Sample records for resulting salt brine

  1. THE MECHANISM OF INTRAGRANULAR MIGRATION OF BRINE INCLUSIONS IN SALT

    E-Print Network [OSTI]

    Machiels, A.J.

    2010-01-01T23:59:59.000Z

    of Brine Inclusions in a Salt Repository", ORM. -5526 (JulyOF BRINE INCLUSIONS IN SALT A.J. Machiels, S. Yagnik, D.R.OF BRINE INCLUSIONS IN SALT by A.J. Machiels S. Yagnik D.R.

  2. THERMAL GRADIENT MIGRATION OF BRINE INCLUSIONS IN SALT

    E-Print Network [OSTI]

    Yagnik, S.K.

    2010-01-01T23:59:59.000Z

    OF BRINE INCLUSIONS IN SALT Suresh K. Yagnik February 1982 TOF BRINE INCLUSIONS IN SALT by Suresh K. Yagnik Materialsb u i l t in future. The salt deposits, however, are known

  3. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01T23:59:59.000Z

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  4. RIS-M-2260 HEAT GRADIENT INDUCED MIGRATION OF BRINE INCLUSIONS IN ROCK SALT

    E-Print Network [OSTI]

    RISØ-M-2260 HEAT GRADIENT INDUCED MIGRATION OF BRINE INCLUSIONS IN ROCK SALT Mathematical treatment project. Abstract. A mathematical model for the brine migration in rock salt around an infinite line heat source is set up. The tempera- ture field around the time dependent heat source is calculated by use

  5. Salt Brine Blending to Optimize Deicing and Anti-icing Performance and Cost

    E-Print Network [OSTI]

    Minnesota, University of

    Salt Brine Blending to Optimize Deicing and Anti-icing Performance and Cost Effectiveness Stephen J in Method? #12;Deicing and Anti-icing Treatments ·Sodium Chloride (NaCl) ·Cargill, NA Salt ·Magnesium Chloride (MgCl2) w/additives ·Envirotech Serv., Scotwood Ind., NA Salt ·Calcium Chloride (CaCl2) ·Tiger

  6. Seizing a species : the story of the Great Salt Lake brine shrimp harvest

    E-Print Network [OSTI]

    Wotipka, Samuel Alex

    2014-01-01T23:59:59.000Z

    In the early 1950s, C.C. "Sparkplug" Sanders began harvesting brine shrimp from Utah's Great Salt Lake. Sanders built up a small business selling their eggs, called "cysts, to aquarium stores across the country. During the ...

  7. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    SciTech Connect (OSTI)

    Olander, D.R.

    1984-08-01T23:59:59.000Z

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

  8. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1994-11-22T23:59:59.000Z

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

  9. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1994-11-22T23:59:59.000Z

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed. The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts. For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates. 54 figs.

  10. Brining studies at Pepper Products Inc.

    E-Print Network [OSTI]

    Okoro, John Daniel

    1988-01-01T23:59:59.000Z

    of Department) A. B. Childers (Member) V. E. Sweat (Member) December 1988 Abstract Optimum brining conditions, causes of secondary fermentation, and salt fluctuation were investigated. Jalapeno peppers held in brine solution undergo lactic acid... fermentation, controlled by level of acidification and concentration of salt. Only brining at 7. 5% NaCl, with no added acetic acid, resulted in loss of all fermentable sugars. However, salt concentration fluctuated widely in this sample. Brining in 25...

  11. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14T23:59:59.000Z

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  12. Problems #3, Math 204, Dr. M. Bohner. Sep 10, 2003. Due Sep 15, 11 am. 12. A tank has ten gallons of water in which two pounds of salt has been dissolved. Brine with

    E-Print Network [OSTI]

    Bohner, Martin

    of water in which two pounds of salt has been dissolved. Brine with 1.5 pound of salt per gallon enters

  13. Chemistry of brines in salt from the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico: a preliminary investigation

    SciTech Connect (OSTI)

    Stein, C.L.; Krumhansl, J.L.

    1986-03-01T23:59:59.000Z

    We present here analyses of macro- and microscopic (intracrystalline) brines observed within the WIPP facility and in the surrounding halite, with interpretations regarding the origin and history of these fluids and their potential effect(s) on long-term waste storage. During excavation, several large fluid inclusions were recovered from an area of highly recrystallized halite in a thick salt bed at the repository horizon (2150 ft below ground level). In addition, 52 samples of brine ''weeps'' were collected from walls of recently excavated drifts at the same stratigraphic horizon from which the fluid inclusion samples are assumed to have been taken. Analyses of these fluids show that they differ substantially in composition from the inclusion fluids and cannot be explained by mixing of the fluid inclusion populations. Finally, holes in the facility floor that filled with brine were sampled but with no stratographic control; therefore it is not possible to interpret the compositions of these brines with any accuracy, except insofar as they resemble the weep compositions but with greater variation in both K/Mg and Na/Cl ratios. However, the Ca and SO/sub 4/ values for the floor holes are relatively close to the gypsum saturation curve, suggesting that brines filling floor holes have been modified by the presence of gypsum or anhydrite, possibly even originating in one or more of the laterally continuous anhydrite units referred to in the WIPP literature as marker beds. In conclusion, the wide compositional variety of fluids found in the WIPP workings suggest that (1) an interconnected hydrologic system which could effectively transport radonuclides away from the repository does not exist; (2) brine migration studies and experiments must consider the mobility of intergranular fluids as well as those in inclusions; and (3) near- and far-field radionuclide migration testing programs need to consider a wide range of brine compositions rather than a few reference brines.

  14. Proper use of sodium bisulfite with minimal salt penetration during brine immersion freezing of shrimp

    E-Print Network [OSTI]

    Broussard, Suzanne Rene

    1988-01-01T23:59:59.000Z

    solution reduced the 41 120 100 0 0 80 E CL CL CV g 60 CL 40 20 ? ~ 0:23, CaCI2. NaCI ? ? & 5:18, Caclz. NaCI ? ? 0 8:15, CaCI2. NaCI 0 4 6 Days on Ice 10 Figure 13-Residual sulfur dioxide on thawed brine frozen shrimp frozen... freezing for two trials. 34 13-Residual sulfur dioxide on thawed brine frozen shrimp frozen in different brine immersion media 41 Figure 14- Black spot development on thawed brine frozen shrimp frozen in different brine immersion media Page 42...

  15. Summary Results for Brine Migration Modeling Performed by LANL...

    Energy Savers [EERE]

    in a High Level Waste Repository in Salt Establishing the Technical Basis for Disposal of Heat-generating Waste in Salt Model Development and Analysis of the Fate and Transport of...

  16. Summary Results for Brine Migration Modeling Performed by LANL LBNL and SNL for the UFD Program

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L

    2014-09-01T23:59:59.000Z

    This report summarizes laboratory and field observations and numerical modeling related to coupled processes involving brine and vapor migration in geologic salt, focusing on recent developments and studies conducted at Sandia, Los Alamos, and Berkeley National Laboratories. Interest into the disposal of heat-generating waste in salt has led to interest into water distribution and migration in both run-of-mine crushed and intact geologic salt. Ideally a fully coupled thermal-hydraulic-mechanical-chemical simulation is performed using numerical models with validated constitutive models and parameters. When mechanical coupling is not available, mechanical effects are prescribed in hydraulic models as source, boundary, or initial conditions. This report presents material associated with developing appropriate initial conditions for a non-mechanical hydrologic simulation of brine migration in salt. Due to the strong coupling between the mechanical and hydrologic problems, the initial saturation will be low for the excavation disturbed zone surrounding the excavation. Although most of the material in this report is not new, the author hopes it is presented in a format making it useful to other salt researchers.

  17. Brine transport studies in the bedded salt of the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    McTigue, D.F.; Nowak, E.J.

    1987-01-01T23:59:59.000Z

    Brine flow has been measured to unheated boreholes for periods of a few days and to heated holes for two years in the WIPP facility. It is suggested that Darcy flow may dominate the observed influx of brine. Exact solutions to a linearized model for one-dimensional, radial flow are evaluated for conditions approximating the field experiments. Flow rates of the correct order of magnitude are calculated for permeabilities in the range 10/sup -21/ to 10/sup -20/ m/sup 2/ (1 to 10 nanodarcy) for both the unheated and heated cases. 20 refs., 3 figs., 1 tab.

  18. Tolerance to cadmium and cadmium-binding ligands in Great Salt Lake brine shrimp (Artemia salina)

    SciTech Connect (OSTI)

    Jayasekara, S.; Drown, D.B.; Sharma, R.P.

    1986-02-01T23:59:59.000Z

    Information on the accumulation of cadmium in cytosolic proteins of Great Lake brine shrimp (Artemia salina) was obtained from animals collected directly from the lake and also from animal hatched and maintained in three sublethal concentrations of cadmium (0.5, 2.0, 5.0 ppm) in saltwater aquaria. Brine shrimp growth under these conditions was monitored by measuring body lengths during a 7-day exposure period. Heat-stable, cadmium-binding ligands were isolated and identified by Sephadex G-75 chromatography and atomic absorption spectrophotometry. Cadmium was found to be equally distributed between high and low molecular weight proteins in animals collected from the lake and the 0.5 ppm cadmium group. There was also a slight growth stimulation noted in the 0.5-pm group. Higher cadmium incorporation was noted in low molecular weight fractions with increasing cadmium concentration in the exposure media. Low molecular weight fractions were also found to have high uv absorption characteristics at 250 nm and low absorption at 280 nm. Molecular weight of the cadmium-binding ligands was found to be 11,000 as estimated by the gel filtration method. De novo synthesis of this protein was increased as a function of cadmium concentration in the media. However, slow accumulation of cadmium in other protein fractions was also noticed in higher cadmium exposure groups, suggesting the existence of possible tolerance mechanisms in brine shrimp exposed to suspected acute cadmium concentrations.

  19. Alteration Behavior of High Burnup Spent Fuel in Salt Brine Under Hydrogen Overpressure and in Presence of Bromide

    SciTech Connect (OSTI)

    Loida, Andreas; Metz, Volker; Kienzler, Bernhard [Institut fuer Nukleare Entsorgung, Forschungszentrum Karlsruhe, P.O.Box 3640, Karlsruhe, D- 76021 (Germany)

    2007-07-01T23:59:59.000Z

    Recent studies have shown that in the presence of H2 overpressure, which forms due to the corrosion of the Fe based container, the dissolution rate of the spent fuel matrix is slowed down by a factor of about 10, associated with a distinct decrease of concentrations of important radionuclides. However, in a natural salt environment as well as in geological formations with chloride rich groundwater the presence of radiation chemically active impurities such as bromide must be taken in consideration. Bromide is known to react with {beta}/{gamma} radiolysis products, thus counteracting the protective H{sub 2} effect. In the present experiments using high burnup spent fuel, it is observed that during 212 days the matrix dissolution rate was enhanced by a factor of about 10 in the presence of up to 10{sup -3} M bromide and 3.2 bar H{sub 2} overpressure. However, concentrations of matrix bound actinides were found at the same level or below as found under identical conditions, but in the absence of bromide. In the long-term it is expected that the effect of bromide becomes less important, because the decrease of {beta}/{gamma}-activity results in a decrease of oxidative radicals, which react with bromide, while a-activity will dominate the radiation field. (authors)

  20. Water purification using organic salts

    DOE Patents [OSTI]

    Currier, Robert P.

    2004-11-23T23:59:59.000Z

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  1. Effect of water in salt repositories. Final report

    SciTech Connect (OSTI)

    Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

    1983-09-01T23:59:59.000Z

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ..delta..P rather than sigma ..delta..P/sup 2/ (sigma is the uniaxial stress normal to the interface and ..delta..P is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model.

  2. On the Reliability of Numerical Solutions of Brine Transport in Groundwater: Analysis of In ltration

    E-Print Network [OSTI]

    Bergamaschi, Luca

    On the Reliability of Numerical Solutions of Brine Transport in Groundwater: Analysis of In#12, brine transport List of symbols c normalized salt concentration c k l value of concentration on triangle:37; p.2 #12; Reliability of Numerical Simulations of Brine Transport in Groundwater 3 equivalent

  3. Sample Results From The Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-20T23:59:59.000Z

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  4. Sample Results from the Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-11T23:59:59.000Z

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  5. Sorption of cesium and strontium from concentrated brines by backfill barrier materials

    SciTech Connect (OSTI)

    Winslow, C D

    1981-03-01T23:59:59.000Z

    The sorption of radionuclides from potentially intruding groundwater at a nuclear waste repository is a major chemical function of backfill barriers. In this study, various materials (including clays, zeolites and an inorganic ion exchanger) were screened for the sorption of the fission products cesium and strontium in concentrated brines. Representative brines A and B for the Waste Isolation Pilot Plant (WIPP), a proposed radioactive waste repository and test facility in bedded salt were used. Sorption properties were quantified using empirical distribution coefficients, k/sub d/. Of the materials examined, sodium titanate had the highest k/sub d/ for the sorption of Sr(II) in both brine A (k/sub d/ = 125 ml/g) and brine B(k/sub d/ = 500 to 600 ml/g). A mordenite-type zeolite was the most effective getter for Cs(I) in brine A (k/sub d = 27 ml/g), while illite yielded the highest k/sub d/ for Cs(I) in brine B (k/sub d/ = 115 ml/g). The relative merit of these k/sub d/ values is evaluated in terms of calculated estimates of breakthrough times for a backfill barrier containing the getter. Results show that a backfill mixture containing these getters is potentially an effective barrier to the migration of Sr(II) and Cs(I), although further study (especially for the sorption of cesium from brine A) is recommended. Initial mechanistic studies revealed competing ion effects which would support an ion exchange mechanism. K/sub d/'s were constant over a Sr(II) concentration range of 10/sup -11/ to 10/sup -5/ M and a Cs(I) concentration range of 10/sup -8/ to 10/sup -5/ M, supporting the choice of a linear sorption isotherm as a model for the results. Constant batch composition was shown to be attained within one week.

  6. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume II. Physical and chemical oceanography. Final report

    SciTech Connect (OSTI)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01T23:59:59.000Z

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which is located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Contents of Volume II include: introduction; physical oceanography; estuarine hydrology and hydrography; analysis of discharge plume; and water and sediment quality.

  7. Exposure and effects of oilfield brine discharges on western sandpipers (Calidris mauri) in Nueces Bay, Texas

    SciTech Connect (OSTI)

    Rattner, B.A.; Melancon, M.J. [National Biological Survey, Laurel, MD (United States); Capizzi, J.L. [Texas A& M Univ., College Station, TX (United States); King, K.A. [Fish and Wildlife Service, Phoenix, AZ (United States); LeCaptain, L.J. [Fish and Wildlife Service, Spokane, WA (United States)

    1995-05-01T23:59:59.000Z

    Discharge of oilfield brines into fresh and estuarine waters is a common disposal practice in Texas. Petroleum crude oil (PCO) extraction from underground stores includes the removal of a significant amount of water along with the oil. Several methods may be used to separate the oil and water fractions, including tank batteries, heat separation, and skimming ponds. Disposal of the resultant produced water (oilfield brine) may be accomplished by deep-well injection or discharge to surface waters. In Texas, an estimated 766,000 barrels of oilfield brine were discharged daily into tidal waters in 1979. The maximum concentration for oil and grease in these discharges permitted by the Texas Railroad Commission is 25 ppm. Several studies have shown that oilfield brines are toxic to a wide range of marine life, yet little is known about their effects on birds and mammals. Exposure to petroleum in oilfield wastes could evoke toxicological effects in some waterbird species. Avian responses to PCO exposure are highly variable, including cessation of growth, osmoregulatory impairment, endocrine dysfunction, hemolytic anemia, altered blood chemistry, cytochrome P450 induction, reduced reproductive success, and mortality. Oilfield brine discharges may soon be the largest and most pervasive source of contaminants entering Texas estuaries. Migratory and resident birds feeding in the vicinity of discharge sites may be ingesting food items contaminated with petroleum hydrocarbons, heavy metals and salts in sufficient quantities to evoke toxicity. The present study of wintering western sandpipers (Calidris mauri) that feed and roost near discharge sites sought to examine oilfield brine exposure and effects through quantification of contaminant burdens, morphological characteristics, and cytochrome P450-associated monooxygenase activities. 20 refs., 2 tabs.

  8. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION SAMPLES

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2012-03-26T23:59:59.000Z

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 5 for the Integrated Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 5 strategy are identified. Results of the analyses of the Tank 21H samples from this report in conjunction with the findings of the previous report, indicates that the material does not display any unusual characteristics.

  9. Origin and geochemical evolution of the Michigan basin brine

    SciTech Connect (OSTI)

    Wilson, T.P.

    1989-01-01T23:59:59.000Z

    Chemical and isotopic data were collected on 126 oil field brine samples and were used to investigate the origin and geochemical evolution of water in 8 geologic formations in the Michigan basin. Two groups of brine are found in the basin, the Na-Ca-Cl brine in the upper Devonian formations, and Ca-Na-Cl brine from the lower Devonian and Silurian aged formations. Water in the upper Devonian Berea, Traverse, and Dundee formations originated from seawater concentrated into halite facies. This brine evolved by halite precipitation, dolomitization, aluminosilicate reactions, and the removal of SO{sub 4} by bacterial action or by CaSO{sub 4} precipitation. The stable isotopic composition (D, O) is thought to represent dilution of evapo-concentrated seawater by meteoric water. Water in the lower Devonian Richfield, Detroit River Group, and Niagara-Salina formations is very saline Ca-Na-Cl brine. Cl/Br suggest it originated from seawater concentrated through the halite and into the MgSO{sub 4} salt facies, with an origin linked to the Silurian and Devonian salt deposits. Dolomitization and halite precipitation increased the Ca/Na, aluminosilicate reactions removed K, and bacterial action or CaSO{sub 4} precipitation removed SO{sub 4} from this brine. Water chemistry in the Ordovician Trenton-Black River formations indicates dilution of evapo-concentrated seawater by fresh or seawater. Possible saline end-members include Ordovician seawater, present-day upper Devonian brine, or Ca-Cl brine from the deeper areas in the basin.

  10. Biochemical processes for geothermal brine treatment

    SciTech Connect (OSTI)

    Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Zhou, W.; Shelenkova, L.; Wilke, R.

    1998-08-01T23:59:59.000Z

    As part of the DOE Geothermal Energy Program, BNL`s Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines, (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  11. BIOCHEMICAL PROCESSES FOR GEOTHERMAL BRINE TREATMENT

    SciTech Connect (OSTI)

    PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; ZHOU,W.; SHELENKOVA,L.; WILKE,R.

    1998-09-20T23:59:59.000Z

    As part of the DOE Geothermal Energy Program, BNL's Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  12. Alternative Electrochemical Salt Waste Forms, Summary of FY2010 Results

    SciTech Connect (OSTI)

    Riley, Brian J.; Rieck, Bennett T.; Crum, Jarrod V.; Matyas, Josef; McCloy, John S.; Sundaram, S. K.; Vienna, John D.

    2010-08-01T23:59:59.000Z

    In FY2009, PNNL performed scoping studies to qualify two waste form candidates, tellurite (TeO2-based) glasses and halide minerals, for the electrochemical waste stream for further investigation. Both candidates showed promise with acceptable PCT release rates and effective incorporation of the 10% fission product waste stream. Both candidates received reprisal for FY2010 and were further investigated. At the beginning of FY2010, an in-depth literature review kicked off the tellurite glasses study. The review was aimed at ascertaining the state-of-the-art for chemical durability testing and mixed chloride incorporation for tellurite glasses. The literature review led the authors to 4 unique binary and 1 unique ternary systems for further investigation which include TeO2 plus the following: PbO, Al2O3-B2O3, WO3, P2O5, and ZnO. Each system was studied with and without a mixed chloride simulated electrochemical waste stream and the literature review provided the starting points for the baseline compositions as well as starting points for melting temperature, compatible crucible types, etc. The most promising glasses in each system were scaled up in production and were analyzed with the Product Consistency Test, a chemical durability test. Baseline and PCT glasses were analyzed to determine their state, i.e., amorphous, crystalline, phase separated, had undissolved material within the bulk, etc. Conclusions were made as well as the proposed direction for FY2011 plans. Sodalite was successfully synthesized by the sol-gel method. The vast majority of the dried sol-gel consisted of sodalite with small amounts of alumino-silicates and unreacted salt. Upon firing the powders made by sol-gel, the primary phase observed was sodalite with the addition of varying amounts of nepheline, carnegieite, lithium silicate, and lanthanide oxide. The amount of sodalite, nepheline, and carnegieite as well as the bulk density of the fired pellets varied with firing temperature, sol-gel process chemistry, and the amount of glass sintering aid added to the batch. As the firing temperature was increased from 850 C to 950 C, chloride volatility increased, the fraction of sodalite decreased, and the fractions nepheline and carnegieite increased. This indicates that the sodalite structure is not stable and begins to convert to nepheline and carnegieite under these conditions at 950 C. Density has opposite relationship with relation to firing temperature. The addition of a NBS-1, a glass sintering aid, had a positive effect on bulk density and increased the stability of the sodalite structure in a minimal way.

  13. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 4 TANK 21H QUALIFICATION SAMPLES

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2011-06-22T23:59:59.000Z

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H to qualify them for use in the Integrated Salt Disposition Program (ISDP) Batch 4 processing. All sample results agree with expectations based on prior analyses where available. No issues with the projected Salt Batch 4 strategy are identified. This revision includes additional data points that were not available in the original issue of the document, such as additional plutonium results, the results of the monosodium titanate (MST) sorption test and the extraction, scrub strip (ESS) test. This report covers the revision to the Tank 21H qualification sample results for Macrobatch (Salt Batch) 4 of the Integrated Salt Disposition Program (ISDP). A previous document covers initial characterization which includes results for a number of non-radiological analytes. These results were used to perform aluminum solubility modeling to determine the hydroxide needs for Salt Batch 4 to prevent the precipitation of solids. Sodium hydroxide was then added to Tank 21 and additional samples were pulled for the analyses discussed in this report. This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP).

  14. Gas Content of Gladys McCall Reservoir Brine A Topical Report

    Office of Scientific and Technical Information (OSTI)

    gas t o brine ratio. This w i l l result i n cubic feet of methane, ethane, propane, etc. per barrel of brine, Then, the contributions from sample points are added until...

