National Library of Energy BETA

Sample records for retail biofuel fueling

  1. Tarryn Miller: Fueling biofuel's promise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tarryn Miller: Fueling biofuel's promise Tarryn Miller: Fueling biofuel's promise Student intern driven to develop cyanobacteria as viable carbon-neutral energy source. August 27, 2013 Tarryn Miller: Fueling biofuel's promise Student intern driven to develop cyanobacteria as viable carbon-neutral energy source. "Utilizing scientific discoveries for the good of human kind and flora and fauna here on earth has the utmost importance in my mind. If I can help create a sustainable energy source,

  2. BioFuels Atlas Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

  3. Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Hydrocarbon Biofuels to someone by E-mail Share Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Facebook Tweet about Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Twitter Bookmark Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Google Bookmark Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Delicious Rank Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Digg Find More places to share Alternative Fuels

  4. Patriot BioFuels | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Jump to: navigation, search Name: Patriot BioFuels Place: Little Rock, Arkansas Zip: 72201 Product: Arkansas-based biodiesel company with production facilities at...

  5. SG BioFuels | Open Energy Information

    Open Energy Info (EERE)

    SG BioFuels Jump to: navigation, search Name: SG BioFuels Place: Encinitas, California Zip: 92024 Product: California-based biofuel producer operating across the United States....

  6. Biofuels Marker Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Convenience & Fuel Retailing Biofuels Market Opportunities John Eichberger NACS Vice President Government Relations Fuels Institute Executive Director The Association for ...

  7. Gem BioFuels | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Jump to: navigation, search Name: Gem BioFuels Place: Douglas, Isle of Man, United Kingdom Zip: IM1 4LB Product: Ilse of Man-based biodiesel feedstock developer with...

  8. Argonaut BioFuels | Open Energy Information

    Open Energy Info (EERE)

    Argonaut BioFuels Jump to: navigation, search Name: Argonaut BioFuels Place: Virginia Product: Manufacturer of wood pellets that has a plant in Virginia, US. References: Argonaut...

  9. Aurora BioFuels Inc | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Inc Jump to: navigation, search Name: Aurora BioFuels Inc. Place: Alameda, California Zip: 94502 Sector: Biofuels, Renewable Energy Product: California-based renewable...

  10. Alternative Fuels Data Center: Cities Clean up With Biofuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Cities Clean up With Biofuels to someone by E-mail Share Alternative Fuels Data Center: Cities Clean up With Biofuels on Facebook Tweet about Alternative Fuels Data Center: Cities Clean up With Biofuels on Twitter Bookmark Alternative Fuels Data Center: Cities Clean up With Biofuels on Google Bookmark Alternative Fuels Data Center: Cities Clean up With Biofuels on Delicious Rank Alternative Fuels Data Center: Cities Clean up With Biofuels on Digg Find More places to share Alternative Fuels Data

  11. BioFuel Energy Corp | Open Energy Information

    Open Energy Info (EERE)

    Energy Corp Jump to: navigation, search Name: BioFuel Energy Corp Place: Denver, Colorado Zip: 80202 Product: Develops, owns and operates ethanol facilities. References: BioFuel...

  12. BioFuels Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Energy LLC Jump to: navigation, search Name: BioFuels Energy, LLC Place: Encinitas, California Zip: 92024 Sector: Renewable Energy Product: Encinitas-based renewable...

  13. Seattle Biodiesel aka Seattle BioFuels | Open Energy Information

    Open Energy Info (EERE)

    Seattle Biodiesel aka Seattle BioFuels Jump to: navigation, search Name: Seattle Biodiesel (aka Seattle BioFuels) Place: Seattle, Washington Sector: Renewable Energy Product:...

  14. BioFuels Atlas (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  15. Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    California Ramps Up Biofuels Infrastructure to someone by E-mail Share Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Facebook Tweet about Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Twitter Bookmark Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Google Bookmark Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Delicious Rank Alternative Fuels Data Center: California Ramps

  16. BioFuel Oasis | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94710 Product: A worker-owned cooperative to sell commercial biodiesel that meets ASTM standards. References: BioFuel Oasis1 This article is a stub. You can help OpenEI by...

  17. Tomorrow BioFuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Tomorrow BioFuels LLC Jump to: navigation, search Name: Tomorrow BioFuels LLC Place: Cranston, Rhode Island Zip: 2921 Product: Rhode Island-based algae-to-fuel technology...

  18. Alternative Fuels Data Center: Business Case for E85 Fuel Retailers

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Business Case for E85 Fuel Retailers to someone by E-mail Share Alternative Fuels Data Center: Business Case for E85 Fuel Retailers on Facebook Tweet about Alternative Fuels Data Center: Business Case for E85 Fuel Retailers on Twitter Bookmark Alternative Fuels Data Center: Business Case for E85 Fuel Retailers on Google Bookmark Alternative Fuels Data Center: Business Case for E85 Fuel Retailers on Delicious Rank Alternative Fuels Data Center: Business Case for E85 Fuel Retailers on Digg Find

  19. Celsys BioFuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Celsys BioFuels Inc Jump to: navigation, search Name: Celsys BioFuels Inc. Place: Indiana Product: Celsys was formed in 2006 to commercialise cellulosic ethanol technology that was...

  20. Houston BioFuels Consultants | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Consultants Jump to: navigation, search Name: Houston BioFuels Consultants Place: Kingwood, Texas Zip: 77345 Product: A Houston-based consultancy run by oil industry...

  1. PrairieFire BioFuels Cooperative | Open Energy Information

    Open Energy Info (EERE)

    PrairieFire BioFuels Cooperative Jump to: navigation, search Name: PrairieFire BioFuels Cooperative Place: Madison, Wisconsin Zip: 53704 Product: A member-owned cooperative which...

  2. Harvest BioFuels LLC | Open Energy Information

    Open Energy Info (EERE)

    BioFuels LLC Jump to: navigation, search Name: Harvest BioFuels LLC Place: Addison, Texas Zip: TX 75001 Product: Setting up corn-based ethanol plants. Coordinates: 38.477365,...

  3. Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS;...

    Office of Scientific and Technical Information (OSTI)

    Level Panel of Experts on Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS; PRODUCTION; AGRICULTURE; ENERGY POLICY; SOCIO-ECONOMIC FACTORS; SUSTAINABLE DEVELOPMENT;...

  4. Property:RenewableFuelStandard/RenewableBiofuel | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardRenewableBiofuel Jump to: navigation, search This is a property of type Number. Pages...

  5. Property:RenewableFuelStandard/AdvancedBiofuel | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardAdvancedBiofuel Jump to: navigation, search This is a property of type Number. Pages...

  6. Property:RenewableFuelStandard/UndifferentiatedAdvancedBiofuel...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardUndifferentiatedAdvancedBiofuel Jump to: navigation, search This is a property of type...

  7. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect (OSTI)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  8. E3 BioFuels | Open Energy Information

    Open Energy Info (EERE)

    E3 BioFuels Place: Shawnee, Kansas Zip: 66218 Product: Owns a 90.9m litres-a-year ethanol plant in Nebraska; an anaerobic digester generates all the biogas needed to operate...

  9. Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL...

    Office of Scientific and Technical Information (OSTI)

    Investment on the Growth of the Biofuels Industry Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL; DEMONSTRATION; DEPLOYMENT; LEARNING; POLICY; SYSTEM DYNAMICS;...

  10. The U.S. average retail price for on-highway diesel fuel rose...

    U.S. Energy Information Administration (EIA) Indexed Site

    The U.S. average retail price for on-highway diesel fuel rose this week The U.S. average retail price for on-highway diesel fuel rose slightly to 3.90 a gallon on Monday. That's ...

  11. BioPower Atlas and BioFuels Atlas | Open Energy Information

    Open Energy Info (EERE)

    Atlas and BioFuels Atlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BioPower Atlas and BioFuels Atlas AgencyCompany Organization: National Renewable Energy...

  12. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect (OSTI)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  13. DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary I: Progress in Advanced Biofuels DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise William Provine, Director–Science and Technology External Affairs, DuPont

  14. Overview of Aviation Fuel Markets for Biofuels Stakeholders

    SciTech Connect (OSTI)

    Davidson, C.; Newes, E.; Schwab, A.; Vimmerstedt, L.

    2014-07-01

    This report is for biofuels stakeholders interested the U.S. aviation fuel market. Jet fuel production represents about 10% of U.S. petroleum refinery production. Exxon Mobil, Chevron, and BP top producers, and Texas, Louisiana, and California are top producing states. Distribution of fuel primarily involves transport from the Gulf Coast to other regions. Fuel is transported via pipeline (60%), barges on inland waterways (30%), tanker truck (5%), and rail (5%). Airport fuel supply chain organization and fuel sourcing may involve oil companies, airlines, airline consortia, airport owners and operators, and airport service companies. Most fuel is used for domestic, commercial, civilian flights. Energy efficiency has substantially improved due to aircraft fleet upgrades and advanced flight logistic improvements. Jet fuel prices generally track prices of crude oil and other refined petroleum products, whose prices are more volatile than crude oil price. The single largest expense for airlines is jet fuel, so its prices and persistent price volatility impact industry finances. Airlines use various strategies to manage aviation fuel price uncertainty. The aviation industry has established goals to mitigate its greenhouse gas emissions, and initial estimates of biojet life cycle greenhouse gas emissions exist. Biojet fuels from Fischer-Tropsch and hydroprocessed esters and fatty acids processes have ASTM standards. The commercial aviation industry and the U.S. Department of Defense have used aviation biofuels. Additional research is needed to assess the environmental, economic, and financial potential of biojet to reduce greenhouse gas emissions and mitigate long-term upward price trends, fuel price volatility, or both.

  15. National Bio-fuel Energy Laboratory

    SciTech Connect (OSTI)

    Jezierski, Kelly

    2010-12-27

    The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEMs. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D and performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors and another co-founder, based on a novel heterogeneous catalyst that may be retrofitted into idled biodiesel manufacturing facilities to restart production at a greatly reduced cost. 3.Three patents have been filed by WSU and granted based on the NextCAT focus. 4.The next-generation advanced biodiesel dispensing unit (CEF F.A.S.T. unit version 2) was developed by Clean Emission Fluids (CEF). 5.NBEL aided in the preparing a sound technical basis for setting an ASTM B20 standard: ASTM Standard D7467-08 was passed in June of 2008 and officially published on October of 2008. 6.NBEL has helped to understand composition-property-performance relationships, from not only a laboratory and field testing scale, for biodiesel blends from a spectrum of feedstocks. 7.NBEL helped propel the development of biodiesel with improved performance, cetane numbers, cold flow properties, and oxidative stability. 8.Data for over 30,000 miles has been logged for the fleet testing that select members of the consortia participated in. There were five vehicles that participated in the fleet testing. Art Van provided two vehicles, one that remained idle for most of the time and one that was used often for commercial furniture deliveries, Oakland University provided one vehicle, NEC provided one vehicle, and The Night Move provided one vehicle. These vehicles were light to medium duty (2.0 to 6.6 L displacement), used B5 or B20 blends from multiple sources of feedstock (corn-, choice white grease-, and soybean-based blends) and sources (NextDiesel, BDI, or Wacker Oil), experienced a broad range in ambient temperatures (from -9 F in Michigan winters to 93 F in the summertime), and both city and highway driving conditions.

  16. Biofuels

    ScienceCinema (OSTI)

    Kalluri, Udaya

    2014-05-23

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  17. Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ... nutrients are among the largest costs in cultivating algae for biofuel production. ...

  18. Biofuels

    SciTech Connect (OSTI)

    Kalluri, Udaya

    2014-05-02

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  19. Fueling the Navy's Great Green Fleet with Advanced Biofuels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Navy's Great Green Fleet with Advanced Biofuels Fueling the Navy's Great Green Fleet with Advanced Biofuels December 5, 2011 - 5:44pm Addthis Idaho National Laboratory describes R&D efforts to transform raw biomass into quality feedstocks for the production of renewable fuels, power and bioproducts. Aaron Crowell Senior Technical Research Analyst What does this project do? Develops and utilizes domestically produced biofuels to make our military and the nation more secure. From

  20. Quality, Performance, and Emission Impacts of Biofuels and Biofuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program ...

  1. Fuel Cell Power Plants Biofuel Case Study - Tulare, CA | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Plants Biofuel Case Study - Tulare, CA Fuel Cell Power Plants Biofuel Case Study - Tulare, CA Success story about fuel cell power plants using wastewater treatment gas in Tulare, California. Presented by Frank Wolak, Fuel Cell Energy, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado. PDF icon june2012_biogas_workshop_wolak.pdf More Documents & Publications Fuel Cell Power Plants Renewable and Waste Fuels Fuel Cell Power Plant Experience

  2. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    SciTech Connect (OSTI)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  3. Performance of Biofuels and Biofuel Blends

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Biofuels and Biofuel Blends Robert McCormick Vehicle Technologies Program Merit Review - Fuels and Lubricants Technologies May 16, 2013 Project ID: FT003 This ...

  4. The Future of Biofuels: U.S. (and Global) Airlines & Aviation Alternative Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    Biofuels: U.S. (and Global) Airlines & Aviation Alternative Fuels 2014 EIA Conference Nancy N. Young, VP-Environment July 15, 2014 Why Airlines Want Alternative Fuels airlines.org 2 » New Supply Chain * Energy Security/Supply Reliability * Competitor to Petroleum-Based Fuels » Environmental Benefit/Imperative * Greenhouse Gas (Carbon) Emissions Benefits * Reduce Emissions Affecting Local Air Quality * Do Not Induce Other Environmental Problems U.S. Airlines' Fuel Costs Are High, Volatile

  5. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  6. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FUELS Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy April 2013 Prepared by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by

  7. Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  9. Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Broader source: Energy.gov [DOE]

    The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050.These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect to four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.

  10. Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acidsa fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acidsoverriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASUs approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

  11. Fuel from Bacteria: Bioconversion of Carbon Dioxide to Biofuels by Facultatively Autotrophic Hydrogen Bacteria

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Ohio State is genetically modifying bacteria to efficiently convert carbon dioxide directly into butanol, an alcohol that can be used directly as a fuel blend or converted to a hydrocarbon, which closely resembles a gasoline. Bacteria are typically capable of producing a certain amount of butanol before it becomes too toxic for the bacteria to survive. Ohio State is engineering a new strain of the bacteria that could produce up to 50% more butanol before it becomes too toxic for the bacteria to survive. Finding a way to produce more butanol more efficiently would significantly cut down on biofuel production costs and help make butanol cost competitive with gasoline. Ohio State is also engineering large tanks, or bioreactors, to grow the biofuel-producing bacteria in, and they are developing ways to efficiently recover biofuel from the tanks.

  12. Phillips BioFuel Supply Co | Open Energy Information

    Open Energy Info (EERE)

    to create an area wide marketing and distribution network for agriculturally sourced biodiesel fuel in Vermont, eastern upstate NY, western NH and Quebec south in Canada....

  13. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect (OSTI)

    Dale, Virginia H; Parish, Esther S; Kline, Keith L

    2015-01-01

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  14. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dale, Virginia H; Parish, Esther S; Kline, Keith L

    2015-01-01

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less

  15. Fuel from Tobacco and Arundo Donax: Synthetic Crop for Direct Drop-in Biofuel Production through Re-routing the Photorespiration Intermediates and Engineering Terpenoid Pathways

    SciTech Connect (OSTI)

    2012-02-15

    PETRO Project: Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.

  16. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

  17. #LabChat Q&A: Biofuels of the Future, Sept. 26 at 2 pm EDT

    Broader source: Energy.gov [DOE]

    Our biofuels experts can answer your questions about biofuels, bioenergy and the next generation of fuel.

  18. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect (OSTI)

    Mago, Pedro; Newell, LeLe

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  19. Algae as a Feedstock for Transportation Fuels. The Future of Biofuels?

    SciTech Connect (OSTI)

    McGill, Ralph

    2008-05-15

    Events in world energy markets over the past several years have prompted many new technical developments as well as political support for alternative transportation fuels, especially those that are renewable. We have seen dramatic rises in the demand for and production of fuel ethanol from sugar cane and corn and biodiesel from vegetable oils. The quantities of these fuels being used continue to rise dramatically, and their use is helping to create a political climate for doing even more. But, the quantities are still far too small to stem the tide of rising crude prices worldwide. In fact, the use of some traditional crops (corn, sugar, soy, etc.) in making fuels instead of food is apparently beginning to impact the cost of food worldwide. Thus, there is considerable interest in developing alternative biofuel feedstocks for use in making fuels -- feedstocks that are not used in the food industries. Of course, we know that there is a lot of work in developing cellulosic-based ethanol that would be made from woody biomass. Process development is the critical path for this option, and the breakthrough in reducing the cost of the process has been elusive thus far. Making biodiesel from vegetable oils is a well-developed and inexpensive process, but to date there have been few reasonable alternatives for making biodiesel, although advanced processes such as gasification of biomass remain an option.

