National Library of Energy BETA

Sample records for retard selective catalytic

  1. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants...

  2. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as Reductants Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx...

  3. Selective Catalytic Reduction and Exhaust Gas Recirculation Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduction and Exhaust Gas Recirculation Systems Optimization Selective Catalytic Reduction and Exhaust Gas Recirculation Systems Optimization A patented EGR-SCR approach was shown...

  4. Selective oxidation of hydrocarbons in a catalytic dense membrane reactor: Catalytic properties of BIMEVOX (Me = Ta)

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Selective oxidation of hydrocarbons in a catalytic dense membrane reactor: Catalytic properties for syngas or H2 production from light hydrocarbons. #12;2 Keywords: Dense membrane reactor, BIMEVOX, BITAVOX to decouple the two steps of the redox mechanism that prevails in selective oxidation of hydrocarbons [1

  5. Selective dehydrogenation of propane over novel catalytic materials

    SciTech Connect (OSTI)

    Sault, A.G.; Boespflug, E.P.; Martino, A.; Kawola, J.S.

    1998-02-01

    The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices.

  6. Use of Simulation To Optimize NOx Abatement by Absorption and Selective Catalytic Reduction

    E-Print Network [OSTI]

    Liu, Y. A.

    Use of Simulation To Optimize NOx Abatement by Absorption and Selective Catalytic Reduction Andrew involving both absorption and selective catalytic reduction (SCR). The model helps identify operator The system under analysis involves two key pro- cesses: absorption and selective catalytic reduction (SCR

  7. Simulation of catalytic oxidation and selective catalytic NOx reduction in lean-exhaust hybrid vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Chakravarthy, Veerathu K

    2012-01-01

    We utilize physically-based models for diesel exhaust catalytic oxidation and urea-based selective catalytic NOx reduction to study their impact on drive cycle performance of hypothetical light-duty diesel powered hybrid vehicles. The models have been implemented as highly flexible SIMULINK block modules that can be used to study multiple engine-aftertreatment system configurations. The parameters of the NOx reduction model have been adjusted to reflect the characteristics of Cu-zeolite catalysts, which are of widespread current interest. We demonstrate application of these models using the Powertrain System Analysis Toolkit (PSAT) software for vehicle simulations, along with a previously published methodology that accounts for emissions and temperature transients in the engine exhaust. Our results illustrate the potential impact of DOC and SCR interactions for lean hybrid electric and plug-in hybrid electric vehicles.

  8. Multi-component Zirconia-Titania Mixed Oxides: Catalytic Materials with Unprecedented Performance in the Selective Catalytic Reduction of NOx

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in the Selective Catalytic Reduction of NOx with NH3 after harsh hydrothermal ageing. Nathalie MARCOTTE1#, Bernard catalytic reduction. 1. Introduction. The abatement of nitrogen oxides (NOx) and particulate matter (PM% H2O, ~ 1050 K) is a prerequisite for deNOx catalysts of tomorrow in Diesel exhaust gas treatment

  9. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    DOE Patents [OSTI]

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  10. Method For Selective Catalytic Reduction Of Nitrogen Oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  11. Method for selective catalytic reduction of nitrogen oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  12. Kinetic modeling of nitric oxide removal from exhaust gases by Selective Non-Catalytic Reduction 

    E-Print Network [OSTI]

    Chenanda, Cariappa Mudappa

    1993-01-01

    Selective Non-Catalytic Reduction is one of the most promising techniques for the removal of oxides of nitrogen from combustion exhaust gases. These techniques are based on the injection of certain compounds, such as cyanuric acid and ammonia...

  13. Selective Catalytic Oxidation (SCO) of NH3 to N2 for Hot Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxidation (SCO) of NH3 to N2 for Hot Exhaust Treatment Selective Catalytic Oxidation (SCO) of NH3 to N2 for Hot Exhaust Treatment Investigation of a series of transition metal...

  14. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduction (SCR) of NOx Using Cu-zeolite Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using Cu-zeolite Discusses the impact of Na in biodiesel...

  15. Influence of RNA Polymerase II Catalytic Activity on Transcription Start Site Selection 

    E-Print Network [OSTI]

    Jin, Huiyan

    2015-08-01

    catalytic activity influences the first step of gene expression, transcription initiation, in Saccharomyces cerevisiae. My dissertation focuses on the mechanisms by which Pol II activity defects contribute to transcription start site (TSS) selection...

  16. Calibration and performance of a selective catalytic reduction (SCR) bench rig for NOx? emissions control

    E-Print Network [OSTI]

    Castro Galnares, Sebastián (Castro Galnares Wright Paz)

    2008-01-01

    A laboratory test rig was designed and built to easily test SCR (Selective Catalytic Reduction) technology. Equipped with three 6 kW heaters, connections for liquid N2 and an assortment of test gases, and a connection with ...

  17. DOI: 10.1002/chem.200700579 Selective Catalytic Oxidation of Ethanol to Acetic Acid on Dispersed

    E-Print Network [OSTI]

    Iglesia, Enrique

    DOI: 10.1002/chem.200700579 Selective Catalytic Oxidation of Ethanol to Acetic Acid on Dispersed Mo, such as acetaldehyde and acetic acid, currently produced from ethane, ethene, or methanol. Pd-based catalysts convert ethanol­O2 reactants to acetic acid, but with low reaction rates and modest selectivities (433 K, 70

  18. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2008-08-05

    Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

  19. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC

    Office of Energy Efficiency and Renewable Energy (EERE)

    Showcases new content added to the AFDC including: Diesel Vehicles, Diesel Exhaust Fluid, Selective Catalytic Reduction Technologies, and an upcoming Deisel Exhaust Fluid Locator.

  20. Experiments on the reduction of nitric oxide from exhaust gases by selective non-catalytic reactions 

    E-Print Network [OSTI]

    Narney, John Kenneth

    1993-01-01

    The use of ammonia in a selective non-catalytic process for the removal of nitric oxide (NO) from exhaust gases was studied. A quartz lined flow reactor system was constructed in order to examine the behavior of the process with 15% oxygen...

  1. Flow reactor experiments on the selective non-catalytic removal of nitrogen oxides 

    E-Print Network [OSTI]

    Gentemann, Alexander M.G.

    2001-01-01

    also found. Selective non-catalytic removal of nitric oxide using a water/urea solution was performed in a temperature range between 800 and 1300 K. Different combinations of simulated exhaust gas were tested, which contained various fractions of O?...

  2. Correlating Catalytic Methanol Oxidation with the Structure and Oxidation State of Size-Selected Pt Nanoparticles

    E-Print Network [OSTI]

    Kik, Pieter

    Correlating Catalytic Methanol Oxidation with the Structure and Oxidation State of Size-Selected Pt nanoparticles (NPs) prepared by micelle encapsulation and supported on -Al2O3 during the oxidation of methanol the pretreatment. KEYWORDS: platinum, methanol oxidation, operando, XAFS, EXAFS, XANES, alumina, nanoparticle, size

  3. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3

    SciTech Connect (OSTI)

    Kwak, Ja Hun; Tonkyn, Russell G.; Kim, Do Heui; Szanyi, Janos; Peden, Charles HF

    2010-10-21

    Superior activity and selectivity of a Cu ion-exchanged SSZ-13 zeolite in the selective catalytic reduction (SCR) of NOx with NH3 were observed, in comparison to Cu-beta and Cu-ZSM-5 zeolites. Cu-SSZ-13 was not only more active in the NOx SCR reaction over the entire temperature range studied (up to 550 °C), but also more selective toward nitrogen formation, resulting in significantly lower amounts of NOx by-products (i.e., NO2 and N2O) than the other two zeolites. In addition, Cu-SSZ-13 demonstrated the highest activity and N2 formation selectivity in the oxidation of NH3. The results of this study strongly suggest that Cu-SSZ-13 is a promising candidate as a catalyst for NOx SCR with great potential in after-treatment systems for either mobile or stationary sources.

  4. Selective catalytic reduction system and process using a pre-sulfated zirconia binder

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly; Rossin, Joseph A.

    2010-06-29

    A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.

  5. HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES

    SciTech Connect (OSTI)

    Jerry B. Urbas

    1999-05-01

    The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO{sub x} control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO{sub x} while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO{sub x} reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO{sub x} reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO{sub x} emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO{sub x} reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm{sup 3} (8 ppm) at the catalyst inlet. After resolving the stratification problem, the catalyst did not have sufficient activity in order to continue the planned test program. Arsenic poisoning was found to be the cause of premature catalyst deactivation.

  6. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  7. Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoOx

    E-Print Network [OSTI]

    van Duin, Adri

    our mechanistic understanding of catalytic hydrocarbon oxidation sufficiently to suggest modificationsDevelopment of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoOx William A. Goddard III*, Adri van Duin, Kimberly Chenoweth, Mu-Jeng Cheng

  8. NH3-Selective Catalytic Reduction over Ag/Al2O3 Catalysts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalytic Reduction over AgAl2O3 Catalysts DRIFT spectroscopy used together with flow reactor experiments to investigate the role of H2 for SCR over AgAl2O3 deer12tamm.pdf...

  9. PILOT-SCALE EVALUATION OF THE IMPACT OF SELECTIVE CATALYTIC REDUCTION FOR NOx ON MERCURY SPECIATION

    SciTech Connect (OSTI)

    Dennis L. Laudal; John H. Pavlish; Kevin C. Galbreath; Jeffrey S. Thompson; Gregory F. Weber; Everett Sondreal

    2000-12-01

    Full-scale tests in Europe and bench-scale tests in the United States have indicated that the catalyst, normally vanadium/titanium metal oxide, used in the selective catalytic reduction (SCR) of NO{sub x}, may promote the formation of Hg{sup 2+} and/or particulate-bound mercury (Hg{sub p}). To investigate the impact of SCR on mercury speciation, pilot-scale screening tests were conducted at the Energy & Environmental Research Center. The primary research goal was to determine whether the catalyst or the injection of ammonia in a representative SCR system promotes the conversion of Hg{sup 0} to Hg{sup 2+} and/or Hg{sub p} and, if so, which coal types and parameters (e.g., rank and chemical composition) affect the degree of conversion. Four different coals, three eastern bituminous coals and a Powder River Basin (PRB) subbituminous coal, were tested. Three tests were conducted for each coal: (1) baseline, (2) NH{sub 3} injection, and (3) SCR of NO{sub x}. Speciated mercury, ammonia slip, SO{sub 3}, and chloride measurements were made to determine the effect the SCR reactor had on mercury speciation. It appears that the impact of SCR of NO{sub x} on mercury speciation is coal-dependent. Although there were several confounding factors such as temperature and ammonia concentrations in the flue gas, two of the eastern bituminous coals showed substantial increases in Hg{sub p} at the inlet to the ESP after passing through an SCR reactor. The PRB coal showed little if any change due to the presence of the SCR. Apparently, the effects of the SCR reactor are related to the chloride, sulfur and, possibly, the calcium content of the coal. It is clear that additional work needs to be done at the full-scale level.

  10. Comparison of Two Preparation Methods on Catalytic Activity and Selectivity of Ru-Mo/HZSM5 for Methane Dehydroaromatization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Petkovic, Lucia M.; Ginosar, Daniel M.

    2014-01-01

    Catalytic performance of Mo/HZSM5 and Ru-Mo/HZSM5 catalysts prepared by vaporization-deposition of molybdenum trioxide and impregnation with ammonium heptamolybdate was analyzed in terms of catalyst activity and selectivity, nitrogen physisorption analyses, temperature-programmed oxidation of carbonaceous residues, and temperature-programmed reduction. Vaporization-deposition rendered the catalyst more selective to ethylene and coke than the catalyst prepared by impregnation. This result was assigned to lower interaction of molybdenum carbide with the zeolite acidic sites.

  11. Selective Catalytic Oxidation of Hydrogen Sulfide on Activated Carbons Impregnated with Sodium Hydroxide

    SciTech Connect (OSTI)

    Schwartz, Viviane [ORNL; Baskova, Svetlana [ORNL; Armstrong, Timothy R. [ORNL

    2009-01-01

    Two activated carbons of different origin were impregnated with the solution of sodium hydroxide (NaOH) of various concentrations up to 10 wt %, and the effect of impregnation on the catalytic performance of the carbons was evaluated. The catalytic activity was analyzed in terms of the capacity of carbons for hydrogen sulfide (H2S) conversion and removal from hydrogen-rich fuel streams and the emission times of H2S and the products of its oxidation [e.g., sulfur dioxide (SO2) and carbonyl sulfide (COS)]. The results of impregnation showed a significant improvement in the catalytic activity of both carbons proportional to the amount of NaOH introduced. NaOH introduces hydroxyl groups (OH-) on the surface of the activated carbon that increase its surface reactivity and its interaction with sulfur-containing compounds.

  12. The selective catalytic reduction of nitric oxide with ammonia in the presence of oxygen 

    E-Print Network [OSTI]

    Gruber, Karen Ann

    1989-01-01

    materials. Aluminum pillared titanium phosphate and hydrous sodium titanium oxide were the support structures of interest. The efFect of phosphate, aluminum and sodium on catalytic activity was studied. The reaction conditions were a feed composition... titanium oxide support was found to be the most effective catalyst of this study which led to the conclusion that phosphate, aluminum and sodium decrease the activity of vanadia catalysts for the SCR of NO with NHs in the presence of oxygen. ACKi...

  13. Synthesis and Evaluation of Cu-SAPO-34 Catalysts for Ammonia Selective Catalytic Reduction. 1. Aqueous Solution Ion Exchange

    SciTech Connect (OSTI)

    Gao, Feng; Walter, Eric D.; Washton, Nancy M.; Szanyi, Janos; Peden, Charles HF

    2013-09-06

    SAPO-34 molecular sieves are synthesized using various structure directing agents (SDAs). Cu-SAPO-34 catalysts are prepared via aqueous solution ion exchange. Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties are examined using standard ammonia selective catalytic reduction (NH3-SCR) and ammonia oxidation reactions. During solution ion exchange, different SAPO-34 samples undergo different extent of structural damage via irreversible hydrolysis. Si content within the samples (i.e., Al-O-Si bond density) and framework stress are key factors that affect irreversible hydrolysis. Even using very dilute Cu acetate solutions, it is not possible to generate Cu-SAPO-34 samples with only isolated Cu2+ ions. Small amounts of CuOx species always coexist with isolated Cu2+ ions. Highly active and selective Cu-SAPO-34 catalysts for NH3-SCR are readily generated using this synthesis protocol, even for SAPO-34 samples that degrade substantially during solution ion exchange. High-temperature aging is found to improve the catalytic performance. This is likely due to reduction of intracrystalline mass-transfer limitations via formation of additional porosity in the highly defective SAPO-34 particles formed after ion exchange. The authors gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Office of Vehicle Technologies for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830.

  14. Selective Catalytic Oxidation (SCO) of NH3 to N2 for Hot Exhaust Treatment

    Broader source: Energy.gov [DOE]

    Investigation of a series of transition metal oxides and precious metal based catalysts for ammonia selective oxidation at low temperatures

  15. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    SciTech Connect (OSTI)

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

    2011-05-28

    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system

  16. Selective catalytic reduction system and process for control of NO.sub.x emissions in a sulfur-containing gas stream

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly

    2015-08-11

    An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.

  17. Selective catalytic reduction of nitric oxide with ethanol/gasoline blends over a silver/alumina catalyst

    SciTech Connect (OSTI)

    Pihl, Josh A; Toops, Todd J; Fisher, Galen; West, Brian H

    2014-01-01

    Lean gasoline engines running on ethanol/gasoline blends and equipped with a silver/alumina catalyst for selective catalytic reduction (SCR) of NO by ethanol provide a pathway to reduced petroleum consumption through both increased biofuel utilization and improved engine efficiency relative to the current stoichiometric gasoline engines that dominate the U.S. light duty vehicle fleet. A pre-commercial silver/alumina catalyst demonstrated high NOx conversions over a moderate temperature window with both neat ethanol and ethanol/gasoline blends containing at least 50% ethanol. Selectivity to NH3 increases with HC dosing and ethanol content in gasoline blends, but appears to saturate at around 45%. NO2 and acetaldehyde behave like intermediates in the ethanol SCR of NO. NH3 SCR of NOx does not appear to play a major role in the ethanol SCR reaction mechanism. Ethanol is responsible for the low temperature SCR activity observed with the ethanol/gasoline blends. The gasoline HCs do not deactivate the catalyst ethanol SCR activity, but they also do not appear to be significantly activated by the presence of ethanol.

  18. Catalytic cracking process

    SciTech Connect (OSTI)

    Lokhandwala, Kaaeid A.; Baker, Richard W.

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  19. Regeneration of field-spent activated carbon catalysts for low-temperature selective catalytic reduction of NOx with NH3

    SciTech Connect (OSTI)

    Jeon, Jong Ki; Kim, Hyeonjoo; Park, Young-Kwon; Peden, Charles HF; Kim, Do Heui

    2011-10-15

    In the process of producing liquid crystal displays (LCD), the emitted NOx is removed over an activated carbon catalyst by using selective catalytic reduction (SCR) with NH3 at low temperature. However, the catalyst rapidly deactivates primarily due to the deposition of boron discharged from the process onto the catalyst. Therefore, this study is aimed at developing an optimal regeneration process to remove boron from field-spent carbon catalysts. The spent carbon catalysts were regenerated by washing with a surfactant followed by drying and calcination. The physicochemical properties before and after the regeneration were investigated by using elemental analysis, TG/DTG (thermogravimetric/differential thermogravimetric) analysis, N2 adsorption-desorption and NH3 TPD (temperature programmed desorption). Spent carbon catalysts demonstrated a drastic decrease in DeNOx activity mainly due to heavy deposition of boron. Boron was accumulated to depths of about 50 {mu}m inside the granule surface of the activated carbons, as evidenced by cross-sectional SEM-EDX analysis. However, catalyst activity and surface area were significantly recovered by removing boron in the regeneration process, and the highest NOx conversions were obtained after washing with a non-ionic surfactant in H2O at 70 C, followed by treatment with N2 at 550 C.

  20. Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    NONE

    2005-05-01

    The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

  1. The Effect of Copper Loading on the Selective Catalytic Reduction of Nitric Oxide by Ammonia Over Cu-SSZ-13

    SciTech Connect (OSTI)

    Kwak, Ja Hun; Tran, Diana N.; Szanyi, Janos; Peden, Charles HF; Lee, Jong H.

    2012-03-01

    The effect of Cu loading on the selective catalytic reduction of NOx by NH3 was examined over 20-80% ion-exchanged Cu-SSZ-13 zeolite catalysts. High NO reduction efficiency (80-95%) was obtained over all catalyst samples between 250 and 500°C, and the gas hourly space velocity of 200,000 h-1. Both NO reduction and NH3 oxidation activities under these conditions were found to increase slightly with increasing Cu loading at low temperatures. However, NO reduction activity was suppressed with increasing Cu loadings at high temperatures (>500oC) due to excess NH3 oxidation. The optimum Cu ion exchange level appears to be ~40-60% as higher than 80% NO reduction efficiency was obtained over 50% Cu ion-exchanged SSZ-13 up to 600oC. The NO oxidation activity of Cu-SSZ-13 was found to be low regardless of Cu loading, although it was somewhat improved with increasing Cu ion exchange level at high temperatures. During the “fast” SCR (i.e., NO/NO2 =1), only a slight improvement in NOx reduction activity was obtained for Cu-SSZ-13. Regardless of Cu loading, near 100% selectivity to N2 was observed; only a very small amount of N2O was produced even in the presence of NO2. Based on the Cu loading, the apparent activation energies for NO oxidation and NO SCR were estimated to be ~58 kJ/mol and ~41 kJ/mol, respectively.

  2. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect (OSTI)

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  3. Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly (Orlando, FL); Rossin, Joseph A. (Columbus, OH); Knapke, Michael J. (Columbus, OH)

    2011-07-12

    A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

  4. Catalytic nanoporous membranes

    DOE Patents [OSTI]

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  5. EQCM Immunoassay for Phosphorylated Acetylcholinesterase as a Biomarker for Organophosphate Exposures Based on Selective Zirconia Adsorption and Enzyme-Catalytic Precipitation

    SciTech Connect (OSTI)

    Wang, Hua; Wang, Jun; Choi, Daiwon; Tang, Zhiwen; Wu, Hong; Lin, Yuehe

    2009-03-01

    A zirconia (ZrO2) adsorption-based immunoassay by electrochemical quartz crystal microbalance (EQCM) has been initially developed, aiming at the detection of phosphorylated acetylcholinesterase (AChE) as a potential biomarker for bio-monitoring exposures to organophosphate (OP) pesticides and chemical warfare agents. Hydroxyl-derivatized monolayer was preferably chosen to modify the crystal serving as the template for directing the electro-deposition of ZrO2 film with uniform nanostructures. The resulting ZrO2 film was utilized to selectively capture phosphorylated AChE from the sample media. Horseradish peroxidase (HRP)-labeled anti-AChE antibodies were further employed to recognize the captured phosphorylated protein. Enzyme-catalytic oxidation of the benzidine substrate resulted in the accumulation of insoluble product on the functionalized crystal. Ultrasensitive EQCM quantification by mass-amplified frequency responses as well as rapid qualification by visual color changes of product could be thus achieved. Moreover, 4-chloro-1-naphthol (CN) was comparably studied as an ideal chromogenic substrate for the enzyme-catalytic precipitation. Experimental results show that the developed EQCM technique can allow for the detection of phosphorylated AChE in human plasma. Such an EQCM immunosensing format opens a new door towards the development of simple, sensitive, and field-applicable biosensor for biologically monitoring low-level OP exposures.

  6. Plasma-assisted catalytic reduction system

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1998-01-27

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  7. Effects of a Zeolite-Selective Catalytic Reduction System on Comprehensive Emissions from a Heavy-Duty Diesel Engine

    E-Print Network [OSTI]

    Wu, Mingshen

    lean-combustion diesel engines, including exhaust gas recirculation, lean NOx catalysis, selective by several engine manufacturers for use in mobile emis- sion sources to meet stringent NOx regulations.2

  8. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  9. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems

    SciTech Connect (OSTI)

    Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan

    2009-09-15

    A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

  10. Catalytic nanoporous membranes

    DOE Patents [OSTI]

    Pellin, Michael J. (Naperville, IL); Hryn, John N. (Naperville, IL); Elam, Jeffrey W. (Elmhurst, IL)

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  11. Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor

    SciTech Connect (OSTI)

    Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

    2010-08-31

    Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

  12. Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst on Lean Gasoline Engine

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J; Thomas, John F; Parks, II, James E; West, Brian H

    2015-01-01

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.

  13. Final Report of a CRADA Between Pacific Northwest National Laboratory and the General Motors Company (CRADA No. PNNL/271): “Degradation Mechanisms of Urea Selective Catalytic Reduction Technology”

    SciTech Connect (OSTI)

    Kim, Do Heui; Lee, Jong H.; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.; Wiebenga, Michelle H.

    2011-12-13

    Diesel engines can offer substantially higher fuel efficiency, good driving performance characteristics, and reduced carbon dioxide (CO2) emission compared to stoichiometric gasoline engines. Despite the increasing public demand for higher fuel economy and reduced dependency on imported oil, however, meeting the stringent emission standards with affordable methods has been a major challenge for the wide application of these fuel-efficient engines in the US market. The selective catalytic reduction of NOx by urea (urea-SCR) is one of the most promising technologies for NOx emission control for diesel engine exhausts. To ensure successful NOx emission control in the urea-SCR technology, both a diesel oxidation catalyst (DOC) and a urea-SCR catalyst with high activity and durability are critical for the emission control system. Because the use of this technology for light-duty diesel vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy the durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions, which is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations. In addition, it is imperative to develop a good understanding of deactivation mechanisms to help develop improved catalyst materials. In this CRADA program, General Motors Company and PNNL have investigated fresh, laboratory- and vehicle-aged DOC and SCR catalysts. The studies have led to a better understanding of various aging factors that impact the long-term performance of catalysts used in the urea-SCR technology, and have improved the correlation between laboratory and vehicle aging for reduced development time and cost. This Final Report briefly highlights many of the technical accomplishments and documents the productivity of the program in terms of peer-reviewed scientific publications (2 total), reports (3 total including this Final Report), and presentations (5 total).

  14. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01

    LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

  15. Molecular Components of Catalytic Selectivity

    E-Print Network [OSTI]

    Somorjai, Gabor A.

    2009-01-01

    Hexagonal Square isobutane n-butane isobutane C 1 – C 3H 2 O H 3 C OH 1-Butanol H 3 C H 2 Butane H H 3 C + H 2 CH 3Pyrrolidine + H 2 +NH 3 Butane and ammonia Scheme 1. (a) (b)

  16. Catalytic Coherence

    E-Print Network [OSTI]

    Johan Aberg

    2014-10-20

    Due to conservation of energy we cannot directly turn a quantum system with a definite energy into a superposition of different energies. However, if we have access to an additional resource in terms of a system with a high degree of coherence, as for standard models of laser light, we can overcome this limitation. The question is to what extent coherence gets degraded when utilized. Here it is shown that coherence can be turned into a catalyst, meaning that we can use it repeatedly without ever diminishing its power to enable coherent operations. This finding stands in contrast to the degradation of other quantum resources, and has direct consequences for quantum thermodynamics, as it shows that latent energy that may be locked into superpositions of energy eigenstates can be released catalytically.

  17. Catalytic reactor

    DOE Patents [OSTI]

    Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  18. Capturing fleeting intermediates in a catalytic CH amination reaction cycle

    E-Print Network [OSTI]

    Zare, Richard N.

    for the mechanistic study of catalytic processes. mass spectrometry | transient intermediates | C­H oxidation | catalysis Catalytic methods for selective C­H oxidation rely on the exquisite choreography of a series oxidant (4, 5, 11). The fast rates of the on- and off-path steps in this catalytic process

  19. Catalytic Oxidation Hot Paper DOI: 10.1002/anie.201400134

    E-Print Network [OSTI]

    Zare, Richard N.

    Catalytic Oxidation Hot Paper DOI: 10.1002/anie.201400134 Trinuclear Pd3O2 Intermediate in Aerobic* Abstract: The activation of O2 is a key step in selective catalytic aerobic oxidation reactions mediated aerobic oxidation of alcohols. The formation and catalytic activity of the trinuclear Pd3O2 species

  20. Catalytic reduction system for oxygen-rich exhaust

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1999-04-13

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  1. Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of NO by Hydrocarbons Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis...

  2. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of Nitrogen Oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1995

    SciTech Connect (OSTI)

    1996-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  3. CATALYTIC LIQUEFACTION OF BIOMASS

    E-Print Network [OSTI]

    Seth, Manu

    2012-01-01

    liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

  4. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01

    Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

  5. Vapor Barriers or Vapor Diffusion Retarders | Department of Energy

    Energy Savers [EERE]

    vapor retarders: Class I vapor retarders (0.1 perms or less): Glass Sheet metal Polyethylene sheet Rubber membrane Class II vapor retarders (greater than 0.1 perms and less...

  6. Rich catalytic injection

    DOE Patents [OSTI]

    Veninger, Albert (Coventry, CT)

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  7. Vapor Retarder Classification - Building America Top Innovation...

    Broader source: Energy.gov (indexed) [DOE]

    vapor retarder classification. Air-tight and well-insulated homes have little or no tolerance for drying if they get wet; moisture control is critical. This Top Innovation profile...

  8. Environmentally Benign Flame Retardant Nanocoatings for Fabric 

    E-Print Network [OSTI]

    Li, Yu-Chin

    2012-07-16

    A variety of materials were used to fabricate nanocoatings using layer-by-layer (LbL) assembly to reduce the flammability of cotton fabric. The most effective brominated flame retardants have raised concerns related to ...

  9. Catalytic membranes for fuel cells

    DOE Patents [OSTI]

    Liu, Di-Jia (Naperville, IL); Yang, Junbing (Bolingbrook, IL); Wang, Xiaoping (Naperville, IL)

    2011-04-19

    A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.

  10. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  11. A Simple Approach of Tuning Catalytic Activity of MFI-Zeolites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Catalysts via First Principles (Agreement ID:10635) Catalysts via First Principles Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons...

  12. Characterizing HfXZr1-XO2 by EXAFS: Relationship Between Bulk and Surface Composition, and Impact on Catalytic Selectivity for Alcohol Conversion

    SciTech Connect (OSTI)

    Jacobs, G.; Milling, M; Ji, Y; Patterson, P; Sparks, D; Davis, B

    2009-01-01

    A series of mixed Hf{sub X}Zr{sub 1-X}O{sub 2} oxide catalysts was prepared according to a recipe that yields the monoclinic structure. The samples were examined by EXAFS spectroscopy at the Zr K and Hf L{sub III} edges. A fitting model was used that simultaneously fits data from both edges, and makes use of an interdependent mixing parameter X mix to take into account substitution of the complementary atom in the nearest metal-metal shell. For XPS analysis, Scofield factors were applied to estimate the relative atomic surface concentrations of Zr and Hf. EXAFS results suggested that a solid bulk solution was formed over a wide range of X for Hf{sub X}Zr{sub 1-X}O{sub 2} binary oxides, and that the relative ratio was retained in the surface shell (i.e., including some subsurface layers by XPS) and the surface (e.g., by ISS). The increase in selectivity for the 1-alkene from dehydration of alcohols at high Zr content does not correlate smoothly with the tuned relative atomic concentration of Hf to Zr. The step change at high Zr content appears to be due to other indirect factors (e.g., surface defects, oxygen vacancies).

  13. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    SciTech Connect (OSTI)

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  14. A Photosynthetic Hydrogel for Catalytic Hydrogen Production ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production...

  15. Catalytic conversion of LPG

    SciTech Connect (OSTI)

    Pujado, P.R.; Vora, B.V.; Mowry, J.R.; Anderson, R.F.

    1986-01-01

    The low reactivity of light paraffins has long hindered their utilization as petrochemical feedstocks. Except for their use in ethylene crackers, LPG fractions have traditionally been consumed as fuel. New catalytic processes now being commercialized open new avenues for the utilization of LPG as sources of valuable petrochemical intermediates. This paper discusses processes for the dehydrogenation and aromatization of LPG.

  16. Degradation Mechanisms of Urea Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. acep02peden...

  17. Ability of Catalytic Converters to Reduce Air Pollution

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    NOx - 1 Ability of Catalytic Converters to Reduce Air Pollution MEASUREMENT OF SELECTED AIR Air Pollution MEASUREMENT OF SELECTED AIR POLLUTANTS IN CAR EXHAUST INTRODUCTION Automobile engines of gasoline (hydrocarbons, CxHy) in air: CxHy + O2 CO2 + H2O + heat (1) When there is the correct balance

  18. Thin film porous membranes for catalytic sensors

    SciTech Connect (OSTI)

    Hughes, R.C.; Boyle, T.J.; Gardner, T.J. [and others

    1997-06-01

    This paper reports on new and surprising experimental data for catalytic film gas sensing resistors coated with nanoporous sol-gel films to impart selectivity and durability to the sensor structure. This work is the result of attempts to build selectivity and reactivity to the surface of a sensor by modifying it with a series of sol-gel layers. The initial sol-gel SiO{sub 2} layer applied to the sensor surprisingly showed enhanced O{sub 2} interaction with H{sub 2} and reduced susceptibility to poisons such as H{sub 2}S.

  19. Catalysis of 6? Electrocyclizations & Catalytic Disproportionation of Lignin Model Compounds

    E-Print Network [OSTI]

    Bishop, Lee

    2010-01-01

    catalytic reductions, and catalytic oxidations. 13 The high-processes for the catalytic oxidation of lignin has focusedand paper industry. Catalytic oxidation is of less interest

  20. Nanotechnology finding its way into flame retardancy

    SciTech Connect (OSTI)

    Schartel, Bernhard, E-mail: bernhard.schartel@bam.de [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany)

    2014-05-15

    Nanotechnology is one of the key technologies of the 21{sup st} century. The exploitation of 'new' effects that arise from materials structured on the nano-scale has also been proposed successfully for flame retardancy of polymers since the end of the 90s. Of all of the approaches these include, at this time the use of nanocomposites offers the best potential for industrial application, also some other ideas are sketched, such as using electrospun nanofibers mats or layer-by-layer deposits as protection coatings, as well as sub-micrometer multilayer coatings as effective IR-mirrors. The general phenomena, inducing a flow limit in the pyrolysing melt and changing the fire residue, are identified in nanocomposites. Key experiments are performed such as quasi online investigation of the protection layer formation to understand what is going on in detail. The flame retardancy mechanisms are discussed and their impact on fire behaviour quantified. With the latter, the presentation pushes forward the state of the art. For instance, the heat shielding is experimentally quantified for a layered silicate epoxy resin nanocomposite proving that it is the only import mechanism controlling the reduction in peak heat release rate in the investigated system for different irradiations. The flame retardancy performance is assessed comprehensively illuminating not only the strengths but also the weak points of the concepts. Guidelines for materials development are deduced and discussed. Apart from inorganic fillers (layered silicate, boehmite, etc.) not only carbon nanoobjects such as multiwall carbon nanotubes, multilayer graphene and graphene are investigated, but also nanoparticles that are more reactive and harbor the potential for more beneficial interactions with the polymer matrix.

  1. Catalytic reforming methods

    SciTech Connect (OSTI)

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  2. Vapor Barriers or Vapor Diffusion Retarders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    retarders. Materials such as rigid foam insulation, reinforced plastics, aluminum, and stainless steel are relatively resistant to water vapor diffusion. These types of vapor...

  3. CHEMICAL AND CATALYTIC PROPERTIES OF ELEMENTAL CARBON

    E-Print Network [OSTI]

    Chang, S.G.