  15. ORIGINAL PAPER An Equation of State for Hypersaline Water in Great Salt

    E-Print Network [OSTI]

    , Great Salt Lake, Utah 810 Aquat Geochem (2011) 17:809­820 123 #12;more saline brine layer in the south arm, commonly referred to as the deep brine layer (DBL), is not subject to annual turnover and can

  16. Biomass production from inland brines

    SciTech Connect (OSTI)

    Reach, C.D. Jr.

    1985-01-01T23:59:59.000Z

    The feasibility of utilizing inland saline waters to produce biomass through the application of marine aquaculture was investigated. From available data, the diatom Phaeodactylum tricornutum and the crustacea Artemia salina were selected as the experimental marine organisms. The proposed diatom served to establish primary productivity and concurrently provide a food source for the herbivorus crustacea. The objective of the first phase research was to investigate the ability of P. tricornutum and A. salina to survive in the inland saline environment. Clarified activated sludge and anaerobic digester effluents were evaluated as nutrient sources for the diatom cultures. Experimental results indicated that diatom and crustacea growth in the inland brine was equivalent to control cultures utilizing seawater. Wastewater effluents were successful as nutrient sources for the diatom cultures. Bioassay experiments conducted with petroleum related brines yielded mixed results respect to the survival and growth of the P. tricornutum and A. salina organisms. A second series of experiments involved cholornaphthalene, chlorophenanthene, and chlorophenanthrene, and chloroanthracene as the experimental hydrocarbons. Results of the diatom studies show chloroanthracene to induce toxic effects at a concentration of 500 ug/L. Artemia studies showed no acutely toxic effects relative to the test hydrocarbons at 50 and 100 ug/L.

  17. Results of Analysis of Macrobatch 3 Decontaminated Salt Solution Coalescer from May 2010

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-18T23:59:59.000Z

    SRNL analyzed the Decontamination Salt Solution (DSS) coalescer from MCU by several analytical methods. This unit was removed from service in May 2010. The results of these analyses indicate that there is very little evidence of fouling via excessive solids, either from the leaching studies or X-Ray Diffraction (XRD) analysis.

  18. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume III. Biological oceanography. Final report

    SciTech Connect (OSTI)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01T23:59:59.000Z

    The Department of Energy's Strategic Petroleum Reserve Program began discharging brine into the Gulf of Mexico from its West Hackberry site near Cameron, Louisiana in May 1981. The brine originates from underground salt domes being leached with water from the Intracoastal Waterway, making available vast underground storage caverns for crude oil. The effects of brine discharge on aquatic organisms are presented in this volume. The topics covered are: benthos; nekton; phytoplankton; zooplankton; and data management.

  19. Using a multiphase flow code to model the coupled effects of repository consolidation and multiphase brine and gas flow at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Freeze, G.A. [INTERA Inc., Albuquerque, NM (United States); Larson, K.W.; Davies, P.B.; Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-10-01T23:59:59.000Z

    Long-term repository assessment must consider the processes of (1) gas generation, (2) room closure and expansions due to salt creep, and (3) multiphase (brine and gas) fluid flow, as well as the complex coupling between these three processes. The mechanical creep closure code SANCHO was used to simulate the closure of a single, perfectly sealed disposal room filled with water and backfill. SANCHO uses constitutive models to describe salt creep, waste consolidation, and backfill consolidation, Five different gas-generation rate histories were simulated, differentiated by a rate multiplier, f, which ranged from 0.0 (no gas generation) to 1.0 (expected gas generation under brine-dominated conditions). The results of the SANCHO f-series simulations provide a relationship between gas generation, room closure, and room pressure for a perfectly sealed room. Several methods for coupling this relationship with multiphase fluid flow into and out of a room were examined. Two of the methods are described.

  20. Cathodic protection in oilfield brine

    SciTech Connect (OSTI)

    Turnipseed, S.P. (Chevron U.S.A. Inc., Houston, TX (US))

    1991-12-01T23:59:59.000Z

    In this paper the use of cathodic protection (CP) to mitigate internal and corrosion-related failures that occur in the produced brine phase of oilfield tanks and production vessels is discussed. Unique considerations covered include brine properties, CP system selection, installation details, monitoring, and coatings.

  1. Alternative Electrochemical Salt Waste Forms, Summary of FY11-FY12 Results

    SciTech Connect (OSTI)

    Riley, Brian J.; Mccloy, John S.; Crum, Jarrod V.; Lepry, William C.; Rodriguez, Carmen P.; Windisch, Charles F.; Matyas, Josef; Westman, Matthew P.; Rieck, Bennett T.; Lang, Jesse B.; Olszta, Matthew J.; Pierce, David A.

    2014-03-26T23:59:59.000Z

    The Fuel Cycle Research and Development Program, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is currently investigating alternative waste forms for wastes generated from nuclear fuel processing. One such waste results from an electrochemical separations process, called the “Echem” process. The Echem process utilizes a molten KCl-LiCl salt to dissolve the fuel. This process results in a spent salt containing alkali, alkaline earth, lanthanide halides and small quantities of actinide halides, where the primary halide is chloride with a minor iodide fraction. Pacific Northwest National Laboratory (PNNL) is concurrently investigating two candidate waste forms for the Echem spent-salt: high-halide minerals (i.e., sodalite and cancrinite) and tellurite (TeO2)-based glasses. Both of these candidates showed promise in fiscal year (FY) 2009 and FY2010 with a simplified nonradioactive simulant of the Echem waste. Further testing was performed on these waste forms in FY2011 and FY2012 to assess the possibility of their use in a sustainable fuel cycle. This report summarizes the combined results from FY2011 and FY2012 efforts.

  2. SPR salt wall leaching experiments in lab-scale vessel : data report.

    SciTech Connect (OSTI)

    Webb, Stephen Walter; O'Hern, Timothy John; Hartenberger, Joel David

    2010-10-01T23:59:59.000Z

    During cavern leaching in the Strategic Petroleum Reserve (SPR), injected raw water mixes with resident brine and eventually interacts with the cavern salt walls. This report provides a record of data acquired during a series of experiments designed to measure the leaching rate of salt walls in a labscale simulated cavern, as well as discussion of the data. These results should be of value to validate computational fluid dynamics (CFD) models used to simulate leaching applications. Three experiments were run in the transparent 89-cm (35-inch) ID diameter vessel previously used for several related projects. Diagnostics included tracking the salt wall dissolution rate using ultrasonics, an underwater camera to view pre-installed markers, and pre- and post-test weighing and measuring salt blocks that comprise the walls. In addition, profiles of the local brine/water conductivity and temperature were acquired at three locations by traversing conductivity probes to map out the mixing of injected raw water with the surrounding brine. The data are generally as expected, with stronger dissolution when the salt walls were exposed to water with lower salt saturation, and overall reasonable wall shape profiles. However, there are significant block-to-block variations, even between neighboring salt blocks, so the averaged data are considered more useful for model validation. The remedial leach tests clearly showed that less mixing and longer exposure time to unsaturated water led to higher levels of salt wall dissolution. The data for all three tests showed a dividing line between upper and lower regions, roughly above and below the fresh water injection point, with higher salt wall dissolution in all cases, and stronger (for remedial leach cases) or weaker (for standard leach configuration) concentration gradients above the dividing line.

  3. PII S0016-7037(01)00901-2 Effect of light and brine shrimp on skeletal 13

    E-Print Network [OSTI]

    Grottoli, Andréa G.

    PII S0016-7037(01)00901-2 Effect of light and brine shrimp on skeletal 13 C in the Hawaiian coral, or high concentrations of brine shrimp. Decreases in light from 100% resulted in significant decreases. Increases in brine shrimp concentrations resulted in increased skeletal 13 C levels. This unexpected outcome

  4. Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives

    SciTech Connect (OSTI)

    Elder, H.H.

    2001-07-11T23:59:59.000Z

    The HLW salt waste (salt cake and supernate) now stored at the SRS must be treated to remove insoluble sludge solids and reduce the soluble concentration of radioactive cesium radioactive strontium and transuranic contaminants (principally Pu and Np). These treatments will enable the salt solution to be processed for disposal as saltstone, a solid low-level waste.

  5. Daily results of the initial operation of the Los Alamos salt-gradient solar pond

    SciTech Connect (OSTI)

    Hedstrom, J.C.; Jones, G.F.; Meyer, K.A.

    1983-01-01T23:59:59.000Z

    The results of analysis of the initial data obtained on the Los Alamos National Laboratory salt-gradient solar pond, a 232 m/sup 2/ pond constructed for the primary purpose of studying pond hydrodynamics, are presented. The pond and the data-acquisition system were complete and in full operation by August 14, 1982. By September 21, 1982, the lower convecting zone had reached a temperature of 56/sup 0/C. An energy balance was performed over this period and is presented. Soil conductivity determinations have been made from the data, and the method is discussed. As a result of a leak discovered in the pond in September, a method of determining the leak rate was developed, and the results are included.

  6. EVALUATIONS OF RADIONUCLIDES OF URANIUM, THORIUM, AND RADIUM ASSOCIATED WITH PRODUCED FLUIDS, PRECIPITATES, AND SLUDGES FROM OIL, GAS, AND OILFIELD BRINE INJECTION WELLS IN MISSISSIPPI

    SciTech Connect (OSTI)

    Charles Swann; John Matthews; Rick Ericksen; Joel Kuszmaul

    2004-03-01T23:59:59.000Z

    Naturally occurring radioactive materials (NORM) are known to be produced as a byproduct of hydrocarbon production in Mississippi. The presence of NORM has resulted in financial losses to the industry and continues to be a liability as the NORM-enriched scales and scale encrusted equipment is typically stored rather than disposed of. Although the NORM problem is well known, there is little publically available data characterizing the hazard. This investigation has produced base line data to fill this informational gap. A total of 329 NORM-related samples were collected with 275 of these samples consisting of brine samples. The samples were derived from 37 oil and gas reservoirs from all major producing areas of the state. The analyses of these data indicate that two isotopes of radium ({sup 226}Ra and {sup 228}Ra) are the ultimate source of the radiation. The radium contained in these co-produced brines is low and so the radiation hazard posed by the brines is also low. Existing regulations dictate the manner in which these salt-enriched brines may be disposed of and proper implementation of the rules will also protect the environment from the brine radiation hazard. Geostatistical analyses of the brine components suggest relationships between the concentrations of {sup 226}Ra and {sup 228}Ra, between the Cl concentration and {sup 226}Ra content, and relationships exist between total dissolved solids, BaSO{sub 4} saturation and concentration of the Cl ion. Principal component analysis points to geological controls on brine chemistry, but the nature of the geologic controls could not be determined. The NORM-enriched barite (BaSO{sub 4}) scales are significantly more radioactive than the brines. Leaching studies suggest that the barite scales, which were thought to be nearly insoluble in the natural environment, can be acted on by soil microorganisms and the enclosed radium can become bioavailable. This result suggests that the landspreading means of scale disposal should be reviewed. This investigation also suggests 23 specific components of best practice which are designed to provide a guide to safe handling of NORM in the hydrocarbon industry. The components of best practice include both worker safety and suggestions to maintain waste isolation from the environment.

  7. Determination of imidazoline and amido-amine type corrosion inhibitors in both crude oil and produced brine from oilfield production

    SciTech Connect (OSTI)

    Matherly, R.M.; Jiao, J. [Baker Performance Chemicals, Houston, TX (United States); Blumer, D.J. [ARCO Alaska Inc., Anchorage, AK (United States); Ryman, J.S. [Baker Performance Chemicals, Anchorage, AK (United States)

    1995-12-01T23:59:59.000Z

    The classical method for the determination of corrosion inhibitors in oilfield brines is the dye transfer method. Within this method are many variations which the analyst may use to determine the amount of corrosion inhibitor in either water or crude oil. These methods, however, suffer from many interferences which result in both false positive and negatives for corrosion inhibitor content. These methods essentially detect all amines as corrosion inhibitors. Improved high pressure liquid chromatography (HPLC) methods have been developed for the analysis of quaternary salt type corrosion inhibitors in brine waters, however, these methods do not appear to work in crude oil or for other forms of corrosion inhibitors such as the imidazolines, and amido-amines. This paper presents a method for the quantitative analysis of the imidazoline and amido-amine type corrosion inhibitors in both oilfield water and crude oil samples by HPLC. The corrosion inhibitor of interest is first separated from the matrix on a small column, then derivatized to form a product which is both sensitive and selective on a fluorescence detector. Detection limits for imidazolines are around 0.2 mg/L, amides and amines are similar. The advantage of this procedure is it can be used to determine the amount of corrosion inhibitor in both oil and brine water phases as well as on solid surfaces.

  8. RESULTS OF ANALYSES OF MACROBATCH 3 DECONTAMINATED SALT SOLUTION (DSS) COALESCER AND PRE-FILTERS

    SciTech Connect (OSTI)

    Peters, T.; Fondeur, F.; Fink, S.

    2012-06-13T23:59:59.000Z

    SRNL analyzed the pre-filter and Decontamination Salt Solution (DSS) coalescer from MCU by several analytical methods. The results of these analyses indicate that overall there is light to moderate solids fouling of both the coalescer and pre-filter elements. The majority of the solids contain aluminum, sodium, silicon, and titanium, in oxide and/or hydroxide forms that we have noted before. The titanium is presumably precipitated from leached, dissolved monosodium titanate (MST) or fines from MST at ARP, and the quantity we find is significantly greater than in the past. A parallel report discusses potential causes for the increased leaching rate of MST, showing that increases in free hydroxide concentration of the feed solutions and of chemical cleaning solutions lead to faster leaching of titanium.

  9. CHEMISTRY OF SILICA IN CERRO PRIETO BRINES

    E-Print Network [OSTI]

    Weres, O.

    2012-01-01T23:59:59.000Z

    chemistry of silica in Cerro Prieto brine may profitably be14 mg·l-1 AND SYNTHFTIC CERRO PRIETO BRINES High Ca We112Q.by the CFE Laboratory at Cerro Prieto and kindly provided to

  10. Expected environments in high-level nuclear waste and spent fuel repositories in salt

    SciTech Connect (OSTI)

    Claiborne, H.C.; Rickertsen, L.D., Graham, R.F.

    1980-08-01T23:59:59.000Z

    The purpose of this report is to describe the expected environments associated with high-level waste (HLW) and spent fuel (SF) repositories in salt formations. These environments include the thermal, fluid, pressure, brine chemistry, and radiation fields predicted for the repository conceptual designs. In this study, it is assumed that the repository will be a room and pillar mine in a rock-salt formation, with the disposal horizon located approx. 2000 ft (610 m) below the surface of the earth. Canistered waste packages containing HLW in a solid matrix or SF elements are emplaced in vertical holes in the floor of the rooms. The emplacement holes are backfilled with crushed salt or other material and sealed at some later time. Sensitivity studies are presented to show the effect of changing the areal heat load, the canister heat load, the barrier material and thickness, ventilation of the storage room, and adding a second row to the emplacement configuration. The calculated thermal environment is used as input for brine migration calculations. The vapor and gas pressure will gradually attain the lithostatic pressure in a sealed repository. In the unlikely event that an emplacement hole will become sealed in relatively early years, the vapor space pressure was calculated for three scenarios (i.e., no hole closure - no backfill, no hole closure - backfill, and hole closure - no backfill). It was assumed that the gas in the system consisted of air and water vapor in equilibrium with brine. A computer code (REPRESS) was developed assuming that these changes occur slowly (equilibrium conditions). The brine chemical environment is outlined in terms of brine chemistry, corrosion, and compositions. The nuclear radiation environment emphasized in this report is the stored energy that can be released as a result of radiation damage or crystal dislocations within crystal lattices.

  11. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    SciTech Connect (OSTI)

    David B. Burnett

    2004-09-29T23:59:59.000Z

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  12. Brine release based on structural calculations of damage around an excavation at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Munson, D.E.; Jensen, A.L.; Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States); DeVries, K.L. [RE/SPEC, Inc., Rapid City, SD (United States)

    1996-02-01T23:59:59.000Z

    In a large in situ experimntal circular room, brine inflow was measured over 5 years. After correcting for evaporation losses into mine ventilation air, the measurements gave data for a period of nearly 3 years. Predicted brine accumulation based on a mechanical ``snow plow`` model of the volume swept by creep-induced damage as calculated with the Multimechanism Deformation Coupled Fracture model was found to agree with experiment. Calculation suggests the damage zone at 5 years effectively exends only some 0.7 m into the salt around the room. Also, because the mecahnical model of brine release gives an adequate explanation of the measured data, the hydrological process of brine flow appears to be rapid compared to the mechanical process of brine release.

  13. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION MST, ESS AND PODD SAMPLES

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2012-04-24T23:59:59.000Z

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 5 processing. This qualification material was a composite created from recent samples from Tank 21H and archived samples from Tank 49H to match the projected blend from these two tanks. Additionally, samples of the composite were used in the Actinide Removal Process (ARP) and extraction-scrub-strip (ESS) tests. ARP and ESS test results met expectations. A sample from Tank 21H was also analyzed for the Performance Objectives Demonstration Document (PODD) requirements. SRNL was able to meet all of the requirements, including the desired detection limits for all the PODD analytes. This report details the results of the Actinide Removal Process (ARP), Extraction-Scrub-Strip (ESS) and Performance Objectives Demonstration Document (PODD) samples of Macrobatch (Salt Batch) 5 of the Integrated Salt Disposition Program (ISDP).

  14. Sample results from the integrated salt disposition program macrobatch 6 tank 21H qualifications MST solids sample

    SciTech Connect (OSTI)

    Peters, T. B.

    2013-02-26T23:59:59.000Z

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 6 processing. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake. The results of these analyses are reported and are within historical precedent.

  15. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McLing, Travis; Smith, William; Smith, Robert

    2014-01-01T23:59:59.000Z

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO?-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at amore »proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO?. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO? will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO? driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ reservoir conditions. Our research has shown that the REE signature imparted to the formation fluid by the introduction of CO? to the formation, can be measured and tracked as part of an MMV program. Additionally, this REE fingerprint may serve as an ideal tracer for fluid migration, both within the CCS target formation, and should formation fluids migrate into overlying aquifers. However application of REE and other trace elements to CCS system is complicated by the high salt content of the brines contained within the target formations. In the United States by regulation, in order for a geologic reservoir to be considered suitable for carbon storage, it must contain formation brine with total dissolved solids (TDS) > 10,000 ppm, and in most cases formation brines have TDS well in excess of that threshold. The high salinity of these brines creates analytical problems for elemental analysis, including element interference with trace metals in Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) (i.e. element mass overlap due to oxide or plasma phenomenon). Additionally, instruments like the ICP-MS that are sensitive enough to measure trace elements down to the parts per trillion level are quickly oversaturated when water TDS exceeds much more than 1,000 ppm. Normally this problem is dealt with through dilution of the sample, bringing the water chemistry into the instruments working range. However, dilution is not an option when analyzing these formation brines for trace metals, because trace elements, specifically the REE, which occur in aqueous solutions at the parts per trillion levels. Any dilution of the sample would make REE detection impossible. Therefore, the ability to use trace metals as in situ natural tracers in high TDS brines environments requires the development of methods for pre-concentrating trace elements, while reducing the salinity and associated elemental interference such that the brines can be routinely analyzed by standard ICP-MS methods. As part of the Big Sky Carbon Sequestration Project the INL-CAES has developed a rapid, easy to use proces

  16. Recovery of energy from geothermal brine and other hot water sources

    DOE Patents [OSTI]

    Wahl, III, Edward F. (Claremont, CA); Boucher, Frederic B. (San Juan Capistrano, CA)

    1981-01-01T23:59:59.000Z

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  17. Improved Water Flooding through Injection Brine Modification

    SciTech Connect (OSTI)

    Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman; (U of Wyoming)

    2003-01-01T23:59:59.000Z

    Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

  18. Integral Fluxes, Day-Night, and Spectrum Results from SNO's 391-Day Salt Phase

    E-Print Network [OSTI]

    Juergen Wendland; for the SNO collaboration

    2005-07-12T23:59:59.000Z

    The Sudbury Neutrino Observatory is a 1000t heavy water Cherenkov detector observing neutrinos from the Sun and other astrophysical sources. Measurements of the integral solar neutrino fluxes of charged current, neutral current and elastic scattering events are reported for 391 days of live data from the salt phase of SNO operation. In this phase 2t of salt were dissolved in the heavy water, which enhanced and differentiated the detection of neutral current events. Day-night asymmetries in these fluxes were also determined. The measured electron spectrum from the charged-current channel is compatible with the undistorted spectrum of the solar 8B neutrino flux.

  19. Revised results for geomechanical testing of MRIG-9 core for the potential SPR siting at the Richton Salt Dome.

    SciTech Connect (OSTI)

    Broome, Scott Thomas; Bauer, Stephen J.

    2010-02-01T23:59:59.000Z

    This report is a revision of SAND2009-0852. SAND2009-0852 was revised because it was discovered that a gage used in the original testing was mis-calibrated. Following the recalibration, all affected raw data were recalculated and re-presented. Most revised data is similar to, but slightly different than, the original data. Following the data re-analysis, none of the inferences or conclusions about the data or site relative to the SAND2009-0852 data have been changed. A laboratory testing program was developed to examine the mechanical behavior of salt from the Richton salt dome. The resulting information is intended for use in design and evaluation of a proposed Strategic Petroleum Reserve storage facility in that dome. Core obtained from the drill hole MRIG-9 was obtained from the Texas Bureau of Economic Geology. Mechanical properties testing included: (1) acoustic velocity wave measurements; (2) indirect tensile strength tests; (3) unconfined compressive strength tests; (4) ambient temperature quasi-static triaxial compression tests to evaluate dilational stress states at confining pressures of 725, 1450, 2175, and 2900 psi; and (5) confined triaxial creep experiments to evaluate the time-dependent behavior of the salt at axial stress differences of 4000 psi, 3500 psi, 3000 psi, 2175 psi and 2000 psi at 55 C and 4000 psi at 35 C, all at a constant confining pressure of 4000 psi. All comments, inferences, discussions of the Richton characterization and analysis are caveated by the small number of tests. Additional core and testing from a deeper well located at the proposed site is planned. The Richton rock salt is generally inhomogeneous as expressed by the density and velocity measurements with depth. In fact, we treated the salt as two populations, one clean and relatively pure (> 98% halite), the other salt with abundant (at times) anhydrite. The density has been related to the insoluble content. The limited mechanical testing completed has allowed us to conclude that the dilatational criteria are distinct for the halite-rich and other salts, and that the dilation criteria are pressure dependent. The indirect tensile strengths and unconfined compressive strengths determined are consistently lower than other coastal domal salts. The steady-state-only creep model being developed suggests that Richton salt is intermediate in creep resistance when compared to other domal and bedded salts. The results of the study provide only limited information for structural modeling needed to evaluate the integrity and safety of the proposed cavern field. This study should be augmented with more extensive testing. This report documents a series of test methods, philosophies, and empirical relationships, etc., that are used to define and extend our understanding of the mechanical behavior of the Richton salt. This understanding could be used in conjunction with planned further studies or on its own for initial assessments.

