Powered by Deep Web Technologies
Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Brine Migration Experimental Studies for Salt Repositories | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brine Migration Experimental Studies for Salt Repositories Brine Migration Experimental Studies for Salt Repositories Brine Migration Experimental Studies for Salt Repositories Experiments were used to examine water content in Permian salt samples (Salado Formation) collected from the WIPP site. The profile of water release and movement is recognized as a function of temperature from 30 to 275 oC using classical gravimetric methods to measure weight loss as a result of heating. The amount of water released from heating the salt was found to be correlated with the salts accessory mineral content (clay, other secondary minerals lost up to 3 wt % while pure halite salt lost less than 0.5 wt % water). Water released from salt at lower temperature was reversible and is attributed to clay hydration and dehydration processes. The analysis

2

Brine Migration Experimental Studies for Salt Repositories | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brine Migration Experimental Studies for Salt Repositories Brine Migration Experimental Studies for Salt Repositories Brine Migration Experimental Studies for Salt Repositories Experiments were used to examine water content in Permian salt samples (Salado Formation) collected from the WIPP site. The profile of water release and movement is recognized as a function of temperature from 30 to 275 oC using classical gravimetric methods to measure weight loss as a result of heating. The amount of water released from heating the salt was found to be correlated with the salts accessory mineral content (clay, other secondary minerals lost up to 3 wt % while pure halite salt lost less than 0.5 wt % water). Water released from salt at lower temperature was reversible and is attributed to clay hydration and dehydration processes. The analysis

3

Brines formed by multi-salt deliquescence  

SciTech Connect

The FY05 Waste Package Environment testing program at Lawrence Livermore National Laboratory focused on determining the temperature, relative humidity, and solution compositions of brines formed due to the deliquescence of NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} salt mixtures. Understanding the physical and chemical behavior of these brines is important because they define conditions under which brines may react with waste canister surfaces. Boiling point experiments show that NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} salt mixtures form brines that transform to hydrous melts that do not truly 'dry out' until temperatures exceed 300 and 400 C, respectively. Thus a conducting solution is present for these salt assemblages over the thermal history of the repository. The corresponding brines form at lower relative humidity at higher temperatures. The NaCl-KNO{sub 3}-NaNO{sub 3} salt mixture has a mutual deliquescence relative humidity (MDRH) of 25.9% at 120 C and 10.8% at 180 C. Similarly, the KNO{sub 3}-NaNO{sub 3} salt mixture has MDRH of 26.4% at 120 C and 20.0% at 150 C. The KNO{sub 3}-NaNO{sub 3} salt mixture salts also absorb some water (but do not appear to deliquesce) at 180 C and thus may also contribute to the transfer of electrons at interface between dust and the waste package surface. There is no experimental evidence to suggest that these brines will degas and form less deliquescent salt assemblages. Ammonium present in atmospheric and tunnel dust (as the chloride, nitrate, or sulfate) will readily decompose in the initial heating phase of the repository, and will affect subsequent behavior of the remaining salt mixture only through the removal of a stoichiometric equivalent of one or more anions. Although K-Na-NO{sub 3}-Cl brines form at high temperature and low relative humidity, these brines are dominated by nitrate, which is known to inhibit corrosion at lower temperature. Nitrate to chloride ratios of the NaCl-KNO{sub 3}-NaNO{sub 3} salt mixture are about NO{sub 3}:Cl = 19:1. The role of nitrate on corrosion at higher temperatures is addressed in a companion report (Dixit et al., 2005).

Carroll, S; Rard, J; Alai, M; Staggs, K

2005-11-04T23:59:59.000Z

4

Brine flow in heated geologic salt.  

Science Conference Proceedings (OSTI)

This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

Kuhlman, Kristopher L.; Malama, Bwalya

2013-03-01T23:59:59.000Z

5

Expected brine movement at potential nuclear waste repository salt sites  

SciTech Connect

The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

McCauley, V.S.; Raines, G.E.

1987-08-01T23:59:59.000Z

6

Salt effects on stable isotope partitioning and their geochemical implications for geothermal brines  

DOE Green Energy (OSTI)

It has long been recognized that dissolved salts in water can change oxygen and hydrogen isotope partitioning between water and other phases (i.e., vapor, minerals) due to the hydration of ions upon the dissolution of salts in water. However, their effects have not been well determined at elevated temperatures. We are currently conducting a series of hydrothermal experiments of the system brine-vapor or minerals to 350{degrees}C, in order to determine precisely the effects of dissolved salts abundant in brines on isotope partitioning at temperatures encountered in geothermal systems. The so-called ``isotope salt effect`` has important implications for the interpretation and modeling of isotopic data of brines and rocks obtained from geothermal fields. We will show how to use our new results of isotopic partitioning to help better evaluate energy resources of many geothermal fields.

Horita, J.; Cole, D.R.; Wesolowski, D.J.

1994-06-01T23:59:59.000Z

7

Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography  

SciTech Connect

Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs.

Hull, A.B.; Williams, L.B.

1985-07-01T23:59:59.000Z

8

Study of thermal-gradient-induced migration of brine inclusions in salt. Final report  

Science Conference Proceedings (OSTI)

Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

Olander, D.R.

1984-08-01T23:59:59.000Z

9

Biochemical solubilization of toxic salts from residual geothermal brines and waste waters  

DOE Patents (OSTI)

A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

1994-11-22T23:59:59.000Z

10

Biochemical solubilization of toxic salts from residual geothermal brines and waste waters  

DOE Patents (OSTI)

A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed. The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts. For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates. 54 figs.

Premuzic, E.T.; Lin, M.S.

1994-11-22T23:59:59.000Z

11

Estimation Of Retained Crude Oil Associated With Crushed Salt And Salt Cores In The Presence Of Near-Saturated Brine  

E-Print Network (OSTI)

This paper describes three experiments whose purpose is to determine the amount of retained oil on massive salt surfaces and in crushed salt in the presence of water and brine. These experiments have application to the decommissioning process for the Weeks Island mine. In the first experiment, oil-coated salt cores were immersed in either fresh water or in 85% brine. In the case of both fluids, the oil was completely removed from the cores within several hours. In the second experiment, oil-coated salt pieces were suspended in air and the oil was allowed to drain. The weight of retained oil clinging to the salt was determined. This experiment was used to estimate the total amount of oil clinging to the roofs of the mine. The total amount of oil clinging to the roofs of the mine is estimated to be between 240 and 400 m 3 (1500 and 2500 BBL). In the third experiment, a pan of oil-soaked crushed salt was immersed in 85% brine, and oil removal from the salt was monitored as a function of...

Timothy Hern Energetic; Timothy J. O’hern; Thomas E. Hinkebein; Thomas W. Grasser

1999-01-01T23:59:59.000Z

12

Brine migration test report: Asse Salt Mine, Federal Republic of Germany: Technical report  

Science Conference Proceedings (OSTI)

This report presents a summary of Brine Migration Tests which were undertaken at the Asse mine of the Federal Republic of Germany (FRG) under a bilateral US/FRG agreement. This experiment simulates a nuclear waste repository at the 800-m (2624-ft) level of the Asse salt mine in the Federal Republic of Germany. This report describes the Asse salt mine, the test equipment, and the pretest properties of the salt in the mine and in the vicinity of the test area. Also included are selected test data (for the first 28 months of operation) on the following: brine migration rates, thermomechaical behavior of the salt (including room closure, stress reading, and thermal profiles), borehole gas pressures, and borehole gas analyses. In addition to field data, laboratory analyses of pretest salt properties are included in this report. The operational phase of these experiments was completed on October 4, 1985, with the commencement of cooldown and the start of posttest activities. 7 refs., 68 figs., 48 tabs.

Coyle, A.J.; Eckert, J.; Kalia, H.

1987-01-01T23:59:59.000Z

13

Radiation chemistry of salt-mine brines and hydrates. [Gamma radiation  

Science Conference Proceedings (OSTI)

Certain aspects of the radiation chemistry of NaCl-saturated MgCl/sub 2/ solutions and MgCl/sub 2/ hydrates at temperatures in the range of 30 to 180/sup 0/C were investigated through experiments. A principal objective was to establish the values for the yields of H/sub 2/ (G(H/sub 2/)) and accompanying oxidants in the gamma-ray radiolysis of concentrated brines that might occur in waste repositories in salt. We concluded that G(H/sub 2/) from gamma-irradiated brine solution into a simultaneously irradiated, deaerated atmosphere above the solution is between 0.48 and 0.49 over most of the range 30 to 143/sup 0/C. The yield is probably somewhat lower at the lower end of this range, averaging 0.44 at 30 to 45/sup 0/C. Changes in the relative amounts of MgCl/sub 2/ and NaCl in the NaCl-saturated solutions have negligible effects on the yield. The yield of O/sub 2/ into the same atmosphere averages 0.13, independent of the temperature and brine composition, showing that only about 50% of the radiolytic oxidant that was formed along with the H/sub 2/ was present as O/sub 2/. We did not identify the species that compose the remainder of the oxidant. We concluded that the yield of H/sub 2/ from a gamma-irradiated brine solution into a simultaneously irradiated atmosphere containing 5 to 8% air in He may be greater than the yield in deaerated systems by amounts ranging from 0% for temperatures of 73 to 85/sup 0/C, to about 30 and 40% for temperatures in the ranges 100 to 143/sup 0/C and 30 to 45/sup 0/C, respectively. We did not establish the mechanism whereby the air affected the yields of H/sub 2/ and O/sub 2/. The values found in this work for G(H/sub 2/) in deaerated systems are in approximate agreement with the value of 0.44 for the gamma-irradiation yield of H/sub 2/ in pure H/sub 2/O at room temperature. They are also in agreement with the values predicted by extrapolation from the findings of previous researchers for the value for G(H/sub 2/) in 2 M NaCl solutions at room temperature.

Jenks, G.H.; Walton, J.R.; Bronstein, H.R.; Baes, C.F. Jr.

1981-07-01T23:59:59.000Z

14

Salt  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Salt Nature Bulletin No. 340-A April 12, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation SALT It is fortunate that Salt -- common salt, known to chemists as sodium chloride and to mineralogists as Halite -- is one of the most abundant substances on earth, because most of us crave it and must have it. Eskimos get along without salt because they live mostly on the uncooked flesh of fish and mammals. A few nomad tribes never eat it and do not need it because their diet contains so much milk cheese, and meat eaten raw or roasted. We people who eat boiled meat and many vegetables must have salt. Of the millions of tons produced commercially each year, only about three percent is used as table salt. Large quantities are required for refrigeration meat packing, curing and preserving fish, pickles, sauerkraut, and for other foods prepared in brine. A lot of it is needed for livestock. Salt is spread on sidewalks, streets and highways to melt ice in winter. It is used to glaze pottery, sewer pipe and other ceramics. It is required in many metallurgical processes, chemical industries, and the manufacture of such products as leather, glass, soap, bleaching powder and photographic supplies. It has about 14,000 uses.

15

Technical and economic feasibility of salt-gradient solar ponds at the Truscott Brine Lake of the Red River Chloride Control Project. A report to the House-Senate Committee on Appropriations of the Ninety-Seventh Congress  

DOE Green Energy (OSTI)

The Truscott Brine Lake is being constructed to impound highly brackish water from a number of sources which would normally flow into the Wichita River, a tributary of the Red River in Knox County, Texas. A 35.4-km (22-mile) pipeline is being constructed to carry the brines from their primary source to the Truscott Brine Lake site. The reservoir is designed to contain 100 years of brine emissions from three chloride emission areas in the Wichita River Basin. The solar ponds and power generating facilities would be located in the Bluff Creek Arm of Truscott Brine Lake. The Truscott Brine Lake study includes: survey of suitability of Truscott Lake site, review of solar pond technology, preconceptual design of solar salt pond power plant, and economic evaluation.

Not Available

1982-09-01T23:59:59.000Z

16

Results of Salt Batch Qualification Testing  

• Reviews the past campaigns of salt disposition (Macrobatch 1 and 2). ... • Macrobatch 2 processed a total volume of 730,000 gallons from February ...

17

Weeks Island brine diffuser site study: baseline conditions and environmental assessment technical report  

SciTech Connect

This technical report presents the results of a study conducted at two alternative brine diffuser sites (A and B) proposed for the Weeks Island salt dome, together with an analysis of the potential physical, chemical, and biological effects of brine disposal for this area of the Gulf of Mexico. Brine would result from either the leaching of salt domes to form or enlarge oil storage caverns, or the subsequent use of these caverns for crude oil storage in the Strategic Petroleum Reserve (SPR) program. Brine leached from the Weeks Island salt dome would be transported through a pipeline which would extend from the salt dome either 27 nautical miles (32 statute miles) for Site A, or 41 nautical miles (47 statute miles) for Site B, into Gulf waters. The brine would be discharged at these sites through an offshore diffuser at a sustained peak rate of 39 ft/sup 3//sec. The disposal of large quantities of brine in the Gulf could have a significant impact on the biology and water quality of the area. Physical and chemical measurements of the marine environment at Sites A and B were taken between September 1977 and July 1978 to correlate the existing environmental conditions with the estimated physical extent of tthe brine discharge as predicted by the MIT model (US Dept. of Commerce, 1977a). Measurements of wind, tide, waves, currents, and stratification (water column structure) were also obtained since the diffusion and dispersion of the brine plume are a function of the local circulation regime. These data were used to calculate both near- and far-field concentrations of brine, and may also be used in the design criteria for diffuser port configuration and verification of the plume model. Biological samples were taken to characterize the sites and to predict potential areas of impact with regard to the discharge. This sampling focused on benthic organisms and demersal fish. (DMC)

None

1980-12-12T23:59:59.000Z

18

Property:BrineConstituents | Open Energy Information  

Open Energy Info (EERE)

BrineConstituents BrineConstituents Jump to: navigation, search Property Name BrineConstituents Property Type String Description Describes major elements, compounds in geothermal brine This is a property of type Page. Subproperties This property has the following 1 subproperty: V Valles Caldera - Redondo Geothermal Area Pages using the property "BrineConstituents" Showing 2 pages using this property. N North Brawley Geothermal Area + Chlorine, sodium, potassium, and calcium. Silica concentrations are 527 mg/l and total dissolved solids measure 82,900 mg/l. + S Salt Wells Geothermal Area + Cl, Na, SO4, SiO2, HCO3, and minor Ca, K + Retrieved from "http://en.openei.org/w/index.php?title=Property:BrineConstituents&oldid=598832#SMWResults" Category: Properties

19

Geochemistry and petrology of surface samples, six boreholes and brines from the Salton Sea geothermal field: A natural analog of a nuclear waste repository in salt: Report No. 3  

DOE Green Energy (OSTI)

Cuttings from six wells in the Salton Sea geothermal field, and rocks at outcrop that are correlative in age with those encountered at depth in the wells were analyzed in detail. Mineralogy, petrography, x-ray diffraction, electron microprobe, instrumental neutron activation analysis, fission track radiography, oxygen and stable carbon isotopic, uranium-thorium series disequilibrium, and fluid inclusion analyses are reported. Where fluids were being produced from wells, brine chemistry as well as stable isotope and uranium-thorium series analyses are reported. Particular attention has been paid to defining zones of fluid-rock interaction in which analyses of coexisting geothermal reservoir brine and hydrothermally altered sediments could be acquired. A wide span of temperatures, from surficial to greater than 300/degree/C, and salinities ranging from relatively dilute ground waters up to brines of 25 wt% total dissolved solids, span a range of environments that might be encountered in a waste repository in salt. Progressive hydrothermal alteration, mineral formation and element mobility are documented in the data presented. 52 refs., 25 figs., 49 tabs.

Not Available

1987-05-01T23:59:59.000Z

20

Sample Results from the Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples  

SciTech Connect

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

Peters, T. B.; Fink, S. D.

2012-12-11T23:59:59.000Z

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Sample Results From The Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples  

Science Conference Proceedings (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

Peters, T. B.; Fink, S. D.

2012-12-20T23:59:59.000Z

22

Effect of water in salt repositories. Final report  

Science Conference Proceedings (OSTI)

Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ..delta..P rather than sigma ..delta..P/sup 2/ (sigma is the uniaxial stress normal to the interface and ..delta..P is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model.

Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

1983-09-01T23:59:59.000Z

23

Chemistry of silica in Cerro Prieto brines  

DOE Green Energy (OSTI)

The precipitation of amorphous silica from synthetic geothermal brines which resemble the flashed brine at Cerro Prieto has been studied. It was found that part of the dissolved silica quickly polymerizes to form suspended colloidal silica. The colloidal silica flocculates and settles slowly at unmodified brine pH values near 7.35. Raising the pH of the brine to about 7.8 by adding base and stirring for a few minutes causes rapid and complete flocculation and settling. These results have been confirmed in the field using actual Cerro Prieto brine. Both in the laboratory and in the field quaternary amines were found to be effective with some brine compositions but not with others. Polyacrylamides do not work at all. These results suggest the following simple preinjection brine treatment process: age the brine for 10 to 20 minutes in a covered holding tank, add 20 to 30 ppM lime (CaO), stir for 5 minutes, and separate the flocculated silica from the brine using a conventional clarifier. The brine coming out of such a process will be almost completely free of suspended solids. The pilot plant tests needed to reduce this conceptual process to practice are discussed. The rate of deposition of silica scale from synthetic brines was separately studied. It was found that a modest decrease in pH could significantly reduce the scaling rate at a reasonable cost. The equilibrium chemistry of Cerro Prieto brine was studied theoretically. These calculations indicate that increasing the brine pH to remove silica might cause some precipitation of carbonate minerals, but also that this problem could easily be eliminated at a reasonable cost if it did arise.

Weres, O.; Tsao, L.; Iglesias, E.

1980-04-01T23:59:59.000Z

24

Chemistry of Silica in Cerro Prieto Brines  

DOE Green Energy (OSTI)

The precipitation of amorphous silica from synthetic geothermal, brines which resemble the flashed brine at Cerro Prieto has been studied. It was found that part of the dissolved silica quickly polymerizes to form suspended colloidal silica. The colloidal silica flocculates and settles slowly at unmodified brine pH values near 7.35. Raising the pH of the brine to about 7.8 by adding base and stirring for a few minutes causes rapid and complete flocculation and settling. these results have been confirmed in the field using actual Cerro Prieto brine. Both in the laboratory and in the field quaternary amines were found to be effective with some brine compositions but not with others. Polyacrylamides do not work at all. These results suggest the following simple preinjection brine treatment process: age the brine for 10-20 minutes in a covered holding tank, add 20-30 ppm lime (CaO), stir for 5 minutes, and separate the flocculated silica from the brine using a conventional clarifier. The brine coming out of such a process will be almost completely free of suspended solids. The pilot plant tests needed to reduce this conceptual process to practice are discussed. The rate of deposition of silica scale from synthetic brines was separately studied. It was found that a modest decrease in pH could significantly reduce the scaling rate at a reasonable cost. The equilibrium chemistry of Cerro Prieto brine was studied theoretically. These calculations indicate that increasing the brine pH to remove silica might cause some precipitation of carbonate minerals, but also that this problem could easily be eliminated at a reasonable cost if it did arise.

Weres, Oleh; Iglesias, Eduardo; Tsao, Leon

1980-04-01T23:59:59.000Z

25

Stability of plutonium(VI) in WIPP brine  

Science Conference Proceedings (OSTI)

The redox stability of plutonium (VI) in WIPP brine was investigated by monitoring the oxidation state as a function of time using a combination of absorption spectrometry, radiochemical counting and filtration. Studies were performed with Pu-239 and Pu-238 in four WIPP brines at concentrations between 10{sup {minus}3} and 10{sup {minus}8} M for durations as long as two years. Two synthetic brines, Brine A and ERDA-6, and two underground collected brines, DH-36 and G-Seep, were used. The stability of Pu(VI) depended on the brine composition and the speciation of the plutonium in that brine. When carbonate was present, a Pu(VI)-carbonate complex was observed that was stable. In the absence of carbonate, Pu(VI) hydrolytic species predominated which had a wide range of stability in the brines investigated. The results reported will help define the speciation of plutonium in WIPP brine and hence its potential for migration.

Reed, D.T.; Okajima, S.

1993-12-01T23:59:59.000Z

26

Gas evolution from geopressured brines  

DOE Green Energy (OSTI)

The process of gas evolution from geopressured brine is examined using as a basis the many past studies of gas evolution from liquids in porous media. A discussion of a number of speculations that have been made concerning gas evolution from geopressured brines is provided. According to one, rapid pressure reduction will cause methane gas to evolve as when one opens a champagne bottle. It has been further speculated that evolved methane gas would migrate up to form an easily producible cap. As a result of detailed analyses, it can be concluded that methane gas evolution from geopressured brines is far too small to ever form a connected gas saturation except very near to the producing well. Thus, no significant gas cap could ever form. Because of the very low solubility of methaned in brine, the process of methane gas evolution is not at all analogous to evolution of carbon dioxide from champagne. A number of other speculations and questions on gas evolution are analyzed, and procedures for completing wells and testing geopressured brine reservoirs are discussed, with the conclusion that presently used procedures will provide adequate data to enable a good evaluation of this resource.

Matthews, C.S.

1980-06-01T23:59:59.000Z

27

Alternative Electrochemical Salt Waste Forms, Summary of FY2010 Results  

SciTech Connect

In FY2009, PNNL performed scoping studies to qualify two waste form candidates, tellurite (TeO2-based) glasses and halide minerals, for the electrochemical waste stream for further investigation. Both candidates showed promise with acceptable PCT release rates and effective incorporation of the 10% fission product waste stream. Both candidates received reprisal for FY2010 and were further investigated. At the beginning of FY2010, an in-depth literature review kicked off the tellurite glasses study. The review was aimed at ascertaining the state-of-the-art for chemical durability testing and mixed chloride incorporation for tellurite glasses. The literature review led the authors to 4 unique binary and 1 unique ternary systems for further investigation which include TeO2 plus the following: PbO, Al2O3-B2O3, WO3, P2O5, and ZnO. Each system was studied with and without a mixed chloride simulated electrochemical waste stream and the literature review provided the starting points for the baseline compositions as well as starting points for melting temperature, compatible crucible types, etc. The most promising glasses in each system were scaled up in production and were analyzed with the Product Consistency Test, a chemical durability test. Baseline and PCT glasses were analyzed to determine their state, i.e., amorphous, crystalline, phase separated, had undissolved material within the bulk, etc. Conclusions were made as well as the proposed direction for FY2011 plans. Sodalite was successfully synthesized by the sol-gel method. The vast majority of the dried sol-gel consisted of sodalite with small amounts of alumino-silicates and unreacted salt. Upon firing the powders made by sol-gel, the primary phase observed was sodalite with the addition of varying amounts of nepheline, carnegieite, lithium silicate, and lanthanide oxide. The amount of sodalite, nepheline, and carnegieite as well as the bulk density of the fired pellets varied with firing temperature, sol-gel process chemistry, and the amount of glass sintering aid added to the batch. As the firing temperature was increased from 850 C to 950 C, chloride volatility increased, the fraction of sodalite decreased, and the fractions nepheline and carnegieite increased. This indicates that the sodalite structure is not stable and begins to convert to nepheline and carnegieite under these conditions at 950 C. Density has opposite relationship with relation to firing temperature. The addition of a NBS-1, a glass sintering aid, had a positive effect on bulk density and increased the stability of the sodalite structure in a minimal way.

Riley, Brian J.; Rieck, Bennett T.; Crum, Jarrod V.; Matyas, Josef; McCloy, John S.; Sundaram, S. K.; Vienna, John D.

2010-08-01T23:59:59.000Z

28

SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION SAMPLES  

Science Conference Proceedings (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 5 for the Integrated Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 5 strategy are identified. Results of the analyses of the Tank 21H samples from this report in conjunction with the findings of the previous report, indicates that the material does not display any unusual characteristics.

Peters, T.; Fink, S.

2012-03-26T23:59:59.000Z

29

Origin, distribution, and movement of brine in the Permian Basin (U. S. A. ). A model for displacement of connate brine  

SciTech Connect

Na-Cl, halite Ca-Cl, and gypsum Ca-Cl brines with salinities from 45 to >300 g/L are identified and mapped in four hydrostratigraphic units in the Permian Basin area beneath western Texas and Oklahoma and eastern New Mexico, providing spatial and lithologic constraints on the interpretation of the origin and movement of brine. Na-Cl brine is derived from meteoric water as young as 5-10 Ma that dissolved anhydrite and halite, whereas Ca-Cl brine is interpreted to be ancient, modified-connate Permian brine that now is mixing with, and being displaced by, the Na-Cl brine. Displacement fronts appear as broad mixing zones with no significant salinity gradients. Evolution of Ca-Cl brine composition from ideal evaporated sea water is attributed to dolomitization and syndepositional recycling of halite and bittern salts by intermittent influx of fresh water and sea water. Halite Ca-Cl brine in the evaporite section in the northern part of the basin differs from gypsum Ca-Cl brine in the south-central part in salinity and Na/Cl ratio and reflects segregation between halite- and gypsum-precipitating lagoons during the Permian. Ca-Cl brine moved downward through the evaporite section into the underlying Lower Permian and Pennsylvanian marine section that is now the deep-basin brine aquifer, mixing there with pre-existing sea water. Buoyancy-driven convection of brine dominated local flow for most of basin history, with regional advection governed by topographically related forces dominant only for the past 5 to 10 Ma. 71 refs., 11 figs.

Bein, A.; Dutton, A.R. (Univ. of Texas, Austin (United States))

1993-06-01T23:59:59.000Z

30

Approach to recover strategic metals from brines  

DOE Green Energy (OSTI)

The objective of the proposed research is to evaluate hypersaline brines from geothermal sources and salt domes as possible sources for some strategic metals. This research is suggested because several previous analyses of brine from geothermal wells in the Imperial Valley, California, and from Gulf Coast salt domes, indicate near commercial values for platinum as well as other metals (i.e., gold, silver). Extraction of the platinum should be technically feasible. A research program should include more complete systematic sampling and analysis for resource delineation, followed by bench-scale investigation of several potential extraction processes. This could be followed by engineering feasibility and design studies, for extraction of the metals either as a by-product of other operations or in a stand-alone process.

Raber, E.; Harrar, J.; Gregg, D.

1981-09-16T23:59:59.000Z

31

SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 4 TANK 21H QUALIFICATION SAMPLES  

Science Conference Proceedings (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H to qualify them for use in the Integrated Salt Disposition Program (ISDP) Batch 4 processing. All sample results agree with expectations based on prior analyses where available. No issues with the projected Salt Batch 4 strategy are identified. This revision includes additional data points that were not available in the original issue of the document, such as additional plutonium results, the results of the monosodium titanate (MST) sorption test and the extraction, scrub strip (ESS) test. This report covers the revision to the Tank 21H qualification sample results for Macrobatch (Salt Batch) 4 of the Integrated Salt Disposition Program (ISDP). A previous document covers initial characterization which includes results for a number of non-radiological analytes. These results were used to perform aluminum solubility modeling to determine the hydroxide needs for Salt Batch 4 to prevent the precipitation of solids. Sodium hydroxide was then added to Tank 21 and additional samples were pulled for the analyses discussed in this report. This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP).

Peters, T.; Fink, S.

2011-06-22T23:59:59.000Z

32

Origin and geochemical evolution of the Michigan basin brine  

Science Conference Proceedings (OSTI)

Chemical and isotopic data were collected on 126 oil field brine samples and were used to investigate the origin and geochemical evolution of water in 8 geologic formations in the Michigan basin. Two groups of brine are found in the basin, the Na-Ca-Cl brine in the upper Devonian formations, and Ca-Na-Cl brine from the lower Devonian and Silurian aged formations. Water in the upper Devonian Berea, Traverse, and Dundee formations originated from seawater concentrated into halite facies. This brine evolved by halite precipitation, dolomitization, aluminosilicate reactions, and the removal of SO{sub 4} by bacterial action or by CaSO{sub 4} precipitation. The stable isotopic composition (D, O) is thought to represent dilution of evapo-concentrated seawater by meteoric water. Water in the lower Devonian Richfield, Detroit River Group, and Niagara-Salina formations is very saline Ca-Na-Cl brine. Cl/Br suggest it originated from seawater concentrated through the halite and into the MgSO{sub 4} salt facies, with an origin linked to the Silurian and Devonian salt deposits. Dolomitization and halite precipitation increased the Ca/Na, aluminosilicate reactions removed K, and bacterial action or CaSO{sub 4} precipitation removed SO{sub 4} from this brine. Water chemistry in the Ordovician Trenton-Black River formations indicates dilution of evapo-concentrated seawater by fresh or seawater. Possible saline end-members include Ordovician seawater, present-day upper Devonian brine, or Ca-Cl brine from the deeper areas in the basin.

Wilson, T.P.

1989-01-01T23:59:59.000Z

33

Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives  

SciTech Connect

The High Level Waste (HLW) Salt Disposition Systems Engineering Team was formed on March 13, 1998, and chartered to identify options, evaluate alternatives, and recommend a selected alternative(s) for processing HLW salt to a permitted wasteform. This requirement arises because the existing In-Tank Precipitation process at the Savannah River Site, as currently configured, cannot simultaneously meet the HLW production and Authorization Basis safety requirements. This engineering study was performed in four phases. This document provides the technical bases, assumptions, and results of this engineering study.

Dimenna, R.A.; Jacobs, R.A.; Taylor, G.A.; Durate, O.E.; Paul, P.K.; Elder, H.H.; Pike, J.A.; Fowler, J.R.; Rutland, P.L.; Gregory, M.V.; Smith III, F.G.; Hang, T.; Subosits, S.G.; Campbell, S.G.

2001-03-26T23:59:59.000Z

34

BIOCHEMICAL PROCESSES FOR GEOTHERMAL BRINE TREATMENT  

DOE Green Energy (OSTI)

As part of the DOE Geothermal Energy Program, BNL's Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; ZHOU,W.; SHELENKOVA,L.; WILKE,R.

1998-09-20T23:59:59.000Z

35

Biochemical processes for geothermal brine treatment  

DOE Green Energy (OSTI)

As part of the DOE Geothermal Energy Program, BNL`s Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines, (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Zhou, W.; Shelenkova, L.; Wilke, R.

1998-08-01T23:59:59.000Z

36

WETTING BEHAVIOR OF SELECTED CRUDE OIL/BRINE/ROCK SYSTEMS  

Science Conference Proceedings (OSTI)

The effect of aging and displacement temperatures, and brine and oil composition on wettability and the recovery of crude oil by spontaneous imbibition and waterflooding has been investigated. This study is based on displacement tests in Berea Sandstone using three distinctly different crude oils and three reservoir brines. Brine concentration was varied by changing the concentration of total dissolved solids of the synthetic brine in proportion to give brine of twice, one tenth, and one hundredth of the reservoir brine concentration. Aging and displacement temperatures were varied independently. For all crude oils, water-wetness and oil recovery increased with increase in displacement temperature. Tests on the effect of brine concentration showed that salinity of the connate and invading brines can have a major influence on wettability and oil recovery at reservoir temperature. Oil recovery increased over that for the reservoir brine with dilution of both the initial (connate) and invading brine or dilution of either. Removal of light components from the crude oil resulted in increased water-wetness. Addition of alkanes to the crude oil reduced the water-wetness, and increased oil recovery. Relationships between waterflood recovery and wettability are summarized.

G.Q. Tang; N.R. Morrow

1997-04-01T23:59:59.000Z

37

Treatment methods for geothermal brines  

DOE Green Energy (OSTI)

A survey is made of commercially available methods currently in use as well as those which might be used to prevent scaling and corrosion in geothermal brines. More emphasis is placed on scaling. Treatments are classified as inhibitors, alterants and coagulants; they are applied to control scaling and corrosion in fresh and waste geothermal brines. Recommendations for research in brine treatment are described.

Phillips, S.L.; Mathur, A.K.; Garrison, W.

1979-04-01T23:59:59.000Z

38

Geothermal brines and sludges: a new resource  

DOE Green Energy (OSTI)

Development of cost efficient biochemical processes for the treatment of geothermal brines and sludges is the main thrust of a major R&D effort at Brookhaven National Laboratory (BNL). This effort has led to the design of an environmentally acceptable, technically and economically feasible new technology which converts geothermal wastes into products with significant commercial potential. These include valuable metals recovery with a metal extraction and recovery efficiency of better then 80% over short periods of time (5-25 hours). The new technology also yields valuable salts, such as potassium chloride and generates high quality pigment free silica. The basic technology is versatile and can, with slight modifications, be used in the treatment of hypersaline as well as low salinity brines and sludges. Concurrently traces of toxic metals, including radium are removed to levels which are within regulatory limits. The current status of the new biochemical technology will be discussed in this paper.

Premuzic, E.T.; Lin, M.S.; Lian, H.; Miltenberger, R.P.

1996-10-01T23:59:59.000Z

39

Predicted temperature/time histories resulting from the burial of nuclear waste canisters in bedded salt  

SciTech Connect

This report provides computed thermal mappings for bedded salt surrounding canisters containing nuclear waste. This information can be used to study the possible migration of fluids within bedded salt under the influence of thermal gradients created by the heat-generating nuclear waste. The results presented were obtained from CINDA thermal models. Three different drift/canister configurations were modeled. The thermal conductivity of the salt was assumed to be temperature dependent while both the density and specific heat were assumed to be constant. Thermal power densities of 30, 75, and 150 kW/acre were examined with canister powers of 0.581 kW (51.6 canisters/acre), 3.5 kW (21.4 canisters/acre), and 3.5 kW (42.9 canisters/acre) at emplacement, respectively. These three cases resulted in maximum salt temperatures of 55/sup 0/C, 117/sup 0/C, and 176/sup 0/C, respectively; and maximum thermal gradients of -15/sup 0/C/m, -63/sup 0/C/m, and -101/sup 0/C/m, respectively. Computer-generated plots of temperature versus distance in horizontal planes at the top, midpoint, and bottom of the canister were made for several times after emplacement. Logarithmic or linear equations (whichever provided the better fit) were used to describe these curves. Derivatives of temperature with respect to distance were then taken and results of the form x(dT/dx) and dT/dx for the logarithmic and linear equations, respectively, were plotted against time. For the two cases where the waste thermal outputs decayed exponentially, it was found that x(dT/dx) and dT/dx were linear functions of time over a large period of years.

George, O.L. Jr.

1980-07-01T23:59:59.000Z

40

An Evaluation of Molten-Salt Power Towers Including Results of the Solar Two Project  

DOE Green Energy (OSTI)

This report utilizes the results of the Solar Two project, as well as continuing technology development, to update the technical and economic status of molten-salt power towers. The report starts with an overview of power tower technology, including the progression from Solar One to the Solar Two project. This discussion is followed by a review of the Solar Two project--what was planned, what actually occurred, what was learned, and what was accomplished. The third section presents preliminary information regarding the likely configuration of the next molten-salt power tower plant. This section draws on Solar Two experience as well as results of continuing power tower development efforts conducted jointly by industry and Sandia National Laboratories. The fourth section details the expected performance and cost goals for the first commercial molten-salt power tower plant and includes a comparison of the commercial performance goals to the actual performance at Solar One and Solar Two. The final section summarizes the successes of Solar Two and the current technology development activities. The data collected from the Solar Two project suggest that the electricity cost goals established for power towers are reasonable and can be achieved with some simple design improvements.

REILLY, HUGH E.; KOLB, GREGORY J.

2001-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Silica scaling in simulated geothermal brines  

DOE Green Energy (OSTI)

A 6.3 1/sec (100 GPM) titanium corrosion test loop was modified to provide a dynamic facility for studying the formation of silica deposits, their properties and fates, as a function of brine composition, temperature, and flow conditions. Scale formation was studied in a segmented heat exchanger operating under realistic conditions; the segmented design permitted examination of scale formations in five temperature regimes. The program was terminated after minimal exploratory operation because of reduced sponsor perceptions of the need for concern with scaling problems. The runs which were completed dealt cursorily with brine concentration and pH effects. Results are presented.

Bohlmann, E.G.; Shor, A.J.; Berlinski, P.; Mesmer, R.E.

1981-04-01T23:59:59.000Z

42

Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives  

SciTech Connect

The HLW salt waste (salt cake and supernate) now stored at the SRS must be treated to remove insoluble sludge solids and reduce the soluble concentration of radioactive cesium radioactive strontium and transuranic contaminants (principally Pu and Np). These treatments will enable the salt solution to be processed for disposal as saltstone, a solid low-level waste.

Elder, H.H.

2001-07-11T23:59:59.000Z

43

Microsoft PowerPoint - S08-06_Peters_Result of Salt Batch Qualifications.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Batch Qualification Testing Salt Batch Qualification Testing Tom Peters, Samuel Fink; E&CPT Research Programs, Savannah River National Laboratory Mark Geeting, Steven Brown, David Martin, Brent Gifford; Tank Farm Engineering, Savannah River Remediation November 17, 2010 SRNL-MS-2010-00250 Print Close 2 This presentation..... Results of Salt Batch Qualification Testing * Describes the Integrated Salt Disposition Project (ISDP), the newest operating facilities at the Savannah River Site for treating stored radioactive waste. * Reviews the past campaigns of salt disposition (Macrobatch 1 and 2). * Reviews current operations (Macrobatch 3) * Outlines the next qualification (Macrobatch 4) * Discusses the limiters in operations. Print Close 3 Introduction In 2001, the Department of Energy (DOE) identified Caustic-Side Solvent

44

Salt Processing at the Savannah River Site: Results of Technology Down-Selection and Research and Development to Support New Salt Waste Processing Facility  

Science Conference Proceedings (OSTI)

The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste (HLW) program is responsible for storage, treatment, and immobilization of HLW for disposal. The Salt Processing Project (SPP) is the salt waste (water-soluble) treatment portion of this effort. The overall SPP encompasses the selection, design, construction, and operation of technologies to prepare the salt-waste feed material for immobilization at the site's Saltstone Production Facility (SPF) and vitrification facility (Defense Waste Processing Facility [DWPF]). Major constituents that must be removed from the salt waste and sent as feed to DWPF include cesium (Cs), strontium (Sr), and actinides. In April 2000, the DOE Deputy Secretary for Project Completion (EM-40) established the SRS Salt Processing Project Technical Working Group (TWG) to manage technology development of treatment alternatives for SRS high-level salt wastes. The separation alternatives investigated included three candidate Cs-removal processes selected, as well as actinide and Sr removal that are also required as a part of each process. The candidate Cs-removal processes are: crystalline Silicotitanate Non-Elutable Ion Exchange (CST); caustic Side Solvent Extraction (CSSX); and small Tank Tetraphenylborate Precipitation (STTP). The Tanks Focus Area was asked to assist DOE by managing the SPP research and development (R&D), revising roadmaps, and developing down-selection criteria. The down-selection decision process focused its analysis on three levels: (a) identification of goals that the selected technology should achieve, (b) selection criteria that are a measure of performance of the goal, and (c) criteria scoring and weighting for each technology alternative. After identifying the goals and criteria, the TWG analyzed R&D results and engineering data and scored the technology alternatives versus the criteria. Based their analysis and scoring, the TWG recommended CSSX as the preferred alternative. This recommendation was formalized in July 2001 when DOE published the Savannah River Site Salt Processing Alternatives Final Supplemental Environmental Impact Statement (SEIS) and was finalized in the DOE Record of Decision issued in October 2001.

Lang, K.; Gerdes, K.; Picha, K.; Spader, W.; McCullough, J.; Reynolds, J.; Morin, J. P.; Harmon, H. D.

2002-02-26T23:59:59.000Z

45

How to treat and recycle heavy clear brine fluids  

Science Conference Proceedings (OSTI)

Clear brine fluids, such as CaCl/sub 2/, are replacing muds in well completions and workovers. These ''solids-free'' fluids have caused increases in well productivity of as much as 850%. To use the fluids in higher density ranges, it is necessary to blend the CaCl/sub 2/ brines with the more expensive bromide fluids. This, in turn, has increased the importance of reclaiming weighted brines to make their use more cost effective. To reclaim clear fluids, the solids picked up during use are removed and the fluid is reused or reweighted. A common problem though is the post-precipitation of dissolved contaminants that may appear in the used brines after several days or weeks in storage. Precipitation also may occur if other heavy fluids are added to adjust density before reuse. Laboratory tests have identified the solids as primarily iron hydroxides and halides. (Halides are salts containing a halogen-flourine, chlorine, bromine, or iodine.) Additional experimentation has shown that pH adjustment at the well site or before transfer to storage facilities can provide a simple and effective way of controlling the precipitation of metal hydroxides and halides. This article discusses methods of pH control, measurement, and adjustment, which will allow for optimum use of clear brine fluids.

Pasztor, A.J.; Snover, J.S.

1983-07-01T23:59:59.000Z

46

SPR salt wall leaching experiments in lab-scale vessel : data report.  