  20. NREL: Learning - Biofuels Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Basics This video provides an overview of NREL research on converting biomass to liquid fuels. Text Version Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels in use today are ethanol and biodiesel. Ethanol is an alcohol, the same as in beer and wine (although ethanol used as a fuel is modified to make it undrinkable). It is most commonly

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuel Volume Rebate Program - Propel Fuels Propel Fuels offers a rebate to qualified fleet customers for monthly purchases of more than 500 gallons of biodiesel blends and E85. Fleet customers must purchase the fuel directly from Propel public retail locations using the Propel CleanDrive Fleet Card. The program offers a rebate of $0.03 per gallon for purchases of less than 1,000 gallons of biofuel per month, and $0.05 per gallon for purchases of 1,000 gallons or more per month. The rebate is

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuel Volume Rebate Program - Propel Fuels Propel Fuels offers a rebate to qualified fleet customers for monthly purchases of more than 500 gallons of biodiesel blends and E85. Fleet customers must purchase the fuel directly from Propel public retail locations using the Propel CleanDrive WEX fleet card. The program offers a rebate of $0.05 per gallon for purchases of more than 500 gallons of biofuel per month. The rebate is applied at the end of each monthly billing cycle. For more

  3. Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler

    SciTech Connect (OSTI)

    Sharon Falcone Miller; Bruce G. Miller

    2007-12-15

    This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the models showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.

  4. Driving Biofuels End Use: BETO/VTO Collaborations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conventional Engine + Realistic Fuels GEFORCE - Near term technology exploration 6 6 | Vehicle Technologies Program Efficiency Through Biofuels Biofuel blends enhance ...

  5. Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Bremson, J.; Solo, K.

    2013-01-01

    The availability of retail stations can be a significant barrier to the adoption of alternative fuel light-duty vehicles in household markets. This is especially the case during early market growth when retail stations are likely to be sparse and when vehicles are dedicated in the sense that they can only be fuelled with a new alternative fuel. For some bi-fuel vehicles, which can also fuel with conventional gasoline or diesel, limited availability will not necessarily limit vehicle sales but can limit fuel use. The impact of limited availability on vehicle purchase decisions is largely a function of geographic coverage and consumer perception. In this paper we review previous attempts to quantify the value of availability and present results from two studies that rely upon distinct methodologies. The first study relies upon stated preference data from a discrete choice survey and the second relies upon a station clustering algorithm and a rational actor value of time framework. Results from the two studies provide an estimate of the discrepancy between stated preference cost penalties and a lower bound on potential revealed cost penalties.

  6. Performance of Biofuels and Biofuel Blends | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ft003_mccormick_2012_o.pdf More Documents & Publications Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Performance of Biofuels and Biofuel Blends Recent Research to Address Technical Barriers to Increased Use of Biodiesel

  7. Welsh Biofuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Welsh Biofuels Ltd Jump to: navigation, search Name: Welsh Biofuels Ltd Place: Brynmenym Bridgend, United Kingdom Zip: CF329RQ Sector: Biomass Product: Biomass fuel company...

  8. Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles Preprint M. Melaina National Renewable Energy Laboratory J. Bremson University of California Davis K. Solo Lexidyne, LLC Presented at the 31st USAEE/IAEE North American Conference Austin, Texas November 4-7, 2012 Conference Paper NREL/CP-5600-56898

  9. From Biomass to Biofuels: NREL Leads the Way

    SciTech Connect (OSTI)

    Not Available

    2006-08-01

    This brochure covers how biofuels can help meet future needs for transportation fuels, how biofuels are produced, U.S. potential for biofuels, and NREL's approach to efficient affordable biofuels.

  10. lignocellulosic biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lignocellulosic biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  11. Advanced Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ... for Pretreating Mixed Blends of Biofuel Feedstocks Biofuels, Biomass, Energy, ...

  12. Engineering Biofuels from Photosynthetic Bacteria | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Engineering Biofuels from Photosynthetic Bacteria Technology available for licensing: Using photosynthetic bacteria to produce biofuels. 30-70% of the fuel's waste can be used to create other fuel sources Combines both engineered and natural photosynthetic mechanisms to generate the fuel PDF icon biofuels_from_bacteria

  13. Sandia's Biofuels Program

    SciTech Connect (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-22

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  14. Sandia's Biofuels Program

    ScienceCinema (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-24

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  15. Biofuel Advanced Research and Development LLC BARD | Open Energy...

    Open Energy Info (EERE)

    biofuels startup company that aims to produce soy biodiesel initially but plans to transition to algae-oil based fuels in 2010. References: Biofuel Advanced Research and...

  16. California: Advanced 'Drop-In' Biofuels Power the Navy's Green...

    Broader source: Energy.gov (indexed) [DOE]

    to Pennsylvania Fueling the Navy's Great Green Fleet with Advanced Biofuels Cellana, ... Five Energy Department Accomplishments in Algal Biofuels Project Overview Positive Impact ...

  17. PNNL Aviation Biofuels

    SciTech Connect (OSTI)

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  18. Biofuels Market Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Market Opportunities Biofuels Market Opportunities Breakout Session 2C-Fostering Technology Adoption II: Expanding the Pathway to Market Biofuels Market Opportunities John Eichberger, Vice President Government Relations, National Association of Convenience Stores PDF icon eichberger_biomass_2014.pdf More Documents & Publications End Use and Fuel Certification Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Flexible Fuel Vehicles: Providing a Renewable Fuel

  19. BioFacts: Fueling a stronger economy, Global warming and biofuels emissions

    SciTech Connect (OSTI)

    1994-12-01

    The focus of numerous federal and state regulations being proposed and approved today is the reduction of automobile emissions -- particularly carbon dioxide (CO{sub 2}), which is the greenhouse gas considered responsible for global warming. Studies conducted by the USDOE through the National Renewable Energy Laboratory (NREL) indicate that the production and use of biofuels such as biodiesel, ethanol, and methanol could nearly eliminate the contribution of net CO{sub 2} from automobiles. This fact sheet provides and overview of global warming, followed by a summary of NREL`s study results.

  20. Advanced Cellulosic Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Biofuels Advanced Cellulosic Biofuels Breakout Session 2-B: New/Emerging Pathways Advanced Cellulosic Biofuels Dr. Robert Graham, Chief Executive Officer and Chairman, Ensyn Corporation PDF icon graham_bioenergy_2015.pdf More Documents & Publications Cellulosic Liquid Fuels Commercial Production Today Production of Renewable Fuels from Biomass by FCC Co-processing 2013 Peer Review Presentations-Integrated Biorefineries

  1. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake; Pienkos, Philip P.; O'Leary, Stephen J.; Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  2. Hazard analysis of compressed natural gas fueling systems and fueling procedures used at retail gasoline service stations. Final report

    SciTech Connect (OSTI)

    1995-04-28

    An evaluation of the hazards associated with operations of a typical compressed natural gas (CNG) fueling station is presented. The evaluation includes identification of a typical CNG fueling system; a comparison of the typical system with ANSI/NFPA (American National Standards Institute/National Fire Protection Association) Standard 52, Compressed Natural Gas (CNG) Vehicular Fuel System, requirements; a review of CNG industry safety experience as identified in current literature; hazard identification of potential internal (CNG system-specific causes) and external (interface of co-located causes) events leading to potential accidents; and an analysis of potential accident scenarios as determined from the hazard evaluation. The study considers CNG dispensing equipment and associated equipment, including the compressor station, storate vessels, and fill pressure sensing system.

  3. Retail Unbundling

    Reports and Publications (EIA)

    1999-01-01

    This special report provides a brief summary of the status of retail unbundling programs (also known as "customer choice" programs) for residential natural gas customers in various states,

  4. EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin

    Broader source: Energy.gov [DOE]

    NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply steam to the FRP mill, meeting the majority of the mill's steam demand and reducing or eliminating the need for the existing biomass/coal-fired boiler. The biorefinery would also include a steam turbine generator that will produce "green" electrical power for use by the biorefinery or for sale to the electric utility.

  5. Sandia National Laboratories: Research: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Overcoming challenges to make advanced "drop-in" biofuels a reality Sandia researchers are developing clean and renewable sources of energy to help minimize climate change and reduce U.S. dependence on foreign oil. To this end, we are creating thermochemical, chemical, and biochemical conversion technologies to efficiently generate renewable biofuels that can displace gasoline, diesel, and jet fuel with no loss of performance or engine efficiency. Sandia is focused on two

  6. Flying F Bio Fuels | Open Energy Information

    Open Energy Info (EERE)

    F Bio Fuels Jump to: navigation, search Name: Flying F Bio-Fuels Place: Iowa Product: Flying F Bio-Fuels conducts technological research in bio-fuels. References: Flying F...

  7. Biofuels Basics

    Broader source: Energy.gov [DOE]

    Biofuels such as ethanol and biodiesel can make a big difference in improving our environment, helping our economy, and reducing our dependence on foreign oil. This page discusses biofuels research...

  8. Biofuel impacts on water.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  9. Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and Biofuel Blends

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about performance of biofuels and biofuel blends.

  10. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect (OSTI)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  11. International Trade of Biofuels (Brochure), Energy Analysis,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and trade of biofuels have increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established...

  12. Mediating Biofuel Complexity through "Mediator" Modification...

    Office of Science (SC) Website

    Mediating Biofuel Complexity through "Mediator" Modification Basic Energy Sciences (BES) ... to more efficient and lower cost routes to high-yield biomass-derived renewable fuels. ...

  13. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    life cycle analysis of biofuels continue to improve 2 Feedstock Production Feedstock Logistics, Storage and Transportation Feedstock Conversion Fuel Transportation and...

  14. Fungible and Compatible Biofuels

    Broader source: Energy.gov [DOE]

    The purpose of this study is to summarize the various barriers to more widespread distribution of biofuels through our common carrier fuel distribution system, which includes pipelines, barges and rail, fuel tankage, and distribution terminals, and with a special focus on biofuels, which may come into increased usage in the future. Addressing these barriers is necessary to allow the more widespread utilization and distribution of biofuels, in support of a renewable fuels standard and possible future low-carbon fuel standards. By identifying these barriers early, for fuels not currently in widespread use, they can be addressed in related research and development. These barriers can be classified into several categories, including operating practice, regulatory, technical, and acceptability barriers. Possible solutions to these issues are discussed, including compatibility evaluation, changes to biofuels, regulatory changes, and changes in the distribution system or distribution practices. No actual experimental research has been conducted in the writing of this report, but results are used to develop recommendations for future research and additional study as appropriate.

  15. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    SciTech Connect (OSTI)

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system specifications is observed. Case study data for various micro-CHP system configurations have been discussed and compared. Comparisons are made of the different prime mover/fuel combinations. Also, micro- CHP monthly energy cost results are compared for each system configuration to conventional monthly utility costs for equivalent monthly building power, heating, and cooling requirements.

  16. Task Force on Biofuels Infrastructure

    Broader source: Energy.gov [DOE]

    Under the federal Renewable Fuels Standard (RFS) adopted in 2005 and amended in 2007, the United States is committed to a substantial (five-fold) increase in its use of biofuels by 2022. The National Commission on Energy Policy (NCEP) convened a Biofuels Infrastructure Task Force in 2008 to examine the infrastructure implications of this relatively swift and unprecedented shift in the composition of the nation’s transportation fuel supply. Specifically, the Task Force explored issues and developed recommendations for advancing the infrastructure investments needed to support timely and cost-effective implementation of the current biofuels mandate.

  17. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    SciTech Connect (OSTI)

    Boyd, Rodney

    2007-08-08

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  18. Biofuels from Bacteria, Electricity, and CO2: Biofuels from CO2 Using Ammonia or Iron-Oxidizing Bacteria in Reverse Microbial Fuel Cells

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Electrofuels Project: Columbia University is using carbon dioxide (CO2) from ambient air, ammoniaan abundant and affordable chemical, and a bacteria called N. europaea to produce liquid fuel. The Columbia University team is feeding the ammonia and CO2 into an engineered tank where the bacteria live. The bacteria capture the energy from ammonia and then use that energy to convert CO2 into a liquid fuel. When the bacteria use up all the ammonia, renewable electricity can regenerate it and pump it back into the systemcreating a continuous fuel-creation cycle. In addition, Columbia University is also working with the bacteria A. ferrooxidans to capture and use energy from ferrous iron to produce liquid fuels from CO2.

  19. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (DBS) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  20. Energy 101: Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Energy 101: Biofuels Addthis Description Biomass is an organic renewable energy source that includes materials such as agriculture and forest residues, energy crops, and algae. Scientists and engineers at the U.S. Department of Energy and its national laboratories are finding new, more efficient ways to convert biomass into biofuels that can take the place of conventional fuels like gasoline, diesel, and jet fuel. This video shows how biomass is broken down and refined into sustainable

  1. Folium - Biofuels from Tobacco - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Folium - Biofuels from Tobacco Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary FOLIUM is a research project aimed at producing high-density liquid fuels in the green biomass of tobacco. By introducing genetic material from microorganisms and other plants, tobacco can synthesize hydrocarbon fuels in its leaves and stems. Also, tobacco can be engineered to increase

  2. Full Circle Fuels | Open Energy Information

    Open Energy Info (EERE)

    search Name: Full Circle Fuels Place: Oberlin, Ohio Zip: 44074 Sector: Biofuels Product: Alternative fuels center dedicated to increasing awareness and use of biofuels in...

  3. AgriFuel Company | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: AgriFuel Company Place: Cranford, New Jersey Sector: Biofuels Product: AgriFuel produces and markets biofuels refined from waste vegetable oil,...

  4. National Algal Biofuels Technology Roadmap

    SciTech Connect (OSTI)

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  5. World Biofuels Study

    SciTech Connect (OSTI)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over the next two decades, provided policymakers stay the course with their policy goals. This project relied on a scenario-based analysis to study global biofuel markets. Scenarios were designed to evaluate the impact of different policy proposals and market conditions. World biofuel supply for selected scenarios is shown in Figure 1. The reference case total biofuel production increases from 12 billion gallons of ethanol equivalent in 2005 to 54 billion gallons in 2020 and 83 billion gallons in 2030. The scenarios analyzed show volumes ranging from 46 to 64 billion gallons in 2020, and from about 72 to about 100 billion gallons in 2030. The highest production worldwide occurs in the scenario with high feedstock availability combined with high oil prices and more rapid improvements in cellulosic biofuel conversion technologies. The lowest global production is found in the scenario with low feedstock availability, low oil prices and slower technology progress.

  6. Biofuels: Helping to Move the Industry to the Next Level

    Broader source: Energy.gov [DOE]

    In our committment to tripling biofuel production in the next 12 years, we've in the past two years announced 40 projects and over $850 million to projects focused on cellulosic biofuels and next generation hydrocarbon fuels.

  7. Biofuels | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Image Biofuels from Algae: Algae is widely touted as one of the next ... 10 billion gallons in 2009, representing 9 percent of the nation's gasoline supply. ...

  8. International Trade of Biofuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  9. Biofuels for the future-Seth Snyder | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Issues and Trends Release date: October 15, 2012 (updated October 18, 2012 for cellulosic production and October 23, 2012 for RSF2 volume clarification) Highlights Biofuels is a collective term for liquid fuels derived from renewable sources, including ethanol, biodiesel, and other renewable liquid fuels. This report focuses on ethanol and biodiesel, the most widely available biofuels. From 2009 to the middle of 2012, the U.S. biofuels industry increased its output and prepared to meet

  10. Secretary Chu Announces Nearly $80 Million Investment for Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Fueling Infrastructure | Department of Energy Million Investment for Advanced Biofuels Research and Fueling Infrastructure Secretary Chu Announces Nearly $80 Million Investment for Advanced Biofuels Research and Fueling Infrastructure January 13, 2010 - 12:00am Addthis Washington, DC - U.S. Department of Energy Secretary Steven Chu today announced the investment of nearly $80 million under the American Recovery and Reinvestment Act for advanced biofuels research and fueling

  11. Innovation Fuels | Open Energy Information

    Open Energy Info (EERE)

    Fuels Place: Newark, New Jersey Zip: 7104 Sector: Biofuels Product: New Jersey-based biodiesel producer which resulted from the merger of Hampton Biofuels and two other biodiesel...