  20. Alternative Electrochemical Salt Waste Forms, Summary of FY/CY2011 Results

    SciTech Connect (OSTI)

    Riley, Brian J.; McCloy, John S.; Crum, Jarrod V.; Rodriguez, Carmen P.; Windisch, Charles F.; Lepry, William C.; Matyas, Josef; Westman, Matthew P.; Rieck, Bennett T.; Lang, Jesse B.; Pierce, David A.

    2011-12-01T23:59:59.000Z

    This report summarizes the 2011 fiscal+calendar year efforts for developing waste forms for a spent salt generated in reprocessing nuclear fuel with an electrochemical separations process. The two waste forms are tellurite (TeO2-based) glasses and sol-gel-derived high-halide mineral analogs to stable minerals found in nature.

  1. In situ measurements of rock salt permeability changes due to nearby excavation

    SciTech Connect (OSTI)

    Stormont, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Howard, C.L. (RE/SPEC, Inc., Carlsbad, NM (United States)); Daemen, J.J.K. (Nevada Univ., Reno, NV (United States). Mackay School of Mines)

    1991-07-01T23:59:59.000Z

    The Small-Scale Mine-By was an in situ experiment to measure changes in brine and gas permeability of rock salt as a result of nearby excavation. A series of small-volume pressurized brine- and gas-filled test intervals were established 8 m beneath the floor of Room L1 in the WIPP underground. The test intervals were isolated in the bottom of the 4.8-cm diameter monitoring boreholes with inflatable rubber packers, and are initially pressurized to about 2 MPa. Both brine- and gas-filled test intervals were located 1.25, 1.5, 2, 3, and 4 r from the center of a planned large-diameter hole, where r is the radius of the large-diameter hole. Prior to the drilling of the large-diameter borehole, the responses of both the brine- and gas-filled test intervals were consistent with the formation modeled as a very low permeability, low porosity porous medium with a significant pore (brine) pressure and no measurable gas permeability. The drilling of the mine-by borehole created a zone of dilated, partially saturated rock out to about 1.5 r. The formation pressure increases from near zero at 1.5 r to the pre-excavation value at 4 r. Injection tests reveal a gradient of brine permeabilities from 5 {times} 10{sup {minus}18} m{sup 2} at 1.25 r to about the pre-excavation value (10{sup {minus}21} m{sup 2}) by 3 r. Gas-injection tests reveal measurable gas permeability is limited to within 1.5 r. 17 refs., 24 figs., 6 tabs.

  2. West Hackberry Strategic Petroleum Reserve site brine disposal monitoring, Year I report. Volume V. Supporting data for estuarine hydrology, discharge plume analysis, chemical oceanography, biological oceanography, and data management. Final report

    SciTech Connect (OSTI)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01T23:59:59.000Z

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume V contains appendices for the following: supporting data for estuarine hydrology and hydrography; supporting data analysis of discharge plume; supporting data for water and sediment chemistry; CTD/DO and pH profiles during biological monitoring; supporting data for nekton; and supporting data for data management.

  3. Development Operations Hypersaline Geothermal Brine Utilization...

    Open Energy Info (EERE)

    Hypersaline Geothermal Brine Utilization Imperial County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development Operations Hypersaline...

  4. Chemistry of Silica in Cerro Prieto Brines

    E-Print Network [OSTI]

    Weres, Oleh

    2012-01-01T23:59:59.000Z

    LBL-10166 CERRO-PRIETO-12 XICAN-AMERICANCOOPERATIVE' PROGRAM T THE CERRO PRIETO GEOTHERMAL FIELD ICHEMISTRY OF SILICA IN CERRO PRIETO BRINES Oleh Weres Leon

  5. Chemistry of Silica in Cerro Prieto Brines

    E-Print Network [OSTI]

    Weres, O.

    2010-01-01T23:59:59.000Z

    LBL-10166 CERRO-PRIETO-12 XICAN-AMERICANCOOPERATIVE' PROGRAM T THE CERRO PRIETO GEOTHERMAL FIELD ICHEMISTRY OF SILICA IN CERRO PRIETO BRINES Oleh Weres Leon

  6. Results From The Salt Disposition Project Next Generation Solvent Demonstration Plan

    SciTech Connect (OSTI)

    Peters, T. B.; Fondeur, F. F.; Taylor-Pashow, K. M.L.

    2014-04-02T23:59:59.000Z

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Solvent Hold Tank (SHT) samples were taken throughout the Next Generation Solvent (NGS) Demonstration Plan. These samples were analyzed and the results are reported. SHT: The solvent behaved as expected, with no bulk changes in the composition over time, with the exception of the TOA and TiDG. The TiDG depletion is higher than expected, and consideration must be taken on the required rate of replenishment. Monthly sampling of the SHT is warranted. If possible, additional SHT samples for TiDG analysis (only) would help SRNL refine the TiDG degradation model. CWT: The CWT samples show the expected behavior in terms of bulk chemistry. The 137Cs deposited into the CWT varies somewhat, but generally appears to be lower than during operations with the BOBCalix solvent. While a few minor organic components were noted to be present in the Preliminary sample, at this time these are thought to be artifacts of the sample preparation or may be due to the preceding solvent superwash. DSSHT: The DSSHT samples show the predicted bulk chemistry, although they point towards significant dilution at the front end of the Demonstration. The 137Cs levels in the DSSHT are much lower than during the BOBCalix operations, which is the expected observation. SEHT: The SEHT samples represent the most different output of all four of the outputs from MCU. While the bulk chemistry is as expected, something is causing the pH of the SEHT to be higher than what would be predicted from a pure stream of 0.01 M boric acid. There are several possible different reasons for this, and SRNL is in the process of investigating. Other than the pH issue, the SEHT is as predicted. In summary, the NGS Demonstration Plan samples indicate that the MCU system, with the Blend Solvent, is operating as expected. The only issue of concern regards the pH of the SEHT, and SRNL is in the process of investigating this. SRNL results support the transition to routine operations.

  7. A route to explain water anomalies from results on an aqueous solution of salt

    E-Print Network [OSTI]

    D. Corradini; M. Rovere; P. Gallo

    2010-03-26T23:59:59.000Z

    In this paper we investigate the possibility to detect the hypothesized liquid-liquid critical point of water in supercooled aqueous solutions of salts. Molecular dynamics computer simulations are conducted on bulk TIP4P water and on an aqueous solution of sodium chloride in TIP4P water, with concentration c = 0.67 mol/kg. The liquid-liquid critical point is found both in the bulk and in the solution. Its position in the thermodynamic plane shifts to higher temperature and lower pressure for the solution. Comparison with available experimental data allowed us to produce the phase diagrams of both bulk water and the aqueous solution as measurable in experiments. Given the position of the liquid-liquid critical point in the solution as obtained from our simulations, the experimental determination of the hypothesized liquid-liquid critical point of water in aqueous solutions of salts appears possible.

  8. Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L. II

    2013-08-08T23:59:59.000Z

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 7 for the Interim Salt Disposition Program (ISDP). An ARP and several ESS tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP/MCU. No issues with the projected Salt Batch 7 strategy are identified, other than the presence of visible quantities of dark colored solids. A demonstration of the monosodium titanate (0.2 g/L) removal of strontium and actinides provided acceptable 4 hour average decontamination factors for Pu and Sr of 3.22 and 18.4, respectively. The Four ESS tests also showed acceptable behavior with distribution ratios (D(Cs)) values of 15.96, 57.1, 58.6, and 65.6 for the MCU, cold blend, hot blend, and Next Generation Solvent (NGS), respectively. The predicted value for the MCU solvent was 13.2. Currently, there are no models that would allow a prediction of extraction behavior for the other three solvents. SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed. While no outstanding issues were noted, the presence of solids in the samples should be investigated in future work. It is possible that the solids may represent a potential reservoir of material (such as potassium) that could have an impact on MCU performance if they were to dissolve back into the feed solution. This salt batch is intended to be the first batch to be processed through MCU entirely using the new NGS-MCU solvent.

  9. New Energy Efficient Method for Cleaning Oilfield Brines with Carbon Dioxide 

    E-Print Network [OSTI]

    Little, C. T.; Seibert, A. F.; Bravo, J. L.; Fair, J. R.

    1991-01-01T23:59:59.000Z

    Water contaminated with hydrocarbons often results during the production of oil. The polluted water, which may be naturally occurring or a result of water or steam flooding operations, must be cleaned before disposal or re-injection. These brines...

  10. Multiphase Flow and Cavern Abandonment in Salt

    SciTech Connect (OSTI)

    Ehgartner, Brian; Tidwell, Vince

    2001-02-13T23:59:59.000Z

    This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment

  11. Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification MST Solids Sample

    SciTech Connect (OSTI)

    Washington, A. L. II; Peters, T. B.

    2013-09-19T23:59:59.000Z

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 7 processing. The Marcrobatch 7 material was received with visible fine particulate solids, atypical for these samples. The as received material was allowed to settle for a period greater than 24 hours. The supernatant was then decanted and utilized as our clarified feed material. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test using the clarified feed material. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake after filtration from H-Tank Farm (HTF) feed salt solution. The results of these analyses are reported and are within historical precedent.

  12. THERMAL GRADIENT MIGRATION OF BRINE INCLUSIONS IN SALT

    E-Print Network [OSTI]

    Yagnik, S.K.

    2010-01-01T23:59:59.000Z

    produced by the heat generating waste. The enhanced porosityimposed by the heat generating nuclear waste w i l l

  13. Brine Migration Experimental Studies for Salt Repositories | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future of CSP: ChallengesEnergy For PersonsBrightEnergy

  14. Oil production enhancement through a standardized brine treatment. Final report

    SciTech Connect (OSTI)

    Adewumi, A.; Watson, R.; Tian, S.; Safargar, S.; Heckman, S.; Drielinger, I.

    1995-08-01T23:59:59.000Z

    In order to permit the environmentally safe discharge of brines produced from oil wells in Pennsylvania to the surface waters of the Commonwealth and to rapidly brings as many wells as possible into compliance with the law, the Pennsylvania Oil and Gas Association (POGAM) approached the Pennsylvania State University to develop a program designed to demonstrate that a treatment process to meet acceptable discharge conditions and effluent limitations can be standardized for all potential stripper wells brine discharge. After the initial studies, the first phase of this project was initiated. A bench-scale prototype model was developed for conducting experiments in laboratory conditions. The experiments pursued in the laboratory conditions were focused on the removal of ferrous iron from synthetically made brine. Iron was selected as the primary heavy metals for studying the efficiency of the treatment process. The results of a number of experiments in the lab were indicative of the capability of the proposed brine treatment process in the removal of iron. Concurrent with the laboratory experiments, a comprehensive and extensive kinetic study was initiated. This study was necessary to provide the required data base for process modeling. This study included the investigation of the critical pH as well as the rate and order of reactions of the studied elements: aluminum, lead, zinc, and copper. In the second phase of this project, a field-based prototype was developed to evaluate and demonstrate the treatment process effectiveness. These experiments were conducted under various conditions and included the testing on five brines from different locations with various dissolved constituents. The outcome of this research has been a software package, currently based on iron`s reactivity, to be used for design purposes. The developed computer program was refined as far as possible using the results from laboratory and field experiments.

  15. Radionuclide transport in sandstones with WIPP brine

    SciTech Connect (OSTI)

    Weed, H.C.; Bazan, F.; Fontanilla, J.; Garrison, J.; Rego, J.; Winslow, A.M.

    1981-02-01T23:59:59.000Z

    Retardation factors (R) have been measured for the transport of /sup 3/H, /sup 95m/Tc, and /sup 85/Sr in WIPP brine using St. Peter, Berea, Kayenta, and San Felipe sandstone cores. If tritium is assumed to have R=1, /sup 95m/Tc has R=1.0 to 1.3 and therefore is essentially not retarded. Strontium-85 has R = 1.0 to 1.3 on St. Peter, Berea, and Kayenta, but R=3 on San Felipe. This is attributed to sorption on the matrix material of San Felipe, which has 45 volume % matrix compared with 1 to 10 volume % for the others. Retardation factors (R/sub s/) for /sup 85/Sr calculated from static sorption measurements are unity for all the sandstones. Therefore, the static and transport results for /sup 85/Sr disagree in the case of San Felipe, but agree for St. Peter, Berea, and Kayenta.

  16. Conditioning matrices from high level waste resulting from pyrochemical processing in fluorine salt

    SciTech Connect (OSTI)

    Grandjean, Agnes; Advocat, Thierry; Bousquet, Nicolas [SCDV - Service de Confinement des Dechets et Vitrification - Laboratoire d'Etudes de Base sur les Verres, CEA Valrho, Centre de Marcoule, 30207 Bagnols sur Ceze (France); Jegou, Christophe [SECM - Service d'Etude du Confinement et Materiaux - Laboratoire des Materiaux et Procedes Actifs - CEA Valrho, Centre de Marcoule, 30207 Bagnols sur Ceze (France)

    2007-07-01T23:59:59.000Z

    Separating the actinides from the fission products through reductive extraction by aluminium in a LiF/AlF{sub 3} medium is a process investigated for pyrometallurgical reprocessing of spent fuel. The process involves separation by reductive salt-metal extraction. After dissolving the fuel or the transmutation target in a salt bath, the noble metal fission products are first extracted by contacting them with a slightly reducing metal. After extracting the metal fission products, then the actinides are selectively separated from the remaining fission products. In this hypothesis, all the unrecoverable fission products would be conditioned as fluorides. Therefore, this process will generate first a metallic waste containing the 'reducible' fission products (Pd, Mo, Ru, Rh, Tc, etc.) and a fluorine waste containing alkali-metal, alkaline-earth and rare earth fission products. Immobilization of these wastes in classical borosilicate glasses is not feasible due to the very low solubility of noble metals, and of fluoride in these hosts. Alternative candidates have therefore been developed including silicate glass/ceramic system for fluoride fission products and metallic ones for noble metal fission products. These waste-forms were evaluated for their confinement properties like homogeneity, waste loading, volatility during the elaboration process, chemical durability, etc. using appropriate techniques. (authors)

  17. Geochemistry of Aluminum in High Temperature Brines

    SciTech Connect (OSTI)

    Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.

    1999-05-18T23:59:59.000Z

    The objective ofthis research is to provide quantitative data on the equilibrium and thermodynamic properties of aluminum minerals required to model changes in permeability and brine chemistry associated with fluid/rock interactions in the recharge, reservoir, and discharge zones of active geothermal systems. This requires a precise knowledge of the thermodynamics and speciation of aluminum in aqueous brines, spanning the temperature and fluid composition rangesencountered in active systems. The empirical and semi-empirical treatments of the solubility/hydrolysis experimental results on single aluminum mineral phases form the basis for the ultimate investigation of the behavior of complex aluminosilicate minerals. The principal objective in FY 1998 was to complete the solubility measurements on boehmite (AIOOH) inNaC1 media( 1 .O and 5.0 molal ionic strength, IOO-250°C). However, additional measurements were also made on boehmite solubility in pure NaOH solutions in order to bolster the database for fitting in-house isopiestic data on this system. Preliminary kinetic Measurements of the dissolution/precipitation of boehmite was also carried out, although these were also not planned in the earlier objective. The 1999 objectives are to incorporate these treatments into existing codes used by the geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.

  18. Results Of Routine Strip Effluent Hold Tank And Decontaminated Salt Solution Hold Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 5 Operations

    SciTech Connect (OSTI)

    Peters, T. B.; Fondeur, F. F.

    2013-04-30T23:59:59.000Z

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 5 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 4 samples indicate generally consistent operations. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in the Actinide Removal process (ARP).

  19. Analysis of anions in geological brines using ion chromatography

    SciTech Connect (OSTI)

    Merrill, R.M.

    1985-03-01T23:59:59.000Z

    Ion chromatographic procedures for the determination of the anions bromide, sulfate, nitrite, nitrate, phosphate, and iodide in brine samples have been developed and are described. The techniques have been applied to the analysis of natural brines, and geologic evaporites. Sample matrices varied over a range from 15,000 mg/L to 200,000 mg/L total halogens, nearly all of which is chloride. The analyzed anion concentrations ranged from less than 5 mg/L in the cases of nitrite, nitrate, and phosphate, to 20,000 mg/L in the case of sulfate. A technique for suppressing chloride and sulfate ions to facilitate the analysis of lower concentration anions is presented. Analysis times are typically less than 20 minutes for each procedure and the ion chromatographic results compare well with those obtained using more time consuming classical chemical analyses. 10 references, 14 figures.

  20. Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot...

    Office of Environmental Management (EM)

    Design, and Operation Summary Results for Brine Migration Modeling Performed by LANL, LBNL and SNL for the Used Fuel Disposition Program Establishing the Technical Basis for...

  1. Numerical simulations of lab-scale brine-water mixing experiments.

    SciTech Connect (OSTI)

    Khalil, Imane; Webb, Stephen Walter

    2006-10-01T23:59:59.000Z

    Laboratory-scale experiments simulating the injection of fresh water into brine in a Strategic Petroleum Reserve (SPR) cavern were performed at Sandia National Laboratories for various conditions of injection rate and small and large injection tube diameters. The computational fluid dynamic (CFD) code FLUENT was used to simulate these experiments to evaluate the predictive capability of FLUENT for brine-water mixing in an SPR cavern. The data-model comparisons show that FLUENT simulations predict the mixing plume depth reasonably well. Predictions of the near-wall brine concentrations compare very well with the experimental data. The simulated time for the mixing plume to reach the vessel wall was underpredicted for the small injection tubes but reasonable for the large injection tubes. The difference in the time to reach the wall is probably due to the three-dimensional nature of the mixing plume as it spreads out at the air-brine or oil-brine interface. The depth of the mixing plume as it spreads out along the interface was within a factor of 2 of the experimental data. The FLUENT simulation results predict the plume mixing accurately, especially the water concentration when the mixing plume reaches the wall. This parameter value is the most significant feature of the mixing process because it will determine the amount of enhanced leaching at the oil-brine interface.

  2. Retrospective salt tectonics

    SciTech Connect (OSTI)

    Jackson, M.P.A. [Univ. of Texas, Austin, TX (United States)

    1996-12-31T23:59:59.000Z

    The conceptual breakthroughs in understanding salt tectonics can be recognized by reviewing the history of salt tectonics, which divides naturally into three parts: the pioneering era, the fluid era, and the brittle era. The pioneering era (1856-1933) featured the search for a general hypothesis of salt diapirism, initially dominated by bizarre, erroneous notions of igneous activity, residual islands, in situ crystallization, osmotic pressures, and expansive crystallization. Gradually data from oil exploration constrained speculation. The effects of buoyancy versus orogeny were debated, contact relations were characterized, salt glaciers were discovered, and the concepts of downbuilding and differential loading were proposed as diapiric mechanisms. The fluid era (1933-{approximately}1989) was dominated by the view that salt tectonics resulted from Rayleigh-Taylor instabilities in which a dense fluid overburden having negligible yield strength sinks into a less dense fluid salt layer, displacing it upward. Density contrasts, viscosity contrasts, and dominant wavelengths were emphasized, whereas strength and faulting of the overburden were ignored. During this era, palinspastic reconstructions were attempted; salt upwelling below thin overburdens was recognized; internal structures of mined diapirs were discovered; peripheral sinks, turtle structures, and diapir families were comprehended; flow laws for dry salt were formulated; and contractional belts on divergent margins and allochthonous salt sheets were recognized. The 1970s revealed the basic driving force of salt allochthons, intrasalt minibasins, finite strains in diapirs, the possibility of thermal convection in salt, direct measurement of salt glacial flow stimulated by rainfall, and the internal structure of convecting evaporites and salt glaciers. The 1980`s revealed salt rollers, subtle traps, flow laws for damp salt, salt canopies, and mushroom diapirs.

  3. Portable brine evaporator unit, process, and system

    DOE Patents [OSTI]

    Hart, Paul John (Indiana, PA); Miller, Bruce G. (State College, PA); Wincek, Ronald T. (State College, PA); Decker, Glenn E. (Bellefonte, PA); Johnson, David K. (Port Matilda, PA)

    2009-04-07T23:59:59.000Z

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  4. Batteries from Brine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from Brine March 31, 2014

  5. Selection and durability of seal materials for a bedded salt repository: preliminary studies

    SciTech Connect (OSTI)

    Roy, D.M.; Grutzeck, M.W.; Wakeley, L.D.

    1983-11-01T23:59:59.000Z

    This report details preliminary results of both experimental and theoretical studies of cementitious seal materials for use in a proposed nuclear waste repository in bedded salt. Effects of changes in bulk composition and environment upon phase stability and physical/mechanical properties have been evaluated for more than 25 formulations. Bonding and interfacial characteristics of the region between host rock and seal material or concrete aggregate and cementitious matrix for selected formulations have been studied. Compatibilities of clays and zeolites in brines typical of the SE New Mexico region have been investigated, and their stabilities reviewed. Results of these studies have led to the conclusion that cementitious materials can be formulated which are compatible with the major rock types in a bedded salt repository environment. Strengths are more than adequate, permeabilities are consistently very low, and elastic moduli generally increase only very slightly with time. Seal formulation guidelines and recommendations for present and future work are presented. 73 references, 25 figures, 61 tables.