    2013-01-01

    of kinetic data for the catalytic oxidation of S0 by variousand mechanism for the catalytic oxidation of so 2 on carbonthe pH is low. The catalytic oxidation of sulfurous acid on

  4. Catalytic Filter for Diesel Exhaust Purification | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalytic Filter for Diesel Exhaust Purification Catalytic Filter for Diesel Exhaust Purification This project is developing a precious metal-free passive diesel particulate...

  5. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect (OSTI)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  6. Preparation and Comparison of Supported Gold Nanocatalysts on Anatase, Brookite, Rutile, and P25 Polymorphs of TiO2 for Catalytic Oxidation of CO

    E-Print Network [OSTI]

    Pennycook, Steve

    Polymorphs of TiO2 for Catalytic Oxidation of CO Wenfu Yan, Bei Chen, S. M. Mahurin, V. Schwartz, D. R to an identical sequence of treatment and measurements of catalytic CO oxidation activity. The as on selected metal oxides exhibit surprisingly high catalytic activity for CO oxidation even at 200 K.6,7 Now

  7. Reaction mechanisms for catalytic partial oxidation systems : application to ethylene epoxidation

    E-Print Network [OSTI]

    Anantharaman, Bharthwaj

    2005-01-01

    With the rapid advances in kinetic modeling, building elementary surface mechanisms have become vital to understand the complex chemistry for catalytic partial oxidation systems. Given that there is selected experimental ...

  8. Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation

    E-Print Network [OSTI]

    Joo, Sang Hoon

    2011-01-01

    sensitivity The catalytic oxidation of carbon monoxide (CO)stabilizer. The catalytic activity of CO oxidation overintriguing catalytic behavior for CO oxidation 5-15 ; while

  9. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction Materials 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review...

  10. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ace055peden2012o.pdf More Documents & Publications Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based...

  11. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ace055peden2013o.pdf More Documents & Publications Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based...

  12. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Zeolite-Based Hydrocarbon AdsorberMaterials Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based...

  13. Make the most of catalytic hydrogenations

    SciTech Connect (OSTI)

    Landert, J.P.; Scubla, T. [Biazzi S.A., Chailly-Montreux (Switzerland)

    1995-03-01

    Liquid-phase catalytic hydrogenation is one of the most useful and versatile reactions available for organic synthesis. Because it is environmentally clean, it has replaced other reduction processes, such as the Bechamp reaction, and zinc and sulfide reductions. Moreover, the economics are favorable, provided that raw materials free of catalyst poisons are used. The hydrogenation reaction is very selective with appropriate catalysts and can often be carried out without a solvent. Applications include reduction of unsaturated carbon compounds to saturated derivatives (for example, in vegetable-oil processing), carbonyl compounds to alcohols (such as sorbitol), and nitrocompounds to amines. the reactions are usually run in batch reactors to rapidly reach complete conversion and allow quick change-over of products. The paper describes the basics of hydrogenation; steering clear of process hazards; scale-up and optimization; and system design in practice.

  14. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    SciTech Connect (OSTI)

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO{sub x} emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O&M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO{sub x} removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system.

  15. Catalytic membrane reactors for chemicals upgrading and environmental control

    SciTech Connect (OSTI)

    Sammells, A.F. [Eltron Research, Inc., Boulder, CO (United States)

    1994-12-31

    Mixed ionic and electronic conducting catalytic membrane reactors are being developed for promoting a number of spontaneous chemical reactions either leading to synthesis of value added products or decomposition of environmental contaminants. The dense non-porous ceramic materials behave as short-circuited electrochemical devices whereby ions (oxygen anions or protons) and electrons become simultaneously mediated for one reaction surface to another. The rationale behind membrane materials selection and specific applications will be discussed.

  16. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect (OSTI)

    Lu, Yi

    2003-06-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize.

  17. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect (OSTI)

    Lu, Yi

    2002-06-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize.

  18. Catalytic two-stage coal hydrogenation and hydroconversion process

    DOE Patents [OSTI]

    MacArthur, James B. (Denville, NJ); McLean, Joseph B. (So. Somerville, NJ); Comolli, Alfred G. (Yardley, PA)

    1989-01-01

    A process for two-stage catalytic hydrogenation and liquefaction of coal to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal is slurried with a process-derived liquid solvent and fed at temperature below about 650.degree. F. into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils at conditions favoring hydrogenation reactions. The first stage reactor is maintained at 650.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-60 lb coal/hr/ft.sup.3 reactor space velocity. The partially hydrogenated material from the first stage reaction zone is passed directly to the close-coupled second stage catalytic reaction zone maintained at a temperature at least about 25.degree. F. higher than for the first stage reactor and within a range of 750.degree.-875.degree. F. temperature for further hydrogenation and thermal hydroconversion reactions. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, which results in significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of undesirable residuum and unconverted coal and hydrocarbon gases, with use of less energy to obtain the low molecular weight products, while catalyst life is substantially increased.

  19. Final Report of a CRADA Between Pacific Northwest National Laboratory and the Ford Motor Company (CRADA No. PNNL/265): “Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials”

    SciTech Connect (OSTI)

    Gao, Feng; Kwak, Ja Hun; Lee, Jong H.; Tran, Diana N.; Peden, Charles HF; Howden, Ken; Cheng, Yisun; Lupescu, Jason; Cavattaio, Giovanni; Lambert, Christine; McCabe, Robert W.

    2013-02-14

    Reducing NOx emissions and particulate matter (PM) are primary concerns for diesel vehicles required to meet current LEV II and future LEV III emission standards which require 90+% NOx conversion. Currently, urea SCR as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) are being used for emission control system components by Ford Motor Company for 2010 and beyond diesel vehicles. Because the use of this technology for vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions. This is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations, and to develop a good understanding of deactivation mechanisms that can be used to develop improved catalyst materials. In addition to NOx and PM, the hydrocarbon (HC) emission standards are expected to become much more stringent during the next few years. Meanwhile, the engine-out HC emissions are expected to increase and/or be more difficult to remove. Since HC can be removed only when the catalyst becomes warm enough for its oxidation, three-way catalyst (TWC) and diesel oxidation catalyst (DOC) formulations often contain proprietary zeolite materials to hold the HC produced during the cold start period until the catalyst reaches its operating temperature (e.g., >200°C). Unfortunately, much of trapped HC tends to be released before the catalyst reaches the operating temperature. Among materials effective for trapping HC during the catalyst warm-up period, siliceous zeolites are commonly used because of their high surface area and high stability under typical operating conditions. However, there has been little research on the physical properties of these materials related to the adsorption and release of various hydrocarbon species found in the engine exhaust. For these reasons, automakers and engine manufacturers have difficulty improving their catalytic converters for meeting the stringent HC emission standards. In this collaborative program, scientists and engineers in the Institute for Integrated Catalysis at Pacific Northwest National Laboratory and at Ford Motor Company have investigated laboratory- and engine-aged SCR catalysts, containing mainly base metal zeolites. These studies are leading to a better understanding of various aging factors that impact the long-term performance of SCR catalysts and improve the correlation between laboratory and engine aging, saving experimental time and cost. We have also studied materials effective for the temporary storage of HC species during the cold-start period. In particular, we have examined the adsorption and desorption of various HC species produced during the combustion with different fuels (e.g., gasoline, E85, diesel) over potential HC adsorber materials, and measured the kinetic parameters to update Ford’s HC adsorption model. Since this CRADA has now been completed, in this final report we will provide brief summaries of most of the work carried out on this CRADA over the last several years.

  20. Silica Fume as a Radon Retardant from Concrete

    E-Print Network [OSTI]

    Yu, Peter K.N.

    Silica Fume as a Radon Retardant from Concrete K . N . Y U , * , R . V . B A L E N D R A N of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong Radon, and tracheobronchial deposition of radon progeny can lead to lung cancers. Aggregates (granite) are known

  1. Carbohydrate Derived-Pseudo-Lignin Can Retard Cellulose Biological Conversion

    E-Print Network [OSTI]

    California at Riverside, University of

    ARTICLE Carbohydrate Derived-Pseudo-Lignin Can Retard Cellulose Biological Conversion Rajeev Kumar derived pseudo-lignin on cellulose conversion at the moderate to low enzyme loadings necessary for favorable economics, dilute acid pretreatment of Avicel cellulose alone and mixed with beechwood xylan

  2. Environmentally-benign Flame Retardant Nanocoating for Foam and Fabric 

    E-Print Network [OSTI]

    Cain, Amanda Ashley

    2014-12-09

    for the purpose of inhibiting or suppressing the combustion cycle. Inspiration for first applying polymer/clay thin films (i.e., nanobrick walls) as flame retardant (FR) coatings to polyurethane foam via LbL came from the final stage of a proposed flame...

  3. Arsenic Occurrence, Mobility, and Retardation in Sandstone and

    E-Print Network [OSTI]

    Sahai, Nita

    Arsenic Occurrence, Mobility, and Retardation in Sandstone and Dolomite Formations of the Fox River were conducted on samples from the Sinnipee Group dolomite and St. Peter sandstone in eastern Wisconsin in the dolomite and sandstone. The released As sub- sequently sorbs on the ferric oxyhydroxides formed

  4. Path integral formulation of retardation effects in nonlinear optics Vladimir Chernyaka) and Shaul Mukamel

    E-Print Network [OSTI]

    Mukamel, Shaul

    Path integral formulation of retardation effects in nonlinear optics Vladimir Chernyaka) and Shaul;accepted4 October 1993) The signaturesof retardation in nonlinear optical susceptibilitiesare studiedby optical signalsare usually'calculatedby first calculating a nonlinear susceptibility definedby expanding

  5. Catalytic oxidizers and Title V requirements

    SciTech Connect (OSTI)

    Uberoi, M.; Rach, S.E.

    1999-07-01

    Catalytic oxidizers have been used to reduce VOC emissions from various industries including printing, chemical, paint, coatings, etc. A catalytic oxidizer uses a catalyst to reduce the operating temperature for combustion to approximately 600 F, which is substantially lower than thermal oxidation unit. Title V requirements have renewed the debate on the best methods to assure compliance of catalytic oxidizers, with some suggesting the need for continuous emission monitoring equipment. This paper will discuss the various aspects of catalytic oxidation and consider options such as monitoring inlet/outlet temperatures, delta T across the catalyst, periodic laboratory testing of catalyst samples, and preventive maintenance procedures as means of assuring continuous compliance.

  6. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been...

  7. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report You are accessing a document from the Department of Energy's (DOE)...

  8. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report In this Quarter, the research was focused continually on the...

  9. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 The research was...

  10. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 You are accessing a...

  11. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 You are accessing...

  12. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 In this Quarter, the...

  13. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report In this Quarter, the research was focused continually on the two...

  14. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report You are accessing a document from the Department of...

  15. Molecular catalytic hydrogenation of aromatic hydrocarbons and

    Office of Scientific and Technical Information (OSTI)

    catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids. Yang, Shiyong; Stock, L.M. 01 COAL, LIGNITE, AND PEAT; 40 CHEMISTRY; COAL LIQUIDS;...

  16. Molecular catalytic hydrogenation of aromatic hydrocarbons and...

    Office of Scientific and Technical Information (OSTI)

    hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids. Citation Details In-Document Search Title: Molecular catalytic hydrogenation of aromatic hydrocarbons and...

  17. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The team is now exploring techniques that would permit two- and three-dimensional mapping of catalytic reactions. Multidimensional imaging will give the ability to know...

  18. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect (OSTI)

    2004-07-01

    Energy-Efficient Catalytic Hydrogenation Reactions. Hydrogenation reactions are very versatile and account for 10% to 20% of all reactions in the pharmaceutical industry.

  19. Mechanism of Selective Oxidation of Propene to Acrolein on Bismuth Molybdates from Quantum Mechanical Calculations

    E-Print Network [OSTI]

    Goddard III, William A.

    Catalytic oxidation of small olefins to unsaturated aldehydes and catalytic ammoxidation of small olefins,1 primarily through catalytic oxidation of propene (eq 1) In the early stages of this industryMechanism of Selective Oxidation of Propene to Acrolein on Bismuth Molybdates from Quantum

  20. Comparison of metrics from retarded integrals and transverse traceless subgauge

    E-Print Network [OSTI]

    R. A. Lewis; G. Modanese

    2013-04-12

    The time-varying gravitational field produced by a Weber bar is used to explore mathematical features of the linearized Einstein equation. We present a self-contained formal framework for the treatment of the linear field, which is applicable to several situations where the standard quadrupolar formulas are not adequate. The expressions for retarded integrals reveal a singularity associated with boundary conditions. Results from the transverse traceless subgauge are compared with the radiation calculated from retarded integrals. Lienard-Wiechert potentials are used in a treatment of the Weber bar as a collection of point particles and further possible applications are outlined. The Riemann tensor clarifies the transition from near-field geodesic forces to tidal forces in the far field.

  1. Utilization of char from biomass gasification in catalytic applications

    E-Print Network [OSTI]

    Columbia University

    Utilization of char from biomass gasification in catalytic applications Naomi Klinghoffer Submitted Utilization of char from biomass gasification in catalytic applications Naomi Klinghoffer Utilization takes place during catalytic decomposition. This thesis focuses on the utilization of char as a catalyst

  2. Method of fabricating a catalytic structure

    DOE Patents [OSTI]

    Rollins, Harry W. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID)

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  3. Comparison of Water-Hydrogen Catalytic Exchange Processes Versus...

    Office of Environmental Management (EM)

    Comparison of Water-Hydrogen Catalytic Exchange Processes Versus Water Distillation for Water Detritiation Comparison of Water-Hydrogen Catalytic Exchange Processes Versus Water...

  4. Measurement of diesel solid nanoparticle emissions using a catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    diesel solid nanoparticle emissions using a catalytic stripper for comparison with Europe's PMP protocol Measurement of diesel solid nanoparticle emissions using a catalytic...

  5. Passive Catalytic Approach to Low Temperature NOx Emission Abatement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalytic Approach to Low Temperature NOx Emission Abatement Passive Catalytic Approach to Low Temperature NOx Emission Abatement Numerically evaluated and optimized proposed...

  6. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion This research, which is relevant to the...

  7. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion You are accessing a document from...

  8. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2008-05-06

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  9. Catalytic reactor with improved burner

    DOE Patents [OSTI]

    Faitani, Joseph J. (Hartford, CT); Austin, George W. (Glastonbury, CT); Chase, Terry J. (Somers, CT); Suljak, George T. (Vernon, CT); Misage, Robert J. (Manchester,all of, CT)

    1981-01-01

    To more uniformly distribute heat to the plurality of catalyst tubes in a catalytic reaction furnace, the burner disposed in the furnace above the tops of the tubes includes concentric primary and secondary annular fuel and air outlets. The fuel-air mixture from the primary outlet is directed towards the tubes adjacent the furnace wall, and the burning secondary fuel-air mixture is directed horizontally from the secondary outlet and a portion thereof is deflected downwardly by a slotted baffle toward the tubes in the center of the furnace while the remaining portion passes through the slotted baffle to another baffle disposed radially outwardly therefrom which deflects it downwardly in the vicinity of the tubes between those in the center and those near the wall of the furnace.

  10. Non-catalytic recuperative reformer

    DOE Patents [OSTI]

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  11. Catalytic cartridge SO3 decomposer

    SciTech Connect (OSTI)

    Galloway, T.R.

    1982-05-25

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a crossflow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axialflow cartridge, so3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  12. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOE Patents [OSTI]

    MacArthur, James B. (Denville, NJ); Comolli, Alfred G. (Yardley, PA); McLean, Joseph B. (Somerville, NJ)

    1989-01-01

    A process for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600.degree.-750.degree. F. to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650.degree. F. and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-90 lb/hr per ft.sup.3 catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760.degree.-860.degree. F. temperature for further hydrogenation and hydroconversion reactions. A 600.degree.-750.degree. F..sup.+ fraction containing 0-20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials.

  13. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOE Patents [OSTI]

    MacArthur, J.B.; Comolli, A.G.; McLean, J.B.

    1989-10-17

    A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.

  14. Long life catalytic membrane reactors for spontaneous conversion of natural gas to synthesis gas

    SciTech Connect (OSTI)

    Schwartz, M., White, J., Deych, S., Millard, J., Myers, M., Sammells, A.

    1997-10-01

    This program is focusing on the development of mixed ionic and electronic conducting materials based on the brown millerite structure for use in catalytic membrane reactors (CMRs). These CMRs are being evaluated for promoting the spontaneous and highly selective oxidative reforming of carbon dioxide / natural gas mixtures to synthesis gas.

  15. Systematic evaluation of monometallic catalytic materials for lean-burn NOx reduction using combinatorial methods

    E-Print Network [OSTI]

    Senkan, Selim M.

    Systematic evaluation of monometallic catalytic materials for lean-burn NOx reduction using the commercialization of such engines [1]. In principle, NOx reduction could be achieved by either decomposition of NOx for NOx reduction. These efforts were spurred by the discoveries that NO can selectively be reduced over

  16. Catalytic Properties of Supported MoO3 Catalysts for Oxidative Dehydrogenation of Propane

    E-Print Network [OSTI]

    Iglesia, Enrique

    Catalytic Properties of Supported MoO3 Catalysts for Oxidative Dehydrogenation of Propane Kaidong The effects of MoOx structure on propane oxidative dehydrogenation (ODH) rates and selectivity were examined with those obtained on MoOx/ZrO2. On MoOx/Al2O3 catalysts, propane turnover rate increased with increasing Mo

  17. Selective Catalytic Reduction and Exhaust Gas Recirculation Systems Optimization

    Broader source: Energy.gov [DOE]

    A patented EGR-SCR approach was shown to readily meet the 2010 EPA requirments for NOx and PM emisisons through independent testing programs.

  18. New Developments in Titania-Based Catalysts for Selective Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SCR Application Volatility of Vanadia from Vanadia-Based SCR Catalysts under Accelerated Aging Conditions Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis...

  19. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Daniel Boff About UsWorkDavidVehicle ProjectReduction

  20. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Daniel Boff About UsWorkDavidVehicle

  1. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Daniel Boff About UsWorkDavidVehicleReduction

  2. Degradation Mechanisms of Urea Selective Catalytic Reduction Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Daniel BoffDepartment of EnergyDepartment of

  3. Degradation Mechanisms of Urea Selective Catalytic Reduction Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Daniel BoffDepartment of EnergyDepartment

  4. Degradation Mechanisms of Urea Selective Catalytic Reduction Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Daniel BoffDepartment of EnergyDepartmentDepartment

  5. Degradation Mechanisms of Urea Selective Catalytic Reduction Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Daniel BoffDepartment of

  6. Fast switchable electro-optic radial polarization retarder

    E-Print Network [OSTI]

    B. C. Lim; P. B. Phua; W. J. Lai; M. H. Hong

    2008-01-21

    A fast, switchable electro-optic radial polarization retarder (EO-RPR) fabricated using the electro-optic ceramic PMN-PT is presented. This EO-RPR is useful for fast, switchable generation of pure cylindrical vector beam. When used together with a pair of half-wave plates, the EO-RPR can change circularly polarized light into any cylindrical vector beam of interest such as radially or azimuthally polarized light. Radially and azimuthally polarized light with purities greater than 95% are generated experimentally. The advantages of using EO-RPR include fast response times, low driving voltage and transparency in a wide spectral range (500 -7000 nm).

  7. Vacuum-insulated catalytic converter

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO)

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  8. The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation

    E-Print Network [OSTI]

    Park, Jeong Y.; Aliaga, Cesar; Renzas, J. Russell; Lee, Hyunjoo; Somorjai, Gabor A.

    2009-01-01

    Nanoparticles in Catalytic Activity of CO Oxidation Jeong Y.that the catalytic activity under CO oxidation with partiallayers on catalytic activity during CO oxidation is not

  9. The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation

    E-Print Network [OSTI]

    Park, Jeong Y.

    2010-01-01

    Nanoparticles in Catalytic Activity of CO Oxidation Jeong Y.that the catalytic activity under CO oxidation with partiallayers on catalytic activity during CO oxidation is not

  10. Hydrogen Oxidation-Driven Hot Electron Flow Detected by Catalytic Nanodiodes

    E-Print Network [OSTI]

    Hervier, Antoine

    2011-01-01

    In conclusion, the catalytic oxidation of hydrogen on a Pt/chemicurrent from catalytic CO oxidation at atmosphericchemicurrent in catalytic hydrogen oxidation on Pt. Hydrogen

  11. CATALYTIC OXIDATION OF S(IV) ON ACTIVATED CARBON IN AQUEOUS SUSPENSION: KINETICS AND MECHANISM

    E-Print Network [OSTI]

    Brodzinsky, Richard

    2012-01-01

    and Mechanism for the Catalytic Oxidation of Sulfur Dioxidekinetic study of the catalytic oxidation on carbon particlesthe kinetics of the catalytic oxidation of sulfur dioxide on

  12. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    Laster, W. R.; Anoshkina, E.

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  13. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    W. R. Laster; E. Anoshkina

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  14. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    W. R. Laster; E. Anoshkina; P. Szedlacsek

    2006-03-31

    Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

  15. Phase selectively soluble polymer supports to facilitate homogeneous catalysis 

    E-Print Network [OSTI]

    Ortiz-Acosta, Denisse

    2009-05-15

    and selectivity, and they often allow the use of mild reaction conditions. However, the metals used in the catalytic reactions most popular in organic synthesis like palladium, rhodium, and platinum are generally very expensive. The organic ligands...

  16. New Catalytic DNA Biosensors for Radionuclides and Metal ion

    SciTech Connect (OSTI)

    Yi Lu

    2008-03-01

    We aim to develop new DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides, such as uranium, technetium, and plutonium, and metal contaminants, such as lead, chromium, and mercury. The sensors will be highly sensitive and selective. They will be applied to on-site, real-time assessment of concentration, speciation, and stability of the individual contaminants before and during bioremediation, and for long-term monitoring of DOE contaminated sites. To achieve this goal, we have employed a combinatorial method called “in vitro selection” to search from a large DNA library (~ 1015 different molecules) for catalytic DNA molecules that are highly specific for radionuclides or other metal ions through intricate 3-dimensional interactions as in metalloproteins. Comprehensive biochemical and biophysical studies have been performed on the selected DNA molecules. The findings from these studies have helped to elucidate fundamental principles for designing effective sensors for radionuclides and metal ions. Based on the study, the DNA have been converted to fluorescent or colorimetric sensors by attaching to it fluorescent donor/acceptor pairs or gold nanoparticles, with 11 part-per-trillion detection limit (for uranium) and over million fold selectivity (over other radionuclides and metal ions tested). Practical application of the biosensors for samples from the Environmental Remediation Sciences Program (ERSP) Field Research Center (FRC) at Oak Ridge has also been demonstrated.

  17. Electro Catalytic Oxidation (ECO) Operation

    SciTech Connect (OSTI)

    Morgan Jones

    2011-03-31

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and sequestration projects. The objectives of this project were to prove at a commercial scale that ECO is capable of extended operations over a range of conditions, that it meets the reliability requirements of a typical utility, and that the fertilizer co-product can be consistently generated, providing ECO with an economic advantage over conventional technologies currently available. Further objectives of the project were to show that the ECO system provides flue gas that meets the inlet standards necessary for ECO{sub 2} to operate, and that the outlet CO{sub 2} and other constituents produced by the ECO{sub 2} pilot can meet Kinder-Morgan pipeline standards for purposes of sequestration. All project objectives are consistent with DOE's Pollution Control Innovations for Power Plants program goals.

  18. A design approach for improving the performance of single-grid planar retarding potential analyzers

    SciTech Connect (OSTI)

    Davidson, R. L.; Earle, G. D. [William B. Hanson Center for Space Sciences, University of Texas at Dallas, 800 W. Campbell Rd. WT15, Richardson, Texas 75080 (United States)

    2011-01-15

    Planar retarding potential analyzers (RPAs) have a long flight history and have been included on numerous spaceflight missions including Dynamics Explorer, the Defense Meteorological Satellite Program, and the Communications/Navigation Outage Forecast System. RPAs allow for simultaneous measurement of plasma composition, density, temperature, and the component of the velocity vector normal to the aperture plane. Internal conductive grids are used to approximate ideal potential planes within the instrument, but these grids introduce perturbations to the potential map inside the RPA and cause errors in the measurement of the parameters listed above. A numerical technique is presented herein for minimizing these grid errors for a specific mission by varying the depth and spacing of the grid wires. The example mission selected concentrates on plasma dynamics near the sunset terminator in the equatorial region. The international reference ionosphere model is used to discern the average conditions expected for this mission, and a numerical model of the grid-particle interaction is used to choose a grid design that will best fulfill the mission goals.

  19. Producing Clean Syngas via Catalytic Reforming for Fuels Production

    SciTech Connect (OSTI)

    Magrini, K. A.; Parent, Y.; Jablonski, W.; Yung, M.

    2012-01-01

    Thermochemical biomass conversion to fuels and chemicals can be achieved through gasification to syngas. The biomass derived raw syngas contains the building blocks of carbon monoxide and hydrogen as well as impurities such as tars, light hydrocarbons, and hydrogen sulfide. These impurities must be removed prior to fuel synthesis. We used catalytic reforming to convert tars and hydrocarbons to additional syngas, which increases biomass carbon utilization. In this work, nickel based, fluidizable tar reforming catalysts were synthesized and evaluated for tar and methane reforming performance with oak and model syngas in two types of pilot scale fluidized reactors (recirculating and recirculating regenerating). Because hydrogen sulfide (present in raw syngas and added to model syngas) reacts with the active nickel surface, regeneration with steam and hydrogen was required. Pre and post catalyst characterization showed changes specific to the syngas type used. Results of this work will be discussed in the context of selecting the best process for pilot scale demonstration.

  20. Process for catalytically oxidizing cycloolefins, particularly cyclohexene

    DOE Patents [OSTI]

    Mizuno, Noritaka (Sapporo, JP); Lyon, David K. (Bend, OR); Finke, Richard G. (Eugene, OR)

    1993-01-01

    This invention is a process for catalytically oxidizing cycloolefins, particularly cyclohexenes, to form a variety of oxygenates. The catalyst used in the process is a covalently bonded iridium-heteropolyanion species. The process uses the catalyst in conjunction with a gaseous oxygen containing gas to form 2-cyclohexen-1-ol and also 2-cyclohexen-1-one.

  1. Transparent and Catalytic Carbon Nanotube Films

    E-Print Network [OSTI]

    Hone, James

    for the dye-sensitized solar cell. Other possible applications include batteries, fuel cells and intercalation in hydrogen fuel cells and lithium ion batteries.1,10,12,14 However, the electrochemical activity to optimize performance through processing. In this study, we quantify the catalytic activity of single

  2. Performance characterization of a hydrogen catalytic heater.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  3. Anodic aluminium oxide catalytic membranes for asymmetric epoxidation{

    E-Print Network [OSTI]

    Anodic aluminium oxide catalytic membranes for asymmetric epoxidation{ So-Hye Cho, Nolan D. Walther, the catalytic membrane reactor configuration confers a significant advantage to oxidation reactions--the use of a catalytic membrane can provide a reactive interface for the oxidation to take place while avoiding long

  4. Data reconciliation and optimal operation of a catalytic naphtha reformer

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Data reconciliation and optimal operation of a catalytic naphtha reformer Tore Lid Statoil Mongstad model of a semiregenerative catalytic naphtha reformer, involving five pseudo components, was presented) developed a more de- tailed model of a semiregenerative catalytic naphtha reformer, involving 35 pseudo

  5. Method for producing flame retardant porous products and products produced thereby

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-08-04

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame.

  6. Method for Producing Flame Retardant Porous Products and Products Produced Thereby

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-08-04

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame.

  7. Method for producing flame retardant porous products and products produced thereby

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-08-04

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame. 1 fig.

  8. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    SciTech Connect (OSTI)

    Kamil Klier; Richard G. Herman

    2005-11-30

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Br�������¸nsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.

  9. Catalytic Reduction of Nitrogen Oxides by Methane over Pd(110) S. M. Vesecky, J. Paul, and D. W. Goodman*

    E-Print Network [OSTI]

    Goodman, Wayne

    the reduction of NOx species and the oxidation of CO and volatile organic compounds (VOC's) produced in mobile involves the selective catalytic reduction (SCR) or NOx with NH3 4 Although this process is efficient concern. If too much methane is oxidized to CO2, the efficiency of the NOx reduction process will suffer

  10. Impact of retarded spark timing on engine combustion, hydrocarbon emissions, and fast catalyst light-off

    E-Print Network [OSTI]

    Hallgren, Brian E. (Brian Eric), 1976-

    2005-01-01

    An experimental study was performed to determine the effects of substantial spark retard on engine combustion, hydrocarbon (HC) emissions, feed gas enthalpy, and catalyst light-off. Engine experiments were conducted at ...

  11. Polarographic catalytic currents and their use in the analysis of waters

    SciTech Connect (OSTI)

    Kheifets, L.Ya.; Cherevik, A.V.; Vasyukov, A.E.; Kabanenko, L.F.

    1987-08-20

    It was shown that the magnitude of the catalytic effects and the lower limits of the determinable contents c/sub 1/ in the various types of polarography differ by 2-100 times for the following systems: Cu(II), Ni(II), Co(II)-dimethylglyoxime; V(V)-cupferron-quinine; Cr(III), (VI)-nitrate; Ti(IV)-organic acid-chlorate. The c/sub 1/ values obtained in practice do not correspond for all the systems to the values calculated from the magnitude of the catalytic effect, since the catalytic currents begin to show up on the attainment of a minimum (threshold) concentration of the metal for the given system. The threshold concentrations of the metals were established for some of the systems. The discovered characteristics of the catalytic currents were used in the selection of polarographic methods for the determination of Cu(II), Ni(II), Co(II), V(V), Cr(III), (VI), and Ti(IV) in natural waters at the level of the maximum permissible concentration.

  12. Method and apparatus for a catalytic firebox reactor

    DOE Patents [OSTI]

    Smith, Lance L. (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Ulkarim, Hasan (Hamden, CT); Castaldi, Marco J. (Bridgeport, CT); Pfefferle, William C. (Madison, CT)

    2001-01-01

    A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.

  13. Reaction Selectivity in Heterogeneous Catalysis

    SciTech Connect (OSTI)

    Somorjai, Gabor A.; Kliewer, Christopher J.

    2009-02-02

    The understanding of selectivity in heterogeneous catalysis is of paramount importance to our society today. In this review we outline the current state of the art in research on selectivity in heterogeneous catalysis. Current in-situ surface science techniques have revealed several important features of catalytic selectivity. Sum frequency generation vibrational spectroscopy has shown us the importance of understanding the reaction intermediates and mechanism of a heterogeneous reaction, and can readily yield information as to the effect of temperature, pressure, catalyst geometry, surface promoters, and catalyst composition on the reaction mechanism. DFT calculations are quickly approaching the ability to assist in the interpretation of observed surface spectra, thereby making surface spectroscopy an even more powerful tool. HP-STM has revealed three vitally important parameters in heterogeneous selectivity: adsorbate mobility, catalyst mobility, and selective site-blocking. The development of size controlled nanoparticles from 0.8 to 10 nm, of controlled shape, and of controlled bimetallic composition has revealed several important variables for catalytic selectivity. Lastly, DFT calculations may be paving the way to guiding the composition choice for multi-metallic heterogeneous catalysis for the intelligent design of catalysts incorporating the many factors of selectivity we have learned.

  14. Preface: Challenges for Catalytic Exhaust Aftertreatment

    SciTech Connect (OSTI)

    Nova, Isabella; Epling, Bill; Peden, Charles HF

    2014-03-31

    This special issue of Catalysis Today continues the tradition established since the 18th NAM in Cancun, 2003, of publishing the highlights coming from these catalytic after-treatment technologies sessions, where this volume contains 18 papers based on oral and poster presentations of the 23rd NAM, 2013. The guest editors would like to thank all of the catalyst scientists and engineers who presented in the "Emission control" sessions, and especially the authors who contributed to this special issue of Catalysis Today.

  15. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect (OSTI)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-12-01

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE`s inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results.

  16. Carbon Dioxide Conversion to Valuable Chemical Products over Composite Catalytic Systems

    SciTech Connect (OSTI)

    Dagle, Robert A.; Hu, Jianli; Jones, Susanne B.; Wilcox, Wayne A.; Frye, John G.; White, J. F.; Jiang, Juyuan; Wang, Yong

    2013-05-01

    Presented is an experimental study on catalytic conversion of carbon dioxide into methanol, ethanol and acetic acid. Catalysts having different catalytic functions were synthesized and combined in different ways to enhance selectivity to desired products. The combined catalyst system possessed the following functions: methanol synthesis, Fischer-Tropsch synthesis, water-gas-shift and hydrogenation. Results showed that the methods of integrating these catalytic functions played important role in achieving desired product selectivity. It was speculated that if methanol synthesis sites were located adjacent to the C-C chain growth sites, the formation rate of C2 oxygenates would be enhanced. The advantage of using high temperature methanol catalyst PdZnAl in the combined catalyst system was demonstrated. In the presence of PdZnAl catalyst, the combined catalyst system was stable at temperature of 380oC. It was observed that, at high temperature, kinetics favored oxygenate formation. Results implied that the process can be intensified by operating at high temperature using Pd-based methanol synthesis catalyst. Steam reforming of the byproduct organics was demonstrated as a means to provide supplemental hydrogen. Preliminary process design, simulation, and economic analysis of the proposed CO2 conversion process were carried out. Economic analysis indicates how ethanol production cost was affected by the price of CO2 and hydrogen.