  12. Biofuels Report Final | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Report Final Biofuels Report Final Liquid biofuels produced from lignocellulosic biomass can significantly reduce our dependence on foreign oil, create new jobs, improve rural economies, reduce greenhouse gas emissions, and improve national security. There has been deep bipartisan support for measures such as the Vehicle and Fuel Choices for American Security Act. In his 2006 State of the Union address, the President noted that "With America on the verge of breakthroughs in

  13. Biofuels: 1995 project summaries

    SciTech Connect (OSTI)

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  14. A DOE EFRC Center 'title' was established at Princeton University and will focus on the science underlying the development of non-petroleum-based fuels, including carbon-neutral biofuels, and their optimal use in transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Education Opportunities at the Combustion Energy Frontier Research Center The Combustion Energy Frontier Research Center (CEFRC) has been established at Princeton University by the U.S. Department of Energy (DOE). This Center focuses on the science underlying the development of non-petroleum-based fuels, including biofuels, and their optimal use in transportation. Fundamental insights in combustion and fuel chemistry ranging from quantum chemistry to turbulence-chemistry

  15. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    SciTech Connect (OSTI)

    John Frey

    2009-02-22

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  16. Highly Efficient, Scalable Microbial Fuel Cell - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Highly Efficient, ...

  17. ClearFuels Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    ClearFuels Technology Inc Jump to: navigation, search Name: ClearFuels Technology Inc Place: Aiea, Hawaii Zip: 96701 Sector: Biofuels Product: Hawaii-based biofuels processing...

  18. University of Illinois at Urbana-Champaign's GATE Center for Advanced Automotive Bio-Fuel Combustion Engines

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  19. WHEB Biofuels | Open Energy Information

    Open Energy Info (EERE)

    WHEB Biofuels Jump to: navigation, search Name: WHEB Biofuels Place: London, United Kingdom Sector: Biofuels Product: Ethanol producer that also invests in emerging biofuels...

  20. West Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: West Biofuels Place: California Sector: Biofuels Product: West Biofuels LLC is a 2007 start-up company based in California with funding...

  1. LC Biofuels | Open Energy Information

    Open Energy Info (EERE)

    LC Biofuels Jump to: navigation, search Name: LC Biofuels Place: Richmond, California Sector: Biofuels Product: Biofuels producer that owns and operatres a 1.3m facility in...

  2. Rusni Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Rusni Biofuels Place: Andhra Pradesh, India Sector: Biofuels Product: Rusni Biofuels India (P) Ltd.,we are specialized in sales of...

  3. Border Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Border Biofuels Jump to: navigation, search Name: Border Biofuels Place: Melrose, United Kingdom Zip: TD6 OSG Sector: Biofuels Product: Biofuels business which went into...

  4. Northeast Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Northeast Biofuels Place: United Kingdom Sector: Biofuels Product: Northeast biofuels is a cluster of companies and organisations...

  5. ECCO Biofuels | Open Energy Information

    Open Energy Info (EERE)

    ECCO Biofuels Jump to: navigation, search Name: ECCO Biofuels Place: Texas Sector: Biofuels Product: ECCO Biofuels manufactures biodiesel production facilities as well as produces...

  6. Abundant Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Abundant Biofuels Place: Monterey, California Sector: Biofuels Product: Abundant Biofuels plans to develop biodiesel feedstock...

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuels Program Impact Studies The Oregon Department of Energy (ODOE) must conduct periodic impact studies related to the biofuels industry in the state. These studies should evaluate such criteria as: jobs created; current and projected feedstock availability; amount of biofuels blends produced and consumed in the state; cost comparison of biofuels blends and petroleum fuel; environmental impacts; and the extent to which Oregon producers import biofuels or biofuels feedstocks from outside the

  8. Sustainability for the Global Biofuels Industry: Minimizing Risks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Risks and Maximizing Opportunities Webinar Transcript Market Drivers for Biofuels Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries

  9. JBEI Updates Techno-Economic Modeling Tools for Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... improved versions of a techno-economic model created in 2010 to accelerate development of next generation biofuels that are economically competitive with petroleum-based fuels. ...

  10. GM's Perspective on Advanced Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GM's Perspective on Advanced Biofuels More Documents & Publications New Directions in Engines and Fuels The Drive for Energy Diversity and Sustainability: The Impact on...

  11. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pathways for "drop-in" hydrocarbon fuel since 2012, after successfully ... Cost and Risk of Biofuel Production from Bio-Oil Upgrading EERE Success Story-Refining ...

  12. Breakthrough: Using Microbes to Make Advanced Biofuels (Other...

    Office of Scientific and Technical Information (OSTI)

    FUELS Biofuels; JBEI; Jay Keasling; DOE; Lawrence Berkeley National Lab; Berkeley Lab; Energy Word Cloud More Like This Multimedia File size NAView Multimedia View Multimedia

  13. Simulation Approaches for Drop-in Biofuels | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biodiesel is a particularly promising biofuel due to its compatibility with the current ... alternate fuels for compression ignition engine applications," ICES2012-81078, ASME ...

  14. Effects of Deployment Investment on the Growth of the Biofuels...

    Office of Scientific and Technical Information (OSTI)

    Results from the 2013 report are compared to new results. ... States Language: English Subject: 09 BIOMASS FUELS biomass; biofuels; demonstration; deployment; learning; policy; ...

  15. Biofuels From Poplar Tien, Ming [The Pennsylvania State University...

    Office of Scientific and Technical Information (OSTI)

    peptide poplar, lignin, biofuels, digestibility, peptide The limited supply of fossil fuels and the associated environmental issues associated with their utilization has...

  16. Integrated Biorefineries:Biofuels, Biopower, and Bioproducts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Integrated Biorefineries:Biofuels, Biopower, and Bioproducts Integrated Biorefineries:Biofuels, Biopower, and Bioproducts The U.S. goal to produce 21 billion gallons of advanced biofuels by 2022 creates an urgent need to bridge the gap between promising research and commercial large-scale production of advanced biofuels. PDF icon ibr_portfolio_overview.pdf More Documents & Publications Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels and

  17. Current Challenges in Commercially Producing Biofuels from Lignocellulosic

    Office of Scientific and Technical Information (OSTI)

    Biomass (Journal Article) | SciTech Connect Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass Citation Details In-Document Search Title: Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first

  18. LANL to play key role in biofuel development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuel development LANL to play key role in biofuel development LANL to create a proof-of-concept system for commercializing algae-based biofuels or other advanced biofuels that can be transported and sold using the nation's existing fueling infrastructure. January 14, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  19. Vehicle Technologies Office Merit Review 2015: Developing Kinetic Mechanisms for New Fuels and Biofuels, Including CFD Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about...

  20. Dieselgreen Fuels | Open Energy Information

    Open Energy Info (EERE)

    Dieselgreen Fuels Jump to: navigation, search Logo: DieselGreen Fuels Name: DieselGreen Fuels Place: Austin, Texas Region: Texas Area Sector: Biofuels Product: Grease collection...

  1. Biofuels: A Solution for Climate Change

    SciTech Connect (OSTI)

    Woodward, S.

    1999-10-04

    Our lives are linked to weather and climate, and to energy use. Since the late 1970s, the U.S. Department of Energy (DOE) has invested in research and technology related to global climate change. DOE's Office Fuels Development (OFD) manages the National Biofuels Program and is the lead technical advisor on the development of biofuels technologies in the United States. Together with industry and other stakeholders, the program seeks to establish a major biofuels industry. Its goals are to develop and commercialize technologies for producing sustainable, domestic, environmentally beneficial, and economically viable fuels from dedicated biomass feedstocks.

  2. California: Agricultural Residues Produce Renewable Fuel | Department...

    Broader source: Energy.gov (indexed) [DOE]

    technology is expected to produce biofuel that reduces greenhouse gas emissions by 80% compared to fossil fuel and help make California a leader in advanced biofuel production. ...

  3. Biofuels: Project summaries

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  4. Sandia Energy Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nhanced-sandia-sintef-collaborationfeed 0 Lignin-Feasting Microbe Holds Promise for Biofuels http:energy.sandia.govlignin-feasting-microbe-holds-promise-for-biofuels http:...

  5. Market Drivers for Biofuels

    Broader source: Energy.gov [DOE]

    This presentation, entitled "Market Drivers for Biofuels," was given at the Third Annual MSW to Biofuels Summit in February, 2013, by Brian Duff.

  6. Brazil's biofuels scenario

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DO ETANOL Brazil's biofuels scenario: What are the main drivers which will shape investments in the long term? Artur Yabe Milanez Manager BNDES Biofuels Department LIVRO VERDE ...

  7. FUNGIBLE AND COMPATIBLE BIOFUELS: LITERATURE SEARCH, SUMMARY, AND

    Office of Scientific and Technical Information (OSTI)

    RECOMMENDATIONS (Technical Report) | SciTech Connect Technical Report: FUNGIBLE AND COMPATIBLE BIOFUELS: LITERATURE SEARCH, SUMMARY, AND RECOMMENDATIONS Citation Details In-Document Search Title: FUNGIBLE AND COMPATIBLE BIOFUELS: LITERATURE SEARCH, SUMMARY, AND RECOMMENDATIONS The purpose of the study described in this report is to summarize the various barriers to more widespread distribution of bio-fuels through our common carrier fuel distribution system, which includes pipelines, barges

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Exemption The retail sale, use, storage, and consumption of alternative fuels is exempt from the state retail sales and use tax. (Reference North Carolina General Statutes 105-164.13(11)

  9. Price of Motor Gasoline Through Retail Outlets

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    & Stocks by State (Dollars per Gallon Excluding Taxes) Data Series: Retail Price - Motor Gasoline Retail Price - Regular Gasoline Retail Price - Midgrade Gasoline Retail Price...

  10. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect (OSTI)

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  11. Analysis of advanced biofuels.

    SciTech Connect (OSTI)

    Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

    2010-09-01

    Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

  12. http://www.energy.gov/media/F...Biofuels_Lower_Gas_Prices.pdf | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy energy.gov/media/F...Biofuels_Lower_Gas_Prices.pdf http://www.energy.gov/media/F...Biofuels_Lower_Gas_Prices.pdf PDF icon http://www.energy.gov/media/F...Biofuels_Lower_Gas_Prices.pdf More Documents & Publications Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Biofuels & Greenhouse Gas Emissions: Myths versus Facts Ethanol: Producting Food, Feed, and Fuel

  13. National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

  14. Godavari Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Godavari Biofuel Jump to: navigation, search Name: Godavari Biofuel Place: Maharashtra, India Product: Holds license to produce ethanol. References: Godavari Biofuel1 This...

  15. Biofuels International | Open Energy Information

    Open Energy Info (EERE)

    International Jump to: navigation, search Name: Biofuels International Place: Indiana Sector: Biofuels Product: Pittsburgh based biofuels project developer presently developing a...

  16. Cobalt Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Cobalt Biofuels Jump to: navigation, search Logo: Cobalt Biofuels Name: Cobalt Biofuels Address: 500 Clyde Avenue Place: Mountain View, California Zip: 94043 Region: Bay Area...

  17. SG Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: SG Biofuels Address: 132. N. El Camino Real Place: Encinitas, California Zip: 92024 Region: Southern CA Area Sector: Biofuels Product:...

  18. Algenol Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Algenol Biofuels Jump to: navigation, search Name: Algenol Biofuels Place: Bonita Springs, Florida Zip: 34135 Sector: Biofuels, Carbon Product: Algenol is developing a process for...

  19. Solix Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Solix Biofuels Jump to: navigation, search Logo: Solix Biofuels Name: Solix Biofuels Address: 430 B. North College Ave Place: Fort Collins, Colorado Zip: 80524 Region: Rockies Area...

  20. United Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: United Biofuels Place: York, Pennsylvania Product: Waste and animal fats to biofuel producer, switched to animal fats from soy in fall of...

  1. Shirke Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Shirke Biofuels Jump to: navigation, search Name: Shirke Biofuels Place: India Product: Indian biodiesel producer. References: Shirke Biofuels1 This article is a stub. You can...

  2. Bently Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Bently Biofuels Jump to: navigation, search Name: Bently Biofuels Place: Minden, Nevada Zip: 89423 Product: Biodiesel producer in Nevada. References: Bently Biofuels1 This...

  3. Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 2. Fuel and EGR Effects on Knock-Limited Load and Speed

    SciTech Connect (OSTI)

    Splitter, Derek A; Szybist, James P

    2013-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine is used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with = 1, using both 0% and 15% external-cooled EGR. Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with E30 as compared to that of 87AKI, up to 20 bar IMEPg (indicating mean effective pressure gross) at = 1. The results demonstrate that for all fuels, EGR is a key enabler for increasing engine efficiency but is less useful for knock mitigation with E30 than for 87AKI gasoline or IB24. Under knocking conditions, 15% EGR is found to offer 1 CA of CA50 timing advance with E30, whereas up to 5 CA of CA50 advance is possible with knock-limited 87AKI gasoline. Compared to 87AKI, both E30 and IB24 are found to have reduced adiabatic flame temperature and shorter combustion durations, which reduce knocking propensity beyond that indicated by the octane number. However, E30+0% EGR is found to exhibit the better antiknock properties than either 87AKI+15% EGR or IB24+15% EGR, expanding the knock limited operating range and engine stoichiometric torque capability at high compression ratio. Furthermore, the fuel sensitivity (S) of E30 was attributed to reduced speed sensitivity of E30, expanding the low-speed stoichiometric torque capability at high compression ratio. The results illustrate that intermediate alcohol gasoline blends exhibit exceptional antiknock properties and performance beyond that indicated by the octane number tests, particularly E30.

  4. Reducing Plant Lignin for Cheaper Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Plant Lignin for Cheaper Biofuels Reducing Plant Lignin for Cheaper Biofuels Print Wednesday, 04 May 2016 12:11 Lignin is a polymer that permeates plant cell walls. Although beneficial to the plant, the lignin must be chemically broken down in a costly pretreatment step before the sugars inside can be released and fermented into useful chemicals and fuels. Previous attempts to silence lignin-producing genes resulted in weak plants with a lower sugar yield. In this work, researchers

  5. Retailer Energy Alliance Subcommittees

    SciTech Connect (OSTI)

    2008-07-01

    This fact sheet describes the Retailer Energy Alliances Subcommittees: Lighting and Electrical, Restaurant and Food Preparation, Refrigeration, HVAC, and Whole Building Systems.

  6. Bio Fuel Systems BFS | Open Energy Information

    Open Energy Info (EERE)

    Fuel Systems BFS Jump to: navigation, search Name: Bio Fuel Systems (BFS) Place: Alicante, Spain Sector: Biomass Product: Bio Fuel Systems focuses on the development of biofuel...

  7. biomass-to-biofuels transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass-to-biofuels transformation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  8. The Science Behind Cheaper Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Science Behind Cheaper Biofuels The Science Behind Cheaper Biofuels August 15, 2011 - 11:50am Addthis Brookhaven National Laboratory is modeling the metabolic processes in rapeseed plants to optimize production of plant oils for biofuels. Shown above are developing embryos extracted from a growing rapeseed plant. The embryos accumulate seed oils which represent the most energy-dense form of biologically stored sunlight, and have great potential as renewable resources for fuel and industrial

  9. 6 New Things Happening with Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Things Happening with Biofuels 6 New Things Happening with Biofuels June 19, 2015 - 9:39am Addthis Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs Over the past few years, scientists across the country have been revolutionizing the future of fuel. Biofuels researchers from the Department Energy's National Laboratories and its partners have achieved some significant milestones, and there's a lot more in the works. Check out what's new: 1. They're getting a lot

  10. Pearson Fuels | Open Energy Information

    Open Energy Info (EERE)

    San Diego, California Zip: 92105 Region: Southern CA Area Sector: Biofuels Product: Alternative fuel distributor provides ethanol-based fuels Website: www.pearsonfuels.com...

  11. USDA Feedstocks and Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D. Director Office of Energy Policy and New Uses Aviation Biofuels Workshop Co-sponsored by: US DOE, FAA, and CAAFI Washington, DC November 27, 20012 USDA Feedstocks and Biofuels ...

  12. Algal Biofuels | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels NREL is developing technologies and helping prepare a new generation workforce to enable the commercialization of algal biofuels. Photo of bright green algae in flasks in fluid inside a lit, metallic grow chamber. We are focused on understanding the current cost for algal biofuels production and using that information to identify and develop cost reduction strategies. Our work is distributed across the entire value chain from production strain identification to biofuel and bioproducts

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition and Specifications Alternative fuels include biofuel, ethanol, methanol, hydrogen, coal-derived liquid fuels, electricity, natural gas, propane gas, or a synthetic transportation fuel. Biofuel is defined as a renewable, biodegradable, combustible liquid or gaseous fuel derived from biomass or other renewable resources that can be used as transportation fuel, combustion fuel, or refinery feedstock and that meets ASTM specifications and federal quality requirements for

  14. Northeast Biofuels Collaborative | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Collaborative Jump to: navigation, search Logo: Northeast Biofuels Collaborative Name: Northeast Biofuels Collaborative Address: 101 Tremont Street Place: Boston,...

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    E15 Infrastructure Grant Program The Minnesota Department of Agriculture may establish a program to provide grants to eligible fuel retailers for equipment and installation costs ...