  6. Developing a Process for Commercial Silica Production from Geothermal Brines

    SciTech Connect (OSTI)

    Bourcier, W; Martin, S; Viani, B; Bruton, C

    2001-04-11T23:59:59.000Z

    Useful mineral by-products can be produced from geothermal brines. Although silica has many commercial uses, problems remain in producing a marketable product. We are conducting laboratory and modeling studies aimed at optimizing for rubber additive use, the properties of silica precipitates from Salton Sea and Coso-like geothermal fluids, Our goal is to develop a robust technique for producing silicas that have desirable physical and chemical properties for commercial use, while developing a generic understanding of silica precipitation that will allow extraction to be extended to additional fluid types, and to be easily modified to produce new types of marketable silica. Our experiments start with an acidified geothermal fluid similar to those treated by pH modification technology. Silica precipitation is induced by adding base and/or adding Mg or Ca salts to affect the nature of the precipitate. For the analog Salton Sea fluids, adding base alone caused silica to precipitate fairly rapidly. To date, we have characterized precipitates from experiments in which the final pH varied from 4 to 8, where NaOH and Na{sub 2}C0{sub 3} were added as bases, and CaCl{sub 2} and MgCl{sub 2} were added as salts. SEM photos of the silica precipitates from the Salton Sea and Cos0 fluids show that the silica particles are clusters of smaller silica particles down to the resolution of the SEM (about 80-100 nm in diameter). The particle sizes and surface areas of silicas from the Salton Sea and Coso analog brines are similar to the properties of the Degussa silica commonly used as a rubber additive. An evaluation of the strength of the silica-organic bond as tested by dispersion in oil (polybutadiene) was inconclusive. Neither the Degussa materials nor our laboratory precipitates dispersed readily in nor dispersed down to the fundamental particle size. Preliminary NMR data indicates that the Degussa silica has a smaller degree of silica polymerization (a slightly smaller average number of Si-0 bonds per silica tetrahedron) than the synthetic samples, but a comparable degree of hydrogen bonding of the surface silanol sites.

  7. Dosimetry using silver salts

    DOE Patents [OSTI]

    Warner, Benjamin P. (Los Alamos, NM)

    2003-06-24T23:59:59.000Z

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  8. RESULTS OF THE EXTRACTION-SCRUB-STRIP TESTING USING AN IMPROVED SOLVENT FORMULATION AND SALT WASTE PROCESSING FACILITY SIMULATED WASTE

    SciTech Connect (OSTI)

    Peters, T.; Washington, A.; Fink, S.

    2012-01-09T23:59:59.000Z

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D{sub Cs} in an ESS test, using the baseline solvent formulation and the typical waste feed, is {approx}15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under construction, will use the same process chemistry. The Office of Waste Processing (EM-31) expressed an interest in investigating the further optimization of the organic solvent by replacing the BoBCalixC6 extractant with a more efficient extractant. This replacement should yield dividends in improving cesium removal from the caustic waste stream, and in the rate at which the caustic waste can be processed. To that end, EM-31 provided funding for both the Savannah River National Laboratory (SRNL) and the Oak Ridge National Laboratory (ORNL). SRNL wrote a Task Technical Quality and Assurance Plan for this work. As part of the envisioned testing regime, it was decided to perform an ESS test using a simulated waste that simulated a typical envisioned SWPF feed, but with added potassium to make the waste more challenging. Potassium interferes in the cesium removal, and its concentration is limited in the feed to <1950 mg/L. The feed to MCU has typically contained <500 mg/L of potassium.

  9. Factors affecting properties of pork sausage patties made with reduced salt contents

    E-Print Network [OSTI]

    Matlock, Robert Gerard

    1983-01-01T23:59:59.000Z

    -stability. The relationship between brine content (salt in aqueous phase) and the stability-safety of processed meat products was discussed by Terrell and Brown (1981). Pearson and Wolzak (1982) reported that salt enhances shelf-life by lowering the water activity, thereby...FACTORS AFFECTING PROPERTIES OF PORK SAUSAGE PATTIES MADE WITH REDUCED SALT CONTENTS A Thesis by ROBERT GERARD MATLOCK Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree...

  10. Results of screening activities in salt states prior to the enactment of the Nationall Waste Policy Act

    SciTech Connect (OSTI)

    Carbiener, W.A.

    1983-01-01T23:59:59.000Z

    The identification of potential sites for a nuclear waste repository through screening procedures in the salt states is a well-established, deliberate process. This screening process has made it possible to carry out detailed studies of many of the most promising potential sites, and general studies of all the sites, in anticipation of the siting guidelines specified in the Nuclear Waste Policy Act. The screening work completed prior to the passage of the Act allowed the Secretary of Energy to identify seven salt sites as potentially acceptable under the provisions of Section 116(a) of the Act. These sites were formally identified by letters from Secretary Hodel to the states of Texas, Utah, Mississippi, and Louisiana on February 2, 1983. The potentially acceptable salt sites were in Deaf Smith and Swisher Counties in Texas; Davis and Lavender Canyons in the Gibson Dome location in Utah; Richton and Cypress Creek Domes in Mississippi; and Vacherie Dome in Louisiana. Further screening will include comparison of each potentially acceptable site against disqualification factors and selection of a preferred site in each of the three geohydrologic settings from those remaining, in accordance with the siting guidelines. These steps will be documented in statutory Environmental Assessments prepared for each site to be nominated for detailed characterization. 9 references.

  11. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29T23:59:59.000Z

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

  12. The Breeding Blanket Interface (BBI): Recent results for the solid breeder and the aqueous salt solution blanket concepts

    SciTech Connect (OSTI)

    Clemmer, R.G.; Finn, P.A.; Greenwood, L.R.; Sze, D.K.; Bartlit, J.R.; Sherman, R.; Anderson, J.L.; Yoshida, H.; Naruse, Y.; Enoeda, M.; Okuno, K. (Argonne National Lab., IL (USA); Los Alamos National Lab., NM (USA); Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan))

    1989-10-01T23:59:59.000Z

    The Tritium Systems Test Assembly (TSTA) at Los Alamos is a full-scale facility dedicated to testing tritium processing for fusion reactors. We are involved in a study of adding a Breeder Blanket Interface (BBI) to the TSTA. The BBI is to test the processing required for the tritium output streams for the various fusion reactor breeder blankets. In the current phase of the study, we are evaluating the characteristics of the output from various breeding blankets types. Emphasis is placed on defining the output stream with respect to H/T ratio, impurity content, and radionuclide content. Reported herein is an assessment for two blanket concepts: solid breeder blanket (ceramic, Li{sub 2}O), and aqueous salt solution. 24 refs., 2 figs., 2 tabs.

  13. CO2-Brine Surface Dissolution and Injection: CO2 Storage Enhancement Paul Emeka Eke, SPE, Mark Naylor, Stuart Haszeldine and Andrew Curtis, Scottish Centre for Carbon Storage,

    E-Print Network [OSTI]

    ) is capable of reducing atmospheric emissions of greenhouse gases from coal or gas fired power plants or supercritical phase, as water-alternating gas cycles, or as carbonated brine. These result in different

  14. The feasibility of deep well injection for brine disposal

    E-Print Network [OSTI]

    Spongberg, Martin Edward

    1994-01-01T23:59:59.000Z

    feasibility. The methodology is utilized to make a preliminary evaluation of a proposed brine injection project in the Dove Creek area of King and Stonewall Counties, North Central Texas. Four known deep aquifers are modeled, using the SWIFT/486 software...

  15. acartia tonsa brine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be determined in advance. We estimate the optimal design of an average-sized ice rink, including pipe diameter, depth and brine type (ethylene glycol and ammonia). We also...

  16. Recovery Act: Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine CO2 Sequestration

    SciTech Connect (OSTI)

    Goddard, William

    2012-11-30T23:59:59.000Z

    To further our understanding and develop the method for measuring the DICs under geological sequestration conditions, we studied the infrared spectra of DICs under high pressure and temperature conditions. First principles simulations of DICs in brine conditions were performed using a highly optimized ReaxFF-DIC forcefield. The thermodynamics stability of each species were determined using the 2PT method, and shown to be consistent with the Reax simulations. More importantly, we have presented the IR spectra of DIC in real brine conditions as a function of temperature and pressure. At near earth conditions, we find a breaking of the O-C-O bending modes into asymmetric and symmetric modes, separated by 100cm{sup -1} at 400K and 5 GPa. These results can now be used to calibrate FTIR laser measurements.

  17. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect (OSTI)

    Elcock, D.

    1998-03-10T23:59:59.000Z

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could, from technical and legal perspectives, be suitable for disposing of oil-field wastes. On the basis of these findings, ANL subsequently conducted a preliminary risk assessment on the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in salt caverns. The methodology for the risk assessment included the following steps: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing contaminant toxicities; estimating contaminant intakes; and estimating human cancer and noncancer risks. To estimate exposure routes and pathways, four postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (for noncancer health effects) estimates that were well within the EPA target range for acceptable exposure risk levels. These results lead to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  18. Fundamental Properties of Salts

    SciTech Connect (OSTI)

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01T23:59:59.000Z

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  19. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect (OSTI)

    Peters, T. B.

    2014-01-02T23:59:59.000Z

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from the Interim Salt Disposition Project (ISDP) Salt Batch (“Macrobatch”) 6 have been analyzed for 238Pu, 90Sr, 137Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The Pu, Sr, and Cs results from the current Macrobatch 6 samples are similar to those from comparable samples in previous Macrobatch 5. In addition the SEHT and DSSHT heel samples (i.e. ‘preliminary’) have been analyzed and reported to meet NGS Demonstration Plan requirements. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous samples. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST has increased in ARP at the higher free hydroxide concentrations in the current feed.

  20. Assessment of Brine Management for Geologic Carbon Sequestration

    E-Print Network [OSTI]

    Breunig, Hanna M.

    2014-01-01T23:59:59.000Z

    water  management  options,  including:  geothermal  energy   extraction,  desalination,  salt  and  mineral   harvesting,  

  1. Modeling and Field Test Planning Activities in Support of Disposal of Heat-Generating Waste in Salt

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-09-26T23:59:59.000Z

    The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report, we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.

  2. Salt dome discoveries mounting in Mississippi

    SciTech Connect (OSTI)

    Ericksen, R.L. [Mississippi Office of Geology, Jackson, MS (United States)

    1996-06-17T23:59:59.000Z

    Exploratory drilling around piercement salt domes in Mississippi has met with a string of successes in recent months. Exploration of these salt features is reported to have been initiated through the review of non-proprietary, 2D seismic data and subsurface control. This preliminary data and work were then selectively upgraded by the acquisition of additional, generally higher quality, conventional 2D seismic lines. This current flurry of successful exploration and ensuing development drilling by Amerada Hess Corp. on the flanks of salt domes in Mississippi has resulted in a number of significant Hosston discoveries/producers at: Carson salt dome in Jefferson Davis County; Dry Creek salt dome in Covington County, Midway salt dome in lamar County, Monticello salt dome in Lawrence County, and Prentiss salt dome in Jefferson Davis County. The resulting production from these fields is gas and condensate, with wells being completed on 640 acre production units.

  3. Gas releases from salt

    SciTech Connect (OSTI)

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01T23:59:59.000Z

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  4. Up-Scaling Geochemical Reaction Rates Accompanying Acidic CO2-Saturated Brine Flow in Sandstone Aquifers

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    1 Up-Scaling Geochemical Reaction Rates Accompanying Acidic CO2-Saturated Brine Flow in Sandstone models. As a step toward this, network flow models were used to simulate the flow of CO2-saturated brine

  5. Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential...

    Energy Savers [EERE]

    Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential August 21, 2013 - 12:00am Addthis Utilizing a 1...

  6. Geochemical evidence for possible natural migration of Marcellus Formation brine to

    E-Print Network [OSTI]

    Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow possible migration of Marcellus brine through naturally occurring pathways. The occurrences of saline water, because of natural hydraulic connections to deeper formations. formation water isotopes Marcellus Shale

  7. Geophysical (time domain electromagnetic model) delineation of a shallow brine beneath a freshwater lake,

    E-Print Network [OSTI]

    Gvirtzman, Haim

    groundwaters. It is hypothesized that salt transport is dominated by molecular diffusion in the central part streams entering the lake. This order of magnitude difference is a result of salt fluxes from two major cores and nineteen 0.5-m cores drilled to sediments within the lake basin (Figure 1). At the water

  8. Constraints on origin and evolution of Red Sea brines from helium and argon isotopes

    E-Print Network [OSTI]

    Winckler, Gisela

    Constraints on origin and evolution of Red Sea brines from helium and argon isotopes Gisela November 2000 Abstract Brines from three depressions along the axis of the Red Sea, the Atlantis II II and the Discovery brines originating from locations in the central Red Sea show 4 He

  9. Don Juan Pond, Antarctica: Near-surface CaCl2-brine feeding Earth's most saline

    E-Print Network [OSTI]

    Marchant, David R.

    Don Juan Pond, Antarctica: Near-surface CaCl2-brine feeding Earth's most saline lake lineae (RSL), thought to represent seasonal brines, has sparked interest in analogous environments watershed and show that this, together with small amounts of meltwater, are capable of generating brines

  10. Dynamics and storage of brine in mid-ocean ridge hydrothermal systems

    E-Print Network [OSTI]

    Wilcock, William

    Dynamics and storage of brine in mid-ocean ridge hydrothermal systems Fabrice J. Fontaine1 and brine phases. Time series of vent temperature and salinity (chlorinity) show that some black-smoker vent below seawater for over a decade, which raises important questions concerning the fate of brines

  11. of brine heterogeneity in modern sedimentary basins (6) imply inefficiency of mixing and the

    E-Print Network [OSTI]

    Boyce, C. Kevin

    of brine heterogeneity in modern sedimentary basins (6) imply inefficiency of mixing and the potential for preservation of individual, metal- charged brine reservoirs that could be tapped at some later. The observation that the texturally later brines have higher metal contents is consistent with this model

  12. Brine fluxes from growing sea ice A. J. Wells,1,2

    E-Print Network [OSTI]

    Wettlaufer, John S.

    Brine fluxes from growing sea ice A. J. Wells,1,2 J. S. Wettlaufer,1,2,3 and S. A. Orszag2] It is well known that brine drainage from growing sea ice has a controlling influence on its mechanical oceans. When the ice has exceeded a critical thickness the drainage process is dominated by brine

  13. Accurate Thermodynamic Model for the Calculation of H2S Solubility in Pure Water and Brines

    E-Print Network [OSTI]

    Zhu, Chen

    Accurate Thermodynamic Model for the Calculation of H2S Solubility in Pure Water and Brines Zhenhao mineral solubility in H2S saturated brines. An example calculation for galena solubility is given. 1 gasification process.5,6 Sequestration of the gases into geological brine formation is one of the promising

  14. WERE AQUEOUS RIPPLES ON MARS FORMED BY FLOWING BRINES? MICHAEL P. LAMB, JOHN P. GROTZINGER

    E-Print Network [OSTI]

    WERE AQUEOUS RIPPLES ON MARS FORMED BY FLOWING BRINES? MICHAEL P. LAMB, JOHN P. GROTZINGER are not observed. Recent thermodynamic modeling indicates that these brines could have had higher densities (by up whether ripples could have been stable bed forms under flowing Martian brines. To this end, we compiled

  15. Advanced biochemical processes for geothermal brines: Current developments

    SciTech Connect (OSTI)

    Premuzic, E.T.; Lin, M.S.; Bohenek, M. [Brookhaven National Lab., Upton, NY (United States). Energy Science and Technology Div.; Bajsarowicz, V. [CET Environmental Services, Inc., Richmond, CA (United States); McCloud, M. [C.E. Holt/California Energy, Pasadena, CA (United States)

    1997-07-07T23:59:59.000Z

    A research program at Brookhaven National Laboratory (BNL) which deals with the development and application of processes for the treatment of geothermal brines and sludges has led to the identification and design of cost-efficient and environmentally friendly treatment methodology. Initially the primary goal of the processing was to convert geothermal wastes into disposable materials whose chemical composition would satisfy environmental regulations. An expansion of the r and D effort identified a combination of biochemical and chemical processes which became the basis for the development of a technology for the treatment of geothermal brines and sludges. The new technology satisfies environmental regulatory requirements and concurrently converts the geothermal brines and sludges into commercially promising products. Because the chemical composition of geothermal wastes depends on the type of the resource, the emerging technology has to be flexible so that it can be readily modified to suit the needs of a particular type of resource. Recent conceptional designs for the processing of hypersaline and low salinity brines and sludges will be discussed.

  16. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    1 Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives...

  17. Direct releases to the surface and associated complementary cumulative distribution functions in the 1996 performance assessments for the Waste Isolation Pilot Plant: Direct brine release

    SciTech Connect (OSTI)

    STOELZEL,D.M.; O'BRIEN,D.G.; GARNER,J.W.; HELTON,JON CRAIG; JOHNSON,J.D.; SCOTT,L.N.

    2000-05-19T23:59:59.000Z

    The following topics related to the treatment of direct brine releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented (1) mathematical description of models, (2) uncertainty and sensitivity analysis results arising from subjective (i.e., epistemic) uncertainty for individual releases, (3) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e., aleatory) uncertainty, and (4) uncertainty and sensitivity analysis results for CCDFs. The presented analyses indicate that direct brine releases do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for direct brine releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency's standard for the geologic disposal of radioactive waste (4O CFR 191.40 CFR 194).

  18. Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

    SciTech Connect (OSTI)

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

    1995-01-01T23:59:59.000Z

    Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

  19. Brine contamination of ground water and streams in the Baxterville Oil Field Area, Lamar and Marion Counties, Mississippi. Water resources investigation

    SciTech Connect (OSTI)

    Kalkhoff, S.J.

    1993-12-31T23:59:59.000Z

    The report defines the extent of oil-field-brine contamination in ground water and streams in the Baxterville oil field area. The report is based largely on data collected during the period October 1984 through November 1985. Water samples were collected from streams and wells in the study area. Data from a previous study conducted in the vicinity of the nearby Tatum Salt Dome were used for background water-quality information. Natural surface-water quality was determined by sampling streamflow from a nearby basin having no oil field activities and from samples collected in an adjacent basin during a previous study.

  20. Noncentrosymmetric salt inclusion oxides: Role of salt lattices and counter ions in bulk polarity

    SciTech Connect (OSTI)

    West, J. Palmer [Department of Chemistry, Clemson University, Clemson, SC 29634-0973 (United States)] [Department of Chemistry, Clemson University, Clemson, SC 29634-0973 (United States); Hwu, Shiou-Jyh, E-mail: shwu@clemson.edu [Department of Chemistry, Clemson University, Clemson, SC 29634-0973 (United States)] [Department of Chemistry, Clemson University, Clemson, SC 29634-0973 (United States)

    2012-11-15T23:59:59.000Z

    The synthesis and structural features of a newly emerged class of salt-inclusion solids (SISs) are reviewed. The descriptive chemistry with respect to the role of ionic salt and its correlation with bulk noncentrosymmetricity and polarity of the covalent oxide lattice in question is discussed by means of structure analysis. These unprecedented discoveries have opened doors to novel materials synthesis via the utilities of salt-inclusion chemistry (SIC) that are otherwise known as the molten-salt approach. The result of these investigations prove that the bulk acentricity, or cancellation of which, can be accounted for from the perspective of ionic and/or salt lattices. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of newly emerged salt-inclusion solids are reviewed. Black-Right-Pointing-Pointer Salt lattice and its symmetry correlation with polar framework are discussed. Black-Right-Pointing-Pointer Preservation of acentricity is accounted for from the perspective of ionic and salt lattices.

  1. 2 INVESTIGATION OF CRUDE OIL/BRINE/ROCK INTERACTION 2.1 EXPERIMENTAL STUDY OF CRUDE/BRINE/ROCK INTERACTION AT

    E-Print Network [OSTI]

    Schechter, David S.

    44 2 INVESTIGATION OF CRUDE OIL/BRINE/ROCK INTERACTION 2.1 EXPERIMENTAL STUDY OF CRUDE of imbibition or oil production rate, particularly after seven days or more aging time with oil. However in this section and expand the understanding of the interactions of the Spraberry reservoir rock, oil and brine

  2. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect (OSTI)

    Peters, T. B.

    2013-10-01T23:59:59.000Z

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 6 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results from the current microbatch samples are similar to those from comparable samples in Macrobatch 5. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous macrobatch. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST in ARP continues to occur. Both the CST and CWT samples indicate that the target Free OH value of 0.03 has been surpassed. While at this time there is no indication that this has caused an operational problem, the CST should be adjusted into specification. The {sup 137}Cs results from the SRNL as well as F/H lab data indicate a potential decline in cesium decontamination factor. Further samples will be carefully monitored to investigate this.

  3. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, And Caustic Wash Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 4 Operations

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-10-25T23:59:59.000Z

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), and Caustic Wash Tank (CWT) samples from several of the ?microbatches? of Integrated Salt Disposition Project (ISDP) Salt Batch (?Macrobatch?) 4 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by inductively-coupled plasma emission spectroscopy (ICPES). Furthermore, samples from the CWT have been analyzed by a variety of methods to investigate a decline in the decontamination factor (DF) of the cesium observed at MCU. The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 3 samples indicate generally consistent operations. There is no indication of a disruption in plutonium and strontium removal. The average cesium DF and concentration factor (CF) for samples obtained from Macrobatch 4 are slightly lower than for Macrobatch 3, but still well within operating parameters. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in Actinide Removal Process (ARP).

