstraction representing an initially rugged interface, which probably expanded by thermal deformation and cracking in connection with the water ingress. The coupled flow and heat conduction problem for the top crust is solved in slab geometry based on the two-phase Darcy equations together with quasi-steady mass and energy conservation equations. The resulting water penetration depth is in good agreement with the depth of the so-called loose debris bed. The lower-head and bottom-crust problem is treated analogously by a two-dimensional axisymmetric model. The notion of a gap is maintained as a useful concept in the flow analysis. Simulations show that a central hot spot with a peak wall temperature of 1075 to 1100 deg. C can be obtained, but the quenching rates are not satisfactory. It is concluded that a three-dimensional model with an additional mechanism to explain the sudden water ingress to the hot spot center would be more appropriate.

  15. High-resolution single photon planar and spect imaging of brain and neck employing a system of two co-registered opposed gamma imaging heads

    DOE Patents [OSTI]

    Majewski, Stanislaw; Proffitt, James

    2011-12-06

    A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.

  16. Theoretical study of head-on collision of dust acoustic solitary waves in a strongly coupled complex plasma

    SciTech Connect (OSTI)

    Jaiswal, S., E-mail: surabhi@ipr.res.in; Bandyopadhyay, P.; Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2014-05-15

    We investigate the propagation characteristics of two counter propagating dust acoustic solitary waves (DASWs) undergoing a head-on collision, in the presence of strong coupling between micron sized charged dust particles in a complex plasma. A coupled set of nonlinear dynamical equations describing the evolution of the two DASWs using the extended Poincar-Lighthill-Kuo perturbation technique is derived. The nature and extent of post collision phase-shifts of these solitary waves are studied over a wide range of dusty plasma parameters in a strongly and a weakly coupled medium. We find a significant change in the nature and amount of phase delay in the strongly coupled regime as compared to a weakly coupled regime. The phase shift is seen to change its sign beyond a threshold value of compressibility of the medium for a given set of dusty plasma parameters.

  17. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets

    SciTech Connect (OSTI)

    Moser, Auna L. Hsu, Scott C.

    2015-05-15

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.

  18. Volumetric tumor burden and its effect on brachial plexus dosimetry in head and neck intensity-modulated radiotherapy

    SciTech Connect (OSTI)

    Romesser, Paul B.; Qureshi, Muhammad M.; Kovalchuk, Nataliya; Truong, Minh Tam

    2014-07-01

    To determine the effect of gross tumor volume of the primary (GTV-P) and nodal (GTV-N) disease on planned radiation dose to the brachial plexus (BP) in head and neck intensity-modulated radiotherapy (IMRT). Overall, 75 patients underwent definitive IMRT to a median total dose of 69.96 Gy in 33 fractions. The right BP and left BP were prospectively contoured as separate organs at risk. The GTV was related to BP dose using the unpaired t-test. Receiver operating characteristics curves were constructed to determine optimized volumetric thresholds of GTV-P and GTV-N corresponding to a maximum BP dose cutoff of > 66 Gy. Multivariate analyses were performed to account for factors associated with a higher maximal BP dose. A higher maximum BP dose (> 66 vs ? 66 Gy) correlated with a greater mean GTV-P (79.5 vs 30.8 cc; p = 0.001) and ipsilateral GTV-N (60.6 vs 19.8 cc; p = 0.014). When dichotomized by the optimized nodal volume, patients with an ipsilateral GTV-N ? 4.9 vs < 4.9 cc had a significant difference in maximum BP dose (64.2 vs 59.4 Gy; p = 0.001). Multivariate analysis confirmed that an ipsilateral GTV-N ? 4.9 cc was an independent predictor for the BP to receive a maximal dose of > 66 Gy when adjusted individually for BP volume, GTV-P, the use of a low anterior neck field technique, total planned radiation dose, and tumor category. Although both the primary and the nodal tumor volumes affected the BP maximal dose, the ipsilateral nodal tumor volume (GTV-N ? 4.9 cc) was an independent predictor for high maximal BP dose constraints in head and neck IMRT.

  19. SU-E-T-593: Clinical Evaluation of Direct Aperture Optimization in Head/Neck and Prostate IMRT Treatment

    SciTech Connect (OSTI)

    Hosini, M; GALAL, M; Emam, I; Kamal, G; Algohary, M

    2014-06-01

    Purpose: To investigate the planning and dosimetric advantages of direct aperture optimization (DAO) over beam-let optimization in IMRT treatment of head and neck (H/N) and prostate cancers. Methods: Five Head and Neck as well as five prostate patients were planned using the beamlet optimizer in Elekta-Xio ver 4.6 IMRT treatment planning system. Based on our experience in beamlet IMRT optimization, PTVs in H/N plans were prescribed to 70 Gy delivered by 7 fields. While prostate PTVs were prescribed to 76 Gy with 9 fields. In all plans, fields were set to be equally spaced. All cases were re-planed using Direct Aperture optimizer in Prowess Panther ver 5.01 IMRT planning system at same configurations and dose constraints. Plans were evaluated according to ICRU criteria, number of segments, number of monitor units and planning time. Results: For H/N plans, the near maximum dose (D2) and the dose that covers 95% D95 of PTV has improved by 4% in DAO. For organs at risk (OAR), DAO reduced the volume covered by 30% (V30) in spinal cord, right parotid, and left parotid by 60%, 54%, and 53% respectively. This considerable dosimetric quality improvement achieved using 25% less planning time and lower number of segments and monitor units by 46% and 51% respectively. In DAO prostate plans, Both D2 and D95 for the PTV were improved by only 2%. The V30 of the right femur, left femur and bladder were improved by 35%, 15% and 3% respectively. On the contrary, the rectum V30 got even worse by 9%. However, number of monitor units, and number of segments decreased by 20% and 25% respectively. Moreover the planning time reduced significantly too. Conclusion: DAO introduces considerable advantages over the beamlet optimization in regards to organs at risk sparing. However, no significant improvement occurred in most studied PTVs.

  20. SU-E-J-137: Incorporating Tumor Regression Into Robust Plan Optimization for Head and Neck Radiotherapy

    SciTech Connect (OSTI)

    Zhang, P; Hu, J; Tyagi, N; Mageras, G; Lee, N; Hunt, M

    2014-06-01

    Purpose: To develop a robust planning paradigm which incorporates a tumor regression model into the optimization process to ensure tumor coverage in head and neck radiotherapy. Methods: Simulation and weekly MR images were acquired for a group of head and neck patients to characterize tumor regression during radiotherapy. For each patient, the tumor and parotid glands were segmented on the MR images and the weekly changes were formulated with an affine transformation, where morphological shrinkage and positional changes are modeled by a scaling factor, and centroid shifts, respectively. The tumor and parotid contours were also transferred to the planning CT via rigid registration. To perform the robust planning, weekly predicted PTV and parotid structures were created by transforming the corresponding simulation structures according to the weekly affine transformation matrix averaged over patients other than him/herself. Next, robust PTV and parotid structures were generated as the union of the simulation and weekly prediction contours. In the subsequent robust optimization process, attainment of the clinical dose objectives was required for the robust PTV and parotids, as well as other organs at risk (OAR). The resulting robust plans were evaluated by looking at the weekly and total accumulated dose to the actual weekly PTV and parotid structures. The robust plan was compared with the original plan based on the planning CT to determine its potential clinical benefit. Results: For four patients, the average weekly change to tumor volume and position was ?4% and 1.2 mm laterally-posteriorly. Due to these temporal changes, the robust plans resulted in an accumulated PTV D95 that was, on average, 2.7 Gy higher than the plan created from the planning CT. OAR doses were similar. Conclusion: Integration of a tumor regression model into target delineation and plan robust optimization is feasible and may yield improved tumor coverage. Part of this research is supported by Varian Medical System.

  1. SU-E-T-149: Electron Beam Profile Differences Between Elekta MLCi2 and Elekta Agility Treatment Heads

    SciTech Connect (OSTI)

    Wu, C; Hatcher, C

    2014-06-01

    Purpose: To report and investigate observed differences in electron beam profiles at various energies/applicators between Elekta MLCi2 and Agility treatment head on Elekta Infinity LINAC Methods: When we upgraded from MLCi2 to Agility on one of our Elekta Infinity LINAC's, electron beam PDDs and profiles were acquired for comparison purpose. All clinical electron energies (6/9/12/15/12/18 MeV) and electron applicators (6/10/14/20/25 square) were included in measurement. PDDs were acquired at 100 SSD in water (PTW MP3 water tank) with a plane-parallel ion chamber (PTW Roos). X and Y Profiles were acquired using IC Profiler (Sun Nuclear Corp.) at 1cm and maximum PDD depths (water equivalent). Results: All PDD curves match very well between MLCi2 and Agility treatment head. However, some significant differences on electron profiles were found. On Agility, even after increasing the default auto-tracking offset values for backup diaphragms in Y and MLC in X by 2.8 cm (the maximum allowed change is 3.0 cm), electron profiles still have rounder shoulders comparing to corresponding MLCi2 profiles. This difference is significantly more pronounced at larger applicators (20 and 25 square), for all electron energies. Conclusion: The significant design change between MLCi2 and Agility beam limiting device seems to affect exit electron beam profiles. In IEC1217 X direction, the main change on Agility is the removal of the original MLCi2 X backup diaphragms and replacing it with MLC leaves; In Y direction, the main change is the radius and materials on Y backup diaphragms.

  2. Evaluating the Role of Prophylactic Gastrostomy Tube Placement Prior to Definitive Chemoradiotherapy for Head and Neck Cancer

    SciTech Connect (OSTI)

    Chen, Allen M.; Li Baoqing; Lau, Derick H.; Farwell, D. Gregory; Luu, Quang; Stuart, Kerri; Newman, Kathleen; Purdy, James A.; Vijayakumar, Srinivasan M.D.

    2010-11-15

    Purpose: To determine the effect of prophylactic gastrostomy tube (GT) placement on acute and long-term outcome for patients treated with definitive chemoradiotherapy for locally advanced head and neck cancer. Methods and Materials: One hundred twenty consecutive patients were treated with chemoradiotherapy for Stage III/IV head and neck cancer to a median dose of 70 Gy (range, 64-74 Gy). The most common primary site was the oropharynx (66 patients). Sixty-seven patients (56%) were treated using intensity-modulated radiotherapy (IMRT). Seventy patients (58%) received prophylactic GT placement at the discretion of the physician before initiation of chemoradiotherapy. Results: Prophylactic GT placement significantly reduced weight loss during radiation therapy from 43 pounds (range, 0 to 76 pounds) to 19 pounds (range, 0 to 51 pounds), which corresponded to a net change of -14% (range, 0% to -30%) and -8% (range, +1% to -22%) from baseline, respectively (p < 0.001). However, the proportion of patients who were GT-dependent at 6- and 12-months after treatment was 41% and 21%, respectively, compared with 8% and 0%, respectively, for those with and without prophylactic GT (p < 0.001). Additionally, prophylactic GT was associated with a significantly higher incidence of late esophageal stricture compared with those who did not have prophylactic GT (30% vs. 6%, p < 0.001). Conclusions: Although prophylactic GT placement was effective at preventing acute weight loss and the need for intravenous hydration, it was also associated with significantly higher rates of late esophageal toxicity. The benefits of this strategy must be balanced with the risks.