  16. Fuel Mix Disclosure

    Broader source: Energy.gov [DOE]

    In January 1999, the Colorado Public Utility Commission (PUC) adopted regulations requiring the state's utilities to disclose information regarding their fuel mix to retail customers. Utilities are...

  17. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. PDF icon ctab_webinar_bio_oils_upgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels 2013 Peer Review Presentations-Bio-oil

  18. Clean Burn Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Burn Fuels LLC Jump to: navigation, search Name: Clean Burn Fuels LLC Place: Raleigh, North Carolina Zip: 27603 Sector: Biofuels Product: Biofuels developer planning to build a 60m...

  19. International Coastal Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Coastal Biofuels Jump to: navigation, search Name: International Coastal Biofuels Place: Tazewell, Virginia Zip: 24651 Sector: Biofuels Product: International Coastal Biofuels is a...

  20. Tees Valley Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Tees Valley Biofuels Jump to: navigation, search Name: Tees Valley Biofuels Place: United Kingdom Sector: Biofuels Product: Company set up by North East Biofuels to establish an...

  1. Blackhawk Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Blackhawk Biofuels LLC Jump to: navigation, search Name: Blackhawk Biofuels, LLC Place: Freeport, Illinois Zip: 61032 Sector: Biofuels Product: Blackhawk Biofuels was founded by a...

  2. Blue Ridge Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Blue Ridge Biofuels LLC Place: Asheville, North Carolina Zip: 28801 Sector: Biofuels Product: Blue Ridge Biofuels is a worker...

  3. Mid America Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Mid-America Biofuels LLC Place: Jefferson City, Missouri Zip: 65102 Sector: Biofuels Product: Joint Venture of Biofuels LLC,...

  4. US Canadian Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Canadian Biofuels Inc Jump to: navigation, search Name: US Canadian Biofuels Inc. Place: Green Bay, Wisconsin Zip: 54313 Sector: Biofuels Product: US Canadian Biofuels Inc is the...

  5. Best Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Best Biofuels LLC Place: Austin, Texas Zip: 78746 Sector: Biofuels Product: Best Biofuels is developing and commercialising vegetable...

  6. Algae Biofuels Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae Biofuels Technology Algae Biofuels Technology Algae Biofuels Technology PDF icon Algae Biofuels Technology More Documents & Publications The Promise and Challenge of Algae as...

  7. Northwest Missouri Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Missouri Biofuels LLC Jump to: navigation, search Name: Northwest Missouri Biofuels, LLC Place: St Joseph, Missouri Sector: Biofuels Product: Northwest Missouri Biofuels operates a...

  8. Endicott Biofuels II LLC | Open Energy Information

    Open Energy Info (EERE)

    Endicott Biofuels II LLC Jump to: navigation, search Name: Endicott Biofuels II, LLC Place: Houston, Texas Zip: 77060-3235 Sector: Biofuels Product: Houston-based biofuels producer...

  9. Empire Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Empire Biofuels LLC Place: New York, New York Zip: 13148 Sector: Biofuels Product: Empire Biofuels LLC (Empire) was founded in April...

  10. Momentum Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Momentum Biofuels Inc Jump to: navigation, search Name: Momentum Biofuels Inc Place: League City, Texas Zip: 77573 Sector: Biofuels Product: Momentum Biofuels, a Texas-based...

  11. President Obama Announces Major Initiative to Spur Biofuels Industry and Enhance America’s Energy Security

    Broader source: Energy.gov [DOE]

    USDA, Department of Energy and Navy Partner to Advance Biofuels to Fuel Military and Commercial Transportation, Displace Need for Foreign Oil, and Strengthen Rural America

  12. Biofuels and Food Security. A report by the High Level Panel...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS; BIOFUELS; PRODUCTION; AGRICULTURE; ENERGY POLICY; SOCIO-ECONOMIC FACTORS; SUSTAINABLE DEVELOPMENT...

  13. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be producedmore » in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected.« less

  14. Air Liquide - Biogas & Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    and the environment PT Loma WWTP, Biogas to Fuel Cell Power BioFuels Energy Biogas to BioMethane to 4.5 MW Fuel Cell Power 3 FCE Fuel Cells 2 via directed...

  15. Transitioning to Biofuels: A System-of-Systems Perspective; Preprint

    SciTech Connect (OSTI)

    Riley, C.; Sandor, D.

    2008-06-01

    Using the existing fuel supply chain infrastructure as a framework, this paper discusses a vision for transitioning to a larger biofuels industry and the challenges associated with a massive market and infrastructure transformation.

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Payments Through the Bioenergy Program for Advanced Biofuels (Section 9005), eligible producers of advanced biofuels, or fuels derived from renewable biomass other than corn kernel starch, may receive payments to support expanded production of advanced biofuels. Payment amounts will depend on the quantity and duration of production by the eligible producer; the net nonrenewable energy content of the advanced biofuel, if sufficient data is available; the number of producers participating in the

  17. Importance of systems biology in engineering microbes for biofuel

    Office of Scientific and Technical Information (OSTI)

    production (Journal Article) | SciTech Connect Importance of systems biology in engineering microbes for biofuel production Citation Details In-Document Search Title: Importance of systems biology in engineering microbes for biofuel production Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable

  18. Engineering microbes to produce biofuels

    SciTech Connect (OSTI)

    Wackett, LP

    2011-06-01

    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels.

  19. End Use and Fuel Certification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Market Opportunities High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super ...

  20. Replace Fossil Fuels, Final Technical Report Roberts, William...

    Office of Scientific and Technical Information (OSTI)

    Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report Roberts, William L 09 BIOMASS FUELS biofuels, glycerin, glycerol,...

  1. Major DOE Biofuels Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuel Technologies Slide 1

  2. CPS Biofuels | Open Energy Information

    Open Energy Info (EERE)

    CPS Biofuels Jump to: navigation, search Name: CPS Biofuels Place: Cary, North Carolina Zip: 27513 Sector: Biofuels Product: R&D company that is developing a new process to produce...

  3. Winning the Biofuel Future

    Broader source: Energy.gov [DOE]

    A research team at the Energy Department's BioEnergy Science Center achieved yet another advance in the drive toward next generation biofuels.

  4. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - At-C. Data Availability across the Supply Chain - Im-H Availability of Biofuels ... creating an easy to use tool 6 Management Approach APPROACH * Provide unbiased, ...

  5. Algal Biofuel Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and regulatory aspects of algal biofuel production * Timetable Timetable - ... required Makeup water (evaporation) Engine testing CO CO 2 avail ilability and t d ...

  6. BiofuelsReportFinal

    Energy Savers [EERE]

    Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydrocarbon Biorefineries THE NATIONAL SCIENCE FOUNDATION AMERICAN CHEMICAL SOCIETY THE ...

  7. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel

  8. Video: Biofuel technology at Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video: Biofuel technology at Argonne Share Topic Energy Energy sources Renewable energy Bioenergy Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Powertrain research --Building design ---Construction --Manufacturing -Energy sources --Renewable energy ---Bioenergy ---Solar energy --Fossil fuels ---Natural Gas

  9. SciTech Connect: "biofuels"

    Office of Scientific and Technical Information (OSTI)

    biofuels" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "biofuels" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  10. Mead Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Jump to: navigation, search Name: Mead Biofuel Place: Eastsound, Washington State Zip: 98245 Product: Distributor of biodiesel throughout the San Juan Islands, Washington....

  11. Michigan Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Jump to: navigation, search Name: Michigan Biofuel Place: Lupton, Michigan Product: Michigan-based manufacturer of biodiesel processors and related equipment. Coordinates:...

  12. Vercipia Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Vercipia Biofuels Jump to: navigation, search Name: Vercipia Biofuels Place: Highlands County, Florida Product: Florida-based JV owning existing intellectual property and...

  13. Piedmont Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Piedmont Biofuels Place: Chatham County, North Carolina Product: Community coop producing biodiesel in small scale to cope with Chatham...

  14. Greenlight Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Greenlight Biofuels Place: Charlottesville, Virginia Product: Charlottesville-based company that develops, builds, owns and operates...

  15. Mint Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Mint Biofuels Place: Pune, Maharashtra, India Zip: 412 111 Product: Maharashtra-based biodiesel producer. Coordinates: 18.52671,...

  16. Integrity Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Integrity Biofuels Place: Grammer, Indiana Product: Planning a 38m litre (10m gallon) per year biodiesel plant in Indiana. Coordinates:...

  17. Propel Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Propel Biofuels Jump to: navigation, search Name: Propel Biofuels Address: 4444 Woodland Park Ave North Place: Seattle, Washington Zip: 98103 Region: Pacific Northwest Area Sector:...

  18. Acciona Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Acciona Biofuels Jump to: navigation, search Name: Acciona Biofuels Place: Pamplona, Spain Zip: 31002 Product: A subsidiary of Acciona Energia, that specialises in the...

  19. Optimum Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Optimum Biofuels Place: Higley, Arizona Zip: 85236 Product: Arizona-based operator of a bio diesel refinery in Coolidge, with soybean oil...

  20. FUMPA Biofuels | Open Energy Information

    Open Energy Info (EERE)

    FUMPA Biofuels Jump to: navigation, search Name: FUMPA Biofuels Place: Redwood Falls, MN, Minnesota Product: Biodiesel producer based in Redwood Falls, Minnesota. References: FUMPA...

  1. Yokayo Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Yokayo Biofuels Jump to: navigation, search Name: Yokayo Biofuels Place: Ukiah, California Zip: 95482 Product: California-based biodiesel producer and distributor with operations...

  2. Keystone Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Keystone Biofuels Jump to: navigation, search Name: Keystone Biofuels Place: Shiremanstown, Pennsylvania Product: Biodiesel producer that runs a 3.7m liter plant in Pennsylvania....

  3. Riksch Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Riksch Biofuels Jump to: navigation, search Name: Riksch Biofuels Place: Crawfordsville, Iowa Zip: 52621 Product: Biodiesel producer building a plant in Crawfordsville, IA...

  4. Austin Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Austin Biofuels Jump to: navigation, search Name: Austin Biofuels Place: Austin, Texas Product: Supplies pure and blended biodiesel to all of Texas. It has benefited from support...

  5. Biofuel Solutions | Open Energy Information

    Open Energy Info (EERE)

    developer, which had been developing one plant in Fairmont, Minnesota and another in Wood River, Biofuel Energy LLC took over plant development of Biofuel Solutions' projects in...

  6. Bio Clean Fuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Fuels Inc Jump to: navigation, search Name: Bio-Clean Fuels Inc Place: California Sector: Hydro Product: Califonia-based biofuel technology and engineering company. The company is...

  7. Natura Bio Fuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Natura Bio Fuels Ltd Jump to: navigation, search Name: Natura Bio-Fuels Ltd. Place: Bangalore, Karnataka, India Zip: 560091 Sector: Biomass Product: Bangalore-based biomass project...

  8. Green Spirit Fuels | Open Energy Information

    Open Energy Info (EERE)

    Spirit Fuels Jump to: navigation, search Name: Green Spirit Fuels Place: Somerset, United Kingdom Zip: BA8 OTN Sector: Biofuels Product: The company was founded to produce and...

  9. In the OSTI Collections: Biofuels | OSTI, US Dept of Energy, Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Biofuels Dr. Watson computer sleuthing scientist. Article Acknowledgement: Dr. William N. Watson, Physicist DOE Office of Scientific and Technical Information Producing biofuels Interactions involving the biofuel industry and the industry's future References Reports Available through OSTI's SciTech Connect Additional References While the food that fuels us is grown more or less as we need it, our machines are mostly powered by fuels that don't get

  10. Algal Biofuels Fact Sheet

    SciTech Connect (OSTI)

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  11. Coulee Region Bio Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Region Bio Fuels LLC Jump to: navigation, search Name: Coulee Region Bio-Fuels LLC Place: Ettrick, Wisconsin Zip: 54627 Sector: Biofuels Product: LLC created by PrairieFire...

  12. Biofuel Feedstock Assessment for Selected Countries

    SciTech Connect (OSTI)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  13. Biofuel Feedstock Assessment For Selected Countries

    SciTech Connect (OSTI)

    Kline, Keith L; Oladosu, Gbadebo A; Wolfe, Amy K; Perlack, Robert D; Dale, Virginia H; McMahon, Matthew

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  14. Information for Retailers of Lighting Products | Department of...

    Energy Savers [EERE]

    Retailers of Lighting Products Information for Retailers of Lighting Products Information for Retailers of Lighting Products U.S. retailers who sell lighting products can use the...

  15. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect (OSTI)

    Soloiu, Valentin

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Support for Advance Biofuel Development The California Legislature urges the U.S. Congress or the U.S. Environmental Protection Agency to take action to amend the U.S. Renewable Fuel Standard to favor non-food crop biofuel feedstocks and promote the development of advanced fuels, such as cellulosic ethanol. (Reference Assembly Joint Resolution 21, 2013

  17. Turning Bacteria into Biofuel: Development of an Integrated Microbial Electrocatalytic (MEC) System for Liquid Biofuel Production from CO2

    SciTech Connect (OSTI)

    2010-08-01

    Electrofuels Project: LBNL is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism’s access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria’s surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Personal Use Biofuel Reporting Taxpayers producing and using biodiesel and ethanol for personal use must report the total gallons of fuel produced by year and the portion of fuel ...

  19. New Leaf Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Jump to: navigation, search Name: New Leaf Biofuel Address: 1380 Garnet Place: San Diego, California Zip: 92109 Region: Southern CA Area Sector: Biofuels Product: Collects...

  20. Continental Biofuels Corporation | Open Energy Information

    Open Energy Info (EERE)

    Continental Biofuels Corporation Jump to: navigation, search Name: Continental Biofuels Corporation Place: Dallas, Texas Zip: 75240 Sector: Biofuels Product: Dallas-based company...

  1. Biofuels Power Corp | Open Energy Information

    Open Energy Info (EERE)

    Power Corp Jump to: navigation, search Name: Biofuels Power Corp Place: The Woodlands, Texas Zip: 77380 Sector: Biofuels, Renewable Energy Product: Biofuels Power Corp produces and...

  2. DuPont Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: DuPont Biofuels Place: Wilmington, Delaware Zip: 19898 Product: Biofuel technology development subsidiary of DuPont. Co-developing...

  3. Category:Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Organizations Pages in category "Biofuels" This category contains only the following page. T The Biofuels Center of North Carolina Retrieved from "http:en.openei.orgw...

  4. BP Biofuels Brasil | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Brasil Jump to: navigation, search Name: BP Biofuels Brasil Place: Campinas, Sao Paulo, Brazil Zip: 13025-320 Sector: Biofuels Product: Brazil based BP subsidiary focused...

  5. Amereco Biofuels Corp | Open Energy Information

    Open Energy Info (EERE)

    Amereco Biofuels Corp Jump to: navigation, search Name: Amereco Biofuels Corp Place: Phoenix, Arizona Zip: 85028 Sector: Biofuels Product: Amereco pursues technologies that...

  6. Greenergy Biofuels Limited | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Limited Jump to: navigation, search Name: Greenergy Biofuels Limited Place: London, Greater London, United Kingdom Zip: WC1V 7BD Sector: Biofuels Product: Imports, blends...

  7. Novare Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Novare Biofuels Inc Jump to: navigation, search Logo: Novare Biofuels Inc Name: Novare Biofuels Inc Address: 2983 Sterling Ct Place: Boulder, Colorado Zip: 80301 Region: Rockies...

  8. Aaditya Biofuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Aaditya Biofuels Ltd Jump to: navigation, search Name: Aaditya Biofuels Ltd. Place: Gujarat, India Product: Gujarat-based biodiesel producer. References: Aaditya Biofuels Ltd.1...

  9. Butamax Advanced Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Butamax Advanced Biofuels LLC Jump to: navigation, search Name: Butamax Advanced Biofuels LLC Place: Wilmington, Delaware Zip: 19880-0268 Sector: Biofuels Product: Delaware-based...

  10. Raven Biofuels International Corporation | Open Energy Information

    Open Energy Info (EERE)

    Biofuels International Corporation Jump to: navigation, search Name: Raven Biofuels International Corporation Place: Paramus, New Jersey Zip: 07652-1236 Sector: Biofuels Product:...

  11. Cutting Biofuel Production Costs | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cutting Biofuel Production Costs Working to use sunlight to convert biomass to biofuels, ... bioderived alcohols to benzaldehyde, toluene, and the zero-emission biofuel hydrogen. ...

  12. Advanced Biofuels Industry Roundtable - List of Participants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Industry Roundtable - List of Participants Advanced Biofuels Industry Roundtable - List of Participants List of Participants from the May 18 Advanced Biofuels Industry ...