SciTech Connect

During cavern leaching in the Strategic Petroleum Reserve (SPR), injected raw water mixes with resident brine and eventually interacts with the cavern salt walls. This report provides a record of data acquired during a series of experiments designed to measure the leaching rate of salt walls in a labscale simulated cavern, as well as discussion of the data. These results should be of value to validate computational fluid dynamics (CFD) models used to simulate leaching applications. Three experiments were run in the transparent 89-cm (35-inch) ID diameter vessel previously used for several related projects. Diagnostics included tracking the salt wall dissolution rate using ultrasonics, an underwater camera to view pre-installed markers, and pre- and post-test weighing and measuring salt blocks that comprise the walls. In addition, profiles of the local brine/water conductivity and temperature were acquired at three locations by traversing conductivity probes to map out the mixing of injected raw water with the surrounding brine. The data are generally as expected, with stronger dissolution when the salt walls were exposed to water with lower salt saturation, and overall reasonable wall shape profiles. However, there are significant block-to-block variations, even between neighboring salt blocks, so the averaged data are considered more useful for model validation. The remedial leach tests clearly showed that less mixing and longer exposure time to unsaturated water led to higher levels of salt wall dissolution. The data for all three tests showed a dividing line between upper and lower regions, roughly above and below the fresh water injection point, with higher salt wall dissolution in all cases, and stronger (for remedial leach cases) or weaker (for standard leach configuration) concentration gradients above the dividing line.

Webb, Stephen Walter; O'Hern, Timothy John; Hartenberger, Joel David

2010-10-01T23:59:59.000Z

47

Improving the performance of brine wells at Gulf Coast strategic petroleum reserve sites  

DOE Green Energy (OSTI)

At the request of the Department of Energy, field techniques were developed to evaluate and improve the injection of brine into wells at Strategic Petroleum Reserve (SPR) sites. These wells are necessary for the disposal of saturated brine removed from salt domes where oil is being stored. The wells, which were accepting brine at 50 percent or less of their initial design rates, were impaired by saturated brine containing particulates that deposited on the sand face and in the geologic formation next to the wellbore. Corrosion of the brine-disposal pipelines and injection wells contributed to the impairment by adding significant amounts of particulates in the form of corrosion products. When tests were implemented at the SPR sites, it was found that the poor quality of injected brines was the primary cause of impaired injection; that granular-media filtration, when used with chemical pretreatment, is an effective method for removing particulates from hypersaline brine; that satisfactory injection-well performance can be attained with prefiltered brines; and that corrosion rates can be substantially reduced by oxygen-scavenging.

Owen, L.B.; Quong, R. (eds.)

1979-11-05T23:59:59.000Z

48

SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION MST, ESS AND PODD SAMPLES  

Science Conference Proceedings (OSTI)

Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 5 processing. This qualification material was a composite created from recent samples from Tank 21H and archived samples from Tank 49H to match the projected blend from these two tanks. Additionally, samples of the composite were used in the Actinide Removal Process (ARP) and extraction-scrub-strip (ESS) tests. ARP and ESS test results met expectations. A sample from Tank 21H was also analyzed for the Performance Objectives Demonstration Document (PODD) requirements. SRNL was able to meet all of the requirements, including the desired detection limits for all the PODD analytes. This report details the results of the Actinide Removal Process (ARP), Extraction-Scrub-Strip (ESS) and Performance Objectives Demonstration Document (PODD) samples of Macrobatch (Salt Batch) 5 of the Integrated Salt Disposition Program (ISDP).

Peters, T.; Fink, S.

2012-04-24T23:59:59.000Z

49

Hydrocarbons associated with brines from geopressured wells  

DOE Green Energy (OSTI)

The purpose of this research is to determine the concentration of the cryocondensates in fluids of the various USDOE Geopressured wells as a function of production volume, to correlate the production of these compounds with reservoir and well production characteristics, to precisely measure solubilities of cryocondensates components in water and sodium chloride solutions (brines) as a function of ionic strength and temperature and the component's distribution coefficients between these solutions and oil, to develop models of the reservoir which are consistent with the data obtained, to monitor the wells for the production of aliphatic oils and relate any such production with the data obtained, and to develop a harsh environment pH probe for use in well brines. Results are summarized.

Not Available

1991-01-15T23:59:59.000Z

50

Integral Fluxes, Day-Night, and Spectrum Results from SNO's 391-Day Salt Phase  

E-Print Network (OSTI)

The Sudbury Neutrino Observatory is a 1000t heavy water Cherenkov detector observing neutrinos from the Sun and other astrophysical sources. Measurements of the integral solar neutrino fluxes of charged current, neutral current and elastic scattering events are reported for 391 days of live data from the salt phase of SNO operation. In this phase 2t of salt were dissolved in the heavy water, which enhanced and differentiated the detection of neutral current events. Day-night asymmetries in these fluxes were also determined. The measured electron spectrum from the charged-current channel is compatible with the undistorted spectrum of the solar 8B neutrino flux.

Juergen Wendland; for the SNO collaboration

2005-07-12T23:59:59.000Z

51

Sample results from the integrated salt disposition program macrobatch 6 tank 21H qualifications MST solids sample  

Science Conference Proceedings (OSTI)

Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 6 processing. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake. The results of these analyses are reported and are within historical precedent.

Peters, T. B.

2013-02-26T23:59:59.000Z

52

Alternative Electrochemical Salt Waste Forms, Summary of FY/CY2011 Results  

Science Conference Proceedings (OSTI)

This report summarizes the 2011 fiscal+calendar year efforts for developing waste forms for a spent salt generated in reprocessing nuclear fuel with an electrochemical separations process. The two waste forms are tellurite (TeO2-based) glasses and sol-gel-derived high-halide mineral analogs to stable minerals found in nature.

Riley, Brian J.; McCloy, John S.; Crum, Jarrod V.; Rodriguez, Carmen P.; Windisch, Charles F.; Lepry, William C.; Matyas, Josef; Westman, Matthew P.; Rieck, Bennett T.; Lang, Jesse B.; Pierce, David A.

2011-12-01T23:59:59.000Z

53

EVALUATIONS OF RADIONUCLIDES OF URANIUM, THORIUM, AND RADIUM ASSOCIATED WITH PRODUCED FLUIDS, PRECIPITATES, AND SLUDGES FROM OIL, GAS, AND OILFIELD BRINE INJECTION WELLS IN MISSISSIPPI  

SciTech Connect

Naturally occurring radioactive materials (NORM) are known to be produced as a byproduct of hydrocarbon production in Mississippi. The presence of NORM has resulted in financial losses to the industry and continues to be a liability as the NORM-enriched scales and scale encrusted equipment is typically stored rather than disposed of. Although the NORM problem is well known, there is little publically available data characterizing the hazard. This investigation has produced base line data to fill this informational gap. A total of 329 NORM-related samples were collected with 275 of these samples consisting of brine samples. The samples were derived from 37 oil and gas reservoirs from all major producing areas of the state. The analyses of these data indicate that two isotopes of radium ({sup 226}Ra and {sup 228}Ra) are the ultimate source of the radiation. The radium contained in these co-produced brines is low and so the radiation hazard posed by the brines is also low. Existing regulations dictate the manner in which these salt-enriched brines may be disposed of and proper implementation of the rules will also protect the environment from the brine radiation hazard. Geostatistical analyses of the brine components suggest relationships between the concentrations of {sup 226}Ra and {sup 228}Ra, between the Cl concentration and {sup 226}Ra content, and relationships exist between total dissolved solids, BaSO{sub 4} saturation and concentration of the Cl ion. Principal component analysis points to geological controls on brine chemistry, but the nature of the geologic controls could not be determined. The NORM-enriched barite (BaSO{sub 4}) scales are significantly more radioactive than the brines. Leaching studies suggest that the barite scales, which were thought to be nearly insoluble in the natural environment, can be acted on by soil microorganisms and the enclosed radium can become bioavailable. This result suggests that the landspreading means of scale disposal should be reviewed. This investigation also suggests 23 specific components of best practice which are designed to provide a guide to safe handling of NORM in the hydrocarbon industry. The components of best practice include both worker safety and suggestions to maintain waste isolation from the environment.

Charles Swann; John Matthews; Rick Ericksen; Joel Kuszmaul

2004-03-01T23:59:59.000Z

54

Modeling acid-gas generation from boiling chloride brines  

E-Print Network (OSTI)

distillation of a calcium-chloride-dominant brine was simulateddistillation of a calcium-chloride-dominated brine is then simulated

Zhang, Guoxiang

2010-01-01T23:59:59.000Z

55

The depth of the oil/brine interface and crude oil leaks in SPR caverns  

Science Conference Proceedings (OSTI)

Monitoring wellhead pressure evolution is the best method of detecting crude oil leaks in SPR caverns while oil/brine interface depth measurements provide additional insight. However, to fully utilize the information provided by these interface depth measurements, a thorough understanding of how the interface movement corresponds to cavern phenomena, such as salt creep, crude oil leakage, and temperature equilibration, as well as to wellhead pressure, is required. The time evolution of the oil/brine interface depth is a function of several opposing factors. Cavern closure due to salt creep and crude oil leakage, if present, move the interface upward. Brine removal and temperature equilibration of the oil/brine system move the interface downward. Therefore, the relative magnitudes of these factors determine the net direction of interface movement. Using a mass balance on the cavern fluids, coupled with a simplified salt creep model for closure in SPR caverns, the movement of the oil/brine interface has been predicted for varying cavern configurations, including both right-cylindrical and carrot-shaped caverns. Three different cavern depths and operating pressures have been investigated. In addition, the caverns were investigated at four different points in time, allowing for varying extents of temperature equilibration. Time dependent interface depth changes of a few inches to a few feet were found to be characteristic of the range of cases studied. 5 refs, 19 figs., 1 tab.

Heffelfinger, G.S.

1991-06-01T23:59:59.000Z

56

Expected environments in high-level nuclear waste and spent fuel repositories in salt  

SciTech Connect

The purpose of this report is to describe the expected environments associated with high-level waste (HLW) and spent fuel (SF) repositories in salt formations. These environments include the thermal, fluid, pressure, brine chemistry, and radiation fields predicted for the repository conceptual designs. In this study, it is assumed that the repository will be a room and pillar mine in a rock-salt formation, with the disposal horizon located approx. 2000 ft (610 m) below the surface of the earth. Canistered waste packages containing HLW in a solid matrix or SF elements are emplaced in vertical holes in the floor of the rooms. The emplacement holes are backfilled with crushed salt or other material and sealed at some later time. Sensitivity studies are presented to show the effect of changing the areal heat load, the canister heat load, the barrier material and thickness, ventilation of the storage room, and adding a second row to the emplacement configuration. The calculated thermal environment is used as input for brine migration calculations. The vapor and gas pressure will gradually attain the lithostatic pressure in a sealed repository. In the unlikely event that an emplacement hole will become sealed in relatively early years, the vapor space pressure was calculated for three scenarios (i.e., no hole closure - no backfill, no hole closure - backfill, and hole closure - no backfill). It was assumed that the gas in the system consisted of air and water vapor in equilibrium with brine. A computer code (REPRESS) was developed assuming that these changes occur slowly (equilibrium conditions). The brine chemical environment is outlined in terms of brine chemistry, corrosion, and compositions. The nuclear radiation environment emphasized in this report is the stored energy that can be released as a result of radiation damage or crystal dislocations within crystal lattices.

Claiborne, H.C.; Rickertsen, L.D., Graham, R.F.

1980-08-01T23:59:59.000Z

57

Trace metal speciation in saline waters affected by geothermal brines. [GEOCHEM  

DOE Green Energy (OSTI)

A description is given of the chemical equilibrium computer program GEOCHEM, which has been developed to calculate trace element speciation in soil, irrigation, drainage, or Salton Sea waters affected by geothermal brine. GEOCHEM is applied to irrigation water-brine mixtures and to Salton Sea water-brine mixtures in order to compute the chemical speciation of the elements Cd, Cu, Hg, Ni, Pb, and Zn, along with the oxyanions of As and B. The results suggest that the computer simulation can have an important effect on a program for managing brine spills. Appendices include published papers on related research.

Sposito, G.; Page, A.L.

1977-11-01T23:59:59.000Z

58

ABSORBING WIPP BRINES: A TRU WASTE DISPOSAL STRATEGY  

SciTech Connect

Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250- liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WIPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $311k in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

Yeamans, D. R.; Wrights, R. S.

2002-02-25T23:59:59.000Z

59

Absorbing WIPP brines : a TRU waste disposal strategy.  

SciTech Connect

Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250-liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WlPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $3 1 lk in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

Yeamans, D. R. (David R.); Wright, R. (Robert)

2002-01-01T23:59:59.000Z

60

Understanding Long-Term Solute Transport in Sedimentary Basins: Simulating Brine Migration in the Alberta Basin. Final Report  

Science Conference Proceedings (OSTI)

Mass transport in deep sedimentary basins places important controls on ore formation, petroleum migration, CO2 sequestration, and geochemical reactions that affect petroleum reservoir quality, but large-scale transport in this type of setting remains poorly understood. This lack of knowledge is highlighted in the resource-rich Alberta Basin, where geochemical and hydrogeologic studies have suggested residence times ranging from hundreds of millions of years to less than 5 My, respectively. Here we developed new hydrogeologic models that were constrained by geochemical observations to reconcile these two very different estimates. The models account for variable-density fluid flow, heat transport, solute transport, sediment deposition and erosion, sediment compressibility, and dissolution of salt deposits, including Cl/Br systematics. Prior interpretations of Cl/Br ratios in the Alberta Basin concluded that the brines were derived from evaporatively-concentrated brines that were subsequently diluted by seawater and freshwater; models presented here show that halite dissolution must have contributed strongly as well, which implies significantly greater rates of mass transport. This result confirms that Cl/Br ratios are subject to significant non-uniqueness and thus do not provide good independent indicators of the origin of brines. Salinity and Cl/Br ratios provided valuable new constraints for basin-scale models, however. Sensitivity studies revealed that permeabilities obtained from core- and field-scale tests were appropriate for basin-scale models, despite the differences in scale between the tests and the models. Simulations of groundwater age show that the residence time of porefluids in much of the basin is less than 100 My. Groundwater age increases with depth and approaches 200 My in the deepest part of the basin, but brines are significantly younger than their host rocks throughout the basin.

Alicia M. Wilson

2009-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

SAMPLE RESULTS FROM THE INTERIM SALT DISPOSITION PROGRAM MACROBATCH 7 TANK 21H QUALIFICATION MST SOLIDS SAMPLE  

Science Conference Proceedings (OSTI)

Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 7 processing. The Marcrobatch 7 material was received with visible fine particulate solids, atypical for these samples. The as received material was allowed to settle for a period greater than 24 hours. The supernatant was then decanted and utilized as our clarified feed material. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test using the clarified feed material. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake after filtration from H-Tank Farm (HTF) feed salt solution. The results of these analyses are reported and are within historical precedent.

Washington, A.; Peters, T.

2013-09-19T23:59:59.000Z

62

Salt effects on isotope partitioning and their geochemical implications: An overview  

DOE Green Energy (OSTI)

Essential to the use of stable isotopes as natural tracers and geothermometers is the knowledge of equilibrium isotope partitioning between different phases and species, which is usually a function of temperature only. The one exception known to date is oxygen and hydrogen isotope fractionation between liquid water and other phases (steam, gases, minerals), which changes upon the addition of salts to water, i.e., the isotope salt salt effect. Our knowledge of this effect, the difference between activity and composition (a-X) of isotopic water molecules in salt solutions, is very limited and controversial, especially at elevated temperatures. For the last several years, we have been conducting a detailed, systematic experimental study at Oak Ridge National Laboratory to determine the isotope salt effects from room temperature to elevated temperatures (currently to 500{degree}C). From this effort, a simple, coherent picture of the isotope salt effect is emerging, that differs markedly from the complex results reported in the literature. In this communication, we present an overview on the isotope salt effect, obtained chiefly from our study. Observed isotope salt effects in salt solutions are significant even at elevated temperatures. The importance and implications of the isotope salt effect for isotopic studies of brine-dominated systems are also discussed in general terms.

Horita, J.; Cole, D.R.; Fortier, S.M. [and others

1996-01-01T23:59:59.000Z

63

Improved Water Flooding through Injection Brine Modification  

Science Conference Proceedings (OSTI)

Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman; (U of Wyoming)

2003-01-01T23:59:59.000Z

64

Recovery of energy from geothermal brine and other hot water sources  

DOE Patents (OSTI)

Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

Wahl, III, Edward F. (Claremont, CA); Boucher, Frederic B. (San Juan Capistrano, CA)

1981-01-01T23:59:59.000Z

65

Development Operations Hypersaline Geothermal Brine Utilization Imperial  

Open Energy Info (EERE)

Hypersaline Geothermal Brine Utilization Imperial Hypersaline Geothermal Brine Utilization Imperial County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development Operations Hypersaline Geothermal Brine Utilization Imperial County, California Abstract N/A Authors Whitescarver and Olin D. Published U.S. Department of Energy, 1984 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Development Operations Hypersaline Geothermal Brine Utilization Imperial County, California Citation Whitescarver, Olin D.. 1984. Development Operations Hypersaline Geothermal Brine Utilization Imperial County, California. (!) : U.S. Department of Energy. Report No.: N/A. Retrieved from "http://en.openei.org/w/index.php?title=Development_Operations_Hypersaline_Geothermal_Brine_Utilization_Imperial_County,_California&oldid=682648

66

Development Operations Hypersaline Geothermal Brine Utilization...  

Open Energy Info (EERE)

Number NA DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Development Operations Hypersaline Geothermal Brine Utilization Imperial...

67

Trace metal speciation in saline waters affected by geothermal brines. Final technical report. [GEOCHEM  

DOE Green Energy (OSTI)

The computer program GEOCHEM was developed and applied to calculate the speciation of trace elements, such as Li, B, Mn, Co, Ni, Cu, Zn, Pb, and As, in mixtures of geothermal brines with soil waters. A typical speciation calculation involved the simultaneous consideration of about 350 inorganic and organic complexes and about 80 possible solid phases that could form among the macro- and microconstituents in the mixtures. The four geothermal brines chosen for study were from the East Mesa, Heber, and Salton Sea KGRA's. Two examples of East Mesa brine were employed in order to illustrate the effect of brine variability within a given KGRA. The soil waters chosen for study were the Holtville, Rosita, and Vint soil solutions and the Vail 4 drain water. These waters were mixed with the four brines to produce 1%, 5%, and 10% brine combinations. The combinations then were analyzed with the help of GEOCHEM and were interpreted in the context of two proposed general contamination scenarios. The results of the speciation calculations pointed to the great importance, in brine, of sulfide as a precipitating agent for trace metals and of borate as a trace metal-complexing ligand. In general, precipitation and/or exchange adsorption in soil were found to reduce the levels of trace metals well below harmful concentrations. The principal exceptions were Li and B, which did not precipitate and which were at or very hear harmful levels in the soil water-brine mixtures.

Sposito, G.

1979-07-01T23:59:59.000Z

68

Multiphase Flow and Cavern Abandonment in Salt  

Science Conference Proceedings (OSTI)

This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment

Ehgartner, Brian; Tidwell, Vince

2001-02-13T23:59:59.000Z

69

Study on scale formation and suppression in heat-exchange systems for simulated geothermal brines. Final report, January 12, 1976-March 5, 1978  

DOE Green Energy (OSTI)

Control of scale formation in heat exchangers using simulated geothermal waters can be achieved by lowering the pH of the water to pH 6 or lower. This does not, however, appear to be an economic approach for highly buffered geothermal brines and would lead to severe corrosion problems. Two commercial scale control agents, Calgon CL-165 and Monsanto Dequest 2060, showed promise of effecting scaling in a minor way and should be tested further on actual geothermal waters. Other scale control methods tested were unsuccessful. These included seeding experiments, turbulence promotin and electostatic and electromagnetic devices reputated to modify scale formation. The experiments were performed with tube-in-shell heat exchangers using simulated geothermal waters prepared from a salt dome solution based brine. The scale formed was primarily silica with a small percent of calcium carbonate and traces of magnesium and iron. Physically it was a hydrous soft solid adhering only lightly to the heat exchange surface. This is not typical of geothermal water scales encountered in high temperature brine operations and the results of the scale control expeirments should be evaluated with that in mind.

Wilson, J.S.; King, J.E.; Bullard, G.R.

1978-01-01T23:59:59.000Z

70

Evaluation of materials for systems using cooled, treated geothermal or high-saline brines  

DOE Green Energy (OSTI)

Lack of adequate quantities of clean surface water for use in wet (evaporative) cooling systems indicates the use of high-salinity waste waters, or cooled geothermal brines, for makeup purposes. High-chloride, aerated water represents an extremely corrosive environment. In order to determine metals suitable for use in such an environment, metal coupons were exposed to aerated, treated geothermal brine salted to a chloride concentration of 10,000 and 50,000 ppM (mg/L) for periods of up to 30 days. The exposed coupons were evaluated to determine the general, pitting, and crevice corrosion characteristics of the metals. The metals exhibiting corrosion resistance at 50,000 ppM chloride were then evaluated at 100,000 and 200,000 ppM chloride. Since these were screening tests to select materials for components to be used in a cooling system, with primary emphasis on condenser tubing, several materials were exposed for 4 to 10 months in pilot cooling tower test units with heat transfer for further corrosion evaluation. The results of the screening tests indicate that ferritic stainless steels (29-4-2 and SEA-CURE) exhibit excellent corrosion resistance at all levels of chloride concentration. Copper-nickel alloys (70/30 and Monel 400) exhibited excellent corrosion resistance in the high-saline water. The 70/30 copper-nickel alloy, which showed excellent resistance to general corrosion, exhibited mild pitting in the 30-day tests. This pitting was not apparent, however, after 6 months of exposure in the pilot cooling tower tests. The nickel-base alloys exhibited excellent corrosion resistance, but their high cost prevents their use unless no other material is found feasible. Other materials tested, although unsuitable for condenser tubing material, would be suitable as tube sheet material.

Suciu, D.F.; Wikoff, P.M.

1982-09-01T23:59:59.000Z

71

Buoyancy effects on upward brine displacement caused by CO2 injection  

SciTech Connect

Upward displacement of brine from deep reservoirs driven by pressure increases resulting from CO{sub 2} injection for geologic carbon sequestration may occur through improperly sealed abandoned wells, through permeable faults, or through permeable channels between pinch-outs of shale formations. The concern about upward brine flow is that, upon intrusion into aquifers containing groundwater resources, the brine may degrade groundwater. Because both salinity and temperature increase with depth in sedimentary basins, upward displacement of brine involves lifting fluid that is saline but also warm into shallower regions that contain fresher, cooler water. We have carried out dynamic simulations using TOUGH2/EOS7 of upward displacement of warm, salty water into cooler, fresher aquifers in a highly idealized two-dimensional model consisting of a vertical conduit (representing a well or permeable fault) connecting a deep and a shallow reservoir. Our simulations show that for small pressure increases and/or high-salinity-gradient cases, brine is pushed up the conduit to a new static steady-state equilibrium. On the other hand, if the pressure rise is large enough that brine is pushed up the conduit and into the overlying upper aquifer, flow may be sustained if the dense brine is allowed to spread laterally. In this scenario, dense brine only contacts the lower-most region of the upper aquifer. In a hypothetical case in which strong cooling of the dense brine occurs in the upper reservoir, the brine becomes sufficiently dense that it flows back down into the deeper reservoir from where it came. The brine then heats again in the lower aquifer and moves back up the conduit to repeat the cycle. Parameter studies delineate steady-state (static) and oscillatory solutions and reveal the character and period of oscillatory solutions. Such oscillatory solutions are mostly a curiosity rather than an expected natural phenomenon because in nature the geothermal gradient prevents the cooling in the upper aquifer that occurs in the model. The expected effect of upward brine displacement is either establishment of a new hydrostatic equilibrium or sustained upward flux into the bottom-most region of the upper aquifer.

Oldenburg, C.M.; Rinaldi, A.

2010-01-15T23:59:59.000Z

72

Hydrocarbon content of geopressured brines. Final report  

DOE Green Energy (OSTI)

Design Well data (bottomhole pressure minus wellhead pressure, GWR, and hydrocarbon composition) is presented as a function of producing conditions. These are examined in conjunction with the following models to attempt to deduce the reservoir brine saturation level: (1) reservoir contains gas dispersed in the pores and the gas saturation is greater than critical; (2) reservoir brine is gas-saturated; (3) bubble point below hydrostatic pressure; and (4) bubble point between hydrostatic pressure and reservoir pressure. 24 figs., 10 tabs. (ACR)

Osif, T.L.

1985-08-01T23:59:59.000Z

73

Modeling acid-gas generation from boiling chloride brines  

Science Conference Proceedings (OSTI)

This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent expected conditions in an emplacement drift, but nevertheless illustrate the potential for acid-gas generation at moderate temperatures (<150 C).

Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

2009-11-16T23:59:59.000Z

74

Power Production from Geothermal Brine with the Rotary Separator Turbine  

SciTech Connect

The rotary separator turbine is a new turbine device that operates with gas-liquid mixtures. This device achieves complete gas-liquid separation, generates power from the liquid and repressurizes the liquid. The use of the rotary separator turbine for geothermal power generation was investigated on this program. A pilot scale unit was designed and tested. Tests were conducted with a clean water/steam mixture and with geothermal brine/steam flows at East Mesa, California; Raft River, Idaho; and Roosevelt Hot Springs, Utah. The test results were used to calculate the performance advantage of a rotary separator turbine power system compared to a flash steam power system and a binary power system. The calculated performance advantages were then used to estimate market potential for wellhead and central station Biphase units. The measured performance in the laboratory and in the field agreed to within {+-} 10% of the predicted values. The design goal of 20 kWe was generated both in the laboratory and from brine. Separated steam quality was measured to be greater than 99.96% at all three geothermal resources and in the laboratory. Brine pressure leaving the test unit was greater than reinjection pressure requirements. Maximum brine outlet pressure of 90 psig was demonstrated. The measured performance values would result in a 34% increase in electric power production above a single stage flash steam system. Increasing the size from the pilot size unit (20kWe) to a wellhead unit (2000 kWe) gave a calculated performance advantage of 40%. Based on these favorable results, design, construction and testing of a full-size well-head unit was initiated.

Cerini, Donald J.; Hays, Lance G.

1980-12-01T23:59:59.000Z

75

Analysis of anions in geological brines using ion chromatography  

DOE Green Energy (OSTI)

Ion chromatographic procedures for the determination of the anions bromide, sulfate, nitrite, nitrate, phosphate, and iodide in brine samples have been developed and are described. The techniques have been applied to the analysis of natural brines, and geologic evaporites. Sample matrices varied over a range from 15,000 mg/L to 200,000 mg/L total halogens, nearly all of which is chloride. The analyzed anion concentrations ranged from less than 5 mg/L in the cases of nitrite, nitrate, and phosphate, to 20,000 mg/L in the case of sulfate. A technique for suppressing chloride and sulfate ions to facilitate the analysis of lower concentration anions is presented. Analysis times are typically less than 20 minutes for each procedure and the ion chromatographic results compare well with those obtained using more time consuming classical chemical analyses. 10 references, 14 figures.

Merrill, R.M.

1985-03-01T23:59:59.000Z

76

RESULTS OF THE EXTRACTION-SCRUB-STRIP TESTING USING AN IMPROVED SOLVENT FORMULATION AND SALT WASTE PROCESSING FACILITY SIMULATED WASTE  

Science Conference Proceedings (OSTI)

The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D{sub Cs} in an ESS test, using the baseline solvent formulation and the typical waste feed, is {approx}15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under construction, will use the same process chemistry. The Office of Waste Processing (EM-31) expressed an interest in investigating the further optimization of the organic solvent by replacing the BoBCalixC6 extractant with a more efficient extractant. This replacement should yield dividends in improving cesium removal from the caustic waste stream, and in the rate at which the caustic waste can be processed. To that end, EM-31 provided funding for both the Savannah River National Laboratory (SRNL) and the Oak Ridge National Laboratory (ORNL). SRNL wrote a Task Technical Quality and Assurance Plan for this work. As part of the envisioned testing regime, it was decided to perform an ESS test using a simulated waste that simulated a typical envisioned SWPF feed, but with added potassium to make the waste more challenging. Potassium interferes in the cesium removal, and its concentration is limited in the feed to <1950 mg/L. The feed to MCU has typically contained <500 mg/L of potassium.

Peters, T.; Washington, A.; Fink, S.

2012-01-09T23:59:59.000Z

77

Volatility of HCl and the thermodynamics of brines during brine dryout  

DOE Green Energy (OSTI)

Laboratory measurements of liquid-vapor partitioning (volatility) of chlorides from brines to steam can be used to indicate the potential for corrosion problems in geothermal systems. Measurements of volatilities of solutes in chloride brines have established a possible mechanism for the production of high-chloride steam from slightly acidic high temperature brines. Questions concerning the fate of NaCl in the steam production process have been addressed through extensive measurements of its volatility from brines ranging in concentration from dilute solutions to halite saturation. Recent measurements of chloride partitioning to steam over brines in contact with Geysers rock samples are consistent with our concept of the process for production of high-chloride steam.

Simonson, J.M.; Palmer, D.A.

1997-04-01T23:59:59.000Z

78

Why Sequence Great Salt Lake?  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Salt Lake? Great Salt Lake? On average, the Great Salt Lake is four times saltier than the ocean and also has heavy metals, high concentrations of sulfur and petroleum seeps. In spite of all this, the lake is the saltiest body of water to support life. The lake hosts brine shrimp, algae and a diverse array of microbes, not to mention the roughly 5 million birds that migrate there annually. The secret to these microbes' ability to survive under such harsh conditions might be revealed in their genes. Researchers expect the genetic data will provide insight into how the microorganisms tolerate pollutants such as sulfur and detoxify pollutants such as sulfur and heavy metals like mercury. The information could then be used to develop bioremediation techniques. Researchers also expect that sequencing microorganisms sampled

79

Portable brine evaporator unit, process, and system  

DOE Patents (OSTI)

The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

Hart, Paul John (Indiana, PA); Miller, Bruce G. (State College, PA); Wincek, Ronald T. (State College, PA); Decker, Glenn E. (Bellefonte, PA); Johnson, David K. (Port Matilda, PA)

2009-04-07T23:59:59.000Z

80

Unconventional gas sources. Volume IV. Geopressured brines  

DOE Green Energy (OSTI)

The following topics are covered: study objectives, regional geology and prospect evaluation, reservoir engineering, drilling and well costs, production and water disposal facilities, pressure maintenance, geothermal and hydraulic energy assessment, operating expense, economic evaluation, environmental considerations, legal considerations, and risks analysis. The study addresses only sandstone brine reservoirs in the Texas and Louisiana Gulf Coast onshore areas. (MHR)

Not Available

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Selection and durability of seal materials for a bedded salt repository: preliminary studies  

Science Conference Proceedings (OSTI)

This report details preliminary results of both experimental and theoretical studies of cementitious seal materials for use in a proposed nuclear waste repository in bedded salt. Effects of changes in bulk composition and environment upon phase stability and physical/mechanical properties have been evaluated for more than 25 formulations. Bonding and interfacial characteristics of the region between host rock and seal material or concrete aggregate and cementitious matrix for selected formulations have been studied. Compatibilities of clays and zeolites in brines typical of the SE New Mexico region have been investigated, and their stabilities reviewed. Results of these studies have led to the conclusion that cementitious materials can be formulated which are compatible with the major rock types in a bedded salt repository environment. Strengths are more than adequate, permeabilities are consistently very low, and elastic moduli generally increase only very slightly with time. Seal formulation guidelines and recommendations for present and future work are presented. 73 references, 25 figures, 61 tables.

Roy, D.M.; Grutzeck, M.W.; Wakeley, L.D.

1983-11-01T23:59:59.000Z

82

Assessment of subsurface salt water disposal experience on the Texas and Louisiana Gulf Coast for applications to disposal of salt water from geopressured geothermal wells  

SciTech Connect

A representative cross section of the literature on the disposal of geothermal brine was perused and some of the general information and concepts is summarized. The following sections are included: disposal statistics--Texas Railroad Commission; disposal statistics--Louisiana Office of Conservation; policies for administering salt water disposal operations; salt water disposal experience of Gulf Coast operators; and Federal Strategic Petroleum Reserve Program's brine disposal operations. The literature cited is listed in the appended list of references. Additional literature is listed in the bibliography. (MHR)

Knutson, C.K.; Boardman, C.R.

1978-08-04T23:59:59.000Z

83

Assessment of subsurface salt water disposal experience on the Texas and Louisiana Gulf Coast for applications to disposal of salt water from geopressured geothermal wells  

DOE Green Energy (OSTI)

A representative cross section of the literature on the disposal of geothermal brine was perused and some of the general information and concepts is summarized. The following sections are included: disposal statistics--Texas Railroad Commission; disposal statistics--Louisiana Office of Conservation; policies for administering salt water disposal operations; salt water disposal experience of Gulf Coast operators; and Federal Strategic Petroleum Reserve Program's brine disposal operations. The literature cited is listed in the appended list of references. Additional literature is listed in the bibliography. (MHR)

Knutson, C.K.; Boardman, C.R.

1978-08-04T23:59:59.000Z

84

Comparison of elementary geothermal-brine power-production processes  

SciTech Connect

From applied technology geothermal committee meeting; Idaho Falls, Idaho, USA (7 Aug 1973). A comparison of three simple geothermal power- production systems shows that the flashed steam and the compound systems are favored for use with high-temperature brines. The binary system becomes economically competitive only when used on low-temperature brines (enthalpies less than 350 Btu/lb). Geothermal power appears to be economically attractive even when low-temperature brines are used. (auth)

Green, M.A.; Laird, A.D.K.

1973-08-01T23:59:59.000Z

85

Models of Geothermal Brine Chemistry  

DOE Green Energy (OSTI)

Many significant expenses encountered by the geothermal energy industry are related to chemical effects. When the composition, temperature of pressure of the fluids in the geological formation are changed, during reservoir evolution, well production, energy extraction or injection processes, the fluids that were originally at equilibrium with the formation minerals come to a new equilibrium composition, temperature and pressure. As a result, solid material can be precipitated, dissolved gases released and/or heat lost. Most geothermal energy operations experience these phenomena. For some resources, they create only minor problems. For others, they can have serious results, such as major scaling or corrosion of wells and plant equipment, reservoir permeability losses and toxic gas emission, that can significantly increase the costs of energy production and sometimes lead to site abandonment. In future operations that exploit deep heat sources and low permeability reservoirs, new chemical problems involving very high T, P rock/water interactions and unknown injection effects will arise.

Nancy Moller Weare; John H. Weare

2002-03-29T23:59:59.000Z

86

Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations  

SciTech Connect

Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

David B. Burnett; Mustafa Siddiqui

2006-12-29T23:59:59.000Z

87

Frio II Brine Pilot: Report on GEOSEQ Activities  

Science Conference Proceedings (OSTI)

LBNL's GEOSEQ project is a key participant in the Frio IIbrine pilot studying geologic sequestration of CO2. During During theinjection phase of the Frio-II brine pilot, LBNL collected multiple datasets including seismic monitoring, hydrologic monitoring and geochemicalsampling. These data sets are summarized in this report including allCASSM (continuous active source seismic monitoring) travel time data,injection pressure and flow rate data and gaseous sampling and tracerdata. Additional results from aqueous chemistry analysis performed by theU. S. Geological Survey (USGS) are summarized. Post injectionmodification of the flow model for Frio II is shown. Thesemodificationsare intended to facilitate integration with the monitoring data andincorporation of model heterogeneity. Current activities of LBNL's GEOSEQproject related to the Frio II test are shown, including development of anew petrophysical model for improved interpretation of seismic monitoringdata and integration of this data with flow modeling.

Daley, T.M.; Freifeld, B.M.; Ajo-Franklin, J.B.; Doughty, C.; Benson, S.M.

2007-11-17T23:59:59.000Z

88

Iodized Salt  

NLE Websites -- All DOE Office Websites (Extended Search)

Iodized Salt Iodized Salt Name: Theresa Location: N/A Country: N/A Date: N/A Question: Why do they put iodine in salt? Replies: Iodine was introduced into salt at earlier this century when it was discovered that certain areas of the US had a mark deficiency in iodine in the diet of people, and people developed a neck swelling (goiter). The Great Lakes region is one of these areas where the soil is lacking iodine. Goiter can be caused when the thyroid gland swells because of a lack of iodine in the diet. Most medical advise now states that iodine in salt is no longer necessary due to our food sources arising from all over the world. Steve Sample Hi Theresa...see, there are a variety of elements and compounds that are necessary for the proper maintenance of our life. One of these is iodine, since a small quantity of iodine is needed for the adequate functioning of the thyroid gland. A deficiency of iodine produces dire effects, as goiter, where the thyroid gland swollens due to the lack of iodine traces in the diet. The iodine affects directly the tyrhoid gland secretions, which themselves, to a great extent, control heart action, nerve response to stimuli, rate of body growth and metabolism.

89

Sustainable Carbon Sequestration: Increasing CO2-Storage Efficiency through a CO2-Brine Displacement Approach  

E-Print Network (OSTI)

CO2 sequestration is one of the proposed methods for reducing anthropogenic CO2 emissions to the atmosphere and therefore mitigating global climate change. Few studies on storing CO2 in an aquifer have been conducted on a regional scale. This study offers a conceptual approach to increasing the storage efficiency of CO2 injection in saline formations and investigates what an actual CO2 storage project might entail using field data for the Woodbine aquifer in East Texas. The study considers three aquifer management strategies for injecting CO2 emissions from nearby coal-fired power plants into the Woodbine aquifer. The aquifer management strategies studied are bulk CO2 injection, and two CO2-brine displacement strategies. A conceptual model performed with homogeneous and average reservoir properties reveals that bulk injection of CO2 pressurizes the aquifer, has a storage efficiency of 0.46% and can only last for 20 years without risk of fracturing the CO2 injection wells. The CO2-brine displacement strategy can continue injecting CO2 for as many as 240 years until CO2 begins to break through in the production wells. This offers 12 times greater CO2 storage efficiency than the bulk injection strategy. A full field simulation with a geological model based on existing aquifer data validates the storage capacity claims made by the conceptual model. A key feature in the geological model is the Mexia-Talco fault system that serves as a likely boundary between the saline aquifer region suitable for CO2 storage and an updip fresh water region. Simulation results show that CO2 does not leak into the fresh water region of the iv aquifer after 1000 years of monitoring if the faults have zero transmissibility, but a negligible volume of brine eventually gets through the mostly sealing fault system as pressure across the faults slowly equilibrates during the monitoring period. However, for fault transmissibilities of 0.1 and 1, both brine and CO2 leak into the fresh water aquifer in increasing amounts for both bulk injection and CO2-brine displacement strategies. In addition, brine production wells draw some fresh water into the saline aquifer if the Mexia-Talco fault system is not sealing. A CO2 storage project in the Woodbine aquifer would impact as many as 15 counties with high-pressure CO2 pipelines stretching as long as 875 km from the CO2 source to the injection site. The required percentage of power plant energy capacity was 7.43% for bulk injection, 7.9% for the external brine disposal case, and 10.2% for the internal saturated brine injection case. The estimated total cost was $0.00132–$0.00146/kWh for the bulk injection, $0.00191–$0.00211/kWh for the external brine disposal case, and $0.0019–$0.00209/kWh for the internal saturated brine injection case.

Akinnikawe, Oyewande

2012-08-01T23:59:59.000Z

90

CO2-H2O Mixtures in the Geological Sequestration of CO2. II. Partitioning in Chloride Brines at 12-100 °C and 1-600 bar.  

Office of Scientific and Technical Information (OSTI)

CO CO 2 -H 2 O Mixtures in the Geological Sequestration of CO 2 . II. Partitioning in Chloride Brines at 12-100°C and up to 600 bar. Nicolas Spycher and Karsten Pruess Lawrence Berkeley National Laboratory, MS 90-1116, 1 Cyclotron Road, Berkeley, California, USA September 2004 ABSTRACT Correlations presented by Spycher et al. (2003) to compute the mutual solubilities of CO 2 and H 2 O are extended to include the effect of chloride salts in the aqueous phase. This is accomplished by including, in the original formulation, activity coefficients for aqueous CO 2 derived from several literature sources, primarily for NaCl solutions. Best results are obtained when combining the solubility correlations of Spycher et al. (2003) with the activity coefficient formulation of Rumpf et al. (1994) and Duan and Sun (2003), which

91

Recovery Act: Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine CO2 Sequestration  

SciTech Connect

To further our understanding and develop the method for measuring the DICs under geological sequestration conditions, we studied the infrared spectra of DICs under high pressure and temperature conditions. First principles simulations of DICs in brine conditions were performed using a highly optimized ReaxFF-DIC forcefield. The thermodynamics stability of each species were determined using the 2PT method, and shown to be consistent with the Reax simulations. More importantly, we have presented the IR spectra of DIC in real brine conditions as a function of temperature and pressure. At near earth conditions, we find a breaking of the O-C-O bending modes into asymmetric and symmetric modes, separated by 100cm{sup -1} at 400K and 5 GPa. These results can now be used to calibrate FTIR laser measurements.

Goddard, William

2012-11-30T23:59:59.000Z

92

Fundamental Properties of Salts  

SciTech Connect

Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

Toni Y Gutknecht; Guy L Fredrickson

2012-11-01T23:59:59.000Z

93

Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests  

DOE Green Energy (OSTI)

Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

1995-01-01T23:59:59.000Z

94

Gas releases from salt  

Science Conference Proceedings (OSTI)

The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

Ehgartner, B.; Neal, J.; Hinkebein, T.