  3. Prospective Evaluation to Establish a Dose Response for Clinical Oral Mucositis in Patients Undergoing Head-and-Neck Conformal Radiotherapy

    SciTech Connect (OSTI)

    Narayan, Samir Lehmann, Joerg; Coleman, Matthew A.; Vaughan, Andrew; Yang, Claus Chunli; Enepekides, Danny; Farwell, Gregory; Purdy, James A.; Laredo, Grace; Nolan, Kerry A.S.; Pearson, Francesca S.; Vijayakumar, Srinivasan

    2008-11-01

    Purpose: We conducted a clinical study to correlate oral cavity dose with clinical mucositis, perform in vivo dosimetry, and determine the feasibility of obtaining buccal mucosal cell samples in patients undergoing head-and-neck radiation therapy. The main objective is to establish a quantitative dose response for clinical oral mucositis. Methods and Materials: Twelve patients undergoing radiation therapy for head-and-neck cancer were prospectively studied. Four points were chosen in separate quadrants of the oral cavity. Calculated dose distributions were generated by using AcQPlan and Eclipse treatment planning systems. MOSFET dosimeters were used to measure dose at each sampled point. Each patient underwent buccal sampling for future RNA analysis before and after the first radiation treatment at the four selected points. Clinical and functional mucositis were assessed weekly according to National Cancer Institute Common Toxicity Criteria, Version 3. Results: Maximum and average doses for sampled sites ranged from 7.4-62.3 and 3.0-54.3 Gy, respectively. A cumulative point dose of 39.1 Gy resulted in mucositis for 3 weeks or longer. Mild severity (Grade {<=} 1) and short duration ({<=}1 week) of mucositis were found at cumulative point doses less than 32 Gy. Polymerase chain reaction consistently was able to detect basal levels of two known radiation responsive genes. Conclusions: In our sample, cumulative doses to the oral cavity of less than 32 Gy were associated with minimal acute mucositis. A dose greater than 39 Gy was associated with longer duration of mucositis. Our technique for sampling buccal mucosa yielded sufficient cells for RNA analysis using polymerase chain reaction.

  4. Swing of the Surgical Pendulum: A Return to Surgery for Treatment of Head and Neck Cancer in the 21st Century?

    SciTech Connect (OSTI)

    Holsinger, F. Christopher Weber, Randal S.

    2007-10-01

    Treatment for head and neck cancer has evolved significantly during the past 100 years. Beginning with Bilroth's total laryngectomy on New Year's Day in 1873, 'radical' surgery remained the only accepted treatment for head and neck cancer when optimal local and regional control was the goal. Bigger was still better when it came to managing the primary tumor and the neck. The 'commando' procedure and radical neck dissection were the hallmarks of this first generation of treatments of head-and-neck cancer. With the advent of microvascular reconstructive techniques, larger and more comprehensive resections could be performed. Despite these large resections and their 'mutilating' sequelae, overall survival did not improve. Even for intermediate-stage disease in head-and-neck cancer, the 5-year survival rate did not improve >50%. Many concluded that more than the scalpel was needed for optimal local and regional control, especially for intermediate- and advanced-stage disease. Most important, the multidisciplinary teams must identify and correlate biomarkers in the tumor and host that predict for a response to therapy and for optimal functional recovery. As the pendulum swings back, a scientific approach using tissue biomarkers for the response to treatment in the setting of multidisciplinary trials must emerge as the new paradigm. In the postgenomic era, treatment decisions should be made based on functional and oncologic parameters-not just to avoid perceived morbidity.

  5. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix A - Assessment Results by Hydrologic Region

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for each of the 20 hydrologic regions are presented in Appendix A

  6. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix B - Assessment Results by State

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Surveys Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for for each of the 50 states are made in Appendix B.

  7. Report on the deuterium retention in CVD coated W on SiC in support of the Ultramet Companys Small Business Innovation Research (SBIR) project: SOW DE-FG02-07ER84941

    SciTech Connect (OSTI)

    Masashi Shimada

    2012-06-01

    A tungsten (W) coated (0.0005-inch thickness) silicon carbide (SiC) (1.0-inch diameter and 0.19-inch thickness) sample was exposed to a divertor relevant high-flux (~1022 m-2s-1) deuterium plasma at 200 and 400C in the Idaho National Laboratorys (INLs) Tritium Plasma Experiment (TPE), and the total deuterium retention was subsequently measured via the thermal desorption spectroscopy (TDS) method. The deuterium retentions were 6.4x1019 m-2 and 1.7x1020 m-2, for 200 and 400C exposure, respectively. The Tritium Migration Analysis Program (TMAP) was used to analyze the measured TDS spectrum to investigate the deuterium behavior in the W coated SiC, and the results indicated that most of the deuterium was trapped in the W coated layer even at 400C. This thin W layer (0.0005-inch ~ 13m thickness) prevented deuterium ions from bombarding directly into the SiC substrate, minimizing erosion of SiC and damage creation via ion bombardment. The shift in the D desorption peak in the TDS spectra from 200 C to 400C can be attributed to D migration to the bulk material. This unexpectedly low deuterium retention and short migration might be due to the porous nature of the tungsten coating, which can decrease the solution concentration of deuterium atoms.

  8. Normal Tissue Complication Probability Modeling of Radiation-Induced Hypothyroidism After Head-and-Neck Radiation Therapy

    SciTech Connect (OSTI)

    Bakhshandeh, Mohsen; Hashemi, Bijan; Mahdavi, Seied Rabi Mehdi; Nikoofar, Alireza; Vasheghani, Maryam; Kazemnejad, Anoshirvan

    2013-02-01

    Purpose: To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Methods and Materials: Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-based treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with {alpha}/{beta} = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Results: Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D{sub 50} estimated from the models was approximately 44 Gy. Conclusions: The implemented normal tissue complication probability models showed a parallel architecture for the thyroid. The mean dose model can be used as the best model to describe the dose-response relationship for hypothyroidism complication.

  9. Reactions during melting of low-activity waste glasses and their effects on the retention of rhenium as a surrogate for technetium-99

    SciTech Connect (OSTI)

    Jin, Tongan; Kim, Dong-Sang; Tucker, Abigail E.; Schweiger, Michael J.; Kruger, Albert A.

    2015-10-01

    Volatile loss of radioactive 99Tc to offgas is a concern with processing the low-activity waste (LAW) at Hanford site. We investigated the partitioning and incorporation of Re (a nonradioactive surrogate for 99Tc) into the glass melt during crucible melting of two simulated LAW feeds that resulted in a large difference in 99mTc/Re retention in glass from the small-scale melter tests. Each feed was prepared from a simulated liquid LAW and chemical and mineral additives (boric acid, silica sand, etc.). The as-mixed slurry feeds were dried at 105C and heated to 6001100C at 5 K/min. The dried feeds and heat treated samples were leached with deionized water for 10 min at room temperature followed by 24-h leaching at 80C. Chemical compositions of the resulting solutions and insoluble solids were analyzed. Volume expansion measurement and X-ray diffraction were performed on dried feeds and heat treated samples to characterize the progress of feed-to-glass conversion reactions. It was found that the incorporation of Re into glass melt virtually completed during the major feed-to-glass conversion reactions were going on at ? 700C. The present results suggest that the different composition of the salt phase is responsible for the large difference in Re incorporation into glass melt during early stages of glass melting at ? 700C. Additional studies with modified and simplified feeds are underway to understand the details on how the different salt composition affects the Re incorporation.

  10. TECHNETIUM RETENTION IN WTP LAW GLASS WITH RECYCLE FLOW-SHEET DM10 MELTER TESTING VSL-12R2640-1 REV 0

    SciTech Connect (OSTI)

    Abramowitz, Howard; Brandys, Marek; Cecil, Richard; D'Angelo, Nicholas; Matlack, Keith S.; Muller, Isabelle S.; Pegg, Ian L.; Callow, Richard A.; Joseph, Innocent

    2012-12-11

    Melter tests were conducted to determine the retention of technetium and other volatiles in glass while processing simulated Low Activity Waste (LAW) streams through a DM10 melter equipped with a prototypical off-gas system that concentrates and recycles fluid effiuents back to the melter feed. To support these tests, an existing DM10 system installed at Vitreous State Laboratory (VSL) was modified to add the required recycle loop. Based on the Hanford Tank Waste Treatment and Immobilization Plant (WTP) LAW off-gas system design, suitably scaled versions of the Submerged Bed Scrubber (SBS), Wet Electrostatic Precipitator (WESP), and TLP vacuum evaporator were designed, built, and installed into the DM10 system. Process modeling was used to support this design effort and to ensure that issues associated with the short half life of the {sup 99m}Tc radioisotope that was used in this work were properly addressed and that the system would be capable of meeting the test objectives. In particular, this required that the overall time constant for the system was sufficiently short that a reasonable approach to steady state could be achieved before the {sup 99m}Tc activity dropped below the analytical limits of detection. The conceptual design, detailed design, flow sheet development, process model development, Piping and Instrumentation Diagram (P&ID) development, control system design, software design and development, system fabrication, installation, procedure development, operator training, and Test Plan development for the new system were all conducted during this project. The new system was commissioned and subjected to a series of shake-down tests before embarking on the planned test program. Various system performance issues that arose during testing were addressed through a series of modifications in order to improve the performance and reliability of the system. The resulting system provided a robust and reliable platform to address the test objectives.

  11. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jetsa)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moser, Auna L.; Hsu, Scott C.

    2015-05-01

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease inmore » the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less

  12. Particle-in-cell simulations of collisionless shock formation via head-on merging of two laboratory supersonic plasma jets

    SciTech Connect (OSTI)

    Thoma, C.; Welch, D. R.; Hsu, S. C.

    2013-08-15

    We describe numerical simulations, using the particle-in-cell (PIC) and hybrid-PIC code lsp[T. P. Hughes et al., Phys. Rev. ST Accel. Beams 2, 110401 (1999)], of the head-on merging of two laboratory supersonic plasma jets. The goals of these experiments are to form and study astrophysically relevant collisionless shocks in the laboratory. Using the plasma jet initial conditions (density ?10{sup 14}10{sup 16} cm{sup ?3}, temperature ? few eV, and propagation speed ?20150 km/s), large-scale simulations of jet propagation demonstrate that interactions between the two jets are essentially collisionless at the merge region. In highly resolved one- and two-dimensional simulations, we show that collisionless shocks are generated by the merging jets when immersed in applied magnetic fields (B?0.11 T). At expected plasma jet speeds of up to 150 km/s, our simulations do not give rise to unmagnetized collisionless shocks, which require much higher velocities. The orientation of the magnetic field and the axial and transverse density gradients of the jets have a strong effect on the nature of the interaction. We compare some of our simulation results with those of previously published PIC simulation studies of collisionless shock formation.

  13. Sample Retention Incentive Service Agreement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Your telework arrangement, i.e., routine, situational, or medical, and frequency that you ... there is no conflict of interest or ethics issue. 4. At least 20% of the time that ...

  14. Report: Employee Recruitment and Retention

    Office of Environmental Management (EM)

    Advisory Board (EMAB or Board) has continued to pursue a review of EM's human capital issues, focusing specifically on the areas of MoraleWorkplace Census; Planning...

  15. Sample Retention Incentive Service Agreement

    Energy Savers [EERE]

    : Phased Retirement Service Agreement Introduction This is an employment agreement between ____(employee's name)_____ (hereinafter referred to as "you" or "your") and the ______(Departmental element)________ (hereinafter referred to as "the employer" or Departmental element) for the purpose of the employer committing to retaining you in a phased retirement status to fulfill a critical need and, in return, your committing to a period of service to the employer. This

  16. 6-D weak-strong beam-beam simulation study of proton lifetime in presence of head-on beam-beam compensation in the RHIC

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.

    2010-08-01

    In this note we summarize the calculated particle loss of a proton bunch in the presence of head-on beam-beam compensation in the Relativistic Heavy Ion Collider (RHIC). To compensate the head-on beam-beam effect in the RHIC 250 GeV polarized proton run, we are introducing a DC electron beam with the same transverse profile as the proton beam to collide with the proton beam. Such a device is called an electron lens (e-lens). In this note we first present the optics and beam parameters and the tracking setup. Then we calculate and compare the particle loss of a proton bunch with head-on beam-beam compensation, phase advance of k{pi} between IP8 and the center of the e-lens and second order chromaticity correction. We scanned the proton beam's linear chromaticity, working point and bunch intensity. We also scanned the electron beam's intensity, transverse beam size. The effect of the electron-proton transverse offset in the e-lens was studied. In the study 6-D weak-strong beam-beam interaction model a la Hirata is used for proton collisions at IP6 and IP8. The e-lens is modeled as 8 slices. Each slice is modeled with as drift - (4D beam-beam kick) - drift.