  13. Novel biofuel formulations for enhanced vehicle performance

    SciTech Connect (OSTI)

    Miller, Dennis; Narayan, Ramani; Berglund, Kris; Lira, Carl; Schock, Harold; Jaberi, Farhad; Lee, Tonghun; Anderson, James; Wallington, Timothy; Kurtz, Eric; Ruona, Will; Hass, Heinz

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbon sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion engine under highly instrumented conditions. Simulation of and experimentation on combustion in single and multicylinder engines was carried out in detail throughout the project. The combustion behavior of biofuel blends neat and in petroleum were characterized in the MSU optical engine, in part to validate results obtained in the RCM and to provide data for comparison with simulations. Simulation of in- cylinder, low-temperature combustion included development of an extensive fuel injection model that included fuel spray breakup, evaporation, and ignition, along with prediction of cylinder temperature, pressure, and work produced. Single cylinder and multicylinder engine tests under advanced low-temperature combustion conditions conducted at Ford Motor Company validated experimental and simulation results obtained in the MSU engine and in MSU simulations. Single cylinder engine tests of an advanced biofuel containing biodiesel and dibutyl succinate, carried out under low-temperature combustion conditions, showed similar power generation and gas-phase emissions (CO, HC, NOx), but a reduction in particulates of as much as 60% relative to neat biodiesel and 95% relative to petroleum diesel at the same operating conditions. This remarkable finding suggests that biofuels may be able to play a role in eliminating the need for particulate removal systems in diesel vehicles. The multicylinder engine tests at Ford, carried out using butyl nonanoate as an advanced biofuel, also gave promising results, showing a strong decline in particulate emissions and simultaneously a modest decrease in NOx emissions relative to standard petroleum diesel at the same conditions. In summary, this project has shown that advanced biofuels and their blends are capable of maintaining performance while reducing emissions, particularly particulates (soot), in 3 compression ignition engines. The interdisciplinary nature of biofuel production and testing has identified fuel properties that are capable of producing such performance, thus providing direction for the implementation of renewable fuels for U.S. transportation. The testing and simulation studies have deepened our understanding of combustion 1) by advancing the rigor with which simulations can be carried out and 2) by illustrating that differences in biofuel and petroleum fuel properties can be used to predict differences in combustion behavior in engines. The future viability of biofuels for compression ignition (diesel) engines is now subject to economic (cost) uncertainty more so than to technical barriers, as the advanced biofuel blends developed here can improve cold-weather fuel properties, provide similar engine performance, and reduce emissions.

  14. A Brief Literature Overview of Various Routes to Biorenewable Fuels from Lipids for the National Alliance for Advanced Biofuels and Bio-products (NAABB) Consortium

    SciTech Connect (OSTI)

    Albrecht, Karl O.; Hallen, Richard T.

    2011-03-29

    Renewable methods of producing transportation fuels are currently the focus of numerous large research efforts across the globe. Renewable fuel produced from algal lipids is one aspect of this research that could have profound implications on future transportation fuel requirements. However, technical challenges remain in several areas of algal-lipid-based fuels. These challenges include the identification and development of robust and productive algal species as well as extraction methods to recover the produced lipids. Not the least of these technical challenges is the conversion of the algae lipids to fungible fuels. This brief literature review focuses primarily on state-of-the-art downstream applications of producing fuel from fats and lipids, which can be applied to ongoing research with algae-derived lipids.

  15. Tailoring next-generation biofuels and their combustion in next-generation engines.

    SciTech Connect (OSTI)

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O'Bryan, Greg; Powell, Amy Jo; Gao, Connie W.

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  16. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The tool also calculates the biofuels potential for a given area. BioFuels Atlas was developed by the National Renewable Energy Laboratory with funding from the DOE Biomass ...

  17. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... The tool also calculates the biofuels potential for a given area. BioFuels Atlas was developed by the National Renewable Energy Laboratory with funding from the DOE Biomass ...

  18. Fact Sheet: National Biofuels Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet: National Biofuels Action Plan Fact Sheet: National Biofuels Action Plan October 7, 2008 - 4:14pm Addthis In an effort to meet President Bush's "Twenty in Ten" goal and meet the Renewable Fuel Standard (RFS) targets in the Energy Independence and Security Act of 2007 (EISA) the Biomass Research and Development Board (the Board)-co-chaired by the U.S. Department of Agriculture (USDA) and the U.S. Department of Energy (DOE)-developed the National Biofuels Action Plan (NBAP) to

  19. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  20. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts | Department of Energy Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy Technologies Office works with industry to develop pathways that use heat, pressure, and catalysis to convert domestic, non-food biomass into gasoline, jet fuel, and other products. PDF icon thermochemical_four_pager.pdf More Documents & Publications 2013 Peer Review

  1. Biofuel-Producing Lactobacillus Strain - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuel-Producing Lactobacillus Strain Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Microbial transformation of biomass into biofuels remains an important part of the United States' strategy to reduce its dependency on fossil fuels. To produce ethanol from biomass, microbes must be able to efficiently metabolize plant sugars into ethanol under industrial fermentation stresses. Naturally occurring microorganisms have not evolved to thrive

  2. Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America | Department of Energy Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 - 2:12pm Addthis Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars

  3. Algal Biofuels Techno-Economic Analysis | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Techno-Economic Analysis To promote an understanding of the challenges and opportunities unique to microalgae, NREL's Algae Techno-Economic Analysis group focuses on techno-economic analysis (TEA) for the production and conversion of algal biomass into biofuels and coproducts. We help research technologies that will enable the production of cost-competitive hydrocarbon fuels and products from algal biomass in support of the goals of the U.S. Department of Energy's (DOE's) Bioenergy

  4. Biofuels Impact on DPF Durability | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon pm040_lance_2011_p.pdf More Documents & Publications Biofuels Impact on DPF Durability DPF Performance with Biodiesel Blends Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies

  5. Take a Closer Look:Biofuels Can Support Environmental, Economic and Social Goals

    SciTech Connect (OSTI)

    Dale, Bruce E.; Anderson, James; Brown, Dr. Robert C.; Csonka, Steven; Dale, Virginia H; Herwick, Gary; Jackson, Randall; Johnson, Kristen; Jordan, Nicholas; Kaffka, Stephen R; Kline, Keith L; Lynd, Lee R; Malmstrom, Carolyn; Garlock, Rebecca; Richard, Tom; Taylor, Caroline; Wang, Mr. Michael

    2014-07-01

    The US Congress passed the Renewable Fuels Standard (RFS) seven years ago. Since then, biofuels have gone from darling to scapegoat for many environmentalists, policy makers, and the general public. The reasons for this shift are complex and include concerns about environmental degradation, uncertainties about impact on food security, new access to fossil fuels, and overly optimistic timetables. As a result, many people have written off biofuels. However, numerous studies indicate that biofuels, if managed sustainably, can help solve pressing environmental, social and economic problems (Figure 1). The scientific and policy communities should take a closer look by reviewing the key assumptions underlying opposition to biofuels and carefully consider the probable alternatives. Liquid fuels based on fossil raw materials are likely to come at increasing environmental cost. Sustainable futures require energy conservation, increased efficiency, and alternatives to fossil fuels, including biofuels.

  6. CleanTech Biofuels | Open Energy Information

    Open Energy Info (EERE)

    CleanTech Biofuels Jump to: navigation, search Name: CleanTech Biofuels Place: St. Louis, Missouri Zip: 63130 Sector: Biofuels Product: CleanTech Biofuels holds exclusive licenses...

  7. National Biofuels Action Plan, October 2008

    SciTech Connect (OSTI)

    none,

    2008-10-01

    To help industry achieve the aggressive national goals, Federal agencies will need to continue to enhance their collaboration. The Biomass Research and Development (R&D) Board was created by Congress in the Biomass Research and Development Act of 2000. The National Biofuels Action Plan outlines areas where interagency cooperation will help to evolve bio-based fuel production technologies from promising ideas to competitive solutions.

  8. Algae Raceway to speed path to biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algae Raceway to speed path to biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  9. Advanced Biofuels Processing and Demonstration Unit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Processing and Demonstration Unit - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  10. Assessing the Economic Potential of Advanced Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Economic Potential of Advanced Biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  11. Bioenergy & Biofuels Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects BIOENERGY & BIOFUELS 1 PROJECT in 1 LOCATION 25,000,000 GALLONS ANNUAL PRODUCTION CAPACITY 14,900,000 GALLONS OF GASOLINE SAVED ANNUALLY 132,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 BIOENERGY & BIOFUELS PROJECT LOAN PROGRAM TECHNOLOGY

  12. Energy Department Announces $13.4 Million to Develop Advanced Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts | Department of Energy .4 Million to Develop Advanced Biofuels and Bioproducts Energy Department Announces $13.4 Million to Develop Advanced Biofuels and Bioproducts October 9, 2014 - 11:48am Addthis The Energy Department announced today up to $13.4 million for five projects to develop advanced biofuels and bioproducts that will help drive down the cost of producing gasoline, diesel, and jet fuel from biomass. These products not only will help reduce carbon emissions, but also

  13. Dominion Retail Inc (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    Dominion Retail Inc (Connecticut) Jump to: navigation, search Name: Dominion Retail Inc Place: Connecticut Phone Number: 1-888-216-3718 Website: www.dominionenergy.comen Outage...

  14. US Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Name: US Biofuels Place: Rome, Georgia Product: Biodiesel producer based in Georgia References: US Biofuels1 This article is a stub. You can help OpenEI by expanding it. US...

  15. Hampton Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Hampton Biofuels Place: New York, New York Zip: 10017 Product: A start-up looking to develop a biodiesel plant in upstate New York....

  16. Algal Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Algal Biofuels Algae image The Bioenergy Technologies Office's (BETO's) Algae Program is carrying out a long-term applied research and development (R&D) strategy to increase the yields and lower the costs of algal biofuels by working with partners to develop new technologies, to integrate technologies at commercially-relevant scales, and conduct crosscutting analyses to understand the potential and challenges of an algal biofuel industry that is capable of annually producing

  17. Gasoline and Diesel Fuel Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Even when crude oil prices are stable... read more in Gasoline Explained What causes fluctuations in diesel fuel oil prices? The retail price of a gallon of diesel fuel reflects ...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel is exempt from the diesel fuel tax. The biodiesel or ethanol fuel blend must be clearly identified on the retail pump, storage tank, and sales invoice in order to be eligible for the exemption. (Reference Texas Statutes, Tax Code 162.2

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Use Requirement All state agencies must, to the extent practicable, use 100% biofuels or electricity to operate all publicly owned vehicles. Agencies may substitute natural gas or propane for electricity or biofuel if the Washington State Department of Commerce (Department) determines that electricity and biofuel are not reasonably available. Practicability and measures of compliance are defined in rules adopted by the Washington State Department of Commerce. In addition,

  20. Promise and Challenges of Microalgal-Derived Biofuels

    SciTech Connect (OSTI)

    Pienkos, P. T.; Darzins, A.

    2009-01-01

    Microalgae offer great promise to contribute a significant portion of the renewable fuels that will be required by the Renewable Fuels Standard described in the 2007 Energy Independence and Security Act of the United States. Algal biofuels would be based mainly on the high lipid content of the algal cell and thus would be an ideal feedstock for high energy density transportation fuels, such as biodiesel as well as green diesel, green jet fuel and green gasoline. A comprehensive research and development program for the development of algal biofuels was initiated by the US Department of Energy (DoE) more than 30 years ago, and although great progress was made, the program was discontinued in 1996, because of decreasing federal budgets and low petroleum costs. Interest in algal biofuels has been growing recently due to increased concern over peak oil, energy security, greenhouse gas emissions, and the potential for other biofuel feedstocks to compete for limited agricultural resources. The high productivity of algae suggests that much of the US transportation fuel needs can be met by algal biofuels at a production cost competitive with the cost of petroleum seen during the early part of 2008. Development of algal biomass production technology, however, remains in its infancy. This perspective provides a brief overview of past algal research sponsored by the DoE, the potential of microalgal biofuels and a discussion of the technical and economic barriers that need to be overcome before production of microalgal-derived diesel-fuel substitutes can become a large-scale commercial reality.

  1. Algae to Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algae to Biofuels Algae to Biofuels What if you could power your life using pond scum? Algae, plant-like aquatic microorganisms, produce oil similar to petroleum and can be grown almost anywhere, don't need to be fed and actually remove pollution from the air. algae Squeezing Power from Pond Scum Near industrial plants on undesirable land, scientists raise algae that suck up harmful exhaust and thrive in the non-drinkable wastewater. algae Why Algae? Algae produce at least 32 times more oil than

  2. Performance of Biofuels and Biofuel Blends

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Fuel Mix Disclosure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Website http:www.commerce.wa.govProgramsEnergyOfficeUtilitiesPagesFuelMi... State Washington Program Type Generation Disclosure Summary Washington's retail electric...

  4. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect (OSTI)

    Soloiu, Valentin

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels?? combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  5. SeQuential Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: SeQuential Biofuels LLC Place: Portland, Oregon Zip: 97231 Sector: Biofuels Product: A biofuels marketing and distribution company...

  6. Major DOE Biofuels Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Major DOE Biofuels Project Locations More Documents & Publications Major DOE Biofuels Project Locations Major DOE Biofuels Project Locations Algal Biofuel Technologies

  7. Beetles, Biofuel, and Coffee

    SciTech Connect (OSTI)

    Ceja-Navarro, Javier

    2015-05-06

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  8. Energy options: Cogen V and retail wheeling alternatives technical conference

    SciTech Connect (OSTI)

    1996-12-31

    The Energy Options technical conference proceedings contains 265 papers, of which 17 were selected for the database. The conference was split into two primary topics: cogeneration and retail wheeling. Subtopics under cogeneration included: the state of cogeneration in the United States, case studies in facility ownership, fuels considerations for tomorrow, and plant design considerations for cogeneration systems. Retail wheeling alternatives subtopics included U.S. Federal Energy Regulatory Commission rulings, end-user options for retail wheeling, deregulation issues, and forecasting of electricity generating costs. Papers not selected for the database, while clearly pertinent topics of interest, consisted of viewgraphs which were judged not to have sufficient technical information and coherence without the corresponding presentation. However, some papers which did consist of viewgraphs were included.

  9. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    SciTech Connect (OSTI)

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  10. NREL: Transportation Research - Fuel Chemistry Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo by Dennis Schroeder, NREL NREL's fuel chemistry research explores how biofuels, advanced petroleum-based fuels, fuel blends, and natural gas perform in vehicles as well as in ...

  11. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.

  12. Vivergo Fuels | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Vivergo Fuels Place: United Kingdom Product: Vivergo Fuels is a joint venture formed to build and operate a world-scale biofuel plant in the UK....

  13. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ethanol Fuel Blend Standard At least 85% of gasoline supplied to a retailer or sold in Hawaii must contain a minimum of 10% ethanol (E10), unless the Director determines that...

  14. Fuel Mix Disclosure

    Broader source: Energy.gov [DOE]

    California's retail electricity suppliers must disclose to all customers the fuel mix used in the generation of electricity. Utilities must use a standard label created by the California Energy...

  15. Retail Replacement Lamps | Department of Energy

    Energy Savers [EERE]

    CALiPER Testing » Application Reports » Retail Replacement Lamps Retail Replacement Lamps Annual CALiPER testing of A19, G25, candelabra, night light, MR16/PAR16, PAR20, and PAR30 replacement lamps - purchased directly from store shelves - offers insights on performance trends from year to year. The report findings offer valuable insights for manufacturers and retailers alike. Retail Lamps Study 3 (48 pages, February 2014) Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality

  16. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  17. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  18. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  19. Alternative Fuels Data Center: Maps and Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated ... and diesel) is used to transport freight (FHA 2010), the majority of which is diesel fuel. ...

  20. Power Ecalene Fuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Arvada, Colorado Zip: 80007 Region: Rockies Area Sector: Biofuels Product: Mixed alcohol transportation fuel Website: www.powerecalene.com Coordinates: 39.862942,...

  1. Alternative Fuels Data Center: Ethanol Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Case Studies Idaho County Employs FFVs and Idle Reduction Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains California Ramps Up Biofuels ...

  2. Vehicle Technologies Office Merit Review 2015: Biofuel Impacts on Aftertreatment Devices

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about biofuel impacts...

  3. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels & Infrastructure All Categories Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Clean Cities Petroleum Use Reduction Vehicles Program Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Laws & Incentives Regulated Fleets State & Alt Fuel Providers Federal Fleets OR Go Sort by: Category Most Recent Most Popular 54 results Fuel Trends -

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Blend Requirement Suppliers that import gasoline for sale in North Carolina must offer fuel that is not pre-blended with fuel alcohol but that is suitable for future blending. Future contract provisions that restrict distributors or retailers from blending gasoline with fuel alcohol are void. (Reference North Carolina General Statutes 75-90, 105-449.60

  5. Advanced Biofuels Cost of Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Cost of Production Advanced Biofuels Cost of Production Presentation given by the Biomass Program's Zia Haq at the Aviation Biofuels Conference on the cost of production of advanced biofuels. PDF icon aviation_biofuels_haq.pdf More Documents & Publications A Review of DOE Biofuels Program DOE Perspectives on Advanced Hydrocarbon-based Biofuels Pathways for Algal Biofuels

  6. 5 boro biofuel | Open Energy Information

    Open Energy Info (EERE)

    boro biofuel Jump to: navigation, search Logo: 5 boro biofuel Name: 5 boro biofuel Address: 100 maiden lane Place: New York, New York Zip: 10035 Region: Northeast - NY NJ CT PA...