1998-06-01T23:59:59.000Z

95

Risk assessment of nonhazardous oil-field waste disposal in salt caverns.  

Science Conference Proceedings (OSTI)

Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could, from technical and legal perspectives, be suitable for disposing of oil-field wastes. On the basis of these findings, ANL subsequently conducted a preliminary risk assessment on the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in salt caverns. The methodology for the risk assessment included the following steps: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing contaminant toxicities; estimating contaminant intakes; and estimating human cancer and noncancer risks. To estimate exposure routes and pathways, four postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (for noncancer health effects) estimates that were well within the EPA target range for acceptable exposure risk levels. These results lead to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

Elcock, D.

1998-03-10T23:59:59.000Z

96

Actinide (III) solubility in WIPP Brine: data summary and recommendations  

Science Conference Proceedings (OSTI)

The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

2009-09-01T23:59:59.000Z

97

Cementation process for minerals recovery from Salton Sea geothermal brines  

DOE Green Energy (OSTI)

The potential for minerals recovery from a 1000-MWe combined geothermal power and minerals recovery plant in the Salton Sea is examined. While the possible value of minerals recovered would substantially exceed the revenue from power production, information is insufficient to carry out a detailed economic analysis. The recovery of precious metals - silver, gold, and platinum - is the most important factor in determining the economics of a minerals recovery plant; however, the precious metals content of the brines is not certain. Such a power plant could recover 14 to 31% of the US demand for manganese and substantial amounts of zinc and lead. Previous work on minerals extraction from Salton Sea brines is also reviewed and a new process, based on a fluidized-bed cementation reaction with metallic iron, is proposed. This process would recover the precious metals, lead, and tin present in the brines.

Maimoni, A.

1982-01-26T23:59:59.000Z

98

Conditioning of geothermal brine effluents for injection: use of coagulants  

DOE Green Energy (OSTI)

The use of various chemical coagulants and flocculants with spent geothermal brine for enhancing the removal of colloidal solids prior to injection was studied. Brine at 80 to 85/sup 0/C was obtained from the injection line of the SDG and E/DOE Geothermal Loop Experimental Facility during a period of operation with Magmamax No. 1 Fluid. The solids consist primarily of an iron-rich amorphous silica and heavy metal sulfides, principally lead. Standard jar testing equipment was used to carry out the tests.

Quong, R.; Shoepflin, F.; Stout, N.D.

1978-02-01T23:59:59.000Z

99

Brine and gas recovery from geopressured systems. I. Parametric calculations  

DOE Green Energy (OSTI)

A series of parametric calculations was run with the S-CUBED geopressured-geothermal simulator MUSHRM to assess the effects of important formation, fluid and well parameters on brine and gas recovery from geopressured reservoir systems. The specific parameters considered are formation permeability, pore-fluid salinity, temperature and gas content, well radius and location with respect to reservoir boundaries, desired flow rate, and possible shale recharge. It was found that the total brine and gas recovered (as a fraction of the resource in situ) were most sensitive to formation permeability, pore-fluid gas content, and shale recharge.

Garg, S.K.; Riney, T.D.

1984-02-01T23:59:59.000Z

100

Modeling of an adiabatic packed bed brine-air contactor for use in a solar energy driven food processing system  

Science Conference Proceedings (OSTI)

A mathematical model was developed for a packed bed brine-air contacting system which has applications in a solar energy driven food processing system. The model considers mass transfer resistances of both phases, but neglects the heat transfer resistance of the liquid phase. It takes into account the large heat effects associated with water absorption into and desorption from the brine. A computational method was also developed to calculate the minimum air flow rate which would prevent a pinch. A packed bed brine-air contactor was built, and experiments were conducted for a range of brine and air conditions. Good agreement between the computed and experimental results warrants use of the model to design and optimize the packed bed water stripping process. A periodic-flow packed bed heat regenerator was built to recover heat from the exit air of the contactor so as to improve the energy efficiency of the system. It was possible to preheat the inlet air to a temperature close to that of the exit air. The inlet air, however, during its passage through the regenerator picked up the condensate deposited from the exit air. This led to a decrease in the driving potential to mass transfer in the contactor. Optimization studies show that using a combined solar driven boiler and air assisted packed bed water stripper would be more economical than using a solar driven boiler alone or using flat plate solar collectors to drive the water stripper.

Biswal, R.N.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, And Caustic Wash Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 4 Operations  

Science Conference Proceedings (OSTI)

Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), and Caustic Wash Tank (CWT) samples from several of the ?microbatches? of Integrated Salt Disposition Project (ISDP) Salt Batch (?Macrobatch?) 4 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by inductively-coupled plasma emission spectroscopy (ICPES). Furthermore, samples from the CWT have been analyzed by a variety of methods to investigate a decline in the decontamination factor (DF) of the cesium observed at MCU. The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 3 samples indicate generally consistent operations. There is no indication of a disruption in plutonium and strontium removal. The average cesium DF and concentration factor (CF) for samples obtained from Macrobatch 4 are slightly lower than for Macrobatch 3, but still well within operating parameters. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in Actinide Removal Process (ARP).

Peters, T. B.; Fink, S. D.

2012-10-25T23:59:59.000Z

102

Uranium (VI) solubility in carbonate-free ERDA-6 brine  

Science Conference Proceedings (OSTI)

When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.

Lucchini, Jean-francois [Los Alamos National Laboratory; Khaing, Hnin [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

103

Processing of high salinity brines for subsurface injection  

DOE Green Energy (OSTI)

Different chemical pretreatments and filtration methods were evaluated as a possible means of clarifying and improving the injectivity of hypersaline brines. Six different downflow media combinations were evaluated over three geopressurized sites, using test data from 4 inch diameter filters. Also, tests were conducted with one hollow fiber ultrafilter unit and two types of disposable cartridge filters. The test procedures are mentioned briefly. (MHR)

Thompson, R.E.; Raber, E.

1979-08-06T23:59:59.000Z

104

Advanced biochemical processes for geothermal brines current developments  

DOE Green Energy (OSTI)

A research program at Brookhaven National Laboratory (BNL) which deals with the development and application of processes for the treatment of geothermal brines and sludges has led to the identification and design of cost-efficient and environmentally friendly treatment methodology. Initially the primary goal of the processing was to convert geothermal wastes into disposable materials whose chemical composition would satisfy environmental regulations. An expansion of the R&D effort allowed to identify a combination of biochemical and chemical processes which became a basis for the development of a technology for the treatment of geothermal brines and sludges. The new technology satisfies environmental regulatory requirements and concurrently converts the geothermal brines and sludges into commercially promising products. Because the chemical composition of geothermal wastes depends on the type of the resource and therefore differs, the emerging technology has to be also flexible so that it can be readily modified to suit the needs of a particular type of resource. Recent conceptional designs for the processing of hypersaline and low salinity brines and sludges will be discussed.

Premuzic, E.T.; Lin, M.S.; Bohenek, M.

1997-03-10T23:59:59.000Z

105

Advanced biochemical processes for geothermal brines: Current developments  

DOE Green Energy (OSTI)

A research program at Brookhaven National Laboratory (BNL) which deals with the development and application of processes for the treatment of geothermal brines and sludges has led to the identification and design of cost-efficient and environmentally friendly treatment methodology. Initially the primary goal of the processing was to convert geothermal wastes into disposable materials whose chemical composition would satisfy environmental regulations. An expansion of the r and D effort identified a combination of biochemical and chemical processes which became the basis for the development of a technology for the treatment of geothermal brines and sludges. The new technology satisfies environmental regulatory requirements and concurrently converts the geothermal brines and sludges into commercially promising products. Because the chemical composition of geothermal wastes depends on the type of the resource, the emerging technology has to be flexible so that it can be readily modified to suit the needs of a particular type of resource. Recent conceptional designs for the processing of hypersaline and low salinity brines and sludges will be discussed.

Premuzic, E.T.; Lin, M.S.; Bohenek, M. [Brookhaven National Lab., Upton, NY (United States). Energy Science and Technology Div.; Bajsarowicz, V. [CET Environmental Services, Inc., Richmond, CA (United States); McCloud, M. [C.E. Holt/California Energy, Pasadena, CA (United States)

1997-07-07T23:59:59.000Z

106

Equipment evaluation for low density polyethylene encapsulated nitrate salt waste at the Rocky Flats Plant  

SciTech Connect

Mixed wastes at the Rocky Flats Plant (RFP) are subject to regulation by the Resource Conservation and Recovery Act (RCRA). Polymer solidification is being developed as a final treatment technology for several of these mixed wastes, including nitrate salts. Encapsulation nitrate salts with low density polyethylene (LDPE) has been the preliminary focus of the RFP polymer solidification effort. Literature reviews, industry surveys, and lab-scale and pilot-scale tests have been conducted to evaluate several options for encapsulating nitrate salts with LDPE. Most of the effort has focused on identifying compatible drying and extrusion technologies. Other processing options, specifically meltration and non-heated compounding machines, were also investigated. The best approach appears to be pretreatment of the nitrate salt waste brine in either a vertical or horizontal thin film evaporator followed by compounding of the dried waste with LDPE in an intermeshing, co-rotating, twin-screw extruder. Additional pilot-scale tests planned for the fall of 1993 should further support this recommendation. Preliminary evaluation work indicates that meltration is not possible at atmospheric pressure with the LDPE (Chevron PE-1409) provided by RFP. However, meltration should be possible at atmospheric pressure using another LDPE formulation with altered physical and rheological properties: Lower molecular weight and lower viscosity (Epoline C-15). Contract modifications are now in process to allow a follow-on pilot scale demonstration. Questions regarding changed safety and physical properties of the resultant LDPE waste form due to use of the Epoline C-15 will be addressed. No additional work with non-heated mixer compounder machines is planned at this time.

Yamada, W.I.; Faucette, A.M.; Jantzen, R.C.; Logsdon, B.W.; Oldham, J.H.; Saiki, D.M.; Yudnich, R.J.

1993-08-30T23:59:59.000Z

107

Deliquescence of NaCl-NaNO3 and KNO3-NaNO3 Salt Mixtures at 90C  

SciTech Connect

We conducted reversed deliquescence experiments in saturated NaCl-NaNO3-H2O and KNO{sub 3}-NaNO{sub 3}-H{sub 2}O systems at 90 C to determine relative humidity and solution composition. NaCl, NaNO{sub 3}, and KNO{sub 3} represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV, USA. Model predictions agree with experimental results for the NaCl-NaNO{sub 3}-H{sub 2}O system, but underestimate relative humidity by as much as 8% and solution composition by as much as 50% in the KNO{sub 3}-NaNO{sub 3}-H{sub 2}O system.

Carroll, S; Craig, L; Wolery, T

2003-12-29T23:59:59.000Z

108

Impact-driven pressure management via targeted brine extraction Conceptual studies of CO2 storage in saline formations  

E-Print Network (OSTI)

Combining Brine Extraction, desalination, and Residual-Brinebeneficial use such as desalination for drinking water

Birkholzer, J.T.

2013-01-01T23:59:59.000Z

109

Development of direct heat exchangers for geothermal brines. Final report, October 4, 1977--June 30, 1978  

DOE Green Energy (OSTI)

A series of experiments during a period of eight months was conducted with the existing Direct Contact Heat Exchanger (DCHX) Loop in order to better understand the thermal and hydraulic characteristics of the equipment. Modifications were made to the equipment which were designed to improve heat transfer and reduce the cost of the heat exchangers. Additional changes were made to the equipment to conduct turbine experiments, condenser experiments, and carryover tests. Further studies of the amounts of dissolved isobutane in the geothermal brine and methods of recovering this dissolved isobutane were also made. The procedures used and the results of the tests performed are presented.

Urbanek, M.W.

1978-01-01T23:59:59.000Z

110

Effect of shale-water recharge on brine and gas recovery from geopressured reservoirs  

DOE Green Energy (OSTI)

The concept of shale-water recharge has often been discussed and preliminary assessments of its significance in the recovery of geopressured fluids have been given previously. The present study uses the Pleasant Bayou Reservoir data as a base case and varies the shale formation properties to investigate their impact on brine and gas recovery. The parametric calculations, based on semi-analytic solutions and finite-difference techniques, show that for vertical shale permeabilities which are at least of the order of 10/sup -5/ md, shale recharge will constitute an important reservoir drive mechanism and will result in much larger fluid recovery than that possible in the absence of shale dewatering.

Riney, T.D.; Garg, S.K.; Wallace, R.H. Jr.

1985-01-01T23:59:59.000Z

111

POLYTETRAFLUOROETHYLENE-RICH POLYPHENLENESULFIDE BLEND TOP COATINGS FOR MITIGATING CORROSION OF CARBON STEEL IN 300 DEGREE CELCIUS BRINE.  

DOE Green Energy (OSTI)

We evaluated usefulness of a coating system consisting of an underlying polyphenylenesulfide (PPS) layer and top polytetrafluoroethylene (PTFE)-blended PPS layer as low friction, water repellent, anti-corrosion barrier film for carbon steel steam separators in geothermal power plants. The experiments were designed to obtain information on kinetic coefficient of friction, surface free energy, hydrothermal oxidation, alteration of molecular structure, thermal stability, and corrosion protection of the coating after immersing the coated carbon steel coupons for up to 35 days in CO{sub 2}-laden brine at 300 C. The superficial layer of the assembled coating was occupied by PTFE self-segregated from PPS during the melt-flowing process of this blend polymer; it conferred an outstanding slipperiness and water repellent properties because of its low friction and surface free energy. However, PTFE underwent hydrothermal oxidation in hot brine, transforming its molecular structure into an alkylated polyfluorocarboxylate salt complex linked to Na. Although such molecular transformation increased the friction and surface free energy, and also impaired the thermal stability of PTFE, the top PTFE-rich PPS layer significantly contributed to preventing the permeation of moisture and corrosive electrolytes through the coating film, so mitigating the corrosion of carbon steel.

SUGAMA, T.; JUNG, D.

2006-06-01T23:59:59.000Z

112

Noncentrosymmetric salt inclusion oxides: Role of salt lattices and counter ions in bulk polarity  

SciTech Connect

The synthesis and structural features of a newly emerged class of salt-inclusion solids (SISs) are reviewed. The descriptive chemistry with respect to the role of ionic salt and its correlation with bulk noncentrosymmetricity and polarity of the covalent oxide lattice in question is discussed by means of structure analysis. These unprecedented discoveries have opened doors to novel materials synthesis via the utilities of salt-inclusion chemistry (SIC) that are otherwise known as the molten-salt approach. The result of these investigations prove that the bulk acentricity, or cancellation of which, can be accounted for from the perspective of ionic and/or salt lattices. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of newly emerged salt-inclusion solids are reviewed. Black-Right-Pointing-Pointer Salt lattice and its symmetry correlation with polar framework are discussed. Black-Right-Pointing-Pointer Preservation of acentricity is accounted for from the perspective of ionic and salt lattices.

West, J. Palmer [Department of Chemistry, Clemson University, Clemson, SC 29634-0973 (United States)] [Department of Chemistry, Clemson University, Clemson, SC 29634-0973 (United States); Hwu, Shiou-Jyh, E-mail: shwu@clemson.edu [Department of Chemistry, Clemson University, Clemson, SC 29634-0973 (United States)] [Department of Chemistry, Clemson University, Clemson, SC 29634-0973 (United States)

2012-11-15T23:59:59.000Z

113

The feasibility of deep well injection for brine disposal  

E-Print Network (OSTI)

A generalized methodology for evaluating the technical feasibility of projects involving the disposal of waste brine by injection into deep saline aquifers is developed, primarily from the hydrology and petroleum engineering literature. Data collection, groundwater modeling, and fluid compatibility are discussed in detail. Injection system design, economics, and regulatory considerations are more related to economic than technical feasibility, and are discussed only as they relate to technical feasibility. The methodology is utilized to make a preliminary evaluation of a proposed brine injection project in the Dove Creek area of King and Stonewall Counties, North Central Texas. Four known deep aquifers are modeled, using the SWIFT/486 software, to determine their ability to receive two cfs of brine for a project life of one hundred years. Two aquifers, the Strawn and EUenburger Formations, are predicted to be acceptable for disposal. Each aquifer would require only one disposal well which is favorable for the economics of the project. Additional data, particularly hydraulic conductivity and net aquifer thickness data, are required to make a more definitive technical feasibility determination for this project.

Spongberg, Martin Edward

1994-01-01T23:59:59.000Z

114

Origin of fluid inclusion water in bedded salt deposits, Palo Duro Basin, Texas  

DOE Green Energy (OSTI)

Salt horizons in the Palo Duro Basin being considered for repository sites contain fluid inclusions which may represent connate water retained in the salt from the time of original salt deposition and/or external waters which have somehow penetrated the salt. The exact origin of this water is important to the question of whether or not internal portions of the salt deposit have been, and are likely to be, isolated from the hydrosphere for long periods of time. The /sup 18/O//sup 16/O and D/H ratios measured for water extracted from solid salt samples show the inclusions to be dissimilar in isotopic composition to meteoric waters and to formation waters above and below the salt. The fluid inclusions cannot be purely external waters which have migrated into the salt. The isotope data are readily explained in terms of mixed meteoric-marine connate evaporite waters which date back to the time of deposition and early diagenesis of the salt (>250 million years). Any later penetration of the salt by meteoric waters has been insufficient to flush out the connate brines.

Knauth, L.P.; Beeunas, M.A.

1985-07-01T23:59:59.000Z

115

Report on design, construction, and testing of CO/sub 2/ breakout system for geothermal brines  

DOE Green Energy (OSTI)

A skid mounted test facility has been built for determining conditions at which CO/sub 2/ flashes from geothermal brines. The system has been checked and operated at one geothermal plant. It performed as designed. The equipment is designed to operate at temperatures and pressures typical of wells near Heber, California. (Nominally 180/sup 0/C and 300 to 500 psig). It has heat exchangers which can cool the brine to less than 70/sup 0/C. (The cooling water is recirculated after being cooled by a forced air heat exchanger). Breakout pressures can be determined for any temperature between 70/sup 0/C and wellhead temperature. An adjustable orifice provides final control on pressure required to initiate flashing. The orifice is at the bottom of a sight glass. A light beam shines through the sight glass and focuses on a photoelectric cell. The presence of bubbles scatters light and decreases the output of the cell. Results using the cell were more reproducible than those using the naked eye. Results from one test show a smooth curve over the temperature range 75/sup 0/C to 165/sup 0/C. Agreement between the experimental values and calculated ones is discussed.

Robertus, R.J.; Shannon, D.W.; Sullivan, R.G.

1984-03-01T23:59:59.000Z

116

Brine pH Modification Scale Control Technology. 2. A Review.pdf | Open  

Open Energy Info (EERE)

Brine pH Modification Scale Control Technology. 2. A Review.pdf Brine pH Modification Scale Control Technology. 2. A Review.pdf Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Brine pH Modification Scale Control Technology. 2. A Review.pdf Abstract A variety of processes has been deployed at geothermalfields to inhibit or control siliceous scale deposition. It has beenknown for decades that the kinetics of silicic acid polymerizationis retarded when the pH of an aqueous solution is decreased.Therefore, a potential method for controlling siliceous scalingfrom geothermal brine is treatment with acid. Early attempts tocontrol siliceous scaling in geothermal brine-handling equipmentby retarding polymerization led to the belief that the pHhad to be reduced to < 4. Acidifying brine was discourageddue to corrosion concerns.

117

Molten salt electrolyte separator  

DOE Patents (OSTI)

A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

Kaun, Thomas D. (New Lenox, IL)

1996-01-01T23:59:59.000Z

118

Hydrocarbons associated with brines from geopressured wells. Fourth quarterly technical progress report, 1 October 1990--30 December 1990  

DOE Green Energy (OSTI)

The purpose of this research is to determine the concentration of the cryocondensates in fluids of the various USDOE Geopressured wells as a function of production volume, to correlate the production of these compounds with reservoir and well production characteristics, to precisely measure solubilities of cryocondensates components in water and sodium chloride solutions (brines) as a function of ionic strength and temperature and the component`s distribution coefficients between these solutions and oil, to develop models of the reservoir which are consistent with the data obtained, to monitor the wells for the production of aliphatic oils and relate any such production with the data obtained, and to develop a harsh environment pH probe for use in well brines. Results are summarized.

Not Available

1991-01-15T23:59:59.000Z

119

Fluid sampling and chemical modeling of geopressured brines containing methane. Final report, March 1980-February 1981  

DOE Green Energy (OSTI)

The development of a flowthrough sampler capable of obtaining fluid samples from geopressured wells at temperatures up to 400/sup 0/F and pressures up to 20,000 psi is described. The sampler has been designed, fabricated from MP35N alloy, laboratory tested, and used to obtain fluid samples from a geothermal well at The Geysers, California. However, it has not yet been used in a geopressured well. The design features, test results, and operation of this device are described. Alternative sampler designs are also discussed. Another activity was to review the chemistry and geochemistry of geopressured brines and reservoirs, and to evaluate the utility of available computer codes for modeling the chemistry of geopressured brines. The thermodynamic data bases for such codes are usually the limiting factor in their application to geopressured systems, but it was concluded that existing codes can be updated with reasonable effort and can usefully explain and predict the chemical characteristics of geopressured systems, given suitable input data.

Dudak, B.; Galbraith, R.; Hansen, L.; Sverjensky, D.; Weres, O.

1982-07-01T23:59:59.000Z

120

Geochemistry of Aluminum in High Temperature Brines  

DOE Green Energy (OSTI)

geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.

Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.

1999-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hydrocarbons associated with brines from geopressured wells  

DOE Green Energy (OSTI)

Efforts to determine the concentration of the cryocondensates in fluids of the various USDOE Geopressured wells a function of production volume. The wells are visited monthly as they are operating and samples are reported taken cryogenically during each visit. A gas scrubbing system continuously sample the gas streams of the wells in the intergas scrubbing system continuously sample the gas streams of the wells in the intervals between visit. Results obtained are to correlated the production of the collected compounds with reservoir and well production characteristics.

Not Available

1991-10-15T23:59:59.000Z

122

Rock-brine chemical interactions. Final report  

DOE Green Energy (OSTI)

The results of experimental interaction of powdered volcanic rock with aqueous solutions are presented at temperatures from 200 to 400/sup 0/C, 500 to 1000 bars fluid pressure, with reaction durations of approximately 30 days under controlled laboratory conditions. The aim of this research is to develop data on the kinetics and equilibria of rock solution interactions that will provide insight into the complex geochemical processes attending geothermal reservoir development, stimulation, and reinjection. The research was done in the Stanford Hydrothermal Lab using gold cell equipment of the Dickson design. This equipment inverts the solution rock mixture several times a minute to ensure thorough mixing. Solution samples were periodically withdrawn without interruption of the experimental conditions. The data from these experiments suggests a path dependent series of reactions by which geothermal fluids might evolve from meteoric or magmatic sources.

Not Available

1982-02-01T23:59:59.000Z

123

Community Geothermal Technology Program: Electrodeposition of minerals in geothermal brine  

DOE Green Energy (OSTI)

Objective was to study the materials electrodeposited from geothermal brine, from the HGP-A well in Puna, Hawaii. Due to limitations, only one good set of electrodeposited material was obtained; crystallography indicates that vaterite forms first, followed by calcite and then perhaps aragonite as current density is increased. While the cost to weight ratio is reasonable, the deposition rate is very slow. More research is needed, such as reducing the brittleness. The electrodeposited material possibly could be used as building blocks, tables, benches, etc. 49 figs, 4 tabs, 7 refs.

Not Available

1990-12-31T23:59:59.000Z

124

Geothermal Chemical Modeling Project DOE Advanced Brine Chemistry Program  

DOE Green Energy (OSTI)

The brine-calcite-anhydrite-silica scale model program is ready to be used by the industry at a research level. Versions are already in use in studies of scaling in geothermal and oil production systems. A set of short course notes has been prepared to help perspective users. IBM and Macintosh versions of the model are available. The gas phase models have been incorporated in the general package for distribution. Both mainframe (SUN) and PC versions (MacIntosh and IBM) of the code have been distributed.

Moeller, N.; Weare, J.H.

1993-04-01T23:59:59.000Z

125

Study and testing of direct contact heat exchangers for geothermal brines. Phase II, August 1976--June 1977  

DOE Green Energy (OSTI)

The analytical and experimental studies completed under this project have explored several aspects of geothermal binary power cycles and column type direct contact heat exchangers between geothermal brine and isobutane. A major improvement of the heat exchanger was developed by the combination of the preheater and boiler into a single continuous column. At East Mesa, this new direct contact heat exchanger was tested on geothermal brine in order to correlate the experimental heat transfer data with the theoretical model for use in designing larger plants. Experiments also involved a small radial inflow turbine to produce electricity which marked the first generation of electricity from geothermal brine using a binary cycle. In analytical studies, a comparison of the relationship between column diameter and droplet size was made for both Minard--Johnson and Sakiadis--Johnson model. The Letan--Kehat model for relating column height and temperature profile was analyzed and compared with experimental data. It appears that the experimental results are in good agreement with the theoretical models. A detailed design of a 250 Kw pilot plant incorporating the direct contact heat exchanger was completed. This design with estimated costs for it and a 500 Kw pilot plant is incorporated.

Suratt, W.B.; Lee, C.O.

1978-11-01T23:59:59.000Z

126

Solute-travel time estimates for tile-drained fields. III. Removal of a geothermal brine spill from soil by leaching  

DOE Green Energy (OSTI)

The time required to leach a slug of saline, sodic geothermal brine from the point of injection to the tile outlet of an artificially drained field is calculated. Sprinkler, complete, and partial ponding leaching methods are compared as a function of drain spacing and initial location of the spill, with ponding requiring more water but less time to leach brine out of the system for all situations except where the brine spill occurs near the midpoint between tile lines. Calculation results are presented in dimensionless parameters which scale the drainage system dimensions and the soil water transport properties. A simple calculation is proposed to estimate the volume of leaching fluid required to remove excess Na/sup +/ from the exchange complex, and was found to be in good agreement with the results of laboratory soil column experiments. For fine-textured soils in the Imperial Valley of California it may require up to 30 pore volumes of leaching fluid to lower Na/sup +/ concentrations if saturated gypsum solution is used in reclamation. The results of these calculations suggest that reclamation of fine textured soils could require a prohibitive amount of time unless the brine spill is localized around a drain.

Jury, W.A.; Weeks, L.V.

1978-01-16T23:59:59.000Z

127

Kinetics of silica deposition from simulated geothermal brines  

DOE Green Energy (OSTI)

Supersaturated brines were passed through columns packed with several forms of silica (crystalline ..cap alpha.. quartz, polycrystalline ..cap alpha.. quartz, and porous Vycor). Also, silica deposition on ThO/sub 2/ microspheres and titanium powder was studied under controlled conditions of supersaturation, pH, temperature, and salinity. The residence time was varied by adjustments of flow rate and column length. The silica contents of the input and effluent solutions were determined colorimetrically by a molybdate method which does not include polymers without special pretreatment. Essentially identical deposition behavior was observed once the substrate was thoroughly coated with amorphous silica and the BET surface area of the coated particles was taken into account. The reaction rate is not diffusion limited in the columns. The silica deposition is a function of the monomeric Si(OH)/sub 4/ concentration in the brine. The deposition on all surfaces examined was spontaneously nucleated. The dependence on the supersaturation concentration, hydroxide ion concentration, surface area, temperature and salinity were examined. Fluoride was shown to have no effect at pH 5.94 and low salinity. The empirical rate law which describes the data in 1 m NaCl in the pH range 5-7 and temperatures from 60 to 120/sup 0/C is given.

Bohlmann, E.G.; Mesmer, R.E.; Berlinski, P.

1980-03-01T23:59:59.000Z

128

Fracture and Healing of Rock Salt Related to Salt Caverns  

Science Conference Proceedings (OSTI)

In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in cavern sealing and operation. The MDCF model is used in three simulations of field experiments in which indirect measures were obtained of the generation of damage. The results of the simulations help to verify the model and suggest that the model captures the correct fracture behavior of rock salt. The model is used in this work to estimate the generation and location of damage around a cylindrical storage cavern. The results are interesting because stress conditions around the cylindrical cavern do not lead to large amounts of damage. Moreover, the damage is such that general failure can not readily occur, nor does the extent of the damage suggest possible increased permeation when the surrounding salt is impermeable.

Chan, K.S.; Fossum, A.F.; Munson, D.E.

1999-03-01T23:59:59.000Z

129

Salt Tectonics and Its Effect on Sediment Structure and Gas Hydrate Occurrence in the Northwestern Gulf of Mexico from 2-D Multichannel Seismic Data  

E-Print Network (OSTI)

This study was undertaken to investigate mobile salt and its effect on fault structures and gas hydrate occurrence in the northwestern Gulf of Mexico. Industry 2-D multichannel seismic data were used to investigate the effects of the salt within an area of 7,577 mi^2 (19,825 km^2) on the Texas continental slope in the northwestern Gulf of Mexico. The western half of the study area is characterized by a thick sedimentary wedge and isolated salt diapirs whereas the eastern half is characterized by a massive and nearly continuous salt sheet topped by a thin sedimentary section. This difference in salt characteristics marks the edge of the continuous salt sheets of the central Gulf of Mexico and is likely a result of westward decline of original salt volume. Beneath the sedimentary wedge in the western part of the survey, an anomalous sedimentary package was found, that is described here as the diapiric, gassy sediment package (DGSP). The DGSP is highly folded at the top and is marked by tall, diapiric features. It may be either deformed shale or the toe of a complex thrust zone detaching the sedimentary wedge from deeper layers. The dataset was searched for the occurrence of bottom simulating reflectors (BSRs), as they are widely accepted as a geophysical indicator of gas trapped beneath gas hydrate deposits, which are known to occur farther east in the Gulf. Although, many seismic signatures were found that suggest widespread occurrence of gas within the upper sediment column, few BSRs were found. Even considering non-traditional definitions of BSRs, only a few occurrences of patchy and isolated BSRs features were identified. The lack of traditional BSRs is likely the result of geologic conditions that make it difficult to recognize gas hydrate deposits. These factors include: (1) unfavorable layer geometries, (2) flow of warm brines from depth, (3) elevated geotherms due to the thermogenic properties of salt and its varying thickness, and (4) widespread low porosity and permeability sediments within the gas hydrate stability zone.

Lewis, Dan'L 1986-

2012-12-01T23:59:59.000Z

130

Studies of brine chemistry, precipitation of solids, and scale formation at the Salton Sea geothermal field  

DOE Green Energy (OSTI)

Factors affecting the precipitation of solids and deposition of scale from the hypersaline brines of the Salton Sea geothermal field - two potential problems in the proposed utilization of these brines for electric power generation - were investigated. The average physical and chemical composition of the fluid from Magmamax No. 1 well was noted and the effects of changes in well flowrate on the chemistry of the brine and the formation of solids were determined. The effects of pH on the process stream chemistry and on the composition and rates of formation of solids and scale that precipitated from this brine were studied. Reduction of the pH from 6 to 4-5 decreased the scaling rates and increased the proportions of bariun sulfate and calcium fluoride in the scales and precipitated solids. These studies were conducted using a small-scale four-stage brine flash system constructed at the site.

Harrar, J.E.; Otto, C.H. Jr.; Deutscher, S.B.; Ryon, R.W.; Tardiff, G.E.

1979-01-08T23:59:59.000Z

131

Amine salts of nitroazoles  

DOE Patents (OSTI)

Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions. These compositions are amine salts of nitroazoles.

Lee, Kien-yin (Los Alamos, NM); Stinecipher, Mary M. (Los Alamos, NM)

1993-01-01T23:59:59.000Z

132

Corrosivity of geothermal brines. Progress report for period ending September 1977. Final report  

DOE Green Energy (OSTI)

Results of studies carried out principally during FY 1976 and FY 1977 on the corrosion of ferrous materials in synthetic geothermal brines are summarized. A survey of prior work on electrochemical aspects of the corrosion of iron and carbon steel in chloride solutions is presented, and some of the results of these investigations are summarized. The principal results of the present studies are then recapitulated. Included are measurements of the corrosion potential, corrosion rate, and polarization behavior of iron and carbon steel in deaerated 4 M NaCl over the pH range from 1 to 11 at temperatures up to 100/sup 0/C in a conventional Pyrex electrochemical cell. The effect of pH on hydrolysis, precipitation, and electrochemical reactivity of ferrous and ferric ions in 4 M NaCl at 25/sup 0/C is presented, and implications for plant operation are discussed. Details of a refreshed, stirred titanium autoclave system are described; the system permits electrochemical measurements to be made up to at least 200/sup 0/in corrosive aqueous saline media. The effect of pH (from pH equals 7 to pH equals 2) and temperature (from 25/sup 0/ to 200/sup 0/C) on the corrosion rate of type A212B carbon steel in deaerated 4 M NaCl is described. A relatively simple numerical correlation describes the data over the entire temperature and pH range. The spontaneous corrosion potentials and pitting potentials of types 304 and 316 stainless steel were measured in deaerated 4 M NaCl at pH equals 5 from 25/sup 0/ to 200/sup 0/C, and the data demonstrate the borderline stability of austenitic stainless steel for brine service. Finally, conclusions and recommendations for further studies are presented.

Posey, F.A.; Palko, A.A.; Bacarella, A.L.

1978-03-01T23:59:59.000Z

133

Analysis of hydrocarbon removal methods for the management of oilfield brines and produced waters  

E-Print Network (OSTI)

According to the Texas Railroad Commission (TRC), ????over 250 billion gallons of produced water is taken out of Texas Soil every year, and more than 35% of this water is not currently fit to use.?? Therefore, it can be assumed that domestically and globally, the petroleum industries challenge has been to develop a high-tech and cost effective method to purify the large volumes of oilfield brines and produced water. Currently, most of the produced water requires several pre- and post- treatment methods to aide in reducing fouling of membranes, separation of components, increasing influent and effluent quality, and preventing unwanted work stoppage during the desalination process. As a result, the pre- and post- treatment conditioning of the produced water affects the economics and scale-up (i.e. residence times, absorption capacity, etc??) of the varying processes parameters. Therefore, this research focuses on developing an economic analysis and determining the adsorption capacity of an organoclay system to remove oil.

Furrow, Brendan Eugene

2005-08-01T23:59:59.000Z

134

Molten salt electrolyte separator  

DOE Patents (OSTI)

The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

Kaun, T.D.

1996-07-09T23:59:59.000Z

135

Methane extraction from geopressured-geothermal brine at wellhead conditions  

DOE Green Energy (OSTI)

Disposal of geopressured-geothermal brine effluents by injection is expected to be costly, even into shallow aquifers. If injection into the production reservoir becomes necessary to maintain productivity and to minimize subsidence, the injection pumping costs can become overwhelming. An option aimed at reducing injection pump operating costs is to maintain a higher than normal pressure at the production wellhead to reduce the injection pumping load. The crucial element, however, is that a significant portion of CH/sub 4/ remains in solution and must be recovered in order for the pressure maintenance option to be cost effective. A laboratory and field test capability has been established, and several methods for extracting dissolved CH/sub 4/ at high temperature and pressure are being evaluated. Solvent extraction and use of hydraulic motors or turbines coupled to CH/sub 4/ recovery systems are the leading candidate methods.

Quong, R.; Owen, L.B.; Locke, F.E.; Otto, C.H.; Netherton, R.; Lorensen, L.E.

1980-05-29T23:59:59.000Z

136

Molten salt test loop  

DOE Green Energy (OSTI)

The objective of the Molten Salt Test Loop Project was to design, construct, and demonstrate operation of an outdoor high temperature molten salt test facility. This facility is operational, and can now be used to evaluate materials and components, and the design features and operating procedures required for molten salt heat transport systems. The initial application of the loop was to demonstrate the feasibility of using molten salt as the heat transport medium for a high temperature distributed collector system. A commercially available eutectic salt blend is used as the heat transfer fluid. This salt has a composition of 40% NaNO/sub 2/, 7% NaNO/sub 3/, and 53% KNO/sub 3/ and is marketed under the trade name Hitec. It has a freezing (solidifying) point of 142/sup 0/C (288/sup 0/F) and has been satisfactorily used at temperatures as high as 594/sup 0/C (1100/sup 0/F). General Atomic (GA) installed a row of Fixed Mirror Solar Concentrators (FMSC's) in the loop. The system was started up and a test program conducted. Startup went smoothly, with the exception of some burned-out trace heaters. Salt temperatures as high as 571/sup 0/C (1060/sup 0/F) were achieved.

Schuster, J.R.; Eggers, G.H.

1980-01-01T23:59:59.000Z

137

Salt Waste Processing Initiatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patricia Suggs Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 Overview * Current SRS Liquid Waste System status * Opportunity to accelerate salt processing - transformational technologies - Rotary Microfiltration (RMF) and Small Column Ion Exchange (SCIX) - Actinide Removal Process/Modular Caustic Side Solvent Extraction (ARP/MCU) extension with next generation extractant - Salt Waste Processing Facility (SWPF) performance enhancement - Saltstone enhancements * Life-cycle impacts and benefits 3 SRS Liquid Waste Total Volume >37 Million Gallons (Mgal) Total Curies 183 MCi (51% ) 175 MCi (49% ) >358 Million Curies (MCi) Sludge 34.3 Mgal (92% ) 3.0 Mgal (8%)

138

Amine salts of nitroazoles  

DOE Patents (OSTI)

Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

Kienyin Lee; Stinecipher, M.M.

1993-10-26T23:59:59.000Z

139

Dessicant materials screening for backfill in a salt repository  

SciTech Connect

Maintaining an anhydrous environment around nuclear waste stored in a salt repository is a concern which can be alleviated by using a desiccant material for backfilling. Such a desiccant should desiccate a brine yet be non deliquescent, the hydrated product should have moderate thermal stability, and the desiccant should have a high capacity and be readily available. From a literature search MgO and CaO were identified for detailed study. These oxides, and an intimate mixture of the two obtained by calcining dolomite, were used in experiments to further determine their suitability. They proved to be excellent desiccants with a high water capacity. The hydrates of both have moderate thermal stability and a high water content. Both MgO and CaO react in an alkaline chloride brine forming oxychloride compounds with different waters of crystallization. Some of these compounds are the Sorel Cements. CaO hydrates to Ca(OH)/sub 2/ which carbonates with CO/sub 2/ in air to form CaCO/sub 3/ and release the hydrated water. Thus the intimate mixture of CaO and MgO from calcined dolomite may serve as a desiccant and remove CO/sub 2/ from the repository atmosphere.

Simpson, D.R.

1980-10-01T23:59:59.000Z

140

Salt Selected (FINAL)  

NLE Websites -- All DOE Office Websites (Extended Search)

WHY SALT WAS SELECTED AS A DISPOSAL MEDIUM WHY SALT WAS SELECTED AS A DISPOSAL MEDIUM Waste Isolation Pilot Plant U.S. Department Of Energy Government officials and scientists chose the Waste Isolation Pilot Plant (WIPP) site through a selection process that started in the 1950s. At that time, the National Academy of Sciences conducted a nationwide search for geological formations stable enough to contain radioactive wastes for thousands of years. In 1955, after extensive

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

On-line tests of organic additives for the inhibition of the precipitation of silica from hypersaline geothermal brine IV. Final tests of candidate additives  

DOE Green Energy (OSTI)

The Lawrence Livermore Laboratory Brine Treatment Test System at Niland, Imperial Valley, California, has been used to evaluate a number of cationic polymers and surfactants as scale control agents. An initial group of compounds was narrowed to four on the basis of their activity as silica precipitation inhibitors. Three of these and certain combinations of compounds were then given a 40-h test to determine their effectiveness in retarding scales formed at 220, 125, and 90/sup 0/C. The best single compound was Corcat P-18 (Cordova Chemical Co. polyethylene imine, M.W. approx. = 1800). It had no effect on the scale at 220/sup 0/C, but it reduced the scales at 125 and 90/sup 0/C by factors of 4 and 18, respectively, and it also has activity as a corrosion inhibitor. Other promising compounds are PAE HCl (Dynapol poly(aminoethylene, HCl salt)), which also somewhat reduces the 220/sup 0/C scale; Ethoquad 18/25 (Armak methyl polyoxyethylene(15) octadecylammonium chloride); and Mirapol A-15 (a Miranol Chemical polydiquaternary compound). The best additive formulation for the brines of the Salton Sea Geothermal Field appears to be a mixture of one of these silica precipitation inhibitors with a small amount of hydrochloric acid and a phosphonate crystalline deposit inhibitor. Speculations are presented as to the mechanism of inhibition of silica precipitation and recommendations for further testing of these additives.

Harrar, J.E.; Locke, F.E.; Otto, C.H. Jr.; Lorensen, L.E.; Frey, W.P.; Snell, E.O.

1980-02-01T23:59:59.000Z

142

Improving the injectability of high-salinity brines for disposal or waterflooding operations  

DOE Green Energy (OSTI)

This work is part of a study conducted by Lawrence Livermore National Laboratory (LLNL) to improve the performance of brine injection wells at Gulf Coast Strategic Petroleum Reserve Sites. Our involvement established that granular media filtration, when used with proper chemical pretreatments, provides an effective and economical method for removing particulates from hypersaline brines. This treatment allows for the injection of 200,000 B/D with significantly increased well half-lives of 30 years.