  17. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    SciTech Connect (OSTI)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In addition, Pt-mesoporous silica core-shell structured NPs (Pt{at}mSiO{sub 2}) were prepared, where the individual Pt NP is encapsulated by the mesoporous silica layer. The Pt{at}mSiO{sub 2} catalysts showed promising catalytic activity in high temperature CO oxidation. The design of catalytic structures with tunable parameters by rational synthetic methods presents a major advance in the field of catalyst synthesis, which would lead to uncover the structure-function relationships in heterogeneous catalytic reactions.

  18. Comparison of Water-Hydrogen Catalytic Exchange Processes vs...

    Office of Environmental Management (EM)

    at Tritium Focus Group Meeting, April 22-24, 2014, Aiken, SC COMPARISON OF WATER-HYDROGEN CATALYTIC EXCHANGE PROCESSES VERSUS WATER DISTILLATION FOR WATER DETRITIATION A. Busigin,...

  19. Hydrogen-assisted catalytic ignition characteristics of different fuels

    SciTech Connect (OSTI)

    Zhong, Bei-Jing; Yang, Fan; Yang, Qing-Tao

    2010-10-15

    Hydrogen-assisted catalytic ignition characteristics of methane (CH{sub 4}), n-butane (n-C{sub 4}H{sub 10}) and dimethyl ether (DME) were studied experimentally in a Pt-coated monolith catalytic reactor. It is concluded that DME has the lowest catalytic ignition temperature and the least required H{sub 2} flow, while CH{sub 4} has the highest catalytic ignition temperature and the highest required H{sub 2} flow among the three fuels. (author)

  20. Piloted rich-catalytic lean-burn hybrid combustor

    DOE Patents [OSTI]

    Newburry, Donald Maurice (Orlando, FL)

    2002-01-01

    A catalytic combustor assembly which includes, an air source, a fuel delivery means, a catalytic reactor assembly, a mixing chamber, and a means for igniting a fuel/air mixture. The catalytic reactor assembly is in fluid communication with the air source and fuel delivery means and has a fuel/air plenum which is coated with a catalytic material. The fuel/air plenum has cooling air conduits passing therethrough which have an upstream end. The upstream end of the cooling conduits is in fluid communication with the air source but not the fuel delivery means.

  1. Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to develop a unique, fuel-flexible catalytic combustor capable of enabling ultra-low emission, lean premixed combustion of a wide range of gaseous opportunity fuels. Fact...

  2. Passive Catalytic Approach to Low Temperature NOx Emission Abatement

    Broader source: Energy.gov [DOE]

    Numerically evaluated and optimized proposed state-of-the-art passive catalytic technology designed to reduce NOx released during vehicle cold start portion of the FTP-75 cycle

  3. Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    Next Generation Manufacturing Processes project to develop a unique, fuel-flexible catalytic combustor capable of enabling ultra-low emission, lean premixed combustion of a wide...

  4. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks have been identified....

  5. In-Situ Catalytic Fast Pyrolysis Technology Pathway | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified. In-Situ Catalytic Fast Pyrolysis Technology Pathway...

  6. Probing Hot Electron Flow Generated on Pt Nanoparticles with Au/TiO2 Schottky Diodes during Catalytic CO Oxidation

    E-Print Network [OSTI]

    Park, Jeong Y.

    2009-01-01

    Schottky Diodes during Catalytic CO Oxidation Jeong Y. Parkwere measured during catalytic CO oxidation at pressures ofexothermic catalytic carbon monoxide oxidation was directly

  7. Surface Structure and Catalytic $CO$ Oxidation Oscillations

    E-Print Network [OSTI]

    R. Danielak; A. Perera; M. Moreau; M. Frankowicz; R. Kapral

    1996-02-13

    A cellular automaton model is used to describe the dynamics of the catalytic oxidation of $CO$ on a $Pt(100)$ surface. The cellular automaton rules account for the structural phase transformations of the $Pt$ substrate, the reaction kinetics of the adsorbed phase and diffusion of adsorbed species. The model is used to explore the spatial structure that underlies the global oscillations observed in some parameter regimes. The spatiotemporal dynamics varies significantly within the oscillatory regime and depends on the harmonic or relaxational character of the global oscillations. Diffusion of adsorbed $CO$ plays an important role in the synchronization of the patterns on the substrate and this effect is also studied.

  8. Selective, nickel-catalyzed carbon-carbon bond-forming reactions of alkynes

    E-Print Network [OSTI]

    Miller, Karen M. (Karen Marie)

    2005-01-01

    Catalytic addition reactions to alkynes are among the most useful and efficient methods for preparing diverse types of substituted olefins. Controlling both regioselectivity and (EIZ)- selectivity in such transformations ...

  9. Catalytic reactor for low-Btu fuels

    DOE Patents [OSTI]

    Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  10. The Human Genome Project and Mental Retardation: An Educational Program. Final Progress Report

    SciTech Connect (OSTI)

    Davis, Sharon

    1999-05-03

    The Arc, a national organization on mental retardation, conducted an educational program for members, many of whom have a family member with a genetic condition causing mental retardation. The project informed members about the Human Genome scientific efforts, conducted training regarding ethical, legal and social implications and involved members in issue discussions. Short reports and fact sheets on genetic and ELSI topics were disseminated to 2,200 of the Arc's leaders across the country and to other interested individuals. Materials produced by the project can e found on the Arc's web site, TheArc.org.

  11. Invariant quantities of a Mueller matrix under rotation and retarder transformations

    E-Print Network [OSTI]

    Gil, Jose J

    2015-01-01

    Mueller matrices are defined with respect to appropriate Cartesian reference frames for the representation of the states of polarization of the input and output electromagnetic waves. The polarimetric quantities that are invariant under rotations of the said reference frames about the respective directions of propagation (rotation transformations) provide particularly interesting physical information. Moreover, certain properties are also invariant with respect to the action of birefringent devices located at both sides of the medium under consideration (retarder transformations). The polarimetric properties that remain invariant under rotation and retarder transformations are analyzed and interpreted, providing significant parameterizations of Mueller matrices in terms of meaningful physical quantities.

  12. THE ROLE OF FLY ASH IN CATALYTIC OXIDATION OF S(IV) SLURRIES

    E-Print Network [OSTI]

    Cohen, Sidney

    2014-01-01

    THE ROLE OF FLY ASH IN CATALYTIC OXIDATION OF S(IV) SLURRIESTHE ROLE OF FLY ASH IN CATALYTIC OXIDATION OF S(IV) SLURRIESreactive species in catalytic oxidation of S(IV). so 3 2- as

  13. KINETICS AND MECHANISM FOR THE CATALYTIC OXIDATION OF SULFUR DIOXIDE ON CARBON IN AQUEOUS SUSPENSIONS

    E-Print Network [OSTI]

    Brodzinsky, R.

    2012-01-01

    AND MECHANISM FOR THE CATALYTIC OXIDATION OF SULFUR DIOXIDEmechanism for the catalytic oxidation of in an aqueous sus1ECHANISf 1 1 FOR TilE CATALYTIC OXIDATION OF SULFUR DIOXIDE

  14. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ex-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast Pyrolysis In ex-situ catalytic fast pyrolysis, biomass is heated with catalysts...

  15. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis The in-situ catalytic fast pyrolysis pathway involves rapidly heating...

  16. Antibody-Metalloporphyrin Catalytic Assembly Mimics Natural Oxidation Enzymes

    E-Print Network [OSTI]

    Keinan, Ehud

    Antibody-Metalloporphyrin Catalytic Assembly Mimics Natural Oxidation Enzymes Shai Nimri and Ehud-metalloporphyrin assembly that catalyzes the enantioselective oxidation of aromatic sulfides to sulfoxides is presented-naphthoxy ligand. The catalytic assembly comprising antibody SN37.4 and a ruthenium- (II) porphyrin cofactor

  17. Data reconciliation and optimal operation of a catalytic naphtha reformer

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Data reconciliation and optimal operation of a catalytic naphtha reformer Tore Lid Statoil Mongstad of a semiregenerative catalytic naphtha reformer, involving 35 pseudo compo- nents. They claimed that the simplified-mail:skoge@chemeng.ntnu.no) #12;Abstract The naphtha reforming process converts low-octane gasoline blending compo- nents to high

  18. Catalytic Membrane Reactor for Extraction of Hydrogen from Bioethanol Reforming 

    E-Print Network [OSTI]

    Kuncharam, Bhanu Vardhan

    2013-11-26

    -gas-shift catalytic membrane reactor, and (2) a multi-layer design for bioethanol reforming. A two-dimensional model is developed to describe reaction and diffusion in the catalytic membrane coupled with plug-flow equations in the retentate and permeate volumes using...

  19. A microreactor array for spatially resolved measurement of catalytic activity for high-throughput catalysis science

    SciTech Connect (OSTI)

    Kondratyuk, Petro; Gumuslu, Gamze; Shukla, Shantanu; Miller, James B.; Morreale, Bryan D.; Gellman, Andrew J.

    2013-04-01

    We describe a 100 channel microreactor array capable of spatially resolved measurement of catalytic activity across the surface of a flat substrate. When used in conjunction with a composition spread alloy film (CSAF, e.g. Pd{sub x}Cu{sub y}Au{sub 1-x-y}) across which component concentrations vary smoothly, such measurements permit high-throughput analysis of catalytic activity and selectivity as a function of catalyst composition. In the reported implementation, the system achieves spatial resolution of 1 mm{sup 2} over a 10×10 mm{sup 2} area. During operation, the reactant gases are delivered at constant flow rate to 100 points of differing composition on the CSAF surface by means of a 100-channel microfluidic device. After coming into contact with the CSAF catalyst surface, the product gas mixture from each of the 100 points is withdrawn separately through a set of 100 isolated channels for analysis using a mass spectrometer. We demonstrate the operation of the device on a Pd{sub x}Cu{sub y}Au{sub 1-x-y} CSAF catalyzing the H{sub 2}-D{sub 2} exchange reaction at 333 K. In essentially a single experiment, we measured the catalytic activity over a broad swathe of concentrations from the ternary composition space of the Pd{sub x}Cu{sub y}Au{sub 1-x-y} alloy.

  20. Catalytic Hydrogenolysis of Biphenylene with Platinum, Palladium, and Nickel Phosphine Complexes

    E-Print Network [OSTI]

    Jones, William D.

    Catalytic Hydrogenolysis of Biphenylene with Platinum, Palladium, and Nickel Phosphine Complexes activation and formation by plati- num and palladium phosphine complexes.4g The oper- ating catalytic cycle

  1. A Catalytic Mechanism for Cysteine N-Terminal Nucleophile Hydrolases, as Revealed by Free Energy Simulations

    E-Print Network [OSTI]

    2012-01-01

    2 | e32397 A Catalytic Mechanism for Cysteine Ntn-Hydrolaseson the catalytic mechanism of aspartylglucosaminidase (AGA):serine protease- like mechanism with an N-terminal threonine

  2. Preparation and characterization of VOx/TiO2 catalytic coatings on stainless steel plates for structured catalytic reactors.

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Preparation and characterization of VOx/TiO2 catalytic coatings on stainless steel plates are used in the mild oxidation of hydrocarbons and NOx abatement are studied. Stainless steel (316 L) was chosen because of its large application in industrial catalytic reactors. TiO2 films on stainless steel

  3. Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber

    E-Print Network [OSTI]

    Das, Suman

    -retardant shield, reducing the peak heat release rate by more than 60% and reducing smoke generation by 50% during resistance to the formation of a protective nanotube network structure that acts as a heat shield, including carbon nanotube actu- ators [17], artificial muscles [18], strain sensors [19], electro- magnetic

  4. Mirror-mediated cooling: a paradigm for particle cooling via the retarded dipole force

    E-Print Network [OSTI]

    Tim Freegarde; James Bateman; André Xuereb; Peter Horak

    2012-06-01

    Cooling forces result from the retarded dipole interaction between an illuminated particle and its reflection. For a one-dimensional example, we find cooling times of milliseconds and limiting temperatures in the millikelvin range. The force, which may be considered the prototype for cavity-mediated cooling, may be enhanced by plasmon and geometric resonances at the mirror.

  5. Flame-Retardant Electrical Conductive Nanopolymers Based on Bisphenol F Epoxy Resin Reinforced with Nano Polyanilines

    E-Print Network [OSTI]

    Guo, John Zhanhu

    for obtaining epoxy resin polymer nano- composites (PNCs). The effects of nanofiller morphology and loading The development of conductive or semiconductive polymer nanocomposites (PNCs) from insulating polymers hasFlame-Retardant Electrical Conductive Nanopolymers Based on Bisphenol F Epoxy Resin Reinforced

  6. An In-depth Investigation of an Aluminum Chloride Retarded Mud Acid System on Sandstone Reservoirs 

    E-Print Network [OSTI]

    Aneto, Nnenna

    2012-07-16

    is very detrimental to the sandstone core as calcium fluoride is precipitated and the retarded acid system is found to be compatible with iron(III) as an impurity. The regular acid (RMHF) dissolves considerably more silicon and produces more fines than...

  7. Loss of WAVE-1 causes sensorimotor retardation and reduced learning and memory in mice

    E-Print Network [OSTI]

    Scott, John D.

    Loss of WAVE-1 causes sensorimotor retardation and reduced learning and memory in mice Scott H and Science Univesity, Portland, OR, December 31, 2002 (received for review December 23, 2002) The Scar WAVE to the actin cytoskel- eton. The WAVE-1 isoform is a brain-specific protein expressed in variety of areas

  8. Effect of electronic structures on catalytic properties of CuNi alloy and Pd in MeOH-related reactions

    SciTech Connect (OSTI)

    Tsai, An-Pang [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); National Institute for Materials Science, Tsukuba 305-0047 (Japan); Kimura, Tomofumi; Suzuki, Yukinori; Kameoka, Satoshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Shimoda, Masahiko [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Ishii, Yasushi [Department of Physics, Chuo University, Kasuga, Tokyo 112-8551 (Japan)

    2013-04-14

    We investigated the catalytic properties of a CuNi solid solution and Pd for methanol-related reactions and associated valence electronic structures. Calculations and X-ray photoelectron spectroscopy measurements revealed that the CuNi alloy has a similar valence electronic structure to Pd and hence they exhibited similar CO selectivities in steam reforming of methanol and decomposition of methanol. Samples prepared by various processes were found to have similar CO selectivities. We conjecture that alloying of Cu and Ni dramatically alters the valence electronic structures, making it similar to that of Pd so that the alloy exhibits similar catalytic properties to Pd. First-principles slab calculations of surface electronic structures support this conjecture.

  9. Biofuel from fast pyrolysis and catalytic hydrodeoxygenation.

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2015-09-04

    This review addresses recent developments in biomass fast pyrolysis bio-oil upgrading by catalytic hydrotreating. The research in the field has expanded dramatically in the past few years with numerous new research groups entering the field while existing efforts from others expand. The issues revolve around the catalyst formulation and operating conditions. Much work in batch reactor tests with precious metal catalysts needs further validation to verify long-term operability in continuous flow systems. The effect of the low level of sulfur in bio-oil needs more study to be better understood. Utilization of the upgraded bio-oil for feedstock to finished fuels is still in an early stage of understanding.

  10. Catalytic cartridge SO.sub.3 decomposer

    DOE Patents [OSTI]

    Galloway, Terry R. (Berkeley, CA)

    1982-01-01

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  11. Catalytic cartridge SO.sub.3 decomposer

    DOE Patents [OSTI]

    Galloway, Terry R. (Berkeley, CA)

    1982-01-01

    A catalytic cartridge internally heated is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube being internally heated. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and being internally heated. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  12. Catalytic cartridge SO/sub 3/ decomposer

    DOE Patents [OSTI]

    Galloway, T.R.

    1980-11-18

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO/sub 3/ decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO/sub 3/ gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO/sub 3/ gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety. A fusion reactor may be used as the heat source.

  13. Solid state proton and electron mediating membrane and use in catalytic membrane reactors

    DOE Patents [OSTI]

    White, J.H.; Schwartz, M.; Sammells, A.F.

    1998-10-13

    This invention provides catalytic proton and electron mediating membranes useful in catalytic reactors. The membranes have an oxidation and a reduction surface and comprise a single-phase mixed metal oxide material of the formula: AB{sub 1{minus}x}B{prime}{sub x}O{sub 3{minus}y} wherein A is selected from Ca, Sr or Ba ions; B is selected from Ce, Tb, Pr, or Th ions; B{prime} is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Ga, or In ions, or combinations thereof; and x is greater than or equal to 0.02 and less than or equal to 0.5. The membranes can further comprise a catalyst on either the oxidation or reduction surface, or both. Membranes include those which are fabricated by combining powders of metal oxides or metal carbonates of metal A ion, metal B ion and metal B{prime} ion such that the stoichiometric ratio A:B:B{prime} is 1:1{minus}x:x where 0.2{<=}{times}0.5, repeatedly calcining and milling the combined powders until a single-phase material is obtained and pressing and sintering the single phase material to obtain a membrane. 6 figs.

  14. Solid state proton and electron mediating membrane and use in catalytic membrane reactors

    DOE Patents [OSTI]

    White, James H. (Boulder, CO); Schwartz, Michael (Boulder, CO); Sammells, Anthony F. (Boulder, CO)

    1998-01-01

    This invention provides catalytic proton and electron mediating membranes useful in catalytic reactors. The membranes have an oxidation and a reduction surface and comprise a single-phase mixed metal oxide material of the formula: AB.sub.1-x B'.sub.x O.sub.3-y wherein A is selected from Ca, Sr or Ba ions; B is selected from Ce, Tb, Pr, or Th ions; B' is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Ga, or In ions, or combinations thereof; and x is greater than or equal to 0.02 and less than or equal to 0.5. The membranes can further comprise a catalyst on either the oxidation or reduction surface, or both. Membranes include those which are fabricated-by combining powders of metal oxides or metal carbonates of metal A ion, metal B ion and metal B' ion such that the stoichiometric ratio A:B:B' is 1:1-x:x where 0.2.ltoreq..times.0.5, repeatedly calcining and milling the combined powders until a single-phase material is obtained and pressing and sintering the singlephase material to obtain a membrane.

  15. Challenges in Catalytic Manufacture of Renewable Pyrrolidinones from Fermentation Derived Succinate

    SciTech Connect (OSTI)

    White, James F.; Holladay, Johnathan E.; Zacher, Alan H.; Frye, John G.; Werpy, Todd A.

    2014-09-05

    Fermentation derived succinic acid ammonium salt is an ideal precursor for manufacture of renewable N-methyl pyrrolidinone (NMP) or 2-pyrrolidinone (2P) via heterogeneous catalysis. However, there are many challenges to making this a practical reality. Chief among the challenges is avoiding catalyst poisoning by fermentation by- and co-products. Battelle / Pacific Northwest National Laboratory (PNNL) have developed an economically effective technology strategy for this purpose. The technology is a combination of purely thermal processing, followed by simple catalytic hydrogenation that together avoids catalyst poisoning from fermentation impurities and provides high selectivity and yields of NMP or 2P.

  16. Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis

    SciTech Connect (OSTI)

    Yip, NY; Elimelech, M

    2014-09-16

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural -> anthropogenic -> engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.

  17. Sequential tasks performed by catalytic pumps for colloidal crystallization

    E-Print Network [OSTI]

    Ali Afshar Farniya; Maria J. Esplandiu; Adrian Bachtold

    2014-10-20

    Gold-platinum catalytic pumps immersed in a chemical fuel are used to manipulate silica colloids. The manipulation relies on the electric field and the fluid flow generated by the pump. Catalytic pumps perform various tasks, such as the repulsion of colloids, the attraction of colloids, and the guided crystallization of colloids. We demonstrate that catalytic pumps can execute these tasks sequentially over time. Switching from one task to the next is related to the local change of the proton concentration, which modifies the colloid zeta potential and consequently the electric force acting on the colloids.

  18. Sequential tasks performed by catalytic pumps for colloidal crystallization

    E-Print Network [OSTI]

    Farniya, Ali Afshar; Bachtold, Adrian

    2014-01-01

    Gold-platinum catalytic pumps immersed in a chemical fuel are used to manipulate silica colloids. The manipulation relies on the electric field and the fluid flow generated by the pump. Catalytic pumps perform various tasks, such as the repulsion of colloids, the attraction of colloids, and the guided crystallization of colloids. We demonstrate that catalytic pumps can execute these tasks sequentially over time. Switching from one task to the next is related to the local change of the proton concentration, which modifies the colloid zeta potential and consequently the electric force acting on the colloids.

  19. Stochastic bi-resonance without external signal in the CO O2 catalytic oxidation reaction system

    E-Print Network [OSTI]

    Yang, Lingfa

    Stochastic bi-resonance without external signal in the CO O2 catalytic oxidation reaction system reaction systems13 including the catalytic oxidation of carbon monoxide (CO O2) and the catalytic reduction; accepted 19 April 1999 The noisy dynamic behavior of a surface catalytic reaction model to describe

  20. Emerging catalytic processes for the production of adipic acid

    E-Print Network [OSTI]

    Van de Vyver, Stijn

    Research efforts to find more sustainable pathways for the synthesis of adipic acid have led to the introduction of new catalytic processes for producing this commodity chemical from alternative resources. With a focus on ...

  1. Control of Substrate Access to the Active Site and Catalytic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control of Substrate Access to the Active Site and Catalytic Mechanism of Methane and Toluene Monooxygenases Friday, June 22, 2012 - 3:30pm SSRL Main Conference Room 137-322 Prof....

  2. An Energy Analysis of the Catalytic Combustion Burner 

    E-Print Network [OSTI]

    Dong, Q.; Zhang, S.; Duan, Z.; Zhou, Q.

    2006-01-01

    The gas boilers of conventional flame always produce varying degrees of combustion products NOx and CO, which pollute the environment and waste energy. As a new way of combustion, catalytic combustion breaks the flammable limits of conventional...

  3. Hydrogen permeable protective coating for a catalytic surface

    DOE Patents [OSTI]

    Liu, Ping (Irvine, CA); Tracy, C. Edwin (Golen, CO); Pitts, J. Roland (Lakewood, CO); Lee, Se-Hee (Lakewood, CO)

    2007-06-19

    A protective coating for a surface comprising a layer permeable to hydrogen, said coating being deposited on a catalyst layer; wherein the catalytic activity of the catalyst layer is preserved.

  4. Catalytic oxidation of VOC`s and air toxics

    SciTech Connect (OSTI)

    Lassen, M.A.; Chu, W. [Johnson Matthey, Wayne, PA (United States)

    1995-12-31

    Catalytic oxidation for VOC control of stationary sources has been in use since the 1940`s for energy recovery and odor control. Widespread use of catalytic oxidation, as a means for controlling emissions began in earnest in the early 1970`s with the passage of the Clean Air Act of 1970. Since that time, catalytic technology has undergone many improvements and advancements. Some of these include higher destruction efficiencies at lower temperatures, poison resistance, enhanced durability and the ability to effectively control halogenated hydrocarbon compounds. This is particularly important for meeting the Title III requirements, since many of the air toxics regulated under Title III are halogenated VOC`s. This paper will describe catalytic oxidation, how it works, its benefits and limitations, its cost relative to thermal, and describe recent technology advances.

  5. Direct Catalytic Upgrading of Current Dilute Alcohol Fermentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Catalytic Upgrading of Current Dilute Alcohol Fermentation Streams to Hydrocarbons for Fungible Fuels 2.3.1.100 Chaitanya Narula, 1 Zhenglong Li, 1 E. Casbeer, 1 Robert A....

  6. Catalytic H2O2 decomposition on palladium surfaces 

    E-Print Network [OSTI]

    Salinas, S. Adriana

    1998-01-01

    The catalytic decomposition of H?O? at smooth single-crystal and polycrystalline palladium surfaces that had been subjected to various surface modifications has been studied. Monolayer and submonolayer coverages of I, Br and Cl adsorbates were used...

  7. In situ XAS Characterization of Catalytic Nano-Materials with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XAS Characterization of Catalytic Nano-Materials with Applications to Fuel Cells and Batteries Friday, July 12, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Qingying...

  8. Northwestern University Facility for Clean Catalytic Process Research

    SciTech Connect (OSTI)

    Marks, Tobin Jay

    2013-05-08

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  9. Catalytic Reactor For Oxidizing Mercury Vapor

    DOE Patents [OSTI]

    Helfritch, Dennis J. (Baltimore, MD)

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  10. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOE Patents [OSTI]

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  11. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOE Patents [OSTI]

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  12. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect (OSTI)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  13. Ceramic membranes for catalytic membrane reactors with high ionic conductivities and low expansion properties

    DOE Patents [OSTI]

    Mackay, Richard (Lafayette, CO); Sammells, Anthony F. (Boulder, CO)

    2000-01-01

    Ceramics of the composition: Ln.sub.x Sr.sub.2-x-y Ca.sub.y B.sub.z M.sub.2-z O.sub.5+.delta. where Ln is an element selected from the fblock lanthanide elements and yttrium or mixtures thereof; B is an element selected from Al, Ga, In or mixtures thereof; M is a d-block transition element of mixtures thereof; 0.01.ltoreq.x.ltoreq.1.0; 0.01.ltoreq.y.ltoreq.0.7; 0.01.ltoreq.z.ltoreq.1.0 and .delta. is a number that varies to maintain charge neutrality are provided. These ceramics are useful in ceramic membranes and exhibit high ionic conductivity, high chemical stability under catalytic membrane reactor conditions and low coefficients of expansion. The materials of the invention are particularly useful in producing synthesis gas.

  14. Retardation of Particle Evaporation from Excited Nuclear Systems Due to Thermal Expansion

    E-Print Network [OSTI]

    J. Tőke; L. Pie?kowski; M. Houck; W. U. Schröder; L. G. Sobotka

    2005-07-26

    Particle evaporation rates from excited nuclear systems at equilibrium matter density are studied within the Harmonic-Interaction Fermi Gas Model (HIFGM) combined with Weisskopf's detailed balance approach. It is found that thermal expansion of a hot nucleus, as described quantitatively by HIFGM, leads to a significant retardation of particle emission, greatly extending the validity of Weisskopf's approach. The decay of such highly excited nuclei is strongly influenced by surface instabilities.

  15. Bullet Retarding Forces in Ballistic Gelatin by Analysis of High Speed Video

    E-Print Network [OSTI]

    Gaylord, Steven; Courtney, Michael; Courtney, Amy

    2013-01-01

    Though three distinct wounding mechanisms (permanent cavity, temporary cavity, and ballistic pressure wave) are described in the wound ballistics literature, they all have their physical origin in the retarding force between bullet and tissue as the bullet penetrates. If the bullet path is the same, larger retarding forces produce larger wounding effects and a greater probability of rapid incapacitation. By Newton's third law, the force of the bullet on the tissue is equal in magnitude and opposite in direction to the force of the tissue on the bullet. For bullets penetrating with constant mass, the retarding force on the bullet can be determined by frame by frame analysis of high speed video of the bullet penetrating a suitable tissue simulant such as calibrated 10% ballistic gelatin. Here the technique is demonstrated with 9mm NATO bullets, 32 cm long blocks of gelatin, and a high speed video camera operating at 20,000 frames per second. It is found that different 9mm NATO bullets have a wide variety of pot...

  16. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA); Brusasco, Raymond M. (Livermore, CA)

    2002-01-01

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  17. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA); Brusasco, Raymond M. (Livermore, CA)

    2000-01-01

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  18. Catalytic roles of Co0 and Co2+ during steam reforming of ethanol on Co/MgO catalysts

    SciTech Connect (OSTI)

    Karim, Ayman M.; Su, Yu; Engelhard, Mark H.; King, David L.; Wang, Yong

    2011-02-25

    Abstract: The catalytic roles of Co0 and Co2+ during steam reforming of ethanol were investigated over Co/MgO catalysts. Catalysts with different Co0/(Co0+Co2+) fraction were prepared through calcination and/or reduction at different temperatures, and the Co0 fraction was quantified by TPR and in-situ XPS. High temperature calcination of Co/MgO allowed us to prepare catalysts with more non-reducible Co2+ incorporated in the MgO lattice, while lower calcination temperatures allowed for the preparation of catalysts with higher Co0/(Co0+Co2+) fractions. The catalytic tests on Co0, non-reducible Co2+, and reducible Co2+ indicated that Co0 is much more active than either reducible or non-reducible Co2+ for C-C cleavage and water gas shift reaction. In addition, catalysts with a higher Co0 surface fraction exhibited a lower selectivity to CH4.

  19. Catalytic site inhibition of insulin-degrading enzyme by a small molecule induces glucose intolerance in mice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deprez-Poulain, Rebecca; Hennuyer, Nathalie; Bosc, Damien; Liang, Wenguang G.; Enée, Emmanuelle; Marechal, Xavier; Charton, Julie; Totobenazara, Jane; Berte, Gonzague; Jahklal, Jouda; et al

    2015-09-23

    Insulin-degrading enzyme (IDE) is a protease that cleaves insulin and other bioactive peptides such as amyloid-?. Knockout and genetic studies have linked IDE to Alzheimer’s disease and type-2 diabetes. As the major insulin-degrading protease, IDE is a candidate drug target in diabetes. Here we have used kinetic target-guided synthesis to design the first catalytic site inhibitor of IDE suitable for in vivo studies (BDM44768). Crystallographic and small angle X-ray scattering analyses show that it locks IDE in a closed conformation. Among a panel of metalloproteases, BDM44768 selectively inhibits IDE. Acute treatment of mice with BDM44768 increases insulin signalling and surprisinglymore »impairs glucose tolerance in an IDE-dependent manner. These results confirm that IDE is involved in pathways that modulate short-term glucose homeostasis, but casts doubt on the general usefulness of the inhibition of IDE catalytic activity to treat diabetes.« less

  20. Design Molecular Recognition Materials for Chiral Sensors, Separtations and Catalytic Materials

    SciTech Connect (OSTI)

    Jia, S.; Nenoff, T.M.; Provencio, P.; Qiu, Y.; Shelnutt, J.A.; Thoma, S.G.; Zhang, J.

    1998-11-01

    The goal is the development of materials that are highly sensitive and selective for chid chemicals and biochemical (such as insecticides, herbicides, proteins, and nerve agents) to be used as sensors, catalysts and separations membranes. Molecular modeling methods are being used to tailor chiral molecular recognition sites with high affinity and selectivity for specified agents. The work focuses on both silicate and non-silicate materials modified with chirally-pure fictional groups for the catalysis or separations of enantiomerically-pure molecules. Surfactant and quaternary amine templating is being used to synthesize porous frameworks, containing mesopores of 30 to 100 angstroms. Computer molecukw modeling methods are being used in the design of these materials, especially in the chid surface- modi~ing agents. Molecular modeling is also being used to predict the catalytic and separations selectivities of the modified mesoporous materials. The ability to design and synthesize tailored asymmetric molecular recognition sites for sensor coatings allows a broader range of chemicals to be sensed with the desired high sensitivity and selectivity. Initial experiments target the selective sensing of small molecule gases and non-toxic model neural compounds. Further efforts will address designing sensors that greatly extend the variety of resolvable chemical species and forming a predictive, model-based method for developing advanced sensors.

  1. Enhanced thermal and gas flow performance in a three-way catalytic converter through use of insulation within the ceramic monolith

    Broader source: Energy.gov [DOE]

    Emissions performance comparison of conventional catalytic converter with multi-channel catalytic converter (ceramic fiber insulation layers introduced into ceramic monolith of three-way catalytic converter)

  2. Ultra Low NOx Catalytic Combustion for IGCC Power Plants

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2008-03-31

    In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O{sub 2}) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O{sub 2}) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft{sup 3} was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown to be active in ammonia reduction in fuel allowing potential reductions in the burner NOx production. These reductions of NOx emissions and expanded alternative fuel capability make the rich catalytic combustor uniquely situated to provide reductions in capital costs through elimination of requirements for SCR, operating costs through reduction in need for NOx abating dilution, SCR operating costs, and need for co-firing fuels allowing use of lower value but more available fuels, and efficiency of an engine through reduction in dilution flows.

  3. Method for measuring recovery of catalytic elements from fuel cells

    DOE Patents [OSTI]

    Shore, Lawrence (Edison, NJ); Matlin, Ramail (Berkeley, NJ)

    2011-03-08

    A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.

  4. Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations

    SciTech Connect (OSTI)

    Shi,Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-01-01

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  5. Catalytic conversion of light alkanes. Final report, January 1, 1990--October 31, 1994

    SciTech Connect (OSTI)

    1998-12-31

    During the course of the first three years of the Cooperative Agreement (Phase I-III), we uncovered a family of metal perhaloporphyrin complexes which had unprecedented activity for the selective air-oxidation of fight alkanes to alcohols. The reactivity of fight hydrocarbon substrates with air or oxygen was in the order: isobutane>propane>ethane>methane, in accord with their homolytic bond dissociation energies. Isobutane was so reactive that the proof-of concept stage of a process for producing tert-butyl alcohol from isobutane was begun (Phase V). It was proposed that as more active catalytic systems were developed (Phases IV, VI), propane, then ethane and finally methane oxidations will move into this stage (Phases VII through IX). As of this writing, however, the program has been terminated during the later stages of Phases V and VI so that further work is not anticipated. We made excellent progress during 1994 in generating a class of less costly new materials which have the potential for high catalytic activity. New routes were developed for replacing costly perfluorophenyl groups in the meso-position of metalloporphyrin catalysts with far less expensive and lower molecular weight perfluoromethyl groups.