  7. Sun Biofuels SBF | Open Energy Information

    Open Energy Info (EERE)

    Biofuels SBF Jump to: navigation, search Name: Sun Biofuels (SBF) Place: London, Greater London, United Kingdom Zip: W8 7LP Product: London-based jatropha and biofuel project...

  8. SunBelt Biofuels | Open Energy Information

    Open Energy Info (EERE)

    SunBelt Biofuels Jump to: navigation, search Logo: SunBelt Biofuels Name: SunBelt Biofuels Place: Soperton, Georgia Zip: 30457 Sector: Biomass Product: Freedom Giant Miscanthus...

  9. Heartland Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Heartland Biofuel Place: Flora, Indiana Product: Biodiesel producer that operates a 1.7m plant in Flora, Indiana. Coordinates: 32.54209,...

  10. Biofuels and Renewable Energy Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Conventional Renewable Energy Wind Power Hydro Power Power System INL Home Biofuels and Renewable Energy Renewable energy resources are expected to play major role in...

  11. Biofuels Task Force.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... is not geo- graphically oriented for transportation from biofuel production centers. ... ethanol concentration exceeds a critical level thus possibly clogging engine fi lters. ...

  12. Biofuels Digest | Open Energy Information

    Open Energy Info (EERE)

    Digest Jump to: navigation, search Name: Biofuels Digest Address: 801 Brickell Avenue Suite 900 Place: Miami, Florida Zip: 33131 Sector: Services Product: Information Year Founded:...

  13. National Algal Biofuels Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Renewable Energy that is Development Path Toward a Executive Summary v CONVERSION .........3 1.2 A History of Domestic Algal Biofuels Development ...

  14. Renewable Chemicals and Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

  15. Bulk Fuel Procurement Process & Alternative Drop-in Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bulk Fuel Procurement Process & Alternative Drop-in Fuel Bulk Fuel Procurement Process & Alternative Drop-in Fuel Jeanne Binder, DLA Energy, presentation on Bulk Fuel Procurement Process & Alternative Drop-in Fuel at the Advanced Biofuels Industry Roundtable. PDF icon 7_binder_roundtable.pdf More Documents & Publications DLA Energy: Your Supplemental Energy Contracting Venue Advanced Drop-In Biofuels Initiative Agenda FUPWG Spring 2015 Agenda and Presentations

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a significant part of the energy industry in Texas by January 1, 2019. The Policy Council is tasked with the following: Provide a vision for unifying the state's agricultural, energy, and research strengths in a successful launch of a cellulosic biofuel and bioenergy industry; Foster development of cellulosic and bio-based fuels; Pursue

  17. Category:StandAloneRetail | Open Energy Information

    Open Energy Info (EERE)

    IN Duke Energy Indiana Inc.png SVStandAloneRetail Ind... 66 KB SVStandAloneRetail Jackson MS Entergy Mississippi Inc.png SVStandAloneRetail Jac... 63 KB SVStandAloneRetail...

  18. USDA Biofuels R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USDA Biofuels R&D USDA Biofuels R&D USDA Biofuels R&D PDF icon USDA Biofuels R&D More Documents & Publications Webinar: Biofuels for the Environment and Communities 2015 Peer...

  19. NREL, Chevron Establish Research Alliance to Advance Cellulosic Biofuels -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL NREL, Chevron Establish Research Alliance to Advance Cellulosic Biofuels Collaboration to focus on next-generation production technologies for renewable fuels October 4, 2006 Chevron Corporation (NYSE: CVX) and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), headquartered in Golden, Colo., today announced a strategic research alliance to advance the development of renewable transportation fuels. Chevron Technology Ventures LLC (CTV), a

  20. Innovations: Making Biofuels More Efficient | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What are the key facts? Currently all biofuels rely on photosynthetic plants to convert energy from sunlight into usable fuel, but the overall efficiency of this is low. A new ARPA-E project is using thermophilic extremophiles -- microorganisms that grow optimally in temperatures above 160 deg F -- to produce a new highly efficient fuel. On Tuesday, Secretary Chu spoke of the need for new innovations to

  1. A Changing Market for Biofuels and Bioproducts

    Energy Savers [EERE]

    ... Chance, Executive Vice President, Engineering, Algenol - Daniel Cummings, President, POET-DSM Advanced Biofuels - Jim Lane, Editor and Publisher, Biofuels Digest - Michael McAdams, ...

  2. A Prospective Target for Advanced Biofuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Prospective Target for Advanced Biofuel Production A Prospective Target for Advanced Biofuel Production Print Thursday, 02 February 2012 13:34 The sesquiterpene bisabolene was...

  3. United Biofuels Private Limited | Open Energy Information

    Open Energy Info (EERE)

    United Biofuels Private Limited Jump to: navigation, search Name: United Biofuels Private Limited Place: Tamil Nadu, India Sector: Biomass Product: India-based owner and operator...

  4. Increasing Biofuel Deployment through Renewable Super Premium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * End: Dec. 2015 * Percent complete: 65% Barriers addressed It-F: Engine not Optimized for Biofuel Im-H: Availability of Biofuels Distribution Infrastructure It-I: ...

  5. Biofuel Authority Rajasthan | Open Energy Information

    Open Energy Info (EERE)

    Authority Rajasthan Jump to: navigation, search Name: Biofuel Authority Rajasthan Place: Jaipur, Rajasthan, India Zip: 302005 Sector: Biofuels Product: Jaipur-based local body to...

  6. Biofuel Industries Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Industries Group LLC Jump to: navigation, search Name: Biofuel Industries Group LLC Place: Adrian, Michigan Zip: 49221 Product: Biofuel Industries Group, LLC owns and operates the...

  7. Biofuel Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Energy Corporation Address: 1600 Broadway Place: Denver, Colorado Zip: 80202 Region: Rockies Area Sector: Biofuels Product: Ethanol producer Website: bfenergy.com...

  8. Central Texas Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Texas Biofuels LLC Jump to: navigation, search Name: Central Texas Biofuels LLC Place: Giddings, Texas Zip: 78942 Product: Biodiesel producer in Giddings, Texas. References:...

  9. Enhanced Biofuels Technologies India | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Technologies India Jump to: navigation, search Name: Enhanced Biofuels & Technologies India Place: Coimbatore, Tamil Nadu, India Zip: 641 029 Product: Tamil Nadu-based...

  10. BRMF Georgia Mountain Biofuels | Open Energy Information

    Open Energy Info (EERE)

    BRMF Georgia Mountain Biofuels Jump to: navigation, search Name: BRMFGeorgia Mountain Biofuels Place: Clayton, Georgia Product: Biodiesel plant developer in Georgia. References:...

  11. Ultimate Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Ultimate Biofuels LLC Place: Ann Arbor, Michigan Zip: 48108 Product: Plans to develop sweet sorghum based ethanol plants. References:...

  12. US Biofuels Inc USB | Open Energy Information

    Open Energy Info (EERE)

    Inc USB Jump to: navigation, search Name: US Biofuels, Inc (USB) Place: Delaware Sector: Biofuels Product: A Delaware corporation and a wholly owned subsidiary of Australian...

  13. Biofuels America Inc | Open Energy Information

    Open Energy Info (EERE)

    Biofuels America Inc Jump to: navigation, search Name: Biofuels America Inc Place: Memphis, Tennessee Zip: 38126 Product: Tennessee-based company that has proposed building a...

  14. Polo Nacional de Biocombustiveis Brazilian Biofuels Programme...

    Open Energy Info (EERE)

    Nacional de Biocombustiveis Brazilian Biofuels Programme Jump to: navigation, search Name: Polo Nacional de Biocombustiveis (Brazilian Biofuels Programme) Place: Piracicaba (SP),...

  15. Independence Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Inc Jump to: navigation, search Name: Independence Biofuels Inc Place: Middletown, Pennsylvania Zip: 17057 Sector: Renewable Energy, Vehicles Product: Provides clean,...

  16. Carolina Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Carolina Biofuels LLC Place: North Carolina Zip: 29687 Product: Biodiesel producer based in South Carolina. References: Carolina Biofuels LLC1 This article is a stub. You can...

  17. Flambeau River Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Flambeau River Biofuels Jump to: navigation, search Name: Flambeau River Biofuels Place: Park Falls, Wisconsin Sector: Biomass Product: A subsidiary of Flambeau River Papers LLC...

  18. US Biofuels Ltd Ohio | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Ltd Ohio Jump to: navigation, search Name: US Biofuels Ltd (Ohio) Place: Columbus, Ohio Zip: 43215 Product: Builder of a bioethanol plant in Richmond, OH. References: US...

  19. Greenlight Biofuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Greenlight Biofuels Ltd. Place: Texas Product: Texas-based biodiesel producer. References: Greenlight Biofuels Ltd.1 This article is a stub....

  20. Biofuels of Colorado LLC | Open Energy Information

    Open Energy Info (EERE)

    of Colorado LLC Jump to: navigation, search Name: Biofuels of Colorado LLC Place: Denver, Colorado Zip: 80216 Product: Biodiesel producer in Denver, Colorado. References: Biofuels...

  1. Middle Georgia Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Georgia Biofuels Jump to: navigation, search Name: Middle Georgia Biofuels Place: East Dublin, Georgia Zip: 31027 Product: Georgia-based biodiesel producer. References: Middle...

  2. ASAlliances Biofuels Defunct | Open Energy Information

    Open Energy Info (EERE)

    ASAlliances Biofuels Defunct Jump to: navigation, search Name: ASAlliances Biofuels (Defunct) Place: Dallas, Texas Product: Former JV formed to construct three large-scale ethanol...

  3. Greenleaf Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Greenleaf Biofuels LLC Jump to: navigation, search Name: Greenleaf Biofuels LLC Place: Guilford, Connecticut Zip: 6437 Product: Connecticut-based biodiesel start-up planning to...

  4. Pure Biofuels Corporation formerly Metasun Enterprises Inc |...

    Open Energy Info (EERE)

    Pure Biofuels Corporation formerly Metasun Enterprises Inc Jump to: navigation, search Name: Pure Biofuels Corporation (formerly Metasun Enterprises Inc) Place: Beverly Hills,...

  5. BlackGold Biofuels | Open Energy Information

    Open Energy Info (EERE)

    BlackGold Biofuels Jump to: navigation, search Name: BlackGold Biofuels Place: Philadelphia, Pennsylvania Zip: 19107 Product: Philadelphia-based developer of a waste...

  6. North American Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: North American Biofuels Place: Bohemia, New York Product: Biodiesel eqwuipment manufacturer and producer of biodiesel Coordinates:...

  7. Midwestern Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Midwestern Biofuels LLC Jump to: navigation, search Name: Midwestern Biofuels LLC Place: South Shore, Kentucky Zip: 41175 Sector: Biomass Product: Kentucky-based biomass energy...

  8. United Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Inc Jump to: navigation, search Name: United Biofuels Inc Place: Plover, Wisconsin Zip: 54467 Sector: Biomass Product: Wisconsin-based manufacturer and distributor of...

  9. India Biofuels Company IBFC | Open Energy Information

    Open Energy Info (EERE)

    IBFC Jump to: navigation, search Name: India Biofuels Company (IBFC) Place: Madhya Pradesh, India Product: India-based company that intends to develop biofuel feedstock...

  10. Memphis Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Memphis Biofuels LLC Place: Memphis, Tennessee Product: Biodiesel start-up planning to construct a 36-million-gallon-per-year...

  11. Verde Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Inc Jump to: navigation, search Name: Verde Biofuels Inc Place: Fountain Inn, South Carolina Product: The company is a biodiesel producer and distributor. References:...

  12. Mercurius Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Mercurius Biofuels LLC Jump to: navigation, search Name: Mercurius Biofuels LLC Address: 3190 Bay Road Place: Ferndale, Washington Zip: 98248 Region: Pacific Northwest Area Sector:...

  13. Triangle biofuels Industries | Open Energy Information

    Open Energy Info (EERE)

    Triangle biofuels Industries Jump to: navigation, search Name: Triangle biofuels Industries Place: Iowa Product: Biodiesel producer developing a 19mlpa plant in Johnston, IA....

  14. Borger Biofuels LLLP | Open Energy Information

    Open Energy Info (EERE)

    Borger Biofuels LLLP Jump to: navigation, search Name: Borger Biofuels LLLP Place: Borger, Texas Product: Developing a 110m gallon ethanol plant in Borger, Texas. Coordinates:...

  15. CREDA HPCL Biofuels | Open Energy Information

    Open Energy Info (EERE)

    CREDA HPCL Biofuels Jump to: navigation, search Name: CREDA-HPCL Biofuels Place: Raipur, India Zip: 492001 Sector: Renewable Energy Product: Indian-based joint venture between...

  16. Algal Biofuels Strategy Workshop - Fall Event

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Algal Biofuels Strategy Proceedings from the November 19-20, 2013, Workshop Mesa, ... Algae Program hosted the Algal Biofuels Strategy Workshop at Arizona State University on ...

  17. Partnering with Industry to Develop Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnering with Industry to Develop Advanced Biofuels > David C. Carroll GTI President and CEO Biomass 2014 July 29, 2014 2 Advanced Biofuels Tenets > Converting indigenous ...

  18. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions ...

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Tax Exemption Biodiesel blends containing at least 20% biodiesel derived from used cooking oil are exempt from the $0.30 per gallon state fuel excise tax. The exemption does not apply to fuel used in vehicles with a gross vehicle weight rating of 26,001 pounds or more, fuel not sold in retail operations, or fuel sold in operations involving fleet fueling or bulk sales. The exemption expires after December 31, 2019. (Reference Oregon Revised Statutes 319.530

  20. Dominion Retail Inc (Maine) | Open Energy Information

    Open Energy Info (EERE)

    Dominion Retail Inc (Maine) Jump to: navigation, search Name: Dominion Retail Inc Place: Maine Phone Number: 1-866-366-4357 Website: www.dom.com Outage Hotline: 1-866-366-4357...

  1. Bioproducts to Enable Biofuels Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bioenergy Technologies Office (BETO) is hosting the one-day Bioproducts to Enable Biofuels Workshop on July 16, 2015, in Westminster, Colorado. BETO is seeking to collect information from key industry, university, and national laboratory stakeholders, regarding the challenges associated with the coproduction of biomass derived chemicals and products alongside biofuels.

  2. Energy 101: Biofuels

    Broader source: Energy.gov [DOE]

    Learn how biomass is converted into clean, renewable transportation fuels to power our cars, trucks, planes, and trains.

  3. Biofuels Quality Surveys

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Fuel Mix and Emissions Disclosure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    restructuring legislation, Illinois established provisions for the disclosure of fuel mix and emissions data. All electric utilities and alternative retail electric...

  5. Tappable Pine Trees: Commercial Production of Terpene Biofuels in Pine

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: The University of Florida is working to increase the amount of turpentine in harvested pine from 4% to 20% of its dry weight. While enhanced feedstocks for biofuels have generally focused on fuel production from leafy plants and grasses, the University of Florida is experimenting with enhancing fuel production in a species of pine that is currently used in the paper pulping industry. Pine trees naturally produce around 3-5% terpene content in the wood—terpenes are the energy-dense fuel molecules that are the predominant components of turpentine. The team aims to increase the terpene storage potential and production capacity while improving the terpene composition to a point at which the trees could be tapped while alive, like sugar maples. Growth and production from these trees will take years, but this pioneering technology could have significant impact in making available an economical and domestic source of aviation and diesel biofuels.

  6. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    SciTech Connect (OSTI)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  7. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect (OSTI)

    2011-01-01

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  8. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect (OSTI)

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

  9. Alternative Liquid Fuels (ALF) | Open Energy Information

    Open Energy Info (EERE)

    Liquid Fuels (ALF) Jump to: navigation, search Name: Alternative Liquid Fuels (ALF) Address: P.O. Box 76 Place: McArthur, Ohio Zip: 45651 Sector: Biofuels, Renewable Energy,...

  10. Blue Sky Bio Fuels | Open Energy Information

    Open Energy Info (EERE)

    Bio Fuels Jump to: navigation, search Name: Blue Sky Bio-Fuels Place: Oakland, California Zip: 94602 Product: Blue Sky owns and operates a biodiesel plant in Idaho with a capacity...

  11. MassBioFuel | Open Energy Information

    Open Energy Info (EERE)

    MassBioFuel Jump to: navigation, search Name: MassBioFuel Address: 271 Milton Street Place: Dedham, Massachusetts Zip: 02026 Region: Greater Boston Area Sector: Biofuels Product:...