Raber, E.; Thompson, R.E.; Smith, F.H.

1981-07-25T23:59:59.000Z

143

Salt Waste Contractor Reaches Contract Milestone | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Contractor Reaches Contract Milestone Salt Waste Contractor Reaches Contract Milestone Salt Waste Contractor Reaches Contract Milestone April 29, 2013 - 12:00pm Addthis Robert Brown, SRR tank farm operator, performs daily inspections of a salt disposition process facility. The inspections and improvement upgrades have resulted in continued successful operations. Robert Brown, SRR tank farm operator, performs daily inspections of a salt disposition process facility. The inspections and improvement upgrades have resulted in continued successful operations. AIKEN, S.C. - The liquid waste cleanup contractor for the EM program at the Savannah River Site (SRS) recently surpassed a 2013 contract milestone by processing more than 600,000 gallons of salt waste. Savannah River Remediation (SRR) salt disposition process facilities

144

Chemical Speciation of Heterogeneously Reduced Pu in Synthetic Brines  

Science Conference Proceedings (OSTI)

X-ray absorption fine structure (XAFS) spectroscopy has been used to determine the speciation of Pu precipitates prepared by the heterogeneous reduction of Pu(VI) with Al and Fe in 5M NaCl and an ERDA-6 brine, a simulant from the Waste Isolation Pilot Plant in Carlsbad, New Mexico. NaOCl was added to some of these solutions to determine its effect on Pu speciation. Analysis of the Pu LIII spectra showed that all solids consisted of PuO2+x?y(OH)2y •zH2O, compounds with characteristics identical to those prepared by hydrolysis and with Pu?O and Pu?Pu distances identical to those treated at elevated temperature. Additionally, reduction with Al gave compounds with different site distributions than reduction with Fe, and reduction with Al or the addition of NaOCl appeared to suppress the formation of oxo groups and their associated Pu(V) sites.

Ding, Mei; Conca, James L.; Den Auwer, Christophe J.; Gabitov, Rinat I.; Hess, Nancy J.; Paviet-Hartmann, Patricia; Palmer, Phillip D.; LoPresti, Vin; Conradson, Steven D.

2006-07-01T23:59:59.000Z

145

Thermal Characterization of Molten Salt Systems  

Science Conference Proceedings (OSTI)

The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

Toni Y. Gutknecht; Guy L. Fredrickson

2011-09-01T23:59:59.000Z

146

Plutonium and americium recovery from spent molten-salt-extraction salts with aluminum-magnesium alloys  

Science Conference Proceedings (OSTI)

Development work was performed to determine the feasibility of removing plutonium and americium from spent molten-salt-extraction (MSE) salts using Al-Mg alloys. If the product buttons from this process are compatible with subsequent aqueous processing, the complex chloride-to-nitrate aqueous conversion step which is presently required for these salts may be eliminated. The optimum alloy composition used to treat spent 8 wt % MSE salts in the past yielded poor phase-disengagement characteristics when applied to 30 mol % salts. After a limited investigation of other alloy compositions in the Al-Mg-Pu-Am system, it was determined that the Al-Pu-Am system could yield a compatible alloy. In this system, experiments were performed to investigate the effects of plutonium loading in the alloy, excess magnesium, age of the spent salt on actinide recovery, phase disengagement, and button homogeneity. Experimental results indicate that 95 percent plutonium recoveries can be attained for fresh salts. Further development is required for backlog salts generated prior to 1981. A homogeneous product alloy, as required for aqueous processing, could not be produced.

Cusick, M.J.; Sherwood, W.G.; Fitzpatrick, R.F.

1984-04-23T23:59:59.000Z

147

Report on variation of electrical conductivity during steam injection in unconsolidated sand saturated with a salt solution  

SciTech Connect

Geophysical electrical methods are useful in evaluating the performance of certain classes of enhanced oil recovery (EOR) operations and also remediation operations for contaminant spills. Electrical resistivity is sensitive to the concentration of ionic species in solution in fluids present in the subsurface zone. Such fluids are displaced during oil recovery operations and contaminant remediation. If the resistivity of the displacing fluid differs from the in situ fluid, then a geophysical method for detecting resistivity variations may be capable of tracking the advance of the displacing fluid. This report presents the results of experiments designed to determine the variations in resistivity that occur when steam is injected into a homogeneous, fully-saturated sand. These experiments were simple, one-dimensional laboratory steam injection experiments. They were performed using a glass tube filled with a tightly-packed sand and fitted with an injection port at one end and an exit port at the other In each experiment, the sand pack was initially saturated with a brine and then steam was introduced at one end of the tube. Analytic solutions for the steam front velocity, steam temperature, steam distribution, salt concentration profile, and liquid saturation are presented and are used with appropriate correlations of electrical conductivity to describe the observed behavior. The results of these experiments should provide experimental justification for the electrical conductivity variations that are calculated from the analytic solutions. In addition, the experiments may yield new information regarding features of the data that may not result from the analytical modelling.

Vaughan, P. [California Univ., Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering; Udell, K.S. [California Univ., Berkeley, CA (United States). Dept. of Mechanical Engineering; Wilt, M. [Lawrence Livermore National Lab., CA (United States)

1992-04-01T23:59:59.000Z

148

Neutron formation temperature gauge and neutron activation analysis brine flow meter. Final report, October 1, 1976--March 31, 1978  

DOE Green Energy (OSTI)

Feasibility studies of nuclear techniques applicable to the determination of geothermal formation temperature and two-phase brine flow downhole have been performed. The formation temperature gauging technique involves injection of fast neutrons into the formation and analysis of the moderated slow neutron energy distribution by appropriately filtered neutron detectors. The scientific feasibility of the method has been demonstrated by analytical computational and experimental evaluation of the system response. A data analysis method has been developed to determine unambiguously the temperature, neutron absorption cross section and neutron moderating power of an arbitrary medium. The initial phase of a program to demonstrate the engineering feasibility of the technique has been performed. A sonde mockup was fabricated and measurements have been performed in a test stand designed to simulate a geothermal well. The results indicate that the formation temperature determined by this method is independent of differences between the temperature in the borehole fluid and the formation, borehole fluid density, and borehole fluid salinity. Estimates of performance specifications for a formation temperature sonde have been made on the basis of information obtained in this study and a conceptual design of a logging system has been developed. The technique for the determination of fluid flow in a well is based on neutron activation analysis of elements present in the brine. An analytical evaluation of the method has been performed. The results warrant further, experimental evaluation.

Vagelatos, N.; Steinman, D.K.; John, J.

1978-03-31T23:59:59.000Z

149

Salt Creek Student Homepage  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Creek Investigation Salt Creek Investigation</2> "Whales Dying in the Pacific Ocean" "Fish Dying in Lake Michigan" Recent headlines remind us of environmental problems near and far away. Scientists have been wondering if these problems could be due to the warmer temperatures this past spring and summer or could there be other reasons? Lack of rain and near drought conditions have forced many areas to restrict water use. We know from past history that pollution affects our drinking water and marine life. Remember what we read about Lake Erie and from reading A River Ran Wild by Lynne Cherry. There are many factors affecting the environment around us . . . even in Salt Creek which runs through our area. We may not be able to investigate the Pacific Ocean and Lake Michigan

150

Chemistry of transuranium elements in salt-base repository  

SciTech Connect

The mobility and potential release of actinides into the accessible environment continues to be the key performance assessment concern of nuclear repositories. Actinide, in particular plutonium speciation under the wide range of conditions that can exist in the subsurface is complex and depends strongly on the coupled effects of redox conditions, inorganic/organic complexation, and the extent/nature of aggregation. Understanding the key factors that define the potential for actinide migration is, in this context, an essential and critical part of making and sustaining a licensing case for a nuclear repository. Herein we report on recent progress in a concurrent modeling and experimental study to determine the speciation of plutonium, uranium and americium in high ionic strength Na-CI-Mg brines. This is being done as part of the ongomg recertification effort m the Waste Isolation Pilot Plant (WIPP). The oxidation-state specific solubility of actinides were established in brine as function of pC{sub H+}, brine composition and the presence and absence of organic chelating agents and carbonate. An oxidation-state invariant analog approach using Nd{sup 3+} and Th{sup 4+} was used for An{sup 3+} and An{sup 4+} respectively. These results show that organic ligands and hydrolysis are key factors for An(III) solubility, hydrolysis at pC{sub H+} above 8 is predominate for An(IV) and carbonates are the key factor for U(VI) solubility. The effect of high ionic strength and brine components measured in absence of carbonates leads to measurable increased in overall solubility over analogous low ionic strength groundwater. Less is known about the bioreduction of actinides by halo-tolerant microorganisms, but there is now evidence that bioreduction does occur and is analogous, in many ways, to what occurs with soil bacteria. Results of solubility studies that focus on Pitzer parameter corrections, new species (e.g. borate complexation), and the thermodynamic parameters for modeling are discussed.

Borkowski, Marian [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Lucchini, Jean - Francois [Los Alamos National Laboratory; Richmann, Michael K [Los Alamos National Laboratory; Khaing, H [Los Alamos National Laboratory; Swanson, J [Los Alamos National Laboratory; Ams, D [Los Alamos National Laboratory

2010-12-02T23:59:59.000Z

151

Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt  

DOE Green Energy (OSTI)

Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

Elders, W.A.; Cohen, L.H.

1983-11-01T23:59:59.000Z

152

Brine chemistry: scaling and corrosion. Geothermal research study in the Salton Sea region of California  

DOE Green Energy (OSTI)

The purpose of this report is to recommend a reasonable program of brine chemistry research that will result in the development of methods for predicting and controlling scale deposition, and in guidelines for the selection of corrosion-resistant construction materials. First, background information, which is necessary for the understanding of the problems of scaling and corrosion in the Salton Sea KGRA, is presented through a review of the history of geothermal exploration and development in the Salton Sea. Second, literature relevant to the geochemistry of the Salton Sea field is reviewed and important results are emphasized. Third, current research efforts directed toward actual power plant construction are summarized and evaluated. Fourth, research which has been proposed but is not currently funded is discussed. Fifth, because silica scaling has been the most troublesome problem in the past, the basic chemistry of silica and its relationship to scaling is discussed. Sixth, recommendations for future research are made in which a fundamental engineering approach is emphasized. In this approach, experiments would be conducted on actual process equipment and detailed chemical analyses would be performed on site in well-equipped field laboratories. 88 references.

Hoffmann, M.R.

1975-07-01T23:59:59.000Z

153

RECHARGEABLE MOLTEN-SALT CELLS  

E-Print Network (OSTI)

KC! /FeS 2 cell lithium-silicon magnesium oxide molten-saltmolten-salt cells Na/Na glass/Na:z.Sn-S cell Na/NazO•xA!Symposium on Molten Salts, Physical Electrochemistry

Cairns, Elton J.

2013-01-01T23:59:59.000Z

154

Metals removal from spent salts  

DOE Patents (OSTI)

A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

Hsu, Peter C. (Pleasanton, CA); Von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Brummond, William A. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

2002-01-01T23:59:59.000Z

155

Actinide removal from spent salts  

DOE Patents (OSTI)

A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

Hsu, Peter C. (Pleasanton, CA); von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

2002-01-01T23:59:59.000Z

156

Pore-Level Modeling of Carbon Dioxide Sequestration in Brine Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

Pore-Level Modeling of Carbon Dioxide Sequestration in Brine Fields Pore-Level Modeling of Carbon Dioxide Sequestration in Brine Fields M. Ferer, (mferer@wvu.edu) Department of Physics, West Virginia University, Morgantown, WV 26506-6315, Grant S. Bromhal, (bromhal@netl.doe.gov) US DOE, National Energy Technology Laboratory, Morgantown, WV 26507-0880; and Duane H. Smith, (dsmith@netl.doe.gov) US DOE, National Energy Technology Laboratory, Morgantown, WV 26507-0880 & Department of Physics, West Virginia University. Underground injection of gas is a common practice in the oil and gas industry. Injection into deep, brine-saturated formations is a commercially proven method of sequestering CO 2 . However, it has long been known that displacement of a connate fluid by a less viscous fluid produces unstable displacement fronts with significant fingering. This fingering allows only a

157

Results of investigations at the Zunil geothermal field, Guatemala: Well logging and brine geochemistry  

DOE Green Energy (OSTI)

The well logging team from Los Alamos and its counterpart from Central America were tasked to investigate the condition of four producing geothermal wells in the Zunil Geothermal Field. The information obtained would be used to help evaluate the Zunil geothermal reservoir in terms of possible additional drilling and future power plant design. The field activities focused on downhole measurements in four production wells (ZCQ-3, ZCQ-4, ZCQ-5, and ZCQ-6). The teams took measurements of the wells in both static (shut-in) and flowing conditions, using the high-temperature well logging tools developed at Los Alamos National Laboratory. Two well logging missions were conducted in the Zunil field. In October 1988 measurements were made in well ZCQ-3, ZCQ-5, and ZCQ-6. In December 1989 the second field operation logged ZCQ-4 and repeated logs in ZCQ-3. Both field operations included not only well logging but the collecting of numerous fluid samples from both thermal and nonthermal waters. 18 refs., 22 figs., 7 tabs.

Adams, A.; Dennis, B.; Van Eeckhout, E.; Goff, F.; Lawton, R.; Trujillo, P.E.; Counce, D.; Archuleta, J. (Los Alamos National Lab., NM (USA)); Medina, V. (Instituto Nacional de Electrificacion, Guatemala City (Guatemala). Unidad de Desarollo Geotermico)

1991-07-01T23:59:59.000Z

158

ASSESSMENT OF TECHNETIUM LEACHABILITY IN CEMENT STABILIZED BASIN 43 GROUNDWATER BRINE  

SciTech Connect

This report is an initial report on the laboratory effort executed under RPP-PLAN-33338, Test Plan for the Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine. This report delineates preliminary data obtained under subcontract 21065, release 30, from the RJ Lee Group, Inc., Center for Laboratory Sciences. The report is predicated on CLS RPT-816, Draft Report: Assessment of Technetium Leachability in Cement Stabilized Basin 43 Groundwater Brine. This document will be revised on receipt of the final RJ Lee Group, Inc., Center for Laboratory Sciences report, which will contain data subjected to quality control and quality assurance criteria.

COOKE GA; DUNCAN JB; LOCKREM LL

2008-09-30T23:59:59.000Z

159

Geothermal Power Production from Brine Co-Produced from Oil and Gas Wells  

Science Conference Proceedings (OSTI)

Millions of barrels of water (brine) per day are co-produced from oil and gas wells. Currently, the oil and gas industry views this as a waste stream that costs millions of dollars per year to manage, through either treatment or disposal/reinjection. A significant percentage of the co-produced brine, however, flows at sufficient rate and temperature to generate power using a binary power plant, and this is viewed by some as a potential value stream. The value lies in that the co-produced water is "free" ...

2012-04-30T23:59:59.000Z

160

Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations  

SciTech Connect

Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since the brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.

Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.; Zhou, Q.; Kraemer, S.; Bandilla, K.W.

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Calcium Isotopic Variation in Marine Evaporites and Carbonates: Applications to Late Miocene Mediterranean Brine Chemistry and Late Cenozoic Calcium Cycling in the Oceans  

E-Print Network (OSTI)

Field: Geochemistry Studies in Isotope Geology Professors J.Isotopes and Brine Evolution ……………………………………………………………….. 3.2.1 General geology andIsotopes and Brine Evolution 3.2.1 General geology and

Hensley, Tabitha Michele

2006-01-01T23:59:59.000Z

162

Salt Creek Scenario  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Scenario HELP Index Summary Scenario References Student Pages Two branches of Salt Creek run through the city of Rolling Meadows, Illinois, not far from our school. Five members of our team of eighth grade teachers from different subject areas (science, language arts, bilingual education and special education), decided to develop an interdisciplinary study of Salt Creek as a way of giving our students authentic experiences in environmental studies. The unit begins when students enter school in August, running through the third week of September, and resuming for three weeks in October. Extension activities based on using the data gathered at the creek continue throughout the school year, culminating in a presentation at a city council meeting in the spring.

163

Genomic insights into salt adaptation in a desert poplar  

SciTech Connect

Despite the high economic and ecological importance of forests, our knowledge of the genomic evolution of trees under salt stress remains very limited. Here we report the genome sequence of the desert poplar, Populus euphratica, which exhibits high tolerance to sa lt stress. Its genome is very similar and collinear to that of the closely related mesophytic congener, P trichocarpa. However, we find that several gene families likely to be involved in tolerance to salt stress contain significantly more gene copies within the P euphratica lineage. Furthermore, genes showing evidence of positive selection are significantly enriched in functional categories related to salt stress. Some of these genes, and others within the same categories, are significantly upregulated under salt stress relative to their expression in another salt-sensitive poplar. Our results provide an important background for understanding tree adaptation to salt stress and facilitating the genetic improvement of cultivated poplars for saline soils.

Ma, Tao [Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences] [Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Wang, Junyi [BGI-Shenzhen, China] [BGI-Shenzhen, China; Zhou, Gongke [Key laboratory of Biofuels and Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Instit] [Key laboratory of Biofuels and Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Instit; Yue, Zhen [BGI-Shenzhen, China] [BGI-Shenzhen, China; Hu, Quanjun [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University; Chen, Yan [BGI-Shenzhen, China] [BGI-Shenzhen, China; Liu, Bingbing [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University; Qiu, Qiang [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University; Wang, Zhuo [BGI-Shenzhen, China] [BGI-Shenzhen, China; Zhang, Jian [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University; Wang, Kun [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University; Jaing, Dechun [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University; Gou, Caiyun [BGI-Shenzhen, China] [BGI-Shenzhen, China; Yu, Lili [BGI-Shenzhen, China] [BGI-Shenzhen, China; Zhan, Dongliang [BGI-Shenzhen, China] [BGI-Shenzhen, China; Zhou, Ran [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University; Luo, Wenchun [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University; Ma, Hui [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University; Yang, Yongzhi [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University; Pan, Shengkai [BGI-Shenzhen, China] [BGI-Shenzhen, China; Fang, Dongming [BGI-Shenzhen, China] [BGI-Shenzhen, China; Luo, Yadan [BGI-Shenzhen, China] [BGI-Shenzhen, China; Wang, Xia [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University; Wang, Gaini [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University; Wang, Juan [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University; Wang, Qian [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University; Lu, Xu [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University; Chen, Zhe [BGI-Shenzhen, China] [BGI-Shenzhen, China; Liu, Jinchao [BGI-Shenzhen, China] [BGI-Shenzhen, China; Lu, Yao [BGI-Shenzhen, China] [BGI-Shenzhen, China; Yin, Ye [BGI-Shenzhen, China] [BGI-Shenzhen, China; Yang, Huanming [BGI-Shenzhen, China] [BGI-Shenzhen, China; Abbott, Richard [School of Biology, University of St. Andrews, St andrews, Fife KY16 9TH, UK] [School of Biology, University of St. Andrews, St andrews, Fife KY16 9TH, UK; Wu, Yuxia [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University; Wan, Dongshi [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University; Li, Jia [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University] [State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University

2013-01-01T23:59:59.000Z

164

Corrosion of aluminides by molten nitrate salt  

DOE Green Energy (OSTI)

The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

Tortorelli, P.F.; Bishop, P.S.

1990-01-01T23:59:59.000Z

165

A study of hydrocarbons associated with brines from DOE geopressured wells  

DOE Green Energy (OSTI)

Accomplishments are summarized on the following tasks: distribution coefficients and solubilities, DOE design well sampling, analysis of well samples, review of theoretical models of geopressured reservoir hydrocarbons, monitor for aliphatic hydrocarbons, development of a ph meter probe, DOE design well scrubber analysis, removal and disposition of gas scrubber equipment at Pleasant Bayou Well, and disposition of archived brines.

Keeley, D.F.

1993-01-01T23:59:59.000Z

166

A study of hydrocarbons associated with brines from DOE geopressured wells. Final report  

DOE Green Energy (OSTI)

Accomplishments are summarized on the following tasks: distribution coefficients and solubilities, DOE design well sampling, analysis of well samples, review of theoretical models of geopressured reservoir hydrocarbons, monitor for aliphatic hydrocarbons, development of a ph meter probe, DOE design well scrubber analysis, removal and disposition of gas scrubber equipment at Pleasant Bayou Well, and disposition of archived brines.

Keeley, D.F.

1993-07-01T23:59:59.000Z

167

Recovery 2011 CSPG CSEG CWLS Convention 1 Brine-methane Substitution: The Seismic Response of Coalbeds  

E-Print Network (OSTI)

an important source of natural gas (Shi and Durucan, 2005). The production of the CBM takes place when coal seam using a tank model which assumes that there is no variation of the reservoir properties). For the Gassmann fluid substitution, we assume a pore fluid of 100% brine as the initial condition and calculate

Ferguson, Robert J.

168

Corrosivity of geothermal brines. Progress report for period ending June 1976  

DOE Green Energy (OSTI)

Studies carried out during FY 1976 on the corrosivity of ferrous materials in synthetic geothermal brines are described. Electrochemical measurements on the spontaneous corrosion potentials and corrosion rates, and on the kinetics of the anodic and cathodic corrosion reactions of iron and carbon steel were made in 4 M NaCl solution over the pH range from 1 to 11 at temperatures up to 100/sup 0/C in a conventional Pyrex electrochemical cell. A refreshed, stirred titanium autoclave system was designed, constructed, and tested, and will be used for making electrochemical measurements in synthetic brines up to at least 200/sup 0/C. The effect of pH on hydrolysis, precipitation, and electrochemical reactivity of ferrous and ferric ions in 4 M NaCl at 25/sup 0/C was studied, and implications for plant operation are discussed. The pitting potential of type 304 stainless steel in synthetic brine was measured as a function of temperature from 25 to 85/sup 0/C. Plans for research on electrochemical aspects of the corrosion of iron and carbon steel in synthetic geothermal brines during FY1977 are presented. 14 fig. (auth)

Posey, F.A.; Palko, A.A.

1976-12-01T23:59:59.000Z

169

Molten salt lithium cells  

DOE Patents (OSTI)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

Raistrick, I.D.; Poris, J.; Huggins, R.A.

1980-07-18T23:59:59.000Z

170

Molten salt lithium cells  

DOE Patents (OSTI)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

1983-01-01T23:59:59.000Z

171

Molten salt lithium cells  

DOE Patents (OSTI)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

1982-02-09T23:59:59.000Z

172

Heated muds solve squeezing-salt problems  

Science Conference Proceedings (OSTI)

Squeezing salts have been responsible for major drilling problems in many areas of the world for over half a century. In NAM's area of operations, they occur primarily in the Zechstein group of evaporites. They are responsible for problems such as stuck pipe during drilling and casing failure during both drilling and casing failure during both drilling and production, sometimes as much as 12 years after drilling. Since 1960, some US $170 million (at 1992 drilling costs) have been spent redrilling wells with failed casing strings. In 1991, NAM was associated with a Billiton project to drill 2 wells for the solution mining of magnesium and potassium salts. Gauge holes were a prerequisite to identify the objective salts by electric logging. Excellent results were achieved by drilling with a heated salt mud that had been saturated on surface to downhole conditions. The heating requirements for the Billiton project were modest, as the top of the squeezing salt occurred at approximately 1,500 m (4,920 ft), requiring a circulating temperature of 45 C (113 F) to achieve the necessary saturation level. However, in NAM's operations, the top of the squeezing salt generally occurs between 2.500 m and 3,000 m (8,200 ft and 9,850 ft), requiring temperatures on the order of 70 C (158 F). Despite the need for higher temperatures, the success of the Billiton project prompted NAM to introduce the heating system on a trial basis. To date eight wells have been drilled using the system, resulting in the drilling of a virtual gauge hole with successful cementations being achieved in each case.

Muecke, N.B. (Nederlandse Aardolie, Maatschappij (Netherlands))

1993-11-01T23:59:59.000Z

173

Particle measurement and brine chemistry at the Salton Sea Deep Well  

DOE Green Energy (OSTI)

The Advanced Brine Chemistry Project, a part of the US Department of Energy's Geothermal Energy Program, is addressing operating problems associated with scaling and corrosion at geothermal power plants. Under this project, Pacific Northwest Laboratory conducted a series of tests at the Salton Sea Deep Well, which has one of the highest solids contents in the world. The purpose of the tests was to evaluate monitoring instrumentation under field conditions and relate particulate formation to the brine chemistry. The instrumentation, was evaluated under scaling geothermal conditions using two different principles: ultrasonic reflection and laser light scattering. The following conclusions were drawn from the instrumentation testing and brine chemistry and particulate analyses. (1) Using reflected ultrasonic impulses to detect suspended particles has been demonstrate for on-line application in a geothermal brine with strong scaling tendencies. Advantages over laser light scattering include improved high-temperature durability for the transducer and longer operation with less maintenance. (2) Counting and sizing particles using laser light scattering requires constant maintenance in geothermal applications. (3) Silica is the dominant scale species and appears in amounts orders of magnitude greater than other minor species such as barium sulfate. (4) The silica that formed at high temperatures and short residence times is very gelatinous and difficult to filter out of the brine. (5) Correlation of instrument readings with particle collection data was difficult because conditions on the filter (i.e., temperature, flowrate, and pressure) could not be maintained constant for long enough intervals to obtain comparable information. 5 refs., 27 figs., 2 tabs.

Robertus, R.J.; Kindle, C.H.; Sullivan, R.G.; Shannon, D.W.

1991-09-01T23:59:59.000Z

174

Salt Mechanics Primer for Near-Salt and Sub-Salt Deepwater Gulf of Mexico Field Developments  

Science Conference Proceedings (OSTI)

The Gulf of Mexico (GoM) is the most active deepwater region in the world and provides some of the greatest challenges in scope and opportunity for the oil and gas industry. The complex geologic settings and significant water and reservoir depths necessitate high development costs, in addition to requiring innovating technology. The investment costs are substantial: because of the extreme water depths (up to 8000 feet) and considerable reservoir depths (to 30,000 feet below mudline), the cost of drilling a single well can be upwards of 50 to 100 million dollars. Central, therefore, to successful economic exploitation are developments with a minimum number of wells combined with a well service lifetime of twenty to thirty years. Many of the wells that are planned for the most significant developments will penetrate thick salt formations, and the combined drilling costs for these fields are estimated in the tens of billions of dollars. In May 2001, Sandia National Laboratories initiated a Joint Industry Project focused on the identification, quantification, and mitigation of potential well integrity issues associated with sub-salt and near-salt deepwater GoM reservoirs. The project is jointly funded by the DOE (Natural Gas and Oil Technology Partnership) and nine oil companies (BHP Billiton Petroleum, BP, ChevronTexaco, Conoco, ExxonMobil, Halliburton, Kerr-McGee, Phillips Petroleum, and Shell). This report provides an assessment of the state of the art of salt mechanics, and identifies potential well integrity issues relevant to deepwater GoM field developments. Salt deformation is discussed and a deformation mechanism map is provided for salt. A bounding steady-state strain rate contour map is constructed for deepwater GoM field developments, and the critical issue of constraint in the subsurface, and resultant necessity for numerical analyses is discussed.

FOSSUM, ARLO F.; FREDRICH, JOANNE T.

2002-07-01T23:59:59.000Z

175

salt lake city.cdr  

Office of Legacy Management (LM)

Locations of the Salt Lake City Processing and Disposal Sites Locations of the Salt Lake City Processing and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site and disposal site at Salt Lake City, Utah. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Salt Lake City, Utah, Processing and Disposal Sites Site Descriptions and History Regulatory Setting The former Salt Lake City processing site is located about 4 miles south-southwest of the center of Salt Lake City, Utah, at 3300 South and Interstate 15. The Vitro Chemical Company processed uranium and vanadium ore at the site from 1951 until 1968. Milling operations conducted at the processing site created radioactive tailings, a predominantly sandy material.

176

Electrolyte salts for nonaqueous electrolytes  

Science Conference Proceedings (OSTI)

Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

2012-10-09T23:59:59.000Z

177

Batteries using molten salt electrolyte  

SciTech Connect

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

178

Electrochromic Salts, Solutions, and Devices  

DOE Patents (OSTI)

Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

2008-11-11T23:59:59.000Z

179

Electrochromic salts, solutions, and devices  

DOE Patents (OSTI)

Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky,7,064,212 T. Mark (Los Alamos, NM)

2006-06-20T23:59:59.000Z

180

Electrochromic Salts, Solutions, and Devices  

DOE Patents (OSTI)

Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

2008-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Interpretation of brine-permeability tests of the Salado Formation at the Waste Isolation Pilot Plant site: First interim report  

Science Conference Proceedings (OSTI)

Pressure-pulse tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Hydraulic conductivities ranging from about 10{sup {minus}14} to 10{sup {minus}11} m/s (permeabilities of about 10{sup {minus}21} to 10{sup {minus}18} m{sup 2}) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with increasing proximity to the excavations. These effects are particularly evident within two to three meters of the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The data are insufficient to determine if brine flow through evaporites results from Darcy-like flow driven by pressure gradients within naturally interconnected porosity or from shear deformation around excavations connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure to be driven towards the low-pressure excavations. Future testing will be performed at greater distances from the excavations to evaluate hydraulic properties and processes beyond the range of excavation effects.

Beauheim, R.L. (Sandia National Labs., Albuquerque, NM (United States)); Saulnier, G.J. Jr.; Avis, J.D. (INTERA, Inc., Austin, TX (United States))

1991-08-01T23:59:59.000Z

182

Molten Salts, Magnesium and Aluminum  

Science Conference Proceedings (OSTI)

Mar 1, 2011 ... Chloride 2011: Practice and Theory of Chloride-Based Metallurgy: Molten Salts, Magnesium and Aluminum Sponsored by: The Minerals, ...

183

Technology transfer report: feasibility study for the use of geothermal brine in the Ashdod area, Israel  

DOE Green Energy (OSTI)

The hydrothermal potential of the Ashdod area, Israel, was evaluated to determine its suitability as the low grade energy source required to operate the Ashdod desalination plant. An estimated 1250 cubic meters per hour of 120/sup 0/C brine would be adequate to supply the hot water necessary for operating the desalination plant. Considerable interest in oil exploration in the Ashdod area resulted in the drilling of six wells into the Jurassic formations by Oil Exploration (Investments) Ltd. (OEL) in 1976-1980. A small amount of oil was found in two wells, Ashdod 2 and 5. The remaining wells were abandoned as ''dry holes''. Evaluation of the drill cuttings, cores, and the electric logs defined two lithologic units of potential interest for hydrothermal exploitation, the Zohar and Shderot Dolomites. Investigation of the hydrothermal potential of the Jurassic formations underlying the Ashdod area has revealed that the aquifer temperatures range between 85 and 92/sup 0/C. The hydrologic parameters are not well defined; however the matrix permeability of the dolomites and limestones is probably between 1 and 10 md. This is insufficient permeability for a large scale pumping operation such as the one required to operate the desalination plant. Therefore, successful utilization of the resource requires the presence of significant fractures and/or connected vugs in the formation. The very low well productivity and formation plugging may indicate that permeability of the fracture zones may easily be impaired, suggesting that the fracture zones are not suitable production intervals. Until a test is conducted on a properly completed well, it is not possible to evaluate the deliverability of wells tapping these aquifers. 14 refs., 8 figs.

Benson, S.M.

1984-08-01T23:59:59.000Z

184

Independent Oversight Review, Savannah River Site Salt Waste Processing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Salt Waste Savannah River Site Salt Waste Processing Facility - August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. This report documents the results of an independent oversight review of the safety basis and design development for the Salt Waste Processing Facility (SWPF) at the U.S. Department of Energy (DOE) Savannah River Site. The review was performed February 12-14, 2013 by DOE's Office of Safety and Emergency Management Evaluations, which is within the DOE Office of Health, Safety and Security. The purpose of the review was to evaluate the safety basis, design, and the associated technical documents developed for

185

Independent Oversight Review, Savannah River Site Salt Waste Processing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Salt Waste Savannah River Site Salt Waste Processing Facility - August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. This report documents the results of an independent oversight review of the safety basis and design development for the Salt Waste Processing Facility (SWPF) at the U.S. Department of Energy (DOE) Savannah River Site. The review was performed February 12-14, 2013 by DOE's Office of Safety and Emergency Management Evaluations, which is within the DOE Office of Health, Safety and Security. The purpose of the review was to evaluate the safety basis, design, and the associated technical documents developed for

186

Thermodynamic analysis of spent pyrochemical salts in the stored condition and in viable accident scenarios  

Science Conference Proceedings (OSTI)

This study involves examining ``spent`` electrorefining (ER) salts in the form present after usage (as stored), and then after exposure to water in a proposed accident scenario. Additionally, the equilibrium composition of the salt after extended exposure to air was also calculated by computer modeling and those results are also presented herein. It should be noted that these salts are extremely similar to spent MSE salts from the Rocky Flats MSE campaigns using NaCl-KCl- MgCl{sub 2}.

Axler, K.M.

1994-03-01T23:59:59.000Z

187

Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations  

E-Print Network (OSTI)

flow model for carbon dioxide and brine, in Proceedings 9 thGeological Storage of Carbon Dioxide, in: S.J. Baines andGeological Storage of Carbon Dioxide, Geological Society,

Birkholzer, J.T.

2012-01-01T23:59:59.000Z

188

Developments in Molten Salt and Liquid-Salt-Cooled Reactors  

Science Conference Proceedings (OSTI)

In the last 5 years, there has been a rapid growth in interest in the use of high-temperature (700 to 1000 deg C) molten and liquid fluoride salts as coolants in nuclear systems. This renewed interest is a consequence of new applications for high-temperature heat and the development of new reactor concepts. Fluoride salts have melting points between 350 and 500 deg C; thus, they are of use only in high-temperature systems. Historically, steam cycles with temperature limits of {approx}550 deg C have been the only efficient method to convert heat to electricity. This limitation produced few incentives to develop high-temperature reactors for electricity production. However, recent advances in Brayton gas turbine technology now make it possible to convert higher-temperature heat efficiency into electricity on an industrial scale and thus have created the enabling technology for more efficient nuclear reactors. Simultaneously, there is a growing interest in using high-temperature nuclear heat for the production of hydrogen and shale oil. Five nuclear-related applications are being investigated: (1) liquid-salt heat-transport systems in hydrogen and shale oil production systems; (2) the advanced high-temperature reactor, which uses a graphite-matrix coated-particle fuel and a liquid salt coolant; (3) the liquid-salt-cooled fast reactor which uses metal-clad fuel and a liquid salt coolant; (4) the molten salt reactor, with the fuel dissolved in the molten salt coolant; and (5) fusion energy systems. The reasons for the new interest in liquid salt coolants, the reactor concepts, and the relevant programs are described. (author)

Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States)

2006-07-01T23:59:59.000Z

189

Prelimiary investigation desalting of geothermal brines in the Imperial Valley of California  

SciTech Connect

The Imperial Valley Project is an applied research program to provide geologic, hydrologic, engineering, and economic information necessary for development of the geothermal resources of the delta of the lower Colorado River. It is suggested that a desalting pilot plant be associated with the project to develop an economic desalting process if 2 to 3% geothermal brine is produced. The process will be unconventional in that waste heat must be rejected to atmosphere in wet or dry cooling towers. The presence of large amounts of CO/sub 2/, H/sub 2/S, and silica will require gas removal and silicascale control equipment. The plant would process up to 75,000 gallons of brine per day. (MCW)

Spiewak, I.; Hise, E.C.; Reed, S.A.; Thompson, S.A.

1970-03-01T23:59:59.000Z

190

West Hackberry Brine Disposal Project pre-discharge characterization. Final report  

SciTech Connect

The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. A three month sampling effort, February through April 1981, and previous investigations from the study area are integrated to establish baseline information for evaluation of impacts from brine disposal in the nearshore marine waters and from freshwater withdrawal from the coastal marsh of the Chenier Plain. January data are included for some tasks that sampled while testing and mobilizing their instruments prior to the February field effort. The study addresses the areas of physical oceanography, estuarine hydrology and hydrography, water and sediment quality, benthos, nekton, phytoplankton, zooplankton, and data management.

DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C. (eds.) [eds.

1982-01-01T23:59:59.000Z

191

Aromatic hydrocarbons associated with brines from geopressured wells. Annual report, fiscal 1985  

DOE Green Energy (OSTI)

Samples of cryocondensates - materials condensed at - 78.5/sup 0/C were taken on a regular basis from the gas stream for the USDOE geopressured wells. Most of the data has been taken from the Gladys McCall well as it has flowed on a regular and almost continous basis. The cryocondensates, not the ''condensate'' from gas wells, are almost exclusively aromatic hydrocarbons, primarily benzene, toluene, ethylbenzene, and the xylenes, but contain over 95 compounds, characterized using gas chromatographic-mass spectroscopy. The solubility in water and brine of benezene, toluene, ethylbenzene and o-xylene, some of the components of the cryocondensate, as well as distribution coefficients between water or brine and a standard oil have been measured. 25 refs.

Keeley, D.F.; Meriwether, J.R.

1985-01-01T23:59:59.000Z

192

Scientific Considerations Related to Regulation Development for CO2 Sequestration in Brine Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

SCIENTIFIC CONSIDERATIONS RELATED TO REGULATION SCIENTIFIC CONSIDERATIONS RELATED TO REGULATION DEVELOPMENT FOR CO 2 SEQUESTRATION IN BRINE FORMATIONS Chin-Fu Tsang (cftsang@lbl.gov; (510) 486-5782) Sally M. Benson (smbenson@lbl.gov; (510) 486-7071) Earth Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90-1116, Berkeley, CA 94720 Bruce Kobelski (kobelski.bruce@epa.gov) Robert Smith (smith.robert-eu@epamail.epa.gov) U.S. Environmental Protection Agency Office of Drinking Water and Ground Water, Washington D.C. Introduction Reduction of atmospheric emissions of CO 2 (DOE, 1999a) through injection of CO 2 into in deep brine formations is being actively studied both in the U.S. and internationally. If this technology is to be employed broadly enough to make a significant impact on global

193

Comparison of selected oil-field brines from fields in the Permian basin, West Texas-southeast New Mexico  

SciTech Connect

Stiff diagrams of oil-field brines from the west Texas Permian basin are identifiable within the geological framework. Plotted from a simple analysis of three cations and three anions, older Paleozoic waters can be categorized as either 'pristine' or modified, usually by a later influx of Permian or early Pennsylvanian water. These different plots can be segregated by geologic province. The Permian brines differ by age and also by environment (shelf, basin, etc.).

White, H.G. III

1992-04-01T23:59:59.000Z

194

Energy optimization in ice hockey halls I. The system COP as a multivariable function, brine and design choices  

E-Print Network (OSTI)

This work is the first in a series of articles addressing the energy optimization in ice hockey halls. Here we adopt an analytical method, called functional optimization, to find which design and operating conditions maximize the Coefficient Of Performance of the entire cooling system (brine pumps and cooling tower), which we call ${\\rm COP}_{sys}$. This is addressed as a function of several variables, like electric consumption and brine physical properties. By maximizing such function, the best configuration and brine choices for the system can thus be determined accurately and rigorously. We investigate the importance of pipe diameter, depth and brine type (ethylene glycol and ammonia) for average-sized ice rinks. An optimal brine density is found, and we compute the weight of the electric consumption of the brine pumps on ${\\rm COP}_{sys}$. Our formulas are validated with heat flow measurement data obtained at an ice hockey hall in Finland. They are also confronted with technical and cost-related constraints, and implemented by simulations with the program COMSOL Multiphysics. The multivariable approach here discussed is general, and can be applied to the rigorous preliminary study of diverse situations in building physics and in many other areas of interest.

Andrea Ferrantelli; Paul Melóis; Miska Räikkönen; Martti Viljanen

2012-11-02T23:59:59.000Z

195

Use of inhibitors for scale control in brine-producing gas and oil wells  

SciTech Connect

Field and laboratory work have shown that calcium-carbonate scale formation in waters produced with natural gas and oil can be prevented by injection of phosphonate inhibitor into the formation, even if the formation is sandstone without calcite binging material. Inhibitor squeeze jobs have been carried out on DOE's geopressured-geothermal Gladys McCall brine-gas well and GRI's co-production wells in the Hitchcock field. Following the inhibitor squeeze on Gladys McCall, the well produced over five million barrels of water at a rate of approximately 30,000 BPD without calcium-carbonate scaling. Before the inhibitor squeeze, the well could not be produced above 15,000 BPD without significant scale formation. In the GRI brine-gas co-production field tests, inhibitor squeezes have been used to successfully prevant scaling. Laboratory work has been conducted to determine what types of oil field waters are subject to scaling. This research has led to the development of a saturation index and accompanying nomographs which allow prediction of when scale will develop into a problem in brine production.

Tomson, M.B.; Prestwich, S.

1986-01-01T23:59:59.000Z

196

Extracting information from the molten salt database  

Science Conference Proceedings (OSTI)

Molten salt technology is a catchall phrase that includes some very diverse ... nologies are linked by the general characteristics of molten salts that can function

197

Bubbles Produced by Breaking Waves in Fresh and Salt Waters  

Science Conference Proceedings (OSTI)

A greater volume of air is entrained by breaking waves to produce many more bubbles in salt, than in fresh, water. There are, however, little differences in their sizes. These results are consistent with reported observations of whitecaps over ...