  17. Hypopharyngeal Dose Is Associated With Severe Late Toxicity in Locally Advanced Head-and-Neck Cancer: An RTOG Analysis

    SciTech Connect (OSTI)

    Machtay, Mitchell; Moughan, Jennifer; Farach, Andrew; University of Texas Health Science Center Martin-O'Meara, Elizabeth; Galvin, James; Thomas Jefferson University, Philadelphia, Pennsylvania ; Garden, Adam S.; Weber, Randal S.; Cooper, Jay S.; Forastiere, Arlene; Ang, K. Kian

    2012-11-15

    Purpose: Concurrent chemoradiation therapy (CCRT) for squamous cell carcinoma of the head and neck (SCCHN) increases local tumor control but at the expense of increased toxicity. We recently showed that several clinical/pretreatment factors were associated with the occurrence of severe late toxicity. This study evaluated the potential relationship between radiation dose delivered to the pharyngeal wall and toxicity. Methods and Materials: This was an analysis of long-term survivors from 3 previously reported Radiation Therapy Oncology Group (RTOG) trials of CCRT for locally advanced SCCHN (RTOG trials 91-11, 97-03, and 99-14). Severe late toxicity was defined in this secondary analysis as chronic grade 3-4 pharyngeal/laryngeal toxicity and/or requirement for a feeding tube {>=}2 years after registration and/or potential treatment-related death (eg, pneumonia) within 3 years. Radiation dosimetry (2-dimensional) analysis was performed centrally at RTOG headquarters to estimate doses to 4 regions of interest along the pharyngeal wall (superior oropharynx, inferior oropharynx, superior hypopharynx, and inferior hypopharynx). Case-control analysis was performed with a multivariate logistic regression model that included pretreatment and treatment potential factors. Results: A total of 154 patients were evaluable for this analysis, 71 cases (patients with severe late toxicities) and 83 controls; thus, 46% of evaluable patients had a severe late toxicity. On multivariate analysis, significant variables correlated with the development of severe late toxicity, including older age (odds ratio, 1.062 per year; P=.0021) and radiation dose received by the inferior hypopharynx (odds ratio, 1.023 per Gy; P=.016). The subgroup of patients receiving {<=}60 Gy to the inferior hypopharynx had a 40% rate of severe late toxicity compared with 56% for patients receiving >60 Gy. Oropharyngeal dose was not associated with this outcome. Conclusions: Severe late toxicity following CCRT is common in long-term survivors. Age is the most significant factor, but hypopharyngeal dose also was associated.

  18. Phase I Trial Using the Proteasome Inhibitor Bortezomib and Concurrent Chemoradiotherapy for Head-and-Neck Malignancies

    SciTech Connect (OSTI)

    Kubicek, Gregory J.; Axelrod, Rita S.; Machtay, Mitchell; Ahn, Peter H.; Anne, Pramila R.; Fogh, Shannon; Cognetti, David; Myers, Thomas J.; Curran, Walter J.; Dicker, Adam P.

    2012-07-15

    Purpose: Advanced head-and-neck cancer (HNC) remains a difficult disease to cure. Proteasome inhibitors such as bortezomib have the potential to improve survival over chemoradiotherapy alone. This Phase I dose-escalation study examined the potential of bortezomib in combination with cisplatin chemotherapy and concurrent radiation in the treatment of locally advanced and recurrent HNC. Methods and Materials: Eligible patients received cisplatin once weekly at 30 mg/m{sup 2} per week and bortezomib along with concurrent radiation. Bortezomib was given on Days 1, 4, 8, and 11 every 3 weeks, with an initial starting dose of 0.7 mg/m{sup 2} and escalation levels of 1.0 and 1.3 mg/m{sup 2}. Dose escalation was performed only after assessment to rule out any dose-limiting toxicity. Results: We enrolled 27 patients with HNC, including 17 patients with recurrent disease who had received prior irradiation. Patients received bortezomib dose levels of 0.7 mg/m{sup 2} (7 patients), 1.0 mg/m{sup 2} (10 patients), and 1.3 mg/m{sup 2} (10 patients). No Grade 5 toxicities, 3 Grade 4 toxicities (all hematologic and considered dose-limiting toxicities), and 39 Grade 3 toxicities (in 20 patients) were observed. With a median follow-up of 7.4 months, the overall median survival was 24.7 months (48.4 months for advanced HNC patients and 15.4 months for recurrent HNC patients). Conclusion: Bortezomib in combination with radiation therapy and cisplatin chemotherapy is safe in the treatment of HNC with a bortezomib maximum tolerated dose of 1.0 mg/m{sup 2} in patients previously treated for HNC and 1.3 mg/m{sup 2} in radiation-naive patients.

  19. Observational Study Designs for Comparative Effectiveness Research: An Alternative Approach to Close Evidence Gaps in Head-and-Neck Cancer

    SciTech Connect (OSTI)

    Goulart, Bernardo H.L.; Ramsey, Scott D.; Parvathaneni, Upendra

    2014-01-01

    Comparative effectiveness research (CER) has emerged as an approach to improve quality of care and patient outcomes while reducing healthcare costs by providing evidence to guide healthcare decisions. Randomized controlled trials (RCTs) have represented the ideal study design to support treatment decisions in head-and-neck (H and N) cancers. In RCTs, formal chance (randomization) determines treatment allocation, which prevents selection bias from distorting the measure of treatment effects. Despite this advantage, only a minority of patients qualify for inclusion in H and N RCTs, which limits the validity of their results to the broader H and N cancer patient population seen in clinical practice. Randomized controlled trials often do not address other knowledge gaps in the management of H and N cancer, including treatment comparisons for rare types of H and N cancers, monitoring of rare or late toxicity events (eg, osteoradionecrosis), or in some instances an RCT is simply not feasible. Observational studies, or studies in which treatment allocation occurs independently of investigators' choice or randomization, may address several of these gaps in knowledge, thereby complementing the role of RCTs. This critical review discusses how observational CER studies complement RCTs in generating the evidence to inform healthcare decisions and improve the quality of care and outcomes of H and N cancer patients. Review topics include a balanced discussion about the strengths and limitations of both RCT and observational CER study designs; a brief description of design and analytic techniques to handle selection bias in observational studies; examples of observational studies that inform current clinical practices and management of H and N cancers; and suggestions for relevant CER questions that could be addressed by an observational study design.

  20. SU-E-T-206: Improving Radiotherapy Toxicity Based On Artificial Neural Network (ANN) for Head and Neck Cancer Patients

    SciTech Connect (OSTI)

    Cho, Daniel D; Wernicke, A Gabriella; Nori, Dattatreyudu; Chao, KSC; Parashar, Bhupesh; Chang, Jenghwa [Weill Cornell Medical College, NY, NY (United States)

    2014-06-01

    Purpose/Objective(s): The aim of this study is to build the estimator of toxicity using artificial neural network (ANN) for head and neck cancer patients Materials/Methods: An ANN can combine variables into a predictive model during training and considered all possible correlations of variables. We constructed an ANN based on the data from 73 patients with advanced H and N cancer treated with external beam radiotherapy and/or chemotherapy at our institution. For the toxicity estimator we defined input data including age, sex, site, stage, pathology, status of chemo, technique of external beam radiation therapy (EBRT), length of treatment, dose of EBRT, status of post operation, length of follow-up, the status of local recurrences and distant metastasis. These data were digitized based on the significance and fed to the ANN as input nodes. We used 20 hidden nodes (for the 13 input nodes) to take care of the correlations of input nodes. For training ANN, we divided data into three subsets such as training set, validation set and test set. Finally, we built the estimator for the toxicity from ANN output. Results: We used 13 input variables including the status of local recurrences and distant metastasis and 20 hidden nodes for correlations. 59 patients for training set, 7 patients for validation set and 7 patients for test set and fed the inputs to Matlab neural network fitting tool. We trained the data within 15% of errors of outcome. In the end we have the toxicity estimation with 74% of accuracy. Conclusion: We proved in principle that ANN can be a very useful tool for predicting the RT outcomes for high risk H and N patients. Currently we are improving the results using cross validation.

  1. Click to add heading

    Office of Environmental Management (EM)

    (ACI 349) - most common lateral load resisting members in nuclear structures (pressure vessels not in scope) 4 * Aim to reduce complexities in rebar to improve construction quality...

  2. Click to add heading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of analytical modeling and design * Post-test analyses to extend results 12 4.1- Material Testing * ASTM tests for concrete and rebar materials - preliminary concrete mixes and ...

  3. HEAD OF CONTRACTING ACTIVITY

    Broader source: Energy.gov (indexed) [DOE]

    W. Seymour Assistant Administrator, HR and Administration 706-213-3810 joel.seymour@sepa.doe.gov 00-022.04 Southeastern Power Administration (SEPA) Building ELBERT, 8E-033 1166...

  4. Commercializing Government-sponsored Innovations: Twelve Successful Buildings Case Studies

    DOE R&D Accomplishments [OSTI]

    Brown, M. A.; Berry, L. G.; Goel, R. K.

    1989-01-01

    This report examines the commercialization and use of R and D results funded by DOE's Office of Buildings and Community Systems (OBCS), an office that is dedicated to improving the energy efficiency of the nation's buildings. Three goals guided the research described in this report: to improve understanding of the factors that hinder or facilitate the transfer of OBCS R and D results, to determine which technology transfer strategies are most effective and under what circumstances each is appropriate, and to document the market penetration and energy savings achieved by successfully-commercialized innovations that have received OBCS support. Twelve successfully-commercialized innovations are discussed here. The methodology employed involved a review of the literature, interviews with innovation program managers and industry personnel, and data collection from secondary sources. Six generic technology transfer strategies are also described. Of these, contracting R and D to industrial partners is found to be the most commonly used strategy in our case studies. The market penetration achieved to date by the innovations studied ranges from less than 1% to 100%. For the three innovations with the highest predicted levels of energy savings (i.e., the flame retention head oil burner, low-E windows, and solid-state ballasts), combined cumulative savings by the year 2000 are likely to approach 2 quads. To date the energy savings for these three innovations have been about 0.2 quads. Our case studies illustrate the important role federal agencies can play in commercializing new technologies.

  5. Predictors of Severe Acute and Late Toxicities in Patients With Localized Head-and-Neck Cancer Treated With Radiation Therapy

    SciTech Connect (OSTI)

    Meyer, Francois, E-mail: francois.meyer@chuq.qc.ca [Laval University Cancer Research Center, Centre hospitalier universitaire de Quebec - L'Hotel-Dieu de Quebec, Quebec (Canada); Fortin, Andre; Wang, Chang Shu [Radiation Therapy Department, Centre hospitalier universitaire de Quebec - L'Hotel-Dieu de Quebec, Quebec (Canada); Liu, Geoffrey [Applied Molecular Oncology, Ontario Cancer Institute/Princess Margaret Hospital, Toronto (Canada); Bairati, Isabelle [Laval University Cancer Research Center, Centre hospitalier universitaire de Quebec - L'Hotel-Dieu de Quebec, Quebec (Canada)

    2012-03-15

    Purpose: Radiation therapy (RT) causes acute and late toxicities that affect various organs and functions. In a large cohort of patients treated with RT for localized head and neck cancer (HNC), we prospectively assessed the occurrence of RT-induced acute and late toxicities and identified characteristics that predicted these toxicities. Methods and Materials: We conducted a randomized trial among 540 patients treated with RT for localized HNC to assess whether vitamin E supplementation could improve disease outcomes. Adverse effects of RT were assessed using the Radiation Therapy Oncology Group Acute Radiation Morbidity Criteria during RT and one month after RT, and the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring Scheme at six and 12 months after RT. The most severe adverse effect among the organs/tissues was selected as an overall measure of either acute or late toxicity. Grade 3 and 4 toxicities were considered as severe. Stepwise multivariate logistic regression models were used to identify all independent predictors (p < 0.05) of acute or late toxicity and to estimate odds ratios (OR) for severe toxicity with their 95% confidence intervals (CI). Results: Grade 3 or 4 toxicity was observed in 23% and 4% of patients, respectively, for acute and late toxicity. Four independent predictors of severe acute toxicity were identified: sex (female vs. male: OR = 1.72, 95% confidence interval [CI]: 1.06-2.80), Karnofsky Performance Status (OR = 0.67 for a 10-point increment, 95% CI: 0.52-0.88), body mass index (above 25 vs. below: OR = 1.88, 95% CI: 1.22-2.90), TNM stage (Stage II vs. I: OR = 1.91, 95% CI: 1.25-2.92). Two independent predictors were found for severe late toxicity: female sex (OR = 3.96, 95% CI: 1.41-11.08) and weight loss during RT (OR = 1.26 for a 1 kg increment, 95% CI: 1.12-1.41). Conclusions: Knowledge of these predictors easily collected in a clinical setting could help tailoring therapies to reduce toxicities among patients treated with RT for HNC.