  12. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Most importantly, fuel cell vehicles are family-friendly, full-function vehicles that will ... These retail-like stations should provide easy access and customer-friendly fueling to any ...

  13. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  14. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  15. The calm before the storm. [Retail wheeling

    SciTech Connect (OSTI)

    Studness, C.M.

    1993-05-15

    The right to refuse retail wheeling requests is one of the cornerstones of a utility's monopoly power. Utilities have fought staunchly to preserve it, most recently in preventing retail wheeling from becoming an important issue in the congressional debate over deregulation; the Energy Policy Act of 1992 steered clear of it. For the present, the prohibition of retail wheeling gives utilities enormous power over the retail electric power market. The ability to refuse retail wheeling requests, of course, prevents retail customers from buying power from third parties. This enables a utility to sell retail customers all the power it can generate, at a price that covers its cost plus an allowed return-even if its price exceeds that of power available in the wholesale market. The denial of retail wheeling thus protects a utility's inefficiencies, whose price is ultimately shouldered onto customers through cost-plus electric rates. Allowing retail wheeling would remove the foundation for much of the current monopoly power that utilities enjoy. Third parties could sell power to a utility's retail customers, since the utility would be required to wheel it. Retail customers would be able to bypass the local distribution utility to buy power from the cheapest source available. Market forces would drive pricing rather than the cost-plus ratemaking process. A utility whose electric rates were above market would have to meet the competitive price or lose sales.

  16. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  17. Engineering Biofuels from Photosynthetic Bacteria - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Engineering Biofuels from Photosynthetic Bacteria Argonne National Laboratory Contact ANL About This Technology <em>Schematic of the overall approach including the invented method for production of co-factors and anchors as biofuel precursors.</em> Schematic of the overall approach including the invented method for production of co-factors and anchors as biofuel precursors. Technology Marketing

  18. Algal Biofuel Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Technologies Algal Biofuel Technologies At the November 6, 2008 joint Web conference of DOE's Biomass and Clean Cities programs, Al Darzins (National Renewable Energy Laboratory) provided an update on the status of technologies to produce biofuels from Algae. PDF icon darzins_20081106.pdf More Documents & Publications Algae Biofuels Technology The Current State of Technology for Cellulosic Ethanol The Promise and Challenge of Algae as Renewable Sources of Biofuels

  19. Biofuels | Open Energy Information

    Open Energy Info (EERE)

    process requires significant energy input for heat (often unsustainable natural gas fossil fuel, but cellulosic biomass such as bagasse, the waste left after sugar cane is...

  20. Country-Fried Biofuels

    Broader source: Energy.gov [DOE]

    Some Clean Cities coalitions, supported by the Vehicle Technologies Program in EERE, have worked with their local governments to make holiday drippings into clean fuel.

  1. Pathways for Algal Biofuels

    Broader source: Energy.gov [DOE]

    This is a presentation from the November 27, 2012, Sustainable Alternative Fuels Cost Workshop given by Daniel B. Fishman, of the Biomass Program.

  2. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biofuels vs Fossil Fuels

    Broader source: Energy.gov [DOE]

    This infographic was created by students from North Caddo Magnet High School in Vivian, LA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  3. PPC Worley and Independence Biofuels JV | Open Energy Information

    Open Energy Info (EERE)

    Worley and Independence Biofuels JV Jump to: navigation, search Name: PPC, Worley and Independence Biofuels JV Place: Pennsylvania Sector: Biofuels Product: JV between PPC, Worley...

  4. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  5. Pretreatment Methods for Biomass Conversion into Biofuels and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Pretreatment Methods for Biomass Conversion into Biofuels and Biopolymers National Renewable Energy...

  6. Los Alamos technology strikes a chord with algal biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology strikes chord with algal biofuels Los Alamos technology strikes a chord with algal biofuels Sound-wave technology is helping Solix Biofuels, Inc. optimize production of...

  7. Innovative Topics for Advanced Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cross-cutting Technologies for Advanced Biofuels Conversion Technologies for Advanced Biofuels - Carbohydrates Production Conversion Technologies for Advanced Biofuels - Bio-Oil ...

  8. Advanced Drop-In Biofuels Initiative Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drop-In Biofuels Initiative Agenda Advanced Drop-In Biofuels Initiative Agenda Agenda for the Advanced Drop-In Biofuels Initiative Industry Roundtable PDF icon ...

  9. Biofuels from Solar Energy and Bacteria: Electrofuels Via Direct Electron Transfer from Electrodes to Microbes

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: UMass is feeding renewable electricity to bacteria to provide the microorganisms with the energy they need to turn carbon dioxide (CO2) directly into liquid fuels. UMass’ energy-to-fuels conversion process is anticipated to be more efficient than current biofuels approaches in part because this process will leverage the high efficiency of photovoltaics to convert solar energy into electricity. UMass is using bacteria already known to produce biofuel from electric current and CO2 and working to increase the amount of electric current those microorganisms will accept and use for biofuels production. In collaboration with scientists at University of California, San Diego, the UMass team is also investigating the use of hydrogen sulfide as a source of energy to power biofuel production.

  10. 2013 Annual Merit Review Results Report - Fuels & Lubricants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... has high impact and has provided significant guidance to the biofuel and fuel industries. ... to evaluate the impacts on emissions and engine systems, and on the performance, ...

  11. Vanguard SynFuels LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Vanguard SynFuels LLC Place: Pollock, Louisiana Zip: 71467 Sector: Biofuels Product: Vanguard Synfuels, LLC is composed of a group of investors who develop...

  12. Designer Catalysts for Next Generation Fuel Synthesis - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industry's "workhorse" catalysts for upgrading heavy petroleum feed stocks and removing ... Bio-fuel production Hydrogen generation Direct coal liquefaction Oil refining ...

  13. Vehicle Technologies Office: Improving Biodiesel and Other Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VTO is continuing work to improve biofuels quality and better understand its effects on ... Fuels Modeling, Testing, Data & Results Education & Workforce Development Success Stories ...

  14. BioFuelBox Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Name: BioFuelBox Corporation Address: 50 Las Colinas Lane Place: San Jose, California Zip: 95119 Region: Bay Area Sector: Biofuels Product: Makes a modular...

  15. S. 3047: A Bill to amend the antitrust laws in order to preserve and promote wholesale and retail competition in the retail gasoline market. Introduced in the Senate of the United States, One Hundredth First Congress, Second Session, September 13, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This bill would amend the antitrust laws in order to preserve and promote wholesale and retail competition in the retail gasoline market. The bill defines limits on the purchases required of a retailer from the producer or refiner and defines the exceptions under which any large integrated refiner can operate any motor fuel service station in the US. The Federal Trade Commission is charged with the enforcement.

  16. National Advanced Biofuels Consortium Overview

    Broader source: Energy.gov [DOE]

    This PDF gives an overview of the National Advanced Biofuels Consortium (NABC). It shows the prior focus of NABC as well as the future focus, and it discusses objectives, funding, research, and the organizational structure of the NABC.

  17. Biofuels National Strategic Benefits Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... metrics for various portfolios of biofuel supply pathways Task B: Assess Potential ... Could a high-octane, mid-level ethanol blend paired with an optimized engine be more ...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Blend Dispenser Requirement A retail motor fuel dispenser that dispenses fuel containing more than 10% ethanol by volume must be labeled with the capital letter "E" followed by the numerical value representing the volume percentage of ethanol, such as E85, as specified in Kansas Department of Agriculture guidelines. (Reference Kansas Administrative Regulations 99-25-10

  19. Vehicle Technologies Office Merit Review 2014: Biofuel Impacts on Aftertreatment Devices (Agreement ID:26463) Project ID:18519

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about biofuel impacts...

  20. F.O. Licht's 17th Annual World Ethanol & Biofuels Conference

    Broader source: Energy.gov [DOE]

    The F.O. Licht's 17th Annual World Ethanol & Biofuels Conference will be held on November 3–6, 2014, in Budapest, Hungary. Valerie Reed, Deputy Director of the Bioenergy Technolgies Office will be serving on two panels: "Maintaining Next Generation Investments in the Years Ahead" on November 4 and "Putting Together a Constant Supply of Feedstocks for Advanced and Cellulosic Biofuels, Biochemicals and Aviation Fuels" on November 5.

  1. Picture of the Week: Hacking the bio-nano interface for better biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Hacking the bio-nano interface for better biofuels Los Alamos theoretical physicists and chemists are using computers to develop more efficient ways of converting biofuels into electricity by using fuel cells. April 29, 2016 Recent models have studied how three quinones (a class of organic compounds) influence electron transfer between the enzyme and the electrode to determine the best placement of enzymes on the electrode's surface. Recent models have studied how three quinones (a class of

  2. Fuel Cell Technologies Researcher Lightens Green Fuel Production

    Broader source: Energy.gov [DOE]

    Research funded by EEREs Fuel Cell Technologies Office has dramatically increased the efficiency of biofuel production by changing certain genes in algae to make them pale green.

  3. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities All Categories Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Clean Cities Petroleum Use Reduction Vehicles Program Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Laws & Incentives Regulated Fleets State & Alt Fuel Providers Federal Fleets OR Go Sort by: Category Most Recent Most Popular 9 results Petroleum Use Reduction -

  4. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Petroleum Use Reduction All Categories Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Clean Cities Petroleum Use Reduction Vehicles Program Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Laws & Incentives Regulated Fleets State & Alt Fuel Providers Federal Fleets OR Go Sort by: Category Most Recent Most Popular 5 results

  5. Alternative Fuels Data Center: Methanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Methanol to someone by E-mail Share Alternative Fuels Data Center: Methanol on Facebook Tweet about Alternative Fuels Data Center: Methanol on Twitter Bookmark Alternative Fuels Data Center: Methanol on Google Bookmark Alternative Fuels Data Center: Methanol on Delicious Rank Alternative Fuels Data Center: Methanol on Digg Find More places to share Alternative Fuels Data Center: Methanol on AddThis.com... More in this section... Biobutanol Dimethyl Ether Methanol Renewable Hydrocarbon Biofuels

  6. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fueling the Next Generation of Vehicle Technology Fueling the Next Generation of Vehicle Technology February 6, 2013 - 11:20am Addthis Professor Jack Brouwer, Associate Director and Chief Technology Officer of the National Fuel Cell Research Center, points out the tri-generation facility that uses biogas from Orange County Sanitation District’s wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department. Professor Jack Brouwer, Associate

  7. New Directions in Fuels Technology

    Broader source: Energy.gov [DOE]

    All fuels have their pros and cons that become evident at large scale, and while biofuels are a critical part of the energy future, they are not the only solution

  8. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    SciTech Connect (OSTI)

    Mayfield, Stephen P.

    2015-12-04

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between six academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.

  9. Biofuels | Open Energy Information

    Open Energy Info (EERE)

    cellulosic biomass, such as trees and grasses, are also used as feedstocks for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is...

  10. PetroSun Biofuels China | Open Energy Information

    Open Energy Info (EERE)

    PetroSun Biofuels China Jump to: navigation, search Name: PetroSun Biofuels China Place: China Sector: Biofuels Product: PetroSun Biofuels China is a wholly owned subsidiary of...

  11. Flambeau_River_Biofuels.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FlambeauRiverBiofuels.pdf FlambeauRiverBiofuels.pdf FlambeauRiverBiofuels.pdf PDF icon FlambeauRiverBiofuels.pdf More Documents & Publications Pacific Ethanol, Inc Flambeau ...

  12. Biofuels Impact on DPF Durability | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydrothermal Liquefaction | Department of Energy Whole algae hydrothermal liquefaction is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18. PDF icon Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction More Documents & Publications Pathways for Algal Biofuels Technology Pathway Selection Effort Whole Algae

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Bond Exemption for Small Biofuels Suppliers Fuel blenders or suppliers of ethanol or biodiesel are not required to file a bond with the North Carolina Department of Revenue when the expected motor fuel tax liability is less than $2,000. (Reference North Carolina General Statutes 105-449.72(a

  14. Methods for the economical production of biofuel from biomass

    DOE Patents [OSTI]

    Hawkins, Andrew C; Glassner, David A; Buelter, Thomas; Wade, James; Meinhold, Peter; Peters, Matthew W; Gruber, Patrick R; Evanko, William A; Aristidou, Aristos A; Landwehr, Marco

    2013-04-30

    Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.

  15. Financing Advanced Biofuels, Biochemicals And Biopower In Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Afternoon ...

  16. Dominion Retail Inc | Open Energy Information

    Open Energy Info (EERE)

    Activity Buying Transmission Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes This article is a stub. You can help OpenEI by...

  17. ,"Motor Gasoline Sales Through Retail Outlets Prices "

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Motor Gasoline Sales Through Retail Outlets Prices ",60,"Annual",2014,"6301984" ,"Release...

  18. Cross-cutting Technologies for Advanced Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cross-cutting Technologies for Advanced Biofuels Cross-cutting Technologies for Advanced Biofuels NREL report-out presentation at the CTAB webinar on crosscutting technologies for advanced biofuels. PDF icon ctab_webinar_crosscutting.pdf More Documents & Publications Innovative Topics for Advanced Biofuels Conversion Technologies for Advanced Biofuels - Carbohydrates Production Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  19. Better Buildings Neighborhood Program Business Models Guide: Retailer Business Model Conclusion

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: Retailer Business Model Conclusion, Summary of Retailer Insights.

  20. Information for Retailers of Lighting Products | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retailers of Lighting Products Information for Retailers of Lighting Products Information for Retailers of Lighting Products U.S. retailers who sell lighting products can use the information below to help their customers better understand energy-efficient lighting choices. New information will be added as it becomes available. U.S. retailers are welcome to use parts of these materials in their retail displays. In those cases, please do so without the Department of Energy's name, since we will

  1. A New Biofuels Technology Blooms in Iowa

    Broader source: Energy.gov [DOE]

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative...

  2. Partnering with Industry to Develop Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Breakout Session IA—Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute

  3. biofuel art | OpenEI Community

    Open Energy Info (EERE)

    biofuel art Home Dc's picture Submitted by Dc(266) Contributor 20 March, 2015 - 11:22 Public Art Generates Renewable Energy Beautifully biofuel art clean energy lagi land art...

  4. Synergy Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Synergy Biofuels LLC Place: Dryden, Virginia Zip: 24243 Product: Developing a 3m gallon (11.4m litre) biodiesel facility in Lee...

  5. E Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: E-Biofuels LLC Place: Fishers, Indiana Zip: 46038 Product: Indiana-based biodiesel producer. Coordinates: 43.01397, -77.471829...

  6. Pan Am Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Am Biofuels Inc Jump to: navigation, search Name: Pan-Am Biofuels Inc Place: Park City, Utah Zip: 84068 Product: Utah-based jatropha oil feedstock producer. References: Pan-Am...

  7. Pinnacle Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Inc Jump to: navigation, search Name: Pinnacle Biofuels, Inc. Place: Crossett, Arkansas Zip: 71635 Product: Pinnacle owns and operates a 37.9mLpa (10m gallon) capacity...

  8. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.62 a gallon on Monday. That's down 5.1 cents from a week ago, based on ...

  9. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.62 a gallon on Monday. That's down 2-tenths of a penny from a week ago, ...

  10. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.67 a gallon on Monday. That's down 5 cents from a week ago, based on ...

  11. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease; fall to lowest level since March 2009 The U.S. average retail price for on-highway diesel fuel fell to 2.03 a gallon on Monday. That's ...

  12. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.28 a gallon on Monday. That's down 5.4 cents from a week ago, based on ...

  13. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.34 a gallon on Monday. That's down 4.1 cents from a week ago, based on ...

  14. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.24 a gallon on Monday. That's down 4.9 cents from a week ago, based on ...

  15. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.81 a gallon on Monday. That's down 1.8 cents from a week ago, based on ...

  16. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.07 a gallon on Monday. That's down 4.1 cents from a week ago, based on ...

  17. U.S. diesel fuel prices decrease from previous week

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices decrease from previous week The U.S. average retail price for on-highway diesel fuel fell to 2.87 a gallon on Monday. That's down 1.4 cents from a week ago, ...

  18. U.S. diesel fuel prices decrease from previous week

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices decrease from previous week The U.S. average retail price for on-highway diesel fuel fell to 2.88 a gallon on Monday. That's down 2.5 cents from a week ago, ...

  19. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.54 a gallon on Monday. That's down 7 cents from a week ago, based on the ...

  20. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.48 a gallon on Monday. That's down 1.7 cents from a week ago, based on ...

  1. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.82 a gallon on Monday. That's down 1.4 cents from a week ago, based on ...

  2. U.S. diesel fuel prices stable from previous week

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices stable from previous week The U.S. average retail price for on-highway diesel fuel fell slightly to 2.91 a gallon on Monday. That's down half a penny from a ...