Jin Wu

2000-07-01T23:59:59.000Z

198

Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine  

SciTech Connect

This study is developing a comprehensive study of what is involved in the desalination of oil field produced brine and the technical developments and regulatory changes needed to make the concept a commercial reality. It was originally based on ''conventional'' produced water treatment and reviewed (1) the basics of produced water management, (2) the potential for desalination of produced brine in order to make the resource more useful and available in areas of limited fresh water availability, and (3) the potential beneficial uses of produced water for other than oil production operations. Since we have begun however, a new area of interest has appeared that of brine water treatment at the well site. Details are discussed in this technical progress report. One way to reduce the impact of O&G operations is to treat produced brine by desalination. The main body of the report contains information showing where oil field brine is produced, its composition, and the volume available for treatment and desalination. This collection of information all relates to what the oil and gas industry refers to as ''produced water management''. It is a critical issue for the industry as produced water accounts for more than 80% of all the byproducts produced in oil and gas exploration and production. The expense of handling unwanted waste fluids draws scarce capital away for the development of new petroleum resources, decreases the economic lifetimes of existing oil and gas reservoirs, and makes environmental compliance more expensive to achieve. More than 200 million barrels of produced water are generated worldwide each day; this adds up to more than 75 billion barrels per year. For the United States, the American Petroleum Institute estimated about 18 billion barrels per year were generated from onshore wells in 1995, and similar volumes are generated today. Offshore wells in the United States generate several hundred million barrels of produced water per year. Internationally, three barrels of water are produced for each barrel of oil. Production in the United States is more mature; the US average is about 7 barrels of water per barrel of oil. Closer to home, in Texas the Permian Basin produces more than 9 barrels of water per barrel of oil and represents more than 400 million gallons of water per day processed and re-injected.

David B. Burnett

2005-09-29T23:59:59.000Z

199

Turbidity study of solar ponds utilizing seawater as salt source  

Science Conference Proceedings (OSTI)

A series of experiments were conducted to study the turbidity reduction in solar ponds utilizing seawater as salt source. The experiment on the turbidity reduction efficiency with chemicals indicates that alum (KAl(SO{sub 4}){sub 2}.12H{sub 2}O) has a better turbidity control property because of its strongly flocculating and also well depressing the growing of algae and bacteria in the seawater. In comparison with bittern and seawater, our experiment shows that the residual brine after desalination can keep limpidity for a long time even without any chemical in it. Experiments were also conducted on the diffusion of turbidity and salinity, which show that the turbidity did not diffuse upwards in the solution. In the experiment on subsidence of soil in the bittern and saline with the same salinity, it was found that soil subsided quite quickly in the pure saline water, but very slowly in the bittern. In this paper we also proposed an economical method to protect the solar pond from the damage of rain. Finally, thermal performance of a solar pond was simulated in the conditions of different turbidities using a thermal diffusion model. (author)

Li, Nan; Sun, Wence; Shi, Yufeng [School of Energy and Power Engineering, Dalian University of Technology, Dalian 116023 (China); Yin, Fang [YLab, 358 South 700 East, Suit B-139, Salt Lake City, UT 84102 (United States); Zhang, Caihong [Dalian Thermoelectric Group Co. Ltd., Dalian 116001 (China)

2010-02-15T23:59:59.000Z

200

The implications of UIC and NPDES regulations on selection of disposal options for spent geothermal brine  

Science Conference Proceedings (OSTI)

This document reviews and evaluates the various options for the disposal of geothermal wastewater with respect to the promulgated regulations for the protection of surface and groundwaters. The Clean Water Act of 1977 and the Safe Drinking Water Act Amendments are especially important when designing disposal systems for geothermal fluids. The former promulgates regulations concerning the discharge of wastewater into surface waters, while the latter is concerned with the protection of ground water aquifers through the establishment of underground injection control (UIC) programs. There is a specific category for geothermal fluid discharge if injection is to be used as a method of disposal. Prior to February 1982, the UIC regulations required geothermal power plant to use Class III wells and direct use plants to use Class V wells. More stringent regulatory requirements, including construction specification and monitoring, are imposed on the Class III wells. On February 3, 1982, the classification of geothermal injection wells was changed from a Class III to Class V on the basis that geothermal wells do not inject for the extraction of minerals or energy, but rather they are used to inject brines, from which heat has been extracted, into formations from which they were originally taken. This reclassification implies that a substantial cost reduction will be realized for geothermal fluid injection primarily because well monitoring is no longer mandatory. The Clean Water Act of 1977 provides the legal basis for regulating the discharge of liquid effluent into the nation's surface waters, through a permitting system called the National Pollution Discharge Elimination System (NPDES) Discharge quantities, rates, concentrations and temperatures are regulated by the NPDES permits. These permits systems are based upon effluent guidelines developed by EPA on an industry by industry basis. For geothermal energy industry, effluent guidelines have not been formulated and are not currently scheduled. There, are however, water quality standards that control the quantity and quality of wastewaters discharged into surface waters. These standards are established by the states in concert with EPA, and frequently result in NPDES conditions more restrictive than those based on effluent guidelines.

None

1982-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Molten salt thermal energy storage systems: salt selection  

DOE Green Energy (OSTI)

A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

Maru, H.C.; Dullea, J.F.; Huang, V.S.

1976-08-01T23:59:59.000Z

202

Effect of explicit representation of detailed stratigraphy on brine and gas flow at the Waste Isolation Pilot Plant  

Science Conference Proceedings (OSTI)

Stratigraphic units of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) disposal room horizon includes various layers of halite, polyhalitic halite, argillaceous halite, clay, and anhydrite. Current models, including those used in the WIPP Performance Assessment calculations, employ a ``composite stratigraphy`` approach in modeling. This study was initiated to evaluate the impact that an explicit representation of detailed stratigraphy around the repository may have on fluid flow compared to the simplified ``composite stratigraphy`` models currently employed. Sensitivity of model results to intrinsic permeability anisotropy, interbed fracturing, two-phase characteristic curves, and gas-generation rates were studied. The results of this study indicate that explicit representation of the stratigraphy maintains higher pressures and does not allow as much fluid to leave the disposal room as compared to the ``composite stratigraphy`` approach. However, the differences are relatively small. Gas migration distances are also different between the two approaches. However, for the two cases in which explicit layering results were considerably different than the composite model (anisotropic and vapor-limited), the gas-migration distances for both models were negligible. For the cases in which gas migration distances were considerable, van Genuchten/Parker and interbed fracture, the differences between the two models were fairly insignificant. Overall, this study suggests that explicit representation of the stratigraphy in the WIPP PA models is not required for the parameter variations modeled if ``global quantities`` (e.g., disposal room pressures, net brine and gas flux into and out of disposal rooms) are the only concern.

Christian-Frear, T.L.; Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States). Geohydrology Dept.

1996-04-01T23:59:59.000Z

203

Theory and practice of brine processing by industrial-scale magnetic ion polarization and optimization of personal-scale passive solar desalination.  

E-Print Network (OSTI)

??In the first section of this work we hope to add to the science of brine management in desalination. We have undertaken a feasibility analysis… (more)

Wofsey, Michael Henry

2010-01-01T23:59:59.000Z

204

Experimental investigation of the permeability of Kayenta and St. Peter sandstones to hypersaline brine in the temperature interval 70 to 90/sup 0/C at 10. 3-MPa confining pressure  

DOE Green Energy (OSTI)

Permeabilities of 10.2 cm in length, 2.5 cm in diameter Kayenta (porosity, 20.7, +- 1.66%) and St. Peter (porosity, 13.6, +- 0.13%) sandstones to Magmamax No. 1 brine containing suspended solids were determined from 70 to 90/sup 0/C at 10.3-MPa confining pressure. Measurements were performed without filters, with one 10-..mu..m filter, and with two 10-..mu..m filters inserted upstream of the core sample. In all cases, there was a dramatic decrease in permeability within the first hour of flow or few hundred pore volumes of flow through the core. Experiments conducted without filters or with one filter yield permeabilities that represent both the rock and the 2- to 3-mm amorphous silica-iron layer on the top face of the core. The experimental results show that if the Salton Sea Geothermal Field (SSGF) were composed of porous, sedimentary formations similar to Kayenta sandstone, long-term injection of unmodified Magmamax brine would not be feasible. In the case of acidified brine, most of the permeability decline may result from the mobilization of calcite.

Piwinskii, A.J.; Netherton, R.

1977-12-22T23:59:59.000Z

205

Evaluation of Membrane Treatment Technology to Optimize and Reduce Hypersalinity Content of Produced Brine for Reuse in Unconventional Gas Wells  

E-Print Network (OSTI)

Over 18 billion barrels of waste fluids are generated annually from oil and gas production in the United States. As a large amount of water is used for oilfield operations, treating and reusing produced water can cut the consumption of fresh water in well sites. This research has helped to develop a membrane process train for a mobile produced water treatment unit for treating oilfield produced brine for reuse. To design the process train, over 30 sets of combination tests at pilot laboratory scale were performed using pretreatment, microfiltration and nanofiltration processes. Membrane performance was selected based on high flux separation efficiency, high tolerance for solids and fluid treatments. Over 95 % solids rejection and greater than 80 % oil removal efficiency were obtained in all these tests. Process train (pre-treatment and membrane) performance was monitored by chemical analysis of permeate and models fitting experimental data for the process. From the results, hydrocarbon rejection was analyzed; total organic carbon rejection was 47.9 %, total carbon content averaged 37.3 % rejection and total inorganic carbon rejection was at 3.66 %. BTEX removal efficiency ranged from 0.98 % to 52.7 % with the progressive pretreatment methods of using cartridge filters. The nanofiltration membrane showed significant reduction in total dissolved solids and in both anionic and cationic species. The process train is seen to follow a sequence of treatment from cartridge and oil removal filter treatment to microfiltration treatment to ultrafiltration, followed by nanofiltration for the purpose of this research. Further research still needs to be done on to determine the kind of analytical test which will give real time feedback on effectiveness of filters. In summary, the process train developed by TAMU-GPRI possesses distinct advantages in treating oilfield produced brine using membrane technology. These advantages include high quality of permeate, reduced sludge and the possibility of total recycle water systems. The small space requirement, moderate capital costs and ease of operation associated with the use of the mobile unit membrane technology also makes it a very competitive alternative to conventional technologies.

Eboagwu, Uche

2011-08-01T23:59:59.000Z

206

R and D, fabrication and testing of pH and CO/sub 2/ sensors for geothermal brines  

DOE Green Energy (OSTI)

Reduction or elimination of scaling is a mandatory requirement for the operation of geothermal power plants. The use of downhole sampling and subsequent analysis for solution chemistry has many disadvantages. These disadvantages include composition change with cooling, risk of sample contamination, and non real-time indication. The use of in-line sensing of solution chemistry avoids these drawbacks but requires sensors which can survive the extremely harsh environment of brine at high temperatures and elevated pressures. Leeds and Northrup had previously undertaken a contract to develop sensors for pH and pCO/sub 2/ which would withstand these harsh environments. A number of sensors were tested at a field site under actual operating conditions. Field test results indicated that certain facets of the design were inadequate to give accurate long term measurement. The primary areas addressed here are replacement of polymeric seals with anodic bonding where possible, improved methods of lead attachment, improved sealing of the pCO/sub 2/ reference feed-through, H/sub 2/S getter optimization and improved passivation of the sensing head. Each of these areas is addressed in detail in the report along with laboratory test results pertaining to the particular phase.

Baxter, R.D.; Clack, P.J.; Phelan, D.M.; Taylor, R.M.

1987-03-01T23:59:59.000Z

207

UCSD Geothermal Chemical Modeling Project: DOE Advanced Brine Chemistry Program. [University of California at San Diego (UCSD)  

DOE Green Energy (OSTI)

DOE funding to the UCSD Chemical Modeling Group supports research to provide computer models which will reliably characterize the equilibrium chemistry of geothermal brines (solution, solid and gas phases) under variable thermodynamic conditions. With this technology, it will be possible to rapidly and inexpensively predict the chemical behavior of geothermal brines during various resource recovery stages; exploration, production, plant energy extraction and rejection as well as in ancillary programs such as mineral recovery. Our modeling technology is based on recent progress in the physical chemistry of concentrated aqueous solutions. The behavior of these fluids has not been predicted from first principle theories. However, because of the importance of concentrated brines to many industrial and natural processes, there have been numerous efforts to develop accurate phenomenological expressions for predicting the chemical behavior of these brines. One of the most successful of these efforts is that of Pitzer and coworkers. Incorporating the semiempirical equations of Pitzer, we have shown at UCSD that we can create highly accurate models of brine-solid-gas chemistry.

Moeller, N.; Weare, J.H.

1992-04-01T23:59:59.000Z

208

Experimental testing of a direct contact heat exchanger for geothermal brine. Final report, July 1, 1978-February 1, 1979  

DOE Green Energy (OSTI)

A series of direct contact heat exchanger (DCHX) experiments were conducted at the East Mesa Geothermal Test Site during the period July 1, 1978 to February 1, 1979. The purpose of these tests was to provide additional data necessary to better understand the thermal and hydraulic characteristics of the DCHX binary cycle loop components that may be used to extract energy from geothermal brines. Isobutane and Isopentane were tested as secondary working fluids. The analytical and experimental efforts were directed at the problems of working fluid loss in the effluent brine, carryover of water vapor with the vaporized secondary fluid and the free CO/sub 2/ content of the feed brine. The tests aimed at evaluating the heat transfer performance of various type tubes installed in vertical shell-and-tube secondary fluid condensers. Data was collected while operating a low temperature isopentane cycle with brine preflashed to 210 to 212/sup 0/F; the objective being to gain insight to waste heat recovery applications such as the Arkansas Power and Light project. Possible alternatives for isobutane recovery from the spent brine were investigated. A system was designed and the economic aspects studied.

Urbanek, M.W.

1979-12-01T23:59:59.000Z

209

Freshwater fish in salt water  

NLE Websites -- All DOE Office Websites (Extended Search)

Freshwater fish in salt water Freshwater fish in salt water Name: Shannon Location: N/A Country: N/A Date: N/A Question: What would actually happen if a fresh water fish had to live in salt water? Replies: For most fish, they would die. But some, like eels and salmon, can move freely between the two at certain stages of their lives. To do this they have special mechanisms of excretion and absorption of salt and water. --ProfBill If you put a freshwater fish into saltwater, most fish would lose weight (from losing water from its body) and eventually die. Approximately 2% of all 21000 species of fish actually move from freshwater to saltwater or from salt to fresh at some point in their lives, the move would kill any other fish. But even with these special varieties of fish, the move must be gradual so their bodies can adjust, or they too, will die from the change. If you want to learn more about why the freshwater fish will lose water, (or why a saltwater fish in freshwater would gain water), look up the words "diffusion" and "osmosis"

210

Advanced biochemical processes for geothermal brines FY 1998 annual operating plan  

DOE Green Energy (OSTI)

As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

NONE

1997-10-01T23:59:59.000Z

211

Electric power generation using geothermal brine resources for a proof-of-concept facility  

DOE Green Energy (OSTI)

A report is given of the initial phase of a proof-of-concept project to establish the technical, environmental, and economic feasibility of utilizing hot brine resources for electric energy production and other industrial applications. Included in the report are the following: summary, conclusions, and recommendations; site selection; Heber site description; development of design bases for an experimental facility and a 10 MWe(Net) generating unit; description of facilities; safety analysis; environmental considerations; implementation plan and schedule; and conceptual capital cost estimate.

Not Available

1976-01-01T23:59:59.000Z

212

Application of freshwater and brine polymer flooding in the North Burbank Unit, Osage County, Oklahoma  

SciTech Connect

A freshwater polymer-flood project was implemented in a 1,440-acre area of the North Burbank Unit (NBU) in 1980 with sequential injection of 4.2 million Ibm of polyacrylamide and 4.0 million Ibm of a 2.9% aluminum citrate crosslinking solution. Response to polymer flooding has been very pronounced, with ultimate incremental oil recovery projected to exceed 2.5 MMSTB of oil and total project oil expected to be 4.5 MMSTB. A crosslinked polymer-flood process for use in brine was developed that displays equally favorable performance characteristics as the freshwater polymer-flooding system.

Moffitt, P.D.; Zornes, D.R.; Moradi-Araghi, A.; McGovern, J.M. (Phillips Petroleum Co., Bartlesville, OK (United States))

1993-05-01T23:59:59.000Z

213

Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.  

Science Conference Proceedings (OSTI)

A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes in strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of a storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

Ehgartner, Brian L.; Park, Byoung Yoon; Herrick, Courtney Grant

2010-06-01T23:59:59.000Z

214

Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.  

Science Conference Proceedings (OSTI)

A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon

2009-03-01T23:59:59.000Z

215

Constraining the reservoir model of an injected CO2 plume with crosswell CASSM at the Frio-II brine plot  

SciTech Connect

Crosswell CASSM (continuous active-source seismic monitoring) data was acquired as part of the Frio-II brine pilot CO{sub 2} injection experiment. To gain insight into the CO{sub 2} plume evolution, we have integrated the 3D multiphase flow modeling code TOUGH2 with seismic simulation codes via a petrophysical model that predicts seismic velocity for a given CO{sub 2} saturation. Results of forward seismic modeling based on the CO{sub 2} saturation distribution produced by an initial TOUGH2 model compare poorly with the CASSM data, indicating that the initial flow model did not capture the actual CO{sub 2} plume dynamics. Updates to the TOUGH2 model required to better match the CASSM field data indicate vertical flow near the injection well, with increased horizontal plume growth occurring at the top of the reservoir sand. The CASSM continuous delay time data are ideal for constraining the modeled spatiotemporal evolution of the CO{sub 2} plume and allow improvement in reservoir model and estimation of CO{sub 2} plume properties.

Daley, T.M.; Ajo-Franklin, J.; Doughty, C.A.

2011-02-15T23:59:59.000Z

216

Capacity Investigation of Brine-Bearing Sands of the Frio Formation for Geologic Sequestration of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Investigation of Brine-Bearing Sands of the Frio Capacity Investigation of Brine-Bearing Sands of the Frio Formation for Geologic Sequestration of CO 2 Christine Doughty (cadoughty@lbl.gov; 510-486-6453) Karsten Pruess (k_pruess@lbl.gov; 510-486-6732) Sally M. Benson (smbenson@lbl.gov; 510-486-5875) Lawrence Berkeley National Laboratory 1 Cyclotron Rd, MS 90-1116 Berkeley, CA 94720 Susan D. Hovorka (susan.hovorka@beg.utexas.edu; 512-471-4863) Paul R. Knox (paul.knox@beg.utexas.edu; 512-471-7313) Bureau of Economic Geology P.O. Box X, The University of Texas Austin, TX 78713 Christopher T. Green (ctgreen@ucdavis.edu; 530-752-1372) University of California, Hydrologic Sciences 1 Shields Ave. Davis, CA 95616 Abstract The capacity of fluvial brine-bearing formations to sequester CO 2 is investigated using numerical simulations of CO

217

APPLIED PHYTO-REMEDIATION TECHNIQUES USING HALOPHYTES FOR OIL AND BRINE SPILL SCARS  

SciTech Connect

Produced salt water from historical oil and gas production was often managed with inadequate care and unfortunate consequences. In Kansas, the production practices in the 1930's and 1940's--before statewide anti-pollution laws--were such that fluids were often produced to surface impoundments where the oil would segregate from the salt water. The oil was pumped off the pits and the salt water was able to infiltrate into the subsurface soil zones and underlying bedrock. Over the years, oil producing practices were changed so that segregation of fluids was accomplished in steel tanks and salt water was isolated from the natural environment. But before that could happen, significant areas of the state were scarred by salt water. These areas are now in need of economical remediation. Remediation of salt scarred land can be facilitated with soil amendments, land management, and selection of appropriate salt tolerant plants. Current research on the salt scars around the old Leon Waterflood, in Butler County, Kansas show the relative efficiency of remediation options. Based upon these research findings, it is possible to recommend cost efficient remediation techniques for slight, medium, and heavy salt water damaged soil. Slight salt damage includes soils with Electrical Conductivity (EC) values of 4.0 mS/cm or less. Operators can treat these soils with sufficient amounts of gypsum, install irrigation systems, and till the soil. Appropriate plants can be introduced via transplants or seeded. Medium salt damage includes soils with EC values between 4.0 and 16 mS/cm. Operators will add amendments of gypsum, till the soil, and arrange for irrigation. Some particularly salt tolerant plants can be added but most planting ought to be reserved until the second season of remediation. Severe salt damage includes soil with EC values in excess of 16 mS/cm. Operators will add at least part of the gypsum required, till the soil, and arrange for irrigation. The following seasons more gypsum will be added and as the soil EC is reduced, plants can be introduced. If rapid remediation is required, a sufficient volume of topsoil, or sand, or manure can be added to dilute the local salinity, the bulk amendments tilled into the surface with added gypsum, and appropriate plants added. In this case, irrigation will be particularly important. The expense of the more rapid remediation will be much higher.

M.L. Korphage; Bruce G. Langhus; Scott Campbell

2003-03-01T23:59:59.000Z

218

Salt Lake Community College | .EDUconnections  

NLE Websites -- All DOE Office Websites (Extended Search)

SLCC Partners with DOE's Rocky Mountain Solar Training Program This program is a joint partnership between DOE's Solar Energy Technogies Program, Salt Lake Community College, Solar Energy International, and the Utah Solar Energy Association that works to accelerate use of solar electric technologies, training and facilities at community and technical college solar training programs within a 15 western United States region. DOE Solar Instructor Training Network Salt Lake City, Utah DOE Applauds SLCC's Science and Technical Programs Architectural Technology Biology Biotechnology Biomanufacturing Chemistry Computer Science Electric Sector Training Energy Management Engineering Geographic Information Sciences Geosciences InnovaBio Manufacturing & Mechanical Engineering Technology

219

Study and testing of direct contact heat exchangers for geothermal brines. Final report, June 1975--July 1976  

DOE Green Energy (OSTI)

The object of the work reported herein was to assess the technical and economic feasibility of preheating and evaporating a secondary fluid via direct contact with hot geothermal brine. The work covered a period of 12 months and included the design, construction, and testing of a unit which heats and vaporizes 10 gpm of isobutane by direct contact with 325/sup 0/F brine. The analytical and experimental efforts explored design and economic characteristics, including anticipated problem areas such as working fluid loss in the brine, production of a stable dispersion of the working fluid in brine, fluids separation, axial mixing and carry-over of water vapor with the working fluid. Isobutane was selected as the working fluid for tests primarily because of the favorable amount of net work produced per pound of geothermal brine and the low amount and cost of working fluid lost in the heat exchange process. The Elgin Spray Tower concept was selected for the preheater and boiler. The test apparatus includes a separate boiler and a separate preheater, each 6'' diameter by 6' high. Brine enters the top of each vessel and leaves the bottom. Isobutane enters the bottom of the preheater through a distributor plate to produce 0.15 inch diameter drops. The experimental unit operated with no major problems and demonstrated its hydraulic and thermal capabilities. Volumetric heat transfer coefficients obtained ranged up to 4000 BTU/hr /sup 0/F ft/sup 3/. Boiling heat transfer coefficients of as high as 17,000 BTU/hr /sup 0/F ft/sup 3/ were obtained with a design value of 10,000 BTU/hr /sup 0/F ft/sup 3/. Amount of isobutane in a 21 percent NaCl solution leaving the preheater was less than 40 ppM. A conceptual design and cost estimate was prepared for a direct contact heat exchange system sized for a 50 MW power plant.

Suratt, W.B.; Hart, G.K.

1977-01-01T23:59:59.000Z

220

Production of chlorine from chloride salts  

DOE Patents (OSTI)

A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

Rohrmann, Charles A. (Kennewick, WA)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

High-pressure solvent extraction of methane from geopressured brines: technical evaluation and cost analysis  

DOE Green Energy (OSTI)

Solvent extraction is proposed as a means of recovering dissolved methane from geopressured-geothermal brines at high pressures. The assessment shows that additional investment in a high pressure solvent extraction plant preceding direct injection disposal of brines into isolated aquifers can be profitable. The technical and economic issues are discussed, and compared with other injection methods such as complete depressurization for methane recovery followed by conventional mechanical pumping. The contributions of hydraulic (pressure) energy recovery and geothermal power production are also assessed. For deep injection into the producing formation, it is concluded that methane extraction processes are not applicable, insofar as maintenance of high surface pressures provides no clear-cut energy benefits. As a first step in the evaluation of solvent extraction, the solubility of a promising solvent candidate, n-hexadecane, was measured in 15 wt % NaCl solutions at temperatures up to 150/sup 0/C. The solubility of a potential low cost solvent, No. 2 Diesel fuel, was also measured.

Quong, R.; Otsuki, H.H.; Locke, F.E.

1981-07-01T23:59:59.000Z

222

Subsurface Ice and Brine Sampling Using an Ultrasonic/Sonic Gopher for Life Detection and Characterization  

E-Print Network (OSTI)

There is growing evidence for ice and fluids near the surface of Mars with potential discharge of brines, which may preserve a record of past life on the planet. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for such records. The required technology studies are underway in the McMurdo Dry valleys, Antarctica, which is serving as a Mars analog. The ice layer on Lake Vida in the dry valleys is estimated to be 20-meter thick where below 16-m depth there is a mix of ice and brine, which has never been sampled directly due to logistical constraints. A novel light weight, low power ultrasonic/sonic driller/corer (USDC) mechanism was developed that overcomes the need for high axial loads required by drilling via conventional techniques. The USDC was modified to produce an Ultrasonic/Sonic Gopher that is being developed to core down to the 20-m depth for in situ analysis and sample collection. Coring ice at-20 o C as in Lake Vida suggests that it is a greater challenge and current efforts are focused on the problems of ice core cutting, ice chip handling and potential ice melt (and refreezing) during drilling. An analytical model and a prototype are being developed with an effort to

Y. Bar-cohen; S. Sherrit; Z. Chang; L. Wessel; X. Bao; P. T. Doran; C. H. Fritsen; F. Kenig; C. P. Mckay; A. Murray; T. Peterson

2004-01-01T23:59:59.000Z

223

Demonstration of a rotary separator for two-phase brine and steam flows. Final report  

DOE Green Energy (OSTI)

The application of a two-phase rotary separator for geothermal energy conversion was demonstrated. Laboratory tests were conducted with clean water and steam at Biphase Energy Systems, Inc., Santa Monica, California. Field tests were conducted at the Union Oil Co., Tow No. 1 wellsite near Brawley, California. The system tested consisted of the major components of a total flow rotary separator/turbine conversion system. A nozzle converted the brine wellhead enthalpy to two-phase flow kinetic by impinging the nozzle flow tangentially on the inside of the separator. The flow was therefore subjected to the high centrifugal force field in the separator. This caused the liquid phase to collect as a film on the separator drum with very little energy loss. The steam was allowed to flow radially inward to the central steam discharge. Potable water was obtained by condensing the steam exhaust. The brine collection system converted the liquid film kinetic energy to static pressure head. The system was operated for 116 hours in a high salinity environment (115,000 ppM TDS). The system operated properly with no adverse effects from solids precipitation or scale buildup. The rotary separator produced separate flows of pure liquid and steam of greater than 99.5% quality.

Cerini, D.J.

1978-01-01T23:59:59.000Z

224

New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry  

E-Print Network (OSTI)

New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico Keywords: Methane flux Mass spectrometer Brine pool Methane oxidation Gulf of Mexico a b s t r a c t Deep report direct measurements of methane concentrations made in a Gulf of Mexico brine pool located

Girguis, Peter R.

225

Cathode for molten salt batteries  

DOE Patents (OSTI)

A molten salt electrochemical system for battery applications comprises tetravalent sulfur as the active cathode material with a molten chloroaluminate solvent comprising a mixture of AlCl.sub.3 and MCl having a molar ratio of AlCl.sub.3 /MCl from greater than 50.0/50.0 to 80/20.

Mamantov, Gleb (Knoxville, TN); Marassi, Roberto (Camerino, IT)

1977-01-01T23:59:59.000Z

226

Cleanup of plutonium oxide reduction black salts  

Science Conference Proceedings (OSTI)

This work describes pyrochemical processes employed to convert direc oxide reduction (DOR) black salts into discardable white salt and plutonium metal. The DOR process utilizes calcium metal as the reductant in a molten calcium chloride solvent salt to convert plutonium oxide to plutonium metal. An insoluble plutonium-rich dispersion called black salt sometimes forms between the metal phase and the salt phase. Black salts accumulated for processing were treated by one of two methods. One method utilized a scrub alloy of 70 wt % magnesium/30 wt % zinc. The other method utilized a pool of plutonium metal to agglomerate the metal phase. The two processes were similar in that calcium metal reductant and calcium chloride solvent salt were used in both cases. Four runs were performed by each method, and each method produced greater than 93% conversion of the black salt.

Giebel, R.E.; Wing, R.O.

1986-12-17T23:59:59.000Z

227

Dysprosium Extraction Using Molten Salt Electrolysis Process  

Science Conference Proceedings (OSTI)

AlCl3 was used as a chlorinating agent in order to enable an efficient dissolution of metal in the molten salt phase in the salt bath. The metal chloride which is ...

228

Energy optimization in ice hockey halls I. The system COP as a multivariable function, brine and design choices  

E-Print Network (OSTI)

This work is the first of a series of articles addressing the energy optimization in ice hockey halls. Here we outline an analytic method to predict in which design and operating conditions the COP of the entire cooling system (refrigerator and cooling tower) ${\\rm COP}_{sys}$ is maximum. ${\\rm COP}_{sys}$ is investigated as a function of several variables, like electric consumption and brine physical properties. With this method, the best configuration and brine choices for the system can therefore be determined in advance. We estimate the optimal design of an average-sized ice rink, including pipe diameter, depth and brine type (ethylene glycol and ammonia). We also single out an optimal brine density and show the impact of the electric consumption of the pump on ${\\rm COP}_{sys}$. Our theoretical predictions are validated with heat flow measurement data obtained at an ice hockey hall in Finland. They are also confronted with technical and cost-related constraints, and implemented by simulations with the pr...

Ferrantelli, Andrea; Räikkönen, Miska; Viljanen, Martti

2012-01-01T23:59:59.000Z

229

Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes  

DOE Patents (OSTI)

The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

Lewis, Michele A. (Naperville, IL); Johnson, Terry R. (Wheaton, IL)

1993-01-01T23:59:59.000Z

230

Geologic technical assessment of the Stratton Ridge salt dome, Texas, for potential expansion of the U.S. strategic petroleum reserve.  

SciTech Connect

The Stratton Ridge salt dome is a large salt diapir located only some ten miles from the currently active Strategic Petroleum Reserve Site at Bryan Mound, Texas. The dome is approximately 15 miles south-southwest of Houston. The Stratton Ridge salt dome has been intensively developed, in the desirable central portions, with caverns for both brine production and product storage. This geologic technical assessment indicates that the Stratton Ridge salt dome may be considered a viable, if less-than-desirable, candidate site for potential expansion of the Strategic Petroleum Reserve (SPR). Past development of underground caverns significantly limits the potential options for use by the SPR. The current conceptual design layout of proposed caverns for such an expansion facility is based upon a decades-old model of salt geometry, and it is unacceptable, according to this reinterpretation of salt dome geology. The easternmost set of conceptual caverns are located within a 300-ft buffer zone of a very major boundary shear zone, fault, or other structural feature of indeterminate origin. This structure transects the salt stock and subdivides it into an shallow western part and a deeper eastern part. In places, the distance from this structural boundary to the design-basis caverns is as little as 150 ft. A 300-ft distance from this boundary is likely to be the minimum acceptable stand-off, from both a geologic and a regulatory perspective. Repositioning of the proposed cavern field is possible, as sufficient currently undeveloped salt acreage appears to be available. However, such reconfiguration would be subject to limitations related to land-parcel boundaries and other existing infrastructure and topographic constraints. More broadly speaking, the past history of cavern operations at the Stratton Ridge salt dome indicates that operation of potential SPR expansion caverns at this site may be difficult, and correspondingly expensive. Although detailed information is difficult to come by, widely accepted industry rumors are that numerous existing caverns have experienced major operational problems, including salt falls, sheared casings, and unintended releases of stored product(s). Many of these difficulties may be related to on-going differential movement of individual salt spines or to lateral movement at the caprock-salt interface. The history of operational problems, only some of which appear to be a matter of public record, combined with the potential for encountering escaped product from other operations, renders the Stratton Ridge salt dome a less-than-desirable site for SPR purposes.

Rautman, Christopher Arthur; Snider, Anna C.; Looff, Karl M. (Geologic Consultant, Lovelady, TX)

2006-11-01T23:59:59.000Z

231

Reducing Foreign Lithium Dependence through Co-Production of Lithium from Geothermal Brine  

NLE Websites -- All DOE Office Websites (Extended Search)

Foreign Lithium Dependence through Co-Production of Lithium from Foreign Lithium Dependence through Co-Production of Lithium from Geothermal Brine Kerry Klein 1 , Linda Gaines 2 1 New West Technologies LLC, Washington, DC, USA 2 Center for Transportation Research, Argonne National Laboratory, Argonne, IL, USA KEYWORDS Mineral extraction, zinc, silica, strategic metals, Imperial Valley, lithium ion batteries, electric- drive vehicles, battery recycling ABSTRACT Following a 2009 investment of $32.9 billion in renewable energy and energy efficiency research through the American Recovery and Reinvestment Act, President Obama in his January 2011 State of the Union address promised deployment of one million electric vehicles by 2015 and 80% clean energy by 2035. The United States seems poised to usher in its bright energy future,

232

A Methodology for Measuring the Rate of Reaction of CO2 with Brine-Rock Mixtures  

NLE Websites -- All DOE Office Websites (Extended Search)

Methodology for Measuring the Rate of Reaction of CO Methodology for Measuring the Rate of Reaction of CO 2 with Brine-Rock Mixtures Nicholas B. Janda (nbj2@po.cwru.edu; 216-368-2648) Philip W. Morrison, Jr. (pwm5@po.cwru.edu; 216-368-4238) Department of Chemical Engineering Case Western Reserve University 10900 Euclid Avenue Cleveland, OH 44106-7217 Beverly Z. Saylor (bzs@po.cwru.edu; 216-368-3763) Gerald Matisoff (gxm4@po.cwru.edu; 216-368-3677) Department of Geological Sciences Case Western Reserve University 10900 Euclid Avenue Cleveland, OH 44106-7216 Introduction Storage of carbon dioxide in deep, porous, and permeable reservoir rocks is one of the most promising technologies for reducing emissions of greenhouse gases to the atmosphere. Although oil and gas reservoirs are a sensible first step for sequestration of carbon dioxide in geologic

233

Waste Isolation Pilot Plant's Excavated Salt Agreement Supports...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plant's Excavated Salt Agreement Supports Conservation Education, Other Public Initiatives Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Conservation Education,...

234

Biochemical technology for the detoxification of geothermal brines and the recovery of trace metals  

DOE Green Energy (OSTI)

Studies conducted at BNL, have shown that a cost-efficient and environmentally acceptable biochemical technology for detoxification of geothermal sludges is most satisfactory, as well as technically achievable. This technology is based on biochemical reactions by which certain extremophilic microorganisms interact with inorganic matrices of geothermal origin. The biochemical treatment of wastes generated by power plants using geothermal energy is a versatile technology adaptable to several applications beyond that of rendering hazardous and/or mixed wastes to non-hazardous by products, which meet regulatory requirements. This technology may be used for solubilization or recovery of a few metals to the isolation of many metals including radionuclides. In the metal recovery mode, an aqueous phase is generated which meets regulatory standards. The resulting concentrate contains valuable trace metals and salts which can be further converted into income generating products which can off-set the initial investment costs associated with the new biotechnology. In this paper, recent developments in this emerging technology will be discussed.

Premuzic, E.T.; Lin, M.S.; Lian, Hsienjen

1995-05-01T23:59:59.000Z

235

Estimation of groundwater evaporation and salt flux from Owens Lake, California, USA  

E-Print Network (OSTI)

Plant in Trona, CA, which uses this process to produce CO2 for carbonation of brine, started operation

Katul, Gabriel

236

Calculation of density and permeability of compacted crushed salt within an engineered shaft sealing system  

SciTech Connect

Crushed salt from the host Salado Formation is proposed as a sealing material in one component of a multicomponent seal system design for the shafts of the Waste Isolation Pilot Plant (WIPP), a mined geological repository for storage and disposal of transuranic radioactive wastes located near Carlsbad, New Mexico. The crushed salt will be compacted and placed at a density approaching 90% of the intact density of the host Salado salt. Creep closure of the shaft will further compact the crushed salt over time, thereby reducing the crushed-salt permeability from the initial state and creating an effective long-term seal. A structural model and a fluid flow model have been developed to provide an estimate of crushed-salt reconsolidation rate as a function of depth, time, and pore pressure. Model results are obtained in terms of crushed-salt permeability as a function of time and depth within the salt column. Model results indicate that average salt column permeability will be reduced to 3.3 {times} 10{sup {minus}20} m{sup 2} in about 100 years, which provides for an acceptable long-term seal component.

Loken, M. [RE/SPEC Inc., Rapid City, SD (United States); Statham, W. [Intera Inc., Austin, TX (United States)

1997-07-01T23:59:59.000Z

237

Modeled Salt Density for Nuclear Material Estimation in the Treatment of Spent Nuclear Fuel  

SciTech Connect

Spent metallic nuclear fuel is being treated in a pyrometallurgical process that includes electrorefining the uranium metal in molten eutectic LiCl-KCl as the supporting electrolyte. We report a model for determining the density of the molten salt. Inventory operations account for the net mass of salt and for the mass of actinides present. It was necessary to know the molten salt density but difficult to measure, and it was decided to model the salt density for the initial treatment operations. The model assumes that volumes are additive for the ideal molten salt solution as a starting point; subsequently a correction factor for the lanthanides and actinides was developed. After applying the correction factor, the percent difference between the net salt mass in the electrorefiner and the resulting modeled salt mass decreased from more than 4.0% to approximately 0.1%. As a result, there is no need to measure the salt density at 500 C for inventory operations; the model for the salt density is found to be accurate.

DeeEarl Vaden; Robert. D. Mariani

2010-09-01T23:59:59.000Z

238

Drying radioactive wastewater salts using a thin film dryer  

SciTech Connect

This paper describes the operational experience in drying brines generated at a radioactive wastewater treatment facility. The brines are composed of aqueous ammonium sulfate/sodium sulfate and aqueous sodium nitrate/sodium sulfate, The brine feeds receive pretreatment to preclude dryer bridging and fouling. The dryer products are a distillate and a powder. The dryer is a vertical thin film type consisting of a steam heated cylinder with rotor. Maintenance on the dryer has been minimal. Although many operability problems have had to be overcome, dryer performance can now be said to be highly reliable.

Scully, D.E.

1998-03-19T23:59:59.000Z

239

Optimization and preconceptual design of a 5 MWe salt-gradient solar pond power plant at Great Salt Lake  

DOE Green Energy (OSTI)

The techniques used to optimize and design a solar salt-gradient pond (SSP) power plant for installation at the Great Salt Lake are described. The method and results of the site selection study are described as well as the characteristics of the selected site. The figure of merit used as well as the characteristics of the selected site. The figure of merit used in the optimization study, the general optimization approach, and the specific optimization method used for each subsystem are described. Results are then discussed of the optimization of the pond configuration, total system, and piping. Pond design and ground rule sensitivity studies are reported. (LEW)

Drost, M.K.; Brown, L.M.; Barnhart, J.S.; Cavola, R.G.; Hauser, S.G.; Johnson, B.M.

1983-05-01T23:59:59.000Z

240

Conversion of carboxylate salts to carboxylic acids via reactive distillation  

E-Print Network (OSTI)

The purpose of this study is to convert carboxylate salts (e.g. calcium acetate, propionate, and butyrate) into carboxylic acids (e.g., acetic, propionic, and butyric acids). The carboxylate salts can be produced from wastes, such as paper fines, municipal solid wastes, sewage sludge, and industrial biosludge. Using a proprietary technology owned by Texas A&M University the wastes are first treated with lime to enhance reactivity. Then they are converted to calcium carboxylate salts using a mixed culture of microorganisms derived from cattle rumen or anaerobic waste treatment facilities. The paper fines and municipal solid waste provide energy, whereas the industrial biosludge and sewage sludge provide nutrients for the microorganisms. The calcium carboxylate salts are concentrated and reacted with a low-molecular-weight tertiary amine and carbon dioxide to precipitate calcium carbonate. In a distillation column, the low-molecular-weight amine carboxylate reacts with a high-molecular-weight tertiary amine allowing the low-molecular-weight amine to be recovered from the top of the column. The resulting high-molecular-weight amine carboxylate is converted to amine and carboxylic acid in a reactive distillation column. This project focuses on the conversion of the carboxylate salts produced via fermentation into their corresponding acids via reactive distillation. The primary objective is to determine the optimal operating conditions of the distillation. A secondary objective is to optimize the precipitation step in the recovery process.