  6. Recent Developments on the Production of Transportation Fuels via Catalytic Conversion of Microalgae: Experiments and Simulations

    SciTech Connect (OSTI)

    Shi, Fan; Wang, Ping; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-08-02

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize “food versus fuel” concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  7. Catalytic process for control of NO.sub.x emissions using hydrogen

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2010-05-18

    A selective catalytic reduction process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent. A zirconium sulfate (ZrO.sub.2)SO.sub.4 catalyst support material with about 0.01-2.0 wt. % Pd is applied to a catalytic bed positioned in a flow of exhaust gas at about 70-200.degree. C. The support material may be (ZrO.sub.2--SiO.sub.2)SO.sub.4. H.sub.2O and hydrogen may be injected into the exhaust gas upstream of the catalyst to a concentration of about 15-23 vol. % H.sub.2O and a molar ratio for H.sub.2/NO.sub.x in the range of 10-100. A hydrogen-containing fuel may be synthesized in an Integrated Gasification Combined Cycle power plant for combustion in a gas turbine to produce the exhaust gas flow. A portion of the fuel may be diverted for the hydrogen injection.

  8. Catalytic conversion of light alkanes: Quarterly report, January 1-March 31, 1992

    SciTech Connect (OSTI)

    Biscardi, J.; Bowden, P.T.; Durante, V.A.; Ellis, P.E. Jr.; Gray, H.B.; Gorbey, R.G.; Hayes, R.C.; Hodge, J.; Hughes, M.; Langdale, W.A.; Lyons, J.E.; Marcus, B.; Messick, D.; Merrill, R.A.; Moore, F.A.; Myers, H.K. Jr.; Seitzer, W.H.; Shaikh, S.N.; Tsao, W.H.; Wagner, R.W.; Warren, R.W.; Wijesekera, T.P.

    1997-05-01

    The first Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between January 1. 1992 and March 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products which can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon transportation fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient porphryinic macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE III).

  9. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    SciTech Connect (OSTI)

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  10. Enhancing the Catalytic Activity of Site-Isolated Heterogeneous Transition Metal Expoxidation Catalysts Prepared via the Thermolytic Molecular Precursor Method

    E-Print Network [OSTI]

    Cordeiro, Paul Joseph

    2010-01-01

    applied to a variety of catalytic oxidation reactions. 11-1548 h. Table 3. Catalytic 1-octene oxidation with tert-butylcatalysts. Table 4. Catalytic 1-octene oxidation with H 2 O

  11. Catalytic studies of supported Pd-Au catalysts 

    E-Print Network [OSTI]

    Boopalachandran, Praveenkumar

    2006-08-16

    -Au Bimetallic Supported Catalysts Palladium (Pd) is a well known catalyst for many reactions which are of industrial and environmental importance [7]. A major drawback of using Pd-only catalysts is the formation of carbides, i.e. PdCx, as shown in the Fig. 1... reveal that the addition of gold to palladium catalysts has pronounced catalytic effect [3, 6]. It is plausible that the electronic and geometric properties are tuned by the addition of Au with highly optimized sites [3, 6, 11]. Also, model catalytic...

  12. Migration and Retardation of Chemical Toxic Components from Radioactive Waste - Hydrochemical Aspects

    SciTech Connect (OSTI)

    Jedinakova-Krizova, V.; Hanslik, E.

    2003-02-24

    A systematic analysis of nuclear power plant (NPP) operation and radioactive wastes disposal (near-surface disposal and geologic disposal) in underground repositories has provided the basis for a comparison between the radiotoxicity and chemotoxicity as part of an EIA (environmental impact assessment) procedure. This contribution summarizes the hydrochemical mechanisms of transport and retardation processes, chemistry and migration behavior of radionuclides and chemical toxics in natural sorbents, especially bentonites. The effect of solubility and dissolution reactions, diffusion and sorption/desorption, complexation and variations in the aqueous phase composition, pH-value and oxidation-reduction properties and other phenomena affecting distribution coefficients (Kd values) is discussed.

  13. Retarded Interaction of Electromagnetic field and Symmetry Violation of Time Reversal in Non-linear Optics

    E-Print Network [OSTI]

    Mei Xiaochun

    2008-04-19

    Based on Document (1), by considering the retarded interaction of radiation fields, the third order transition probabilities of stimulated radiations and absorptions of light are calculated. The revised formulas of nonlinear polarizations are provided. The results show that that the general processes of non-linear optics violate time reversal symmetry. The phenomena of non-linear optics violating time reversal symmetry just as sum frequency, double frequency, different frequencies, double stable states, self-focusing and self-defocusing, echo phenomena, as well as optical self-transparence and self absorptions and so on are analyzed.

  14. Incorporation of Catalytic Compounds in the Porosity of SiC Wall...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incorporation of Catalytic Compounds in the Porosity of SiC Wall Flow Filters - 4 Way Catalyst and DeNOx Application examples Incorporation of Catalytic Compounds in the Porosity...

  15. Continued investigations of the catalytic reduction of N? to NH? by molybdenum triamidoamine complexes

    E-Print Network [OSTI]

    Hanna, Brian S. (Brian Stewart)

    2011-01-01

    A study of the effects of employing different solvents and the introduction of dihydrogen during the catalytic reduction of dinitrogen to ammonia with [HIPTN 3N]Mo complexes was completed. During a catalytic reaction, the ...

  16. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOE Patents [OSTI]

    Rollins, Harry W. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID)

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  17. Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine

    E-Print Network [OSTI]

    Peck, Jhongwoo, 1976-

    2003-01-01

    As part of the MIT micro-gas turbine engine project, the development of a hydrocarbon-fueled catalytic micro-combustion system is presented. A conventionally-machined catalytic flow reactor was built to simulate the ...

  18. 5 Hz Catalytic Emissions FT-IR Monitoring during Lean-Rich Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hz Catalytic Emissions FT-IR Monitoring during Lean-Rich Engine Cycles: Comparison to Reference Methods 5 Hz Catalytic Emissions FT-IR Monitoring during Lean-Rich Engine Cycles:...

  19. THE ROLE OF FLY ASH IN CATALYTIC OXIDATION OF S(IV) SLURRIES

    E-Print Network [OSTI]

    Cohen, Sidney

    2014-01-01

    and Technology THE ROLE OF FLY ASH IN CATALYTIC OXIDATION OFof California. THE ROLE OF FLY ASH IN CATALYTIC OXIDATION OFg los~ S(IV) in aqueous fly ash slurries :n;- and 0 , and SO

  20. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Fourth quarterly technical progress report

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

  1. Agglutination of single catalyst particles during fluid catalytic cracking as observed by X-ray nanotomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meirer, F.; Kalirai, S.; Weker, J. Nelson; Liu, Y.; Andrews, J. C.; Weckhuysen, B. M.

    2015-04-14

    Metal accumulation at the catalyst particle surface plays a role in particle agglutination during fluid catalytic cracking.

  2. Catalytic reactive separation system for energy-efficient production of cumene

    DOE Patents [OSTI]

    Buelna, Genoveva (Nuevo Laredo, MX); Nenoff, Tina M. (Albuquerque, NM)

    2009-07-28

    The present invention relates to an atmospheric pressure, reactive separation column packed with a solid acid zeolite catalyst for producing cumene from the reaction of benzene with propylene. Use of this un-pressurized column, where simultaneous reaction and partial separation occur during cumene production, allow separation of un-reacted, excess benzene from other products as they form. This high-yielding, energy-efficient system allows for one-step processing of cumene, with reduced need for product purification. Reacting propylene and benzene in the presence of beta zeolite catalysts generated a selectivity greater than 85% for catalytic separation reactions at a reaction temperature of 115 degrees C and at ambient pressure. Simultaneously, up to 76% of un-reacted benzene was separated from the product; which could be recycled back to the reactor for re-use.

  3. Catalytic oxidation of hydrocarbons and alcohols by carbon dioxide on oxide catalysts

    SciTech Connect (OSTI)

    Krylov, O.V. . N.N. Semenov Inst. of Chemical Physics); Mamedov, A.Kh.; Mirzabekova, S.R. . Yu.G. Mamedaliev Inst. of Petrochemical Processes)

    1995-02-01

    The great interest displayed lately in heterogeneous catalytic reactions of carbon dioxide is caused by two reasons: (1) the necessity to fight the greenhouse effect and (2) the exhaust of carbon raw material sources. Reactions of oxidative transformation of organic compounds of different classes (alkanes, alkenes, and alcohols) with a nontraditional oxidant, carbon dioxide, were studied on oxide catalysts Fe-O, Cr-O, Mn-O and on multicomponent systems based on manganese oxide. The supported manganese oxide catalysts are active, selective, and stable in conversion of the CH[sub 4] + CO[sub 2] mixture into synthesis gas and in oxidative dehydrogenation of C[sub 2] [minus] C[sub 7] hydrocarbons and the lower alcohols. Unlike metal catalysts manganese oxide based catalysts do not form a carbon layer during the reaction.

  4. Development of flame retardant PV module encapsulants: Volume 1. Final report

    SciTech Connect (OSTI)

    Galica, J.P.

    1998-06-01

    This Phase 1 final report covers the work performed by Springborn Testing and Research, Inc., for the period October 1, 1997 to June 30, 1998 under the Department of Energy Cooperative Agreement Number DE-FC36-97GO10255, entitled Development of Flame Retardant PV Module Encapsulants. While use of roof-mounted arrays has always been an attractive means of deploying PV, only within recent years have such building integrated concepts (BIPV) found renewed interest among module makers and end-users. Prior to building integrated and rooftop applications, flammability requirements for modules have not been a great industry concern. However, with growing interest in BIPV and the requirement for building code requirements for commercial and industrial structures, flammability issues have become a barrier to entry for many module constructions into this potentially huge domestic market for PV. The overall goal of the 3 phase PV BONUS two project is to develop and commercialize a line of fire retardant encapsulation materials to serve the emerging building integrated and building mounted PV market. The objectives of the Phase 1 effort are limited to concept development and business planning activities.

  5. Measuring nonequilibrium retarded spin-spin Green's functions in an ion-trap based quantum simulator

    E-Print Network [OSTI]

    Bryce T. Yoshimura; J. K. Freericks

    2015-12-16

    Recent work proposed a variant on Ramsey interferometry for coupled spin-$1/2$ systems that directly measures the retarded spin-spin Green's function. We expand on that work by investigating nonequilibrium retarded spin-spin Green's functions within the transverse-field Ising model. We derive the lowest four spectral moments to understand the short-time behavior and we employ a Lehmann-like representation to determine the spectral behavior. We simulate a Ramsey protocol for a nonequilibrium quantum spin system that consists of a coherent superposition of the ground state and diabatically excited higher-energy states via a temporally ramped transverse magnetic field. We then apply the Ramsey spectroscopy protocol to the final Hamiltonian, which has a constant transverse field. The short-time behavior directly relates to Lieb-Robinson bounds for the transport of many-body correlations, while the long-time behavior relates to the excitation spectra of the Hamiltonian. Compressive sensing is employed in the data analysis to efficiently extract that spectra.

  6. Short Communication Catalytic coal gasification: use of calcium versus potassium*

    E-Print Network [OSTI]

    Short Communication Catalytic coal gasification: use of calcium versus potassium* Ljubisa R on the gasification in air and 3.1 kPa steam of North Dakota lignitic chars prepared under slow and rapid pyrolysis of calcium is related to its sintering via crystallite growth. (Keywords: coal; gasification; catalysis

  7. Catalytic Dehydrogenation of Propane in Hydrogen Permselective Membrane Reactors

    E-Print Network [OSTI]

    Brinker, C. Jeffrey

    Catalytic Dehydrogenation of Propane in Hydrogen Permselective Membrane Reactors John P. Collins and Production, Amoco Research Center, 150 West Warrenville Road, Naperville, Illinois 60566-7011 Propane operated at liquid hourly space velocities (LHSVs) similar to those used in commercial reactors for propane

  8. Catalytic Domain of Phosphoinositide-specific Phospholipase C (PLC)

    E-Print Network [OSTI]

    Williams, Roger L.

    Catalytic Domain of Phosphoinositide-specific Phospholipase C (PLC) MUTATIONAL ANALYSIS OF RESIDUES WITHIN THE ACTIVE SITE AND HYDROPHOBIC RIDGE OF PLC 1* (Received for publication, November 20, 1997 Institute, University of Dundee, Dundee DD1 4HN, United Kingdom Structural studies of phospholipase C 1 (PLC

  9. Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines Peter Mauermann1,* , Michael Dornseiffer6 , Frank Amkreutz6 1 Institute for Combustion Engines , RWTH Aachen University, Schinkelstr. 8, D of the hydrocarbon exhaust of internal combustion engines. In contrast to other gaseous hydrocarbons, significant

  10. ULTRA LOW NOx CATALYTIC COMBUSTION FOR IGCC POWER PLANTS

    SciTech Connect (OSTI)

    Lance L. Smith

    2004-03-01

    Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using PCI's two-stage (catalytic / gas-phase) combustion process for syngas fuel. In this process, the first stage is a Rich-Catalytic Lean-burn (RCL{trademark}) catalytic reactor, wherein a fuel-rich mixture contacts the catalyst and reacts while final and excess combustion air cool the catalyst. The second stage is a gas-phase combustor, wherein the catalyst cooling air mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During the reporting period, PCI successfully achieved NOx = 0.011 lbs/MMBtu at 10 atm pressure (corresponding to 2.0 ppm NOx corrected to 15% O{sub 2} dry) with near-zero CO emissions, surpassing the project goal of < 0.03 lbs/MMBtu NOx. These emissions levels were achieved at scaled (10 atm, sub-scale) baseload conditions corresponding to Tampa Electric's Polk Power Station operation on 100% syngas (no co-firing of natural gas).

  11. Metal Vinylidenes and Allenylidenes as Intermediates in Catalytic Transformations

    E-Print Network [OSTI]

    Stoltz, Brian M.

    Metal Vinylidenes and Allenylidenes as Intermediates in Catalytic Transformations Literature Group Key references: Metal Vinylidenes in Catalysis. Bruneau, C.; Dixneuf, P. H. Acc. Chem. Res. 1999, 32.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067-2096. Outline: · Definitions · Metal vinylidene generation

  12. Diffusiophoretic Self-Propulsion for Partially Catalytic Spherical Colloids

    E-Print Network [OSTI]

    Joost de Graaf; Georg Rempfer; Christian Holm

    2015-02-11

    Colloidal spheres with a partial platinum surface coating perform auto-phoretic motion when suspended in hydrogen peroxide solution. We present a theoretical analysis of the self-propulsion velocity of these particles using a continuum multi-component, self-diffusiophoretic model. With this model as a basis, we show how the slip-layer approximation can be derived and in which limits it holds. First, we consider the differences between the full multi-component model and the slip-layer approximation. Then the slip model is used to demonstrate and explore the sensitive nature of the particle's velocity on the details of the molecule-surface interaction. We find a strong asymmetry in the dependence of the colloid's velocity as a function of the level of catalytic coating, when there is a different interaction between the solute and solvent molecules and the inert and catalytic part of the colloid, respectively. The direction of motion can even be reversed by varying the level of the catalytic coating. Finally, we investigate the robustness of these results with respect to variations in the reaction rate near the edge between the catalytic and inert parts of the particle. Our results are of significant interest to the interpretation of experimental results on the motion of self-propelled particles.

  13. Journal of Power Sources 142 (2005) 184193 Modeling and optimization of catalytic partial oxidation

    E-Print Network [OSTI]

    Daraio, Chiara

    2005-01-01

    of a micro-reformer for a fuel cell unit based on catalytic partial oxidation using a systematic numerical is around 80% is identified. © 2004 Elsevier B.V. All rights reserved. Keywords: Catalytic partial oxidationJournal of Power Sources 142 (2005) 184­193 Modeling and optimization of catalytic partial

  14. Thiol-Dependent Recovery of Catalytic Activity from Oxidized Protein Tyrosine Phosphatases

    E-Print Network [OSTI]

    Gates, Kent. S.

    Thiol-Dependent Recovery of Catalytic Activity from Oxidized Protein Tyrosine Phosphatases Zachary PTPs via oxidation of the enzyme's catalytic cysteine thiolate group. Importantly, low- molecular. Here we examined the recovery of catalytic activity from two oxidatively inactivated PTPs (PTP1B

  15. Stochastic resonance in surface catalytic oxidation of carbon monoxide Lingfa Yang, Zhonghuai Hou, and Houwen Xina)

    E-Print Network [OSTI]

    Yang, Lingfa

    Stochastic resonance in surface catalytic oxidation of carbon monoxide Lingfa Yang, Zhonghuai Hou: catalytic oxidation on a single sur- face, by analysis of the behavior of a set of ordinary differ- ential help researchers to find SR in this system experimentally. II. REACTION MODEL The catalytic oxidation

  16. Catalytic activation and reforming of methane on supported palladium clusters Aritomo Yamaguchi, Enrique Iglesia *

    E-Print Network [OSTI]

    Iglesia, Enrique

    Catalytic activation and reforming of methane on supported palladium clusters Aritomo Yamaguchi and 13 C18 O, and 13 CO and 12 CO during CH4 reforming catalysis. This catalytic sequence, but do not contribute to steady-state catalytic reforming rates. The high reactivity of Pd surfaces in C

  17. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2009-09-30

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOEâ??s goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines, Incorporated Saturn engine rig. High pressure single-injector rig and modified engine rig tests demonstrated NOx less than 2 ppm and CO less than 10 ppm over a wide flame temperature operating regime with low combustion noise (<0.15% peak-to-peak). Minimum NOx for the optimized engine retrofit Full RCL® designs was less than 1 ppm with CO emissions less than 10 ppm. Durability testing of the substrate and catalyst material was successfully demonstrated at pressure and temperature showing long term stable performance of the catalytic reactor element. Stable performance of the reactor element was achieved when subjected to durability tests (>5000 hours) at simulated engine conditions (P=15 atm, Tin=400C/750F.). Cyclic tests simulating engine trips was also demonstrated for catalyst reliability. In addition to catalyst tests, substrate oxidation testing was also performed for downselected substrate candidates for over 25,000 hours. At the end of the program, an RCL® catalytic pilot system has been developed and demonstrated to produce NOx emissions of less than 3 ppm (corrected to 15% O2) for 100% and 50% load operation in a production engine operating on natural gas. In addition, a Full RCL® combustor has been designed and demonstrated less than 2 ppm NOx (with potential to achieve 1 ppm) in single injector and modified engine testing. The catalyst/substrate combination has been shown to be stable up to 5500 hrs in simulated engine conditions.

  18. Preconversion catalytic deoxygenation of phenolic functional groups. Quarterly technical progress report, January 1, 1992--March 31, 1992

    SciTech Connect (OSTI)

    Kubiak, C.P.

    1992-08-01

    The deoxygenation of phenols is a conceptually simple, but unusually difficult chemical transformation to achieve. The phenolic C-O bond energy of 103 kcal/mol is as strong as a benzene C-H bond and over a 10 kcal/mol stronger than the C-O bonds of methanol and ethanol. The consequence of this is that the hydrogenation/deoxygenation methods in current use require severe conditions and give low selectivities. The ongoing research described herein is based on the unprecedented, but thermodynamically promising, use of carbon monoxide as the oxygen atom acceptor for the catalytic deoxygenation of phenols.

  19. Method for recovering catalytic elements from fuel cell membrane electrode assemblies

    DOE Patents [OSTI]

    Shore, Lawrence (Edison, NJ); Matlin, Ramail (Berkeley Heights, NJ); Heinz, Robert (Ludwigshafen, DE)

    2012-06-26

    A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.

  20. Catalytic Porous Ceramic Prepared In-Situ by Sol-Gelation for Butane-to-Syngas Processing

    E-Print Network [OSTI]

    Daraio, Chiara

    Catalytic Porous Ceramic Prepared In-Situ by Sol-Gelation for Butane-to-Syngas Processing­1859, 2009 Keywords: catalytic porous ceramic, butane-to-syngas processing, catalytic foam, sol-gelation, Rh containing cat- alytic Rh/ceria/zirconia nanoparticles is tested by its catalytic performance for butane

  1. The catalytic oxidation of ethylene and butenes with air: total aldehyde production and selectivity 

    E-Print Network [OSTI]

    Burns, John Cunningham

    1952-01-01

    wit!& oxygen. A study of t? o oxidation of ethyl&rue end of ethylene oxide soparetely re- vealed ti'at ti-, o oxidatio&& o. either compound rioldcd carbon dioxido and water directly, "xtensive kinetic studies led to tl. o proposal of a reaction...

  2. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  3. New Developments in Titania-Based Catalysts for Selective Catalytic Reduction of NOx

    Broader source: Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  4. Impact of Biodiesel-based Na on the Selective Catalytic Reduction...

    Office of Scientific and Technical Information (OSTI)

    Org: Oak Ridge National Laboratory (ORNL) Sponsoring Org: EE USDOE - Office of Energy Efficiency and Renewable Energy (EE) Country of Publication: United States Language:...

  5. Molybdenum and tungsen alkylidene species for catalytic Enantio-, Z-, and E-selective olefin metathesis reactions

    E-Print Network [OSTI]

    Marinescu, Smaranda Constan?a

    2011-01-01

    CHAPTER1 A general introduction to olefin metathesis is given. Highlights include a detailed discussion of group VI imido alkylidene catalysts. CHAPTER 2 Several bispyrrolide species Mo(NAr)(CHCMe 2Ph)(pyr)2 (Ar = ...

  6. An investigation of urea decomposition and selective non-catalytic removal of nitric oxide with urea 

    E-Print Network [OSTI]

    Park, Yong Hun

    2004-09-30

    .1 Overview of the Experimental Setup ............................................... 30 4.2 Source of Simulated Exhaust Gas.................................................... 31 4.3 Mass Flow Controller...) ..................................................................... 91 72 Calibration setup of the mass flow controllers ........................................ 100 73 A steel tube wrapped by heating tape...................................................... 103 74 Temperatures in the heating tape, inside...

  7. Modeling of selective catalytic reduction (SCR) of nitric oxide with ammonia using four modern catalysts 

    E-Print Network [OSTI]

    Sharma, Giriraj

    2005-11-01

    values of the SCR process parameters, namely temperature, inlet oxygen concentration and inlet ammonia concentration. The NOx emission, its formation and control methods are discussed briefly and then the fundamentals of the SCR process are described...

  8. Impact of Biodiesel-based Na on the Selective Catalytic Reduction of NOx by

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers(Journal Article) |SciTechphysicalNH3 Over Cu-zeolite Catalysts

  9. Measuring catchment-scale chemical retardation using spectral analysis of reactive and passive chemical tracer time series

    E-Print Network [OSTI]

    Kirchner, James W.

    Measuring catchment-scale chemical retardation using spectral analysis of reactive and passive for Ecology and Hydrology, McLean Building, Wallingford, Oxon OX10 8BB, UK Received 28 August 2002; revised 14, carrying soluble substances with it. Some chemical constituents are non- reactive; these act as passive

  10. Mass-resolved retarding field energy analyzer and its measurement of ion energy distribution in helicon plasma

    E-Print Network [OSTI]

    Zexian, Cao

    Mass-resolved retarding field energy analyzer and its measurement of ion energy distribution) are measured at rf power of 1000 W. The results show that the fairly broad energy distributions of different analyzer; Ion energy distribution; Helicon plasma 1. Introduction It is well recognized that ion

  11. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

  12. Role of surface generated radicals in catalytic combustion

    SciTech Connect (OSTI)

    Santavicca, D.A.; Stein, Y.; Royce, B.S.H.

    1984-04-01

    The role of surface generated OH radicals in determining the catalytic ignition characteristics for propane oxidation on platinum were studied. The experiments were conducted in a stacked-plate, catalyst bed. Transient measurements, during catalytic ignition, of the catalyst's axial temperature profile were made and the effect of equivalence ratio, inlet temperature and inlet velocity was investigated. These measurements will provide insights which will be useful in planning and interpreting to OH measurements. Attempts to measure OH concentration in the catalyst bed using resonance absorption spectroscopy were unsuccessful, indicating that OH concentrations are below 10 to the 16th power/cc but still possibly above equilibrium values. Measurements are currently underway using forward scatter laser induced fluorescence which should extend the OH detection limits several orders of magnitude below the equilibrium concentrations.

  13. Catalytic effects of minerals on NOx emission from coal combustion

    SciTech Connect (OSTI)

    Yao, M.Y.; Che, D.F.

    2007-07-01

    The catalytic effects of inherent mineral matters on NOx emissions from coal combustion have been investigated by a thermo-gravimetric analyzer (TGA) equipped with a gas analyzer. The effect of demineralization and the individual effect of Na, K, Ca, Mg, and Fe on the formation of NOx are studied as well as the combined catalytic effects of Ca + Na and Ca + Ti. Demineralization causes more Fuel-N to retain in the char, and reduction of NOx mostly. But the mechanistic effect on NOx formation varies from coal to coal. Ca and Mg promote NOx emission. Na, K, Fe suppress NOx formation to different extents. The effect of transition element Fe is the most obvious. The combination of Ca + Na and Ca + Ti can realize the simultaneous control of sulfur dioxide and nitrogen oxides emissions.

  14. Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation

    SciTech Connect (OSTI)

    Joo, Sang Hoon; Park, Jeong Y.; Renzas, J. Russell; Butcher, Derek R.; Huang, Wenyu; Somorjai, Gabor A.

    2010-04-04

    Carbon monoxide oxidation over ruthenium catalysts has shown an unusual catalytic behavior. Here we report a particle size effect on CO oxidation over Ru nanoparticle (NP) catalysts. Uniform Ru NPs with a tunable particle size from 2 to 6 nm were synthesized by a polyol reduction of Ru(acac){sub 3} precursor in the presence of poly(vinylpyrrolidone) stabilizer. The measurement of catalytic activity of CO oxidation over two-dimensional Ru NPs arrays under oxidizing reaction conditions (40 Torr CO and 100 Torr O{sub 2}) showed an activity dependence on the Ru NP size. The CO oxidation activity increases with NP size, and the 6 nm Ru NP catalyst shows 8-fold higher activity than the 2 nm catalysts. The results gained from this study will provide the scientific basis for future design of Ru-based oxidation catalysts.

  15. Catalytic destruction of groundwater contaminants in reactive extraction wells

    DOE Patents [OSTI]

    McNab, Jr., Walt W. (Concord, CA); Reinhard, Martin (Stanford, CA)

    2002-01-01

    A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

  16. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  17. Hybrid lean premixing catalytic combustion system for gas turbines

    DOE Patents [OSTI]

    Critchley, Ian L.

    2003-12-09

    A system and method of combusting a hydrocarbon fuel is disclosed. The system combines the accuracy and controllability of an air staging system with the ultra-low emissions achieved by catalytic combustion systems without the need for a pre-heater. The result is a system and method that is mechanically simple and offers ultra-low emissions over a wide range of power levels, fuel properties and ambient operating conditions.

  18. Catalytic cracking receives heavy attention at Q and A meeting

    SciTech Connect (OSTI)

    Not Available

    1993-04-19

    Refiners discussed fluid catalytic cracking (FCC) - the workhorse of the modern refinery - in great detail at the most recent National Petroleum Refiners Association's annual question and answer session on refining and petrochemical technology. Among the topics covered were the newest FCC refractory lining and particulate-control methods. The panel of experts also answered questions on the role of FCC in reducing gasoline benzene to meet reformulated gasoline specifications. This paper discusses refractories; particulate control; gasoline feeds; and benzene reduction.

  19. Heat transfer rates in fixed bed catalytic reactors 

    E-Print Network [OSTI]

    Levelton, Bruce Harding

    1951-01-01

    bed. A consideration of thermal effects in a gas-solid tubular reactor involves a number of prime variables, viz. (a) Reynolds number and heat capacity of reactants (b) Tube diameter and length (c) Catalyst particle size, shape and characteristics... conditions than in fixed bed reactors prevail. The problem of determining temperatures in moving-bed catalytic reactors is somewhat similar to that in gas-solid fixed bed reactors, but this investigation will not treat such cases. The mechanism of heat...

  20. Two-stage Catalytic Reduction of NOx with Hydrocarbons

    SciTech Connect (OSTI)

    Umit S. Ozkan; Erik M. Holmgreen; Matthew M. Yung; Jonathan Halter; Joel Hiltner

    2005-12-21

    A two-stage system for the catalytic reduction of NO from lean-burn natural gas reciprocating engine exhaust is investigated. Each of the two stages uses a distinct catalyst. The first stage is oxidation of NO to NO{sub 2} and the second stage is reduction of NO{sub 2} to N{sub 2} with a hydrocarbon. The central idea is that since NO{sub 2} is a more easily reduced species than NO, it should be better able to compete with oxygen for the combustion reaction of hydrocarbon, which is a challenge in lean conditions. Early work focused on demonstrating that the N{sub 2} yield obtained when NO{sub 2} was reduced was greater than when NO was reduced. NO{sub 2} reduction catalysts were designed and silver supported on alumina (Ag/Al{sub 2}O{sub 3}) was found to be quite active, able to achieve 95% N{sub 2} yield in 10% O{sub 2} using propane as the reducing agent. The design of a catalyst for NO oxidation was also investigated, and a Co/TiO{sub 2} catalyst prepared by sol-gel was shown to have high activity for the reaction, able to reach equilibrium conversion of 80% at 300 C at GHSV of 50,000h{sup -1}. After it was shown that NO{sub 2} could be more easily reduced to N{sub 2} than NO, the focus shifted on developing a catalyst that could use methane as the reducing agent. The Ag/Al{sub 2}O{sub 3} catalyst was tested and found to be inactive for NOx reduction with methane. Through iterative catalyst design, a palladium-based catalyst on a sulfated-zirconia support (Pd/SZ) was synthesized and shown to be able to selectively reduce NO{sub 2} in lean conditions using methane. Development of catalysts for the oxidation reaction also continued and higher activity, as well as stability in 10% water, was observed on a Co/ZrO{sub 2} catalyst, which reached equilibrium conversion of 94% at 250 C at the same GHSV. The Co/ZrO{sub 2} catalyst was also found to be extremely active for oxidation of CO, ethane, and propane, which could potential eliminate the need for any separate oxidation catalyst. At every stage, catalyst synthesis was guided by the insights gained through detailed characterization of the catalysts using many surface and bulk analysis techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, Temperature-programmed Reduction, Temperature programmed Desorption, and Diffuse Reflectance InfraRed Fourier Transform Spectroscopy as well as steady state reaction experiments. Once active catalysts for each stage had been developed, a physical mixture of the two catalysts was tested for the reduction of NO with methane in lean conditions. These experiments using a mixture of the catalysts produced N2 yields as high as 90%. In the presence of 10% water, the catalyst mixture produced 75% N{sub 2} yield, without any optimization. The dual catalyst system developed has the potential to be implemented in lean-burn natural gas engines for reducing NOx in lean exhaust as well as eliminating CO and unburned hydrocarbons without any fuel penalty or any system modifications. If funding continues, future work will focus on improving the hydrothermal stability of the system to bring the technology closer to application.

  1. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    SciTech Connect (OSTI)

    Chen, Jingguang; Frenkel, Anatoly; Rodriguez, Jose; Adzic, Radoslav; Bare, Simon R.; Hulbert, Steve L.; Karim, Ayman; Mullins, David R.; Overbury, Steve

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  2. Electroless preparation and characterization of Ni-B nanoparticles supported on multi-walled carbon nanotubes and their catalytic activity towards hydrogenation of styrene

    SciTech Connect (OSTI)

    Liu, Zheng; Li, Zhilin; Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 ; Wang, Feng; Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 ; Liu, Jingjun; Ji, Jing; Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 ; Park, Ki Chul; Endo, Morinobu

    2012-02-15

    Graphical abstract: The MWCNT/Ni-B catalyst has been successfully prepared by an electroless deposition process. The Ni-B nanoparticles on the supporter are amorphous and are well-distributed. The catalytic conversion towards hydrogenation of styrene shows excellent catalytic activity of the obtained materials. Highlights: Black-Right-Pointing-Pointer A two-step treatment of MWCNTs enabled the homogeneous growth of Ni-B nanoparticles. Black-Right-Pointing-Pointer Ni-B nanoparticles were amorphous with an average size of 60 nm. Black-Right-Pointing-Pointer There were electron transfer between Ni and B. Black-Right-Pointing-Pointer The catalyst had excellent catalytic activity towards hydrogenation of styrene. -- Abstract: Nickel-boron (Ni-B) nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) were successfully synthesized through an electroless deposition process using the plating bath with sodium borohydride as a reducing agent. The structural and morphological analyses using field-emission scanning electron microscopy, X-ray diffractometry and high-resolution transmission electron microscopy have shown that the Ni-B nanoparticles deposited on the sidewalls of MWCNTs are fine spheres comprised of amorphous structure with the morphologically unique fine-structure like flowers, and homogenously dispersed with a narrow particle size distribution centered at around 60 nm diameter. The catalytic activity of MWCNT/Ni-B nanoparticles was evaluated with respect to hydrogenation of styrene. The hydrogenation catalyzed by MWCNT-supported Ni-B nanoparticles has been found to make styrene selectively converted into ethylbenzene. The highest conversion reaches 99.8% under proper reaction conditions, which demonstrates the high catalytic activity of MWCNT/Ni-B nanoparticles.

  3. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    SciTech Connect (OSTI)

    Schwartz, Michael (Boulder, CO); White, James H. (Boulder, CO); Sammells, Anthony F. (Boulder, CO)

    2001-01-01

    A process for production of synthesis gas employing a catalytic membrane reactor wherein the membrane comprises a mixed metal oxide material.

  4. Measurement of diesel solid nanoparticle emissions using a catalytic stripper for comparison with Europe's PMP protocol

    Broader source: Energy.gov [DOE]

    Evaluation and comparison of the measurements of diesel solid nanoparticle emissions using the European Particle Measurement Programme (PMP) system and catalytic stripper

  5. Preconversion catalytic deoxygenation of phenolic functional groups. Quarterly technical progress report, April 1, 1992--June 30, 1992

    SciTech Connect (OSTI)

    Kubiak, C.P.