  6. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions

    SciTech Connect (OSTI)

    Brunner, Claudia C.; Stern, Stanley H.; Chakrabarti, Kish; Minniti, Ronaldo; Parry, Marie I.; Skopec, Marlene

    2013-08-15

    Purpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reed National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner. We also analyzed images of the ACR CT accreditation phantom with the corresponding protocols. While the Siemens Definition and the Philips Brilliance protocols utilized only conventional, filtered back-projection (FBP) image-reconstruction methods, the GE Discovery also employed its particular version of an adaptive statistical iterative reconstruction (ASIR) algorithm that can be blended in desired proportions with the FBP algorithm. We did an objective image-metrics analysis evaluating the modulation transfer function (MTF), noise power spectrum (NPS), and CNR for images reconstructed with FBP. For images reconstructed with ASIR, we only analyzed the CNR, since MTF and NPS results are expected to depend on the object for iterative reconstruction algorithms.Results: The OSLD measurements showed that the Siemens Definition and the Philips Brilliance scanners (located at two different clinical facilities) yield average absorbed doses in tissue of 42.6 and 43.1 mGy, respectively. The GE Discovery delivers about the same amount of dose (43.7 mGy) when run under similar operating and image-reconstruction conditions, i.e., without tube current modulation and ASIR. The image-metrics analysis likewise showed that the MTF, NPS, and CNR associated with the reconstructed images are mutually comparable when the three scanners are run with similar settings, and differences can be attributed to different edge-enhancement properties of the applied reconstruction filters. Moreover, when the GE scanner was operated with the facility's scanner settings for routine head exams, which apply 50% ASIR and use only approximately half of the 100%-FBP dose, the CNR of the images showed no significant change. Even though the CNR alone is not sufficient to characterize the image quality and justify any dose reduction claims, it can be useful as a constancy test metric.Conclusions: This work presents a straightforward method to connect direct measurements of CT dose with objective image metrics such as high-contrast resolution, noise, and CNR. It demonstrates that OSLD measurements in an anthropomorphic head phantom allow a realistic and locally precise estimation of magnitude and spatial distribution of dose in tissue delivered during a typical CT head scan. Additional objective analysis of the images of the ACR accreditation phantom can be used to relate the measured doses to high contrast resolution, noise, and CNR.

  7. Accuracy of Computed Tomography for Predicting Pathologic Nodal Extracapsular Extension in Patients With Head-and-Neck Cancer Undergoing Initial Surgical Resection

    SciTech Connect (OSTI)

    Prabhu, Roshan S.; Magliocca, Kelly R.; Hanasoge, Sheela; Aiken, Ashley H.; Hudgins, Patricia A.; Hall, William A.; Chen, Susie A.; Eaton, Bree R.; Higgins, Kristin A.; Saba, Nabil F.; Beitler, Jonathan J.

    2014-01-01

    Purpose: Nodal extracapsular extension (ECE) in patients with head-and-neck cancer increases the loco-regional failure risk and is an indication for adjuvant chemoradiation therapy (CRT). To reduce the risk of requiring trimodality therapy, patients with head-and-neck cancer who are surgical candidates are often treated with definitive CRT when preoperative computed tomographic imaging suggests radiographic ECE. The purpose of this study was to assess the accuracy of preoperative CT imaging for predicting pathologic nodal ECE (pECE). Methods and Materials: The study population consisted of 432 consecutive patients with oral cavity or locally advanced/nonfunctional laryngeal cancer who underwent preoperative CT imaging before initial surgical resection and neck dissection. Specimens with pECE had the extent of ECE graded on a scale from 1 to 4. Results: Radiographic ECE was documented in 46 patients (10.6%), and pECE was observed in 87 (20.1%). Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 43.7%, 97.7%, 82.6%, and 87.3%, respectively. The sensitivity of radiographic ECE increased from 18.8% for grade 1 to 2 ECE, to 52.9% for grade 3, and 72.2% for grade 4. Radiographic ECE criteria of adjacent structure invasion was a better predictor than irregular borders/fat stranding for pECE. Conclusions: Radiographic ECE has poor sensitivity, but excellent specificity for pECE in patients who undergo initial surgical resection. PPV and NPV are reasonable for clinical decision making. The performance of preoperative CT imaging increased as pECE grade increased. Patients with resectable head-and-neck cancer with radiographic ECE based on adjacent structure invasion are at high risk for high-grade pECE requiring adjuvant CRT when treated with initial surgery; definitive CRT as an alternative should be considered where appropriate.

  8. A human monoclonal antibody derived from a vaccinated volunteer recognizes heterosubtypically a novel epitope on the hemagglutinin globular head of H1 and H9 influenza A viruses

    SciTech Connect (OSTI)

    Boonsathorn, Naphatsawan; Panthong, Sumolrat; Chittaganpitch, Malinee; Phuygun, Siripaporn; Waicharoen, Sunthareeya; Prachasupap, Apichai; Yasugi, Mayo; Ono, Ken-ichiro; and others

    2014-09-26

    Highlights: A human monoclonal antibody against influenza virus was produced from a volunteer. The antibody was generated from the PBMCs of the volunteer using the fusion method. The antibody neutralized heterosubtypically group 1 influenza A viruses (H1 and H9). The antibody targeted a novel epitope in globular head region of the hemagglutinin. Sequences of the identified epitope are highly conserved among H1 and H9 subtypes. - Abstract: Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutinin (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses.

  9. Radiation Therapy in the Management of Head-and-Neck Cancer of Unknown Primary Origin: How Does the Addition of Concurrent Chemotherapy Affect the Therapeutic Ratio?

    SciTech Connect (OSTI)

    Chen, Allen M.; Farwell, D. Gregory; Lau, Derick H.; Li Baoqing; Luu, Quang; Donald, Paul J.

    2011-10-01

    Purpose: To determine how the addition of cisplatin-based concurrent chemotherapy to radiation therapy influences outcomes among a cohort of patients treated for head-and-neck cancer of unknown primary origin. Methods and Materials: The medical records of 60 consecutive patients treated by radiation therapy for squamous cell carcinoma of the head and neck presenting as cervical lymph node metastasis of occult primary origin were reviewed. Thirty-two patients (53%) were treated by concurrent chemoradiation, and 28 patients (47%) were treated by radiation therapy alone. Forty-five patients (75%) received radiation therapy after surgical resection, and 15 patients (25%) received primary radiation therapy. Thirty-five patients (58%) were treated by intensity-modulated radiotherapy. Results: The 2-year estimates of overall survival, local-regional control, and progression-free survival were 89%, 89%, and 79%, respectively, among patients treated by chemoradiation, compared to 90%, 92%, and 83%, respectively, among patients treated by radiation therapy alone (p > 0.05, for all). Exploratory analysis failed to identify any subset of patients who benefited from the addition of concurrent chemotherapy to radiation therapy. The use of concurrent chemotherapy was associated with a significantly increased incidence of Grade 3+ acute and late toxicity (p < 0.001, for both). Conclusions: Concurrent chemoradiation is associated with significant toxicity without a clear advantage to overall survival, local-regional control, and progression-free survival in the treatment of head-and-neck cancer of unknown primary origin. Although selection bias cannot be ignored, prospective data are needed to further address this question.

  10. Intensity-Modulated Radiotherapy is Associated With Improved Global Quality of Life Among Long-term Survivors of Head-and-Neck Cancer

    SciTech Connect (OSTI)

    Chen, Allen M.; Farwell, D. Gregory; Luu, Quang; Vazquez, Esther G.; Lau, Derick H.; Purdy, James A.

    2012-09-01

    Purpose: To compare the long-term quality of life among patients treated with and without intensity-modulated radiotherapy (IMRT) for head-and-neck cancer. Methods and Materials: University of Washington Quality of Life instrument scores were reviewed for 155 patients previously treated with radiation therapy for locally advanced head-and-neck cancer. All patients were disease free and had at least 2 years of follow-up. Eighty-four patients (54%) were treated with IMRT. The remaining 71 patients (46%) were treated with three-dimensional conformal radiotherapy (3D CRT) by use of initial opposed lateral fields matched to a low anterior neck field. Results: The mean global quality of life scores were 67.5 and 80.1 for the IMRT patients at 1 and 2 years, respectively, compared with 55.4 and 57.0 for the 3D CRT patients, respectively (p < 0.001). At 1 year after the completion of radiation therapy, the proportion of patients who rated their global quality of life as 'very good' or 'outstanding' was 51% and 41% among patients treated by IMRT and 3DCRT, respectively (p = 0.11). At 2 years, the corresponding percentages increased to 73% and 49%, respectively (p < 0.001). On multivariate analysis accounting for sex, age, radiation intent (definitive vs. postoperative), radiation dose, T stage, primary site, use of concurrent chemotherapy, and neck dissection, the use of IMRT was the only variable independently associated with improved quality of life (p = 0.01). Conclusion: The early quality of life improvements associated with IMRT not only are maintained but apparently become more magnified over time. These data provide powerful evidence attesting to the long-term benefits of IMRT for head-and-neck cancer.

  11. EA-2017: Real-World Demonstration of a New, American Low-Head Hydropower Turbine, Monongahela River, approximately ten miles east of Pittsburg, PA

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts associated with a DOE proposal to provide federal funding to Hydro Green Energy (HGE) to fabricate and install one (1) interchangeable Modular Bulb Turbine (MBT) which would be inserted in a Large Frame Module (LFM) and supporting civil infrastructure as part of a larger project that would include the design and installation of seven MBTs to create a 5.2 megawatt, low head hydropower system that would be integrated into the existing Braddock Locks and Dam.

  12. The Effect of Accident Conditions on the Molten Core Material Relocation into the Lower Head of a PWR Vessel with Application to TMI-2

    SciTech Connect (OSTI)

    An Xuegao; Dhir, Vijay K.; Okrent, David

    2000-11-15

    The damage progression of the reactor core and the slumping mechanism of molten material to the lower head of the reactor vessel were examined through simulation of severe accident scenarios that lead to large-scale core damage. The calculations were carried out on a Three Mile Island Unit 2 configuration using the computer code SCDAP/RELAP5/MOD3.2.Different accident scenarios were simulated. The high-pressure injection and makeup flow rates were changed. The extreme case with no water being added during the accident was examined. Reflood by restart of coolant pump 2B was also studied. Finally, the size of the power-operated relief valve opening was also changed. The effects of these accident scenarios on the accident progression and the core damage process were studied.It is concluded that, according to code MOD3.2, the molten material slumped to the lower head of the reactor vessel when the junction of the top and side crusts failed after the molten pool had reached the periphery of the core. When the effective stress caused by pressure imbalance inside and outside of the crust became larger than the ultimate strength of the crust, the crust failed mechanically.

  13. Construction and installation summary for fiscal year 1992 of the hydraulic head monitoring stations at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Dreier, R.B.; Switek, J.; Couzens, B.A.