Williamson, Shelly Ann

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CRITICALITY SAFETY OF PROCESSING SALT SOLUTION AT SRS  

Science Conference Proceedings (OSTI)

High level radioactive liquid waste generated as a result of the production of nuclear material for the United States defense program at the Savannah River Site has been stored as 36 million gallons in underground tanks. About ten percent of the waste volume is sludge, composed of insoluble metal hydroxides primarily hydroxides of Mn, Fe, Al, Hg, and most radionuclides including fission products. The remaining ninety percent of the waste volume is saltcake, composed of primarily sodium (nitrites, nitrates, and aluminates) and hydroxides. Saltcakes account for 30% of the radioactivity while the sludge accounts for 70% of the radioactivity. A pilot plant salt disposition processing system has been designed at the Savannah River Site for interim processing of salt solution and is composed of two facilities: the Actinide Removal Process Facility (ARPF) and the Modular Caustic Side Solvent Extraction Unit (MCU). Data from the pilot plant salt processing system will be used for future processing salt at a much higher rate in a new salt processing facility. Saltcake contains significant amounts of actinides, and other long-lived radioactive nuclides such as strontium and cesium that must be extracted prior to disposal as low level waste. The extracted radioactive nuclides will be mixed with the sludge from waste tanks and vitrified in another facility. Because of the presence of highly enriched uranium in the saltcake, there is a criticality concern associated with concentration and/or accumulation of fissionable material in the ARP and MCU.

Stephens, K; Davoud Eghbali, D; Michelle Abney, M

2008-01-15T23:59:59.000Z

242

CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES  

SciTech Connect

This progress report on the Department of Energy project DE-FG-97FT97263 entitled, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures'', covers the period April-September 1998. The specific aims of the project for this period were to identify appropriate eutectic salt mixture catalysts for the gasification of Illinois No.6 coal, evaluate various impregnation or catalyst addition methods to improve catalyst dispersion, and evaluate gasification performance in a bench-scale fixed bed reactor. The project is being conducted jointly by Clark Atlanta University (CAU), the University of Tennessee Space Institute (UTSI) and the Georgia Institute of Technology (Georgia Tech) with CAU as the prime contractor. Several single salt catalysts and binary and ternary eutectic catalysts were investigated at Clark Atlanta University. Physical mixing and incipient wetness methods were investigated as catalyst addition techniques. Gasification was carried out using TGA at CAU and UTSI and with a fixed-bed reactor at UTSI. The results showed better gasification activity in the presence of the catalysts tested. The eutectic salt studies showed clear agreement between the melting points of the prepared eutectics and reported literature values. The order of catalytic activity observed was ternary > binary > single salt. With the soluble single salt catalysts, the incipient wetness method was found to give better results than physical mixing technique. Also, catalyst preparation conditions such as catalyst loading, drying time and temperature were found to influence the gasification rate. Based on the Clark Atlanta University studies on Task 1, the project team selected the 43.5%Li{sub 2}CO{sub 3}-31.5%Na{sub 2}CO{sub 3}-25%K{sub 2}CO{sub 3} ternary eutectic and the 29%Na{sub 2}CO{sub 3}-71%K{sub 2}CO{sub 3} and 2.3% KNO{sub 3}-97.7%K{sub 2}CO{sub 3} binary eutectic for the fixed bed studies at UTSI. The eutectic salts were found to be highly insoluble in aqueous medium. As a result the technique of adding the eutectic to the raw coal was found to be better than using wet methods. Also, addition of the catalyst to the raw coal appeared to give better gasification results than addition to pyrolyzed coal. In addition, eutectic catalysts added to the coal yielded better gasification rates than rates obtained by mixing the individual salts in the eutectic ratio with the coal. These results, especially with the eutectic catalysts are very significant since the use of the low melting eutectics will reduce the severity of gasification processes.

NONE

2000-04-01T23:59:59.000Z

243

CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES  

Science Conference Proceedings (OSTI)

This progress report on the Department of Energy project DE-FG-97FT97263 entitled, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures,'' covers the period April-September 1998. The specific aims of the project for this period were to identify appropriate eutectic salt mixture catalysts for the gasification of Illinois No.6 coal, evaluate various impregnation or catalyst addition methods to improve catalyst dispersion, and evaluate gasification performance in a bench-scale fixed bed reactor. The project is being conducted jointly by Clark Atlanta University (CAU), the University of Tennessee Space Institute (UTSI) and the Georgia Institute of Technology (Georgia Tech) with CAU as the prime contractor. Several single salt catalysts and binary and ternary eutectic catalysts were investigated at Clark Atlanta University. Physical mixing and incipient wetness methods were investigated as catalyst addition techniques. Gasification was carried out using TGA at CAU and UTSI and with a fixed-bed reactor at UTSI. The results showed better gasification activity in the presence of the catalysts tested. The eutectic salt studies showed clear agreement between the melting points of the prepared eutectics and reported literature values. The order of catalytic activity observed was ternary > binary > single salt. With the soluble single salt catalysts, the incipient wetness method was found to give better results than physical mixing technique. Also, catalyst preparation conditions such as catalyst loading, drying time and temperature were found to influence the gasification rate. Based on the Clark Atlanta University studies on Task 1, the project team selected the 43.5%Li{sub 2}CO{sub 3}-31.5%Na{sub 2}CO{sub 3}-25%K{sub 2}CO{sub 3} ternary eutectic and the 29%Na{sub 2}CO{sub 3}-71%K{sub 2}CO{sub 3} and 2.3%KNO{sub 3}-97.7%K{sub 2}CO{sub 3} binary eutectic for the fixed bed studies at UTSI. The eutectic salts were found to be highly insoluble in aqueous medium. As a result the technique of adding the eutectic to the raw coal was found to be better than using wet methods. Also, addition of the catalyst to the raw coal appeared to give better gasification results than addition to pyrolyzed coal. In addition, eutectic catalysts added to the coal yielded better gasification rates than rates obtained by mixing the individual salts in the eutectic ratio with the coal. These results, especially with the eutectic catalysts are very significant since the use of the low melting eutectics will reduce the severity of gasification processes.

NONE

1998-10-01T23:59:59.000Z

244

Increased angiotensin II receptors in brain nuclei of DOCA-salt hypertensive rats  

SciTech Connect

We analyzed angiotensin II (ANG II) receptors by in vitro autoradiography in selective brain nuclei of control, salt-treated (1% NaCl in drinking water), deoxycorticosterone acetate (DOCA)-treated (DOCA pivalate, 25 mg/kg sc weekly), and DOCA-salt-treated (DOCA + salt treatments) uninephrectomized male Wistar-Kyoto rats. After 4 wk of treatment, only the DOCA-salt group developed hypertension. ANG II binding increased in median preoptic nucleus and subfornical organ of salt- and DOCA-treated rats. DOCA-treated rats also showed increased ANG II binding in paraventricular nucleus. DOCA-salt-treated rats showed higher ANG II binding in nucleus of the solitary tract and area postrema, as well as in the areas mentioned before. Although salt and/or DOCA treatments alone increased ANG II receptors in some brain nuclei, after combined DOCA-salt treatment there was significantly higher ANG II binding in all areas, except the median preoptic nucleus. These results suggest that increased ANG II receptors in selected brain areas may play a role in the pathophysiology of mineralocorticoid-salt experimental hypertension.

Gutkind, J.S.; Kurihara, M.; Saavedra, J.M.

1988-09-01T23:59:59.000Z

245

Salt Waste Processing Facility Fact Sheet | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Waste Management » Tank Waste and Waste Processing » Services » Waste Management » Tank Waste and Waste Processing » Salt Waste Processing Facility Fact Sheet Salt Waste Processing Facility Fact Sheet Nuclear material production operations at SRS resulted in the generation of liquid radioactive waste that is being stored, on an interim basis, in 49 underground waste storage tanks in the F- and H-Area Tank Farms. SWPF Fact Sheet More Documents & Publications EIS-0082-S2: Amended Record of Decision Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report EIS-0082-S2: Record of Decision Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and Transportation Site & Facility Restoration Deactivation & Decommissioning (D&D)

246

Simulation of water transport in heated rock salt  

Science Conference Proceedings (OSTI)

This paper summarizes computer simulation studies on water transport in German rock salt. Based on JOCKWERS experimental investigations on water content and water liberation, the object of these studies was to select a water transport model, that matches the water inflow which was measured in some heater experiments in the Asse Salt Mine. The main result is, that an evaporation front model, with Knudsen-type vapor transport combined with fluid transport by thermal expansion of the adsorbed water layers in the non evaporated zone, showed the best agreement with experimental evidence.

Schlich, M.; Jockwer, N.

1986-01-01T23:59:59.000Z

247

Investigation on the Parameters Affecting the De-Icing Salt Scaling Resistance of Fly Ash Concrete  

Science Conference Proceedings (OSTI)

In scaling of concrete by de-icing salts, the mortar near the surface flakes or peels away. This report presents the results of an R&D laboratory study to examine the scaling of high ash content concrete from the use of salts used routinely in cold climates to melt ice and snow on roads and sidewalks.

1998-06-29T23:59:59.000Z

248

The Salt Defense Disposal Investigations (SDDI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Defense Disposal Investigations (SDDI) Salt Defense Disposal Investigations (SDDI) will utilize a newly mined Underground Research Lab (URL) in WIPP to perform a cost effective, proof-of-principle field test of the emplacement of heat-generating radioactive waste and validate modeling efforts. The goals of the SDDI Thermal Test are to: * Demonstrate a proof-of-principle concept for in-drift disposal in salt. * Investigate, in a specific emplacement concept, the response of the salt to heat. * Develop a full-scale response for run-of- mine (ROM) salt. * Develop a validated coupled process model for disposal of heat-generating wastes in salt. * Evaluate the environmental conditions of the

249

Underground Natural Gas Storage Wells in Bedded Salt (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to natural gas underground storage and associated brine ponds, and includes the permit application for each new underground storage tank near surface water bodies and springs.

250

Rapid Removal of Chlorine in Molten Salt Electrolysis of Magnesium ...  

Science Conference Proceedings (OSTI)

However, experimental data and modeling results in this study indicate that the ... bubbles on the current efficiency and the cell potential were investigated. ... High- Chloride Circuit for the Starfield Resources' Ferguson Lake Project · Direct Synthesis of Niobium Aluminides Powders by Sodiothermic Reduction in Molten Salts.

251

Evaluation of Brine-Bearing Sands of the Frio Formation, Upper Texas Gulf Coast for Geological Sequestration of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Brine-Bearing Sands of the Evaluation of Brine-Bearing Sands of the Frio Formation, Upper Texas Gulf Coast for Geological Sequestration of CO 2 S. D. Hovorka (susan.hovorka@beg.utexas.edu; 512-471-4863) Bureau of Economic Geology, P.O. Box X, The University of Texas at Austin, Austin, TX 78713 C. Doughty (CADoughty@lbl.gov; 510-486-6453 ) Lawrence Berkeley National Lab, 1 Cyclotron Road Mailstop 90-1116, Berkeley, CA 94720 P. R. Knox (paul.knox@beg.utexas.edu; 512-471-7313), Bureau of Economic Geology, P.O. Box X, The University of Texas at Austin, Austin, TX 78713 C. T. Green (ctgreen@ucdavis.edu; 510-495-2461) University of California, Hydrologic Sciences, One Shields Ave., Davis, CA 95616 K. Pruess(K_Pruess@lbl.gov; 510-486-6732) Lawrence Berkeley National Lab, 1 Cyclotron Road Mailstop 90-1116,

252

Removal of hydrogen sulfide from simulated geothermal brines by reaction with oxygen. Final report, October 6, 1975-February 4, 1977  

DOE Green Energy (OSTI)

A process for controlling hydrogen sulfide emissions and corrosivity in geothermal systems has been evaluated on a small laboratory pilot plant scale and shown to be technically feasible. The hydrogen sulfide was oxidized by oxygen injected directly into a 11.4-liter-(3-gallon)-per-minute flowing stream of simulated geothermal brine. The oxidation of the sulfide was complete at oxygen:sulfide mole ratios of 1.25:1 to 1.5:1, depending on temperature and total dissolved solids in the brine. The reaction products were free sulfur, sulfite and sulfate. The ratio of these was dependent upon the oxygen:sulfide mole ratios; but, generally, more than 80% of the sulfide was converted to sulfate, approximately 10% to free sulfur and less than 10% to sulfite.

Wilson, J.S.; King, J.E.; Bullard, G.R.

1977-04-01T23:59:59.000Z

253

Experimental and Computational Studies of Fluid Flow Phenomena in Carbon Dioxide Sequestration in Brine and Oil Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID FLOW PHENOMENA IN CARBON DIOXIDE SEQUESTRATION IN BRINE AND OIL FIELDS Chuang Ji ( chuang.ji@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 BOX 5725 Clarkson University Potsdam, NY 13699 Goodarz Ahmadi ( ahmadi@clarkson.edu ) BOX 5725 Clarkson University Potsdam, NY 13699 Duane H. Smith ( duane.smith@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 2 INTRODUCTION Sequestration of CO 2 by injection into deep geological formations is a method to reduce CO 2 emissions into the atmosphere. However, when CO 2 is injected underground, it forms fingers extending into the rock pores saturated with brine or petroleum. This flow

254

SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS  

DOE Patents (OSTI)

A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.

Katzin, L.I.; Sullivan, J.C.

1958-06-24T23:59:59.000Z

255

Electrolytic orthoborate salts for lithium batteries  

DOE Patents (OSTI)

Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

Angell, Charles Austen (Mesa, AZ); Xu, Wu (Tempe, AZ)

2008-01-01T23:59:59.000Z

256

Molten salt safety study. Final report  

DOE Green Energy (OSTI)

The considerations concerning safety in using molten salt (40% potassium nitrate, 60% sodium nitrate) in a solar central receiver plant are addressed. The considerations are of a general nature and do not cover any details of equipment or plant operation. The study includes salt chemical reaction, experiments with molten salt, dry storage and handling constraints, and includes data from the National Fire Protection Association. The contents of this report were evaluated by two utility companies and they concluded that no major safety problems exist in using a molten salt solar system.

Not Available

1980-01-01T23:59:59.000Z

257

Applications of molten salts in plutonium processing  

Science Conference Proceedings (OSTI)

Plutonium is efficiently recovered from scrap at Los Alamos by a series of chemical reactions and separations conducted at temperatures ranging from 700 to 900/sup 0/C. These processes usually employ a molten salt or salt eutectic as a heat sink and/or reaction medium. Salts for these operations were selected early in the development cycle. The selection criteria are being reevaluated. In this article we describe the processes now in use at Los Alamos and our studies of alternate salts and eutectics.

Bowersox, D.F.; Christensen, D.C.; Williams, J.D.

1987-01-01T23:59:59.000Z

258

,"Natural Gas Salt Caverns Storage Capacity "  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Storage Capacity " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas...

259

Metal salts of alkyl catechol dithiophosphoric acids and oil compositions containing the salts  

Science Conference Proceedings (OSTI)

Metal salts of alkyl catechol esters of dithiophosphoric acid suitable as additives in oil compositions are disclosed in this patent. Oil compositions containing the salts of such esters show improved extreme pressure/anti-wear and anit-oxidant properties.

Yamaguchi, E.S.; Liston, T.V.

1988-03-08T23:59:59.000Z

260

Drilling Waste Management Fact Sheet: Disposal in Salt Caverns  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Caverns Salt Caverns Fact Sheet - Disposal in Salt Caverns Introduction to Salt Caverns Underground salt deposits are found in the continental United States and worldwide. Salt domes are large, fingerlike projections of nearly pure salt that have risen to near the surface. Bedded salt formations typically contain multiple layers of salt separated by layers of other rocks. Salt beds occur at depths of 500 to more than 6,000 feet below the surface. Schematic Drawing click to view larger image Schematic Drawing of a Cavern in Domal Salt Schematic Drawing click to view larger image Schematic Drawing of a Cavern in Bedded Salt Salt caverns used for oil field waste disposal are created by a process called solution mining. Well drilling equipment is used to drill a hole

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced biochemical processes for geothermal brines: Annual operating plan, FY 1995  

DOE Green Energy (OSTI)

An R and D program to identify methods for the utilization and/or low cost of environmentally acceptable disposal of toxic geothermal residues has been established at the Brookhaven National Laboratory (BNL). Laboratory work has shown that a biochemical process developed at BNL, would meet regulatory costs and environmental requirements. In this work, microorganisms which can convert insoluble species of toxic metals, including radionuclides, into soluble species, have been identified. These organisms serve as models in the development of a biochemical process in which toxic metals present in geothermal residual sludges are converted into water soluble species. The produced solution can be reinjected or processed further to concentrate and recover commercially valuable metals. After the biochemical detoxification of geothermal residual sludges, the end-products are non-toxic and meet regulatory requirements. The overall process is a technically and environmentally acceptable cost-efficient process. It is anticipated that the new biotechnology will reduce the cost of surface disposal of sludges derived from geothermal brines by 25% or better.

Premuzic, E.T.

1995-02-01T23:59:59.000Z

262

Lattice-Boltzmann modeling of micromodel experiments representing a CO2-brine system  

Science Conference Proceedings (OSTI)

Successful sequestration of CO{sub 2} into deep saline aquifers presents an enormous challenge that requires fundamental understanding of reactive-multi phase flow and transport across many temporal and spatial scales. Of critical importance is accurately predicting the efficiency of CO{sub 2} trapping mechanisms. At the pore scale (e.g., microns to millimeters) the interfacial area between CO{sub 2} and brine, as well as CO{sub 2} and the solid phase, directly influences the amount of CO{sub 2} trapped due to capillary forces, dissolution and mineral precipitation. In this work, we model immiscible displacement micromodel experiments using the lattice-Boltzmann (LB) method. We focus on quantifying interfacial area as a function of capillary numbers and viscosity ratios typically encountered in CO{sub 2} sequestration operations. We show that the LB model adequately predicts the steady-state experimental flow patterns and interfacial area measurements. Based on the steady-state agreement, we use the LB model to investigate interfacial dynamics (e.g., fluid-fluid interfacial velocity and the rate of production of fluid-fluid interfacial area). In addition, we quantify the amount of interfacial area and the interfacial dynamics associated with the capillary trapped nonwetting phase. This is expected to be important for predicting the amount of nonwetting phase subsequently trapped due to dissolution and mineral precipitation.

Porter, Mark L [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Tarimala, Sowmitri [Los Alamos National Laboratory; Abdel - Fattah, Amr I [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Carey, James W [Los Alamos National Laboratory

2010-12-21T23:59:59.000Z

263

Time-lapse crosswell seismic and VSP monitoring of injected CO2 ina brine aquifer  

SciTech Connect

Seismic surveys successfully imaged a small scale C02injection (1,600 tons) conducted in a brine aquifer of the Frio Formationnear Houston, Texas. These time-lapse bore-hole seismic surveys,crosswell and vertical seismic profile (VSP), were acquired to monitorthe C02 distribution using two boreholes (the new injection well and apre-existing well used for monitoring) which are 30 m apart at a depth of1500 m. The crosswell survey provided a high-resolution image of the C02distribution between the wells via tomographic imaging of the P-wavevelocity decrease (up to 500 mls). The simultaneously acquired S-wavetomography showed little change in S-wave velocity, as expected for fluidsubstitution. A rock physics model was used to estimate C02 saturationsof 10-20 percent from the P-wave velocity change. The VSP survey resolveda large (-70 percent) change in reflection amplitude for the Friohorizon. This C02 induced reflection amplitude change allowed estimationof the C02 extent beyond the monitor well and on 3 azimuths. The VSPresult is compared with numerical modeling of C02 saturations and isseismically modeled using the velocity change estimated in the crosswellsurvey.

Daley, Thomas M.; Myer, Larry R.; Peterson, J.E.; Majer, E.L.; Hoversten,G.M.

2006-05-30T23:59:59.000Z

264

Technical review of Molten Salt Oxidation  

Science Conference Proceedings (OSTI)

The process was reviewed for destruction of mixed low-level radioactive waste. Results: extensive development work and scaleup has been documented on coal gasification and hazardous waste which forms a strong experience base for this MSO process; it is clearly applicable to DOE wastes such as organic liquids and low-ash wastes. It also has potential for processing difficult-to-treat wastes such as nuclear grade graphite and TBP, and it may be suitable for other problem waste streams such as sodium metal. MSO operating systems may be constructed in relatively small units for small quantity generators. Public perceptions could be favorable if acceptable performance data are presented fairly; MSO will likely require compliance with regulations for incineration. Use of MSO for offgas treatment may be complicated by salt carryover. Figs, tabs, refs.

Not Available

1993-12-01T23:59:59.000Z

265

BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY  

SciTech Connect

Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

Lee, S.

2012-05-10T23:59:59.000Z

266

Modeling of Sulfate Double-salts in Nuclear Wastes  

Science Conference Proceedings (OSTI)

Due to limited tank space at Hanford and Savannah River, the liquid nuclear wastes or supernatants have been concentrated in evaporators to remove excess water prior to the hot solutions being transferred to underground storage tanks. As the waste solutions cooled, the salts in the waste exceeded the associated solubility limits and precipitated in the form of saltcakes. The initial step in the remediation of these saltcakes is a rehydration process called saltcake dissolution. At Hanford, dissolution experiments have been conducted on small saltcake samples from five tanks. Modeling of these experimental results, using the Environmental Simulation Program (ESP), are being performed at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University. The River Protection Project (RPP) at Hanford will use these experimental and theoretical results to determine the amount of water that will be needed for its dissolution and retrieval operations. A comprehensive effort by the RPP and the Tank Focus Area continues to validate and improve the ESP and its databases for this application. The initial effort focused on the sodium, fluoride, and phosphate system due to its role in the formation of pipeline plugs. In FY 1999, an evaluation of the ESP predictions for sodium fluoride, trisodium phosphate dodecahydrate, and natrophosphate clearly indicated that improvements to the Public database of the ESP were needed. One of the improvements identified was double salts. The inability of any equilibrium thermodynamic model to properly account for double salts in the system can result in errors in the predicted solid-liquid equilibria (SLE) of species in the system. The ESP code is evaluated by comparison with experimental data where possible. However, data does not cover the range of component concentrations and temperatures found in many tank wastes. Therefore, comparison of ESP with another code is desirable, and may illuminate problems with both. For this purpose, the SOLGASMIX code was used in conjunction with a small private database developed at ORNL. This code calculates thermodynamic equilibria through minimization of Gibbs Energy, and utilizes the Pitzer model for activity coefficients. The sodium nitrate-sulfate double salt and the sodium fluoride-sulfate double salt were selected for the FY 2000 validation study of ESP. Even though ESP does not include the sulfate-nitrate double salt, this study found that this omission does not appear to be a major consequence. In this case, the solubility predictions with and without the sulfate-nitrate double salt are comparable. In contrast, even though the sulfate-fluoride double salt is included within the ESP databank, comparison to previous experimental results indicates that ESP underestimates solubility. Thus, the prediction for the sulfate-fluoride system needs to be improved. A main consequence of the inability to accurately predict the SLE of double salts is its impact on the predicted ionic strength of the solution. The ionic strength has been observed to be an important factor in the formation of pipeline plugs. To improve the ESP prediction, solubility tests on the sulfate-fluoride system are underway at DIAL, and these experimental results will be incorporated into the Public database by OLI System, Inc. Preliminary ESP simulations also indicated difficulties with the SLE prediction for anhydrous sodium sulfate. The Public database for the ESP does not include fundamental parameters for this solid in mixed solutions below 32.4 C. The limitation, in the range of anhydrous sodium sulfate, leads to convergence problems in ESP and to inaccurate predictions of solubility near the invariant point when sodium sulfate decahydrate and other salts, such as sodium nitrate, were present. These difficulties were partially corrected through the use of an additional database. In conclusion, these results indicate the need for experimental data at temperatures above 25 C and in solutions containing both nitrate and hydroxide. Furthermore, the validation and do

Toghiani, B.

2000-10-30T23:59:59.000Z

267

Metal salt catalysts for enhancing hydrogen spillover  

DOE Patents (OSTI)

A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

Yang, Ralph T; Wang, Yuhe

2013-04-23T23:59:59.000Z

268

Slim Holes At Salt Wells Area (Combs, Et Al., 1999) | Open Energy  

Open Energy Info (EERE)

Slim Holes At Salt Wells Area (Combs, Et Al., 1999) Slim Holes At Salt Wells Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Salt Wells Area (Combs, Et Al., 1999) Exploration Activity Details Location Salt Wells Area Exploration Technique Slim Holes Activity Date 1980 - 1980 Usefulness useful DOE-funding Unknown Exploration Basis The blind Salt Wells geothermal system was first identified when Anadarko Petroleum Corporation drilled slim hole and geothermal exploration wells at the site in 1980. Two reports detail the results of this drilling activity. This report details the well completion practices applied to the initial slim hole discovery well. Notes In 1980, Anadarko Petroleum Corporation drilled a slim hole discovery well near Simpson Pass. The hole was initially rotary-drilled to 161.5 m for

269

Detection of frozen salt in pipes using gamma-ray spectrometry of potassium self-activity  

SciTech Connect

Solar plants that use molten salts as heat transfer fluid need careful control to avoid the freezing of the salt in the pipes; if such a problem occurs, a diagnostic instrument to localize where is the frozen salt plug and to determine its length is useful. If the salt contains potassium (as is the case of the most common mixture used in solar plants, NaNO{sub 3}/KNO{sub 3} 60/40% by weight), the gamma decay of the natural unstable isotope {sup 40}K can be exploited to detect the frozen salt in a non-invasive way. Simulations and experimental results regarding the detectability of such plugs with different masses/lengths are presented. (author)

Grena, Roberto; Scafe, Raffaele; Pisacane, Fabrizio; Pilato, Renzo; Crescenzi, Tommaso; Mazzei, Domenico [ENEA, Casaccia Research Centre, via Anguillarese 301, 00123 S. Maria di Galeria, Rome (Italy)

2010-01-15T23:59:59.000Z

270

Model Development and Analysis of the Fate and Transport of Water in a Salt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development and Analysis of the Fate and Transport of Water Development and Analysis of the Fate and Transport of Water in a Salt Based Repository Model Development and Analysis of the Fate and Transport of Water in a Salt Based Repository The study summarizes the initial work on numerical modeling, simulations, and experimental results related to nuclear waste storage in a salt repository. The study reflects the project's preliminary effort at simulating the fluid flow and heat transport processes, before treating the fully coupled thermal-mechanical-hydrologic-chemical (TMHC) coupled processes in the future. Model Development and Analysis of the Fate and Transport of Water in a Salt Based Repository More Documents & Publications Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt

271

Salt Wells Geothermal Exploratory Drilling Program EA  

Open Energy Info (EERE)

Salt Wells Geothermal Exploratory Drilling Program EA Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Abstract No abstract available. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/14/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Citation Bureau of Land Management. Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) [Internet]. 09/14/2009. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management,

272

SEPARATION OF METAL SALTS BY ADSORPTION  

DOE Patents (OSTI)

It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

Gruen, D.M.

1959-01-20T23:59:59.000Z

273

Evaluation of Salt Coolants for Reactor Applications  

SciTech Connect

Molten fluorides were initially developed for use in the nuclear industry as the high-temperature fluid fuel for the Molten Salt Reactor (MSR). The U.S. Department of Energy Office of Nuclear Energy is exploring the use of molten salts as primary and secondary coolants in a new generation of solid-fueled, thermal-spectrum, hightemperature reactors. This paper provides a review of relevant properties for use in evaluation and ranking of salt coolants for high-temperature reactors. Nuclear, physical, and chemical properties were reviewed, and metrics for evaluation are recommended. Chemical properties of the salt were examined to identify factors that affect materials compatibility (i.e., corrosion). Some preliminary consideration of economic factors for the candidate salts is also presented.

Williams, David F [ORNL

2008-01-01T23:59:59.000Z

274

Management of Salt Waste from Electrochemical Processing of Used Nuclear Fuel  

SciTech Connect

Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electrorefiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form.

Michael F. Simpson; Michael N. Patterson; Joon Lee; Yifeng Wang; Joshua Versey; Ammon Williams; Supathorn Phongikaroon; James Allensworth; Man-Sung Yim

2013-10-01T23:59:59.000Z

275

Modeling of Porous Electrodes in Molten-Salt Systems  

E-Print Network (OSTI)

of Porous Electrodes in Molten-Salt Systems^ John Newmanon High-Temperature Molten Salt B a t - teries, Argonneby the modeling of molten-salt cells, including some

Newman, John

1986-01-01T23:59:59.000Z

276

Direct and Indirect Shortwave Radiative Effects of Sea Salt Aerosols  

Science Conference Proceedings (OSTI)

Sea salt aerosols play a dual role in affecting the atmospheric radiative balance. Directly, sea salt particles scatter the incoming solar radiation and absorb the outgoing terrestrial radiation. By acting as cloud condensation nuclei, sea salt ...

Tarek Ayash; Sunling Gong; Charles Q. Jia

2008-07-01T23:59:59.000Z

277

Geothermometry At Salt Wells Area (Shevenell, Et Al., 2008) ...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Salt Wells Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Salt Wells Area...

278

DOE - Office of Legacy Management -- Tatum Salt Dome Test Site...  

Office of Legacy Management (LM)

Tatum Salt Dome Test Site - MS 01 FUSRAP Considered Sites Site: Tatum Salt Dome Test Site (MS.01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

279

EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc....

280

Notice of Availability of Section 3116 Determination for Salt...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Availability of Section 3116 Determination for Salt Waste Disposal at the Savannah River Site Notice of Availability of Section 3116 Determination for Salt Waste Disposal...

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics Coupled Thermal-Hydrological-Mechanical Processes...

282

Molten Salt Breeder Reactors Academia Sinica, ITRI, NTHU  

E-Print Network (OSTI)

Power 4/8/12 Frank H. Shu Gen IV MSBR/LFTR Liquid fuel (molten salt) Molten salt coolant (unpopulated

Wang, Ming-Jye

283

Independent Oversight Review, Savannah River Site Salt Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Salt Waste Processing Facility - August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review...

284

Corrosion of High Temperature Alloys in Molten Salts  

Science Conference Proceedings (OSTI)

Fluoride and chloride salts are among the candidates for this application. However, materials corrosion is an issue in these molten salts, particularly in molten ...

285

The Mean Along-Isobath Heat and Salt Balances over the Middle Atlantic Bight Continental Shelf  

Science Conference Proceedings (OSTI)

The mean heat and salt balances over the Middle Atlantic Bight continental shelf are investigated by testing the hypothesis that surface fluxes of heat or freshwater are balanced by along-isobath fluxes resulting from the mean, depth-averaged, ...

Steven J. Lentz

2010-05-01T23:59:59.000Z

286

Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants  

DOE Green Energy (OSTI)

The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

Mathur, Anoop [Terrafore Inc.

2013-08-14T23:59:59.000Z

287

Category:Salt Lake City, UT | Open Energy Information  

Open Energy Info (EERE)

UT UT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Salt Lake City, UT" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVFullServiceRestauran... 57 KB SVHospital Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVHospital Salt Lake C... 57 KB SVLargeHotel Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVLargeHotel Salt Lake... 55 KB SVLargeOffice Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVLargeOffice Salt Lak... 57 KB SVMediumOffice Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVMediumOffice Salt La... 62 KB SVMidriseApartment Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png

288

Brine-Driven Eddies under Sea Ice Leads and Their Impact on the Arctic Ocean Mixed Layer  

Science Conference Proceedings (OSTI)

Eddy generation induced by a line-shaped salt flux under a sea ice lead and associated salt transport are investigated using a three-dimensional numerical model. The model is designed to represent a typical condition for the wintertime Arctic ...

Yoshimasa Matsumura; Hiroyasu Hasumi

2008-01-01T23:59:59.000Z

289

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area (Redirected from Salt Wells Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

290

Plutonium and americium separation from salts  

DOE Patents (OSTI)

Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution.

Hagan, Paul G. (Northglenn, CO); Miner, Frend J. (Boulder, CO)

1976-01-01T23:59:59.000Z

291

Salt Lake City- High Performance Buildings Requirement  

Energy.gov (U.S. Department of Energy (DOE))

Salt Lake City's mayor issued an executive order in July 2005 requiring that all public buildings owned and controlled by the city be built or renovated to meet the requirements of LEED "silver"...

292

Salt Dispersion in the Hudson Estuary  

Science Conference Proceedings (OSTI)

The seaward transport of salt by river discharge through an estuary is balanced under steady conditions by landward dispersion effected by various physical mixing processes. Observations of current and salinity in the lower Hudson estuary provide ...

Kenneth Hunkins

1981-05-01T23:59:59.000Z

293

Molten salt destruction of energetic waste materials  

DOE Patents (OSTI)

A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Pruneda, Cesar O. (Livermore, CA)

1995-01-01T23:59:59.000Z

294

Molten salt destruction of energetic waste materials  

DOE Patents (OSTI)

A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

1995-07-18T23:59:59.000Z

295

PROCESSING OF MOLTEN SALT POWER REACTOR FUEL  

SciTech Connect

ABS> Fuel reprocessing methods are being investigated for molten salt nuclear reactors which use LiF--BeF/sub 2/ salt as a solvent for UF/sub 4/ and ThF/sub 4/. A liquid HF dissolution procedure coupled with fluorination has been developed for recovery of the uranium and LiF- BeF/sub 2/ solvent salt which is highly enriched in Li/sup 7/. The recovered salt is decontaminated in the process from the major reactor poisons; namely, rare earths and neptunium. A brief investigation of alternate methods, including oxide precipitation, partial freezing, and metal reduction, indicated that such methods may give some separation of the solvent salt from reactor poisons, but they do not appear to be sufficiently quantitative for a simple processing operation. Solubilities of LiF and BeF/sub 2/ in aqueous 70t0 100% HF are presented. The BeF/sub 2/ solubility is appreciably increased in the presence of water and large amounts of LiF. Salt solubilities of 150 g/liter are attainable. Tracer experiments indicate that rare earth solubilities, relative to LiF-- BeF/sub 2/ solvent salt solubility, increase from about 10/sup -4/ mole% in 98% HF to 0.003 mole% in 80% HF. Fluorination of uranium from LiF--BeF/sub 2/ salt was demonstrated. This appears feasible also for the recovery of the relatively small ccncentration of uranium produced in the LiF- BeF/sub 2/ThF/sub 4/ blanket. A proposed chemical flowsheet is presented on the basis of this exploratory work as applied to the semicontinuous processing of a 600 Mw power reactor. (auth)

Campbell, D.O.; Cathers, G.I.

1959-04-01T23:59:59.000Z

296

Tropospheric Chemistry of Internally Mixed Sea Salt and Organic Particles: Surprising Reactivity of NaCl with Weak Organic Acids  

Science Conference Proceedings (OSTI)

Chemical imaging analysis of internally mixed sea salt/organic particles collected on board the Department of Energy (DOE) G-1 aircraft during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) was performed using electron microscopy and X-ray spectro-microscopy techniques. Substantial chloride depletion in aged sea salt particles was observed, which could not be explained by the known atmospheric reactivity of sea salt with inorganic nitric and sulfuric acids. We present field evidence that chloride components in sea salt particles may effectively react with organic acids releasing HCl gas to the atmosphere, leaving behind particles depleted in chloride and enriched in the corresponding organic salts. While formation of the organic salts products is not thermodynamically favored for bulk aqueous chemistry, these reactions in aerosol are driven by high volatility and irreversible evaporation of the HCl product from drying particles. These field observations were corroborated in a set of laboratory experiments where NaCl particles mixed with organic acids were found to be depleted in chloride. Combined together, the results indicate substantial chemical reactivity of sea salt particles with secondary organics that has been largely overlooked in the atmospheric aerosol chemistry. Atmospheric aging, and especially hydration-dehydration cycles of mixed sea salt/organic particles may result in formation of organic salts that will modify acidity, hygroscopic and optical properties of aged particles.

Laskin, Alexander; Moffet, Ryan C.; Gilles, Marry K.; Fast, Jerome D.; Zaveri, Rahul A.; Wang, Bingbing; Nigge, P.; Shutthanandan, Janani I.

2012-08-03T23:59:59.000Z

297

Geomechanical Analysis and Design Considerations for Thin-Bedded Salt Caverns  

Science Conference Proceedings (OSTI)

The bedded salt formations located throughout the United States are layered and interspersed with non-salt materials such as anhydrite, shale, dolomite and limestone. The salt layers often contain significant impurities. GRI and DOE have initialized this research proposal in order to increase the gas storage capabilities by providing operators with improved geotechnical design and operating guidelines for thin bedded salt caverns. Terralog has summarized the geologic conditions, pressure conditions, and critical design factors that may lead to: (1) Fracture in heterogeneous materials; (2) Differential deformation and bedding plane slip; (3) Propagation of damage around single and multiple cavern; and (4) Improved design recommendations for single and multiple cavern configurations in various bedded salt environments. The existing caverns within both the Permian Basin Complex and the Michigan and Appalachian Basins are normally found between 300 m to 1,000 m (1,000 ft to 3,300 ft) depth depending on local geology and salt dissolution depth. Currently, active cavern operations are found in the Midland and Anadarko Basins within the Permian Basin Complex and in the Appalachian and Michigan Basins. The Palo Duro and Delaware Basins within the Permian Basin Complex also offer salt cavern development potential. Terralog developed a number of numerical models for caverns located in thin bedded salt. A modified creep viscoplastic model has been developed and implemented in Flac3D to simulate the response of salt at the Permian, Michigan and Appalachian Basins. The formulation of the viscoplastic salt model, which is based on an empirical creep law developed for Waste Isolation Pilot Plant (WIPP) Program, is combined with the Drucker-Prager model to include the formation of damage and failure. The Permian salt lab test data provided by Pfeifle et al. 1983, are used to validate the assumptions made in the material model development. For the actual cavern simulations two baseline models are developed for single and multiple caverns, respectively. Different parameters that affect damage propagation and deformation of salt cavern, such as cavern pressure, operating conditions, cavern height/diameter ratio, overburden stiffness and roof thickness are analyzed and the respective results summarized. For multiple horizontal caverns numerical models are developed to determine the cavern interaction and the minimum safe center to center distance. A step by step methodology for operators to assess critical cavern design parameters for thin bedded salt formations is also presented.

Michael S. Bruno

2005-06-15T23:59:59.000Z

298

Materials considerations for molten salt accelerator-based plutonium conversion systems  

Science Conference Proceedings (OSTI)

A Molten-Salt Reactor Program for power applications was initiated at the Oak Ridge National Laboratory in 1956. In 1965 the Molten Salt Reactor Experiment (MSRE) went critical and was successfully operated for several years. Operation of the MSRE revealed two deficiencies in the Hastelloy N alloy that had been developed specifically for molten-salt systems. The alloy embrittled at elevated temperatures as a result of exposure to thermal neutrons (radiation damage) and grain boundary embrittlement occurred in materials to fuel salt. Intergranular cracking was found to be associated with fission products, viz. tellurium. An improved Hastelloy N composition was subsequently developed that had better resistance to both of these problems. However, the discovery that fission product cracking could be significantly decreased by making the salt sufficiently reducing offers the prospect of improved compatibility with molten salts containing fission products and resistance to radiation damage in ABC applications. Recommendations are made regarding the types of corrosion tests and mechanistic studies needed to qualify materials for operation with PuF{sub 3}-containing molten salts.

DeVan, J.H.; DiStefano, J.R.; Eatherly, W.P.; Keiser, J.R.; Klueh, R.L.

1994-12-31T23:59:59.000Z

299

Materials considerations for molten salt accelerator-based plutonium conversion systems  

Science Conference Proceedings (OSTI)

A Molten-Salt Reactor Program for civilian power applications was initiated at the Oak Ridge National Laboratory in 1956. In 1965 the Molten Salt Reactor Experiment (MSRE) went critical and was successfully operated for several years. Operation of the MSRE revealed two deficiencies in the Hastelloy N alloy that had been developed specifically for molten-salt systems. The alloy embrittled at elevated temperatures as a result of exposure to thermal neutrons (radiation damage) and grain boundary embrittlement occurred in materials exposed to fuel salt. Intergranular cracking was found to be associated with fission products, viz. tellurium. An improved Hastelloy N composition was subsequently developed that had better resistance to both of these problems. However, the discovery that fission product cracking could be significantly decreased by making the salt sufficiently reducing offers the prospect of improved compatibility with molten salts containing fission products and resistance to radiation damage in ABC applications. Recommendations are made regarding the types of corrosion tests and mechanistic studies needed to qualify materials for operation with PuF3-containing molten salts.