    1992-11-01

    Aryl carbon-oxygen bond cleavage is a chemical transformation of importance in coal liquefaction and the upgrading of coal liquids as well as in the synthesis of natural products. There have been numerous attempts to discover general methods for the cleavage of aryl carbon-oxygen bonds. All the stoichiometric organic methods for phenol deoxygenation have limited applications and involve expensive reagents. Catalytic method, for the hydrodeoxygenation (HDO) of phenols involve supported transition metal oxides, such as Mo/{gamma}-Al{sub 2}O{sub 3}, Ni-MO/{gamma}-Al{sub 2}O{sub 3}, Co-Mo/{gamma}-Al{sub 2}O{sub 3}, and Fe{sub 2}O{sub 3}/SiO{sub 2}. Typical phenol hydrodeoxygenation conditions involve hydrogen pressures in excess of 100 atm and temperatures in excess of 200{degrees}C. Under these conditions arene ring hydrogenation is generally found to compete with phenol deoxygenation; and the coproduct water is found to impair the activity of the catalysts. This proposed research offers the possibility of effecting the selective catalytic deoxygenation of phenolic functional groups using CO. The deoxygenation of phenols by carbon monoxide mediated by Ir(triphos)OAr has provided us with a catalytic Phenol deoxygenation pathway, through the elimination of CO{sub 2} and formation of a benzyne intermediate. Although the [Pt(triphos)(O-Ph-Me)]PF{sub 6} system is not expected to be as efficient a catalyst as some of the other transition metals systems we are currently exploring, it will provide more information about the deoxygenation mechanism in these triphos complexes. This is due to the presence of the structurally sensitive {sup 3l}P--{sup 195}Pt coupling constant and comparisons to the extensively studied Pt(dppe)(O-Ph){sub 2} systems.

  6. Advanced product recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Third quarterly technical progress report

    SciTech Connect (OSTI)

    NONE

    1996-07-01

    More than 170 wet scrubber systems applied to 72,000 MW of US, coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed form the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. Arthur D. Little, Inc., together with its industry and commercialization advisor, Engelhard Corporation, and its university partner, Tufts, plans to develop and scale-up an advanced, byproduct recovery technology that is a direct, catalytic process for reducing sulfur dioxide to elemental sulfur. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, they have planned a structured program including: market/process/cost/evaluation; lab-scale catalyst preparation/optimization studies; lab-scale, bulk/supported catalyst kinetic studies; bench-scale catalyst/process studies; and utility review. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning.

  7. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly report, April 1--June 30, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, the authors have planned a structured program including: Market/process/cost/evaluation; Lab-scale catalyst preparation/optimization studies; Lab-scale, bulk/supported catalyst kinetic studies; Bench-scale catalyst/process studies; and Utility review. Progress is reported from all three organizations.

  8. Copper- and silver-zirconia aerogels: Preparation, structural properties and catalytic behavior in methanol synthesis from carbon dioxide

    SciTech Connect (OSTI)

    Koeppel, R.A.; Stoecker, C.; Baiker, A. [Swiss Federal Inst. of Technology, Zuerich (Switzerland). Lab. of Technical Chemistry] [Swiss Federal Inst. of Technology, Zuerich (Switzerland). Lab. of Technical Chemistry

    1998-10-25

    Copper- and silver-zirconia aerogels containing 10 at% IB metal were prepared from tetra-n-butoxy zirconium(IV) and IB metal acetates using the solution sol-gel method and ensuring high-temperature (HT) and low-temperature (LT) supercritical drying, respectively. The influence of preparation parameters and calcination on the structural and catalytic properties of the aerogels for the synthesis of methanol from carbon dioxide and hydrogen was investigated. After calcination in air at 573 K, the catalysts had BET surface areas in the range of 100--143 m{sup 2}/g (Cu/ZrO{sub 2}) and 77--125 m{sup 2}/g (Ag/ZrO{sub 2}), respectively. Due to the reductive alcoholic atmosphere during high-temperature supercritical drying, metallic copper and silver existed in all raw HT-aerogels. The mean size of the copper crystallites wa/s 30 nm. The silver crystallite size for the HT-aerogel prepared with nitric acid was 10 nm, whereas for samples prepared with acetic acid it was 5--7 nm. Calcination in air at 573 K led to the formation of highly dispersed amorphous copper oxide and silver. Comparing the catalytic behavior of the calcined copper-zirconia aerogels with corresponding xerogels prepared by coprecipitation revealed highest activity for the LT-aerogel, whereas the HT-aerogels were least active. In contrast, similar catalytic behavior was observed for the differently dried silver-zirconia samples. Generally, CO{sub 2}-conversion of the copper-zirconia samples. Generally, CO{sub 2}-conversion of the copper-zirconia aerogels was markedly higher than that of the corresponding silver-zirconia aerogels, whereas methanol selectivity was similar.

  9. Selecting Hogs. 

    E-Print Network [OSTI]

    Regenbrecht, E. M.

    1955-01-01

    STATION, TEXAS [Blank Page in Original Bulletin] Selecting Hogs E. M. REGENBRECHT, Extension Swine Husbandman Texas A. & M. College System ; J UDGING LIVESTOCK is an art acquired through learning and practice. The first essential is a knowledge... of what the ideal or standard type animal should look like. Learning to make accurate observations and passing good judgment on these may lead to success. locations of Points of a Hog A good judge can always support his judgment with rea- .ms...

  10. Design of a retarding potential grid system for a neutral particle analyzer

    SciTech Connect (OSTI)

    Titus, J. B., E-mail: jtitus@wisc.edu; Mezonlin, E. D. [Department of Physics, Florida A and M University, Tallahassee, Florida 32310 (United States); Anderson, J. K.; Reusch, J. A. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-11-15

    The ion energy distribution in a magnetically confined plasma can be inferred from charge exchange neutral particles. On the Madison Symmetric Torus (MST), deuterium neutrals are measured by the Florida A and M University compact neutral particle analyzer (CNPA) and the advanced neutral particle analyzer (ANPA). The CNPA energy range covers the bulk deuterium ions to the beginning of the fast ion tail (0.34–5.2 keV) with high-energy resolution (25 channels) while the ANPA covers the vast majority of the fast ion tail distribution (?10–45 keV) with low energy resolution (10 channels). Though the ANPA has provided insight into fast ion energization in MST plasma, more can be gained by increasing the energy resolution in that energy range. To utilize the energy resolution of the CNPA, fast ions can be retarded by an electric potential well, enabling their detection by the diagnostic. The ion energy distribution can be measured with arbitrary resolution by combining data from many similar MST discharges with different energy ranges on the CNPA, providing further insight into ion energization and fast ion dynamics on MST.

  11. Catalytic pyrolysis of plastic wastes - Towards an economically viable process

    SciTech Connect (OSTI)

    McIntosh, M.J.; Arzoumanidis, G.G.; Brockmeier, F.E.

    1996-07-01

    The ultimate goal of our project is an economically viable pyrolysis process to recover useful fuels and/or chemicals from plastics- containing wastes. This paper reports the effects of various promoted and unpromoted binary oxide catalysts on yields and compositions of liquid organic products, as measured in a small laboratory pyrolysis reactor. On the basis of these results, a commercial scale catalytic pyrolysis reactor was simulated by the Aspen software and rough costs were estimated. The results suggest that such a process has potential economic viability.

  12. Fabrication of catalytic electrodes for molten carbonate fuel cells

    DOE Patents [OSTI]

    Smith, James L. (Lemont, IL)

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  13. Method for low temperature catalytic production of hydrogen

    DOE Patents [OSTI]

    Mahajan, Devinder

    2003-07-22

    The invention provides a process for the catalytic production of a hydrogen feed by exposing a hydrogen feed to a catalyst which promotes a base-catalyzed water-gas-shift reaction in a liquid phase. The hydrogen feed can be provided by any process known in the art of making hydrogen gas. It is preferably provided by a process that can produce a hydrogen feed for use in proton exchange membrane fuel cells. The step of exposing the hydrogen feed takes place preferably from about 80.degree. C. to about 150.degree. C.

  14. Method and apparatus for decoupled thermo-catalytic pollution control

    DOE Patents [OSTI]

    Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric

    2006-07-11

    A new method for design and scale-up of thermocatalytic processes is disclosed. The method is based on optimizing process energetics by decoupling of the process energetics from the DRE for target contaminants. The technique is applicable to high temperature thermocatalytic reactor design and scale-up. The method is based on the implementation of polymeric and other low-pressure drop support for thermocatalytic media as well as the multifunctional catalytic media in conjunction with a novel rotating fluidized particle bed reactor.

  15. Plasma-assisted catalytic ionization using porous nickel plate

    SciTech Connect (OSTI)

    Oohara, W.; Maeda, T.; Higuchi, T.

    2011-09-15

    Hydrogen atomic pair ions, i.e., H{sup +} and H{sup -} ions, are produced by plasma-assisted catalytic ionization using a porous nickel plate. Positive ions in a hydrogen plasma generated by dc arc discharge are irradiated to the porous plate, and pair ions are produced from the back of the irradiation plane. It becomes clear that the production quantity of pair ions mainly depends on the irradiation current of positive ions and the irradiation energy affects the production efficiency of H{sup -} ions.

  16. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    SciTech Connect (OSTI)

    Sun, Junming; Wang, Yong

    2014-04-30

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  17. The backflow cell model for fluidized bed catalytic reactors 

    E-Print Network [OSTI]

    Ganapathy, E. V

    1967-01-01

    that the backmixing of gas in a small fluidized bed with high length to diameter rati. o is relatively small. Hence, it was recommended. that reaction rate studies in fluidized bed reactors be correlated on the basis oi' piston flow~ neglecting mixing. Nay (19... Major Subject Chemical En ineerin THE BACKFLOW CELL MODEL FOR FLUIDIZED BED CATALYTIC REACTORS A Thesis E. V. Ganapathy Approved as to style and content by: chairman of Committee ~H+d d D p t t Member Member) May 1967 SO THE BACKFLOW CELL...

  18. Catalytic Self-Decontaminating Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports fromSheetsCascadia AnalysisCatalysisChemicalsCatalytic

  19. Catalytic ionic hydrogenation of ketones using tungsten or molybdenum organometallic species

    DOE Patents [OSTI]

    Voges, Mark (Leverkusen, DE); Bullock, R. Morris (Wading River, NY)

    2000-01-01

    The present invention is a process for the catalytic hydrogenation of ketones and aldehydes to alcohols at low temperatures and pressures using organometallic molybdenum and tungsten complexes. The functional group is selected from groups represented by the formulas R(C.dbd.O)R' and R(C.dbd.O)H, wherein R and R' are selected from hydrogen or any alkyl or aryl group. The active catalyst for the process has the form: [CpM(CO).sub.2 (PR*.sub.3) L].sup.+ A.sup.-, where Cp=.eta..sup.5 -R.sup..tangle-solidup..sub.m C.sub.5 H.sub.5-m and R.sup..tangle-solidup. represents an alkyl group or a halogen (F, Cl, Br, I) or R.sup..tangle-solidup. =OR' (where R'=H, an alkyl group or an aryl group) or R.sup..tangle-solidup. =CO.sub.2 R' (where R'=H, an alkyl group or an aryl group) and m=0 to 5; M represents a molybdenum atom or a tungsten atom; R*.sub.3 represents three hydrocarbon groups selected from a cyclohexyl group (C.sub.6 H.sub.11), a methyl group (CH.sub.3), and a phenyl group (C.sub.6 H.sub.5) and all three R* groups can be the same or different or two of the three groups can be the same; L represents a ligand; and A.sup.- represents an anion. In another embodiment, one, two or three of the R* groups can be an OR*.

  20. An analysis of the performance of black and white retardates on the Wechsler Intelligence Scale for children 

    E-Print Network [OSTI]

    Thompson, Catherine Phillips

    1972-01-01

    AND STANDARD DEVIATIONS OF BLACK AND WHITE RETARDATES ON WISC SUBTESTS AND FULL SCALE IQ PAGE 32 33 36 38 5 ANALYSIS OF VARIANCE FOR VOCABULARY SUBTEST ANALYSIS OF VARIANCE FOR PICTURE ARRANGE SUBTEST ANALYSIS OF VARIANCE FOR DIGIT SPAN SUBTEST 39... DEVIATIONS OF THREE AGE GROUPS ON WISC SUBTESTS AND FULL SCALE IQ ANALYSIS OF VARIANCE FOR INFORMATION SUBTEST. ANALYSIS OF VARIANCE FOR COMPREHENSION SUBTEST. ANALYSIS OF VARIANCE FOR ARITHMETIC SUBTEST ANALYSIS OF VARIANCE FOR SIMILARITIES SUBTEST...

  1. Catalytic combustor for integrated gasification combined cycle power plant

    DOE Patents [OSTI]

    Bachovchin, Dennis M. (Mauldin, SC); Lippert, Thomas E. (Murrysville, PA)

    2008-12-16

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  2. Selected Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top Scientific Impact Since itsimpact / selected

  3. Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcomingmagnetoresistanceand Governmentm D(SC)» Selecting a Host

  4. Enhancing Independent Task Performance for Individuals with Mental Retardation Through Use of a Handheld Self-Directed Visual and Audio Promptiong System.

    E-Print Network [OSTI]

    Davies, Daniel K.; Stock, Steven E.; Wehmeyer, Michael L.

    2002-01-01

    , the most frequently used input devices (keyboard and mouse) are not easily mastered by people with mental retardation and despite the fact that touch screen devices for desktop PCs are available, they are not widely available in most community... to individuals with mental retardation. Devices that operate the Windows CE operating system include an integrated touch screen for device operation and are specifically designed for portable use. The training software developed for this platform involved...

  5. 2008NaturePublishingGrouphttp://www.nature.com/naturechemicalbiology Quantitative exploration of the catalytic landscape

    E-Print Network [OSTI]

    Zhang, Jianzhi

    and Hyoscyamus muticus, we created a library of all possible residue combinations (29 Ľ 512) in the N. tabacum) a simplified set of naturally occurring mutations that interconvert a defined catalytic property for measur- ing the catalytic properties (recording the chemical readout) of the enzyme library. Therefore

  6. Redox Catalytic Properties of Palladium Nanoparticles: Surfactant and Electron Donor-Acceptor Effects

    E-Print Network [OSTI]

    Wang, Zhong L.

    Redox Catalytic Properties of Palladium Nanoparticles: Surfactant and Electron Donor-0245 Received April 27, 1999. In Final Form: November 10, 1999 Dye reduction catalyzed by palladium catalysts,21-24 and shown that the redox catalytic property of still growing and fully grown palladium

  7. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    SciTech Connect (OSTI)

    Jankowski, Alan F.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Havstad, Mark A.

    2011-08-09

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  8. Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide

    E-Print Network [OSTI]

    Kim, Sehun

    Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide catalytic systems.12,13 On the other hand, the reduced graphene oxide (rGO) is functionalized graphene Laboratory (PAL), Pohang 790-784, Republic of Korea ABSTRACT: The capacities of graphene oxide (GO

  9. Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Applications1

    E-Print Network [OSTI]

    Peng, Huei

    Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell the anode field of fuel cell stack is considered. The first reactor that generates the majority in the fuel cell anode and (ii) the temperature of the catalytic partial oxidation reactor during transient

  10. An atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nanotubes

    E-Print Network [OSTI]

    Grujicic, Mica

    ) their unique structure makes them suitable for tailored nanometer- scale membranes and molecular sieves [5]; (dAn atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nanotubes M Growth of carbon nanotubes during transition-metal particles catalytically-assisted thermal decomposition

  11. PREFERENTIAL OXIDATION OF CARBON MONOXIDE IN A THIN-FILM CATALYTIC MICROREACTOR: ADVANTAGES AND LIMITATIONS

    E-Print Network [OSTI]

    Besser, Ronald S.

    PREFERENTIAL OXIDATION OF CARBON MONOXIDE IN A THIN-FILM CATALYTIC MICROREACTOR: ADVANTAGES stream after hydrocarbon fuel reforming and water-gas-shift reactions. This process, referred to as CO intermediate, which enhances the catalytic activity at temperatures below 200°C. With the same catalyst system

  12. Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures

    E-Print Network [OSTI]

    Goodman, Wayne

    oxidation over platinum group metals has been investigated for some eight decades by many researchersCatalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures A Catalytic oxidation of CO over platinum group metals (Pt, Ir, Rh and Pd) has been the subject of many

  13. Multiscale Modeling and Solution Multiplicity in Catalytic Pellet Reactors Kedar Kulkarni,

    E-Print Network [OSTI]

    Linninger, Andreas A.

    Multiscale Modeling and Solution Multiplicity in Catalytic Pellet Reactors Kedar Kulkarni, Jeonghwa phenomena in catalytic pellet reactors are often difficult to analyze because of coupling between heat at the macroscopic level as well as the catalyst pellets at the microscopic level. The resulting approach yields

  14. Catalytically active nickel ^110 surfaces in growth of carbon tubular structures

    E-Print Network [OSTI]

    Wang, Zhong L.

    Catalytically active nickel ^110 surfaces in growth of carbon tubular structures M. H. Kuang and Z interest in the growth of aligned carbon nanotube films using transition metal catalysts has led in the nucleation and growth of carbon nanotubes. The size of the catalytic particles determines the size

  15. ORIGINAL PAPER Synthesis of WO3 catalytic powders: evaluation of photocatalytic

    E-Print Network [OSTI]

    ORIGINAL PAPER Synthesis of WO3 catalytic powders: evaluation of photocatalytic activity under NUV New York 2015 Abstract WO3 catalytic powders were successfully syn- thesized from tungstic acid-temperature hydrothermal treatment. WO3 crystallization process was completed with calcina- tion of the samples at 500

  16. Structure-Based Design of a Novel, Potent, and Selective Inhibitor for MMP-13 Utilizing NMR Spectroscopy and Computer-Aided

    E-Print Network [OSTI]

    Powers, Robert

    Structure-Based Design of a Novel, Potent, and Selective Inhibitor for MMP-13 Utilizing NMR of the catalytic fragment of human collagenase-3 (MMP- 13) was used as a starting point for structure-based design, respectively. A structure-based approach to designing potent and selective inhibitors has established itself

  17. Fischer-Tropsch Synthesis. Reduction Behavior and Catalytic Activity of Fe-Ce Systems

    SciTech Connect (OSTI)

    Perez-Alonso, F.J.; Ojeda, M.; Herranz, T.; Fierro, J.L.G. [Instituto de Catalisis y Petroleoquimica (CSIC), c/Marie Curie 2, 28049 Madrid (Spain); Bengoa, J.F.; Marchetti, S.G. [CINDECA, Facultad de Ciencias Exactas, Facultad de Ingenieria, UNLP, CICBA, CONICET, Calle 47 No 257, 1900 La Plata (Argentina)

    2005-04-26

    Several Fe-Ce catalysts for FT synthesis were prepared following two different methods: coprecipitation from Fe and Ce nitrate solutions and a physical mixture of pure Fe and Ce precursors. The iron phases present in the activated catalysts were identified by XRD and Moessbauer spectroscopy. A good correlation between both techniques was found. The results revealed that the cerium oxide in the samples prepared by coprecipitation produces two effects: (i), stabilization of metastable species (Fe1-xO), and (ii), a decrease in the crystallite size of the iron species upon increasing Ce-contents, as inferred from an increase in superparamagnetic species. The catalysts were tested in CO hydrogenation in a flow reactor. It was found that selectivity towards light olefins increases for the coprecipitated Ce-containing catalysts, whereas CO conversion followed the opposite trend. Since the Fe1-xO phase was detected in these catalysts, it is suggested that the formation of the Fe1-xO phase would be responsible for the drop in catalytic activity.

  18. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P

    2012-09-18

    A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

  19. Advanced byproduct recovery: Direct catalytic reduction of SO{sub 2} to elemental sulfur. First quarterly technical progress report, [October--December 1995

    SciTech Connect (OSTI)

    Benedek, K. [Little (Arthur D.), Inc., Cambridge, MA (United States); Flytzani-Stephanopoulos, M. [Tufts Univ., Medford, MA (United States)

    1996-02-01

    The team of Arthur D. Little, Tufts University and Engelhard Corporation will be conducting Phase I of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. this catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria or zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an ongoing DOE-sponsored University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicates that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. the performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

  20. Role of the nanoscale in catalytic CO oxidation by supported Au and Pt nanostructures Sergey N. Rashkeev,1,2,

    E-Print Network [OSTI]

    Pennycook, Steve

    Role of the nanoscale in catalytic CO oxidation by supported Au and Pt nanostructures Sergey N found that the catalytic activity of Au increases sharply for supported nanoparticles smaller than 5 nm in catalytically active TiO2-supported Au nanoparticles. DOI: 10.1103/PhysRevB.76.035438 PACS number s : 82.65. r I

  1. On-Line Estimation of Inlet and Outlet Composition in Catalytic Partial Ali Al-Matouq , Tyrone Vincent

    E-Print Network [OSTI]

    Vincent, Tyrone

    On-Line Estimation of Inlet and Outlet Composition in Catalytic Partial Oxidation Ali Al and outlet composition of catalytic partial oxidation (CPOX) of methane over rhodium catalyst using simple experiments are conducted to verify the accuracy of the estimator. Keywords: Catalytic Partial Oxidation

  2. Enhanced Catalytic Activity through the Tuning of Micropore Environment and Supercritical CO2 Processing: Al(Porphyrin)-Based

    E-Print Network [OSTI]

    Enhanced Catalytic Activity through the Tuning of Micropore Environment and Supercritical CO2 that is catalytically active in the methanolysis of a nerve agent simulant. Supercritical CO2 processing of the POP and supercritical CO2 processing. In designing catalytically active Al-PPOPs, we wanted to control, through

  3. Final Report: Investigation of Catalytic Pathways for Lignin Breakdown into Monomers and Fuels

    SciTech Connect (OSTI)

    Gluckstein, Jeffrey A; Hu, Michael Z.; Kidder, Michelle; McFarlane, Joanna; Narula, Chaitanya Kumar; Sturgeon, Matthew R

    2010-12-01

    Lignin is a biopolymer that comprises up to 35% of woody biomass by dry weight. It is currently underutilized compared to cellulose and hemicellulose, the other two primary components of woody biomass. Lignin has an irregular structure of methoxylated aromatic groups linked by a suite of ether and alkyl bonds which makes it difficult to degrade selectively. However, the aromatic components of lignin also make it promising as a base material for the production of aromatic fuel additives and cyclic chemical feed stocks such as styrene, benzene, and cyclohexanol. Our laboratory research focused on three methods to selectively cleave and deoxygenate purified lignin under mild conditions: acidolysis, hydrogenation and electrocatalysis. (1) Acidolysis was undertaken in CH2Cl2 at room temperature. (2) Hydrogenation was carried out by dissolving lignin and a rhodium catalyst in 1:1 water:methoxyethanol under a 1 atm H2 environment. (3) Electrocatalysis of lignin involved reacting electrically generated hydrogen atoms at a catalytic palladium cathode with lignin dissolved in a solution of aqueous methanol. In all of the experiments, the lignin degradation products were identified and quantified by gas chromatography mass spectroscopy and flame ionization detection. Yields were low, but this may have reflected the difficulty in recovering the various fractions after conversion. The homogeneous hydrogenation of lignin showed fragmentation into monomers, while the electrocatalytic hydrogenation showed production of polyaromatic hydrocarbons and substituted benzenes. In addition to the experiments, promising pathways for the conversion of lignin were assessed. Three conversion methods were compared based on their material and energy inputs and proposed improvements using better catalyst and process technology. A variety of areas were noted as needing further experimental and theoretical effort to increase the feasibility of lignin conversion to fuels.

  4. Catalytic Fast Pyrolysis for the Production of the Hydrocarbon Biofuels

    SciTech Connect (OSTI)

    Nimlos, M. R.; Robichaud, D. J.; Mukaratate, C.; Donohoe, B. S.; Iisa, K.

    2013-01-01

    Catalytic fast pyrolysis is a promising technique for conversion of biomass into hydrocarbons for use as transportation fuels. For over 30 years this process has been studied and it has been demonstrated that oils can be produced with high concentrations of hydrocarbons and low levels of oxygen. However, the yields from this type of conversion are typically low and the catalysts, which are often zeolites, are quickly deactivated through coking. In addition, the hydrocarbons produced are primarily aromatic molecules (benzene, toluene, xylene) that not desirable for petroleum refineries and are not well suited for diesel or jet engines. The goals of our research are to develop new multifunction catalysts for the production of gasoline, diesel and jet fuel range molecules and to improve process conditions for higher yields and low coking rates. We are investigating filtration and the use of hydrogen donor molecules to improve catalyst performance.

  5. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2006-02-14

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  6. Origin of fast electrons in catalytic hydrogen oxidation over platinum

    E-Print Network [OSTI]

    Maximoff, Sergey N

    2014-01-01

    Adsorption of small molecules and chemical reactions at metal surfaces always excite low energy electron-hole pairs since the electron-hole pair excitations are gapless. In an example catalytic process, $\\mathrm{H_2}$ oxidation by $\\mathrm{O_2}$ into $\\mathrm{H_2O}$ over a platinum surface $\\mathrm{Pt(111)}$, this report explains that a different mechanism must also excite a non-equilibrium population of fast electrons, which arise as charged surface intermediates develop and then discharge during rapid electron transfer events. The empirical evidence and quantum chemistry calculations further reveal that the transition states in the $\\mathrm{H_2}$ oxidation are the lowest threshold configurations for changing the charge of the negatively charged surface intermediates as in, e.g., $``\\mathrm{O^-+H^-}"\\rightleftarrows [``\\mathrm{O^-+H+e}"]^{\

  7. Methods and apparatus for catalytic hydrothermal gasification of biomass

    DOE Patents [OSTI]

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  8. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline , diesel and jet range blendstocks . Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  9. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline, diesel, and jet range blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  10. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    DOE Patents [OSTI]

    Huibers, Derk T. A. (Pennington, NJ); Johanson, Edwin S. (Princeton, NJ)

    1983-01-01

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  11. Fabrication of fuel cell electrodes and other catalytic structures

    DOE Patents [OSTI]

    Smith, J.L.

    1987-02-11

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte. 1 fig.

  12. Catalytic Process for the Conversion of Coal-derived Syngas to Ethanol

    SciTech Connect (OSTI)

    James Spivery; Doug Harrison; John Earle; James Goodwin; David Bruce; Xunhau Mo; Walter Torres; Joe Allison Vis Viswanathan; Rick Sadok; Steve Overbury; Viviana Schwartz

    2011-07-29

    The catalytic conversion of coal-derived syngas to C{sub 2+} alcohols and oxygenates has attracted great attention due to their potential as chemical intermediates and fuel components. This is particularly true of ethanol, which can serve as a transportation fuel blending agent, as well as a hydrogen carrier. A thermodynamic analysis of CO hydrogenation to ethanol that does not allow for byproducts such as methane or methanol shows that the reaction: 2 CO + 4 H{sub 2} {yields} C{sub 2}H{sub 5}OH + H{sub 2}O is thermodynamically favorable at conditions of practical interest (e.g,30 bar, {approx}< 250 C). However, when methane is included in the equilibrium analysis, no ethanol is formed at any conditions even approximating those that would be industrially practical. This means that undesired products (primarily methane and/or CO{sub 2}) must be kinetically limited. This is the job of a catalyst. The mechanism of CO hydrogenation leading to ethanol is complex. The key step is the formation of the initial C-C bond. Catalysts that are selective for EtOH can be divided into four classes: (a) Rh-based catalysts, (b) promoted Cu catalysts, (c) modified Fischer-Tropsch catalysts, or (d) Mo-sulfides and phosphides. This project focuses on Rh- and Cu-based catalysts. The logic was that (a) Rh-based catalysts are clearly the most selective for EtOH (but these catalysts can be costly), and (b) Cu-based catalysts appear to be the most selective of the non-Rh catalysts (and are less costly). In addition, Pd-based catalysts were studied since Pd is known for catalyzing CO hydrogenation to produce methanol, similar to copper. Approach. The overall approach of this project was based on (a) computational catalysis to identify optimum surfaces for the selective conversion of syngas to ethanol; (b) synthesis of surfaces approaching these ideal atomic structures, (c) specialized characterization to determine the extent to which the actual catalyst has these structures, and (d) testing at realistic conditions (e.g., elevated pressures) and differential conversions (to measure true kinetics, to avoid deactivation, and to avoid condensable concentrations of products in the outlet gas).

  13. Self-Determination and Positive Adult Outcomes: A Follow-up Study of Youth with Mental Retardation or Learning Disabilities

    E-Print Network [OSTI]

    Wehmeyer, Michael L.; Schwartz, Michelle

    1997-01-01

    ). Fifty percent of the sample consisted of students with mild mental retardation (mean age = 20.15, SD = 1.78, mean IQ = 61.43). The remainder were students with learning disabilities (mean age = 19.42, SD = 1.18, mean IQ = 93.10). Fifty-five percent... by evaluations of others, 248 Winter 1997 reinforcements, and attributions of one's own be- havior (Wehmeyer, 1996). There are a total of 148 points available on the Scale and higher scores reflect higher self-de- termination. The Arc's Self...

  14. Effects of alpha-zirconium phosphate on thermal degradation and flame retardancy of transparent intumescent fire protective coating

    SciTech Connect (OSTI)

    Xing, Weiyi [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China); Zhang, Ping [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010 (China); Song, Lei; Wang, Xin [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China)

    2014-01-01

    Graphical abstract: - Highlights: • A transparent intumescent fire protective coating was obtained by UV-cured technology. • OZrP could enhance the thermal stability and anti-oxidation of the coating. • OZrP could reduce the combustion properties of the coatings. - Abstract: Organophilic alpha-zirconium phosphate (OZrP) was used to improve the thermal and fire retardant behaviors of the phenyl di(acryloyloxyethyl)phosphate (PDHA)-triglycidyl isocyanurate acrylate (TGICA)-2-phenoxyethyl acrylate (PHEA) (PDHA-TGICA-PHEA) coating. The morphology of nanocomposite coating was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of OZrP on the flame retardancy, thermal stability, fireproofing time and char formation of the coatings was investigated by microscale combustion calorimeter (MCC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (LRS) and scanning electric microscope (SEM). The results showed that by adding OZrP, the peak heat release rate and total heat of combustion were significantly reduced. The highest improvement was achieved with 0.5 wt% OZrP. XPS analysis indicated that the performance of anti-oxidation of the coating was improved with the addition of OZrP, and SEM images showed that a good synergistic effect was obtained through a ceramic-like layer produced by OZrP covered on the surface of char.

  15. Enhanced thermal and gas flow performance in a three-way catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal and gas flow performance in a three-way catalytic converter through use of insulation within the ceramic monolith Enhanced thermal and gas flow performance in a three-way...

  16. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOE Patents [OSTI]

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  17. Evidence for an RNA-based catalytic mechanism in eukaryotic nuclear ribonuclease P.

    E-Print Network [OSTI]

    Thoms, Brian C.; Chamberlain, Joel; Engelke, David R.; Gegenheimer, Peter Albert

    2000-01-01

    are required for activity in vitro as well as in vivo. It is not known, however, which subunits participate directly in phosphodiester-bond hydrolysis. The RNA subunit of nuclear RNase P is evolutionarily related to its catalytically active bacterial...

  18. Catalytic Addition of Simple Alkenes to Carbonyl Compounds by Use of Group 10 Metals

    E-Print Network [OSTI]

    Ho, Chun-Yu

    Recent advances using nickel complexes in the activation of unactivated monosubstituted olefins for catalytic intermolecular carbon-carbon bond-forming reactions with carbonyl compounds, such as simple aldehydes, isocyanates, ...

  19. Variation of Pore Metrics in Metal-Organic Frameworks for Enhanced Storage and Catalytic Applications

    E-Print Network [OSTI]

    Brown, Jonathan Ward

    2015-01-01

    catalytic activity of the metal–organic framework [cu3 (btc)2](btc= benzene-1, 3, 5- tricarboxylate). Chemistry-asorption properties of cu-btc metal-organic framework. Nano

  20. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    E-Print Network [OSTI]

    Somorjai, G.A.

    2010-01-01

    by Rh/SBA-15 The catalytic oxidation of CO to CO 2 has beencatalytic activity in high temperature CO oxidation. Thecatalytic activity as high as bare Pt nanoparticles in CO oxidation,

  1. Supporting Information Tandem Catalytic Conversion of Glucose to 5-Hydroxymethylfurfural with

    E-Print Network [OSTI]

    Zhao, Huimin

    conducted in Kinesis microwave vials (Malta, NY). One unit (U) represents the conversion of 1.0 µmole1 Supporting Information Tandem Catalytic Conversion of Glucose to 5-Hydroxymethylfurfural

  2. PERGAMON Carbon 39 (2001) 547558 Synergism of Co and Mo in the catalytic production of single-

    E-Print Network [OSTI]

    Resasco, Daniel

    2001-01-01

    to commercial practice. Fol- ment of the amount of SWNT produced. lowing the original arc-discharge method [1, including laser quantification method of the SWNT produced by catalytic ablation [3,4] and plasma discharge

  3. Structural Studies of the Catalytic and Regulatory Mechanisms of Phenylalanine Hydroxylase 

    E-Print Network [OSTI]

    Li, Jun

    2011-10-21

    The catalytic and regulatory mechanisms of phenylalanine hydroxylase were investigated by structural studies of in this research. Phenylalanine hydroxylase (PheH) hydroxylates phenylalanine to produce tyrosine using tetrahydrobiopterin (BH4...

  4. Regional catalytic economic impacts and noise-damage costs of aviation growth

    E-Print Network [OSTI]

    Tam, Ryan Aung Min, 1973-

    2008-01-01

    There is growing recognition that transportation or infrastructure improvements can have longer-term catalytic impacts economic productivity, which are in addition to the direct, indirect, or induced household spending ...