    1992-12-01

    During FY 1992, as part of the Hydraulic Head Monitoring Station (HHMS) Project, three multiport wells (HHMS 12, 13, and 14) were constructed along or near the boundaries of Waste Area Grouping (WAG) 2 at Haw Ridge water gap. The purpose of this report is to document well construction and multiport component installation activities. The hydraulic head monitoring stations (HHMS) are well clusters and single multiport wells that provide data required for evaluation of the transition between shallow and deep groundwater systems and of the nature of these systems. This information is used for required characterization of the hydrologic framework as dictated by state and federal regulatory agencies. Groundwater contaminants may move laterally across WAG boundaries or offsite; they may also move in a vertical direction. Because the HHMS Project was designed to address otential contamination problems, the project provides a means for defining the bounds of the uppermost aquifer; identifying potential pathways for offsite contamination for shallow; intermediate, and deep groundwater flow; and evaluating the capacity for contaminant transport in intermediate and deep groundwater flow systems.

  14. Construction and installation summary for fiscal year 1992 of the hydraulic head monitoring stations at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Dreier, R.B.; Switek, J.; Couzens, B.A.

    1992-12-01

    During FY 1992, as part of the Hydraulic Head Monitoring Station (HHMS) Project, three multiport wells (HHMS 12, 13, and 14) were constructed along or near the boundaries of Waste Area Grouping (WAG) 2 at Haw Ridge water gap. The purpose of this report is to document well construction and multiport component installation activities. The hydraulic head monitoring stations (HHMS) are well clusters and single multiport wells that provide data required for evaluation of the transition between shallow and deep groundwater systems and of the nature of these systems. This information is used for required characterization of the hydrologic framework as dictated by state and federal regulatory agencies. Groundwater contaminants may move laterally across WAG boundaries or offsite; they may also move in a vertical direction. Because the HHMS Project was designed to address otential contamination problems, the project provides a means for defining the bounds of the uppermost aquifer; identifying potential pathways for offsite contamination for shallow; intermediate, and deep groundwater flow; and evaluating the capacity for contaminant transport in intermediate and deep groundwater flow systems.

  15. {sup 18}F-FLT uptake kinetics in head and neck squamous cell carcinoma: A PET imaging study

    SciTech Connect (OSTI)

    Liu, Dan Fenwick, John D.; Chalkidou, Anastasia; Landau, David B.; Marsden, Paul K.

    2014-04-15

    Purpose: To analyze the kinetics of 3{sup ′}-deoxy-3{sup ′}-[F-18]-fluorothymidine (18F-FLT) uptake by head and neck squamous cell carcinomas and involved nodes imaged using positron emission tomography (PET). Methods: Two- and three-tissue compartment models were fitted to 12 tumor time-activity-curves (TACs) obtained for 6 structures (tumors or involved nodes) imaged in ten dynamic PET studies of 1 h duration, carried out for five patients. The ability of the models to describe the data was assessed using a runs test, the Akaike information criterion (AIC) and leave-one-out cross-validation. To generate parametric maps the models were also fitted to TACs of individual voxels. Correlations between maps of different parameters were characterized using Pearson'sr coefficient; in particular the phosphorylation rate-constants k{sub 3-2tiss} and k{sub 5} of the two- and three-tissue models were studied alongside the flux parameters K{sub FLT-2tiss} and K{sub FLT} of these models, and standardized uptake values (SUV). A methodology based on expectation-maximization clustering and the Bayesian information criterion (“EM-BIC clustering”) was used to distil the information from noisy parametric images. Results: Fits of two-tissue models 2C3K and 2C4K and three-tissue models 3C5K and 3C6K comprising three, four, five, and six rate-constants, respectively, pass the runs test for 4, 8, 10, and 11 of 12 tumor TACs. The three-tissue models have lower AIC and cross-validation scores for nine of the 12 tumors. Overall the 3C6K model has the lowest AIC and cross-validation scores and its fitted parameter values are of the same orders of magnitude as literature estimates. Maps ofK{sub FLT} and K{sub FLT-2tiss} are strongly correlated (r = 0.85) and also correlate closely with SUV maps (r = 0.72 for K{sub FLT-2tiss}, 0.64 for K{sub FLT}). Phosphorylation rate-constant maps are moderately correlated with flux maps (r = 0.48 for k{sub 3-2tiss} vs K{sub FLT-2tiss} and r = 0.68 for k{sub 5} vs K{sub FLT}); however, neither phosphorylation rate-constant correlates significantly with SUV. EM-BIC clustering reduces the parametric maps to a small number of levels—on average 5.8, 3.5, 3.4, and 1.4 for K{sub FLT-2tiss}, K{sub FLT}, k{sub 3-2tiss}, and k{sub 5.} This large simplification is potentially useful for radiotherapy dose-painting, but demonstrates the high noise in some maps. Statistical simulations show that voxel level noise degrades TACs generated from the 3C6K model sufficiently that the average AIC score, parameter bias, and total uncertainty of 2C4K model fits are similar to those of 3C6K fits, whereas at the whole tumor level the scores are lower for 3C6K fits. Conclusions: For the patients studied here, whole tumor FLT uptake time-courses are represented better overall by a three-tissue than by a two-tissue model. EM-BIC clustering simplifies noisy parametric maps, providing the best description of the underlying information they contain and is potentially useful for radiotherapy dose-painting. However, the clustering highlights the large degree of noise present in maps of the phosphorylation rate-constantsk{sub 5} and k{sub 3-2tiss}, which are conceptually tightly linked to cellular proliferation. Methods must be found to make these maps more robust—either by constraining other model parameters or modifying dynamic imaging protocols.

  16. The effect of head size/shape, miscentering, and bowtie filter on peak patient tissue doses from modern brain perfusion 256-slice CT: How can we minimize the risk for deterministic effects?

    SciTech Connect (OSTI)

    Perisinakis, Kostas; Seimenis, Ioannis; Tzedakis, Antonis; Papadakis, Antonios E.; Damilakis, John

    2013-01-15

    Purpose: To determine patient-specific absorbed peak doses to skin, eye lens, brain parenchyma, and cranial red bone marrow (RBM) of adult individuals subjected to low-dose brain perfusion CT studies on a 256-slice CT scanner, and investigate the effect of patient head size/shape, head position during the examination and bowtie filter used on peak tissue doses. Methods: The peak doses to eye lens, skin, brain, and RBM were measured in 106 individual-specific adult head phantoms subjected to the standard low-dose brain perfusion CT on a 256-slice CT scanner using a novel Monte Carlo simulation software dedicated for patient CT dosimetry. Peak tissue doses were compared to corresponding thresholds for induction of cataract, erythema, cerebrovascular disease, and depression of hematopoiesis, respectively. The effects of patient head size/shape, head position during acquisition and bowtie filter used on resulting peak patient tissue doses were investigated. The effect of eye-lens position in the scanned head region was also investigated. The effect of miscentering and use of narrow bowtie filter on image quality was assessed. Results: The mean peak doses to eye lens, skin, brain, and RBM were found to be 124, 120, 95, and 163 mGy, respectively. The effect of patient head size and shape on peak tissue doses was found to be minimal since maximum differences were less than 7%. Patient head miscentering and bowtie filter selection were found to have a considerable effect on peak tissue doses. The peak eye-lens dose saving achieved by elevating head by 4 cm with respect to isocenter and using a narrow wedge filter was found to approach 50%. When the eye lies outside of the primarily irradiated head region, the dose to eye lens was found to drop to less than 20% of the corresponding dose measured when the eye lens was located in the middle of the x-ray beam. Positioning head phantom off-isocenter by 4 cm and employing a narrow wedge filter results in a moderate reduction of signal-to-noise ratio mainly to the peripheral region of the phantom. Conclusions: Despite typical peak doses to skin, eye lens, brain, and RBM from the standard low-dose brain perfusion 256-slice CT protocol are well below the corresponding thresholds for the induction of erythema, cataract, cerebrovascular disease, and depression of hematopoiesis, respectively, every effort should be made toward optimization of the procedure and minimization of dose received by these tissues. The current study provides evidence that the use of the narrower bowtie filter available may considerably reduce peak absorbed dose to all above radiosensitive tissues with minimal deterioration in image quality. Considerable reduction in peak eye-lens dose may also be achieved by positioning patient head center a few centimeters above isocenter during the exposure.

  17. Dosimetric characterization of a multileaf collimator for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000

    SciTech Connect (OSTI)

    Nakamura, Mitsuhiro; Sawada, Akira; Ishihara, Yoshitomo; Takayama, Kenji; Mizowaki, Takashi; Kaneko, Shuji; Yamashita, Mikiko; Tanabe, Hiroaki; Kokubo, Masaki; Hiraoka, Masahiro

    2010-09-15

    Purpose: To present the dosimetric characterization of a multileaf collimator (MLC) for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000. Methods: MHI-TM2000 has an x-ray head composed of an ultrasmall linear accelerator guide and a system-specific MLC. The x-ray head can rotate along the two orthogonal gimbals (pan and tilt rotations) up to {+-}2.5 deg., which swings the beam up to {+-}41.9 mm in each direction from the isocenter on the isocenter plane perpendicular to the beam. The MLC design is a single-focus type, has 30 pairs of 5 mm thick leaves at the isocenter, and produces a maximum field size of 150x150 mm{sup 2}. Leaf height and length are 110 and 260 mm, respectively. Each leaf end is circular, with a radius of curvature of 370 mm. The distance that each leaf passes over the isocenter is 77.5 mm. Radiation leakage between adjacent leaves is minimized by an interlocking tongue-and-groove (T and G) arrangement with the height of the groove part 55 mm. The dosimetric characterizations including field characteristics, leaf position accuracy, leakage, and T and G effect were evaluated using a well-commissioned 6 MV photon beam, EDR2 films (Kodak, Rochester, NY), and water-equivalent phantoms. Furthermore, the field characteristics and leaf position accuracy were evaluated under conditions of pan or tilt rotation. Results: The differences between nominal and measured field sizes were within {+-}0.5 mm. Although the penumbra widths were greater with wider field size, the maximum width was <5.5 mm even for the fully opened field. Compared to the results of field characteristics without pan or tilt rotation, the variation in field size, penumbra width, flatness, and symmetry was within {+-}1 mm/1% at the maximum pan or tilt rotational angle. The leaf position accuracy was 0.0{+-}0.1 mm, ranging from -0.3 to 0.2 mm at four gantry angles of 0 deg., 90 deg., 180 deg., and 270 deg. with and without pan or tilt rotation. The interleaf leakage was up to 0.21%, whereas the intraleaf leakage was <0.12%. T and G decreased the doses by 10.7%, on average. Conclusions: This study demonstrated that MHI-TM2000 has the capability for high leaf position accuracy and low leakage, leading to highly accurate intensity-modulated radiotherapy delivery. Furthermore, substantial changes in the dosimetric data on field characteristics and leaf position accuracy were not observed even at the maximum pan or tilt rotation.