De Van, J. H.; Di Stefano, J. R.; Eatherly, W. P.; Keiser, J. R.; Klueh, R. L. [Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831 (United States)

1995-09-15T23:59:59.000Z

300

Properties of salt-saturated concrete and grout after six years in situ at the Waste Isolation Pilot Plant  

SciTech Connect

Samples of concrete and grout were recovered from short boreholes in the repository floor at the Waste Isolation Pilot Plant more than six years after the concrete and grout were placed. Plugs from the Plug Test Matrix of the Plugging and Sealing Program of Sandia National Laboratories were overcored to include a shell of host rock. The cores were analyzed at the Waterways Experiment Station to assess their condition after six years of service, having potentially been exposed to those aspects of their service environment (salt, brine, fracturing, anhydrite, etc.) that could cause deterioration. Measured values of compressive strength and pulse velocity of both the grout and the concrete equaled or exceeded values from tests performed on laboratory-tested samples of the same mixtures at ages of one month to one year after casting. The phase assemblages had changed very little. Materials performed as intended and showed virtually no chemical or physical evidence of deterioration. The lowest values for strength and pulse velocity were measured for samples taken from the Disturbed Rock Zone, indicating the influence of cracking in this zone on the properties of enclosed seal materials. There was evidence of movement of brine in the system. Crystalline phases containing magnesium, potassium, sulfate, and other ions had been deposited on free surfaces in fractures and pilot holes. There was a reaction rim in the anhydrite immediately surrounding each recovered borehole plug, suggesting interaction between grout or concrete and host rock. However, the chemical changes apparent in this reaction rim were not reflected in the chemical composition of the adjacent concrete or grout. The grout and concrete studied here showed no signs of the deterioration found to have occurred in some parts of the concrete liner of the Waste Isolation Pilot Plant waste handling shaft.

Wakeley, L.D.; Harrington, P.T.; Weiss, C.A. Jr. [Army Engineer Waterways Experiment Station, Vicksburg, MS (United States). Structures Lab.

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Waste Isolation Pilot Plant's Excavated Salt Agreement Supports  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Conservation Education, Other Public Initiatives Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Conservation Education, Other Public Initiatives November 14, 2013 - 12:00pm Addthis Approximately 1.8 million tons of salt have been mined out of the underground at WIPP. Approximately 1.8 million tons of salt have been mined out of the underground at WIPP. Proceeds from the WIPP salt allowed hundreds of southeast New Mexico students to learn about resource conservation. Proceeds from the WIPP salt allowed hundreds of southeast New Mexico students to learn about resource conservation. The crushed salt is used as a supplement in cattle feed. Since the salt from WIPP has been mined from the middle of a large salt formation, its quality is high, according to Magnum Minerals.

302

Waste Isolation Pilot Plant's Excavated Salt Agreement Supports  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Conservation Education, Other Public Initiatives Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Conservation Education, Other Public Initiatives November 14, 2013 - 12:00pm Addthis Approximately 1.8 million tons of salt have been mined out of the underground at WIPP. Approximately 1.8 million tons of salt have been mined out of the underground at WIPP. Proceeds from the WIPP salt allowed hundreds of southeast New Mexico students to learn about resource conservation. Proceeds from the WIPP salt allowed hundreds of southeast New Mexico students to learn about resource conservation. The crushed salt is used as a supplement in cattle feed. Since the salt from WIPP has been mined from the middle of a large salt formation, its quality is high, according to Magnum Minerals.

303

In-Drift Precipitates/Salts Analysis  

SciTech Connect

As directed by a written development plan (CRWMS M&O 1999a), an analysis of the effects of salts and precipitates on the repository chemical environment is to be developed and documented in an Analyses/Model Report (AMR). The purpose of this analysis is to assist Performance Assessment Operations (PAO) and the Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). The purpose of this ICN is to qualify and document qualification of the AMR's technical products. The scope of this document is to develop a model of the processes that govern salt precipitation and dissolution and resulting water composition in the Engineered Barrier System (EBS). This model is developed to serve as a basis for the in-drift geochemical modeling work performed by PAO and is to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. However, the concepts may also apply to some near and far field geochemical processes and can have conceptual application within the unsaturated zone and saturated zone transport modeling efforts. The intended use of the model developed in this report is to estimate, within an appropriate level of confidence, the pH, chloride concentration, and ionic strength of water on the drip shield or other location within the drift during the post-closure period. These estimates are based on evaporative processes that are subject to a broad range of potential environmental conditions and are independent of the presence or absence of backfill. An additional intended use is to estimate the environmental conditions required for complete vaporization of water. The presence and composition of liquid water in the drift (i.e., pH, chloride concentration, and ionic strength) are potentially important to corrosion and radionuclide transport calculations performed by PAO.

P. Mariner

2001-01-10T23:59:59.000Z

304

Uncertainty and sensitivity analyses for gas and brine migration at the Waste Isolation Pilot Plant, May 1992  

SciTech Connect

Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis, stepwise regression analysis and examination of scatterplots are used in conjunction with the BRAGFLO model to examine two phase flow (i.e., gas and brine) at the Waste Isolation Pilot Plant (WIPP), which is being developed by the US Department of Energy as a disposal facility for transuranic waste. The analyses consider either a single waste panel or the entire repository in conjunction with the following cases: (1) fully consolidated shaft, (2) system of shaft seals with panel seals, and (3) single shaft seal without panel seals. The purpose of this analysis is to develop insights on factors that are potentially important in showing compliance with applicable regulations of the US Environmental Protection Agency (i.e., 40 CFR 191, Subpart B; 40 CFR 268). The primary topics investigated are (1) gas production due to corrosion of steel, (2) gas production due to microbial degradation of cellulosics, (3) gas migration into anhydrite marker beds in the Salado Formation, (4) gas migration through a system of shaft seals to overlying strata, and (5) gas migration through a single shaft seal to overlying strata. Important variables identified in the analyses include initial brine saturation of the waste, stoichiometric terms for corrosion of steel and microbial degradation of cellulosics, gas barrier pressure in the anhydrite marker beds, shaft seal permeability, and panel seal permeability.

Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Bean, J.E. [New Mexico Engineering Research Inst., Albuquerque, NM (United States); Butcher, B.M. [Sandia National Labs., Albuquerque, NM (United States); Garner, J.W.; Vaughn, P. [Applied Physics, Inc., Albuquerque, NM (United States); Schreiber, J.D. [Science Applications International Corp., Albuquerque, NM (United States); Swift, P.N. [Tech Reps, Inc., Albuquerque, NM (United States)

1993-08-01T23:59:59.000Z

305

Environmental assessment of the brine pipeline replacement for the Strategic Petroleum Reserve Bryan Mound Facility in Brazoria County, Texas  

SciTech Connect

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0804, for the proposed replacement of a deteriorated brine disposal pipeline from the Strategic Petroleum Reserve (SPR) Bryan Mound storage facility in Brazoria County, Texas, into the Gulf of Mexico. In addition, the ocean discharge outfall would be moved shoreward by locating the brine diffuser at the end of the pipeline 3.5 miles offshore at a minimum depth of 30 feet. The action would occur in a floodplain and wetlands; therefore, a floodplain/wetlands assessment has been prepared in conjunction with this EA. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 USC. 4321, et seg.). Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact (FONSI). This FONSI also includes a Floodplain Statement of Findings in accordance with 10 CFR Part 1022.

Not Available

1993-09-01T23:59:59.000Z

306

Wetting behavior of selected crude oil/brine/rock systems. Topical report, March 1, 1995--March 31, 1996  

SciTech Connect

Previous studies of crude oil/brine/rock (COBR) and related ensembles showed that wettability and its effect on oil recovery depend on numerous complex interactions. In the present work, the wettability of COBR ensembles prepared using Prudhoe Bay crude oil, a synthetic formation brine, and Berea Sandstone was varied by systematic change in initial water saturation and length of aging time at reservoir temperature (88 C). All displacement tests were run at ambient temperature. Various degrees of water wetness were achieved and quantified by a modified Amott wettability index to water, the relative pseudo work of imbibition, and a newly defined apparent advancing dynamic contact angle. Pairs of spontaneous imbibition (oil recovery by spontaneous imbibition of water) and waterflood (oil recovery vs. pore volumes of water injected) curves were measured for each of the induced wetting states. Several trends were observed. Imbibition rate, and hence water wetness, decreased with increase in aging time and with decrease in initial water saturation. Breakthrough recoveries and final oil recovery by waterflooding increased with decrease in water wetness. Correlations between water wetness and oil recovery by waterflooding and spontaneous imbibition are presented.

Zhou, X.; Morrow, N.R.; Ma, S.

1996-12-31T23:59:59.000Z

307

STAINLESS STEEL INTERACTIONS WITH SALT CONTAINING PLUTONIUM OXIDES  

Science Conference Proceedings (OSTI)

Salt containing plutonium oxide materials are treated, packaged and stored within nested, stainless steel containers based on requirements established in the DOE 3013 Standard. The moisture limit for the stored materials is less than 0.5 weight %. Surveillance activities which are conducted to assess the condition of the containers and assure continuing 3013 container integrity include the destructive examination of a select number of containers to determine whether corrosion attack has occurred as a result of stainless steel interactions with salt containing plutonium oxides. To date, some corrosion has been observed on the innermost containers, however, no corrosion has been noted on the outer containers and the integrity of the 3013 container systems is not expected to be compromised over a 50 year storage lifetime.

Nelson, Z.; Chandler, G.; Dunn, K.; Stefek, T.; Summer, M.

2010-02-01T23:59:59.000Z

308

Leach resistance properties and release processes for salt-occluded zeolite A  

SciTech Connect

The pyrometallurgical processing of spent fuel from the Integral Fast Reactor (IFR) results in a waste of LiCl-KCl-NaCl salt containing approximately 10 wt% fission products, primarily CsCl and SrCl[sub 2]. For disposal, this waste must be immobilized in a form that it is leach resistant. A salt-occluded zeolite has been identified as a potential waste form for the salt. Its leach resistance properties were investigated using powdered samples. The results were that strontium was not released and cesium had a low release, 0.056 g/m[sup 2] for the 56 day leach test. The initial release (within 7 days) of alkali metal cations was rapid and subsequent releases were much smaller. The releases of aluminum and silicon were 0.036 and 0.028 g/m[sup 2], respectively, and were constant. Neither alkali metal cation hydrolysis nor exchange between cations in the leachate and those in the zeolite was significant. Only sodium release followed t[sup 0.5] kinetics. Selected dissolution of the occluded salt was the primary release process. These results confirm that salt-occluded zeolite has promise as the waste form for IFR pyroprocess salt.

Lewis, M.A.; Fischer, D.F.; Laidler, J.J.

1992-01-01T23:59:59.000Z

309

Leach resistance properties and release processes for salt-occluded zeolite A  

SciTech Connect

The pyrometallurgical processing of spent fuel from the Integral Fast Reactor (IFR) results in a waste of LiCl-KCl-NaCl salt containing approximately 10 wt% fission products, primarily CsCl and SrCl{sub 2}. For disposal, this waste must be immobilized in a form that it is leach resistant. A salt-occluded zeolite has been identified as a potential waste form for the salt. Its leach resistance properties were investigated using powdered samples. The results were that strontium was not released and cesium had a low release, 0.056 g/m{sup 2} for the 56 day leach test. The initial release (within 7 days) of alkali metal cations was rapid and subsequent releases were much smaller. The releases of aluminum and silicon were 0.036 and 0.028 g/m{sup 2}, respectively, and were constant. Neither alkali metal cation hydrolysis nor exchange between cations in the leachate and those in the zeolite was significant. Only sodium release followed t{sup 0.5} kinetics. Selected dissolution of the occluded salt was the primary release process. These results confirm that salt-occluded zeolite has promise as the waste form for IFR pyroprocess salt.

Lewis, M.A.; Fischer, D.F.; Laidler, J.J.

1992-12-31T23:59:59.000Z

310

Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Processing Facility Independent Technical Review Harry Harmon January 9, 2007 2 U.S. Department of Energy Outline * SWPF Process Overview * Major Risks * Approach for Conducting Review * Discussion of Findings * Conclusions 3 U.S. Department of Energy Salt Waste Processing Facility 4 U.S. Department of Energy SWPF Process Overview Alpha Finishing Process CSSX Alpha Strike Process MST/ Sludge Cs Strip Effluent DSS 5 U.S. Department of Energy BOTTOM LINE The SWPF Project is ready to move into final design. 6 U.S. Department of Energy Major Risks * Final geotechnical data potentially could result in redesign of the PC-3 CPA base mat and structure. * Cost and schedule impacts arising from the change from ISO-9001 to NQA-1 quality assurance requirements. * The "de-inventory, flush, and then hands-on

311

Near-surface gas mapping studies of salt geologic features at Weeks Island and other sites  

DOE Green Energy (OSTI)

Field sampling and rapid gas analysis techniques were used to survey near-surface soil gases for geotechnical diagnostic purposes at the Weeks Island Strategic Petroleum Reserve (SPR) site and other salt dome locations in southern Louisiana. This report presents the complete data, results and interpretations obtained during 1995. Weeks Island 1994 gas survey results are also briefly summarized; this earlier study did not find a definitive correlation between sinkhole No. 1 and soil gases. During 1995, several hundred soil gas samples were obtained and analyzed in the field by gas chromatography, for profiling low concentrations and gas anomalies at ppm to percent levels. The target gases included hydrogen, methane, ethane and ethylene. To supplement the field data, additional gas samples were collected at various site locations for laboratory analysis of target gases at ppb levels. Gases in the near-surface soil originate predominantly from the oil, from petrogenic sources within the salt, or from surface microbial activity. Surveys were conducted across two Weeks Island sinkholes, several mapped anomalous zones in the salt, and over the SPR repository site and its perimeter. Samples were also taken at other south Louisiana salt dome locations for comparative purposes. Notable results from these studies are that elevated levels of hydrogen and methane (1) were positively associated with anomalous gassy or shear zones in the salt dome(s) and (2) are also associated with suspected salt fracture (dilatant) zones over the edges of the SPR repository. Significantly elevated areas of hydrogen, methane, plus some ethane, were found over anomalous shear zones in the salt, particularly in a location over high pressure gas pockets in the salt, identified in the mine prior to SPR operations. Limited stable isotope ratio analyses, SIRA, were also conducted and determined that methane samples were of petrogenic origin, not biogenic.

Molecke, M.A. [Sandia National Lab., Albuquerque, NM (United States); Carney, K.R.; Autin, W.J.; Overton, E.B. [Louisiana State Univ., Baton Rouge, LA (United States)

1996-10-01T23:59:59.000Z

312

Regional Gravity Survey of the Northern Great Salt Lake Desert and Adjacent  

Open Energy Info (EERE)

Gravity Survey of the Northern Great Salt Lake Desert and Adjacent Gravity Survey of the Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Regional Gravity Survey of the Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Details Activities (1) Areas (1) Regions (0) Abstract: From 1957 to 1961 a regional gravity survey was made over the northern part of the Great Salt Lake Desert and adjacent areas in Utah, eastern Nevada, and southeastern Idaho. A total of 1040 stations were taken over an area of about 7000 square miles. The results were compiled as a Bouguer gravity anomaly map with a contour interval of 2 mgal. The Bouguer values ranged from a high of about -120 mgal over the outcrop areas to a

313

Geothermometry At Salt Wells Area (Edmiston & Benoit, 1984) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Salt Wells Area (Edmiston & Benoit, Geothermometry At Salt Wells Area (Edmiston & Benoit, 1984) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Geothermometry Activity Date 1980 - 1984 Usefulness useful DOE-funding Unknown Exploration Basis The blind Salt Wells geothermal system was first identified when Anadarko Petroleum Corporation drilled slim hole and geothermal exploration wells at the site in 1980. Two reports detail the results of this drilling activity. This paper seeks to (1) describe several moderate-temperature (150-200°C) geothermal systems discovered and drilled during the early 1980's that had not been documented previously in the literature, (2) summarize and compare chemical and temperature data from known moderate- to high-temperature (>200°C) in the region, and (3) to comment on the

314

Model Development and Analysis of the Fate and Transport of Water in a Salt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Model Development and Analysis of the Fate and Transport of Water Model Development and Analysis of the Fate and Transport of Water in a Salt Based Repository Model Development and Analysis of the Fate and Transport of Water in a Salt Based Repository The study summarizes the initial work on numerical modeling, simulations, and experimental results related to nuclear waste storage in a salt repository. The study reflects the project's preliminary effort at simulating the fluid flow and heat transport processes, before treating the fully coupled thermal-mechanical-hydrologic-chemical (TMHC) coupled processes in the future. Model Development and Analysis of the Fate and Transport of Water in a Salt Based Repository More Documents & Publications Coupled Model for Heat and Water Transport in a High Level Waste Repository

315

The design and testing of a molten salt steam generator for solar application  

SciTech Connect

This paper describes the design and testing of the Steam Generator Subsystem (SGS) for the Molten Salt Electric Experiment at Sandia Laboratories in Albuquerque, New Mexico. The Molten Salt Electric Experiment (MSEE) has been established to demonstrate the feasibility of the molten salt central receiver concept. The experiment is capable of generating 0.75 megawatts of electric power from solar energy, with the capability of storing seven megawatt-hours of thermal energy. The steam generator subsystem transfers sensible heat from the solar-heated molten nitrate salt to produce steam to drive a conventional turbine. This paper discusses the design requirements dictated by the steam generator application and also reviews the process conditions. Details of each of the SGS components are given, featuring the aspects of the design and performance unique to the solar application. The paper concludes with a summary of the test results confirming the overall design of the subsystem.

Allman, W.A.; Smith, D.C.; Kakarala, C.R.

1988-02-01T23:59:59.000Z

316

Freeze-thaw tests of trough receivers employing a molten salt working fluid.  

SciTech Connect

Several studies predict an economic benefit of using nitrate-based salts instead of the current synthetic oil within a solar parabolic trough field. However, the expected economic benefit can only be realized if the reliability and optical performance of the salt trough system is comparable to today's oil trough. Of primary concern is whether a salt-freeze accident and subsequent thaw will lead to damage of the heat collection elements (HCEs). This topic was investigated by experiments and analytical analysis. Results to date suggest that damage will not occur if the HCEs are not completely filled with salt. However, if the HCE is completely filled at the time of the freeze, the subsequent thaw can lead to plastic deformation and significant bending of the absorber tube.

Moss, Timothy A.; Iverson, Brian D.; Siegel, Nathan Phillip; Kolb, Gregory J.; Ho, Clifford Kuofei

2010-05-01T23:59:59.000Z

317

Transpiring wall supercritical water oxidation reactor salt deposition studies  

Science Conference Proceedings (OSTI)

Sandia National Laboratories has teamed with Foster Wheeler Development Corp. and GenCorp, Aerojet to develop and evaluate a new supercritical water oxidation reactor design using a transpiring wall liner. In the design, pure water is injected through small pores in the liner wall to form a protective boundary layer that inhibits salt deposition and corrosion, effects that interfere with system performance. The concept was tested at Sandia on a laboratory-scale transpiring wall reactor that is a 1/4 scale model of a prototype plant being designed for the Army to destroy colored smoke and dye at Pine Bluff Arsenal in Arkansas. During the tests, a single-phase pressurized solution of sodium sulfate (Na{sub 2}SO{sub 4}) was heated to supercritical conditions, causing the salt to precipitate out as a fine solid. On-line diagnostics and post-test observation allowed us to characterize reactor performance at different flow and temperature conditions. Tests with and without the protective boundary layer demonstrated that wall transpiration provides significant protection against salt deposition. Confirmation tests were run with one of the dyes that will be processed in the Pine Bluff facility. The experimental techniques, results, and conclusions are discussed.

Haroldsen, B.L.; Mills, B.E.; Ariizumi, D.Y.; Brown, B.G. [and others

1996-09-01T23:59:59.000Z

318

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

319

Salt Wells Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Project Salt Wells Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Salt Wells Geothermal Project Project Location Information Coordinates 39.580833333333°, -118.33444444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.580833333333,"lon":-118.33444444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

Incorporating supercritical steam turbines into molten-salt power tower plants : feasibility and performance.  

SciTech Connect

Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600%C2%B0C were evaluated, which resulted in main steam temperatures of 553 and 580%C2%B0C, respectively. Also, the effects of final feedwater temperature (between 260 and 320%C2%B0C) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600%C2%B0C and the other 565%C2%B0C. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565%C2%B0C. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.

Pacheco, James Edward; Wolf, Thorsten [Siemens Energy, Inc., Orlando, FL; Muley, Nishant [Siemens Energy, Inc., Orlando, FL

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Molten nitrate salt technology development status report  

SciTech Connect

Recognizing thermal energy storage as potentially critical to the successful commercialization of solar thermal power systems, the Department of Energy (DOE) has established a comprehensive and aggressive thermal energy storage technology development program. Of the fluids proposed for heat transfer and energy storage molten nitrate salts offer significant economic advantages. The nitrate salt of most interest is a binary mixture of NaNO/sub 3/ and KNO/sub 3/. Although nitrate/nitrite mixtures have been used for decades as heat transfer and heat treatment fluids the use has been at temperatures of about 450/sup 0/C and lower. In solar thermal power systems the salts will experience a temperature range of 350 to 600/sup 0/C. Because central receiver applications place more rigorous demands and higher temperatures on nitrate salts a comprehensive experimental program has been developed to examine what effects, if any, the new demands and temperatures have on the salts. The experiments include corrosion testing, environmental cracking of containment materials, and determinations of physical properties and decomposition mechanisms. This report details the work done at Sandia National Laboratories in each area listed. In addition, summaries of the experimental programs at Oak Ridge National Laboratory, the University of New York, EIC Laboratories, Inc., and the Norwegian Institute of Technology on molten nitrate salts are given. Also discussed is how the experimental programs will influence the near-term central receiver programs such as utility repowering/industrial retrofit and cogeneration. The report is designed to provide easy access to the latest information and data on molten NaNO/sub 3//KNO/sub 3/ for the designers and engineers of future central receiver projects.

Carling, R.W.; Kramer, C.M.; Bradshaw, R.W.; Nissen, D.A.; Goods, S.H.; Mar, R.W.; Munford, J.W.; Karnowsky, M.M.; Biefeld, R.N.; Norem, N.J.

1981-03-01T23:59:59.000Z

322

Fast Spectrum Molten Salt Reactor Options  

DOE Green Energy (OSTI)

During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

2011-07-01T23:59:59.000Z

323

Geomechanical testing of MRIG-9 core for the potential SPR siting at the Richton salt dome.  

Science Conference Proceedings (OSTI)

A laboratory testing program was developed to examine the mechanical behavior of salt from the Richton salt dome. The resulting information is intended for use in design and evaluation of a proposed Strategic Petroleum Reserve storage facility in that dome. Core obtained from the drill hole MRIG-9 was obtained from the Texas Bureau of Economic Geology. Mechanical properties testing included: (1) acoustic velocity wave measurements; (2) indirect tensile strength tests; (3) unconfined compressive strength tests; (4) ambient temperature quasi-static triaxial compression tests to evaluate dilational stress states at confining pressures of 725, 1450, 2175, and 2900 psi; and (5) confined triaxial creep experiments to evaluate the time-dependent behavior of the salt at axial stress differences of 4000 psi, 3500 psi, 3000 psi, 2175 psi and 2000 psi at 55 C and 4000 psi at 35 C, all at a constant confining pressure of 4000 psi. All comments, inferences, discussions of the Richton characterization and analysis are caveated by the small number of tests. Additional core and testing from a deeper well located at the proposed site is planned. The Richton rock salt is generally inhomogeneous as expressed by the density and velocity measurements with depth. In fact, we treated the salt as two populations, one clean and relatively pure (> 98% halite), the other salt with abundant (at times) anhydrite. The density has been related to the insoluble content. The limited mechanical testing completed has allowed us to conclude that the dilatational criteria are distinct for the halite-rich and other salts, and that the dilation criteria are pressure dependent. The indirect tensile strengths and unconfined compressive strengths determined are consistently lower than other coastal domal salts. The steady-state-only creep model being developed suggests that Richton salt is intermediate in creep resistance when compared to other domal and bedded salts. The results of the study provide only limited information for structural modeling needed to evaluate the integrity and safety of the proposed cavern field. This study should be augmented with more extensive testing. This report documents a series of test methods, philosophies, and empirical relationships, etc., that are used to define and extend our understanding of the mechanical behavior of the Richton salt. This understanding could be used in conjunction with planned further studies or on its own for initial assessments.

Dunn, Dennis P.; Broome, Scott Thomas; Bronowski, David R.; Bauer, Stephen J.; Hofer, John H.

2009-02-01T23:59:59.000Z

324

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 5520 of 9,640 results. 11 - 5520 of 9,640 results. Download Fiscal Year 2010 Budget-in-Brief Fiscal Year 2010 budget request from the Department of Energy's Office of Energy Efficiency and Renewable Energy http://energy.gov/eere/downloads/fiscal-year-2010-budget-brief Download Brine Migration Experimental Studies for Salt Repositories Experiments were used to examine water content in Permian salt samples including impact of variation in thermal regime on water content of evaporites and other mineral species, behavior of brine inclusions in salt, and evolution of the gas/liquid brine/salt system. http://energy.gov/ne/downloads/brine-migration-experimental-studies-salt-repositories Download Track B - Critical Guidance for Peak Performance Homes Presentations from Track B, Critical Guidance for Peak Performance Homes of

325

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 7840 of 8,172 results. 31 - 7840 of 8,172 results. Download Brine Migration Experimental Studies for Salt Repositories Experiments were used to examine water content in Permian salt samples including impact of variation in thermal regime on water content of evaporites and other mineral species, behavior of brine inclusions in salt, and evolution of the gas/liquid brine/salt system. http://energy.gov/ne/downloads/brine-migration-experimental-studies-salt-repositories Download Embrittlement and DBTT of High-Burnup PWR Fuel Cladding Alloys Structural analyses of high-burnup (HBU) fuel require cladding mechanical properties and failure limits to assess fuel behavior during long-term dry-cask storage and transportation. http://energy.gov/ne/downloads/embrittlement-and-dbtt-high-burnup-pwr-fuel-cladding-alloys

326

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

801 - 14810 of 28,905 results. 801 - 14810 of 28,905 results. Download FIA-13-0002- In the Matter of Judicial Watch On January 23, 2013, the Office of Hearings and Appeals (OHA) issued a decision denying an appeal (Appeal) from a Freedom of Information Act (FOIA) determination issued by the Office of Information... http://energy.gov/oha/downloads/fia-13-0002-matter-judicial-watch Download Brine Migration Experimental Studies for Salt Repositories Experiments were used to examine water content in Permian salt samples including impact of variation in thermal regime on water content of evaporites and other mineral species, behavior of brine inclusions in salt, and evolution of the gas/liquid brine/salt system. http://energy.gov/ne/downloads/brine-migration-experimental-studies-salt-repositories

327

Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns  

Science Conference Proceedings (OSTI)

Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

1996-06-01T23:59:59.000Z

328

Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes  

SciTech Connect

This paper presents the technical and economic feasibility of molten salt oxidation technology as a volume reduction and recovery process for {sup 238}Pu contaminated waste. Combustible low-level waste material contaminated with {sup 238}Pu residue is destroyed by oxidation in a 900 C molten salt reaction vessel. The combustible waste is destroyed creating carbon dioxide and steam and a small amount of ash and insoluble {sup 2328}Pu in the spent salt. The valuable {sup 238}Pu is recycled using aqueous recovery techniques. Experimental test results for this technology indicate a plutonium recovery efficiency of 99%. Molten salt oxidation stabilizes the waste converting it to a non-combustible waste. Thus installation and use of molten salt oxidation technology will substantially reduce the volume of {sup 238}Pu contaminated waste. Cost-effectiveness evaluations of molten salt oxidation indicate a significant cost savings when compared to the present plans to package, or re-package, certify and transport these wastes to the Waste Isolation Pilot Plant for permanent disposal. Clear and distinct cost advantages exist for MSO when the monetary value of the recovered {sup 238}Pu is considered.

Wishau, R.; Ramsey, K.B.; Montoya, A.

1998-12-31T23:59:59.000Z

329

Molecular Dynamics Simulation of the Transport Properties of Molten Transuranic Chloride Salts  

E-Print Network (OSTI)

The Accelerator Research Laboratory at Texas A&M is proposing a design for accelerator-driven subcritical fission in molten salt (ADSMS), a system that destroys the transuranic elements in used nuclear fuel. The transuranics (TRU) are the most enduring hazard of nuclear power. TRU contain high radiotoxicity and have half-lives of a thousand to a million years. The ADSMS core is fueled by a homogeneous chloride-based molten salt mixture containing TRUCl3 and NaCl. Certain thermodynamic properties are critical to modeling both the neutronics and heat transfer of an ADSMS system. There is a lack of experimental data on the density, heat capacity, electrical and thermal conductivities, and viscosity of TRUCl3 salt systems. Molecular dynamics simulations using a polarizable ion model (PIM) are employed to determine the density and heat capacity of these melts as a function of temperature. Green-Kubo methods are implemented to calculate the electrical conductivity, thermal conductivity, and viscosity of the salt using the outputs of the simulations. Results for pure molten salt systems are compared to experimental data when possible to validate the potentials used. Here I discuss chloride salt systems of interest, their calculated properties, and possible sources of error for our simulations.

Baty, Austin Alan

2013-05-01T23:59:59.000Z

330

An evaluation of membrane materials for the treatment of highly concentrated suspended salt solutions in reverse osmosis and nanofiltration processes for desalination  

E-Print Network (OSTI)

This thesis presents a study to enhance and improve a zero liquid discharge (ZLD) reverse osmosis process that uses seed crystals to promote crystallization of the dissolved salts in the residual brine while it is being treated by identifying those membrane materials that are most suitable for the process. In the study, a one plate SEPA Cell module by GE Osmonics was used to determine which membranes were most susceptible to fouling and/or membrane hydrolysis. A cellulose acetate (CA), polyamide (PA) low MWCO, and PA high MWCO membrane were tested under reverse osmosis conditions. The CA and thin film (TF) membranes were also tested for nanofiltration. The cell was operated under conditions that were determined to be optimum for each membrane by the manufacturer, GE Osmonics. A high pressure, low flow, positive displacement diaphragm pump circulated the saturated calcium sulfate solution with 2 % suspended solids through the cell while the reject and permeate were recycled back to the feed, thereby preserving a saturated solution to promote crystal growth and simulate the seeded reverse osmosis process. The temperature was maintained constant by adding an ice pack to the feed vessel when necessary. The transmembrane pressure differential was maintained constant by adjusting a back pressure valve on the concentrate outlet. The results illustrate that if potable drinking water is the intended use, then the nanofiltration cellulose acetate membrane should be used. If irrigation is the desired use, then the nanofiltration thin film membrane should be used. Overall, the reverse osmosis cellulose acetate membrane was observed to outperform all membranes when all performance parameters were normalized. However, this membrane was observed to be prone to degradation in a seeded slurry and therefore its lifetime should be analyzed further. The polyamide membrane initially had a high water transport coefficient, but fouling led to its rapid decline which was attributed to the membrane’s rough and protrusive surface. A lifetime test on the thin film and cellulose acetate revealed that when operated at their maximum pressure specified by GE Osmonics for a duration of 8 hours that no decrease in rejection occurred.

Hughes, Trenton Whiting

2006-12-01T23:59:59.000Z

331

CO2–brine–caprock interaction: Reactivity experiments on Eau Claire shale and a review of relevant literature  

SciTech Connect

Long term containment of stored CO2 in deep geological reservoirs will depend on the performance of the caprock to prevent the buoyant CO2 from escaping to shallow drinking water aquifers or the ground surface. Here we report new laboratory experiments on CO2-brine-caprock interactions and a review of the relevant literature. The Eau Claire Formation is the caprock overlying the Mount Simon sandstone formation, one of the target geological CO2 storage reservoirs in the Midwest USA region. Batch experiments of Eau Claire shale dissolution in brine were conducted at 200 C and 300 bars to test the extent of fluid-rock reactions. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis indicate minor dissolution of K-feldspar and anhydrite, and precipitation of pore-filling and pore-bridging illite and/or smectite, and siderite in the vicinity of pyrite. We also reviewed relevant reactivity experiments, modeling work, and field observations in the literature in an attempt to help define the framework for future studies on the geochemical systems of the caprock overlain on geological CO2 storage formations. Reactivity of the caprock is generally shown to be low and limited to the vicinity of the CO2-caprock interface, and is related to the original caprock mineralogical and petrophysical properties. Stable isotope studies indicate that CO2 exists in both free phase and dissolved phase within the caprock. Carbonate and feldspar dissolution is reported in most studies, along with clay and secondary carbonate precipitation. Currently, research is mainly focused on the micro-fracture scale geochemistry of the shaly caprock. More attention is required on the potential pore scale reactions that may become significant given the long time scale associated with geological carbon storage

Liua, Faye; Lua, Peng; Griffith, Craig; Hedges, Sheila W.; Soong, Yee; Hellevang, Helge; Zhua,Chen

2012-01-01T23:59:59.000Z

332

A MOLTEN SALT NATURAL CONVECTION REACTOR SYSTEM  

SciTech Connect

Fuel-salt volumes external to the core of a molten-salt reactor are calculated for a system in which the fuel salt circulates through the core and primary exchanger by free convection. In the calculation of these volumes, the exchanger heights above the core top range from 5 to 20 ft. Coolants considered for the primary exchanger are a second molten salt and helium. External fuel holdup is found to be the same with either coolant. Two sets of terminal temperatures are selected for the helium. The first combination permits steam generation at 850 psia, 900 deg F. The second set is selected for a closed gas turbine cycle with an 1100 deg F turbine inlet temperature. Specific power (thermal kw/kg 235) is found to be about 900 Mv/kg, based on initial, clean conditions and a 60 Mw (thermal) output. A specific power of 1275 kw/kg is estimated for a forced convection system of the same rating. (auth)

Romie, F.E.; Kinyon, B.W.

1958-02-01T23:59:59.000Z

333

Salt repository project closeout status report  

SciTech Connect

This report provides an overview of the scope and status of the US Department of Energy (DOE`s) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs.

1988-06-01T23:59:59.000Z

334

Accelerators for Subcritical Molten-Salt Reactors  

SciTech Connect

Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

Johnson, Roland (Muons, Inc.)

2011-08-03T23:59:59.000Z

335

Internal Wave Overturns Produced by Salt Fingers  

Science Conference Proceedings (OSTI)

The salt finger fluxes obtained in small-domain direct numerical simulations (DNSs) are used to parameterize the fluxes in a larger domain that resolves internal gravity waves. For the case in which the molecular diffusivity ratio ? = KS/KT < 1 ...

Melvin E. Stern; Julian A. Simeonov

2002-12-01T23:59:59.000Z

336

Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation  

SciTech Connect

Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt at the eutectic composition (58 mol% LiCl, 42 mol% KCl), which is used for treating spent EBR-II fuel. The same process being used for EBRII fuel is currently being studied for widespread international implementation. The methods will focus on first-principles and first- principles derived interatomic potential based simulations, primarily using molecular dynamics. Results will be validated against existing literature and parallel ongoing experimental efforts. The simulation results will be of value for interpreting experimental results, validating analytical models, and for optimizing waste separation by potentially developing new salt configurations and operating conditions.

Morgan, Dane; Eapen, Jacob

2013-10-01T23:59:59.000Z

337

Energy Efficient Buildings, Salt Lake County, Utah  

SciTech Connect

Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

Barnett, Kimberly

2012-04-30T23:59:59.000Z

338

The Salt Finger Experiments of Jevons (1857) and Rayleigh (1880)  

Science Conference Proceedings (OSTI)

Over a century before Melvin Stern discovered salt fingers, W. Stanley Jevons performed the first salt finger experiment in an attempt to model cirrus clouds. Remarkably, he seemed to realize that a more rapid diffusion of heat relative to solute ...

Raymond W. Schmitt

1995-01-01T23:59:59.000Z

339

Salt Wells, Eight Mile Flat | Open Energy Information  

Open Energy Info (EERE)

Salt Wells, Eight Mile Flat Salt Wells, Eight Mile Flat Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells, Eight Mile Flat Abstract Abstract unavailable. Author Nevada Bureau of Mines and Geology Published Online Nevada Encyclopedia, 2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells, Eight Mile Flat Citation Nevada Bureau of Mines and Geology. Salt Wells, Eight Mile Flat [Internet]. 2009. Online Nevada Encyclopedia. [updated 2009/03/24;cited 2013/08/07]. Available from: http://www.onlinenevada.org/articles/salt-wells-eight-mile-flat Related Geothermal Exploration Activities Activities (1) Areas (1) Regions (0) Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Salt Wells Geothermal Area

340

SunShot Initiative: Advanced Nitrate Salt Central Receiver Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Nitrate Salt Central Receiver Power Plant to someone by E-mail Share SunShot Initiative: Advanced Nitrate Salt Central Receiver Power Plant on Facebook Tweet about SunShot...

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Similarity measures for spectral discrimination of salt-affected soils  

Science Conference Proceedings (OSTI)

This paper illustrates a pilot study designed to examine the spectral response of soils due to salt variations. The aim of the study includes determining whether salt-affected soils can be discriminated based on their spectral characteristics, by establishing ...

J. Farifteh; F. van der Meer; E. J. M. Carranza

2007-11-01T23:59:59.000Z

342

DOE Issues Salt Waste Determination for the Savannah River Site...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Determination for the Savannah River Site DOE Issues Salt Waste Determination for the Savannah River Site January 18, 2006 - 10:49am Addthis WASHINGTON, DC - The U.S....

343

Colloidal stability of magnetic nanoparticles in molten salts  

E-Print Network (OSTI)

Molten salts are important heat transfer fluids used in nuclear, solar and other high temperature engineering systems. Dispersing nanoparticles in molten salts can enhance the heat transfer capabilities of the fluid. High ...

Somani, Vaibhav (Vaibhav Basantkumar)

2010-01-01T23:59:59.000Z

344

Removal of uranium and salt from the Molten Salt Reactor Experiment  

SciTech Connect

In 1994, migration of {sup 233}U was discovered to have occurred at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). This paper describes the actions now underway to remove uranium from the off-gas piping and the charcoal bed, to remove and stabilize the salts, and to convert the uranium to a stable oxide for long-term storage.

Peretz, F.J.; Rushton, J.E.; Faulkner, R.L.; Walker, K.L.; Del Cul, G.D.

1998-06-01T23:59:59.000Z

345

Studies on the Effects of Inorganic Salts on Biochemical Treatment ...  

Science Conference Proceedings (OSTI)

Effects of two inorganic salts (sodium chloride and sodium sulphate) on biochemical ... Numerical Investigation of Heat Transfer Characteristics in Microwave ...

346

Method for preparing salt solutions having desired properties  

DOE Patents (OSTI)

The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.

Ally, Moonis R. (Oak Ridge, TN); Braunstein, Jerry (Clinton, TN)

1994-01-01T23:59:59.000Z

347

Molten Salt Heat Transfer Fluid (HTF) - Energy Innovation Portal  

Solar Thermal Industrial Technologies Energy Storage Molten Salt Heat Transfer Fluid (HTF) Sandia National Laboratories. Contact SNL About This ...

348

CO2 Emission Reduction through Innovative Molten Salt Electrolysis ...  

Science Conference Proceedings (OSTI)

Electrochemical metallurgy especially through high temperature molten salt electrolysis with renewable electricity stands for a great opportunity for producing

349

Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel  

SciTech Connect

This project is a fundamental study to measure thermal properties (liquidus, solidus, phase transformation, and enthalpy) of molten salt systems of interest to electrorefining operations, which are used in both the fuel cycle research & development mission and the spent fuel treatment mission of the Department of Energy. During electrorefining operations the electrolyte accumulates elements more active than uranium (transuranics, fission products and bond sodium). The accumulation needs to be closely monitored because the thermal properties of the electrolyte will change as the concentration of the impurities increases. During electrorefining (processing techniques used at the Idaho National Laboratory to separate uranium from spent nuclear fuel) it is important for the electrolyte to remain in a homogeneous liquid phase for operational safeguard and criticality reasons. The phase stability of molten salts in an electrorefiner may be adversely affected by the buildup of fission products in the electrolyte. Potential situations that need to be avoided are: (i) build up of fissile elements in the salt approaching the criticality limits specified for the vessel (ii) freezing of the salts due to change in the liquidus temperature and (iii) phase separation (non-homogenous solution) of elements. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This work describes the experimental results of typical salts compositions, consisting of chlorides of strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium (as a surrogate for both uranium and plutonium), used in the processing of used nuclear fuels. Differential scanning calorimetry was used to analyze numerous salt samples providing results on the thermal properties. The property of most interest to pyroprocessing is the liquidus temperature. It was previously known the liquidus temperature of the molten salt would change as spent fuel is processed through the Mk-IV electrorefiner. However, the extent of the increase in liquidus temperature was not known. This work is first of its kind in determining thermodynamic properties of a molten salt electrolyte containing transuranics, fission products and bond sodium. Experimental data concluded that the melting temperature of the electrolyte will become greater than the operating temperature of the Mk-IV ER during current fuel processing campaigns. Collected data also helps predict when the molten salt electrolyte will no longer be able to support electrorefining operations.

Toni Y. Gutknecht; Guy L. Fredrickson; Vivek Utgikar

2012-04-01T23:59:59.000Z

350

SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT  

Science Conference Proceedings (OSTI)

Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

Griswold, G. B.