  4. Salt never calls itself sweet.

    E-Print Network [OSTI]

    Baliga, Ragavendra R; Narula, Jagat

    2009-01-01T23:59:59.000Z

    54. 11. Frohlich ED. The role of salt in hypertension: theblockade, diuretics, and salt restriction for the managementa low- sodium high-potassium salt in hypertensive patients

  5. Modeling acid-gas generation from boiling chloride brines

    E-Print Network [OSTI]

    Zhang, Guoxiang

    2010-01-01T23:59:59.000Z

    Analysis Preliminary calculations assuming pure CaCl 2 solutions were carried out to investigate relationships between salt concentration, HCl gas fugacity (? partial pressure), and condensate

  6. Solubility of hydrocarbons in salt water

    SciTech Connect (OSTI)

    Yaws, C.L.; Lin, X. (Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering)

    1994-01-01T23:59:59.000Z

    In the design and operation of industrial processes, physical and thermodynamic property data are required. Increasingly stringent regulations are making water solubility of substances even more critical. Water solubility data of naphthenes, or cycloalkanes, is applicable for the complete range of salt concentrations, including water without salt to water saturated with salt. The results are intended for use in initial engineering and environmental applications. Solubility values from the correlation are useful in determining the distribution of a hydrocarbon spill on its contact with sea water. Solubility values at other salt concentrations also may be computed. Results are presented for water solubility of hydrocarbons (naphthenes) as a function of salt concentration (log(S) = A + BX + CX[sup 2]). The correlation constants, A, B and C, are displayed in an easy-to-use tabular format that is applicable for rapid engineering use with the personal computer or hand-held calculator. The results for solubility in salt water are applicable for the complete range of salt concentrations. This range covers water without salt, X = 0, to water saturated with salt, X = 358,700 ppM(wt). Correlation and experimental results are in favorable agreement.

  7. Fluid sampling and chemical modeling of geopressured brines containing methane. Final report, March 1980-February 1981

    SciTech Connect (OSTI)

    Dudak, B.; Galbraith, R.; Hansen, L.; Sverjensky, D.; Weres, O.

    1982-07-01T23:59:59.000Z

    The development of a flowthrough sampler capable of obtaining fluid samples from geopressured wells at temperatures up to 400/sup 0/F and pressures up to 20,000 psi is described. The sampler has been designed, fabricated from MP35N alloy, laboratory tested, and used to obtain fluid samples from a geothermal well at The Geysers, California. However, it has not yet been used in a geopressured well. The design features, test results, and operation of this device are described. Alternative sampler designs are also discussed. Another activity was to review the chemistry and geochemistry of geopressured brines and reservoirs, and to evaluate the utility of available computer codes for modeling the chemistry of geopressured brines. The thermodynamic data bases for such codes are usually the limiting factor in their application to geopressured systems, but it was concluded that existing codes can be updated with reasonable effort and can usefully explain and predict the chemical characteristics of geopressured systems, given suitable input data.

  8. A cost-effective statistical screening method to detect oilfield brine contamination

    SciTech Connect (OSTI)

    Alyanak, N.; Grace, J.T.; Campbell, M.D. [United Resources International, Houston, TX (United States)

    1995-12-01T23:59:59.000Z

    A statistical screening method has been developed using Tolerance Limits for barium (Ba{sup +2}) to identify contamination of a fresh-water aquifer by oilfield brines. The method requires an understanding of the local hydrochemistry of oilfield brines, inexpensive, Publicly available hydrochemical data, a single sample analysis from the suspect well and the application of a simple statistical procedure. While this method may not provide absolute evidence of oilfield brine contamination of a fresh-water aquifer, it does identify conditions where brine contamination is a strong probability over other possible sources of chlorides.

  9. Molten salt electrolyte separator

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1996-01-01T23:59:59.000Z

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  10. Interior cavern conditions and salt fall potential

    SciTech Connect (OSTI)

    Munson, D.E.; Molecke, M.A. [Sandia National Labs., Albuquerque, NM (United States); Myers, R.E. [Strategic Petroleum Reserve, New Orleans, LA (United States)

    1998-03-01T23:59:59.000Z

    A relatively large number of salt caverns are used for fluid hydrocarbon storage, including an extensive set of facilities in the Gulf Coast salt domes for the Strategic Petroleum Reserve (SPR) Program. Attention is focused on the SPR caverns because of available histories that detail events involving loss and damage of the hanging string casing. The total number of events is limited, making the database statistically sparse. The occurrence of the events is not evenly distributed, with some facilities, and some caverns, more susceptible than others. While not all of these events could be attributed to impacts from salt falls, many did show the evidence of such impacts. As a result, a study has been completed to analyze the potential for salt falls in the SPR storage caverns. In this process, it was also possible to deduce some of the cavern interior conditions. Storage caverns are very large systems in which many factors could possibly play a part in casing damage. In this study, all of the potentially important factors such as salt dome geology, operational details, and material characteristics were considered, with all being logically evaluated and most being determined as secondary in nature. As a result of the study, it appears that a principal factor in determining a propensity for casing damage from salt falls is the creep and fracture characteristics of salt in individual caverns. In addition the fracture depends strongly upon the concentration of impurity particles in the salt. Although direct observation of cavern conditions is not possible, the average impurity concentration and the accumulation of salt fall material can be determined. When this is done, there is a reasonable correlation between the propensity for a cavern to show casing damage events and accumulation of salt fall material. The accumulation volumes of salt fall material can be extremely large, indicating that only a few of the salt falls are large enough to cause impact damage.

  11. Pressure Buildup and Brine Migration During CO2 Storage in Multilayered Aquifers

    E-Print Network [OSTI]

    Zhou, Quanlin

    . Introduction Carbon dioxide capture combined with geologic stor- age (CCS) in suitable subsurface formations-6584.2012.00972.x potentially creating far-ranging pressure buildup and brine displacement in deep CO2 storage of resident brine caused by CCS operations require modeling/analysis tools of considerable complexity (Celia

  12. Conservative behavior of uranium vs. salinity in Arctic sea ice and brine Christelle Not a,

    E-Print Network [OSTI]

    Available online 23 December 2011 Keywords: Uranium Salinity Sea ice Brine Seawater Arctic UraniumConservative behavior of uranium vs. salinity in Arctic sea ice and brine Christelle Not a, ,1 disequilibrium The conservative behavior of uranium (U) with respect to salinity in open ocean waters is widely

  13. Expected near-field thermal performance for nuclear waste repositories at potential salt sites: Technical report

    SciTech Connect (OSTI)

    McNulty, E.G.

    1987-08-01T23:59:59.000Z

    Thermal analyses were made for the environmental assessments of seven potential salt sites for a nuclear waste repository. These analyses predicted that potential repository sites in domal salts located in the Gulf Coast will experience higher temperature than those in bedded salts of Paradox and Palo Duro Basins, mainly because of higher ambient temperatures at depth. The TEMPV5 code, a semi-analytical heat transfer code for finite line sources, calculated temperatures for commercial high-level waste (CHLW) and spent fuel from pressurized-water reactors (SFPWR). Benchmarks with HEATING6, THAC-SIP-3D, STEALTH, and SPECTROM-41 showed that TEMPV5 agreed closely in the very near field around the waste package and approximately in the near-field and far-field regions of the repository. The analyses used site-specific thermal conductivities that were increased by 40% to compensate for reductions caused by testing technique, salt impurities, and other heterogeneities, and sampling disturbance. Analyses showed peak salt temperatures of 236/sup 0/C (CHLW) and 134/sup 0/C (SFPWR) for the bedded salt and 296/sup 0/C (CHLW) and 180/sup 0/C (SFPWR) for the domal salt. Analyses with uncorrected laboratory thermal conductivities would increase peak salt temperatures by about 120/sup 0/C for CHLW and about 60/sup 0/C for SFPWR. These temperature increases would increase the thermally induced flow of brine and accelerate corrosion of the waste package. 30 refs., 35 figs., 48 tabs.

  14. Fracture and Healing of Rock Salt Related to Salt Caverns

    SciTech Connect (OSTI)

    Chan, K.S.; Fossum, A.F.; Munson, D.E.

    1999-03-01T23:59:59.000Z

    In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in cavern sealing and operation. The MDCF model is used in three simulations of field experiments in which indirect measures were obtained of the generation of damage. The results of the simulations help to verify the model and suggest that the model captures the correct fracture behavior of rock salt. The model is used in this work to estimate the generation and location of damage around a cylindrical storage cavern. The results are interesting because stress conditions around the cylindrical cavern do not lead to large amounts of damage. Moreover, the damage is such that general failure can not readily occur, nor does the extent of the damage suggest possible increased permeation when the surrounding salt is impermeable.

  15. Validation of classical density-dependent solute transport theory for stable, high-concentration-gradient brine displacements in

    E-Print Network [OSTI]

    Hassanizadeh, S. Majid

    -concentration-gradient brine displacements in coarse and medium sands S.J. Watson a,1 , D.A. Barry a,1 , R.J. Schotting b,*, S by a brine solution, under either constant head or constant volume flux conditions. The experimental data, significantly less ex- perimental research has been conducted to investigate high-concentration (e.g., brine

  16. Dense water formation on the northwestern shelf of the Okhotsk Sea: 1. Direct observations of brine rejection

    E-Print Network [OSTI]

    Talley, Lynne D.

    Dense water formation on the northwestern shelf of the Okhotsk Sea: 1. Direct observations of brine 2004; accepted 21 April 2004; published 1 July 2004. [1] Dense Shelf Water (DSW) formation due to brine this period. The density increase terminated abruptly in late February, while the active brine rejection

  17. PII S0016-7037(01)00579-8 The origin and evolution of base metal mineralising brines and hydrothermal fluids,

    E-Print Network [OSTI]

    Banks, David

    PII S0016-7037(01)00579-8 The origin and evolution of base metal mineralising brines are the source of the mineralising fluids. Cl and Br systematics suggest that the brines were formed either cation composition (Na, Ca, K, Mg) of the brines is not consistent solely with evaporation processes

  18. Petroleum storage potential of the Chacahoula salt dome, Louisiana

    SciTech Connect (OSTI)

    Magorian, T.R. (Magorian (Thomas R.), Amherst, NY (USA)); Neal, J.T. (Sandia National Labs., Albuquerque, NM (USA))

    1990-01-01T23:59:59.000Z

    Chacahoula salt dome, eight miles southwest of Thibodaux, LA, could be solution mined to create caverns for storing as much as 500 million barrels (MMB) of crude oil, should the Strategic Petroleum Reserve (SPR) require additional storage volume. The salt mass geometry is confirmed by more than 50 oil wells, and also from previous exploratory drilling for sulphur. Top of salt occurs at {minus}1100 ft, and some 1300 acres exist within the {minus}2000 ft salt contour. Frasch mining of 1.35 million long tons of sulphur caused the surface to subside about one foot on the northeastern part of the dome. Creep-induced subsidence averaging {approximately}2.7 ft over 30 yrs is estimated for a 200 MMB cavern array, which would require perimeter diking to control localized perennial flooding. Earthquakes approaching intensity MM 6 have occurred nearby and are expected to recur on the order of {approximately}100 yrs but would not affect cavern stability. Additional study of brine disposal methods and hurricane surge probabilities are needed to establish design parameters and cost estimates for storage. 11 refs., 8 figs., 2 tabs.

  19. Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I brine pilot

    SciTech Connect (OSTI)

    Kharaka, Y.K; Doughty, C.; Freifeld, B.M.; Daley, T.M.; Xu, T.

    2009-11-01T23:59:59.000Z

    To demonstrate the potential for geologic storage of CO{sub 2} in saline aquifers, the Frio-I Brine Pilot was conducted, during which 1600 tons of CO{sub 2} were injected into a high-permeability sandstone and the resulting subsurface plume of CO{sub 2} was monitored using a variety of hydrogeological, geophysical, and geochemical techniques. Fluid samples were obtained before CO{sub 2} injection for baseline geochemical characterization, during the CO{sub 2} injection to track its breakthrough at a nearby observation well, and after injection to investigate changes in fluid composition and potential leakage into an overlying zone. Following CO{sub 2} breakthrough at the observation well, brine samples showed sharp drops in pH, pronounced increases in HCO{sub 3}{sup -} and aqueous Fe, and significant shifts in the isotopic compositions of H{sub 2}O and dissolved inorganic carbon. Based on a calibrated 1-D radial flow model, reactive transport modeling was performed for the Frio-I Brine Pilot. A simple kinetic model of Fe release from the solid to aqueous phase was developed, which can reproduce the observed increases in aqueous Fe concentration. Brine samples collected after half a year had lower Fe concentrations due to carbonate precipitation, and this trend can be also captured by our modeling. The paper provides a method for estimating potential mobile Fe inventory, and its bounding concentration in the storage formation from limited observation data. Long-term simulations show that the CO{sub 2} plume gradually spreads outward due to capillary forces, and the gas saturation gradually decreases due to its dissolution and precipitation of carbonates. The gas phase is predicted to disappear after 500 years. Elevated aqueous CO{sub 2} concentrations remain for a longer time, but eventually decrease due to carbonate precipitation. For the Frio-I Brine Pilot, all injected CO{sub 2} could ultimately be sequestered as carbonate minerals.

  20. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    SciTech Connect (OSTI)

    Harwell,, M. A.; Brandstetter,, A.; Benson,, G. L.; Bradley,, D. J.; Serne,, R. J.; Soldat, J. K; Cole,, C. R.; Deutsch,, W. J.; Gupta,, S. K.; Harwell,, C. C.; Napier,, B. A.; Reisenauer,, A. E.; Prater,, L. S.; Simmons,, C. S.; Strenge,, D. L.; Washburn,, J. F.; Zellmer,, J. T.

    1982-06-01T23:59:59.000Z

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario resulted in the delivery of radionuclidecontaminated brine to the surface, where a portion was diverted to culinary salt for direct ingestion by the existing population. Consequence analyses indicated calculated human doses that would be highly deleterious. Additional analyses indicated that doses well above background would occur from such a scenario t even if it occurred a million years into the future. The way to preclude such an intrusion is for continued control over the repository sitet either through direct institutional control or through the effective passive transfer of information. A secondary aspect of the specific human intrusion scenario involved a breach through the side of the salt dome t through which radionuclides migrated via the ground-water system to the accessible environment. This provided a demonstration of the geotransport methodology that AEGIS can use in actual site evaluations, as well as the WRIT program's capabilities with respect to defining the source term and retardation rates of the radionuclides in the repository. This reference site analysis was initially published as a Working Document in December 1979. That version was distributed for a formal peer review by individuals and organizations not involved in its development. The present report represents a revisiont based in part on the responses received from the external reviewers. Summaries of the comments from the reviewers and responses to these comments by the AEGIS staff are presented. The exercise of the AEGIS methodology was successful in demonstrating the methodologyt and thus t in providing a basis for substantive peer review, in terms of further development of the AEGIS site-applications capability and in terms of providing insight into the potential for consequential human intrusion into a salt dome repository.

  1. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    SciTech Connect (OSTI)

    Harwell,, M. A.; Brandstetter,, A.; Benson,, G. L.; Raymond,, J. R.; Brandley,, D. J.; Serne,, R. J.; Soldat,, J. K.; Cole,, C. R.; Deutsch,, W. J.; Gupta,, S. K.; Harwell,, C. C.; Napier,, B. A.; Reisenauer,, A. E.; Prater,, L. S.; Simmons,, C. S.; Strenge,, D. L.; Washburn,, J. F.; Zellmer,, J. T.

    1982-06-01T23:59:59.000Z

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario resulted in the delivery of radionuclidecontaminated brine to the surface, where a portion was diverted to culinary salt for direct ingestion by the existing population. Consequence analyses indicated calculated human doses that would be highly deleterious. Additional analyses indicated that doses well above background would occur from such a scenario t even if it occurred a million years into the future. The way to preclude such an intrusion is for continued control over the repository sitet either through direct institutional control or through the effective passive transfer of information. A secondary aspect of the specific human intrusion scenario involved a breach through the side of the salt dome t through which radionuclides migrated via the ground-water system to the accessible environment. This provided a demonstration of the geotransport methodology that AEGIS can use in actual site evaluations, as well as the WRIT program's capabilities with respect to defining the source term and retardation rates of the radionuclides in the repository. This reference site analysis was initially published as a Working Document in December 1979. That version was distributed for a formal peer review by individuals and organizations not involved in its development. The present report represents a revisiont based in part on the responses received from the external reviewers. Summaries of the comments from the reviewers and responses to these comments by the AEGIS staff are presented. The exercise of the AEGIS methodology was sUGcessful in demonstrating the methodologyt and thus t in providing a basis for substantive peer review, in terms of further development of the AEGIS site-applications capability and in terms of providing insight into the potential for consequential human intrusion into a salt dome repository.

  2. Onondaga-Bass Island trend - salt detachment structure in western New York

    SciTech Connect (OSTI)

    Patenaude, M.W.; Beardsley, R.W.; Campbell, R.C.

    1986-05-01T23:59:59.000Z

    Oil and gas production has been established in the Devonian Onondaga-Silurian Bass Islands stratigraphic section in Chautauque County, New York. The known productive trend is approximately 1.5 mi wide and 30 mi long and strikes northeast-southwest across central Chautauqua County, encompassing over 30,000 ac. This structural feature has been coined the Bass Islands trend. The trend is a complex, multiple horst-graben feature, characterized by high-angle reverse faults associated with a Salina B salt decollement. Over 200 mi of seismic records have been used to delineate the trend. The high-angle reverse fault or fracture zones within the Onondaga-Bass Islands stratigraphic section are the exclusive reservoirs. The productive section is capped by the Devonian Hamilton shales and sealed at the base by the Salina G anhydrite. Nearly 300 wells have been drilled on the structure with 38% having producible capabilities. Some producible wells have been encountered with natural flows and others have been stimulated with varying results. Completion attempts and production efforts have been complicated by the very high oil-paraffin content and the high dissolved solids content of the formation brine. Present development activity in the Onondaga-Bass Islands trend has lessened due to the present market conditions and newly proposed drilling and production regulations by New York State, specifically for the Bass Island trend. Operators are using this slowdown to collect reservoir and production data, evaluate completion and production techniques, observe stimulation effects, and plan future development.

  3. NOVEL SALTS OF GRAPHITE AND A BORON NITRIDE SALT

    E-Print Network [OSTI]

    Bartlett, Neil

    2011-01-01T23:59:59.000Z

    ~ i\\f'{y AND DOCUMENTS SECTION NOVEL SALTS OF GRAPHITE ANDA BORON NITRIDE SALT Neil Bartlett, R. N. Biagioni, B. W.privately owned rights. Novel Salts of Graphite and a Boron

  4. Molten salt electrolyte separator

    DOE Patents [OSTI]

    Kaun, T.D.

    1996-07-09T23:59:59.000Z

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  5. Regulatory, technical pressures prompt more U. S. salt-cavern gas storage

    SciTech Connect (OSTI)

    Barron, T.F. (PB-KBB Inc., Houston, TX (United States))

    1994-09-12T23:59:59.000Z

    Natural-gas storage in US salt caverns is meeting the need for flexible, high delivery and injection storage following implementation Nov. 1, 1993, of the Federal Energy Regulatory Commission's Order 636. This ruling has opened the US underground natural-gas storage market to more participants and created a demand for a variety of storage previously provided by pipelines as part of their bundled sales services. Many of these new services such as no-notice and supply balancing center on use of high-delivery natural gas storage from salt caverns. Unlike reservoir storage, nothing restricts flow in a cavern. The paper discusses the unique properties of salt that make it ideal for gas storage, choosing a location for the storage facility, cavern depth and shape, cavern size, spacing, pressures, construction, conversion or brine or LPG storage caverns to natural gas, and operation.

  6. Correlation of Creep Behavior of Domal Salts

    SciTech Connect (OSTI)

    Munson, D.E.

    1999-02-16T23:59:59.000Z

    The experimentally determined creep responses of a number of domal salts have been reported in, the literature. Some of these creep results were obtained using standard (conventional) creep tests. However, more typically, the creep data have come from multistage creep tests, where the number of specimens available for testing was small. An incremental test uses abrupt changes in stress and temperature to produce several time increments (stages) of different creep conditions. Clearly, the ability to analyze these limited data and to correlate them with each other could be of considerable potential value in establishing the mechanical characteristics of salt domes, both generally and specifically. In any analysis, it is necessary to have a framework of rules to provide consistency. The basis for the framework is the Multimechanism-Deformation (M-D) constitutive model. This model utilizes considerable general knowledge of material creep deformation to supplement specific knowledge of the material response of salt. Because the creep of salt is controlled by just a few micromechanical mechanisms, regardless of the origin of the salt, certain of the material parameters are values that can be considered universal to salt. Actual data analysis utilizes the methodology developed for the Waste Isolation Pilot Plant (WIPP) program, and the response of a bedded pure WIPP salt as the baseline for comparison of the domal salts. Creep data from Weeks Island, Bryan Mound, West Hackberry, Bayou Choctaw, and Big Hill salt domes, which are all sites of Strategic Petroleum Reserve (SPR) storage caverns, were analyzed, as were data from the Avery Island, Moss Bluff, and Jennings salt domes. The analysis permits the parameter value sets for the domal salts to be determined in terms of the M-D model with various degrees of completeness. In turn this permits detailed numerical calculations simulating cavern response. Where the set is incomplete because of the sparse database, reasonable assumptions permit the set to be completed. From the analysis, two distinct response groups were evident, with the salts of one group measurably more creep resistant than the other group. Interestingly, these groups correspond well with the indirectly determined creep closure of the SPR storage caverns, a correlation that probably should be expected. Certainly, the results suggest a simple laboratory determination of the creep characteristics of a salt material from a dome site can indicate the relative behavior of any potential cavern placed within that dome.

  7. Soils and Brine Geochemistry and Mineralogy of Hyperarid Desert Playa, Ouargla Basin,

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Soils and Brine Geochemistry and Mineralogy of Hyperarid Desert Playa, Ouargla Basin, Algerian. The chemical and mineralogical specificity of this hyperarid ecosystem has been compared to other areas under

  8. Behavior of type 304 and type 316 austenitic stainless in 55% lithium bromide heavy brine environments

    SciTech Connect (OSTI)

    Itzhak, D.; Elias, O. (Ben-Gurion Univ., Beer-Sheva (Israel). Dept. of Materials Engineering)

    1994-02-01T23:59:59.000Z

    Cylindrical tensile specimens of AISI type 304 (UNS S30400) and type 316 (UNS S31600) stainless steels (SS) were tested under constant-load conditions in 55% lithium bromide (LiBr) heavy brines at temperatures of 120 C and 140 C. Elongation and open-circuit potential (OCP) were recorded during the tensile test. Potentiodynamic polarization measurements were conducted, and the failed surface fractures were examined by scanning electron microscopy. The tested SS were subjected to stress corrosion under the test environments. Sensitivity was affected strongly by pH values. In LiBr brine of pH = 11.6, the passivation processes were more effective than in brine of pH = 6 [approximately] 8. Because of effective passivation behavior in brine of pH = 11.6, lower values of [delta]l[sub 0] were measured, indicating lower dislocation relaxation processes and high resistance to stress corrosion cracking.