  18. Boron Neutron Capture Therapy in the Treatment of Locally Recurred Head-and-Neck Cancer: Final Analysis of a Phase I/II Trial

    SciTech Connect (OSTI)

    Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna; Saarilahti, Kauko; Atula, Timo; Collan, Juhani; Salli, Eero; Kortesniemi, Mika; Uusi-Simola, Jouni; Vaelimaeki, Petteri; Maekitie, Antti; Seppaenen, Marko; Minn, Heikki; Revitzer, Hannu; Kouri, Mauri; Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro; Savolainen, Sauli; Joensuu, Heikki

    2012-01-01

    Purpose: To investigate the efficacy and safety of boron neutron capture therapy (BNCT) in the treatment of inoperable head-and-neck cancers that recur locally after conventional photon radiation therapy. Methods and Materials: In this prospective, single-center Phase I/II study, 30 patients with inoperable, locally recurred head-and-neck cancer (29 carcinomas and 1 sarcoma) were treated with BNCT. Prior treatments consisted of surgery and conventionally fractionated photon irradiation to a cumulative dose of 50 to 98 Gy administered with or without concomitant chemotherapy. Tumor responses were assessed by use of the RECIST (Response Evaluation Criteria in Solid Tumors) and adverse effects by use of the National Cancer Institute common terminology criteria version 3.0. Intravenously administered L-boronophenylalanine-fructose (400 mg/kg) was administered as the boron carrier. Each patient was scheduled to be treated twice with BNCT. Results: Twenty-six patients received BNCT twice; four were treated once. Of the 29 evaluable patients, 22 (76%) responded to BNCT, 6 (21%) had tumor growth stabilization for 5.1 and 20.3 months, and 1 (3%) progressed. The median progression-free survival time was 7.5 months (95% confidence interval, 5.4-9.6 months). Two-year progression-free survival and overall survival were 20% and 30%, respectively, and 27% of the patients survived for 2 years without locoregional recurrence. The most common acute Grade 3 adverse effects were mucositis (54% of patients), oral pain (54%), and fatigue (32%). Three patients were diagnosed with osteoradionecrosis (each Grade 3) and one patient with soft-tissue necrosis (Grade 4). Late Grade 3 xerostomia was present in 3 of the 15 evaluable patients (20%). Conclusions: Most patients who have inoperable, locally advanced head-and-neck carcinoma that has recurred at a previously irradiated site respond to boronophenylalanine-mediated BNCT, but cancer recurrence after BNCT remains frequent. Toxicity was acceptable. Further research on novel modifications of the method is warranted.

  19. Apparatus and process to enhance the uniform formation of hollow glass microspheres

    DOE Patents [OSTI]

    Schumacher, Ray F

    2013-10-01

    A process and apparatus is provided for enhancing the formation of a uniform population of hollow glass microspheres. A burner head is used which directs incoming glass particles away from the cooler perimeter of the flame cone of the gas burner and distributes the glass particles in a uniform manner throughout the more evenly heated portions of the flame zone. As a result, as the glass particles are softened and expand by a released nucleating gas so as to form a hollow glass microsphere, the resulting hollow glass microspheres have a more uniform size and property distribution as a result of experiencing a more homogenous heat treatment process.

  20. SU-E-T-275: Radiobiological Evaluation of Intensity Modulated Radiotherapy Treatment for Locally Advanced Head and Neck Squamous Cell Carcinomas

    SciTech Connect (OSTI)

    Rekha Reddy, B.; Ravikumar, M.; Tanvir Pasha, C.R; Anil Kumar, M.R; Varatharaj, C.; Pyakuryal, A; Narayanasamy, Ganesh

    2014-06-01

    Purpose: To evaluate the radiobiological outcome of Intensity Modulated Radiotherapy Treatment (IMRT) for locally advanced head and neck squamous cell carcinomas using HART (Histogram Analysis in Radiation Therapy; J Appl Clin Med Phys 11(1): 137157, 2010) program and compare with the clinical outcomes. Methods: We have treated 20 patients of stage III and IV HNSCC Oropharynx and hypopharynx with accelerated IMRT technique and concurrent chemotherapy. Delineation of tumor and normal tissues were done using Danish Head and Neck Cancer Group (DAHANCA) contouring guidelines and radiotherapy was delivered to a dose of 70Gy in 35 fractions to the primary and involved lymph nodes, 63Gy to intermediate risk areas and 56 Gy to lower risk areas, Monday to Saturday, 6 Days/week using 6 MV Photons with an expected overall treatment time of 6 weeks. The TCP and NTCP's were calculated from the dose-volume histogram (DVH) statistics using the Poisson Statistics (PS) and JT Lyman models respectively and the Resultwas correlated with clinical outcomes of the patients with mean follow up of 24 months. Results: Using HART program, the TCP (0.89 0.01) of primary tumor and the NTCP for parotids (0.200.12), spinal cord (0.050.01), esophagus (0.300.2), mandible (0.350.21), Oral cavity (0.370.18), Larynx (0.300.15) were estimated and correlated with clinical outcome of the patients. Conclusion: Accelerated IMRT with Chemotherapy is a clinical feasible option in the treatment of locally advanced HNSCC with encouraging initial tumour response and acceptable acute toxicities. The correlation between the clinical outcomes and radiobiological model estimated parameters using HART programs are found to be satisfactory.

  1. Ultrasonic Nakagami-parameter characterization of parotid-gland injury following head-and-neck radiotherapy: A feasibility study of late toxicity

    SciTech Connect (OSTI)

    Yang, Xiaofeng; Wu, Ning; Wang, Yuefeng; Tridandapani, Srini; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; Winship Cancer Institute, Emory University, Atlanta, Georgia 30322 ; Beitler, Jonathan J.; Yu, David S.; Curran, Walter J.; Liu, Tian; Bruner, Deborah W.; Winship Cancer Institute, Emory University, Atlanta, Georgia 30322; School of Nursing, Emory University, Atlanta, Georgia 30322

    2014-02-15

    Purpose: The study aims to investigate whether Nakagami parametersestimated from the statistical distribution of the backscattered ultrasound radio-frequency (RF) signalscould provide a means for quantitative characterization of parotid-gland injury resulting from head-and-neck radiotherapy. Methods: A preliminary clinical study was conducted with 12 postradiotherapy patients and 12 healthy volunteers. Each participant underwent one ultrasound study in which ultrasound scans were performed in the longitudinal, i.e., vertical orientation on the bilateral parotids. For the 12 patients, the mean radiation dose to the parotid glands was 37.7 9.5 Gy, and the mean follow-up time was 16.3 4.8 months. All enrolled patients experienced grade 1 or 2 late salivary-gland toxicity (RTOG/EORTC morbidity scale). The normal parotid glands served as the control group. The Nakagami-scaling and Nakagami-shape parameters were computed from the RF data to quantify radiation-induced parotid-gland changes. Results: Significant differences in Nakagami parameters were observed between the normal and postradiotherapy parotid glands. Compared with the control group, the Nakagami-scaling parameter of the postradiotherapy group decreased by 25.8% (p < 0.001), and the Nakagami-shape parameter decreased by 31.3% (p < 0.001). The area under the receiver operating characteristic curve was 0.85 for the Nakagami-scaling parameter and was 0.95 for the Nakagami-shape parameter, which further demonstrated the diagnostic efficiency of the Nakagami parameters. Conclusions: Nakagami parameters could be used to quantitatively measure parotid-gland injury following head-and-neck radiotherapy. Moreover, the clinical feasibility was demonstrated and this study provides meaningful preliminary data for future clinical investigation.

  2. Treatment Planning Constraints to Avoid Xerostomia in Head-and-Neck Radiotherapy: An Independent Test of QUANTEC Criteria Using a Prospectively Collected Dataset

    SciTech Connect (OSTI)

    Moiseenko, Vitali, E-mail: vmoiseenko@bccancer.bc.ca [Department of Medical Physics, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada); Wu, Jonn [Department of Radiation Oncology, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada); Hovan, Allan [Department of Oral Oncology, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada); Saleh, Ziad; Apte, Aditya; Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Harrow, Stephen [Department of Radiation Oncology, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada); Rabuka, Carman; Muggli, Adam [Department of Oral Oncology, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada); Thompson, Anna [Department of Radiation Oncology, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada)

    2012-03-01

    Purpose: The severe reduction of salivary function (xerostomia) is a common complication after radiation therapy for head-and-neck cancer. Consequently, guidelines to ensure adequate function based on parotid gland tolerance dose-volume parameters have been suggested by the QUANTEC group and by Ortholan et al. We perform a validation test of these guidelines against a prospectively collected dataset and compared with a previously published dataset. Methods and Materials: Whole-mouth stimulated salivary flow data from 66 head-and-neck cancer patients treated with radiotherapy at the British Columbia Cancer Agency (BCCA) were measured, and treatment planning data were abstracted. Flow measurements were collected from 50 patients at 3 months, and 60 patients at 12-month follow-up. Previously published data from a second institution, Washington University in St. Louis (WUSTL), were used for comparison. A logistic model was used to describe the incidence of Grade 4 xerostomia as a function of the mean dose of the spared parotid gland. The rate of correctly predicting the lack of xerostomia (negative predictive value [NPV]) was computed for both the QUANTEC constraints and Ortholan et al. recommendation to constrain the total volume of both glands receiving more than 40 Gy to less than 33%. Results: Both datasets showed a rate of xerostomia of less than 20% when the mean dose to the least-irradiated parotid gland is kept to less than 20 Gy. Logistic model parameters for the incidence of xerostomia at 12 months after therapy, based on the least-irradiated gland, were D{sub 50} = 32.4 Gy and and {gamma} = 0.97. NPVs for QUANTEC guideline were 94% (BCCA data), and 90% (WUSTL data). For Ortholan et al. guideline NPVs were 85% (BCCA) and 86% (WUSTL). Conclusion: These data confirm that the QUANTEC guideline effectively avoids xerostomia, and this is somewhat more effective than constraints on the volume receiving more than 40 Gy.

  3. CENTIMETER CONTINUUM OBSERVATIONS OF THE NORTHERN HEAD OF THE HH 80/81/80N JET: REVISING THE ACTUAL DIMENSIONS OF A PARSEC-SCALE JET

    SciTech Connect (OSTI)

    Masque, Josep M.; Estalella, Robert; Girart, Josep M.; Rodriguez, Luis F.; Beltran, Maria T.

    2012-10-10

    We present 6 and 20 cm Jansky Very Large Array/Very Large Array observations of the northern head of the HH 80/81/80N jet, one of the largest collimated jet systems known so far, aimed to look for knots farther than HH 80N, the northern head of the jet. Aligned with the jet and 10' northeast of HH 80N, we found a radio source not reported before, with a negative spectral index similar to that of HH 80, HH 81, and HH 80N. The fit of a precessing jet model to the knots of the HH 80/81/80N jet, including the new source, shows that the position of this source is close to the jet path resulting from the modeling. If the new source belongs to the HH 80/81/80N jet, its derived size and dynamical age are 18.4 pc and >9 Multiplication-Sign 10{sup 3} yr, respectively. If the jet is symmetric, its southern lobe would expand beyond the cloud edge resulting in an asymmetric appearance of the jet. Based on the updated dynamical age, we speculate on the possibility that the HH 80/81/80N jet triggered the star formation observed in a dense core found ahead of HH 80N, which shows signposts of interaction with the jet. These results indicate that parsec-scale radio jets can play a role in the stability of dense clumps and the regulation of star formation in the molecular cloud.

  4. Fully Automated Simultaneous Integrated Boosted-Intensity Modulated Radiation Therapy Treatment Planning Is Feasible for Head-and-Neck Cancer: A Prospective Clinical Study

    SciTech Connect (OSTI)

    Wu Binbin; McNutt, Todd; Zahurak, Marianna; Simari, Patricio; Pang, Dalong; Taylor, Russell; Sanguineti, Giuseppe

    2012-12-01

    Purpose: To prospectively determine whether overlap volume histogram (OVH)-driven, automated simultaneous integrated boosted (SIB)-intensity-modulated radiation therapy (IMRT) treatment planning for head-and-neck cancer can be implemented in clinics. Methods and Materials: A prospective study was designed to compare fully automated plans (APs) created by an OVH-driven, automated planning application with clinical plans (CPs) created by dosimetrists in a 3-dose-level (70 Gy, 63 Gy, and 58.1 Gy), head-and-neck SIB-IMRT planning. Because primary organ sparing (cord, brain, brainstem, mandible, and optic nerve/chiasm) always received the highest priority in clinical planning, the study aimed to show the noninferiority of APs with respect to PTV coverage and secondary organ sparing (parotid, brachial plexus, esophagus, larynx, inner ear, and oral mucosa). The sample size was determined a priori by a superiority hypothesis test that had 85% power to detect a 4% dose decrease in secondary organ sparing with a 2-sided alpha level of 0.05. A generalized estimating equation (GEE) regression model was used for statistical comparison. Results: Forty consecutive patients were accrued from July to December 2010. GEE analysis indicated that in APs, overall average dose to the secondary organs was reduced by 1.16 (95% CI = 0.09-2.33) with P=.04, overall average PTV coverage was increased by 0.26% (95% CI = 0.06-0.47) with P=.02 and overall average dose to the primary organs was reduced by 1.14 Gy (95% CI = 0.45-1.8) with P=.004. A physician determined that all APs could be delivered to patients, and APs were clinically superior in 27 of 40 cases. Conclusions: The application can be implemented in clinics as a fast, reliable, and consistent way of generating plans that need only minor adjustments to meet specific clinical needs.