  3. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    April 6, 2015 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.78 a gallon on Monday. That's down 4 cents from a ...

  4. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.56 a gallon on Monday. That's down 5.4 cents from a week ago, based on ...

  5. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.63 a gallon on Monday. That's down 3.3 cents from a week ago, based on ...

  6. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.49 a gallon on Monday. That's down 2.4 cents from a week ago, based on ...

  7. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 2.12 a gallon on Monday. That's up 2-tenths of a penny from a week ago, ...

  8. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.49 a gallon on Monday. That's down 1.3 cents from a week ago, based on ...

  9. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.18 a gallon on Monday. That's down 3.4 cents from a week ago, based on ...

  10. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2016 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.11 a gallon on Monday. That's down 6 cents from a week ...

  11. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.21 a gallon on Monday. That's down 2.4 cents from a week ago, based on ...

  12. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.78 a gallon on Monday. That's down 3.2 cents from a week ago, based on ...

  13. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.50 a gallon on Monday. That's down 3.3 cents from a week ago, based on ...

  14. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.84 a gallon on Monday. That's down 8-tenths of a penny from a week ago, ...

  15. U.S. diesel fuel price falls under $3

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price falls under 3 The U.S. average retail price for on-highway diesel fuel fell 12 cents from a week ago to 2.93 a gallon on Monday. This marks the first time since ...

  16. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.61 a gallon on Monday. That's down 2.3 cents from a week ago, based on ...

  17. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 2.91 a gallon on Memorial Day Monday. That's up a penny from a week ago, ...

  18. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.83 a gallon on Monday. That's down 1.1 cents from a week ago, based on ...

  19. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.72 a gallon on Monday. That's down 5.9 cents from a week ago, based on ...

  20. Energy 101: Feedstocks for Biofuels and More

    Broader source: Energy.gov [DOE]

    See how organic materials are used to create biofuels, reducing dependence on foreign oil and creating jobs.

  1. Legislating Biofuels in the United States (Presentation)

    SciTech Connect (OSTI)

    Clark, W.

    2008-07-01

    Legislation supporting U.S. biofuels production can help to reduce petroleum consumption and increase the nation's energy security.

  2. FACTSHEET: Energy Department Investments in Biofuels Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Department Investments in Biofuels Innovation FACTSHEET: Energy Department Investments in Biofuels Innovation July 2, 2012 - 10:00am Addthis As part of the Obama Administration's commitments to an all-out, all-of-the-above strategy to develop every source of American energy and reduce our reliance on imported oil, the Energy Department is working to catalyze breakthroughs in innovative biofuel technologies and advance biofuels production at refineries across the

  3. Potential for Biofuels from Algae (Presentation)

    SciTech Connect (OSTI)

    Pienkos, P. T.

    2007-11-15

    Presentation on the potential for biofuels from algae presented at the 2007 Algae Biomass Summit in San Francisco, CA.

  4. A New Biofuels Technology Blooms in Iowa

    SciTech Connect (OSTI)

    Mathisen, Todd; Bruch, Don

    2010-01-01

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  5. Algal Biofuels Research Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

  6. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon ctabwebinarcarbohydratesupgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap ...

  7. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon ctabwebinarcarbohydratesproduction.pdf More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - ...

  8. Strategic Perspectives on Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspectives on Biofuels Strategic Perspectives on Biofuels Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting Misconceptions Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions Lee R. Lynd, Professor of Engineering, Dartmouth College PDF icon lynd_bioenergy_2015.pdf More Documents & Publications Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply Growing

  9. A New Biofuels Technology Blooms in Iowa

    ScienceCinema (OSTI)

    Mathisen, Todd; Bruch, Don;

    2013-05-29

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  10. Innovation for Food Retail: The 50% Advanced Energy Design Guide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation for Food Retail: The 50% Advanced Energy Design Guide for Grocery Stores Innovation for Food Retail: The 50% Advanced Energy Design Guide for Grocery Stores Find the ...

  11. Hess Retail Natural Gas and Elec. Acctg. (Delaware) | Open Energy...

    Open Energy Info (EERE)

    Hess Retail Natural Gas and Elec. Acctg. (Delaware) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: Delaware References: EIA Form EIA-861 Final...

  12. Hess Retail Natural Gas and Elec. Acctg. (Connecticut) | Open...

    Open Energy Info (EERE)

    Hess Retail Natural Gas and Elec. Acctg. (Connecticut) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: Connecticut Phone Number: 212-997-8500...

  13. Hess Retail Natural Gas and Elec. Acctg. (District of Columbia...

    Open Energy Info (EERE)

    Hess Retail Natural Gas and Elec. Acctg. (District of Columbia) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: District of Columbia References:...

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Signage The Ohio Turnpike Commission allows businesses to place their logos on directional signs within the right-of-way of state turnpikes. An alternative fuel retailer may include a marking or symbol within their logo indicating that it sells one or more types of alternative fuel. Alternative fuels are defined as E85, fuel blends containing at least 20% biodiesel (B20), natural gas, propane, hydrogen, or any fuel that the U.S. Department of Energy determines, by final rule, to be

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    E85 Fueling Infrastructure Grants The Illinois Department of Commerce and Economic Opportunity's (Department) Renewable Fuels Development Program is partnered with the Illinois Corn Marketing Board to fund new E85 fueling infrastructure at retail gasoline stations. The American Lung Association of Illinois-Iowa administers grants of up to $15,000 for a blender pump installation, $10,000 for a new E85 dispenser installation, and $7,500 to convert existing stations to dispense E85. The maximum

  16. Verenium Biofuels Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Verenium Biofuels Fact Sheet Verenium Biofuels Fact Sheet Operation and maintenance of a demonstration-scale facility in Jennings, Louisiana with some capital additions. PDF icon Verenium_Biofuels.pdf More Documents & Publications Pacific Ethanol, Inc Verenium Pilot- and Demonstration-Scale Biorefinery Pacific Ethanol, Inc

  17. Conversion Technologies for Advanced Biofuels - Carbohydrates Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production. PDF icon ctab_webinar_carbohydrates_production.pdf More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  18. Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. PDF icon ctab_webinar_carbohydrates_upgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for Advanced Biofuels

  19. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Gasoline and Diesel Fuel Update (EIA)

    "Resellers'Retailers' Monthly Petroleum Product Sales Report." 16. U.S. No. 2 Diesel Fuel Prices by Sales Type 30 Energy Information Administration Petroleum Marketing Annual...

  20. Ethanol Distribution, Dispensing, and Use: Analysis of a Portion of the Biomass-to-Biofuels Supply Chain Using System Dynamics

    SciTech Connect (OSTI)

    Vimmerstedt, L. J.; Bush, B.; Peterson, S.

    2012-05-01

    The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.

  1. Energy Department Announces $11.3 Million Available for Mega-Bio: Bioproducts to Enable Biofuels

    Broader source: Energy.gov [DOE]

    The Energy Department today announced up to $11.3 million in funding to develop flexible biomass-to-hydrocarbon biofuels conversion pathways that can be modified to produce advanced fuels and/or products based on external factors, such as market demand. These pathways could consist of a route to a platform chemical that could be converted to products or renewable hydrocarbon fuels or a route that co-produces chemicals and renewable hydrocarbon fuels.

  2. Technoeconomic Comparison of Biofuels: Ethanol, Methanol, and Gasoline from Gasification of Woody Residues (Presentation)

    SciTech Connect (OSTI)

    Tarud, J.; Phillips, S.

    2011-08-01

    This presentation provides a technoeconomic comparison of three biofuels - ethanol, methanol, and gasoline - produced by gasification of woody biomass residues. The presentation includes a brief discussion of the three fuels evaluated; discussion of equivalent feedstock and front end processes; discussion of back end processes for each fuel; process comparisons of efficiencies, yields, and water usage; and economic assumptions and results, including a plant gate price (PGP) for each fuel.

  3. Using System Dynamics to Model the Transition to Biofuels in the United States

    SciTech Connect (OSTI)

    Bush, B.; Duffy, M.; Sandor, D.; Peterson, S.

    2008-01-01

    Today, the U.S. consumes almost 21 million barrels of crude oil per day; approximately 60% of the U.S. demand is supplied by imports. The transportation sector alone accounts for two-thirds of U.S. petroleum use. Biofuels, liquid fuels produced from domestically-grown biomass, have the potential to displace about 30% of current U.S. gasoline consumption. Transitioning to a biofuels industry on this scale will require the creation of a robust biomass-to-biofuels system-of-systems that operates in concert with the existing agriculture, forestry, energy, and transportation markets. The U.S. Department of Energy is employing a system dynamics approach to investigate potential market penetration scenarios for cellulosic ethanol, and to aid decision makers in focusing government actions on the areas with greatest potential to accelerate the deployment of biofuels and ultimately reduce the nationpsilas dependence on imported oil.

  4. Fuels Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Technologies Fuels Technologies Overview of DOE Fuels Technologies R&D activities, including fuels for advanced combustion engines, advanced petroleum-based and non-petroleum based fuels, and biofuels. PDF icon deer08_stork.pdf More Documents & Publications Mid-Level Ethanol Blends Mid-Level Ethanol Blends Test Program Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 … Updated Feb 2009

  5. The second Pacific basin biofuels workshop: Volume 1, Report

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    Biomass is the most flexible renewable energy resource in Hawaii. Today it provides the state with cost-effective fuel for electrical generation and for thermal energy used in sugarcane processing; tomorrow it will provide feedstock to produce liquid and gaseous fuels, which will help meet Hawaii's transportation energy needs. With optimal growing conditions year round and a strong economy based in part on sugarcane and pineapple cultivation, Hawaii is an ideal place to develop fuels from biomass. In November 1984, the Hawaii Natural Energy Institute (HNEI) held the First Pacific Basin BioFuels Workshop. The Plan for Action resulting from this workshop led to significant new program efforts that addressed the advancement of biomass research, development, and use. The Second Pacific Basin BioFuels Workshop was held at the Kauai Resort Hotel in Kapaa, Kauai, April 22-24, 1987. Before and after the workshop, HNEI conducted field visits to biomass energy facilities and test sites on Hawaii, Maui, Oahu, and Kauai. The workshop consisted of presentations, discussion groups, and plenary sessions on growth and yield, conversion, end use, institutional issues, and other topics. The final session focused on recommendations for a Plan for Action update.

  6. Biofuel Facts for the Road: The Energy Department and Your Gasoline Pump

    Broader source: Energy.gov [DOE]

    Before you hit the road to visit relatives or friends this holiday season, you’ll probably stop at the gas station to fuel up. The Energy Department’s Bioenergy Technologies Office invests in research and development to help commercialize biofuels—liquid fuels produced from plant sources—to reduce America’s dependence on foreign oil, build the economy, and reduce greenhouse gas emissions. While you’re at the gas pump, pay attention to a few things. There are several biofuel options already available to you today, and the Energy Department is working to bring other second-generation biofuel options to a pump near you.

  7. Brewing Jet Fuel in a One-Pot Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brewing Jet Fuel in a One-Pot Recipe Lab scientists have engineered a strain of bacteria that enables a "one-pot" method for producing advanced biofuels from a slurry of pre-treated plant material. The achievement is a critical step in making biofuels a viable competitor to fossil fuels.

  8. Final Report for NFE-07-00912: Development of Model Fuels Experimental...

    Office of Scientific and Technical Information (OSTI)

    New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil ...

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuel Compatibility Requirements for Underground Storage Tanks (USTs) Fueling station owners and operators must notify the appropriate state and local implementing agencies at least 30 days before switching USTs to store ethanol blends greater than 10%, biodiesel blends greater than 20%, or any other regulated fuel the agency has identified. This notification timeframe allows agencies to request information on UST compatibility before the owner or operator stores the fuel. Owners and operators

  10. Alternative Fuels Data Center: Students Power Remote-Controlled...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Cities Clean up With Biofuels Nov. 21, 2013 Photo of buses Clean Cities Reflects on 20 Years of Alternative Fuels Oct. 3, 2013 Photo of a taxi cab Happy Cab Fuels Taxi Fleet With ...

  11. Impact of Policy on Fuels RD&D (Presentation)

    SciTech Connect (OSTI)

    Gearhart, C.

    2013-12-01

    This presentation provides an overview of fuel economy and emissions policy and its relationship with fuel research, development, and deployment (RD&D). Solutions explored include biofuels and increased engine efficiency.

  12. NextGen Fuel Inc | Open Energy Information

    Open Energy Info (EERE)

    NextGen Fuel Inc Jump to: navigation, search Name: NextGen Fuel Inc Place: Fulton, New York Sector: Biofuels Product: Developer of new technology and chemistry for the production...

  13. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion

    Office of Scientific and Technical Information (OSTI)

    Combustion Engines Bunting, Bruce G ORNL; Bunce, Michael ORNL 02 PETROLEUM; 04 OIL SHALES AND TAR SANDS; 10 SYNTHETIC FUELS; 33 ADVANCED PROPULSION SYSTEMS; BIOFUELS;...

  14. Algae Derived Biofuel

    SciTech Connect (OSTI)

    Jahan, Kauser

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  15. A Review of DOE Biofuels Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Review of DOE Biofuels Program A Review of DOE Biofuels Program Presentation given by the Biomass Program's Zia Haq at NIST's 4th International Conference on Biofuels Standards on the Biomass Program. PDF icon nist_haq.pdf More Documents & Publications Technology Pathway Selection Effort DOE Perspectives on Advanced Hydrocarbon-based Biofuels Advanced Biofuels Cost of Production

  16. Near-zero emissions combustor system for syngas and biofuels

    SciTech Connect (OSTI)

    Yongho, Kim; Rosocha, Louis

    2010-01-01

    A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on research necessary to develop a novel, high-efficiency, low-emissions (near-zero, or as low as reasonably achievable), advanced combustion technology for electricity and heat production from biofuels and fuels derived from MSW. For any type of combustion technology, including the advanced technology of this project, two problems of special interest must be addressed: developing and optimizing the combustion chambers and the systems for igniting and sustaining the fuel-burning process. For MSW in particular, there are new challenges over gaseous or liquid fuels because solid fuels must be ground into fine particulates ({approx} 10 {micro}m diameter), fed into the advanced combustor, and combusted under plasma-assisted conditions that are quite different than gaseous or liquid fuels. The principal idea of the combustion chamber design is to use so-called reverse vortex gas flow, which allows efficient cooling of the chamber wall and flame stabilization in the central area of the combustor (Tornado chamber). Considerable progress has been made in design ing an advanced, reverse vortex flow combustion chamber for biofuels, although it was not tested on biofuels and a system that could be fully commercialized has never been completed.

  17. Estimates of the Global Indirect Energy-Use Emission Impacts of USA Biofuel Policy

    SciTech Connect (OSTI)

    Oladosu, Gbadebo A

    2012-01-01

    This paper evaluates the indirect energy-use emission implications of increases in the use of biofuels in the USA between 2001 and 2010 as mandates within a dynamic global computable general equilibrium model. The study incorporates explicit markets for biofuels, petroleum and other fossil fuels, and accounts for interactions among all sectors of an 18-region global economy. It considers bilateral trade, as well as the dynamics of capital allocation and investment. Simulation results show that the biofuel mandates in the USA generate an overall reduction in global energy use and emissions over the simulation period from 2001 to 2030. Consequently, the indirect energy-use emission change or emission leakage under the mandate is negative. That is, global emission reductions are larger than the direct emission savings from replacing petroleum with biofuels under the USA RFS2 over the last decade. Under our principal scenario this enhanced the direct emission reduction from biofuels by about 66%. The global change in lifecycle energy-use emissions for this scenario was estimated to be about 93 million tons of CO2e in 2010, 45 million tons of CO2e in 2020, and an increase of 5 million tons of CO2e in 2030, relative to the baseline scenario. Sensitivity results of six alternative scenarios provided additional insights into the pattern of the regional and global effects of biofuel mandates on energy-use emissions.

  18. Texas Retail Energy, LLC | Open Energy Information

    Open Energy Info (EERE)

    2010 - File1a1 EIA Form 861 Data Utility Id 50046 Utility Location Yes Ownership R ISO Ercot Yes ISO NY Yes Activity Retail Marketing Yes This article is a stub. You can help...

  19. CPL Retail Energy, LP | Open Energy Information

    Open Energy Info (EERE)

    EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility Id 13151 Utility Location Yes Ownership R NERC ERCOT Yes Activity Retail Marketing Yes This article is a...

  20. CALiPER Retail Lamps Study 3

    SciTech Connect (OSTI)

    none,

    2014-02-01

    This is a special CALiPER report on LED lamps available through the retail marketplace and targeted toward general consumers. It follows similar reports published in 2011 and 2012 (products purchased in 2010 and 2011), and is intended as a continuation that identifies long-term trends. For this report, products were selected to investigate specific hypotheses, rather than represent a sample of the increasingly large retail LED market.