  5. Comparison of Gas Catalytic and Electric Infrared Performance for Industrial Applications 

    E-Print Network [OSTI]

    Eshraghi, R. R.; Welch, D. E.

    1999-01-01

    were conducted to evaluate and compare the performance of electric and gas catalytic infrared for the aforementioned applications. The data obtained from the tests were used to calculate the process efficiency of the respective technologies for each...

  6. Treatment of activated carbon to enhance catalytic activity for reduction of nitric oxide with ammonia

    SciTech Connect (OSTI)

    Ku, B.J.; Rhee, H.K. (Seoul National Univ. (Korea, Republic of). Dept. of Chemical Engineering); Lee, J.K.; Park, D. (Korea Inst. of Science and Technology, Seoul (Korea, Republic of))

    1994-11-01

    Catalytic activity of activated carbon treated with various techniques was examined in a fixed bed reactor for the reduction of nitric oxide with ammonia at 150 C. Activated carbon derived from coconut shell impregnated with an aqueous solution of ammonium sulfate, further treated with sulfuric acid, dried at 120 C, and then heated in an inert gas stream at 400 C, showed the highest catalytic activity within the range of experimental conditions. The enhancement of catalytic activity of modified activated carbon could be attributed to the increase in the amount of oxygen function groups which increased the adsorption site for ammonia. Catalytic activity of activated carbons depended on the surface area and the oxygen content as well.

  7. Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide Solutions

    E-Print Network [OSTI]

    Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide the bipolar electrochemical propulsion mechanism for bimetallic nanorods. Introduction Catalyic molecular nonbiological schemes for making micro/nanoscale ma- chines involve externally applied magnetic2 or electrical

  8. Reaction kinetics of olefin saturation in the hydrodesulfurization of fluid catalytic cracked naphtha 

    E-Print Network [OSTI]

    Schumann, Brian Herbert

    1995-01-01

    U.S. governmental agencies are calling for strict environmental regulations on the quality of gasoline. Fluid catalytic cracked naphtha is an important blending component of the gasoline pool. The majority of the sulfur in the gasoline pool comes...

  9. Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels

    SciTech Connect (OSTI)

    2009-11-01

    Precision Combustion, Inc. will develop a unique, fuel-flexible Rich Catalytic Lean-Burn (RCL®) injector with catalytic combustor capable of enabling ultralow-emission, lean premixed combustion of a wide range of gaseous opportunity fuels. This will broaden the range of opportunity fuels that can be utilized to include low- and ultralow-Btu gases, such as digester and blast furnace gases, and fuels containing reactive species, such as refinery, wellhead, and industrial byproduct gases.

  10. Mercury Oxidation via Catalytic Barrier Filters Phase II

    SciTech Connect (OSTI)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  11. Low-temperature catalytic gasification of wet industrial wastes

    SciTech Connect (OSTI)

    Elliott, D C; Neuenschwander, G G; Baker, E G; Sealock, Jr, L J; Butner, R S

    1991-04-01

    Bench-scale reactor tests are in progress at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for treating a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. This report describes a test program which used a continuous-feed tubular reactor. This test program is an intermediate stage in the process development. The reactor is a laboratory-scale version of the commercial concept as currently envisioned by the process developers. An energy benefit and economic analysis was also completed on the process. Four conceptual commercial installations of the TEES process were evaluated for three food processing applications and one organic chemical manufacturing application. Net energy production (medium-Btu gas) was achieved in all four cases. The organic chemical application was found to be economically attractive in the present situation. Based on sensitivity studies included in the analysis, the three food processing cases will likely become attractive in the near future as waste disposal regulations tighten and disposal costs increase. 21 refs., 2 figs., 9 tabs.

  12. Final Technical Report [Development of Catalytic Alkylation and Fluoroalkylation Methods

    SciTech Connect (OSTI)

    Vicic, David A.

    2014-05-01

    In the early stages of this DOE-funded research project, we sought to prepare and study a well-defined nickel-alkyl complex containing tridentate nitrogen donor ligands. We found that reaction of (TMEDA)NiMe2 (1) with terpyridine ligand cleanly led to the formation of (terpyridyl)NiMe (2), which we also determined to be an active alkylation catalyst. The thermal stability of 2 was unlike that seen for any of the active pybox ligands, and enabled a number of key studies on alkyl transfer reactions to be performed, providing new insights into the mechanism of nickel-mediated alkyl-alkyl cross-coupling reactions. In addition to the mechanistic studies, we showed that the terpyridyl nickel compounds can catalytically cross-couple alkyl iodides in yields up to 98% and bromides in yields up to 46 %. The yields for the bromides can be increased up to 67 % when the new palladium catalyst [(tpy’)Pd-Ph]I is used. The best route to the targeted [(tpy)NiBr] (1) was found to involve the comproportionation reaction of [(dme)NiBr{sub 2}] and [Ni(COD){sub 2}] in the presence of two equivalents of terpyridine. This reaction was driven to high yields of product formation (72 % isolated) by the precipitation of 1 from THF solvent.

  13. Structural Basis for Catalytic Activation of a Serine Recombinase

    SciTech Connect (OSTI)

    Keenholtz, Ross A.; Rowland, Sally-J.; Boocock, Martin R.; Stark, W. Marshall; Rice, Phoebe A. (Glasgow); (UC)

    2014-10-02

    Sin resolvase is a site-specific serine recombinase that is normally controlled by a complex regulatory mechanism. A single mutation, Q115R, allows the enzyme to bypass the entire regulatory apparatus, such that no accessory proteins or DNA sites are required. Here, we present a 1.86 {angstrom} crystal structure of the Sin Q115R catalytic domain, in a tetrameric arrangement stabilized by an interaction between Arg115 residues on neighboring subunits. The subunits have undergone significant conformational changes from the inactive dimeric state previously reported. The structure provides a new high-resolution view of a serine recombinase active site that is apparently fully assembled, suggesting roles for the conserved active site residues. The structure also suggests how the dimer-tetramer transition is coupled to assembly of the active site. The tetramer is captured in a different rotational substate than that seen in previous hyperactive serine recombinase structures, and unbroken crossover site DNA can be readily modeled into its active sites.

  14. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    SciTech Connect (OSTI)

    Abdullah, N.; Muhammad, I. S.; Hamid, S. B. Abd.; Rinaldi, A.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300 deg. C for an hour in each step. The catalytic growth of nanocarbon in C{sub 2}H{sub 4}/H{sub 2} was carried out at temperature of 550 deg. C for 2 hrs with different rotating angle in the fluidization system. SEM and N{sub 2} isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  15. Constraints on Supersymmetric Models from Catalytic Primordial Nucleosynthesis of Beryllium

    E-Print Network [OSTI]

    Maxim Pospelov; Josef Pradler; Frank Daniel Steffen

    2008-10-27

    The catalysis of nuclear reactions by negatively charged relics leads to increased outputs of primordial ^6Li and ^9Be. In combination with observational constraints on the primordial fractions of ^6Li and ^9Be, this imposes strong restrictions on the primordial abundance and the lifetime of charged relics. We analyze the constraints from the catalysis of ^9Be on supersymmetric models in which the gravitino is the lightest supersymmetric particle and a charged slepton--such as the lighter stau--the next-to-lightest supersymmetric particle (NLSP). Barring the special cases in which the primordial fraction of the slepton NLSP is significantly depleted, we find that the ^9Be data require a slepton NLSP lifetime of less than 6x10^3 seconds. We also address the issue of the catalytic destruction of ^6Li and ^9Be by late forming bound states of protons with negatively charged relics finding that it does not lead to any significant modification of the limit on the slepton lifetime.

  16. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    SciTech Connect (OSTI)

    Sherly, K. B.; Rakesh, K.

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}?8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  17. Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds

    DOE Patents [OSTI]

    Comolli, Alfred G. (Yardley, PA); Lee, Lap-Keung (Cranbury, NJ)

    2001-01-01

    A multi-stage catalytic hydrogenation and hydroconversion process for heavy hydrocarbon feed materials such as coal, heavy petroleum fractions, and plastic waste materials. In the process, the feedstock is reacted in a first-stage, back-mixed catalytic reactor with a highly dispersed iron-based catalyst having a powder, gel or liquid form. The reactor effluent is pressure-reduced, vapors and light distillate fractions are removed overhead, and the heavier liquid fraction is fed to a second stage back-mixed catalytic reactor. The first and second stage catalytic reactors are operated at 700-850.degree. F. temperature, 1000-3500 psig hydrogen partial pressure and 20-80 lb./hr per ft.sup.3 reactor space velocity. The vapor and light distillates liquid fractions removed from both the first and second stage reactor effluent streams are combined and passed to an in-line, fixed-bed catalytic hydrotreater for heteroatom removal and for producing high quality naphtha and mid-distillate or a full-range distillate product. The remaining separator bottoms liquid fractions are distilled at successive atmospheric and vacuum pressures, low and intermediate-boiling hydrocarbon liquid products are withdrawn, and heavier distillate fractions are recycled and further upgraded to provide additional low-boiling hydrocarbon liquid products. This catalytic multistage hydrogenation process provides improved flexibility for hydroprocessing the various carbonaceous feedstocks and adjusting to desired product structures and for improved economy of operations.

  18. Comal County Mental Health and Mental Retardation Center Passive Solar Demonstration Program. Final report

    SciTech Connect (OSTI)

    Risner, P. S.; Stubblefield, J.; Deffenbaugh, D. M.; Stevenson, J.

    1980-07-31

    An extensive energy analysis was performed on an existing schoolhouse built in New Braunfels, Texas, in the 1930's. The purpose of the analysis was to evaluate the potentials for passive solar retrofitting concepts and energy conservation techniques which could be applied to the structure on an economically justifiable basis. The energy analysis was performed by the Bin methodology, and a life cycle cost analysis was utilized in determining the economics of the alternatives under consideration. The alternatives which were considered were analyzed on an individual basis as to the percentage improvement in the existing structure's yearly energy loads which each option could be expected to provide. The life cycle cost analysis was based on the assumed useful life of the option; the estimated fuel savings the option provided; the initial investment required to incorporate the option into the retrofitted structure; and discount and fuel escalation rates of 10 and 12%, respectively. If the option provided a positive annual real savings over its assumed life, then the selection of the option was considered to be economically feasible. The selected options were subsequently combined into a revised construction package, and an energy/economic analysis was performed to estimate the annual savings which could be expected by the revisions. A conservative building temperature control strategy which consisted of turning off the mechanical equipment during unoccupied hours, and utilizing natural ventilation when applicable was also investigated. The options which were selected and the relative annual savings are given.

  19. IN SITU INFRARED STUDY OF CATALYTIC DECOMPOSITION OF NO

    SciTech Connect (OSTI)

    KHALID ALMUSAITEER; RAM KRISHNAMURTHY; STEVEN S.C. CHUANG

    1998-08-18

    The growing concerns for the environment and increasingly stringent standards for NO emission have presented a major challenge to control NO emissions from electric utility plants and automobiles. Catalytic decomposition of NO is the most attractive approach for the control of NO emission for its simplicity. Successful development of an effective catalyst for NO decomposition will greatly decrease the equipment and operation cost of NO control. Due to lack of understanding of the mechanism of NO decomposition, efforts on the search of an effective catalyst have been unsuccessful. Scientific development of an effective catalyst requires fundamental understanding of the nature of active site, the rate-limiting step, and an approach to prolong the life of the catalyst. Research is proposed to study the reactivity of adsorbates for the direct NO decomposition and to investigate the feasibility of two novel approaches for improving catalyst activity and resistance to sintering. The first approach is the use of silanation to stabilize metal crystallites and supports for Cu-ZSM-5 and promoted Pt catalysts; the second is utilization of oxygen spillover and desorption to enhance NO decomposition activity. An innovative infrared reactor system will be used to observe and determine the dynamic behavior and the reactivity of adsorbates during NO decomposition, oxygen spillover, and silanation. A series of experiments including X-ray diffraction, temperature programmed desorption, temperature programmed reaction, X-ray photoelectron spectroscopy will be used to characterized the catalysts. The information obtained from this study will provide a scientific basis for developing an effective catalyst for the NO decomposition under practical flue gas conditions.

  20. Integrating catalytic coal gasifiers with solid oxide fuel cells

    SciTech Connect (OSTI)

    Siefert, N.; Shamsi, A.; Shekhawat, D.; Berry, D.

    2010-01-01

    A review was conducted for coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. The overall system efficiency can reach 60% when a) the coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis, b) the carbon dioxide is separated from the methane-rich synthesis gas, c) the methane-rich syngas is sent to a SOFC, and d) the off-gases from the SOFC are recycled back to coal gasifier. The thermodynamics of this process will be reviewed and compared to conventional processes in order to highlight where available work (i.e. exergy) is lost in entrained-flow, high-temperature gasification, and where exergy is lost in hydrogen oxidation within the SOFC. The main advantage of steam gasification of coal to methane and carbon dioxide is that the amount of exergy consumed in the gasifier is small compared to conventional, high temperature, oxygen-blown gasifiers. However, the goal of limiting the amount of exergy destruction in the gasifier has the effect of limiting the rates of chemical reactions. Thus, one of the main advantages of steam gasification leads to one of its main problems: slow reaction kinetics. While conventional entrained-flow, high-temperature gasifiers consume a sizable portion of the available work in the coal oxidation, the consumed exergy speeds up the rates of reactions. And while the rates of steam gasification reactions can be increased through the use of catalysts, only a few catalysts can meet cost requirements because there is often significant deactivation due to chemical reactions between the inorganic species in the coal and the catalyst. Previous research into increasing the kinetics of steam gasification will be reviewed. The goal of this paper is to highlight both the challenges and advantages of integrating catalytic coal gasifiers with SOFCs.

  1. ADVANCED BYPRODUCT RECOVERY: DIRECT CATALYTIC REDUCTION OF SO2 TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    Robert S. Weber

    1999-05-01

    Arthur D. Little, Inc., together with its commercialization partner, Engelhard Corporation, and its university partner Tufts, investigated a single-step process for direct, catalytic reduction of sulfur dioxide from regenerable flue gas desulfurization processes to the more valuable elemental sulfur by-product. This development built on recently demonstrated SO{sub 2}-reduction catalyst performance at Tufts University on a DOE-sponsored program and is, in principle, applicable to processing of regenerator off-gases from all regenerable SO{sub 2}-control processes. In this program, laboratory-scale catalyst optimization work at Tufts was combined with supported catalyst formulation work at Engelhard, bench-scale supported catalyst testing at Arthur D. Little and market assessments, also by Arthur D. Little. Objectives included identification and performance evaluation of a catalyst which is robust and flexible with regard to choice of reducing gas. The catalyst formulation was improved significantly over the course of this work owing to the identification of a number of underlying phenomena that tended to reduce catalyst selectivity. The most promising catalysts discovered in the bench-scale tests at Tufts were transformed into monolith-supported catalysts at Engelhard. These catalyst samples were tested at larger scale at Arthur D. Little, where the laboratory-scale results were confirmed, namely that the catalysts do effectively reduce sulfur dioxide to elemental sulfur when operated under appropriate levels of conversion and in conditions that do not contain too much water or hydrogen. Ways to overcome those limitations were suggested by the laboratory results. Nonetheless, at the end of Phase I, the catalysts did not exhibit the very stringent levels of activity or selectivity that would have permitted ready scale-up to pilot or commercial operation. Therefore, we chose not to pursue Phase II of this work which would have included further bench-scale testing, scale-up, pilot-scale (0.5 MW{sub e}) testing at conditions representative of various regenerable SO{sub 2}-control systems, preparation of a commercial process design, and development of a utility-scale demonstration plan.

  2. X-linked borderline mental retardation with prominent behavioral disturbance: Phenotype, genetic localization, and evidence for disturbed monoamine metabolism

    SciTech Connect (OSTI)

    Brunner, H.G.; Nelen, M.R.; Zandvoort, P. van; Abeling, N.G.G.M.; Gennip, A.H. van; Ropers, H.H.; Oost, B.A. van ); Wolters, E.C.; Kuiper, M.A. )

    1993-06-01

    The authors have identified a large Dutch kindred with a new form of X-linked nondysmorphic mild mental retardation. All affected males in this family show very characteristic abnormal behavior, in particular aggressive and sometimes violent behavior. Other types of impulsive behavior include arson, attempted rape, and exhibitionism. Attempted suicide has been reported in a single case. The locus for this disorder could be assigned to the Xp11-21 interval between DXS7 and DXS77 by linkage analysis using markers spanning the X chromosome. A maximal multipoint lod score of 3.69 was obtained at the monoamine oxidase type A (MAOA) monoamine metabolism. These data are compatible with a primary defect in the structural gene for MAOA and/or monoamine oxidase type B (MAOB). Normal platelet MAOB activity suggests that the unusual behavior pattern in this family may be caused by isolated MAOA deficiency. 34 refs., 4 figs., 4 tabs.

  3. Sulfur tolerance of selective partial oxidation of NO to NO2 in a plasma

    SciTech Connect (OSTI)

    Penetrante, B; Brusasco, R M; Merritt, B T; Vogtlin, G E

    1999-08-24

    Several catalytic aftertreatment technologies rely on the conversion of NO to NO2 to achieve efficient reduction of NOx and particulates in diesel exhaust. These technologies include the use of selective catalytic reduction of NOx with hydrocarbons, NOx adsorption, and continuously regenerated particulate trapping. These technologies require low sulfur fuel because the catalyst component that is active in converting NO to NO2 is also active in converting SO2 to SO3 . The SO3 leads t o increase in particulates and/or poison active sites on the catalyst. A non-thermal plasma can be used for the selective partial oxidation of NO to NO2 in the gas-phase under diesel engine exhaust conditions. This paper discusses how a non-thermal plasma can efficiently oxidize NO to NO2 without oxidizing SO2 to SO3 .

  4. An assessment of Texas wholesale nursery grower and the effect of selected growth retardants on Salvia farinacea x longispicata "Indigo Spires" 

    E-Print Network [OSTI]

    Rodriguez, David

    1992-01-01

    at a low temperature of 70 F (21' C) to prevent drying out of the cuttings (Hartmann, Kester, and Davies, 1990). Cuttings are dipped in a 30 gallon solution of Captan WP 50 for 10 seconds that is continously agitated by a rotating pump to avoid..., but rapidly utilized for irrigation and is agitated by the recycling and distribution process. The nursery's soil testing and plant diagnostics lab conducts tests in evaluating the pH and soluble salt content of the recycled water. With the availability...

  5. From First Principles Design to Realization of Bimetallic Catalysts for Enhanced Selectivity

    SciTech Connect (OSTI)

    Lobo, Raul F.; Crooks, Richard M.; Mavrikakis, Manos

    2014-04-08

    “Catalysis by design” has been a dream for decades. To specify the composition and structure of matter to effect a desired catalytic transformation with desired and predicted rate and selectivity remains a monumental challenge, especially in heterogeneous catalysis. Our research thrusts have been chosen not only for their practical and scientific relevance, e.g. for more efficient and sustainable chemicals and fuels production, but also because they provide a foundation for developing and exploring broadly applicable principles and strategies for catalyst design.

  6. Catalytic synthesis of metal crystals using conductive polymers

    DOE Patents [OSTI]

    Wang, Hsing-Lin (Los Alamos, NM); Li, Wenguang (Los Alamos, NM)

    2008-01-15

    A method of forming metal nanoparticles using a polymer colloid that includes at least one conductive polymer and at least one polyelectrolyte. Metal ions are reduced in water by the conductive polymer to produce the nanoparticles, which may be then incorporated in the colloidal structure to form a colloid composite. The method can also be used to separate selected metal ions from aqueous solutions.

  7. Catalytic oxidation of light alkanes in presence of a base

    DOE Patents [OSTI]

    Bhinde, Manoj V. (Boothwyn, PA); Bierl, Thomas W. (West Chester, PA)

    1998-01-01

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol.

  8. Catalytic oxidation of light alkanes in presence of a base

    DOE Patents [OSTI]

    Bhinde, M.V.; Bierl, T.W.

    1998-03-03

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol. 1 fig.

  9. Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts

    SciTech Connect (OSTI)

    Mayr, Lukas; Klötzer, Bernhard; Penner, Simon; Rameshan, Raffael; Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin ; Rameshan, Christoph; Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/BC/01, 1060 Vienna

    2014-05-15

    An ultra-high vacuum (UHV) setup for “real” and “inverse” model catalyst preparation, depth-resolved near-surface spectroscopic characterization, and quantification of catalytic activity and selectivity under technologically relevant conditions is described. Due to the all-quartz reactor attached directly to the UHV-chamber, transfer of the catalyst for in situ testing without intermediate contact to the ambient is possible. The design of the UHV-compatible re-circulating batch reactor setup allows the study of reaction kinetics under close to technically relevant catalytic conditions up to 1273 K without contact to metallic surfaces except those of the catalyst itself. With the attached differentially pumped exchangeable evaporators and the quartz-microbalance thickness monitoring equipment, a reproducible, versatile, and standardised sample preparation is possible. For three-dimensional near-surface sample characterization, the system is equipped with a hemispherical analyser for X-ray photoelectron spectroscopy (XPS), electron-beam or X-ray-excited Auger-electron spectroscopy, and low-energy ion scattering measurements. Due the dedicated geometry of the X-ray gun (54.7°, “magic angle”) and the rotatable sample holder, depth analysis by angle-resolved XPS measurements can be performed. Thus, by the combination of characterisation methods with different information depths, a detailed three-dimensional picture of the electronic and geometric structure of the model catalyst can be obtained. To demonstrate the capability of the described system, comparative results for depth-resolved sample characterization and catalytic testing in methanol steam reforming on PdGa and PdZn near-surface intermetallic phases are shown.

  10. A Structural Hinge in Eukaryotic MutY Homologues Mediates Catalytic Activity and Rad9-Rad1-Hus1 Checkpoint Complex Interactions

    SciTech Connect (OSTI)

    P Luncsford; D Chang; G Shi; J Bernstein; A Madabushi; D Patterson; A Lu; E Toth

    2011-12-31

    The DNA glycosylase MutY homologue (MYH or MUTYH) removes adenines misincorporated opposite 8-oxoguanine as part of the base excision repair pathway. Importantly, defects in human MYH (hMYH) activity cause the inherited colorectal cancer syndrome MYH-associated polyposis. A key feature of MYH activity is its coordination with cell cycle checkpoint via interaction with the Rad9-Rad1-Hus1 (9-1-1) complex. The 9-1-1 complex facilitates cell cycle checkpoint activity and coordinates this activity with ongoing DNA repair. The interdomain connector (IDC, residues 295-350) between the catalytic domain and the 8-oxoguanine recognition domain of hMYH is a critical element that maintains interactions with the 9-1-1 complex. We report the first crystal structure of a eukaryotic MutY protein, a fragment of hMYH (residues 65-350) that consists of the catalytic domain and the IDC. Our structure reveals that the IDC adopts a stabilized conformation projecting away from the catalytic domain to form a docking scaffold for 9-1-1. We further examined the role of the IDC using Schizosaccharomyces pombe MYH as model system. In vitro studies of S. pombe MYH identified residues I261 and E262 of the IDC (equivalent to V315 and E316 of the hMYH IDC) as critical for maintaining the MYH/9-1-1 interaction. We determined that the eukaryotic IDC is also required for DNA damage selection and robust enzymatic activity. Our studies also provide the first evidence that disruption of the MYH/9-1-1 interaction diminishes the repair of oxidative DNA damage in vivo. Thus, preserving the MYH/9-1-1 interaction contributes significantly to minimizing the mutagenic potential of oxidative DNA damage.

  11. Pump Selection Considerations

    SciTech Connect (OSTI)

    Not Available

    2005-10-01

    BestPractices Program tip sheet discussing pumping system efficiency with pumping selection considerations.

  12. SPONTANEOUS CATALYTIC WET AIR OXIDATION DURING PRE-TREATMENT OF HIGH-LEVEL RADIOACTIVE WASTE SLUDGE

    SciTech Connect (OSTI)

    Koopman, D.; Herman, C.; Pareizs, J.; Bannochie, C.; Best, D.; Bibler, N.; Fellinger, T.

    2009-10-01

    Savannah River Remediation, LLC (SRR) operates the Defense Waste Processing Facility for the U.S. Department of Energy at the Savannah River Site. This facility immobilizes high-level radioactive waste through vitrification following chemical pretreatment. Catalytic destruction of formate and oxalate ions to carbon dioxide has been observed during qualification testing of non-radioactive analog systems. Carbon dioxide production greatly exceeded hydrogen production, indicating the occurrence of a process other than the catalytic decomposition of formic acid. Statistical modeling was used to relate the new reaction chemistry to partial catalytic wet air oxidation of both formate and oxalate ions driven by the low concentrations of palladium, rhodium, and/or ruthenium in the waste. Variations in process conditions led to increases or decreases in the total oxidative destruction, as well as partially shifting the preferred species undergoing destruction from oxalate ion to formate ion.

  13. First-Principles Study on the Origin of the Different Selectivities for Methanol Steam Reforming on Cu(111) and Pd(111)

    E-Print Network [OSTI]

    Li, Weixue

    different catalytic processes, including methanol decomposition (eq 1), methanol steam reforming (eq 2First-Principles Study on the Origin of the Different Selectivities for Methanol Steam Reforming steam reforming (MSR) is an important industrial process for hydrogen production, and fundamental

  14. Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium-Nickel Nanoalloys

    SciTech Connect (OSTI)

    Shan, Shiyao; Petkov, Valeri; Yang, Lefu; Luo, Jin; Joseph, Pharrah; Mayzel, Dina; Prasai, Binay; Wang, Lingyan; Engelhard, Mark H.; Zhong, Chuan-Jian

    2014-05-05

    Alloying palladium (Pd) with other transition metals at the nanoscale has become an important pathway for preparation of low-cost, highly-active and stable catalysts. However the lack of understanding of how the alloying phase state, chemical composition and atomic-scale structure of the alloys at the nanoscale influence their catalytic activity impedes the rational design of Pd-nanoalloy catalysts. This work addresses this challenge by a novel approach to investigating the catalytic oxidation of carbon monoxide (CO) over palladium-nickel (PdNi) nanoalloys with well-defined bimetallic composition, which reveals a remarkable a maximal catalytic activity at Pd:Ni ratio of ~50:50. Key to understanding the structural-catalytic synergy is the use of high-energy synchrotron X-ray diffraction coupled to atomic pair distribution function (HE-XRD/PDF) analysis to probe the atomic structure of PdNi nanoalloys under controlled thermochemical treatments and CO reaction conditions. Three-dimensional (3D) models of the atomic structure of the nanoalloy particles were generated by reverse Monte Carlo simulations (RMC) guided by the experimental HE-XRD/PDF data. Structural details of the PdNi nanoalloys were extracted from the respective 3D models and compared with the measured catalytic properties. The comparison revealed a strong correlation between the phase state, chemical composition and atomic-scale structure of PdNi nanoalloys and their catalytic activity for CO oxidation. This correlation is further substantiated by analyzing the first atomic neighbor distances and coordination numbers inside the nanoalloy particles and at their surfaces. These findings have provided new insights into the structural synergy of nanoalloy catalysts by controlling the phase state, composition and atomic structure, complementing findings of traditional density functional theory studies.

  15. The catalytic oxidation of propane and propylene with air: total aldehyde production and selectivity at low conversions. 

    E-Print Network [OSTI]

    Looney, Franklin Sittig

    1950-01-01

    ~ studies ware included The ~ar interest was ~ that of comparing ~ of oxcjdaticn, ~ (8) hells a patent for the method of introducing the ~o- carbon gas into a stream of hot Zine gas containing sufficient oxidiaing gas such 'as k method of sanufacturing... aldetydes from ethane and propane at ~ stares abcnrs six. ~ ~ centigrade over a ~ ~ surface has been patented bT Cmobs (7)~ The efTlnsat gases were scrubbed with water and the residue recyclsd~ 4 Tie1d of aldehyde of xdgh~ve par cent was re~ Tausch...

  16. Effect of Hydrocarbon Emissions From PCCI-Type Combustion On The Performance of Selective Catalytic Reduction Catalysts

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL] [ORNL; Pihl, Josh A [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Parks, II, James E [ORNL

    2011-01-01

    Core samples cut from full size commercial Fe-and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. Subsequently, the NOx reduction performance of the exposed catalysts was evaluated on a laboratory bench- reactor fed with simulated exhaust. The Fe-zeolite NOx conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to HC fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOx conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600 C. GC-MS analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NOx reduction performance trends.

  17. Adaptive PI control of NOx? emissions in a Urea Selective Catalytic Reduction System using system identification models

    E-Print Network [OSTI]

    Ong, Chun Yang

    2009-01-01

    The Urea SCR System has shown great potential for implementation on diesel vehicles wanting to meet the upcoming emission regulations by the EPA. The objective of this thesis is to develop an adaptive controller that is ...

  18. Effect of Hydrocarbon Emissions From PCCI-Type Combustion on the Performance of Selective Catalytic Reduction Catalysts

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Pihl, Josh A [ORNL; Lewis Sr, Samuel Arthur [ORNL; Parks, II, James E [ORNL

    2011-01-01

    Core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. Subsequently, the NOx reduction performance of the exposed catalysts was evaluated on a laboratory bench-reactor fed with simulated exhaust. The Fe-zeolite NOx conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to HC fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOx conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600 C. GC-MS analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NOx reduction performance trends.

  19. Selective catalytic reduction system and process for treating NOx emissions using a zinc or titanium promoted palladium-zirconium catalyst

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly (Orlando, FL); Rossin, Joseph A. (Columbus, OH); Knapke, Michael J. (Columbus, OH)

    2011-08-02

    A process and system (18) for reducing NO.sub.x in a gas using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream (29) with a catalyst system (38) comprising sulfated zirconia washcoat particles (41), palladium, a pre-sulfated zirconia binder (44), and a promoter (45) comprising at least one of titanium, zinc, or a mixture thereof. The presence of zinc or titanium increases the resistance of the catalyst system to a sulfur and water-containing gas stream.

  20. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using Cu-zeolite

    Broader source: Energy.gov [DOE]

    Discusses the impact of Na in biodiesel on three emission control devices: the diesel particulate filter, diesel oxidation catalyst, and zeolyte-based SCR catalyst

  1. In-line localized monitoring of catalyst activity in selective catalytic NO.sub.x reduction systems

    DOE Patents [OSTI]

    Muzio, Lawrence J. (Laguna Niguel, CA); Smith, Randall A. (Huntington Beach, CA)

    2009-12-22

    Localized catalyst activity in an SCR unit for controlling emissions from a boiler, power plant, or any facility that generates NO.sub.x-containing flue gases is monitored by one or more modules that operate on-line without disrupting the normal operation of the facility. Each module is positioned over a designated lateral area of one of the catalyst beds in the SCR unit, and supplies ammonia, urea, or other suitable reductant to the catalyst in the designated area at a rate that produces an excess of the reductant over NO.sub.x on a molar basis through the designated area. Sampling probes upstream and downstream of the designated area draw samples of the gas stream for NO.sub.x analysis, and the catalyst activity is determined from the difference in NO.sub.x levels between the two probes.

  2. The Effects of Trace Contaminants on Catalytic Processing of Biomass-Derived Feedstocks

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Peterson, Keith L.; Muzatko, Danielle S.; Alderson, Eric V.; Hart, Todd R.; Neuenschwander, Gary G.

    2004-03-25

    Trace components in biomass feedstocks are potential catalyst poisons when catalytically processing these materials to value-added chemical products. Trace components include inorganic elements such as alkali metals and alkaline earths, phosphorus or sulfur, aluminum or silicon, chloride, or transition metals. Protein components in biomass feedstocks can lead to formation of peptide fractions (from hydrolysis) or ammonium ions (from more severe breakdown) both of which might interfere with catalysis. The effects of these components on catalytic hydrogenation processing has been studied in batch reactor processing tests

  3. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOE Patents [OSTI]

    Schwartz, Michael; White, James H.; Sammells, Anthony F.

    2005-09-27

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  4. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOE Patents [OSTI]

    Schwartz, Michael (Boulder, CO); White, James H. (Boulder, CO); Sammels, Anthony F. (Boulder, CO)

    2000-01-01

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  5. Hydrogen ions produced by plasma-assisted catalytic ionization using nickel grid

    SciTech Connect (OSTI)

    Oohara, W.; Kawata, K.; Hibino, T. [Department of Electronic Device Engineering, Yamaguchi University, Ube 755-8611 (Japan)] [Department of Electronic Device Engineering, Yamaguchi University, Ube 755-8611 (Japan)

    2013-06-15

    Positive and negative hydrogen ions are produced by plasma-assisted catalytic ionization using a nickel grid, where the irradiation current density of positive ions onto the grid can be controlled by the discharge power. The irradiation energy can be controlled by both the grid potential and the discharge plasma potential. Extraction properties and energy distributions of positive and negative ions produced in the cases of using the grid and a porous nickel plate are compared. Two production mechanisms of negative ions are found in the process of plasma-assisted catalytic ionization.

  6. Catalytic Templating Approaches for Three-Dimensional Hollow Carbon/Graphene Oxide Nano-Architectures

    SciTech Connect (OSTI)

    Moon, Gun-Hee; Shin, Yongsoon; Choi, Daiwon; Arey, Bruce W.; Exarhos, Gregory J.; Wang, Chong M.; Choi, Wonyong; Liu, Jun

    2013-01-01

    We report a catalytic templating method to synthesize well-controlled, three-dimensional (3D) nano-architectures with graphene oxide sheets. The 3D composites are prepared via self-assembly of carbon, GO, and spherical alumina-coated silica (ACS) templates during a catalytic reaction porcess. By changing the GO content, we can systematically tune the architecture from layered composites to 3D hollow structures to microporous materials. The composites show a synergistic effect with significantly superior properties than either pure carbon or r-GO prepared with a significant enhancement to its capacitance at high current density.