  5. SU-E-T-403: Measurement of the Neutron Ambient Dose Equivalent From the TrueBeam Linac Head and Varian 2100 Clinac

    SciTech Connect (OSTI)

    Harvey, M; Pollard, J; Wen, Z; Gao, S

    2014-06-01

    Purpose: High-energy x-ray therapy produces an undesirable source of stray neutron dose to healthy tissues, and thus, poses a risk for second cancer induction years after the primary treatment. Hence, the purpose of this study was to measure the neutron ambient dose equivalent, H*(10), produced from the TrueBeam and Varian 2100 linac heads, respectively. Of particular note is that there is no measured data available in the literature on H*(10) production from the TrueBeam treatment head. Methods: Both linacs were operated in flattening filter mode using a 15 MV x-ray beam on TrueBeam and an 18 MV x-ray beam for the Varian 2100 Clinac with the jaws and multileaf collimators in the fully closed position. A dose delivery rate of 600 MU/min was delivered on the TrueBeam and the Varian 2100 Clinac, respectively and the H*(10) rate was measured in triplicate using the WENDI-2 detector located at multiple positions including isocenter and longitudinal (gun-target) to the isocenter. Results: For each measurement, the H*(10) rate was relatively constant with increasing distance away from the isocenter with standard deviations on the order of a tenth of a mSv/h or less for the given beam energy. In general, fluctuations in the longitudinal H*(10) rate between the anterior-posterior couch directions were approximately a percent for both beam energies. Conclusion: Our preliminary results suggest an H*(10) rate of about 30 mSv/h (40 mSv/h) or less for TrueBeam (Varian Clinac 2100) for all measurements considered in this study indicating a relatively low contribution of produced secondary neutrons to the primary therapeutic beam.

  6. DoseVolume Modeling of Brachial Plexus-Associated Neuropathy After Radiation Therapy for Head-and-Neck Cancer: Findings From a Prospective Screening Protocol

    SciTech Connect (OSTI)

    Chen, Allen M.; Wang, Pin-Chieh; Daly, Megan E.; Cui, Jing; Hall, William H.; Vijayakumar, Srinivasan; Phillips, Theodore L.; Farwell, D. Gregory; Purdy, James A.

    2014-03-15

    Purpose: Data from a prospective screening protocol administered for patients previously irradiated for head-and-neck cancer was analyzed to identify dosimetric predictors of brachial plexus-associated neuropathy. Methods and Materials: Three hundred fifty-two patients who had previously completed radiation therapy for squamous cell carcinoma of the head and neck were prospectively screened from August 2007 to April 2013 using a standardized self-administered instrument for symptoms of neuropathy thought to be related to brachial plexus injury. All patients were disease-free at the time of screening. The median time from radiation therapy was 40 months (range, 6-111 months). A total of 177 patients (50%) underwent neck dissection. Two hundred twenty-one patients (63%) received concurrent chemotherapy. Results: Fifty-one patients (14%) reported brachial plexus-related neuropathic symptoms withthe most common being ipsilateral pain (50%), numbness/tingling (40%), and motor weakness and/or muscle atrophy (25%). The 3- and 5-year estimates of freedom from brachial plexus-associated neuropathy were 86% and 81%, respectively. Clinical/pathological N3 disease (P<.001) and maximum radiation dose to the ipsilateral brachial plexus (P=.01) were significantly associated with neuropathic symptoms. Cox regression analysis revealed significant dosevolume effects for brachial plexus-associated neuropathy. The volume of the ipsilateral brachial plexus receiving >70 Gy (V70) predicted for symptoms, with the incidence increasing with V70 >10% (P<.001). A correlation was also observed for the volume receiving >74 Gy (V74) among patients treated without neck dissection, with a cutoff of 4% predictive of symptoms (P=.038). Conclusions: Dosevolume guidelines were developed for radiation planning that may limit brachial plexus-related neuropathies.

  7. Prospective Trial of High-Dose Reirradiation Using Daily Image Guidance With Intensity-Modulated Radiotherapy for Recurrent and Second Primary Head-and-Neck Cancer

    SciTech Connect (OSTI)

    Chen, Allen M.; Farwell, D. Gregory; Luu, Quang; Cheng, Suzan; Donald, Paul J.; Purdy, James A.

    2011-07-01

    Purpose: To report a single-institutional experience using intensity-modulated radiotherapy with daily image-guided radiotherapy for the reirradiation of recurrent and second cancers of the head and neck. Methods and Materials: Twenty-one consecutive patients were prospectively treated with intensity-modulated radiotherapy from February 2006 to March 2009 to a median dose of 66 Gy (range, 60-70 Gy). None of these patients received concurrent chemotherapy. Daily helical megavoltage CT scans were obtained before each fraction as part of an image-guided radiotherapy registration protocol for patient alignment. Results: The 1- and 2-year estimates of in-field control were 72% and 65%, respectively. A total of 651 daily megavoltage CT scans were obtained. The mean systematic shift to account for interfraction motion was 1.38 {+-} 1.25 mm, 1.79 {+-} 1.45 mm, and 1.98 {+-} 1.75 mm for the medial-lateral, superior-inferior, and anterior-posterior directions, respectively. Pretreatment shifts of >3 mm occurred in 19% of setups in the medial-lateral, 27% in the superior-inferior, and 33% in the anterior-posterior directions, respectively. There were no treatment-related fatalities or hospitalizations. Complications included skin desquamation, odynophagia, otitis externa, keratitis, naso-lacrimal duct stenosis, and brachial plexopathy. Conclusions: Intensity-modulated radiotherapy with daily image guidance results in effective disease control with relatively low morbidity and should be considered for selected patients with recurrent and second primary cancers of the head and neck.

  8. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    SciTech Connect (OSTI)

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning'Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  9. Radiation-Induced Segregation and Phase Stability in Candidate Alloys for the Advanced Burner Reactor

    SciTech Connect (OSTI)

    Gary S. Was; Brian D. Wirth

    2011-05-29

    Major accomplishments of this project were the following: 1) Radiation induced depletion of Cr occurs in alloy D9, in agreement with that observed in austenitic alloys. 2) In F-M alloys, Cr enriches at PAG grain boundaries at low dose (<7 dpa) and at intermediate temperature (400C) and the magnitude of the enrichment decreases with temperature. 3) Cr enrichment decreases with dose, remaining enriched in alloy T91 up to 10 dpa, but changing to depletion above 3 dpa in HT9 and HCM12A. 4) Cr has a higher diffusivity than Fe by a vacancy mechanism and the corresponding atomic flux of Cr is larger than Fe in the opposite direction to the vacancy flux. 5) Cr concentration at grain boundaries decreases as a result of vacancy transport during electron or proton irradiation, consistent with Inverse Kirkendall models. 6) Inclusion of other point defect sinks into the KLMC simulation of vacancy-mediated diffusion only influences the results in the low temperature, recombination dominated regime, but does not change the conclusion that Cr depletes as a result of vacancy transport to the sink. 7) Cr segregation behavior is independent of Frenkel pair versus cascade production, as simulated for electron versus proton irradiation conditions, for the temperatures investigated. 8) The amount of Cr depletion at a simulated planar boundary with vacancy-mediated diffusion reaches an apparent saturation value by about 1 dpa, with the precise saturation concentration dependent on the ratio of Cr to Fe diffusivity. 9) Cr diffuses faster than Fe by an interstitial transport mechanism, and the corresponding atomic flux of Cr is much larger than Fe in the same direction as the interstitial flux. 10) Observed experimental and computational results show that the radiation induced segregation behavior of Cr is consistent with an Inverse Kirkendall mechanism.

  10. Oral Mucositis Prevention By Low-Level Laser Therapy in Head-and-Neck Cancer Patients Undergoing Concurrent Chemoradiotherapy: A Phase III Randomized Study

    SciTech Connect (OSTI)

    Gouvea de Lima, Aline; Villar, Rosangela Correa; Castro, Gilberto de; Antequera, Reynaldo; Gil, Erlon; Rosalmeida, Mauro Cabral; Federico, Miriam Hatsue Honda; Snitcovsky, Igor Moises Longo

    2012-01-01

    Purpose: Oral mucositis is a major complication of concurrent chemoradiotherapy (CRT) in head-and-neck cancer patients. Low-level laser (LLL) therapy is a promising preventive therapy. We aimed to evaluate the efficacy of LLL therapy to decrease severe oral mucositis and its effect on RT interruptions. Methods and Materials: In the present randomized, double-blind, Phase III study, patients received either gallium-aluminum-arsenide LLL therapy 2.5 J/cm{sup 2} or placebo laser, before each radiation fraction. Eligible patients had to have been diagnosed with squamous cell carcinoma or undifferentiated carcinoma of the oral cavity, pharynx, larynx, or metastases to the neck with an unknown primary site. They were treated with adjuvant or definitive CRT, consisting of conventional RT 60-70 Gy (range, 1.8-2.0 Gy/d, 5 times/wk) and concurrent cisplatin. The primary endpoints were the oral mucositis severity in Weeks 2, 4, and 6 and the number of RT interruptions because of mucositis. The secondary endpoints included patient-reported pain scores. To detect a decrease in the incidence of Grade 3 or 4 oral mucositis from 80% to 50%, we planned to enroll 74 patients. Results: A total of 75 patients were included, and 37 patients received preventive LLL therapy. The mean delivered radiation dose was greater in the patients treated with LLL (69.4 vs. 67.9 Gy, p = .03). During CRT, the number of patients diagnosed with Grade 3 or 4 oral mucositis treated with LLL vs. placebo was 4 vs. 5 (Week 2, p = 1.0), 4 vs. 12 (Week 4, p = .08), and 8 vs. 9 (Week 6, p = 1.0), respectively. More of the patients treated with placebo had RT interruptions because of mucositis (6 vs. 0, p = .02). No difference was detected between the treatment arms in the incidence of severe pain. Conclusions: LLL therapy was not effective in reducing severe oral mucositis, although a marginal benefit could not be excluded. It reduced RT interruptions in these head-and-neck cancer patients, which might translate into improved CRT efficacy.

  11. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jetsa)

    SciTech Connect (OSTI)

    Moser, Auna L.; Hsu, Scott C.

    2015-05-01

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.

  12. SU-E-T-225: It Is Necessary to Contouring the Brainstem On MRI Images in Radiotherapy of Head and Neck Cancer

    SciTech Connect (OSTI)

    Gong, G; Liu, C; Liu, C

    2014-06-01

    Purpose: To analyze the error in contouring the brainstem for patients with head and neck cancer who underwent radiotherapy based on computed tomography (CT) and magnetic resonance (MR) images. Methods: 20 brain tumor and 17 nasopharyngeal cancer patients were randomly selected. Each patient underwent MR and CT scanning. For each patient, one observer contoured the brainstem on CT and MR images for 10 times, and 10 observers from five centers delineated the brainstem on CT and MR images only one time. The inter- and intra-observers volume and outline variations were compared. Results: The volumes of brainstem contoured by inter- and intra-observers on CT and MR images were similar (p>0.05). The reproducibility of contouring brainstem on MR images was better than that on CT images (p<0.05) for both inter- and intra-observer variability. The inter- and intra-observer for contouring on CT images reached mean values of 0.810.05 (p>0.05) and of 0.850.05 (p>0.05), respectively, while on MR images these respective values were 0.900.05 (p>0.05) and 0.920.04 (p>0.05). Conclusion: Contouring the brainstem on MR images was more accurate and reproducible than that on CT images. Precise information might be more helpful for protecting the brainstem radiation injury the patients whose lesion were closed to brainstem.