  9. Pathogenicity of a pseudomonad bacterium to larvae of penaeid and brine shrimp

    E-Print Network [OSTI]

    Huang, Chu-Liang

    1982-01-01T23:59:59.000Z

    OF SCIENCE August 1982 Major Subject: Veterinary Microbiology PATHOGENICITY OF A PSEUDOMONAD BACTERIUM TO LARVAE OF PENAEID AND BRINE SHRIMP A Thesis by CHU-LIANG HUANG Approved as to style and content by: (Chairman of Committee) (Member) (Member...) (Member) (Head of Department) August 1982 ABSTRACT Pathogenicity of a Pseudomonad Bacterium to Larvae of Penaeid and Brine Shrimp (August 1982) Chu-Liang Huang, B. S , National Taiwan University Chairman of Advisory Committee: Dr. Donald H. Lewis A...

  10. Effect of Oxygen Co-Injected with Carbon Dioxide on Gothic Shale Caprock-CO2-Brine Interaction during Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Um, Wooyong; Cantrell, Kirk J.

    2013-09-16T23:59:59.000Z

    Co-injection of oxygen, a significant component in CO2 streams produced by the oxyfuel combustion process, can cause a significant alteration of the redox state in deep geologic formations during geologic carbon sequestration. The potential impact of co-injected oxygen on the interaction between synthetic CO2-brine (0.1 M NaCl) and shale caprock (Gothic shale from the Aneth Unit in Utah) and mobilization of trace metals was investigated at ~10 MPa and ~75 °C. A range of relative volume percentages of O2 to CO2 (0, 1, 4 and 8%) were used in these experiments to address the effect of oxygen on shale-CO2-brine interaction under various conditions. Major mineral phases in Gothic shale are quartz, calcite, dolomite, montmorillonite, and pyrite. During Gothic shale-CO2-brine interaction in the presence of oxygen, pyrite oxidation occurred extensively and caused enhanced dissolution of calcite and dolomite. Pyrite oxidation and calcite dissolution subsequently resulted in the precipitation of Fe(III) oxides and gypsum (CaSO4•2H2O). In the presence of oxygen, dissolved Mn and Ni were elevated because of oxidative dissolution of pyrite. The mobility of dissolved Ba was controlled by barite (BaSO4) precipitation in the presence of oxygen. Dissolved U in the experimental brines increased to ~8–14 ?g/L, with concentrations being slightly higher in the absence of oxygen than in the presence of oxygen. Experimental and modeling results indicate the interaction between shale caprock and oxygen co-injected with CO2 during geologic carbon sequestration can exert significant impacts on brine pH, solubility of carbonate minerals, stability of sulfide minerals, and mobility of trace metals. The major impact of oxygen is most likely to occur in the zone near CO2 injection wells where impurity gases can accumulate. Oxygen in CO2-brine migrating away from the injection well will be continually consumed through the reactions with sulfide minerals in deep geologic formations.

  11. Hard-bottom macrofauna of the East Flower Garden brine seep: impact of a long term, point-source brine discharge

    E-Print Network [OSTI]

    Gittings, Stephen Reed

    1983-01-01T23:59:59.000Z

    canyon transect were sta- tions R6 and R7, both of which were on top of Cottonwick Rock, ap- proximately 2 m above the canyon floor. Figure 5 (p. 12) shows that salinity and sulfide at these stations were at normal marine levels. Though the total...HARD-BOT1'OM MACROFAUNA OF THE EAST FLOWER GARDEN BRINE SEEP: IMPACT OF A LONG TERM, POINT-SOURCE BRINE DISCHARGE A Thesis by STEPHEN REED GITTINGS Submitted to the Graduate College of Texas A&M University in partial fulfillment...

  12. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

  13. Amine salts of nitroazoles

    DOE Patents [OSTI]

    Kienyin Lee; Stinecipher, M.M.

    1993-10-26T23:59:59.000Z

    Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

  14. Waste Isolation Pilot Plant's Excavated Salt Agreement Supports...

    Energy Savers [EERE]

    for about 600 elementary-age students. WIPP's nuclear waste disposal repository mining operations result in large volumes of excavated salt. Seeking an innovative...

  15. Independent Oversight Review, Savannah River Site Salt Waste...

    Broader source: Energy.gov (indexed) [DOE]

    August 2013 Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. This report documents the results of an independent oversight...

  16. Thermal Characterization of Molten Salt Systems

    SciTech Connect (OSTI)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01T23:59:59.000Z

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  17. Dry Creek salt dome, Mississippi Interior Salt basin

    SciTech Connect (OSTI)

    Montgomery, S.L.; Ericksen, R.L.

    1997-03-01T23:59:59.000Z

    Recent drilling of salt dome flanks in the Mississippi Salt basin has resulted in important new discoveries and the opening of a frontier play. This play is focused on gas/condensate reserves in several Cretaceous formations, most notably the Upper Cretaceous Eutaw and lower Tuscaloosa intervals and Lower Cretaceous Paluxy and Hosston formations. As many as eight domes have been drilled thus far; sandstones in the upper Hosston Formation comprise the primary target. Production has been as high as 3-5 Mcf and 500-1200 bbl of condensate per day, with estimated ultimate reserves in the range of 0.2 to 1.5 MBOE (million barrels oil equivalent) per well. As typified by discovery at Dry Creek salt dome, traps are related to faulting, unconformities, and updip loss of permeability. Previous drilling at Dry Creek, and in the basin generally, avoided the flank areas of most domes, due to geologic models that predicted latestage (Tertiary) piercement and breached accumulations. Recent data from Dry Creek and other productive domes suggest that growth was episodic and that piercement of Tertiary strata did not affect deeper reservoirs charged with hydrocarbons in the Late Cretaceous.

  18. Evaluation of experimentally measured and model-calculated pH for rock-brine-CO2 systems under geologic CO2 sequestration conditions

    SciTech Connect (OSTI)

    Shao, Hongbo; Thompson, Christopher J.; Cantrell, Kirk J.

    2013-11-01T23:59:59.000Z

    pH is an essential parameter for understanding the geochemical reactions that occur in rock-brine-CO2 systems when CO2 is injected into deep geologic formations for long-term storage. Due to a lack of reliable experimental methods, most laboratory studies conducted under geological CO2 sequestration (GCS) conditions have relied on thermodynamic modeling to estimate pH. The accuracy of these model predictions is typically uncertain. In our previous work, we have developed a method for pH determination by in-situ spectrophotometry. In the present work, we expanded the applicable pH range for this method and measured the pH of several rock-brine-CO2 systems at GCS conditions for five rock samples collected from ongoing GCS demonstration projects. Experimental measurements were compared with pH values calculated using several geochemical modeling approaches. The effect of different thermodynamic databases on the accuracy of model prediction was evaluated. Results indicate that the accuracy of model calculations is rock-dependent. For rocks comprised of carbonate and sandstone, model results generally agreed well with experimentally measured pH; however, for basalt, significant differences were observed. These discrepancies may be due to the models’ failure to fully account for certain reaction occurring between the basalt minerals the CO2-saturated brine solutions.

  19. Benefits and costs of brine extraction for increasing injection efficiency in geologic CO2 sequestration

    SciTech Connect (OSTI)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; Dahowski, Robert T.

    2014-01-01T23:59:59.000Z

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additional wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).

  20. GEOPHYSICS, VOL. 57, NO. 11 (NOVEMBER 1992); P. 13961408, 17 FIGS., 1 TABLE. Seismic properties of pore fluids

    E-Print Network [OSTI]

    Santos, Juan

    theseimportant seis- mic properties of hydrocarbon gasesand oils and of brines. Estimates of in-situ conditions. Brine modulus, density, and viscosities increase with in- creasing salt content and pressure. Brine be absorbedby brines than by light oils. As a result, gasin solution in oils can drive their modulus sofar below

  1. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    SciTech Connect (OSTI)

    Elders, W.A.; Cohen, L.H.

    1983-11-01T23:59:59.000Z

    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

  2. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: Pore-scale studies in micromodels

    E-Print Network [OSTI]

    Kim, Y.

    2013-01-01T23:59:59.000Z

    accumulation of residual water in pendular structuresAfter drainage, the residual water remained as thick filmsdisplaced brine), the residual water was initially retained

  3. Developing a process for commercial silica production from Salton Sea brines

    SciTech Connect (OSTI)

    Bourcier, W; McCutcheon, M; Leif, R; Bruton, C

    2000-09-25T23:59:59.000Z

    The goal of this joint LLNL-CalEnergy project is to develop a method for precipitating marketable silica from spent Salton Sea Geothermal Field (SSGF) brines. Many markets for silica exist. We have initially targeted production of silica as a rubber additive. Silica reinforced rubber gives tires less rolling resistance, greater tear strength, and better adhesion to steel belts. Previous silica precipitates produced by CalEnergy from Salton Sea brines were not suitable as rubber additives. They did not to disperse well in the rubber precursors and produced inferior rubber. CalEnergy currently minimizes silica scaling in some of their production facilities by acidifying the brine pH. The rate of silica precipitation slows down as the pH is lowered, so that energy extraction and brine reinfection are possible without unacceptable amounts of scaling even with more than 700 ppm SiO{sub 2} in solution. We are adding a step in which a small amount of base is added to the acidified brine to precipitate silica before reinfection. By carefully controlling the type, rate, and amount of base addition, we can optimize the properties of the precipitate to approach those of an ideal rubber additive.

  4. Potential for future development of salt cavern storage in the upper Silurian Syracuse Formation of south-central New York

    SciTech Connect (OSTI)

    Bass, J.P.; Sarwar, G.; Guo, B. [Brooklyn College of the City Univ. of New York, Troy, NY (United States)] [and others

    1995-09-01T23:59:59.000Z

    Although depleted reservoirs remain the dominant structures used for storage fulfilling the demand for base load gas supply during the heating season, the current general surge in storage projects, nationwide, takes advantage of opportunities in Order 636, and makes greater use of salt caverns for gas storage. This reflects the increasing need by gas users, local distribution companies in particular, to quickly cycle a storage facility`s gas supply for services such as peak shaving, emergency supply, and system balancing to meet hourly swings. Occurrence of thick deposits of bedded salt deposits provides New York the capability to develop high deliverability salt cavern storage facilities. Furthermore, New York is uniquely positioned at the gateway to major northeastern markets to provide peak load storage services of natural gas supply. The thickest units of bedded salt in New York occur in the {open_quotes}F{close_quotes} horizon of the Upper Silurian Syracuse Formation. Three bedded salt cavern storage facilities have been recently proposed in New York. Two of these projects is much larger (with 5 Bcfg ultimate capacity), is under construction, and will provide valuable storage service to the Ellisburg-Leidy market center hub in Pennsylvania. Identification of possible sites for future salt cavern storage projects has been achieved chiefly by defining areas of thick beds of salt at sufficient depths close to gas transmission lines, with access to a freshwater supply for leaching, and possessing an acceptable method of brine disposal.

  5. Profiling Float Observations of the Upper Ocean Under Sea Ice off the Wilkes Land Coast of Antarctica

    E-Print Network [OSTI]

    Riser, Stephen C.

    the water column is weakly stratified due to brine rejection and is therefore only marginally stable brine rejection associated with sea ice formation results in dense shelf waters, which mix, the salt in seawater is excluded. The expelled salt remains as pockets of brine in the ice until it slowly

  6. Modeling gas and brine migration for assessing compliance of the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Vaughn, P. [Applied Physics, Inc., Albuquerque, NM (United States); Butcher, B. [Sandia National Labs., Albuquerque, NM (United States); Helton, J. [Arizona State Univ., Tempe, AZ (United States); Swift, P. [Tech. Reps., Inc., Albuquerque, NM (United States)

    1993-10-01T23:59:59.000Z

    At the request of the WIPP Project Integration Office (WPIO) of the DOE, the WIPP Performance Assessment (PA) Department of Sandia National Laboratories (SNL) has completed preliminary uncertainty and sensitivity analyses of gas and brine migration away from the undisturbed repository. This paper contains descriptions of the numerical model and simulations, including model geometries and parameter values, and a summary of major conclusions from sensitivity analyses. Because significant transport of contaminants can only occur in a fluid (gas or brine) medium, two-phase flow modeling can provide an estimate of the distance to which contaminants can migrate. Migration of gas or brine beyond the RCRA ``disposal-unit boundary`` or the Standard`s accessible environment constitutes a potential, but not certain, violation and may require additional evaluations of contaminant concentrations.

  7. Actinide removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C. (Pleasanton, CA); von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01T23:59:59.000Z

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  8. RECHARGEABLE MOLTEN-SALT CELLS

    E-Print Network [OSTI]

    Cairns, Elton J.

    2013-01-01T23:59:59.000Z

    KC! /FeS 2 cell lithium-silicon magnesium oxide molten-saltmolten-salt cells Na/Na glass/Na:z.Sn-S cell Na/NazO•xA!Symposium on Molten Salts, Physical Electrochemistry

  9. Metals removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C. (Pleasanton, CA); Von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Brummond, William A. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01T23:59:59.000Z

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  10. Formation and character of an ancient 19-m ice cover and underlying trapped brine in an ``ice-sealed'' east

    E-Print Network [OSTI]

    Priscu, John C.

    Formation and character of an ancient 19-m ice cover and underlying trapped brine in an ``ice bed year-round. New ice-core analysis and tempera- ture data show that beneath 19 m of ice is a water°C. The ice cover thickens at both its base and surface, sealing concentrated brine beneath. The ice

  11. Repassivation of 13% Cr steel dependent on brine pH

    SciTech Connect (OSTI)

    Skogsberg, J.W.; Walker, M.L.

    2000-02-01T23:59:59.000Z

    A joint laboratory project, involving an oil production and oil well service company, investigated repassivation of martensitic 13% Cr steel. The rate at which this alloy is repassivated after losing its protective passive oxide layer to hydrochloric acid (HCI) depended on the pH of the spent acid returns. Test samples of 13% Cr cut from oilfield tubing were subjected to a fluid sequence of (1) initial brine, (2) HCI, (3) spent acid, and (4) final brine. In 9 days, the samples regained their passive oxide layers. When spent acid was taken out of the fluid sequence, the samples regained passive oxide layers in 3 days.

  12. APPLICATIONS OF SALT IN ELECTROFISHING

    E-Print Network [OSTI]

    APPLICATIONS OF SALT IN ELECTROFISHING iNlarine Biological Laboratory LIB55.A.K.Y WOODS HOLE, MASS OF SALT IN ELECTROFISHING By Robert E . Lennon and Phillip S . Parker Fishery Research Biologists Leetown. Electric fisliliiK. 2. Salt. i. Farker, Phillip Slieridaii, 192t>- .joiut author, ii. Title. ( Series : IT

  13. Avoca, New York Salt Cavern Gas Storage Facility

    SciTech Connect (OSTI)

    Morrill, D.C. [J. Makowski and Associates, Boston, MA (United States)

    1995-09-01T23:59:59.000Z

    The first salt cavern natural gas storage facility in the northeastern United States designed to serve the interstate gas market is being developed by J Makowski Associates and partners at Avoca in Steuben County, New York. Multiple caverns will be leached at a depth of about 3800 ft from an approximately 100 ft interval of salt within the F unit of the Syracuse Formation of the Upper Silurian Salina Group. The facility is designed to provide 5 Bcf of working gas capacity and 500 MMcfd of deliverability within an operating cavern pressure range between 760 psi and 2850 psi. Fresh water for leaching will be obtained from the Cohocton River aquifer at a maximum rate of 3 million gallons per day and produced brine will be injected into deep permeable Cambrian age sandstones and dolostones. Gas storage service is anticipated to commence in the Fall of 1997 with 2 Bcf of working gas capacity and the full 5 Bcf or storage service is scheduled to be available in the Fall of 1999.

  14. PII S0016-7037(00)00369-0 Ra isotopes and Rn in brines and ground waters of the Jordan-Dead Sea Rift Valley

    E-Print Network [OSTI]

    Yehoshua, Kolodny

    PII S0016-7037(00)00369-0 Ra isotopes and Rn in brines and ground waters of the Jordan-Dead Sea Valley waters being mixtures of fresh water with saline brines. Ra is efficiently extracted from surrounding rocks into the brine end member. 228 Ra/226 Ra ratios are exceptionally low 0.07 to 0.9, mostly

  15. PII S0016-7037(99)00441-X Sub sea floor boiling of Red Sea Brines: New indication from noble gas data

    E-Print Network [OSTI]

    Winckler, Gisela

    PII S0016-7037(99)00441-X Sub sea floor boiling of Red Sea Brines: New indication from noble gas in revised form December 8, 1999) Abstract--Hydrothermal brines from the Atlantis II Deep, Red Sea, have been depressions filled by highly saline brines (Hartmann et al., 1998a). The Atlantis II Deep, located

  16. Brine-assisted anatexis: Experimental melting in the system haplograniteH2ONaClKCl at deep-crustal conditions

    E-Print Network [OSTI]

    Manning, Craig

    Brine-assisted anatexis: Experimental melting in the system haplogranite­H2O­NaCl­KCl at deep2O ¼ 0:34 it is 0.55. This "brine trend" is similar to, but more pronounced than, the trend-rich granites. Minimum-melting curves in the presence of brines of constant XH2O have strongly positive d

  17. Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing

    SciTech Connect (OSTI)

    Lee, Sung Ho; Lee, Hansoo; Kim, In Tae; Kim, Jeong-Guk [Korea Atomic Energy Research Institute, 1045 Daedeok-daaro, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorr - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.

  18. Origin, diagnostics, and mitigation of a salt dissolution sinkhole at the US Strategic Petroleum Reserve storage site, Weeks Island, Louisiana

    SciTech Connect (OSTI)

    Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States); Myers, R.E. [USDOE, New Orleans, LA (United States)

    1995-01-27T23:59:59.000Z

    A sinkhole was first observed in May 1992 over the edge of the two-level former salt mine that was converted for oil storage by the US Strategic Petroleum Reserve (SPR). Diagnostic studies that included geophysical, geochemical, drilling, and hydrological methods suggest a direct connection exists between the surface collapse area and the underground mine as shown by correlative measurements of sediment slump rates and brine influx into the mine. The dissolution of salt below the sinkhole that initiated the leak into the mine was likely caused by several confluent geologic processes, and exacerbated by mining-induced stresses that created fractures which served as hydrologic flowpaths. Modeling studies of mine stresses show that years may be required before tensional cracking begins to occur, but once begun can continue to develop, and relieve the stress in that specific regime. The crack regime creates the avenue for incursion of groundwater, very slowly initially, but gradually enlarging as undersaturated groundwater dissolves salt on the sides of the crack. Mitigation measures include increasing the mine pressurization, slowing the dissolution by injecting brine into the sinkhole throat, and freeze grouting to restrict hydrologic flowpaths.

  19. ORIGINAL PAPER Geochemical Evolution of Great Salt Lake, Utah, USA

    E-Print Network [OSTI]

    , USA, is the largest saline lake in North America, and its brines are some of the most concentrated and mirabilite, have periodically modified lake-brine chemistry through density stratifi- cation in the north. These and other conditions have created brine differentiation, mixing, and fractional

  20. NOBOB-S: Salinity/Brine Exposure as a Biocide for Application to NOBOB Residuals

    E-Print Network [OSTI]

    , eggs and spores of many taxa within the sediments and residual water of their ballast tanks (Niimi a voluntary "best management practices" approach for residual ballast water and sediment for NOBOB vesselsNOBOB-S: Salinity/Brine Exposure as a Biocide for Application to NOBOB Residuals Primary

  1. Nonlinear Thermal Transport and Brine Convection in First Year Sea Ice

    E-Print Network [OSTI]

    Nonlinear Thermal Transport and Brine Convection in First Year Sea Ice M.J. McGuinness \\Lambda , H a programme recently set up to directly measure the thermal conductivity of young sea ice. An array of thermistors frozen into first­year Antarctic sea ice provides temperature against depth data, which is fitted

  2. Selenium Biotransformations in an Engineered Aquatic Ecosystem for Bioremediation of Agricultural Wastewater via Brine Shrimp

    E-Print Network [OSTI]

    Selenium Biotransformations in an Engineered Aquatic Ecosystem for Bioremediation of Agricultural Wastewater via Brine Shrimp Production Radomir Schmidt,, Prapakorn Tantoyotai, Sirine C. Fakra, Matthew A, Saskatchewan S7N 5E2, Canada United States Department of Agriculture, Agricultural Research Service, SJVASC

  3. Analysis of hydrocarbon removal methods for the management of oilfield brines and produced waters 

    E-Print Network [OSTI]

    Furrow, Brendan Eugene

    2005-11-01T23:59:59.000Z

    and globally, the petroleum industries challenge has been to develop a high-tech and cost effective method to purify the large volumes of oilfield brines and produced water. Currently, most of the produced water requires several pre- and post- treatment methods...

  4. Sulfate Removal from Reject Brined in Inland Desalination with Zero Liquid Discharge 

    E-Print Network [OSTI]

    Almasri, Dema A

    2013-07-03T23:59:59.000Z

    Sulfate is one of the most problematic ions present in reject brine in desalination systems due to its high potential of scale formation and membrane fouling; making it an obstacle in the application of zero liquid discharge. The ultra-high lime...

  5. Investigation of oil injection into brine for the Strategic Petroleum Reserve : hydrodynamics and mixing experiments with SPR liquids.