  7. Catalytic Role of Gold in Gold-Based Catalysts: A Density Functional Theory Study on the CO Oxidation on Gold

    E-Print Network [OSTI]

    Alavi, Ali

    Catalytic Role of Gold in Gold-Based Catalysts: A Density Functional Theory Study on the CO Oxidation on Gold Zhi-Pan Liu and P. Hu* Contribution from the School of Chemistry, The Queen's Uni years, being regarded as a new generation of catalysts due to their unusually high catalytic performance

  8. Catalytic pyrolysis of methane on Mo/H-ZSM5 with continuous hydrogen removal by permeation through dense oxide lms

    E-Print Network [OSTI]

    Iglesia, Enrique

    Catalytic pyrolysis of methane on Mo/H-ZSM5 with continuous hydrogen removal by permeation through ®lms, chain-limiting catalytic pyrolysis reactions on Mo/H-ZSM5, and CO2 co-reactants led to stable simulations in tubular reactors with permeable walls. KEY WORDS: methane pyrolysis; membrane reactors; Mo

  9. IEEE TRANSACTION ON CONTROL SYSTEM TECHNOLOGY, VOL. XX, NO. Y, MONTH 2003 1 Control of Natural Gas Catalytic Partial

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Applications Jay T. Pukrushpan, Anna G that reforms natural gas to hydrogen-rich mixture to feed the anode field of fuel cell stack is considered. The first reactor that generates the majority of the hydrogen in the fuel processor is based on catalytic

  10. ForReview.Confidential-ACS Catalytic Transformation of 1,3,5 -Trimethyl Benzene over USY Zeolite

    E-Print Network [OSTI]

    Al-Khattaf, Sulaiman

    ForReview.Confidential-ACS Catalytic Transformation of 1,3,5 -Trimethyl Benzene over USY Zeolite Catalytic Transformation of 1,3,5 -Trimethyl Benzene over USY Zeolite Catalyst Nasir M. Tukur and SulaimanTMB, disproportionation. May 2007 Keywords: Trimethyl benzene, isomerization, disproportionation

  11. Diffusion and Catalytic Cracking of 1,3,5 Tri-iso-propyl-benzene in FCC Catalysts

    E-Print Network [OSTI]

    Al-Khattaf, Sulaiman

    1 Diffusion and Catalytic Cracking of 1,3,5 Tri-iso- propyl-benzene in FCC Catalysts S.Al-Khattaf1 describes catalytic cracking experiments developed in a novel CREC Riser Simulator using 1,3,5-Tri-iso-propyl-benzene

  12. Behavior of chars from Bursa Mustafa Kemal Pasa Alpagut and Balkesir Dursunbey Cakiirca Lignite (Turkey) during non-catalytic and catalytic gasification

    SciTech Connect (OSTI)

    Bozkurt, Y.; Misirlioglu, Z.; Sinag, A.; Tekes, A.T.; Canel, M. [Ankara University, Ankara (Turkey). Dept. of Chemistry

    2008-07-01

    The reactivities of chars obtained by pyrolysis of Bursa Mustafa Kemal Pasa Alpagut lignite and Balkesir Dursunbey Cakiirca lignite (Turkey) at different temperatures were determined by CO{sub 2} gasification and by combustion with O{sub 2}. Catalytic effect of Na{sub 2}CO{sub 3} on the CO{sub 2} and O{sub 2} gasification reactivity of chars was investigated. Gasification tests were performed in the fixed bed reactors operating at ambient pressure. Reactivity of chars during the CO{sub 2} gasification reactions was determined by calculating the reaction rate constants and reactivity of chars during the O{sub 2} gasification was determined by using ignition temperatures of the samples. Activation energies and Arrhenius constants of the chars on the CO{sub 2} gasification reactions were also calculated by the help of Arrhenius curves. The activation energy for CO{sub 2} gasification was generally decreased with pyrolysis temperature, due to the different surface characteristics and different nature of carbon atoms gasified as the gasification reactions proceed. Generally, the increase in pyrolysis temperature leads to an increase in gasification reactivity with CO{sub 2}. The reactivity of chars in catalytic gasification was higher than the corresponding non-catalytic reactivity of the same chars. Ignition temperature increased with increasing pyrolysis temperature.

  13. Method and apparatus to selectively reduce NO.sub.x in an exhaust gas feedstream

    DOE Patents [OSTI]

    Schmieg, Steven J. (Troy, MI); Blint, Richard J. (Shelby Township, MI); Den, Ling (Sterling Heights, MI); Viola, Michael B. (Macomb Township, MI); Lee, Jong-Hwan (Rochester Hills, MI)

    2011-08-30

    A method and apparatus are described to selectively reduce NO.sub.x emissions of an internal combustion engine. An exhaust aftertreatment system includes an injection device operative to dispense a hydrocarbon reductant upstream of a silver-alumina catalytic reactor device. A control system determines a NO.sub.x concentration and hydrocarbon/NOx ratio based upon selected parameters of the exhaust gas feedstream and dispenses hydrocarbon reductant during lean engine operation. Included is a method to control elements of the feedstream during lean operation. The hydrocarbon reductant may include engine fuel.

  14. Low-Temperature Catalytic Process To Produce Hydrocarbons From Sugars

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2005-11-15

    Disclosed is a method of producing hydrogen from oxygenated hydrocarbon reactants, such as methanol, glycerol, sugars (e.g. glucose and xylose), or sugar alcohols (e.g. sorbitol). The method takes place in the condensed liquid phase. The method includes the steps of reacting water and a water-soluble oxygenated hydrocarbon in the presence of a metal-containing catalyst. The catalyst contains a metal selected from the group consisting of Group VIIIB transitional metals, alloys thereof, and mixtures thereof. The disclosed method can be run at lower temperatures than those used in the conventional steam reforming of alkanes.

  15. Low-severity catalytic two-stage liquefaction process: Illinois coal conceptual commercial plant design and economics

    SciTech Connect (OSTI)

    Abrams, L.M.; Comolli, A.G.; Popper, G.A.; Wang, C.; Wilson, G.

    1988-09-01

    Hydrocarbon Research, Inc. (HRI) is conducting a program for the United States Department of Energy (DOE) to evaluate a Catalytic Two-Stage Liquefaction (CTSL) Process. This program which runs through 1987, is a continuation of an earlier DOE sponsored program (1983--1985) at HRI to develop a new technology concept for CTSL. The earlier program included bench-scale testing of improved operating conditions for the CTSL Process on Illinois No. 6 bituminous coal and Wyoming sub-bituminous coal, and engineering screening studies to identify the economic incentive for CTSL over the single-stage H-Coal/reg sign/ Process for Illinois No. 6 coal. In the current program these engineering screening studies are extended to deep-cleaned Illinois coal and use of heavy recycle. The results from this comparison will be used as a guide for future experiments with respect to selection of coal feedstocks and areas for further process optimization. A preliminary design for CTSL of Illinois deep-cleaned coal was developed based on demonstrated bench-scale performance in Run No. 227-47(I-27), and from HRI's design experience on the Breckinridge Project and H-Coal/reg sign/ Process pilot plant operations at Catlettsburg. Complete conceptual commercial plant designs were developed for a grassroots facility using HRI's Process Planning Model. Product costs were calculated and economic sensitivities analyzed. 14 refs., 11 figs., 49 tabs.

  16. Evidence of the production of hot hydrogen atoms in RF plasmas by catalytic reactions between hydrogen and oxygen species

    E-Print Network [OSTI]

    Jonathan Phillips; Chun Ku Chen; Randell Mills

    2005-08-31

    Selective H-atom line broadening was found to be present throughout the volume (13.5 cm ID x 38 cm length) of RF generated H2O plasmas in a GEC cell. Notably, at low pressures (ca. hydrogen was 'hot' with energies greater than 40 eV with a pressure dependence, but only a weak power dependence. The degree of broadening was virtually independent of the position studied within the GEC cell, similar to the recent finding for He/H2 and Ar/H2 plasmas in the same GEC cell. In contrast to the atomic hydrogen lines, no broadening was observed in oxygen species lines at low pressures. Also, in control Xe/H2 plasmas run in the same cell at similar pressures and adsorbed power, no significant broadening of atomic hydrogen, Xe, or any other lines was observed. Stark broadening or acceleration of charged species due to high electric fields can not explain the results since (i) the electron density was insufficient by orders of magnitude, (ii) the RF field was essentially confined to the cathode fall region in contrast to the broadening that was independent of position, and (iii) only the atomic hydrogen lines were broadened. Rather, all of the data is consistent with a model that claims specific, predicted, species can act catalytically through a resonant energy transfer mechanism to create hot hydrogen atoms in plasmas.

  17. Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor

    DOE Patents [OSTI]

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-09-23

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  18. Optical Broadband Angular Selectivity

    E-Print Network [OSTI]

    Shen, Yichen

    Light selection based purely on the angle of propagation is a long-standing scientific challenge. In angularly selective systems, however, the transmission of light usually also depends on the light frequency. We tailored ...

  19. A statistical analysis of systematic errors in temperature and ram velocity estimates from satellite-borne retarding potential analyzers

    SciTech Connect (OSTI)

    Klenzing, J. H.; Earle, G. D.; Heelis, R. A.; Coley, W. R. [William B. Hanson Center for Space Sciences, University of Texas at Dallas, 800 W. Campbell Rd. WT15, Richardson, Texas 75080 (United States)

    2009-05-15

    The use of biased grids as energy filters for charged particles is common in satellite-borne instruments such as a planar retarding potential analyzer (RPA). Planar RPAs are currently flown on missions such as the Communications/Navigation Outage Forecast System and the Defense Meteorological Satellites Program to obtain estimates of geophysical parameters including ion velocity and temperature. It has been shown previously that the use of biased grids in such instruments creates a nonuniform potential in the grid plane, which leads to inherent errors in the inferred parameters. A simulation of ion interactions with various configurations of biased grids has been developed using a commercial finite-element analysis software package. Using a statistical approach, the simulation calculates collected flux from Maxwellian ion distributions with three-dimensional drift relative to the instrument. Perturbations in the performance of flight instrumentation relative to expectations from the idealized RPA flux equation are discussed. Both single grid and dual-grid systems are modeled to investigate design considerations. Relative errors in the inferred parameters for each geometry are characterized as functions of ion temperature and drift velocity.

  20. A spatially resolved retarding field energy analyzer design suitable for uniformity analysis across the surface of a semiconductor wafer

    SciTech Connect (OSTI)

    Sharma, S.; Gahan, D. Hopkins, M. B.; Kechkar, S.; Daniels, S.

    2014-04-15

    A novel retarding field energy analyzer design capable of measuring the spatial uniformity of the ion energy and ion flux across the surface of a semiconductor wafer is presented. The design consists of 13 individual, compact-sized, analyzers, all of which are multiplexed and controlled by a single acquisition unit. The analyzers were tested to have less than 2% variability from unit to unit due to tight manufacturing tolerances. The main sensor assembly consists of a 300 mm disk to mimic a semiconductor wafer and the plasma sampling orifices of each sensor are flush with disk surface. This device is placed directly on top of the rf biased electrode, at the wafer location, in an industrial capacitively coupled plasma reactor without the need for any modification to the electrode structure. The ion energy distribution, average ion energy, and average ion flux were measured at the 13 locations over the surface of the powered electrode to determine the degree of spatial nonuniformity. The ion energy and ion flux are shown to vary by approximately 20% and 5%, respectively, across the surface of the electrode for the range of conditions investigated in this study.

  1. A numerical study of geometry dependent errors in velocity, temperature, and density measurements from single grid planar retarding potential analyzers

    SciTech Connect (OSTI)

    Davidson, R. L.; Earle, G. D.; Heelis, R. A.; Klenzing, J. H.

    2010-08-15

    Planar retarding potential analyzers (RPAs) have been utilized numerous times on high profile missions such as the Communications/Navigation Outage Forecast System and the Defense Meteorological Satellite Program to measure plasma composition, temperature, density, and the velocity component perpendicular to the plane of the instrument aperture. These instruments use biased grids to approximate ideal biased planes. These grids introduce perturbations in the electric potential distribution inside the instrument and when unaccounted for cause errors in the measured plasma parameters. Traditionally, the grids utilized in RPAs have been made of fine wires woven into a mesh. Previous studies on the errors caused by grids in RPAs have approximated woven grids with a truly flat grid. Using a commercial ion optics software package, errors in inferred parameters caused by both woven and flat grids are examined. A flat grid geometry shows the smallest temperature and density errors, while the double thick flat grid displays minimal errors for velocities over the temperature and velocity range used. Wire thickness along the dominant flow direction is found to be a critical design parameter in regard to errors in all three inferred plasma parameters. The results shown for each case provide valuable design guidelines for future RPA development.

  2. Catalytic cracking. (Latest citations from the NTIS data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The bibliography contains citations concerning applications of catalytic cracking in fluidized beds, moving beds, refineries, vacuum distillation, and reformers. Design criteria, models, controls, and operating procedures are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  3. Catalytic cracking. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The bibliography contains citations concerning applications of catalytic cracking in fluidized beds, moving beds, refineries, vacuum distillation, and reformers. Design criteria, models, controls, and operating procedures are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  4. Scaling Issues of Micro Catalytic Reactors Tzong-Shyng Leu1,a

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    by using microfabrication technology. These include micro IC engines [1] and micro gas turbines [2 combustor, Microscale combustion, Power MEMS Abstract. Micro catalytic combustors are studied experimentally interest in the realization of combustion at scales much smaller than previously explored. However

  5. CFD Simulation of Catalytic Upgrading of Pyrolytic Vapours in FCC Riser

    E-Print Network [OSTI]

    -treatment of pyrolysis vapor; Design of catalyst (Red mud) Aqueous phase HDO upgrading of pre-treated bio-oil. ProcessCFD Simulation of Catalytic Upgrading of Pyrolytic Vapours in FCC Riser Prof Sai Gu, Centre/pre- commercial · Quality: Produced oil not suitable for transportation fuels: high oxygen, acidity and reactivity

  6. DOI: 10.1002/adma.200601618 Dual Nanoparticle/Substrate Control of Catalytic

    E-Print Network [OSTI]

    Pennycook, Steve

    to polymerize and are the primary feed- stock of the petrochemical industry, especially ethene (n = 2. It has been found that oxidative catalytic dehydrogenation, that is, a process assisted by both a solid studies seeking under- standing that may help optimization of the process.[3,4,6,7] It has been

  7. Synthesis and Catalytic Properties of Metal Clusters Encapsulated within Small-Pore (SOD, GIS, ANA) Zeolites

    E-Print Network [OSTI]

    Iglesia, Enrique

    Synthesis and Catalytic Properties of Metal Clusters Encapsulated within Small-Pore (SOD, GIS, ANA.28 nm), GIS (Gismondine, 0.45 nm × 0.31 nm), and ANA (Analcime, 0.42 nm × 0.16 nm) zeolites. Encapsulation was achieved via direct hydrothermal synthesis for SOD and GIS using metal precursors stabilized

  8. in: Nanotechnology 7(1), pp. 307314, 1996 Emergent Computation by Catalytic Reactions

    E-Print Network [OSTI]

    Dittrich, Peter

    in: Nanotechnology 7(1), pp. 307­314, 1996 Emergent Computation by Catalytic Reactions Wolfgang the idea behind the chemical computational metaphor and outline its relevance for nanotechnology. We set up within this context. The implications of this approach for nanotechnology, parallel computers based on mo

  9. Stability of Multiple Steady States of Catalytic Combustion , and J. BRINDLEY

    E-Print Network [OSTI]

    James, Alex

    Stability of Multiple Steady States of Catalytic Combustion A. JAMES* , and J. BRINDLEY Department reaction (m s 1 ) Ag Pre-exponential factor for gas-phase reaction (m3 mol 1 s 1 ) Cox Initial [O2] (mol m mol 1 ) h Heat transfer coefficient (W m 2 K 1 ) hD Mass transfer coefficient (m s 1 ) kc Thermal

  10. Evidence for catalytic water oxidation by a dimanganese tetrakis-Schiff base macrocycle

    E-Print Network [OSTI]

    Dinolfo, Peter H.

    Evidence for catalytic water oxidation by a dimanganese tetrakis-Schiff base macrocycle Subhadeep August 2014 Keywords: Water oxidation Homogeneous catalysis Manganese Artificial photosynthesis order depen- dence on H2O and [MnII 2L]2+ , indicative of electrocatalytic water oxidation. Controlled

  11. Modes of Activation of Organometallic Iridium Complexes for Catalytic Water and C-H Oxidation

    E-Print Network [OSTI]

    Zare, Richard N.

    Modes of Activation of Organometallic Iridium Complexes for Catalytic Water and C-H Oxidation - ) or (cod)IrI (cod = cyclooctadiene) complexes, which are water and C-H oxidation catalyst precursors. Extensive oxidation of the Cp* ligand is observed, likely beginning with electrophilic C-H hydroxylation

  12. Continuous Flow Oxidation of Alcohols and Aldehydes Utilizing Bleach and Catalytic Tetrabutylammonium Bromide

    E-Print Network [OSTI]

    Leduc, Andrew B.

    We report a method for the oxidation of a range of alcohols and aldehydes utilizing a simple flow system of alcohols in EtOAc with a stream of 12.5% NaOCl and catalytic Bu[subscript 4]NBr. Secondary alcohols are oxidized ...

  13. Comment on "Catalytic Activity of the Rh Surface Oxide: CO Oxidation over Rh(111)

    E-Print Network [OSTI]

    Goodman, Wayne

    . Obviously, heating Rh in pure oxygen to T ) 230 °C and above will lead to the formation of surface Rh oxideComment on "Catalytic Activity of the Rh Surface Oxide: CO Oxidation over Rh(111) under Realistic suggest the importance of a surface oxide phase for high CO2 formation in CO-O2 reactions. However

  14. Hybrid QM/MM Car-Parrinello Simulations of Catalytic and Enzymatic Reactions

    E-Print Network [OSTI]

    Guidoni, Leonardo

    1 Hybrid QM/MM Car-Parrinello Simulations of Catalytic and Enzymatic Reactions MariaCarola Colombo, we review some recent applications of hybrid Car-Parrinello simulations of chemical and biological recently developed a combination of these two techniques into a hybrid QM/MM Car-Parrinello scheme [4

  15. Kinetics of the Homogeneous Catalytic Hydrogenation of Olefins in Supercritical Carbon Dioxide Using a Fluoroacrylate Copolymer

    E-Print Network [OSTI]

    Abdou, Hanan E.

    Kinetics of the Homogeneous Catalytic Hydrogenation of Olefins in Supercritical Carbon Dioxide a fluoroacrylate copolymer grafted rhodium catalyst in supercritical carbon dioxide (scCO2) are reported field of chemical reaction engineering.3-8 Specifically, supercritical carbon dioxide (scCO2

  16. Catalytic CVD generation of high-purity single-walled carbon nanotubes at low temperature

    E-Print Network [OSTI]

    Maruyama, Shigeo

    CVD Catalytic CVD generation of high-purity single-walled carbon nanotubes at low temperature-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 We have demonstrated the high-quality and low-temperature generation on the generation temperature and gas flow rate. In order to create nanotube devices, we tried to generate SWNTs

  17. Synthesis of Chiral Hydroxyl Phospholanes from D-mannitol and Their Use in Asymmetric Catalytic Reactions

    E-Print Network [OSTI]

    Zhang, Xumu

    Synthesis of Chiral Hydroxyl Phospholanes from D-mannitol and Their Use in Asymmetric Catalytic State University, University Park, Pennsylvania 16802 Received January 18, 2000 Chiral hydroxyl explored. Rate acceleration in the Baylis-Hillman reaction was observed when a hydroxyl phosphine was used

  18. The `catalytic triad' mechanism, which involves a serine, aspartic acid, has become synonymous with serine pr

    E-Print Network [OSTI]

    Paetzel, Mark

    with serine pr recently, mechanistically novel serine proteases have These proteases use hydroxyl/e-amine their involvementin I FIgwe (a)The classical catalytic triad. (b) dyad. (c) The hydroxyl/a-amine dyad. The Ser type of hydroxyl/amine cata- lytic dyad, similar to the Ser/Lys dyad, 30 is found at the active

  19. High Performance Plasma Sputtered Fuel Cell Electrodes with Ultra Low catalytic metal Loadings

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 High Performance Plasma Sputtered Fuel Cell Electrodes with Ultra Low catalytic metal Loadings C in plasma fuel cell deposition devices. Pt loadings lower than 0.01 mg cm-2 have been realized. The Pt density of 250 kW gPt -1 . 1-Introduction The great potential for the fuel cell technology to overcome

  20. Polarization modulation infrared reflection absorption spectroscopy for heterogeneous catalytic applications at elevated pressures 

    E-Print Network [OSTI]

    Ozensoy, Emrah

    2005-08-29

    morphologies such as metal nanoparticles deposited on a metal-oxide thin film. In order to achieve a molecular understanding of the properties of CO+NO catalytic reaction at elevated temperatures and pressures on Pd based catalysts, adsorption trends of each...

  1. Identification of the Catalytic Mechanism and Estimation of Kinetic Parameters for Fumarase*S

    E-Print Network [OSTI]

    mechanism and design a series of experiments to estimate the model parameters and identify the major flux elementary reaction steps shown in Fig. 1A. In this proposed mechanism, a hydrogen ion and fumarate moleculeIdentification of the Catalytic Mechanism and Estimation of Kinetic Parameters for Fumarase

  2. Performance of randomized Kelvin cell structures as catalytic substrates: Mass-transfer based analysis

    E-Print Network [OSTI]

    Daraio, Chiara

    t Open cell foams are attractive materials for various industrial applications, but building accurate industrial applications like filters, heat exchangers and catalytic reactors. As a catalyst support (Giani et al., 2005a). In the field of automotive catalysts a critical parameter is the pressure drop

  3. In Situ Polarization Modulation Infrared Reflection Absorption Spectroscopic and Kinetic Investigations of Heterogeneous Catalytic Reactions 

    E-Print Network [OSTI]

    Cai, Yun

    2010-01-14

    below the temperature previously reported. Characterizations of highly catalytically active Au films have also been carried out. Electronic and chemical properties of (1 x 1)- and (1 x 3)-Au/TiOx/Mo(112) films are investigated by PM-IRAS using CO as a...

  4. SWNT Synthesis by Carbon Monoxide Catalytic Thermal CVD (COCCVD) Method Toshiaki NISHII1,2

    E-Print Network [OSTI]

    Maruyama, Shigeo

    plants. Furthermore, carbon dioxide gas is exhausted from most industrial plants as one of Greenhouse. (2) R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, (1988 CVD SWNT Synthesis by Carbon Monoxide Catalytic Thermal CVD (COCCVD) Method * Toshiaki

  5. The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation

    SciTech Connect (OSTI)

    Park, Jeong Y.; Aliaga, Cesar; Renzas, J. Russell; Lee, Hyunjoo; Somorjai, Gabor A.

    2008-12-17

    We report the catalytic activity of colloid platinum nanoparticles synthesized with different organic capping layers. On the molecular scale, the porous organic layers have open spaces that permit the reactant and product molecules to reach the metal surface. We carried out CO oxidation on several platinum nanoparticle systems capped with various organic molecules to investigate the role of the capping agent on catalytic activity. Platinum colloid nanoparticles with four types of capping layer have been used: TTAB (Tetradecyltrimethylammonium Bromide), HDA (hexadecylamine), HDT (hexadecylthiol), and PVP (poly(vinylpyrrolidone)). The reactivity of the Pt nanoparticles varied by 30%, with higher activity on TTAB coated nanoparticles and lower activity on HDT, while the activation energy remained between 27-28 kcal/mol. In separate experiments, the organic capping layers were partially removed using ultraviolet light-ozone generation techniques, which resulted in increased catalytic activity due to the removal of some of the organic layers. These results indicate that the nature of chemical bonding between organic capping layers and nanoparticle surfaces plays a role in determining the catalytic activity of platinum colloid nanoparticles for carbon monoxide oxidation.

  6. Catalytic Conversion of Ethanol to Hydrogen Using Combinatorial Shici Duan and Selim Senkan*

    E-Print Network [OSTI]

    Senkan, Selim M.

    Catalytic Conversion of Ethanol to Hydrogen Using Combinatorial Methods Shici Duan and Selim Senkan* Department of Chemical Engineering, University of California, Los Angeles, California 90095-1532 Ethanol in this area focused on steam reforming of ethanol at relatively high temperatures (T > 500 °C), where carbon

  7. Model catalytic studies of single crystal, polycrystalline metal, and supported catalysts 

    E-Print Network [OSTI]

    Yan, Zhen

    2009-05-15

    series of Au/TiO2 catalysts were prepared from various metalorganic gold complexes. The catalytic activity and the particle size of the gold catalysts were strongly dependent on the gold complexes. The Au/TiO2 catalyst prepared from a tetranuclear gold...

  8. Coating of a stainless steel tube-wall catalytic reactor with thermally treated polysiloxane thick films

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Coating of a stainless steel tube-wall catalytic reactor with thermally treated polysiloxane thick stainless steel by plasma assisted chemical vapour deposition process. Thicknesses up to 10µm were developed barrier. Key-words: PACVD, TDMS, stainless steel, surface passivity. 1. Introduction The use of tube

  9. Plasma/catalytic gas cleaning to deliver high quality syngas from waste biomass

    E-Print Network [OSTI]

    Plasma/catalytic gas cleaning to deliver high quality syngas from waste biomass Paul T. Williams, Alstom, Process Systems Enterprises Ltd, C-Tech Innovation Ltd Introduction #12;Background Biomass for decarbonising power production." BUT: · A key problem for biomass gasification is tar in the syngas. · Tar

  10. Pairing of Pentagonal and Heptagonal Carbon Rings in the Growth of Nanosize Carbon Spheres Synthesized by a Mixed-Valent Oxide-Catalytic Carbonization Process

    E-Print Network [OSTI]

    Wang, Zhong L.

    Synthesized by a Mixed-Valent Oxide-Catalytic Carbonization Process Z. L. Wang* and Z. C. Kang SchoolVed: August 29, 1996X Carbon spheres have been synthesized using a mixed-valent oxide-catalytic carbonization catalytic transition and/or rare earth metal oxides with mixed Valences had been placed. Decomposition of CH

  11. The Critical Role of Phosphate in Vanadium Phosphate Oxide for the Catalytic Activation and Functionalization of nButane to Maleic

    E-Print Network [OSTI]

    Goddard III, William A.

    The Critical Role of Phosphate in Vanadium Phosphate Oxide for the Catalytic Activation studies, the mechanism of the catalytic oxidation reaction remains under debate. Some suggest steps for this catalytic system. We propose that the first step of the reaction is the oxidation of (VO

  12. From First Principles Design to Realization of Bimetallic Catalysts for Ultrahigh Selectivity - Final Project Report

    SciTech Connect (OSTI)

    Richard M. Crooks

    2007-04-11

    (A) Synthesis, Characterization, and Fundamental Properties of Bimetallic DENs. AuAg alloy and core/shell bimetallic DENs were synthesized and characterized. Selective extraction was used as a structural characterization tool for these bimetallic nanoparticles. This is significant because there are few easily accessible methods for structure elucidation of bimetallic nanoparticles in this size regime. As a first step towards the synthesis of catalytically active, bimetallic heterogeneous materials we reported the incorporation of Au and Pd monometallic DENs and AuPd bimetallic DENs into amorphous titania networks. The compositional fidelity of the original DENs, and to some extent their size, is retained following dendrimer removal. Gas-phase catalytic activity for CO oxidation is higher for the bimetallic catalysts than for the corresponding Pd-only and Au-only monometallics. (B) Electrocatalysts based on dendrimer-encapsulated nanoparticles. Platinum dendrimer-encapsulated nanoparticles (DENs) were prepared within fourth-generation, hydroxyl-terminated, poly(amidoamine) dendrimers and immobilized on glassy carbon electrodes using an electrochemical immobilization strategy. X-ray photoelectron spectroscopy, electron microscopy, and electrochemical experiments confirm that the Pt DENs are about 1.4 nm in diameter and that they remain within the dendrimer following surface immobilization. The resulting Pt DEN films were electrocatalytically active for the oxygen reduction reaction (ORR). The films are also robust, surviving up to 50 consecutive cyclic voltammograms and sonication. Monometallic Pd DENs were also prepared and found to have little catalytic activity for the ORR. However, PtPd bimetallic DENs had catalytic activity nearly identical to that found for Pt-only DENs. This indicates an overall catalytic enhancement for the bimetallic electrocatalysts.

  13. Tree SelectionTree Selection Why is selection important?

    E-Print Network [OSTI]

    was planned ­ 200 years ago - to give owner and future generations a view of Mississippi River through grove;Tree Selection Style III Process Plan - for the future Purpose - planting goal Ponder - site There are lists from different locations. Utility company Local tree board Native trees #12;Utility Company

  14. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOE Patents [OSTI]

    Srinivas, Girish (Thornton, CO); Bai, Chuansheng (Baton Rouge, LA)

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  15. Cord Wood Testing in a Non-Catalytic Wood Stove

    SciTech Connect (OSTI)

    Butcher, T.; Trojanowski, R.; Wei, G.

    2014-06-30

    EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here is to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.

  16. Characterization and catalytic properties of hydrothermally dealuminated MCM-22

    SciTech Connect (OSTI)

    Meriaudeau, P.; Tuan, V.A.; Nghiem, V.T.; Ha, V.T. [IRC/NCRS, Villeurbanne (France)] [IRC/NCRS, Villeurbanne (France); Lefevbre, F. [Univ. Claude Bernard, Villeurbanne (France)] [Univ. Claude Bernard, Villeurbanne (France)

    1999-07-25

    Zeolite MCM-22 was recently patented as a useful catalyst for alkylation and isomerization reactions and for conversion of methanol or olefins to hydrocarbons. MCM-22 has been synthesized and dealuminated by hydrothermal treatments. The resulting solids were characterized by different techniques in order to know how the acid properties of the dealuminated solids were modified. It appears that the number of acid sites was decreased by hydrothermal treatments but the acid strength was not modified. Nondealuminated and dealuminated solids were used in the n-octane hydroconversion. Results suggested that for both types of solids the hydroisomerization is mainly occurring in the 10-membered ring (MR) channels whereas the hydrocracking is mainly coming from acid sites located in 12-membered ring channels. According to the observed distribution of monobranched isomers, MCM-22 shows some ``shape-selective`` character typical of the pentasil family, whereas, according to the absolute yield of isopentane in the hydrocracked products at low hydrocracking conversions, MCM-22 behaves more like a 12 MR zeolite.

  17. Selective hydrocracking of raffinates

    SciTech Connect (OSTI)

    Shipikin, V.V.; Georgievskii, V.Yu.

    1987-05-01

    The most acceptable method for processing raffinates to improve their antiknock properties is selective hydrocracking. As a result of selective cracking of the straight-chain paraffinic hydrocarbons present in raffinates, an octane number gain of 15-20 may be achieved. The authors list certain process indexes for selective hydrocracking of 62-105/sup 0/C cut (benzene-toluene) and 105-140/sup 0/C cut (xylene). It is shown that the improvement of the antiknock properties of raffinates by selective hydrocracking may change the structure of automotive gasoline production quite substantially.

  18. Mild Catalytic methods for Alkyl-Alkyl Bond Formation

    SciTech Connect (OSTI)

    Vicic, David A

    2009-08-10

    Overview of Research Goals and Accomplishments for the Period 07/01/06 – 06/30/07: Our overall research goal is to transform the rapidly emerging synthetic chemistry involving alkyl-alkyl cross-couplings into more of a mechanism-based field so that that new, rationally-designed catalysts can be performed under energy efficient conditions. Our specific objectives for the previous year were 1) to obtain a proper electronic description of an active catalyst for alkyl-alkyl cross-coupling reactions and 2) to determine the effect of ligand structure on the rate, scope, selectivity, and functional group compatibility of C(sp3)-C(sp3) cross-coupling catalysis. We have completed both of these initial objectives and established a firm base for further studies. The specific significant achievements of the current grant period include: 1) we have performed magnetic and computational studies on (terpyridine)NiMe, an active catalyst for alkyl-alkyl cross couplings, and have discovered that the unpaired electron resides heavily on the terpyridine ligand and that the proper electronic description of this nickel complex is a Ni(II)-methyl cation bound to a reduced terpyridine ligand; 2) we have for the first time shown that alkyl halide reduction by terpyridyl nickel catalysts is substantially ligand based; 3) we have shown by isotopic labeling studies that the active catalyst (terpyridine)NiMe is not produced via a mechanism that involves the formation of methyl radicals when (TMEDA)NiMe2 is used as the catalyst precursor; 4) we have performed an extensive ligand survey for the alkyl-alkyl cross-coupling reactions and have found that electronic factors only moderately influence reactivity in the terpyridine-based catalysis and that the most dramatic effects arise from steric and solubility factors; 5) we have found that the use of bis(dialkylphosphino)methanes as ligands for nickel does not produce active catalysts for cross-coupling but rather leads to bridging hydride complexes of varying geometries; 6) we have determined that the geometry of aforementioned bridging hydride complexes is largely determined by external forces such as hydrogen bonding interactions and crystal packing forces; 7) we have found that the rate of reductive elimination of alkane from a (pyridyl-2-pyrrolide)AuMe2 complex is severely inhibited due to the rigid geometry of the pyridyl-2-pyrrolide ligand; 8) we have prepared, structurally characterized, and explored the reactivity of 1-adamantylzinc reagents as model nucleophiles for sterically challenging alkyl-alkyl cross-coupling reactions. The continued success of this work will lead to alkyl-alkyl cross-coupling catalysts with broad scope and selectivities. The work has potential to significantly impact science and technologies of interest to the DOE as the chemistry is focused on developing useful reactions using reagents that can be directly prepared from petroleum and natural gas feedstocks. Moreover, the developing synthetic chemistry can profoundly affect the way materials, fine chemicals, and drugs are made. Since the methodology we are developing can shorten existing synthetic protocols, proceed at room temperature, and operate under environmentally benign conditions, it can greatly reduce energy expenditures, especially considering the contribution of the chemical manufacturing field to the gross domestic product.