1981-02-01T23:59:59.000Z

351

I-NERI ANNUAL TECHNICAL PROGRESS REPORT: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels  

SciTech Connect

An attractive alternative to the once-through disposal of electrorefiner salt is to selectively remove the active fission products from the salt and recycle the salt back to the electrorefiner (ER). This would allow salt reuse for some number of cycles before ultimate disposal of the salt in a ceramic waste form. Reuse of ER salt would, thus, greatly reduce the volume of ceramic waste produced during the pyroprocessing of spent nuclear fuel. This final portion of the joint I-NERI research project is to demonstrate the separation of fission products from molten ER salt by two methods previously selected during phase two (FY-08) of this project. The two methods selected were salt/zeolite contacting and rare-earth fission product precipitation by oxygen bubbling. The ER salt used in these tests came from the Mark-IV electrorefiner used to anodically dissolved driver fuel from the EBR-II reactor on the INL site. The tests were performed using the Hot Fuel Dissolution Apparatus (HFDA) located in the main cell of the Hot Fuels Examination Facility (HFEF) at the Materials and Fuels complex on the INL site. Results from these tests were evaluated during a joint meeting of KAERI and INL investigators to provide recommendations as to the future direction of fission product removal from electrorefiner salt that accumulate during spent fuel treatment. Additionally, work continued on kinetic measurements of surrogate quaternary salt systems to provide fundamental kinetics on the ion exchange system and to expand the equilibrium model system developed during the first two phases of this project. The specific objectives of the FY09 I-NERI research activities at the INL include the following: • Perform demonstration tests of the selected KAERI precipitation and INL salt/zeolite contacting processes for fission product removal using radioactive, fission product loaded ER salt • Continue kinetic studies of the quaternary Cs/Sr-LiCl-KCl system to determine the rate of ion exchange during the salt/zeolite contacting process • Compare the adsorption models to experimentally obtained, ER salt results • Evaluate results obtained from the oxygen precipitation and salt/zeolite ion exchange studies to determine the best processes for selective fission-product removal from electrorefiner salt.

S. Frank

2009-09-01T23:59:59.000Z

352

Salt River Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search Name Salt River Project Place Tempe, Arizona Utility Id 16572 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] Energy Information Administration Form 826[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Salt River Project Smart Grid Project was awarded $56,859,359 Recovery Act Funding with a total project value of $114,003,719.

353

Molten salts database for energy applications  

E-Print Network (OSTI)

The growing interest in energy applications of molten salts is justified by several of their properties. Their possibilities of usage as a coolant, heat transfer fluid or heat storage substrate, require thermo-hydrodynamic refined calculations. Many researchers are using simulation techniques, such as Computational Fluid Dynamics (CFD) for their projects or conceptual designs. The aim of this work is providing a review of basic properties (density, viscosity, thermal conductivity and heat capacity) of the most common and referred salt mixtures. After checking data, tabulated and graphical outputs are given in order to offer the most suitable available values to be used as input parameters for other calculations or simulations. The reviewed values show a general scattering in characterization, mainly in thermal properties. This disagreement suggests that, in several cases, new studies must be started (and even new measurement techniques should be developed) to obtain accurate values.

Serrano-López, Roberto; Cuesta-López, Santiago

2013-01-01T23:59:59.000Z

354

Salt River Electric - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt River Electric - Residential Energy Efficiency Rebate Program Salt River Electric - Residential Energy Efficiency Rebate Program Salt River Electric - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Ventilation Heat Pumps Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Varies by technology Provider Salt River Electric Cooperative Salt River Electric serves as the rural electric provider in Kentucky's Bullitt, Nelson, Spencer, and Washington counties. Residential customers are eligible for a variety of cash incentives for energy efficiency. The Touchstone Energy Home Program provides a rebate of up to $250 to customers

355

Energy Efficient Buildings, Salt Lake County, Utah  

DOE Green Energy (OSTI)

Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

Barnett, Kimberly

2012-04-30T23:59:59.000Z

356

Molten salt battery having inorganic paper separator  

DOE Patents (OSTI)

A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

Walker, Jr., Robert D. (Gainesville, FL)

1977-01-01T23:59:59.000Z

357

SALT-ANL. Systems Analysis Process Simulation  

Science Conference Proceedings (OSTI)

SALT (Systems Analysis Language Translator), a systems- analysis and process-simulation program for steady-state and dynamic systems, can also be used for optimization and sensitivity studies. SALT employs state-of-the-art numerical techniques including a hybrid steepest-descent/quasi-Newtonian multidimensional nonlinear equation solver, sequential quadratic programming methods for optimization, and multistep integration methods for both stiff and nonstiff systems of differential equations. Based on a preprocessor concept where a `new` system driver can be written for each application, SALT-ANL contains precompiled component models, several flow types, and a number of thermodynamic and transport property routines, including a gas chemical-equilibrium code. It has been applied to the study of open-cycle and liquid-metal magnetohydrodynamic systems, fuel cells, ocean thermal energy conversion, municipal solid-waste processing, fusion, breeder reactors, and geothermal and solar-energy systems. Models available include: combustor, compressor, deaerator, gas-diffuser, fuel-dryer, feedwater-heater, flash-tank, gas-turbine, heater, heat-exchanger, flow-initiator, fuel-flow-initiator, molten-carbonate fuel-cell, liquid-metal diffuser, magnetohydrodynamic-generator, liquid-metal magnetohydrodynamic-generator, liquid-metal nozzle, liquid-metal pipe, flow-mixer, gas-nozzle, phosphoric acid fuel-cell, pump, pipe-calculator, steam-condenser, steam-drum, liquid-gas separator, stack, solid-oxide fuel-cell, flow-splitter, steam-turbine, two-phase diffuser, two-phase mixer, and two-phase nozzle. Input data to the SALT program describe the system configuration for the specific problem to be analyzed and provide instructions defining system constraints, objective functions, parameter sweeps, etc. to generate a PL/I program representing the system problem and performing the various analytic tasks.

Berry, G.F.; Geyer, H.K. [Argonne National Lab., IL (United States)

1992-02-26T23:59:59.000Z

358

Spatial and Temporal Dynamics of Salt Marsh Vegetation across Scales  

E-Print Network (OSTI)

Biogeographic patterns across a landscape are developed by the interplay of environmental processes operating at different spatial and temporal scales. This research investigated dynamics of salt marsh vegetation on the Skallingen salt marsh in Denmark responding to environmental variations at large, medium, and fine scales along both spatial and temporal spectrums. At the broad scale, this research addressed the importance of wind-induced rise of the sea surface in such biogeographic changes. A new hypothetical chain was suggested: recent trends in the North Atlantic Oscillation index toward its positive phase have led to increased storminess and wind tides on the ocean surface, resulting in increased frequency, duration, and magnitude of submergence and, hence, waterlogging of marsh soils and plants, which has retarded ecological succession. At the mid-scale, spatial patterns of vegetation and environmental factors were examined across tidal creeks. Sites closer to tidal creeks, compared to marsh interiors, were characterized by the dominance of later-successional species, higher bulk density, and lower nutrient contents and electrical conductivity. This finding implies that locations near creeks have experienced a better drainage condition than the inner marshes, which eventually facilitated the establishment of later-successional plants that are intolerant to physical stress. At the micro-scale, this research examined how the extent and mode of facilitation and competition vary for different combinations of plant species along physical gradients. Both positive and negative relationships were spatially manifested to a greater degree on the low marsh than on the mid marsh. This insight extends our current knowledge of scale-dependent interactions beyond pioneer zones to higher zones. On the low marsh, different types of bivariate point pattern (i.e., clustered, random, and regular) were observed for different combinations of species even at similar spatial scales. This finding implies that it is difficult to generalize at which scales competition and facilitation occur. To conclude, this research stresses the need for a holistic approach in future investigations of salt marsh biogeography. For example, based on results of this current research, it would be meaningful to develop a comprehensive simulation model that incorporates salt marsh ecology, geomorphology, and hydrology observed across scales.

Kim, Daehyun

2009-08-01T23:59:59.000Z

359

File:SaltWells CS-FDM.pdf | Open Energy Information  

Open Energy Info (EERE)

SaltWells CS-FDM.pdf SaltWells CS-FDM.pdf Jump to: navigation, search File File history File usage Metadata File:SaltWells CS-FDM.pdf Size of this preview: 448 × 599 pixels. Other resolution: 449 × 600 pixels. Full resolution ‎(838 × 1,120 pixels, file size: 8.08 MB, MIME type: application/pdf) Map showing the CS-FDM survey results performed at Salt Wells by Willowstick Technologies, LLC. Dark shading highlights conductive highs and lightly shaded to white areas highlight conductive lows, which equate to zones of high or low groundwater saturation. From Montgomery et al. (2005) Figure 1. File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:08, 13 September 2013 Thumbnail for version as of 11:08, 13 September 2013 838 × 1,120 (8.08 MB) Mbennett (Talk | contribs) Map showing the CS-FDM survey results performed at Salt Wells by Willowstick Technologies, LLC. Dark shading highlights conductive highs and lightly shaded to white areas highlight conductive lows, which equate to zones of high or low groundwater satur...

360

Reference repository design concept for bedded salt  

Science Conference Proceedings (OSTI)

A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

Carpenter, D.W.; Martin, R.W.

1980-10-08T23:59:59.000Z

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Salt Block I test: experimental details and comparison with theory. Final report  

SciTech Connect

A series of laboratory experiments has been completed at Sandia Laboratories to provide an understanding of the steady state and transient thermal response of a large salt block containing an internal heat source. In this report, details of the experimental program are presented along with results of related efforts, such as thermal conductivity experiments, done in support of the heater experiments (Salt Block I). Finite element temperature field predictions, both transient and steady state, are performed utilizing the COYOTE nonlinear heat conduction program. Comparisons of experimental and theoretical results are generally quite good.

Duffey, T.A.

1980-02-01T23:59:59.000Z

362

Synthesis and thermal decomposition properties of hydrogen-rich phosphorus salts.  

DOE Green Energy (OSTI)

Complex metal hydrides continue to be investigated as solid-materials for hydrogen storage. Traditional interstitial metal hydrides offer favorable thermodynamics and kinetics for hydrogen release but do not meet energy density requires. Anionic metal hydrides, and complex metal hydrides like magnesium borohydride have higher energy densities compared to interstitial metal hydrides, but poor kinetics and/or thermodynamically unfavorable side products limit their deployment as hydrogen storage materials in transportation applications. Main-group anionic materials such as the bis(borane)hypophosphite salt [PH2(BH3)2] have been known for decades, but only recently have we begun to explore their ability to release hydrogen. We have developed a new procedure for synthesizing the lithium and sodium hypophosphite salts. Routes for accessing other metal bis(borane)hypophosphite salts will be discussed. A significant advantage of this class of material is the air and water stability of the anion. Compared to metal borohydrides, which reactive violently with water, these phosphorus-based salts can be dissolved in protic solvents, including water, with little to no decomposition over the course of multiple days. The ability of these salts to release hydrogen upon heating has been assessed. While preliminary results indicate phosphine and boron-containing species are released, hydrogen is also a major component of the volatile species observed during the thermal decomposition. Additives such as NaH or KH mixed with the sodium salt Na[PH2(BH3)2] significantly perturb the decomposition reaction and greatly increase the mass loss as determined by thermal gravimetric analysis (TGA). This symbiotic behavior has the potential to affect the hydrogen storage ability of bis(borane)hypophosphite salts.

Cordaro, Joseph Gabriel

2010-12-01T23:59:59.000Z

363

LOCALIZED CORROSION OF AUSTENITIC STAINLESS STEELEXPOSED TO MIXTURES OF PLUTONIUM OXIDE AND CHLORIDE SALTS  

SciTech Connect

Laboratory corrosion tests were conducted to investigate the corrosivity of moist plutonium oxide/chloride (PuO{sub 2}/Cl-) salt mixtures on 304L and 316L stainless steel coupons. The tests exposed flat coupons for pitting evaluation and 'teardrop' stressed coupons for stress corrosion cracking (SCC) evaluation at room temperature to various mixtures of PuO{sub 2} and chloride-bearing salts for periods up to 500 days. The two flat coupons were placed so that the solid oxide/salt mixture contacted about one half of the coupon surface. One teardrop coupon was placed in contact with solid mixture; the second teardrop was in contact with the headspace gas only. The mixtures were loaded with nominally 0.5 wt % water under a helium atmosphere. Observations of corrosion ranged from superficial staining to pitting and SCC. The extent of corrosion depended on the total salt concentration and on the composition of the salt. The most significant corrosion was found in coupons that were exposed to 98 wt % PuO{sub 2}, 2 wt % chloride salt mixtures that contained calcium chloride. SCC was observed in two 304L stainless steel teardrop coupons exposed in solid contact to a mixture of 98 wt % PuO{sub 2}, 0.9 wt % NaCl, 0.9 wt % KCl, and 0.2 wt % CaCl{sub 2}. The cracking was associated with the heat-affected zone of an autogenous weld that ran across the center of the coupon. Cracking was not observed in coupons exposed to the headspace gas, nor in coupons exposed to other mixtures with either 0.92 wt% CaCl{sub 2} or no CaCl{sub 2}. The corrosion results point to the significance of the interaction between water loading and the concentration of the hydrating salt CaCl{sub 2} in the susceptibility of austenitic stainless steels to corrosion.

Zapp, P; Kerry Dunn, K; Jonathan Duffey, J; Ron Livingston, R; Zane Nelson, Z

2008-11-21T23:59:59.000Z

364

Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes  

Science Conference Proceedings (OSTI)

Molten salt oxidation (MSO) is proposed as a {sup 238}Pu waste treatment technology that should be developed for volume reduction and recovery of {sup 238}Pu and as an alternative to the transport and permanent disposal of {sup 238}Pu waste to the WIPP repository. In MSO technology, molten sodium carbonate salt at 800--900 C in a reaction vessel acts as a reaction media for wastes. The waste material is destroyed when injected into the molten salt, creating harmless carbon dioxide and steam and a small amount of ash in the spent salt. The spent salt can be treated using aqueous separation methods to reuse the salt and to recover 99.9% of the precious {sup 238}Pu that was in the waste. Tests of MSO technology have shown that the volume of combustible TRU waste can be reduced by a factor of at least twenty. Using this factor the present inventory of 574 TRU drums of {sup 238}Pu contaminated wastes is reduced to 30 drums. Further {sup 238}Pu waste costs of $22 million are avoided from not having to repackage 312 of the 574 drums to a drum total of more than 4,600 drums. MSO combined with aqueous processing of salts will recover approximately 1.7 kilograms of precious {sup 238}Pu valued at 4 million dollars (at $2,500/gram). Thus, installation and use of MSO technology at LANL will result in significant cost savings compared to present plans to transport and dispose {sup 238}Pu TRU waste to the WIPP site. Using a total net present value cost for the MSO project as $4.09 million over a five-year lifetime, the project can pay for itself after either recovery of 1.6 kg of Pu or through volume reduction of 818 drums or a combination of the two. These savings show a positive return on investment.

Wishau, R.

1998-05-01T23:59:59.000Z

365

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics The report addresses granular salt reconsolidation from three vantage points: laboratory testing, modeling, and petrofabrics. The experimental data 1) provide greater insight and understanding into the role of elevated temperature and pressure regimes on physical properties of reconsolidated crushed salt, 2) can supplement an existing database used to develop a reconsolidation constitutive model and 3) provide data for model evaluation. The constitutive model accounts for the effects of moisture through pressure solution and dislocation creep, with both terms dependent

366

Polymeric salt bridges for conducting electric current in microfluidic devices  

DOE Patents (OSTI)

A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

Shepodd, Timothy J. (Livermore, CA); Tichenor, Mark S. (San Diego, CA); Artau, Alexander (Humacao, PR)

2009-11-17T23:59:59.000Z

367

Pyrochemical process for extracting plutonium from an electrolyte salt  

DOE Patents (OSTI)

A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

Mullins, Lawrence J. (Los Alamos, NM); Christensen, Dana C. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

368

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics The report addresses granular salt reconsolidation from three vantage points: laboratory testing, modeling, and petrofabrics. The experimental data 1) provide greater insight and understanding into the role of elevated temperature and pressure regimes on physical properties of reconsolidated crushed salt, 2) can supplement an existing database used to develop a reconsolidation constitutive model and 3) provide data for model evaluation. The constitutive model accounts for the effects of moisture through pressure solution and dislocation creep, with both terms dependent

369

Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance To The  

Open Energy Info (EERE)

Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance To The Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance To The Hydrocarbon Exploration In The Tuz Golu (Salt Lake) Basin, Central Anatolia, Turkey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance To The Hydrocarbon Exploration In The Tuz Golu (Salt Lake) Basin, Central Anatolia, Turkey Details Activities (0) Areas (0) Regions (0) Abstract: Due to activitiy of the Aksaray and Ecemis Faults, volcanic intrusion and westward movement of the Anatolian plate, diapiric salt structures were occurred in the Tuz Golu (Salt Lake) basin in central Anatolia, Turkey. With the collisions of the Arabian and Anatolian plates during the late Cretaceous and Miocene times, prominent ophiolitic

370

WIPP Shares Expertise with Salt Club Members | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shares Expertise with Salt Club Members Shares Expertise with Salt Club Members WIPP Shares Expertise with Salt Club Members November 26, 2013 - 12:00pm Addthis Carlsbad Field Office’s Abe Van Luik, third from right, examines rock salt taken from the Morsleben mine in Germany. Carlsbad Field Office's Abe Van Luik, third from right, examines rock salt taken from the Morsleben mine in Germany. CARLSBAD, N.M. - EM's Carlsbad Field Office (CBFO) participated in the second meeting of the Nuclear Energy Agency's (NEA) Salt Club and the 4th U.S.-German Workshop on Salt Repository Research, Design & Operation in Berlin. CBFO, which has responsibility for the Waste Isolation Pilot Plant (WIPP) and the National Transuranic (TRU) Program, was represented by International Programs and Policy Advisor Dr. Abe Van Luik.

371

Cementitious Stabilization of Mixed Wastes with High Salt Loadings  

SciTech Connect

Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt.

Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

1999-04-01T23:59:59.000Z

372

Pyrochemical process for extracting plutonium from an electrolyte salt  

DOE Patents (OSTI)

A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

Mullins, L.J.; Christensen, D.C.

1982-09-20T23:59:59.000Z

373

Properties of Geopressured Brines and Wells in the Gulf Coast and Opportunities for Industrial/Research Participation  

DOE Green Energy (OSTI)

Geopressured reservoirs exhibit pressure gradients in excess of the normal hydrostatic gradient. In the Gulf Coast area the normal gradient is 0.465 psi/ft. Pressures may approach lithostatic pressure and have been measured as high as 1.05 psi/ft in the Gulf Coast area. Geopressured basins exist worldwide and in a number of U.S. locations, east, west, north and south. The Gulf Coast area has been studied extensively and is the subject of the DOE geopressured-geothermal research at present. The assumed ranges in resource characteristics include: depth from -12,000 to > -20,000 feet, brine flow rate from 20,000 to 40,000 bpd, temperature from 300 to 400 F, bottomhole pressure from 12,000 to 18,500 psi; salinity from 20,000 to 200,000 mg/L, gas-water ratio from 40 to 80 scf/bbl., and condensate from a trace to production. Energy in the geopressured resource includes gas, thermal, and hydraulic energy. It has been estimated that there are 6,000 quads of methane and 11,000 quads of thermal energy in the Gulf Coast area geopressured-geothermal reservoirs. Estimates run as high as 50,000 quad for the thermal energy (Wallace et al, 1978). Present industrial interest in the Pleasant Bayou and Hulin wells includes: desalination plants, an economic study by a power company for regional use, use of generated electricity by a coalition of towns, aquaculture (catfish farming) research program, and an unsolicited proposal for enhanced oil recovery of heavy oil. Direct uses of the hot brine cover dozens of industries and processes. An example of multiple uses in the USSR is shown. Outside agency interest includes the U.S.G.S., N.S.F., G.R.I., and possibly other areas within DOE. A research spin-off: a sensitive in-line benzene monitor has been designed by USL and will be tested in the near future. An in-line pH monitor is also under development for the harsh conditions of the geopressured-geothermal wells.

Wys, J. Nequs- de

1989-03-21T23:59:59.000Z

374

CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES  

SciTech Connect

This is the progress report for the DOE grant DE-FG26-97FT97263 entitled, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures'' for the period April 1999 to October 1999. The project is being conducted jointly by Clark Atlanta University, the University of Tennessee Space Institute and Georgia Institute of Technology. The overall objectives of the project are to identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature and system pressure) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct thorough analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. During this reporting period, free swelling index measurements of the coal, fixed-bed gasification experiments, kinetic modeling of the catalyzed gasification, and X-ray diffraction analysis of catalyst and gasified char samples were undertaken. The gasification experiments were carried out using two different eutectic salt mixtures of Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} (LNK) system and Na{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} (NK) system. The gasification process followed a Langmuir-Hinshelwood type model. At 10 wt% of catalyst loading, the activation energy of the ternary catalyst system (LNK) was about half (98kJ/mol) the activation energy of the single catalyst system (K{sub 2}CO{sub 3}), which is about 170 kJ/ mole. The binary catalyst system (NK) showed activation energy of about 201 kJ/mol, which is slightly higher, compared to the K{sub 2}CO{sub 3} catalyst system. The ternary catalyst system was a much better eutectic catalyst system compared to the binary or single catalyst system. In general, a eutectic with a melting point less than the gasification temperature is a better substitute to the single alkali metal salts because they have good catalyst distribution and dispersion in the carbon matrix. The free selling index of the coal was about 1.5 (1 to 2) in comparison to 2.5 (2 to 3) for the coal samples with ternary eutectic. The results for the raw coal were consistent with those from the Penn State Coal Bank. The XRD characterization showed unidentified peaks in the spectra of some of the samples and require further studies to draw any conclusions at the point.

NONE

1999-10-01T23:59:59.000Z

375

On-line tests of organic additives for the inhibition of the precipitation of silica from hypersaline geothermal brine II. Tests of nitrogen-containing compounds, silanes, and additional ethoxylated compounds  

DOE Green Energy (OSTI)

Several new classes of organic compounds have been screened as potential geothermal scale control agents by examining their effect on the precipitation of silica from Magmamax No. 1 brine. The substances were tested using the Lawrence Livermore Laboratory Brine Treatment Test System at the Niland, California, Test Site. Solutions of the test substances were injected into flowing brine at 210{sup 0}C, the brine was flashed to 125{sup 0}C, and then the kinetics of solids and silica precipitation from effluent brine held at 90{sup 0}C were measured. Three new types of compounds were shown to have activity as precipitation inhibitors: polyethylene imines, polyethyloxazalines, and quaternary ammonium compounds containing polyoxyethylene. Among the latter, Ethoquad 18/25, which is methyl-polyoxyethylene(15) octadecylammonium chloride, is the leading candidate antiscalant. It is a more powerful inhibitor of silica precipitation than the pure polyoxyethylene polymers, and it apparently has no high temperature solubility limitations. Measurements were made of the concentrations of monomeric silica and the effect of addition of inhibitor at various points in the Brine Treatment Test System. Five different silane compounds showed no activity toward silica.

Harrar, J.E.; Locke, F.E.; Otto, C.H. Jr.; Lorensen, L.E.; Frey, W.P.

1979-06-01T23:59:59.000Z

376

Modeling of Unsaturated Salt-cake Dissolution for S-109 Simulant  

Science Conference Proceedings (OSTI)

The Environmental Simulation Program (V7.0, OLI Systems, Inc.) with V7DBLSLT, the latest version of the double salt database developed by the Institute of Clean Energy Technology (ICET), was used to predict effluent stream compositions and densities, residual salt-cake composition, and salt-cake heights for an unsaturated salt-cake dissolution test with a simulant representative of waste contained in Hanford tank 241-S-109. Predictions for major cation and anion concentrations were in excellent agreement with the experimental data obtained at the Applied Research Center (ARC) at Florida International University (FIU). The utility of ESP as a means to predict effluent stream compositions and effluent stream properties, such as density and column salt-cake height, is demonstrated through the agreement between experimental and predicted values. These, and previous calculations, validate the use of thermodynamic models (with proper chemistry representations) for HLW pretreatment and retrievals. A powerful and useful tool is the result. Cost reductions are possible as the amount of sampling and subsequent laboratory analysis can be reduced. Additionally, overall processing risk is reduced through the ability to rapidly evaluate different processing and retrieval scenarios. The application of appropriate models can thus lead to more efficient operations and campaign cost savings while also evaluating parameters pertinent to safety. (authors)

Toghiani, R.K.; Lindner, J.S. [Institute for Clean Energy Technology, Mississippi State Univ., Starkville, MS (United States); Toghiani, R.K. [Dave C. Swalm School of Chemical Engineering, Mississippi State Univ., Starkville, MS (United States)

2008-07-01T23:59:59.000Z

377

Complexation of Nd(III) with tetraborate ion and its effect on actinide (III) solubility in WIPP brine  

Science Conference Proceedings (OSTI)

The potential importance of tetraborate complexation on lanthanide(III) and actinide(III) solubility is recognized in the literature but a systematic study of f-element complexation has not been performed. In neodymium solubility studies in WIPP brines, the carbonate complexation effect is not observed since tetraborate ions form a moderately strong complex with neodymium(III). The existence of these tetraborate complexes was established for low and high ionic strength solutions. Changes in neodymium(III) concentrations in undersaturation experiments were used to determine the neodymium with tetraborate stability constants as a function of NaCl ionic strength. As very low Nd(III) concentrations have to be measured, it was necessary to use an extraction pre-concentration step combined with ICP-MS analysis to extend the detection limit by a factor of 50. The determined Nd(III) with borate stability constants at infinite dilution and 25 C are equal to log {beta}{sub 1} = 4.55 {+-} 0.06 using the SIT approach, equal to log {beta}{sub 1} = 4.99 {+-} 0.30 using the Pitzer approach, with an apparent log {beta}{sub 1} = 4.06 {+-} 0.15 (in molal units) at I = 5.6 m NaCl. Pitzer ion-interaction parameters for neodymium with tetraborate and SIT interaction coefficients were also determined and reported.

Borkowski, Marian [Los Alamos National Laboratory; Richmann, Michael K [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Yongliang, Xiong [SNL

2010-01-01T23:59:59.000Z

378

Properties of geopressured brines and wells in the Gulf Coast and opportunities for industrial/research participation  

DOE Green Energy (OSTI)

Geopressured reservoirs exhibit pressure gradients in excess of the normal hydrostatic gradient. (In the Gulf Coast area the normal gradient is 0.465 psi/ft.) Pressures may approach lithostatic pressure and have been measured as high as 1.05 psi/ft in the Gulf Coast area. Geopressured basins exist worldwide and in a number of US locations, east, west, north and south. The Gulf Coast area has been studied extensively and is the subject of the DOE geopressured-geothermal research at present. Present industrial interest in the Pleasant Bayou and Hulin wells include: desalination plants, an economic study by a power company for regional use, use of generated electricity by a coalition of towns, aquaculture (catfish farming) research program, and an unsolicited proposal for enhanced oil recovery of heavy oil. Direct uses of the hot brine cover dozens of industries and processes. An example of multiple uses in the USSR is shown. A research spin-off: a sensitive in-line benzene monitor has been designed by USL and will be tested in the near future. An in-line pH monitor is also under development for the harsh conditions of the geopressured-geothermal wells. 24 refs., 12 figs.

Negus-de Wys, J.

1989-01-01T23:59:59.000Z

379

An Overview of Liquid Fluoride Salt Heat Transport Technology  

SciTech Connect

Liquid fluoride salts are a leading candidate heat transport medium for high-temperature applications. This report provides an overview of the current status of liquid salt heat transport technology. The report includes a high-level, parametric evaluation of liquid fluoride salt heat transport loop performance to allow intercomparisons between heat-transport fluid options as well as providing an overview of the properties and requirements for a representative loop. Much of the information presented here derives from the earlier molten salt reactor program and a significant advantage of fluoride salts, as high temperature heat transport media is their consequent relative technological maturity. The report also includes a compilation of relevant thermophysical properties of useful heat transport fluoride salts. Fluoride salts are both thermally stable and with proper chemistry control can be relatively chemically inert. Fluoride salts can, however, be highly corrosive depending on the container materials selected, the salt chemistry, and the operating procedures used. The report also provides an overview of the state-of-the-art in reduction-oxidation chemistry control methodologies employed to minimize salt corrosion as well as providing a general discussion of heat transfer loop operational issues such as start-up procedures and freeze-up vulnerability.

Cetiner, Mustafa Sacit [ORNL; Holcomb, David Eugene [ORNL

2010-01-01T23:59:59.000Z

380

Salt disposal of heat-generating nuclear waste.  

SciTech Connect

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A Closer Look at Salt, Faults, and Gas in the Northwestern Gulf of Mexico with 2-D Multichannel Seismic Data  

E-Print Network (OSTI)

The sedimentary wedge of the northern Gulf of Mexico is extensively deformed and faulted by salt tectonics. Industry 2-D multichannel seismic data covering a large area (33,800 km2) of the lower Texas continental slope [96 degrees 40'- 93 degrees 40'W; 27 degrees 10N - 26 degrees N] were examined to evaluate the interplay of salt, faults and gas. Seismic interpretation revealed the study area has two different styles of faulting and two different types of salt bodies that vary east to west. The eastern region of the study area has a thin sedimentary section and a massive, nearly continuous salt sheet characterized by minibasins and local salt highs. Faulting in this area appears to be the result of salt tectonism. The western region of the study area has a thick sedimentary wedge, and a few isolated salt diapirs. Long, linear faults are parallel to slope and imply some degree of gravitation sliding. The difference in faulting styles and salt bodies can be attributed to different depositional environments, different styles and amounts of sediment loading and different amounts of salt initially deposited. While there is a widespread occurrence of gas throughout the study area, little evidence of continuous bottom simulating reflectors (BSRs), a widely accepted geophysical indicator of gas hydrate, has been found. The gas hydrate stability zone (GHSZ) was modeled to provide information on the thickness and variability of the stability zone, and provide a baseline in a search for BSRs. The dataset was analyzed for multiple seismic expressions of BSRs, however only a few small and isolated examples were found. Potential fluid escape structures were seen in the seismic data. Despite the great number of potential features found in the seismic data only seven active seeps were found in a seep study by I. R. MacDonald. Seeps were seen in far less abundance than the number of seeps found offshore Louisiana. This may imply a lack of source offshore Texas.

Nemazi, Leslie A.

2010-05-01T23:59:59.000Z

382

Exploratory Well At Salt Wells Area (Edmiston & Benoit, 1984) | Open Energy  

Open Energy Info (EERE)

Edmiston & Benoit, 1984) Edmiston & Benoit, 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Edmiston & Benoit, 1984) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Exploratory Well Activity Date 1980 - 1980 Usefulness useful DOE-funding Unknown Exploration Basis The blind Salt Wells geothermal system was first identified when Anadarko Petroleum Corporation drilled slim hole and geothermal exploration wells at the site in 1980. Two reports detail the results of this drilling activity. This paper seeks to (1) describe several moderate-temperature (150-200°C) geothermal systems discovered and drilled during the early 1980s that had not been documented previously in the literature, (2) summarize and compare

383

Considerations and measurements of latent-heat-storage salts for secondary thermal battery applications  

Science Conference Proceedings (OSTI)

Given its potential benefits, the practicality of using a latent heat-storage material as the basis for a passive thermal management system is being assessed by Chloride Silent Power Ltd. (CSPL) with technical assistance from Beta Power, Inc. and Sandia National Laboratories (SNL). Based on the experience gained in large-scale solar energy storage programs, fused salts were selected as the primary candidates for the heat-storage material. The initial phase of this assessment was directed to an EV battery being designed at CSPL for the ETX-II program. Specific tasks included the identification and characterization of potential fused salts, a determination of placement options for the salts within the battery, and an assessment of the ultimate benefit to the battery system. The results obtained to date for each of these tasks are presented in this paper.

Koenig, A.A.; Braithwaite, J.W.; Armijo, J.R.

1988-05-16T23:59:59.000Z

384

Assessment of molten-salt solar central-receiver freeze-up and recovery events  

DOE Green Energy (OSTI)

Molten salt used as a heat transfer fluid in central-receiver so ar power plants has a high freezing point (430{degrees}F (221{degrees}C)). It is very likely during the life of the plant that the receiver will accidentally freeze up due to equipment malfunction or operator error. Experiments were conducted to measure the effects of a molten salt receiver freeze-up and recovery event and methods to thaw the receiver. In addition, simulated freeze/thaw experiments were conducted to determine what happens when salt freezes and is thawed in receiver tubes and to quantify the damage caused to candidate receiver tube materials. Fourteen tube samples of various materials, diameters and wall thicknesses were tested to destruction. Results of these tests are presented in this paper.

Pacheco, J.E.; Dunkin, S.R.

1996-02-01T23:59:59.000Z

385

Solar collector/still for salt-water desalination. Final report  

DOE Green Energy (OSTI)

A combined in-line solar collector/still for the desalination of salt water was designed, built, and tested on site in the Florida Keys. During the course of the project the basic configuration was modified, as project funds permitted, to enhance performance. This collector/still utilizes sunlight for the direct heating of water and for the heating of air. The heating air is bubbled through the heated water producing desalinated water vapor which is subsequently collected. The result is non-salted water produced using sunlight.

Fonash, R.L.

386

Supai salt karst features: Holbrook Basin, Arizona  

SciTech Connect

More than 300 sinkholes, fissures, depressions, and other collapse features occur along a 70 km (45 mi) dissolution front of the Permian Supai Formation, dipping northward into the Holbrook Basin, also called the Supai Salt Basin. The dissolution front is essentially coincident with the so-called Holbrook Anticline showing local dip reversal; rather than being of tectonic origin, this feature is likely a subsidence-induced monoclinal flexure caused by the northward migrating dissolution front. Three major areas are identified with distinctive attributes: (1) The Sinks, 10 km WNW of Snowflake, containing some 200 sinkholes up to 200 m diameter and 50 m depth, and joint controlled fissures and fissure-sinks; (2) Dry Lake Valley and contiguous areas containing large collapse fissures and sinkholes in jointed Coconino sandstone, some of which drained more than 50 acre-feet ({approximately}6 {times} 10{sup 4} m{sup 3}) of water overnight; and (3) the McCauley Sinks, a localized group of about 40 sinkholes 15 km SE of Winslow along Chevelon Creek, some showing essentially rectangular jointing in the surficial Coconino Formation. Similar salt karst features also occur between these three major areas. The range of features in Supai salt are distinctive, yet similar to those in other evaporate basins. The wide variety of dissolution/collapse features range in development from incipient surface expression to mature and old age. The features began forming at least by Pliocene time and continue to the present, with recent changes reportedly observed and verified on airphotos with 20 year repetition. The evaporate sequence along interstate transportation routes creates a strategic location for underground LPG storage in leached caverns. The existing 11 cavern field at Adamana is safely located about 25 miles away from the dissolution front, but further expansion initiatives will require thorough engineering evaluation.

Neal, J.T.

1994-12-31T23:59:59.000Z

387

Effect of Brine on Hydrate Antiagglomeration J. Dalton York and Abbas Firoozabadi*,  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . 18 Office of International Programs. . . . . . . . . . . . . . . 18 Office of Technology Transfer is not a primary respon- sibility of the university community, it is a common result of technology transfer, it is sometimes the result of technology transfer. x The creator and the institution should share in the po

Firoozabadi, Abbas

388

Independent Oversight Assessment, Salt Waste Processing Facility Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Processing Facility Salt Waste Processing Facility Project - January 2013 Independent Oversight Assessment, Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent assessment of nuclear safety culture at the Salt Waste Processing Facility (SWPF) Project. The primary objective of the evaluation was to provide information regarding the status of the safety culture at the SWPF Project. The data collection phase of the assessment occurred during August - September 2012. Independent Oversight Assessment, Salt Waste Processing Facility Project -

389

Disposing of nuclear waste in a salt bed  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposing of nuclear waste in a salt bed Disposing of nuclear waste in a salt bed 1663 Los Alamos science and technology magazine Latest Issue:November 2013 All Issues » submit Disposing of nuclear waste in a salt bed Decades' worth of transuranic waste from Los Alamos is being laid to rest at the Waste Isolation Pilot Plant in southeastern New Mexico March 25, 2013 Disposing of nuclear waste in a salt bed Depending on the impurities embedded within it, the salt from WIPP can be anything from a reddish, relatively opaque rock to a clear crystal like the one shown here. Ordinary salt effectively seals transuranic waste in a long-term repository Transuranic waste, made of items such as lab coats and equipment that have been contaminated by radioactive elements heavier than uranium, is being shipped from the Los Alamos National Laboratory to a long-term storage

390

Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment  

Science Conference Proceedings (OSTI)

Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

Hsu, P.C.

1997-11-01T23:59:59.000Z

391

Final Report, "Laboratory Studies of the Role of Sea Salt Bromine in Determining Tropospheric Ozone"  

SciTech Connect

This document is a final report for the project DE-FG03-98ER62578, "Laboratory Studies of the Role of Sea Salt Bromine in Determining Tropospheric Ozone". It includes a technical summary, collaborations, educational contributions and the peer-reviewed scientific publications that have resulted from this research.

B. J. Finlayson-Pitts

2005-06-20T23:59:59.000Z

392

Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan, Rev. 1  

Science Conference Proceedings (OSTI)

This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report.

Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

2001-12-10T23:59:59.000Z

393

Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan  

Science Conference Proceedings (OSTI)

This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report

Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

2001-10-31T23:59:59.000Z

394

A Three-Dimensional Simulation of the Hudson–Raritan Estuary. Part III: Salt Flux Analyses  

Science Conference Proceedings (OSTI)

Salt fluxes and volume transports in an estuary vary considerably over subtidal time scales of a few days to weeks in response to wind and neap–spring tidal forcings. Results from a numerical simulation of the Hudson–Raritan estuary are used to ...

Lie-Yauw Oey; George L. Mellor; Richard I. Hires

1985-12-01T23:59:59.000Z

395

Delivery system for molten salt oxidation of solid waste  

DOE Patents (OSTI)

The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

2002-01-01T23:59:59.000Z

396

Salts of alkali metal anions and process of preparing same  

DOE Patents (OSTI)

Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

Dye, James L. (East Lansing, MI); Ceraso, Joseph M. (Lansing, MI); Tehan, Frederick J. (Utica, NY); Lok, Mei Tak (Urbana, IL)

1978-01-01T23:59:59.000Z

397

REACTOR FUEL WASTE DISPOSAL PROJECT DEVELOPMENT OF DESIGN PRINCIPLE FOR DISPOSAL OF REACTOR FUEL WASTE INTO UNDERGROUND SALT CAVITIES  

SciTech Connect

Waste disposal in underground salt cavities is considered. Theoretical Investigations for spherical and cylindrical cavities included analysis of elastic stress, thermal stress, and stress redistribution due to the development of a plastic zone around the cavity. The problems of temperature distribution and accompanying thermal stress, due to heat emission from the waste, were also studied. The reduction of the cavity volume, the development of the plastic zone, and the resulting stress redistribution around the cavity are presented as functions of cavity depth, internal pressure of cavity, strenzth of salt, and cavity teraperature rise. It is shown that a salt cavity can be designed such that it is structurally stable as a storage container assuming a chemical equilibrium can be established between the liquid waste and salt. (W.D.M.)

Serata, S.; Gloyna, E.F.

1959-01-01T23:59:59.000Z

398

Columbus Salt Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Columbus Salt Marsh Geothermal Area Columbus Salt Marsh Geothermal Area (Redirected from Columbus Salt Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Columbus Salt Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

399

Surface Indicators of Geothermal Activity at Salt Wells, Nevada...  

Open Energy Info (EERE)

Surface Indicators of Geothermal Activity at Salt Wells, Nevada, USA, Including Warm Ground, Borate Deposits, and Siliceous Alteration Jump to: navigation, search OpenEI Reference...

400

Development Wells At Salt Wells Area (Nevada Bureau of Mines...  

Open Energy Info (EERE)

Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells...

Note: This page contains sample records for the topic "resulting salt brine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Compound and Elemental Analysis At Salt Wells Area (Shevenell...  

Open Energy Info (EERE)

Compound and Elemental Analysis At Salt Wells Area (Shevenell & Garside, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and...

402

Energy Department Completes Salt Coolant Material Transfer to...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Republic's Ministry of Industry and Trade to complete the transfer of 75 kilograms of fluoride salt from the Department's Oak Ridge National Laboratory (ORNL) to the Czech Nuclear...

403

Electrochemical Behavior of Calcium-Bismuth Alloys in Molten Salt ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The electrochemical properties of calcium-bismuth alloys were investigated to ... Behavior of Silicon Electrodepositing in Fluoride Molten Salts.

404

Natural Convection Fluoride Salt High Temperature Reactor Process ...  

... oil shale processing, hydrogen production, and production of synfuels from coal. The new nuclear reactor design employs a molten salt coolant in a natural ...

405

Regional Gravity Survey of the Northern Great Salt Lake Desert...  

Open Energy Info (EERE)

of the Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Regional Gravity...

406

Synthesis of acid addition salt of delta-aminolevulinic acid ...  

A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a ...

407

Haynesville-Bossier Shale Play, Texas-Louisiana Salt Basin  

U.S. Energy Information Administration (EIA)

Haynesville-Bossier Shale Play, Texas-Louisiana Salt Basin Source: Energy Information Administration based on data from HPDI, TX Railroad Commission, ...

408

Method for the production of uranium chloride salt  

DOE Patents (OSTI)

A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

Westphal, Brian R.; Mariani, Robert D.

2013-07-02T