    SciTech Connect (OSTI)

    Castaneda, Jaime N.; Cote, Raymond O.; Torczynski, John Robert; O'Hern, Timothy John

    2004-05-01T23:59:59.000Z

    An experimental program was conducted to study a proposed approach for oil reintroduction in the Strategic Petroleum Reserve (SPR). The goal was to assess whether useful oil is rendered unusable through formation of a stable oil-brine emulsion during reintroduction of degassed oil into the brine layer in storage caverns. An earlier report (O'Hern et al., 2003) documented the first stage of the program, in which simulant liquids were used to characterize the buoyant plume that is produced when a jet of crude oil is injected downward into brine. This report documents the final two test series. In the first, the plume hydrodynamics experiments were completed using SPR oil, brine, and sludge. In the second, oil reinjection into brine was run for approximately 6 hours, and sampling of oil, sludge, and brine was performed over the next 3 months so that the long-term effects of oil-sludge mixing could be assessed. For both series, the experiment consisted of a large transparent vessel that is a scale model of the proposed oil-injection process at the SPR. For the plume hydrodynamics experiments, an oil layer was floated on top of a brine layer in the first test series and on top of a sludge layer residing above the brine in the second test series. The oil was injected downward through a tube into the brine at a prescribed depth below the oil-brine or sludge-brine interface. Flow rates were determined by scaling to match the ratio of buoyancy to momentum between the experiment and the SPR. Initially, the momentum of the flow produces a downward jet of oil below the tube end. Subsequently, the oil breaks up into droplets due to shear forces, buoyancy dominates the flow, and a plume of oil droplets rises to the interface. The interface was deflected upward by the impinging oil-brine plume. Videos of this flow were recorded for scaled flow rates that bracket the equivalent pumping rates in an SPR cavern during injection of degassed oil. Image-processing analyses were performed to quantify the penetration depth and width of the oil jet. The measured penetration depths were shallow, as predicted by penetration-depth models, in agreement with the assumption that the flow is buoyancy-dominated, rather than momentum-dominated. The turbulent penetration depth model overpredicted the measured values. Both the oil-brine and oil-sludge-brine systems produced plumes with hydrodynamic characteristics similar to the simulant liquids previously examined, except that the penetration depth was 5-10% longer for the crude oil. An unexpected observation was that centimeter-size oil 'bubbles' (thin oil shells completely filled with brine) were produced in large quantities during oil injection. The mixing experiments also used layers of oil, sludge, and brine from the SPR. Oil was injected at a scaled flow rate corresponding to the nominal SPR oil injection rates. Injection was performed for about 6 hours and was stopped when it was evident that brine was being ingested by the oil withdrawal pump. Sampling probes located throughout the oil, sludge, and brine layers were used to withdraw samples before, during, and after the run. The data show that strong mixing caused the water content in the oil layer to increase sharply during oil injection but that the water content in the oil dropped back to less than 0.5% within 16 hours after injection was terminated. On the other hand, the sediment content in the oil indicated that the sludge and oil appeared to be well mixed. The sediment settled slowly but the oil had not returned to the baseline, as-received, sediment values after approximately 2200 hours (3 months). Ash content analysis indicated that the sediment measured during oil analysis was primarily organic.

  6. Response of Salt Marsh Ponds to Eutropication Austin N. Ritter1,3

    E-Print Network [OSTI]

    Vallino, Joseph J.

    Response of Salt Marsh Ponds to Eutropication Austin N. Ritter1,3 , David Dodge1 , Linda A. Deegan2 examined the response of New England salt marsh ponds to nutrient loading via flooding tidal water as part of nutrient (70 uM nitrate and 4uM phosphate). Our results indicate that gross nitrate processing in salt

  7. SALT DAMAGE OF POROUS MATERIALS: A COMBINED THEORETICAL AND EXPERIMENTAL APPROACH

    E-Print Network [OSTI]

    Hinsch, Klaus

    SALT DAMAGE OF POROUS MATERIALS: A COMBINED THEORETICAL AND EXPERIMENTAL APPROACH Herbert Juling-resolved deformation data were promising and confirmed the dilatometric results. Keywords: salt crystallization, porous Introduction It is generally recognized that crystal growth of salts in porous materials is a major cause

  8. Abstract We explored the generality of the processes mediating shrub zonation in western Atlantic salt marsh-

    E-Print Network [OSTI]

    Pennings, Steven C.

    salt marsh- es by comparing the results of our experiments in Geor- gia, USA with previous studies from salt marshes. Within the shrub zone, physical stress increased at lower elevations, shrubs at lower gerardi in Rhode Island salt marshes. However, markedly different processes appear to occur further

  9. Electrolyte salts for nonaqueous electrolytes

    DOE Patents [OSTI]

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09T23:59:59.000Z

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  10. Results of investigations at the Zunil geothermal field, Guatemala: Well logging and brine geochemistry

    SciTech Connect (OSTI)

    Adams, A.; Dennis, B.; Van Eeckhout, E.; Goff, F.; Lawton, R.; Trujillo, P.E.; Counce, D.; Archuleta, J. (Los Alamos National Lab., NM (USA)); Medina, V. (Instituto Nacional de Electrificacion, Guatemala City (Guatemala). Unidad de Desarollo Geotermico)

    1991-07-01T23:59:59.000Z

    The well logging team from Los Alamos and its counterpart from Central America were tasked to investigate the condition of four producing geothermal wells in the Zunil Geothermal Field. The information obtained would be used to help evaluate the Zunil geothermal reservoir in terms of possible additional drilling and future power plant design. The field activities focused on downhole measurements in four production wells (ZCQ-3, ZCQ-4, ZCQ-5, and ZCQ-6). The teams took measurements of the wells in both static (shut-in) and flowing conditions, using the high-temperature well logging tools developed at Los Alamos National Laboratory. Two well logging missions were conducted in the Zunil field. In October 1988 measurements were made in well ZCQ-3, ZCQ-5, and ZCQ-6. In December 1989 the second field operation logged ZCQ-4 and repeated logs in ZCQ-3. Both field operations included not only well logging but the collecting of numerous fluid samples from both thermal and nonthermal waters. 18 refs., 22 figs., 7 tabs.

  11. Summary Results for Brine Migration Modeling Performed by LANL, LBNL and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski -Blueprint | DepartmentExcellenceGuidanceS EM Pr ETRMay 30,

  12. Summary Results for Brine Migration Modeling Performed by LANL, LBNL and

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepositoryManagementFacilityExcellence |Successful Tribal

  13. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A. (Albuquerque, NM)

    2003-04-08T23:59:59.000Z

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  14. Electrochromic salts, solutions, and devices

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky,7,064,212 T. Mark (Los Alamos, NM)

    2006-06-20T23:59:59.000Z

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  15. Electrochromic Salts, Solutions, and Devices

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

    2008-10-14T23:59:59.000Z

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  16. Electrochromic Salts, Solutions, and Devices

    SciTech Connect (OSTI)

    Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

    2008-11-11T23:59:59.000Z

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  17. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18T23:59:59.000Z

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  18. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

    1982-02-09T23:59:59.000Z

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  19. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

    1983-01-01T23:59:59.000Z

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  20. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton6 th US/German Workshop on Salt

  1. Salt Selected (FINAL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR EMaterialsSafety,andWHY SALT

  2. Sandia National Laboratories: Molten Salt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    receiver technology is attractive because it can cost-effectively capture and store heat at higher ... Molten Nitrate Salt Initial Flow Testing is a Tremendous Success On...

  3. SALT DAMAGE CRITERION PROOF-OF-CONCEPT RESEARCH

    SciTech Connect (OSTI)

    Kerry L. DeVries; Kirby D. Mellegard; Gary D. Callahan

    2002-11-01T23:59:59.000Z

    The purpose of this study was to conduct a field-scale application demonstrating the use of continuum damage mechanics to determine the minimum allowable operating pressure of compressed natural gas storage caverns in salt formations. A geomechanical study was performed of two natural gas storage caverns (one existing and one planned) utilizing state-of-the-art salt mechanics to assess the potential for cavern instability and collapse. The geomechanical study consisted primarily of laboratory testing, theoretical development, and analytical/numerical tasks. A total of 50 laboratory tests was performed on salt specimens to aid in the development and definition of the material model used to predict the behavior of rock salt. Material model refinement was performed that improved the predictive capability of modeling salt during damage healing, recovery of work-hardened salt, and the behavior of salt at stress states other than triaxial compression. Results of this study showed that the working gas capacity of the existing cavern could be increased by 18 percent and the planned cavern could be increased by 8 percent using the proposed method compared to a conventional stress-based method. Further refinement of the continuum damage model is recommended to account for known behavior of salt at stress conditions other than triaxial compression that is not characterized accurately by the existing model.

  4. West Hackberry Brine Disposal Project pre-discharge characterization. Final report

    SciTech Connect (OSTI)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C. (eds.) [eds.

    1982-01-01T23:59:59.000Z

    The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. A three month sampling effort, February through April 1981, and previous investigations from the study area are integrated to establish baseline information for evaluation of impacts from brine disposal in the nearshore marine waters and from freshwater withdrawal from the coastal marsh of the Chenier Plain. January data are included for some tasks that sampled while testing and mobilizing their instruments prior to the February field effort. The study addresses the areas of physical oceanography, estuarine hydrology and hydrography, water and sediment quality, benthos, nekton, phytoplankton, zooplankton, and data management.

  5. Aromatic hydrocarbons associated with brines from geopressured wells. Annual report, fiscal 1985

    SciTech Connect (OSTI)

    Keeley, D.F.; Meriwether, J.R.

    1985-01-01T23:59:59.000Z

    Samples of cryocondensates - materials condensed at - 78.5/sup 0/C were taken on a regular basis from the gas stream for the USDOE geopressured wells. Most of the data has been taken from the Gladys McCall well as it has flowed on a regular and almost continous basis. The cryocondensates, not the ''condensate'' from gas wells, are almost exclusively aromatic hydrocarbons, primarily benzene, toluene, ethylbenzene, and the xylenes, but contain over 95 compounds, characterized using gas chromatographic-mass spectroscopy. The solubility in water and brine of benezene, toluene, ethylbenzene and o-xylene, some of the components of the cryocondensate, as well as distribution coefficients between water or brine and a standard oil have been measured. 25 refs.

  6. Fracture of porous materials induced by crystallization of salt

    E-Print Network [OSTI]

    Katzoff, Golda Y

    2006-01-01T23:59:59.000Z

    The penetration of salt into porous materials is known to have deleterious effects, often resulting in fracture. The damage process begins with a saline solution penetrating the porous network by way of capillary action. ...

  7. Evaluations of Radionuclides of Uranium, Thorium, and Radium Associated with Produced Fluids, Precipitates, and Sludges from Oil, Gas, and Oilfield Brine Injection Wells in Mississippi

    SciTech Connect (OSTI)

    Ericksen, R.L.

    1999-10-28T23:59:59.000Z

    There is an unsurpassed lack of scientific data with respect to the concentrations and isotopic compositions of uranium, thorium, and radium in the produced formation fluids (brine), precipitates, and sludges generated with the operation of oil and gas wells in Mississippi. These radioactive elements when contained in the formation fluids have been given the term NORM, which is an acronym for naturally occurring radioactive materials. When they are technologically enhanced during oil and gas production activities resulting in the formation of scale (precipitates) and sludges they are termed TENORM (technologically enhanced naturally occurring radioactive materials). As used in this document, NORM and TENORM will be considered equivalent terms and the occurrence of NORM in the oilfield will be considered the result of production operations. As a result of the lack of data no scientifically sound theses may be developed concerning the presence of these radionuclides in the fluid brine, precipitate (scale), or sludge phases. Over the period of just one year, 1997 for example, Mississippi produced over 39,372,963,584 liters (10,402,368,186 gallons or 247,675,433 barrels) of formation water associated with hydrocarbon production from 41 counties across the state.

  8. Sulfate Removal from Reject Brined in Inland Desalination with Zero Liquid Discharge

    E-Print Network [OSTI]

    Almasri, Dema A

    2013-07-03T23:59:59.000Z

    SULFATE REMOVAL FROM REJECT BRINED IN INLAND DESALINATION WITH ZERO LIQUID DISCHARGE A Thesis by DEMA ALMASRI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... and help. I am thankful for my colleagues for their inspiration and assistance throughout the years in Texas A&M at Qatar. I am also grateful to my exceptional friends that were always there during my ups and downs. I am thankful for my irreplaceable...

  9. Energy optimization in ice hockey halls I. The system COP as a multivariable function, brine and design choices

    E-Print Network [OSTI]

    Andrea Ferrantelli; Paul Melóis; Miska Räikkönen; Martti Viljanen

    2013-05-03T23:59:59.000Z

    This work is the first in a series of articles addressing the energy optimization in ice hockey halls. Here we adopt an analytical method, called functional optimization, to find which design and operating conditions maximize the Coefficient Of Performance of the entire cooling system (brine pumps and cooling tower), which we call ${\\rm COP}_{sys}$. This is addressed as a function of several variables, like electric consumption and brine physical properties. By maximizing such function, the best configuration and brine choices for the system can thus be determined accurately and rigorously. We investigate the importance of pipe diameter, depth and brine type (ethylene glycol and ammonia) for average-sized ice rinks. An optimal brine density is found, and we compute the weight of the electric consumption of the brine pumps on ${\\rm COP}_{sys}$. Our formulas are validated with heat flow measurement data obtained at an ice hockey hall in Finland. They are also confronted with technical and cost-related constraints, and implemented by simulations with the program COMSOL Multiphysics. The multivariable approach here discussed is general, and can be applied to the rigorous preliminary study of diverse situations in building physics and in many other areas of interest.

  10. Plant salt-tolerance mechanisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01T23:59:59.000Z

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore »and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  11. Plant salt-tolerance mechanisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01T23:59:59.000Z

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  12. Assessment of Injection Well Construction and Operation for Water Injection Wells and Salt Water Disposal Wells

    E-Print Network [OSTI]

    ) that use this process (minus the evaporation) to provide a brine solution for oilfield applications

  13. Permeability of WIPP Salt During Damage Evolution and Healing

    SciTech Connect (OSTI)

    BODNER,SOL R.; CHAN,KWAI S.; MUNSON,DARRELL E.

    1999-12-03T23:59:59.000Z

    The presence of damage in the form of microcracks can increase the permeability of salt. In this paper, an analytical formulation of the permeability of damaged rock salt is presented for both initially intact and porous conditions. The analysis shows that permeability is related to the connected (i.e., gas accessible) volumetric strain and porosity according to two different power-laws, which may be summed to give the overall behavior of a porous salt with damage. This relationship was incorporated into a constitutive model, known as the Multimechanism Deformation Coupled Fracture (MDCF) model, which has been formulated to describe the inelastic flow behavior of rock salt due to coupled creep, damage, and healing. The extended model was used to calculate the permeability of rock salt from the Waste Isolation Pilot Plant (WIPP) site under conditions where damage evolved with stress over a time period. Permeability changes resulting from both damage development under deviatoric stresses and damage healing under hydrostatic pressures were considered. The calculated results were compared against experimental data from the literature, which indicated that permeability in damaged intact WIPP salt depends on the magnitude of the gas accessible volumetric strain and not on the total volumetric strain. Consequently, the permeability of WIPP salt is significantly affected by the kinetics of crack closure, but shows little dependence on the kinetics of crack removal by sintering.

  14. Modifications of Carbonate Fracture Hydrodynamic Properties by CO{sub 2}-Acidified Brine Flow

    SciTech Connect (OSTI)

    Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

    2013-08-01T23:59:59.000Z

    Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including ‘comb-tooth’ structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel ternary segmentation method was devised to handle the degraded zones, allowing for a bounding analysis of the effects on hydraulic properties. We found that the degraded zones account for less than 15% of the fracture volume, but cover 70% to 80% of the fracture surface. When the degraded zones are treated as part of the fracture, the fracture transmissivities are two to four times larger because the fracture surfaces after reaction are not as rough as they would be if one considers the degraded zone as part of the rock. Therefore, while degraded zones created during geochemical reactions may not significantly increase mechanical aperture, this type of feature cannot be ignored and should be treated with prudence when predicting fracture hydrodynamic properties.

  15. Independent Oversight Assessment, Salt Waste Processing Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department...

  16. Sandia National Laboratories: molten salt test loop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molten salt test loop Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy...

  17. The CPA Equation of State and an Activity Coefficient Model for Accurate Molar Enthalpy Calculations of Mixtures with Carbon Dioxide and Water/Brine

    E-Print Network [OSTI]

    P. C. Myint; Y. Hao; A. Firoozabadi

    2015-04-20T23:59:59.000Z

    Thermodynamic property calculations of mixtures containing carbon dioxide (CO$_2$) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi, and the CO$_2$ activity coefficient model by Duan and Sun. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO$_2$, pure water, and both CO$_2$-rich and aqueous (H$_2$O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spycher and Pruess model. In aqueous sodium chloride (NaCl) mixtures, we show that Duan and Sun's model yields accurate results for the partial molar enthalpy of CO$_2$. It can be combined with another model for the brine enthalpy to calculate the molar enthalpy of H$_2$O-CO$_2$-NaCl mixtures. We conclude by explaining how the CPA equation of state may be modified to further improve agreement with experiments. This generalized CPA is the basis of our future work on this topic.

  18. Spindletop salt-cavern points way for future natural-gas storage

    SciTech Connect (OSTI)

    Shotts, S.A.; Neal, J.R.; Solis, R.J. (Southwestern Gas Pipeline Inc., The Woodlands, TX (United States)); Oldham, C. (Centana Intrastate Pipeline Co., Beaumont, TX (United States))

    1994-09-12T23:59:59.000Z

    Spindletop underground natural-gas storage complex began operating in 1993, providing 1.7 bcf of working-gas capacity in its first cavern. The cavern and related facilities exemplify the importance and advantages of natural-gas storage in leached salt caverns. Development of a second cavern, along with continued leaching of the initial cavern, target 5 bcf of available working-gas capacity in both caverns by the end of this year. The facilities that currently make up the Spindletop complex include two salt dome gas-storage wells and a 24,000-hp compression and dehydration facility owned by Sabine Gas; two salt dome gas-storage wells and a 15,900-hp compression and dehydration facility owned by Centana; a 7,000-hp leaching plant; and three jointly owned brine-disposal wells. The paper discusses the development of the storage facility, design goals, leaching plant and wells, piping and compressors, dehydration and heaters, control systems, safety and monitoring, construction, first years operation, and customer base.

  19. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    SciTech Connect (OSTI)

    Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon

    2009-03-01T23:59:59.000Z

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

  20. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Park, Byoung Yoon; Herrick, Courtney Grant

    2010-06-01T23:59:59.000Z

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes in strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of a storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

  1. BYU Salt Lake Center Financial Aid Program

    E-Print Network [OSTI]

    Martinez, Tony R.

    BYU Salt Lake Center Financial Aid Program 2011 A financial aid program of the Brigham Young University Division of Continuing Education BYU Salt Lake Center 345 West North Temple Street 3 Triad Center Salt Lake City, UT 84180 Fax: (801) 933­9456 Email: slc@byu.edu #12;BYU Salt Lake Center Financial Aid

  2. BYU Salt Lake Center Financial Aid Program

    E-Print Network [OSTI]

    Olsen Jr., Dan R.

    BYU Salt Lake Center Financial Aid Program 2013 A financial aid program of the Brigham Young University Division of Continuing Education BYU Salt Lake Center 345 West North Temple Street 3 Triad Center Salt Lake City, UT 84180 Fax: (801) 933­9456 Email: slc@byu.edu #12;BYU Salt Lake Center Financial Aid

  3. BYU Salt Lake Center Financial Aid Program

    E-Print Network [OSTI]

    Hart, Gus

    BYU Salt Lake Center Financial Aid Program 2014 A financial aid program of the Brigham Young University Division of Continuing Education BYU Salt Lake Center 345 West North Temple Street 3 Triad Center Salt Lake City, UT 84180 Fax: (801) 933­9456 Email: slc@byu.edu #12;BYU Salt Lake Center Financial Aid

  4. BYU Salt Lake Center Financial Aid Program

    E-Print Network [OSTI]

    Hart, Gus

    BYU Salt Lake Center Financial Aid Program 2012 A financial aid program of the Brigham Young University Division of Continuing Education BYU Salt Lake Center 345 West North Temple Street 3 Triad Center Salt Lake City, UT 84180 Fax: (801) 933­9456 Email: slc@byu.edu #12;BYU Salt Lake Center Financial Aid

  5. PILOT TESTING: PRETREATMENT OPTIONS TO ALLOW RE-USE OF FRAC FLOWBACK AND PRODUCED BRINE FOR GAS SHALE RESOURCE DEVELOPMENT

    SciTech Connect (OSTI)

    Burnett, David

    2012-12-31T23:59:59.000Z

    The goal of the A&M DOE NETL Project No. DE-FE0000847 was to develop a mobile, multifunctional water treatment capability designed specifically for “pre-treatment” of field waste brine. The project consisted of constructing s mobile “field laboratory” incorporating new technology for treating high salinity produced water and using the lab to conduct a side-by-side comparison between this new technology and that already existing in field operations. A series of four field trials were performed utilizing the mobile unit to demonstrate the effectiveness of different technology suitable for use with high salinity flow back brines and produced water. The design of the mobile unit was based on previous and current work at the Texas A&M Separation Sciences Pilot Plant. The several treatment techniques which have been found to be successful in both pilot plant and field tests had been tested to incorporate into a single multifunctional process train. Eight different components were evaluated during the trials, two types of oil and grease removal, one BTEX removal step, three micro-filters, and two different nanofilters. The performance of each technique was measured by its separation efficiency, power consumption, and ability to withstand fouling. The field trials were a success. Four different field brines were evaluated in the first trial in New York. Over 16,000 gallons of brine were processed. Using a power cost of $.10 per kWh, media pretreatment power use averaged $0.004 per barrel, solids removal $.04 per barrel and brine “softening” $.84 per barrel. Total power cost was approximately $1.00 per barrel of fluid treated. In Pennsylvania, brines collected from frac ponds were tested in two additional trials. Each of the brines was converted to an oil-free, solids-free brine with no biological activity. Brines were stable over time and would be good candidates for use as a make-up fluid in a subsequent fracturing fluid design. Reports on all of the field trials and subcontractor research have been summarized in this Final Report. Individual field trial reports and research reports are contained in the companion volume titled “Appendices”

  6. Waste Isolation Pilot Plant Salt Decontamination Testing

    SciTech Connect (OSTI)

    Rick Demmer; Stephen Reese

    2014-09-01T23:59:59.000Z

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  7. NAME: Salt Creek Estuary Restoration LOCATION: Salt Creek Watershed, Clallam County, Washington

    E-Print Network [OSTI]

    US Army Corps of Engineers

    NAME: Salt Creek Estuary Restoration LOCATION: Salt Creek Watershed, Clallam County, Washington Federal funds $0 PROJECT DESCRIPTION: The Salt Creek Estuary Reconnection project will significantly enhance tidal and fluvial hydrology to 22.5 acres of salt marsh, which will return the salt marsh to its

  8. Salt Fog Testing Iron-Based Amorphous Alloys

    SciTech Connect (OSTI)

    Rebak, Raul B. [Chemistry and Materials Science, Lawrence Livermore National Laboratory, 7000 East Ave, L- 631, Livermore, CA, 94550 (United States); Aprigliano, Louis F. [Consultant, Berlin, MD, 21811 (United States); Day, S. Daniel; Farmer, Joseph C. [LLNL, Livermore, CA, 94550 (United States)

    2007-07-01T23:59:59.000Z

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  9. Advanced biochemical processes for geothermal brines FY 1998 annual operating plan

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

  10. Constraining the reservoir model of an injected CO2 plume with crosswell CASSM at the Frio-II brine plot

    SciTech Connect (OSTI)

    Daley, T.M.; Ajo-Franklin, J.; Doughty, C.A.