  19. Principles of water oxidation and O2-based hydrocarbon transformation by multinuclear catalytic sites

    SciTech Connect (OSTI)

    Musaev, Djamaladdin G [Chemistry, Emory University; Hill, Craig L [Chemistry, Emory University; Morokuma, Keiji [Chemistry, Emory University

    2014-10-28

    Abstract The central thrust of this integrated experimental and computational research program was to obtain an atomistic-level understanding of the structural and dynamic factors underlying the design of catalysts for water oxidation and selective reductant-free O2-based transformations. The focus was on oxidatively robust polyoxometalate (POM) complexes in which a catalytic active site interacts with proximal metal centers in a synergistic manner. Thirty five publications in high-impact journals arose from this grant. I. Developing an oxidatively and hydrolytically stable and fast water oxidation catalyst (WOC), a central need in the production of green fuels using water as a reductant, has proven particularly challenging. During this grant period we have designed and investigated several carbon-free, molecular (homogenous), oxidatively and hydrolytically stable WOCs, including the Rb8K2[{Ru4O4(OH)2(H2O)4}(?-SiW10O36)2]·25H2O (1) and [Co4(H2O)2(?-PW9O34)2]10- (2). Although complex 1 is fast, oxidatively and hydrolytically stable WOC, Ru is neither abundant nor inexpensive. Therefore, development of a stable and fast carbon-free homogenous WOC, based on earth-abundant elements became our highest priority. In 2010, we reported the first such catalyst, complex 2. This complex is substantially faster than 1 and stable under homogeneous conditions. Recently, we have extended our efforts and reported a V2-analog of the complex 2, i.e. [Co4(H2O)2(?-VW9O34)2]10- (3), which shows an even greater stability and reactivity. We succeeded in: (a) immobilizing catalysts 1 and 2 on the surface of various electrodes, and (b) elucidating the mechanism of O2 formation and release from complex 1, as well as the Mn4O4L6 “cubane” cluster. We have shown that the direct O-O bond formation is the most likely pathway for O2 formation during water oxidation catalyzed by 1. II. Oxo transfer catalysts that contain two proximal and synergistically interacting redox active metal centers in the active site form another part of considerable interest of our grant because species with such sites [including methane monooxygenase (MMO) and more] are some of the most effective oxygenase catalysts known. Our team conducted the following research on ?-M2-Keggin complexes: (a) investigated stability of the trimer [{Fe3(OH)3(H2O)2}3(?-SiW10O36)3]15-, 4, in water, and developed the chemistry and catalysis of the di-iron centered POM, [?(1,2)-SiW10{Fe(OH)}2O38]6-, 5, in organic solvents (Figure 2). We also study the thermodynamic and structural stability of ?-M2-Keggin in aqueous media for different M’s (d-electron metals). We have defined two structural classes of POMs with proximally bound d-electron metal centers. We refer to these structural isomers of the {?-M2SiW10} family of POMs as “in-pocket” and “out-of pocket”. We have elucidated the factors controlling the structure and stability of the V, Fe, Ru, Tc, Mo and Rh derivatives of [(SiO4)M2(OH)2W10O32]4- using a range of computational tools. We have: (a) demonstrated that heteroatom X in these polyanions may function as an “internal switch” for defining the ground electronic states and, consequently, the reactivity of the ?-M2-Keggin POM complexes; (b) elucidated reactivity of divacant lacunary species and polyperoxotungstates (PPTs), {Xn+O4[WO(O2)2]4}n-, which could be degradation products of ?-M2-Keggin complexes in aqueous media; (c) elucidated the role of the POM ligand in stabilization of {Ru2} and {(Ru-oxo)2} fragments in the reactant and product of the reaction of {?-[(Xn+O4)Ru2(OH)2W10O32]}(8-n)- (where X = Si4+, P5+ and S6+) with O2, and (d) the mechanisms of olefin epoxidation catalyzed by these di-d-transition metal substituted and divacant lacunary ?-M2-Keggin complexes. III. Complementing the efforts presented above was the development of less time-consuming but reasonably accurate computational methods allowing one to explore more deeply large catalytic systems. We developed Reactive Force Field (ReaxFF) to study interaction of the targeted POMs with water, pro

  20. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    SciTech Connect (OSTI)

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  1. Catalytic two-stage coal liquefaction process having improved nitrogen removal

    DOE Patents [OSTI]

    Comolli, Alfred G. (Yardley, PA)

    1991-01-01

    A process for catalytic multi-stage hydrogenation and liquefaction of coal to produce high yields of low-boiling hydrocarbon liquids containing low concentrations of nitogen compounds. First stage catalytic reaction conditions are 700.degree.-800.degree. F. temperature, 1500-3500 psig hydrogen partial pressure, with the space velocity maintained in a critical range of 10-40 lb coal/hr ft.sup.3 catalyst settled volume. The first stage catalyst has 0.3-1.2 cc/gm total pore volume with at least 25% of the pore volume in pores having diameters of 200-2000 Angstroms. Second stage reaction conditions are 760.degree.-870.degree. F. temperature with space velocity exceeding that in the first stage reactor, so as to achieve increased hydrogenation yield of low-boiling hydrocarbon liquid products having at least 75% removal of nitrogen compounds from the coal-derived liquid products.

  2. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  3. Catalytic igniters and their use to ignite lean hydrogen-air mixtures

    DOE Patents [OSTI]

    McLean, William J. (Oakland, CA); Thorne, Lawrence R. (Livermore, CA); Volponi, Joanne V. (Livermore, CA)

    1988-01-01

    A catalytic igniter which can ignite a hydrogen-air mixture as lean as 5.5% hydrogen with induction times ranging from 20 s to 400 s, under conditions which may be present during a loss-of-liquid-coolant accident at a light water nuclear reactor comprises (a) a perforate catalytically active substrate, such as a platinum coated ceramic honeycomb or wire mesh screen, through which heated gases produced by oxidation of the mixture can freely flow and (b) a plurality of thin platinum wires mounted in a thermally conductive manner on the substrate and positioned thereon so as to be able to receive heat from the substrate and the heated gases while also in contact with unoxidized gases.

  4. Low density microcellular carbon or catalytically impregnated carbon foams and process for their preparation

    DOE Patents [OSTI]

    Hooper, R.W.; Pekala, R.W.

    1987-04-30

    Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.

  5. Synthetic and Thermodynamic Investigations of Ancillary Ligand Influence on Catalytic Organometallic Systems. Final Report

    SciTech Connect (OSTI)

    Nolan, Steven

    2003-03-20

    During the grant period we have been involved in synthesizing and experimentally determining solution enthalpy values associated with partially fluorinated ligands. This has lead to the publication of manuscripts dealing with synthetic, calorimetric and catalytic behavior of partially fluorinated ligands. The collaboration with Los Alamos researchers has lead to the publication of catalytic results in sc CO{sub 2} which have proven very interesting. Furthermore, we have also examined ligands that behave as phosphine mimics. The N-heterocyclic carbenes have been explored as alternatives for tertiary phosphines and have resulted in the design and construction of efficient palladium and nickel system capable of performing C-C and C-N cross coupling reactions. The initial studies in this areas were made possible by exploratory work conducted under the DOE/EPSCoR grant.

  6. Structure and Reactivity of Surface Oxides on Pt(110) during Catalytic CO Oxidation

    SciTech Connect (OSTI)

    Ackermann, M.D.; Pedersen, T.M.; Hammer, B.; Hendriksen, B.L.M.; Bobaru, S.C.; Frenken, J.W.M.; Robach, O.; Quiros, C.

    2005-12-16

    We present the first structure determination by surface x-ray diffraction during the restructuring of a model catalyst under reaction conditions, i.e., at high pressure and high temperature, and correlate the restructuring with a change in catalytic activity. We have analyzed the Pt(110) surface during CO oxidation at pressures up to 0.5 bar and temperatures up to 625 K. Depending on the O{sub 2}/CO pressure ratio, we find three well-defined structures: namely, (i) the bulk-terminated Pt(110) surface, (ii) a thin, commensurate oxide, and (iii) a thin, incommensurate oxide. The commensurate oxide only appears under reaction conditions, i.e., when both O{sub 2} and CO are present and at sufficiently high temperatures. Density functional theory calculations indicate that the commensurate oxide is stabilized by carbonate ions (CO{sub 3}{sup 2-}). Both oxides have a substantially higher catalytic activity than the bulk-terminated Pt surface.

  7. Electro-catalytic oxidation device for removing carbon from a fuel reformate

    DOE Patents [OSTI]

    Liu, Di-Jia (Naperville, IL)

    2010-02-23

    An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.

  8. In Situ Diffuse Reflectance IR Spectroscopy and X-ray Absorption Spectroscopy for Fast Catalytic Processes

    SciTech Connect (OSTI)

    N Marinkovic; Q Wang; A Frenkel

    2011-12-31

    A new instrument for synchronous in situ investigations of catalytic materials by IR and X-ray absorption spectroscopies was designed and built at the X18A beamline of the National Synchrotron Light Source of Brookhaven National Laboratory. It provides analytical tools for solving structural, electronic and kinetic problems in catalysis science by two complementary methods. Among the features attractive for catalysis research are the broad range of catalytically active elements that can be investigated (starting with Ni and beyond), the wide range of reaction conditions (temperatures up to 873 K, various reactive gases) and time scales (starting from tens of seconds). The results of several representative experiments that illustrate the attractive capabilities of the new set-up are discussed.

  9. Catalytic and reactive polypeptides and methods for their preparation and use

    DOE Patents [OSTI]

    Schultz, Peter (Oakland, CA)

    1994-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the binding site, where the active functionality is capable of catalyzing or chemically participating in the chemical reaction in such a way that the reaction rate is enhanced. Methods for preparing the catalytic peptides include chemical synthesis, site-directed mutagenesis of antibody and enzyme genes, covalent attachment of the functionalities through particular amino acid side chains, and the like. This invention was made with Government support under Grant Contract No. AI-24695, awarded by the Department of health and Human Services, and under Grant Contract No. N 00014-87-K-0256, awarded by the Office of Naval Research. The Government has certain rights in this invention.

  10. Experimental and numerical study of the behavior of three-way catalytic converters under different engine operation conditions

    E-Print Network [OSTI]

    Zhang, Yuetao

    2005-01-01

    The thesis reports the studies on how the three-way catalytic converters behave under different operation conditions. The main focus of the work is in the oxygen storage capacity of the three-way catalyst. Rich-to-lean ...

  11. Experimental realization of catalytic CH4 hydroxylation predicted for an iridium NNC pincer complex, demonstrating thermal, protic,

    E-Print Network [OSTI]

    Goddard III, William A.

    Experimental realization of catalytic CH4 hydroxylation predicted for an iridium NNC pincer complex; functionalization using NaIO4 and KIO3 gives the oxy-ester. The most efficient methane hydroxylation catalysts

  12. Dynamic Incompressible Navier-Stokes Model of Catalytic Converter in 1-D Including Fundamental Oxidation Reaction Rate Expressions

    E-Print Network [OSTI]

    Loya, Sudarshan Kedarnath

    2011-12-31

    these postulations have been effective in the past, they might not work with new versions of catalytic converters and the architectures being proposed. In particular, classical models neglect viscosity, conductivity and diffusion in the bulk gas phase. However...

  13. Ruthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations

    DOE Patents [OSTI]

    Elliot, Douglas C. (Richland, WA); Werpy, Todd A. (West Richland, WA); Wang, Yong (Richland, WA); Frye, Jr., John G. (Richland, WA)

    2001-01-01

    An essentially nickel- and rhenium-free catalyst is described comprising ruthenium on a titania support where the titania is greater than 75% rutile. A catalytic system containing a nickel-free catalyst comprising ruthenium on a titania support where the titania is greater than 75% rutile, and a method using this catalyst in the hydrogenation of an organic compound in the aqueous phase is also described.

  14. Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia

    DOE Patents [OSTI]

    Pence, Dallas T. (Idaho Falls, ID); Thomas, Thomas R. (Idaho Falls, ID)

    1980-01-01

    Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

  15. Spectroscopic and Kinetic Investigation of the Catalytic Mechanism of Tyrosine Hydroxylase 

    E-Print Network [OSTI]

    Eser, Bekir Engin

    2011-02-22

    into the catalytic mechanism of this physiologically important enzyme. Analysis of the TyrH reaction by rapid freeze-quench M?ssbauer spectroscopy allowed the first direct characterization of an Fe(IV) intermediate in a mononuclear non- heme enzyme catalyzing... magnetic circular dichroism (MCD) and X-ray absorption spectroscopy (XAS) showed that the active site iron is 6-coordinate in the resting form of the enzyme...

  16. Temperature-dependent oxygen release, intercalation behaviour and catalytic properties of V{sub 2}O{sub 5}.xNb{sub 2}O{sub 5} compounds

    SciTech Connect (OSTI)

    Boerrnert, Carina; Zosel, Jens; Polte, Annette; Wenzel, Roswitha; Guth, Ulrich; Langbein, Hubert

    2011-11-15

    Graphical abstract: Temperature dependent oxygen loss and uptake of V{sub 2,38}Nb{sub 10,7}O{sub 32,7} in N{sub 2} (p(O{sub 2}) = 4 x 10{sup -5} bar) and IR spectra of gas mixtures after the reactor with V{sub 2,38}Nb{sub 10,7}O{sub 32,7} (A = 16.1 m{sup 2}/g) and propane. Highlights: {yields} V{sub 2}O{sub 5}.xNb{sub 2}O{sub 5} complex oxide compounds as catalysts. {yields} The (V, Nb){sub 2}O{sub 5} phases are able to a reversible release and uptake of oxygen without a structural variation. {yields} Metastable (V, Nb){sub 2}O{sub 5} phases are able to catalyse the oxidative dehydrogenation of propane and propene. {yields} Thermodynamically stable VNb{sub 9}O{sub 25} phase shows no measurable catalytic activity. -- Abstract: In order to investigate the catalytic properties, V{sub 2,38}Nb{sub 10,7}O{sub 32,7}, VNb{sub 9}O{sub 25} and solid solutions of V{sub 2}O{sub 5} in TT-Nb{sub 2}O{sub 5} were prepared by thermal decomposition of freeze-dried oxalate precursors. The samples were characterised by X-ray diffraction and surface area determination. The crystalline samples are capable of the intercalation of sodium and lithium ions from solution. Above a temperature of about 500 {sup o}C, in dependence on the oxygen partial pressure a reversible release and uptake of oxygen without a structural variation takes place. The catalytic properties have been evaluated for the oxidative dehydrogenation (ODH) of propane and propene. There are only small differences in the catalytic activity of the different crystalline samples. Because of the relative high starting temperature, a selective catalytic oxidation of propane to propene is hardly observed.

  17. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction

    SciTech Connect (OSTI)

    Song, C.; Saini, A.K.; Wenzel, K.; Huang, L.; Hatcher, P.G.; Schobert, H.H.

    1993-04-01

    This work is a fundamental study of catalytic pretreatments as a potential preconversion step to low-severity liquefaction. The ultimate goal of this work is to provide the basis for the design of an improved liquefaction process and to facilitate our understanding of those processes that occur when coals are initially dissolved. The main objectives of this project are to study the effects of low-temperature pretreatments on coal structure and their impacts on the subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank and influence of solvent will be examined. We have made significant progress in the following four aspects during this quarterly period: (1) influence of drying and oxidation of coal on the conversion and product distribution in catalytic liquefaction of Wyodak subbituminous coal using a dispersed catalyst; (2) spectroscopic characterization of dried and oxidized Wyodak coal and the insoluble residues from catalytic and thermal liquefaction; (3) the structural alteration of low-rank coal in low-severity liquefaction with the emphasis on the oxygen-containing functional groups; and (4) effects of solvents and catalyst dispersion methods in temperature-programmed and non-programmed liquefaction of three low-rank coals.

  18. An artificial electron donor supported catalytic cycle of Pseudomonas putida cytochrome P450{sub cam}

    SciTech Connect (OSTI)

    Prasad, Swati [Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India)]. E-mail: swati@scripps.edu; Murugan, Rajamanickam [Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Mitra, Samaresh [Indian Institute of Chemical Biology, Kolkata 700 032 (India)

    2005-09-23

    Putidaredoxin (PdX), the physiological effector of cytochrome P450{sub cam} (P450{sub cam}), serves to gate electron transfer into oxy-P450{sub cam} during the catalytic cycle of the enzyme. Redox-linked structural changes in PdX are necessary for the effective P450{sub cam} turnover reaction. PdX is believed to be difficult to be replaced by an artificial electron donor in the reaction pathway of P450{sub cam}. We demonstrate that the catalytic cycle of wild-type P450{sub cam} can be supported in the presence of an artificial reductant, potassium ferrocyanide. Upon rapid mixing of ferrocyanide ion with P450{sub cam}, we observed an intermediate with spectral features characteristic of compound I. The rate constant for the formation of compound I in the presence of ferrocyanide supported reaction cycle was found to be comparable to the ones observed for H{sub 2}O{sub 2} supported compound I formation in wild-type P450{sub cam}, but was much lower than those observed for classical peroxidases. The results presented in this paper form the first kinetic analysis of this intermediate for an artificial electron-driven P450{sub cam} catalytic pathway in solution.

  19. Selectable fragmentation warhead

    SciTech Connect (OSTI)

    Bryan, Courtney S.; Paisley, Dennis L.; Montoya, Nelson I.; Stahl, David B.

    1993-01-01

    A selectable fragmentation warhead capable of producing a predetermined number of fragments from a metal plate, and accelerating the fragments toward a target. A first explosive located adjacent to the plate is detonated at selected number of points by laser-driven slapper detonators. In one embodiment, a smoother-disk and a second explosive, located adjacent to the first explosive, serve to increase acceleration of the fragments toward a target. The ability to produce a selected number of fragments allows for effective destruction of a chosen target.

  20. Selectable fragmentation warhead

    SciTech Connect (OSTI)

    Bryan, C.S.; Paisley, D.L.; Montoya, N.I.; Stahl, D.B.

    1992-12-31

    This report discusses a selectable fragmentation warhead which is capable of producing a predetermined number of fragments from a metal plate, and accelerating the fragments toward a target. A first explosive located adjacent to the plate is detonated at selected number of points by laser-driven slapper detonators. In one embodiment, a smoother-disk and a second explosive, located adjacent to the first explosive, serve to increase acceleration of the fragments toward a target. The ability to produce a selected number of fragments allows for effective destruction of a chosen target.

  1. Elimination Of Catalytic Hydrogen Generation In Defense Waste Processing Facility Slurries

    SciTech Connect (OSTI)

    Koopman, D. C.

    2013-01-22

    Based on lab-scale simulations of Defense Waste Processing Facility (DWPF) slurry chemistry, the addition of sodium nitrite and sodium hydroxide to waste slurries at concentrations sufficient to take the aqueous phase into the alkaline region (pH > 7) with approximately 500 mg nitrite ion/kg slurry (assuming <25 wt% total solids, or equivalently 2,000 mg nitrite/kg total solids) is sufficient to effectively deactivate the noble metal catalysts at temperatures between room temperature and boiling. This is a potential strategy for eliminating catalytic hydrogen generation from the list of concerns for sludge carried over into the DWPF Slurry Mix Evaporator Condensate Tank (SMECT) or Recycle Collection Tank (RCT). These conclusions are drawn in large part from the various phases of the DWPF catalytic hydrogen generation program conducted between 2005 and 2009. The findings could apply to various situations, including a solids carry-over from either the Sludge Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) into the SMECT with subsequent transfer to the RCT, as well as a spill of formic acid into the sump system and transfer into an RCT that already contains sludge solids. There are other potential mitigating factors for the SMECT and RCT, since these vessels are typically operated at temperatures close to the minimum temperatures that catalytic hydrogen has been observed to occur in either the SRAT or SME (pure slurry case), and these vessels are also likely to be considerably more dilute in both noble metals and formate ion (the two essential components to catalytic hydrogen generation) than the two primary process vessels. Rhodium certainly, and ruthenium likely, are present as metal-ligand complexes that are favored under certain concentrations of the surrounding species. Therefore, in the SMECT or RCT, where a small volume of SRAT or SME material would be significantly diluted, conditions would be less optimal for forming or sustaining the catalytic ligand species. Such conditions are likely to adversely impact the ability of the transferred mass to produce hydrogen at the same rate (per unit mass SRAT or SME slurry) as in the SRAT or SME vessels.

  2. Space-charge compensation measurements in electron cyclotron resonance ion source low energy beam transport lines with a retarding field analyzer

    SciTech Connect (OSTI)

    Winklehner, D.; Leitner, D., E-mail: leitnerd@nscl.msu.edu; Cole, D.; Machicoane, G.; Tobos, L. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)] [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2014-02-15

    In this paper we describe the first systematic measurement of beam neutralization (space charge compensation) in the ECR low energy transport line with a retarding field analyzer, which can be used to measure the potential of the beam. Expected trends for the space charge compensation levels such as increase with residual gas pressure, beam current, and beam density could be observed. However, the overall levels of neutralization are consistently low (<60%). The results and the processes involved for neutralizing ion beams are discussed for conditions typical for ECR injector beam lines. The results are compared to a simple theoretical beam plasma model as well as simulations.

  3. SELECTING INFORMATION TECHNOLOGY SECURITY

    E-Print Network [OSTI]

    April 2004 SELECTING INFORMATION TECHNOLOGY SECURITY PRODUCTS Shirley Radack, Editor Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Information technology security prod ucts are essential to better secure infor mation technology (IT) systems

  4. Selecting Meatier Hogs. 

    E-Print Network [OSTI]

    Tanksley, T. D. Jr.

    1971-01-01

    . FOR THE COMMERCIAL PRODUCER 1. Choose and follow a breeding plan. Hybrid vigor is of much importance in commercial hog production. Rotation of purebred boars of three breeds is an effective practice for utilizing the principle of hybrid vigor. Choose breeds..." is outlined in this publication to help select the best gilts. Selecting Meatier Hogs T. D. Tanksley, Jr. Associate Professor and Extension Swine Specialist Texas A@M University T EXAS SWINE PRODUCERS can produce more muscular hogs with less fat...

  5. Solar selective absorption coatings

    DOE Patents [OSTI]

    Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  6. Solar selective absorption coatings

    DOE Patents [OSTI]

    Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  7. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    SciTech Connect (OSTI)

    Grunes, Jeffrey Benjamin

    2004-05-15

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al{sub 2}O{sub 3}) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum nanoparticles. The increase of adhesion upon heat treatment indicates stronger bonding between the Pt and the support at the metal-oxide interface.

  8. Vanadium oxide based nanostructured materials for catalytic oxidative dehydrogenation of propane : effect of heterometallic centers on the catalyst performance.

    SciTech Connect (OSTI)

    Khan, M. I.; Deb, S.; Aydemir, K.; Alwarthan, A. A.; Chattopadhyay, S.; Miller, J. T.; Marshall, C. L.

    2010-01-01

    Catalytic properties of a series of new class of catalysts materials-[Co{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42} (XO{sub 4})].24H{sub 2}O (VNM-Co), [Fe{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(XO{sub 4})].24H{sub 2}O (VNM-Fe) (X = V, S) and [H{sub 6}Mn{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(VO{sub 4})].30H{sub 2}O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {l_brace}V{sub 18}O{sub 42}(XO{sub 4}){r_brace} (X = V, S) clusters interconnected by {l_brace}-O-M-O-{r_brace} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 C and this process is completed at 600 C.

  9. Selective oxidation of n-butane and butenes over vanadium-containing catalysts

    SciTech Connect (OSTI)

    Nieto, J.M.L.; Concepcion, P.; Dejoz, A.; Knoezinger, H.; Melo, F.; Vazquez, M.I.

    2000-01-01

    The oxidative dehydrogenation (OXDH) of n-butane, 1-butene, and trans-2-butene on different vanadia catalysts has been compared. MgO, alumina, and Mg-Al mixed oxides with Mg/(Al + Mg) ratios of 0.25 and 0.75 were used as supports. The catalytic data indicate that the higher the acid character of catalysts the lower is both the selectivity to C{sub 4}-olefins from n-butane and the selectivity to butadiene from both 1-butene or trans-2-butene. Thus, OXDH reactions are mainly observed from n-butane and butenes on basic catalysts. The different catalytic performance of both types of catalysts is a consequence of the isomerization of olefins on acid sites, which appears to be a competitive reaction with the selective way, i.e., the oxydehydrogenation process by a redox mechanism. Infrared spectroscopy data of 1-butene adsorbed on supported vanadium oxide catalysts suggest the presence of different adsorbed species. O-containing species (carbonyl and alkoxide species) are observed on catalysts with acid sites while adsorbed butadiene species are observed on catalysts with basic sites. According to these results a reaction network for the oxydehydrogenation of n-butane is proposed with parallel and consecutive reactions.

  10. Chemistry, phase formation, and catalytic activity of thin palladium-containing oxide films synthesized by plasma-assisted physical vapor deposition

    E-Print Network [OSTI]

    Anders, Andre

    2011-01-01

    catalytic activity of thin palladium-containing oxide filmscatalytic activity of thin palladium- containing oxide filmsfilms incorporating palladium were studied using scanning

  11. Exergy & Economic Analysis of Catalytic Coal Gasifiers Coupled with Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Siefert, Nicholas; Litster, Shawn

    2012-01-01

    The National Energy Technology Laboratory (NETL) has undertaken a review of coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide. One way to achieve an overall system efficiency of greater than 60% is in a power plant in which a catalytic coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis and this is sent to a SOFC, with CO{sub 2} capture occurring either before or after the SOFC. Integration of a catalytic gasifier with a SOFC, as opposed to a conventional entrained flow gasifier, is improved due to (a) decreased exergy destruction inside a catalytic, steam-coal gasifier producing a high-methane content syngas, and (b) decreased exergy destruction in the SOFC due to the ability to operate at lower air stoichiometric flow ratios. For example, thermal management of the SOFC is greatly improved due to the steam-methane reforming in the anode of the fuel cell. This paper has two main goals. First, we converted the levelized cost of electricity (LCOE) estimates of various research groups into an average internal rate of return on investment (IRR) in order to make comparisons between their results, and to underscore the increased rate of return on investment for advanced integrated gasification fuel cell systems with carbon capture & sequestration (IGFC-CCS) compared with conventional integrated gasification combined cycle (IGCC-CCS) systems and pulverized coal combustion (PCC-CCS) systems. Using capital, labor, and fuel costs from previous researchers and using an average price of baseload electricity generation of $61.50 / MW-hr, we calculated inflation-adjusted IRR values of up to 13%/yr for catalytic gasification with pressurized fuel cell and carbon dioxide capture and storage (CCS), whereas we calculate an IRR of ?4%/yr and ?2%/yr for new, conventional IGCC-CCS and PCC-CCS, respectively. If the carbon dioxide is used for enhanced oil recovery rather than for saline aquifer storage, then the IRR values improve to 16%/yr, 10%/yr, and 8%/yr, respectively. For comparison, the IRR of a new conventional IGCC or PCC power plant without CO{sub 2} capture are estimated to be 11%/yr and 15.0%/yr, respectively. Second, we conducted an exergy analysis of two different configurations in which syngas from a catalytic gasifier fuels a SOFC. In the first case, the CO{sub 2} is captured before the SOFC, and the anode tail gas is sent back to the catalytic gasifier. In the second case, the anode tail gas is oxy-combusted using oxygen ion ceramic membranes and then CO{sub 2} is captured for sequestration. In both cases, we find that the system efficiency is greater than 60%. These values compare well with previous system analysis. In future work, we plan to calculate the IRR of these two cases and compare with previous economic analyses conducted at NETL.

  12. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    SciTech Connect (OSTI)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  13. High Selectivity Oxygen Delignification

    SciTech Connect (OSTI)

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  14. Does H2O improve the catalytic activity of Au1-4/MgO towards CO oxidation?

    E-Print Network [OSTI]

    Amft, Martin

    2011-01-01

    The present density functional theory study addresses the question whether the presence of H2O influences the catalytic activity of small gold clusters, Au1-4/MgO(100), towards the oxidation of carbon monoxide. To this end, we studied the (co-)adsorption of H2O and CO/O2 on these gold clusters. The ground state structures in the presence of all three molecular species, that we found, are Au1O2/MgO and Au2-4CO/MgO with H2O adsorbed on the surface in the proximity of the clusters-molecule complex. In this configuration the catalytic activity of Au1-4/MgO is indifferent to the presence of H2O. We also found that a stable, highly activated hydroperoxyl-hydroxyl complex, O2H\\dot\\dot OH, can be formed on Au1,3/MgO. For the catalytic active system Au8/MgO, it has been predicted that this complex opens an alternative catalytic reaction pathway towards CO oxidation. Our results suggest that this water mediated catalytic cycle is unlikely to occur on Au1,3/MgO. In the case of Au1/MgO the cycle is interrupted by the dis...

  15. Catalytic activity of silanols on carbamate-functionalized surface assemblies: Monoalkoxy versus trialkoxy silanes

    SciTech Connect (OSTI)

    Blackledge, C.; McDonald, J.D.

    1999-11-09

    Aminosilanes were protected with benzyloxylcarbonyl succinimidyl ester (CBZ-SE) in solution, forming carbamates. Investigations of surface assemblies made of CBZ-protected aminosilanes were done using XPS, contact angle measurements, and an amine reactive fluorescent probe. Spontaneous loss of the protection group was observed and determined to be caused by the catalytic effect of silanols from both the surface and the assembling silanes. The use of CBZ-protected monoalkoxy, which require days to assemble, as opposed to di- and trialkoxy silanes which require only hours, mitigated the deprotection.

  16. Fischer-Tropsch indirect coal liquefaction design/economics-mild hydrocracking vs. fluid catalytic cracking

    SciTech Connect (OSTI)

    Choi, G.N.; Kramer, S.J.; Tam, S.S. [Bechtel Corp., San Francisco, CA (United States); Reagan, W.J. [Amoco Oil Co., Naperville, IL (United States)] [and others

    1996-12-31

    In order to evaluate the economics of Fischer-Tropsch (F-T) indirect coal liquefaction, conceptual plant designs and detailed cost estimates were developed for plants producing environmentally acceptable, high-quality, liquid transportation fuels meeting the Clean Air Act requirements. The designs incorporate the latest developments in coal gasification technology and advanced (F-T) slurry reactor design. In addition, an ASPEN Plus process simulation model was developed to predict plant material and energy balances, utility requirements, operating and capital costs at varying design conditions. This paper compares mild hydrocracking and fluid catalytic cracking as alternative methods for upgrading the F-T wax.

  17. Solid state proton and electron mediating membrane and use in catalytic membrane reactors

    DOE Patents [OSTI]

    White, James H. (Boulder, CO); Schwartz, Michael (Boulder, CO); Sammells, Anthony F. (Boulder, CO)

    2000-01-01

    Mixed electron- and proton-conducting metal oxide materials are provided. These materials are useful in fabrication of membranes for use in catalytic membrane reactions, particularly for promoting dehydrogenation of hydrocarbons, oligomerization of hydrocarbons and for the decomposition of hydrogen-containing gases. Membrane materials are perovskite compounds of the formula: AB.sub.1-x B'.sub.x O.sub.3-y where A=Ca, Sr, or Ba; B=Ce, Tb, Pr or Th; B'=Ti, V, Cr, Mn, Fe, Co, Ni or Cu; 0.2

  18. Catalytic Growth of Single-Wall Carbon Nanotubes: An {ital Ab Initio} Study

    SciTech Connect (OSTI)

    Lee, Y.H.; Kim, S.G.; Tomanek, D.; Lee, Y.H.

    1997-03-01

    We propose a catalytic growth mechanism of single-wall carbon nanotubes based on density functional total energy calculations. Our results indicate nanotubes with an {open_quotes}armchair{close_quotes} edge to be energetically favored over {open_quotes}zigzag{close_quotes} nanotubes. We also suggest that highly mobile Ni catalyst atoms adsorb at the growing edge of the nanotube, where they catalyze the continuing assembly of hexagons from carbon feedstock diffusing along the nanotube wall. In a concerted exchange mechanism, Ni atoms anneal carbon pentagons that would initiate a dome closure of the nanotube. {copyright} {ital 1997} {ital The American Physical Society}

  19. A study of the catalytic conversion of synthesis gas to low molecular weight hydrocarbons 

    E-Print Network [OSTI]

    Chan, Ting Yee

    1981-01-01

    A STUDY 0F THE CA'ALYTIC CONVERSION OF SYNTHESIS GAS TO LON NOIECULAR WEIGHT HYDROCARBONS A Thesis by TIN G YEE CHAN Submitted to the Graduate College of exas ARE University in partial fulf illment of the requirement f or the degree... of NASTER OF SCIENCE August 1981 Nejor Subject: Chemical Engineering A STUDY OF CATALYTIC CONVERSION OF SYNTHESIS GAS TO LOW MOLECULAR WEIGHT HYDROCARBONS A Thesis TING YEE CHAN Approved as to style and content by hairman o ommit ee Member ember...

  20. ,"Catalytic Reforming Downstream Processing of Fresh Feed Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0.Volume (MMcf)" ,"Click worksheet nameVolumeCatalytic