  13. SU-E-J-217: Accuracy Comparison Between Surface and Volumetric Registrations for Patient Setup of Head and Neck Radiation Therapy

    SciTech Connect (OSTI)

    Kim, Y; Li, R; Na, Y; Jenkins, C; Xing, L; Lee, R

    2014-06-01

    Purpose: Optical surface imaging has been applied to radiation therapy patient setup. This study aims to investigate the accuracy of the surface registration of the optical surface imaging compared with that of the conventional method of volumetric registration for patient setup in head and neck radiation therapy. Methods: Clinical datasets of planning CT and treatment Cone Beam CT (CBCT) were used to compare the surface and volumetric registrations in radiation therapy patient setup. The Iterative Closest Points based on point-plane closest method was implemented for surface registration. We employed 3D Slicer for rigid volumetric registration of planning CT and treatment CBCT. 6 parameters of registration results (3 rotations and 3 translations) were obtained by the two registration methods, and the results were compared. Digital simulation tests in ideal cases were also performed to validate each registration method. Results: Digital simulation tests showed that both of the registration methods were accurate and robust enough to compare the registration results. In experiments with the actual clinical data, the results showed considerable deviation between the surface and volumetric registrations. The average root mean squared translational error was 2.7 mm and the maximum translational error was 5.2 mm. Conclusion: The deviation between the surface and volumetric registrations was considerable. Special caution should be taken in using an optical surface imaging. To ensure the accuracy of optical surface imaging in radiation therapy patient setup, additional measures are required. This research was supported in part by the KIST institutional program (2E24551), the Industrial Strategic technology development program (10035495) funded by the Ministry of Trade, Industry and Energy (MOTIE, KOREA), and the Radiation Safety Research Programs (1305033) through the Nuclear Safety and Security Commission, and the NIH (R01EB016777)

  14. Impact of Gender, Partner Status, and Race on Locoregional Failure and Overall Survival in Head and Neck Cancer Patients in Three Radiation Therapy Oncology Group Trials

    SciTech Connect (OSTI)

    Dilling, Thomas J., E-mail: Thomas.Dilling@moffitt.org [Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida (United States); Bae, Kyounghwa; Paulus, Rebecca [Department of Statistics, Radiation Therapy Oncology Group, Philadelphia, Pennsylvania (United States); Watkins-Bruner, Deborah [School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Garden, Adam S. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Forastiere, Arlene [Departments of Oncology, Radiation Oncology, and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, Maryland (United States); Kian Ang, K. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Movsas, Benjamin [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States)

    2011-11-01

    Purpose: We investigated the impact of race, in conjunction with gender and partner status, on locoregional control (LRC) and overall survival (OS) in three head and neck trials conducted by the Radiation Therapy Oncology Group (RTOG). Methods and Materials: Patients from RTOG studies 9003, 9111, and 9703 were included. Patients were stratified by treatment arms. Covariates of interest were partner status (partnered vs. non-partnered), race (white vs. non-white), and sex (female vs. male). Chi-square testing demonstrated homogeneity across treatment arms. Hazards ratio (HR) was used to estimate time to event outcome. Unadjusted and adjusted HRs were calculated for all covariates with associated 95% confidence intervals (CIs) and p values. Results: A total of 1,736 patients were analyzed. Unpartnered males had inferior OS rates compared to partnered females (adjusted HR = 1.22, 95% CI, 1.09-1.36), partnered males (adjusted HR = 1.20, 95% CI, 1.09-1.28), and unpartnered females (adjusted HR = 1.20, 95% CI, 1.09-1.32). White females had superior OS compared with white males, non-white females, and non-white males. Non-white males had inferior OS compared to white males. Partnered whites had improved OS relative to partnered non-white, unpartnered white, and unpartnered non-white patients. Unpartnered males had inferior LRC compared to partnered males (adjusted HR = 1.26, 95% CI, 1.09-1.46) and unpartnered females (adjusted HR = 1.30, 95% CI, 1.05-1.62). White females had LRC superior to non-white males and females. White males had improved LRC compared to non-white males. Partnered whites had improved LRC compared to partnered and unpartnered non-white patients. Unpartnered whites had improved LRC compared to unpartnered non-whites. Conclusions: Race, gender, and partner status had impacts on both OS and locoregional failure, both singly and in combination.

  15. Nuclear NF-?B Expression Correlates With Outcome Among Patients With Head and Neck Squamous Cell Carcinoma Treated With Primary Chemoradiation Therapy

    SciTech Connect (OSTI)

    Balermpas, Panagiotis [Department of Radiation Therapy and Oncology, J. W. Goethe University Frankfurt am Main, Frankfurt (Germany)] [Department of Radiation Therapy and Oncology, J. W. Goethe University Frankfurt am Main, Frankfurt (Germany); Michel, Yvonne [Senckenberg Institute of Pathology, J. W. Goethe University Frankfurt am Main, Frankfurt (Germany)] [Senckenberg Institute of Pathology, J. W. Goethe University Frankfurt am Main, Frankfurt (Germany); Wagenblast, Jens [Department of Otorhinolaryngology, J. W. Goethe University Frankfurt am Main, Frankfurt (Germany)] [Department of Otorhinolaryngology, J. W. Goethe University Frankfurt am Main, Frankfurt (Germany); Seitz, Oliver [Department of Maxillofacial Surgery, J. W. Goethe University Frankfurt am Main, Frankfurt (Germany)] [Department of Maxillofacial Surgery, J. W. Goethe University Frankfurt am Main, Frankfurt (Germany); Sipek, Florian; Rdel, Franz; Rdel, Claus [Department of Radiation Therapy and Oncology, J. W. Goethe University Frankfurt am Main, Frankfurt (Germany)] [Department of Radiation Therapy and Oncology, J. W. Goethe University Frankfurt am Main, Frankfurt (Germany); Fokas, Emmanouil, E-mail: emmanouil.fokas@kgu.de [Department of Radiation Therapy and Oncology, J. W. Goethe University Frankfurt am Main, Frankfurt (Germany)] [Department of Radiation Therapy and Oncology, J. W. Goethe University Frankfurt am Main, Frankfurt (Germany)

    2013-07-15

    Background: To examine whether nuclear NF-?B expression correlates with outcome in patients with head and neck squamous cell carcinoma (HNSCC) treated with primary chemoradiation therapy (CRT). Methods and Materials: Between 2007 and 2010, 101 patients with locally advanced primary HNSCC were treated with definitive simultaneous CRT. Pretreatment biopsy specimens were analyzed for NF-?B p65 (RelA) nuclear immunoreactivity. A sample was assigned to be positive with more than 5% positive nuclear expression. The predictive relevance of NF-?B and clinicopathologic factors for overall survival (OS), progression-free survival (PFS), local progression-free survival (LPFS), and metastasis-free survival (DMFS) was examined by univariate and multivariate analysis. Results: No significant differences between the groups were observed with regard to age, sex, total radiation dose, fractionation mode, total chemotherapy applied, T stage or grading. Patients with p65 nuclear positive biopsy specimens showed significantly a higher rate of lymph node metastasis (cN2c or cN3 status, P=.034). Within a mean follow-up time of 25 months (range, 2.33-62.96 months) OS, PFS, and DMFS were significantly poorer in the p65 nuclear positive group (P=.008, P=.027, and P=.008, respectively). These correlations remained significant in multivariate analysis. Conclusion: NF-?B/p65 nuclear expression is associated with increased lymphatic and hematogenous tumor dissemination and decreased survival in HNSCC patients treated with primary CRT. Our results may foster further investigation of a predictive relevance of NF-?B/p65 and its role as a suitable target for a molecular-based targeted therapy in HNSCC cancer.

  16. HEAD INJURY ASSESSMENT IN JUVENILE CHINOOK USING THE ALPHA II-SPECTRIN BIOMARKER: EFFECTS OF PRESSURE CHANGES AND PASSAGE THROUGH A REMOVABLE SPILLWAY WEIR

    SciTech Connect (OSTI)

    Jonason, C.; Miracle, A.

    2009-01-01

    The cytoskeletal protein alpha II-spectrin has specifi c neurodegenerative mechanisms that allow the necrotic (injury-induced) and apoptotic (non-injury-induced) pathways of proteolysis to be differentiated in an immunoblot. Consequently, ?II-spectrin breakdown products (SBDPs) are potential biomarkers for diagnosing traumatic brain injury (TBI). The purpose of the following investigation, consisting of two studies, was to evaluate the utility of the spectrin biomarker in diagnosing TBI in fi sh that travel through hydroelectric dams in the Columbia and Snake Rivers. The fi rst study used hyperbaric pressure chambers to simulate the pressure changes that affect fi sh during passage through a Federal Columbia River Power System (FCRPS) Kaplan turbine. The second study tested the effect of a removable spillway weir (RSW) on the passage of juvenile chinook (Oncorhynchus tshawytscha). This study was conducted in tandem with a balloon-tag study by the U.S. Army Corps of Engineers. Brain samples from fi sh were collected and analyzed using an immunoblot for SBDPs, and imaging software was used to quantify the protein band density and determine the ratio of cleaved protein to total protein. The biomarker analyses found higher SBDP expression levels in fi sh that were exposed to lower pressure nadirs and fi sh that passed through the RSW at a deep orientation. In general, the incidence of injuries observed after treatment positively correlated with expression levels, suggesting that the biomarker method of analysis is comparable to traditional methods of injury assessment. It was also found that, for some treatments, the 110 kDa spectrin fragment (SBDP 110) correlated more strongly with necrotic head injury incidence and mortality rates than did the total cleaved protein or the 120 kDa fragment. These studies will be informative in future decisions regarding the design of turbines and fi sh passage structures in hydroelectric dams and will hopefully contribute to the development of faster and more accurate techniques for diagnosing TBI in fi sh.

  17. SU-E-T-570: Management of Radiation Oncology Patients with Cochlear Implant and Other Bionic Devices in the Brain and Head and Neck Regions

    SciTech Connect (OSTI)

    Guo, F.Q; Chen, Z; Nath, R

    2014-06-01

    Purpose: To investigate the current status of clinical usage of cochlear implant (CI) and other bionic devices (BD) in the brain and head and neck regions (BH and N) and their management in patients during radiotherapy to ensure patient health and safety as well as optimum radiation delivery. Methods: Literature review was performed with both CIs and radiotherapy and their variants as keywords in PubMed, INSPEC and other sources. The focus was on CIs during radiotherapy, but it also included other BDs in BHȦN, such as auditory brainstem implant, bionic retinal implant, and hearing aids, among others. Results: Interactions between CIs and radiation may cause CIs malfunction. The presence of CIs may also cause suboptimum dose distribution if a treatment plan was not well designed. A few studies were performed for the hearing functions of CIs under irradiations of 4 MV and 6 MV x-rays. However, x-rays with higher energies (10 to 18 MV) broadly used in radiotherapy have not been explored. These higher energetic beams are more damaging to electronics due to strong penetrating power and also due to neutrons generated in the treatment process. Modern CIs are designed with more and more complicated integrated circuits, which may be more susceptible to radiation damage and malfunction. Therefore, careful management is important for safety and treatment outcomes. Conclusion: Although AAPM TG-34, TG-63, and TG-203 (update of TG-34, not published yet) reports may be referenced for management of CIs and other BDs in the brain and H and N regions, a site- and device-specified guideline should be developed for CIs and other BDs. Additional evaluation of CI functions under clinically relevant set-ups should also be performed to provide clinicians with better knowledge in clinical decision making.

  18. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) ...

  19. Workforce Retention Work Group | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Report Summary Poster Near-term publication of an update to 10 CFR 1046, Physical Protection of Security Interest - Randy Lawson, President of the National Council of ...

  20. Design Storm for Total Retention.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storm Events for Select Western U.S. Cities (adapted from Energy Independence and Security Act Technical Guidance, USEPA, 2009) City 95th Percentile Event Rainfall Total...