    2011-02-15T23:59:59.000Z

    Crosswell CASSM (continuous active-source seismic monitoring) data was acquired as part of the Frio-II brine pilot CO{sub 2} injection experiment. To gain insight into the CO{sub 2} plume evolution, we have integrated the 3D multiphase flow modeling code TOUGH2 with seismic simulation codes via a petrophysical model that predicts seismic velocity for a given CO{sub 2} saturation. Results of forward seismic modeling based on the CO{sub 2} saturation distribution produced by an initial TOUGH2 model compare poorly with the CASSM data, indicating that the initial flow model did not capture the actual CO{sub 2} plume dynamics. Updates to the TOUGH2 model required to better match the CASSM field data indicate vertical flow near the injection well, with increased horizontal plume growth occurring at the top of the reservoir sand. The CASSM continuous delay time data are ideal for constraining the modeled spatiotemporal evolution of the CO{sub 2} plume and allow improvement in reservoir model and estimation of CO{sub 2} plume properties.

  11. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    SciTech Connect (OSTI)

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

    2013-04-01T23:59:59.000Z

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

  12. APPLIED PHYTO-REMEDIATION TECHNIQUES USING HALOPHYTES FOR OIL AND BRINE SPILL SCARS

    SciTech Connect (OSTI)

    M.L. Korphage; Bruce G. Langhus; Scott Campbell

    2003-03-01T23:59:59.000Z

    Produced salt water from historical oil and gas production was often managed with inadequate care and unfortunate consequences. In Kansas, the production practices in the 1930's and 1940's--before statewide anti-pollution laws--were such that fluids were often produced to surface impoundments where the oil would segregate from the salt water. The oil was pumped off the pits and the salt water was able to infiltrate into the subsurface soil zones and underlying bedrock. Over the years, oil producing practices were changed so that segregation of fluids was accomplished in steel tanks and salt water was isolated from the natural environment. But before that could happen, significant areas of the state were scarred by salt water. These areas are now in need of economical remediation. Remediation of salt scarred land can be facilitated with soil amendments, land management, and selection of appropriate salt tolerant plants. Current research on the salt scars around the old Leon Waterflood, in Butler County, Kansas show the relative efficiency of remediation options. Based upon these research findings, it is possible to recommend cost efficient remediation techniques for slight, medium, and heavy salt water damaged soil. Slight salt damage includes soils with Electrical Conductivity (EC) values of 4.0 mS/cm or less. Operators can treat these soils with sufficient amounts of gypsum, install irrigation systems, and till the soil. Appropriate plants can be introduced via transplants or seeded. Medium salt damage includes soils with EC values between 4.0 and 16 mS/cm. Operators will add amendments of gypsum, till the soil, and arrange for irrigation. Some particularly salt tolerant plants can be added but most planting ought to be reserved until the second season of remediation. Severe salt damage includes soil with EC values in excess of 16 mS/cm. Operators will add at least part of the gypsum required, till the soil, and arrange for irrigation. The following seasons more gypsum will be added and as the soil EC is reduced, plants can be introduced. If rapid remediation is required, a sufficient volume of topsoil, or sand, or manure can be added to dilute the local salinity, the bulk amendments tilled into the surface with added gypsum, and appropriate plants added. In this case, irrigation will be particularly important. The expense of the more rapid remediation will be much higher.

  13. Sea-salt aerosol response to climate change: Last Glacial Maximum, preindustrial, and doubled carbon dioxide climates

    E-Print Network [OSTI]

    Mahowald, Natalie

    Sea-salt aerosol response to climate change: Last Glacial Maximum, preindustrial, and doubled Received 1 July 2005; revised 31 October 2005; accepted 17 November 2005; published 2 March 2006. [1] Sea-salt their response to changes in climate represents an important potential feedback on climate. Model results for sea-salt

  14. Development of a flow injection analysis method for the determination of acrylamide copolymers in oilfield brines

    SciTech Connect (OSTI)

    Taylor, K.C.; Burke, R.A.; Schramm, L.L. [Petroleum Recovery Inst., Calgary, Alberta (Canada); Nasr-El-Din, H.A. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-11-01T23:59:59.000Z

    An automated method for the determination of acrylamide polymers by flow injection analysis (FIA) has been developed and optimized for routine use. The method has been extensively tested for interferences common in oilfield brines. Potential interferences were examined from Na{sup +}, Ca{sup 2+}, Cr{sup 3+}, Al{sup 3+}, Zr{sup 3+}, NH{sub 4}{sup +}, Cl{sup {minus}}, OH{sup {minus}}, CO{sub 3}{sup 2{minus}}, sample coloration, and commonly used surfactants. The analysis is specific for amides, and the sensitivity to concentration of amide groups in the polymer was shown to be constant as the degree of polymer hydrolysis was varied. The range of the method is 0.1 to 100 mg/L. Sample throughput is 30 samples/h with triplicate analysis. Relative standard deviations of 0.2% are readily obtained from standard solutions and 0.5% from complex samples (at 50 mg/L). The method is applicable to the determination of aqueous, acrylamide-based polymers in process streams, surface waters and oilfield brines.

  15. CAVERN ROOF STABILITY FOR NATURAL GAS STORAGE IN BEDDED SALT

    SciTech Connect (OSTI)

    DeVries, Kerry L; Mellegard, Kirby D; Callahan, Gary D; Goodman, William M

    2005-06-01T23:59:59.000Z

    This report documents research performed to develop a new stress-based criterion for predicting the onset of damage in salt formations surrounding natural gas storage caverns. Laboratory tests were conducted to investigate the effects of shear stress, mean stress, pore pressure, temperature, and Lode angle on the strength and creep characteristics of salt. The laboratory test data were used in the development of the new criterion. The laboratory results indicate that the strength of salt strongly depends on the mean stress and Lode angle. The strength of the salt does not appear to be sensitive to temperature. Pore pressure effects were not readily apparent until a significant level of damage was induced and the permeability was increased to allow penetration of the liquid permeant. Utilizing the new criterion, numerical simulations were used to estimate the minimum allowable gas pressure for hypothetical storage caverns located in a bedded salt formation. The simulations performed illustrate the influence that cavern roof span, depth, roof salt thickness, shale thickness, and shale stiffness have on the allowable operating pressure range. Interestingly, comparison of predictions using the new criterion with that of a commonly used criterion indicate that lower minimum gas pressures may be allowed for caverns at shallow depths. However, as cavern depth is increased, less conservative estimates for minimum gas pressure were determined by the new criterion.

  16. Damage in porous media due to salt crystallization

    E-Print Network [OSTI]

    Noushine Shahidzadeh-Bonn; Julie Desarnaud; François Bertrand; Xavier Chateau; Daniel Bonn

    2010-07-13T23:59:59.000Z

    We investigate the origins of salt damage in sandstones for the two most common salts: sodium chloride and sulfate. The results show that the observed difference in damage between the two salts is directly related to the kinetics of crystallization and the interfacial properties of the salt solutions and crystals with respect to the stone. We show that, for sodium sulfate, the existence of hydrated and anhydrous crystals and specifically their dissolution and crystallization kinetics are responsible for the damage. Using magnetic resonance imaging and optical microscopy we show that when water imbibes sodium sulfate contaminated sandstones, followed by drying at room temperature, large damage occurs in regions where pores are fully filled with salts. After partial dissolution, anhydrous sodium sulfate salt present in these regions gives rise to a very rapid growth of the hydrated phase of sulfate in the form of clusters that form on or close to the remaining anhydrous microcrystals. The rapid growth of these clusters generates stresses in excess of the tensile strength of the stone leading to the damage. Sodium chloride only forms anhydrous crystals that consequently do not cause damage in the experiments.

  17. Salt Stress in Desulfovibrio vulgaris Hildenborough: An integrated genomics approach

    E-Print Network [OSTI]

    Mukhopadhyay, Aindrila

    2010-01-01T23:59:59.000Z

    machinery against salt-induced damage in Synechococcus.Lactobacillus plantarum to salt and nonelectrolyte stress. Jregulation of acid, heat, and salt tolerance in Escherichia

  18. Salt Dynamics in Non-Riparian Freshwater Wetlands

    E-Print Network [OSTI]

    Stacey, Mark T

    2007-01-01T23:59:59.000Z

    Resources Center Project “Salt Dynamics in Non-RiparianTechnical Completion Report “Salt Dynamics in Non-Riparianindicate that the flux of salt between the soil and water

  19. Production of chlorine from chloride salts

    DOE Patents [OSTI]

    Rohrmann, Charles A. (Kennewick, WA)

    1981-01-01T23:59:59.000Z

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  20. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOE Patents [OSTI]

    Lewis, Michele A.; Johnson, Terry R.

    1993-09-07T23:59:59.000Z

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  1. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOE Patents [OSTI]

    Lewis, Michele A. (Naperville, IL); Johnson, Terry R. (Wheaton, IL)

    1993-01-01T23:59:59.000Z

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  2. Barton, M.D.and Johnson, D.A., 2000 -Alternative Brine Sources for Fe-Oxide (-Cu-Au) Systems: Implications for Hydrothermal Alteration and Metals; in Porter, T.M. (Ed.),

    E-Print Network [OSTI]

    Barton, Mark D.

    Barton, M.D.and Johnson, D.A., 2000 -Alternative Brine Sources for Fe-Oxide (-Cu-Au) Systems-Gold &Related Deposits: AGlobal Perspective, Australian Mineral Foundation, Adelaide, pp 43-60 ALTERNATIVE BRINE, and the broader geologic setting(s). Geologic and geochemical evidence show that the ore-forming fluids are brines

  3. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1

    SciTech Connect (OSTI)

    Bacon, Diana H.

    2013-03-31T23:59:59.000Z

    The National Risk Assessment Partnership (NRAP) consists of 5 U.S DOE national laboratories collaborating to develop a framework for predicting the risks associated with carbon sequestration. The approach taken by NRAP is to divide the system into components, including injection target reservoirs, wellbores, natural pathways including faults and fractures, groundwater and the atmosphere. Next, develop a detailed, physics and chemistry-based model of each component. Using the results of the detailed models, develop efficient, simplified models, termed reduced order models (ROM) for each component. Finally, integrate the component ROMs into a system model that calculates risk profiles for the site. This report details the development of the Groundwater Geochemistry ROM for the Edwards Aquifer at PNNL. The Groundwater Geochemistry ROM for the Edwards Aquifer uses a Wellbore Leakage ROM developed at LANL as input. The detailed model, using the STOMP simulator, covers a 5x8 km area of the Edwards Aquifer near San Antonio, Texas. The model includes heterogeneous hydraulic properties, and equilibrium, kinetic and sorption reactions between groundwater, leaked CO2 gas, brine, and the aquifer carbonate and clay minerals. Latin Hypercube sampling was used to generate 1024 samples of input parameters. For each of these input samples, the STOMP simulator was used to predict the flux of CO2 to the atmosphere, and the volume, length and width of the aquifer where pH was less than the MCL standard, and TDS, arsenic, cadmium and lead exceeded MCL standards. In order to decouple the Wellbore Leakage ROM from the Groundwater Geochemistry ROM, the response surface was transformed to replace Wellbore Leakage ROM input parameters with instantaneous and cumulative CO2 and brine leakage rates. The most sensitive parameters proved to be the CO2 and brine leakage rates from the well, with equilibrium coefficients for calcite and dolomite, as well as the number of illite and kaolinite sorption sites proving to be of secondary importance. The Groundwater Geochemistry ROM was developed using nonlinear regression to fit the response surface with a quadratic polynomial. The goodness of fit was excellent for the CO2 flux to the atmosphere, and very good for predicting the volumes of groundwater exceeding the pH, TDS, As, Cd and Pb threshold values.

  4. Geologic technical assessment of the Stratton Ridge salt dome, Texas, for potential expansion of the U.S. strategic petroleum reserve.

    SciTech Connect (OSTI)

    Rautman, Christopher Arthur; Snider, Anna C.; Looff, Karl M. (Geologic Consultant, Lovelady, TX)

    2006-11-01T23:59:59.000Z

    The Stratton Ridge salt dome is a large salt diapir located only some ten miles from the currently active Strategic Petroleum Reserve Site at Bryan Mound, Texas. The dome is approximately 15 miles south-southwest of Houston. The Stratton Ridge salt dome has been intensively developed, in the desirable central portions, with caverns for both brine production and product storage. This geologic technical assessment indicates that the Stratton Ridge salt dome may be considered a viable, if less-than-desirable, candidate site for potential expansion of the Strategic Petroleum Reserve (SPR). Past development of underground caverns significantly limits the potential options for use by the SPR. The current conceptual design layout of proposed caverns for such an expansion facility is based upon a decades-old model of salt geometry, and it is unacceptable, according to this reinterpretation of salt dome geology. The easternmost set of conceptual caverns are located within a 300-ft buffer zone of a very major boundary shear zone, fault, or other structural feature of indeterminate origin. This structure transects the salt stock and subdivides it into an shallow western part and a deeper eastern part. In places, the distance from this structural boundary to the design-basis caverns is as little as 150 ft. A 300-ft distance from this boundary is likely to be the minimum acceptable stand-off, from both a geologic and a regulatory perspective. Repositioning of the proposed cavern field is possible, as sufficient currently undeveloped salt acreage appears to be available. However, such reconfiguration would be subject to limitations related to land-parcel boundaries and other existing infrastructure and topographic constraints. More broadly speaking, the past history of cavern operations at the Stratton Ridge salt dome indicates that operation of potential SPR expansion caverns at this site may be difficult, and correspondingly expensive. Although detailed information is difficult to come by, widely accepted industry rumors are that numerous existing caverns have experienced major operational problems, including salt falls, sheared casings, and unintended releases of stored product(s). Many of these difficulties may be related to on-going differential movement of individual salt spines or to lateral movement at the caprock-salt interface. The history of operational problems, only some of which appear to be a matter of public record, combined with the potential for encountering escaped product from other operations, renders the Stratton Ridge salt dome a less-than-desirable site for SPR purposes.

  5. Chloride Depletion in Aged Sea Salt Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chloride Depletion in Aged Sea Salt Particles Chloride Depletion in Aged Sea Salt Particles Print Wednesday, 06 February 2013 00:00 Particles or aerosols can be directly released...

  6. Calcium Isotopic Variation in Marine Evaporites and Carbonates: Applications to Late Miocene Mediterranean Brine Chemistry and Late Cenozoic Calcium Cycling in the Oceans

    E-Print Network [OSTI]

    Hensley, Tabitha Michele

    2006-01-01T23:59:59.000Z

    purpose of drilling into the Late Messinian salts. DSDP LegsOcean Drilling Program drilled through Messinian salts while

  7. Acoustic probing of salt using sonar

    E-Print Network [OSTI]

    Butler, Kenneth Bryan

    1977-01-01T23:59:59.000Z

    , glycerine, and s1li cone oil provi ded satisfactory performance. In spite of these results, Gupta did not develop a workable means of us1ng 11quid coupl1ng media under mine condit1ons. In his field tests, Gupta used dental impression plaster (a coupling... acoustic pulses which are coupled 1nto the salt via a castor oil coupling medium. The acoustic source signa'i is a square-enveloped pulse of compress1onal waves; a pulse duration of e1ther 0. 3 ms or 1. 1 ms is used. The ranges to discontinuities...

  8. Safe actinide disposition in molten salt reactors

    SciTech Connect (OSTI)

    Gat, U.

    1997-03-01T23:59:59.000Z

    Safe molten salt reactors (MSR) can readily accommodate the burning of all fissile actinides. Only minor compromises associated with plutonium are required. The MSRs can dispose safely of actinides and long lived isotopes to result in safer and simpler waste. Disposing of actinides in MSRs does increase the source term of a safety optimized MSR. It is concluded that the burning and transmutation of actinides in MSRs can be done in a safe manner. Development is needed for the processing to handle and separate the actinides. Calculations are needed to establish the neutron economy and the fuel management. 9 refs.

  9. Energy optimization in ice hockey halls I. The system COP as a multivariable function, brine and design choices

    E-Print Network [OSTI]

    Ferrantelli, Andrea; Räikkönen, Miska; Viljanen, Martti

    2012-01-01T23:59:59.000Z

    This work is the first of a series of articles addressing the energy optimization in ice hockey halls. Here we outline an analytic method to predict in which design and operating conditions the COP of the entire cooling system (refrigerator and cooling tower) ${\\rm COP}_{sys}$ is maximum. ${\\rm COP}_{sys}$ is investigated as a function of several variables, like electric consumption and brine physical properties. With this method, the best configuration and brine choices for the system can therefore be determined in advance. We estimate the optimal design of an average-sized ice rink, including pipe diameter, depth and brine type (ethylene glycol and ammonia). We also single out an optimal brine density and show the impact of the electric consumption of the pump on ${\\rm COP}_{sys}$. Our theoretical predictions are validated with heat flow measurement data obtained at an ice hockey hall in Finland. They are also confronted with technical and cost-related constraints, and implemented by simulations with the pr...

  10. Predicting PVT data for CO2brine mixtures for black-oil simulation of CO2 geological storage

    E-Print Network [OSTI]

    Santos, Juan

    Predicting PVT data for CO2­brine mixtures for black-oil simulation of CO2 geological storage efficiency of the black-oil approach promote application of black-oil simulation for large-scale geological into geological formations has been considered as a potential method to mitigate climate change. Accurate

  11. Macro-and Microscale Waterflooding Performances of Crudes which form w/o Emulsions upon Mixing with Brines

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Macro- and Microscale Waterflooding Performances of Crudes which form w/o Emulsions upon Mixing with Brines N. Rezaei and A. Firoozabadi*,, Reservoir Engineering Research Institute, 595 Lytton Avenue, Palo ABSTRACT: We study the micro- and macroscale waterflooding performances of unusual crudes which naturally

  12. 2. INVESTIGATION OF CRUDE OIL/BRINE/ROCK INTERACTION 2.1 STUDY OF WATERFLOODING PROCESS IN NATURALLY FRACTURED

    E-Print Network [OSTI]

    Schechter, David S.

    , followed by waterflooding, were performed at reservoir conditions to investigate rock wettability. A two Berea and Spraberry cores at reservoir conditions to illustrate the actual process of waterflooding- 31 - 2. INVESTIGATION OF CRUDE OIL/BRINE/ROCK INTERACTION 2.1 STUDY OF WATERFLOODING PROCESS

  13. Salt effect on the isobaric vapor-liquid equilibrium of the methyl acetate + methanol system

    SciTech Connect (OSTI)

    Iliuta, M.C.; Thyrion, F.C. [Louvain Univ., Louvain-la-Neuve (Belgium). Chemical Engineering Inst.] [Louvain Univ., Louvain-la-Neuve (Belgium). Chemical Engineering Inst.; Landauer, O.M. [Univ. Politehnica Bucharest (Romania)] [Univ. Politehnica Bucharest (Romania)

    1996-07-01T23:59:59.000Z

    The effect of sodium thiocyanate at constant salt mole fraction from 0.01 to 0.05 and at saturation on the vapor-liquid equilibrium (VLE) of methyl acetate + methanol has been studied at 101.32 kPa using a modified Othmer equilibrium still. The salt exhibited both salting-in and salting-out effects on the methyl acetate, the azeotrope being eliminated at saturation. The results were correlated using the extended UNIQUAC model of Sander et al. and the electrolytic NRTL model of Mock et al.

  14. First Robert Stobie SALT Workshop Science with SALT Workshop Proceedings, Vol. 2, 2004

    E-Print Network [OSTI]

    Bershady, Matthew A.

    First Robert Stobie SALT Workshop Science with SALT Workshop Proceedings, Vol. 2, 2004 D.A.H. Buckley Galaxy Kinematics with SALT M. A. Bershady1, M. A. W. Verheijen2, D. R. Andersen3, R. A. Swaters4-gathering power of SALT coupled with the high-throughput performance of the Prime Focus Imaging Spec- trograph

  15. Disparities in Salt Lake County and Salt Lake City Mortgage Outcomes and

    E-Print Network [OSTI]

    Feschotte, Cedric

    Disparities in Salt Lake County and Salt Lake City Mortgage Outcomes and Lending Practices Darius of lending practices. This article is an adapted excerpt from the Salt Lake County Regional Analysis impediments in the home mortgage application process. The HMDA data from 2006 to 2011 were compiled for Salt

  16. Salt marsh geomorphology: Physical and ecological effects on landform Keywords: salt marsh geomorphology; AGU Chapman Conference

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    Editorial Salt marsh geomorphology: Physical and ecological effects on landform Keywords: salt marsh geomorphology; AGU Chapman Conference Evidence that the three-dimensional structure of salt marsh, and the ratio of marsh edge:marsh interior have all been shown to affect the distribution and density of salt

  17. Characterization of a ceramic waste form encapsulating radioactive electrorefiner salt

    SciTech Connect (OSTI)

    Moschetti, T. L.; Sinkler, W.; DiSanto, T.; Noy, M.; Warren, A. R.; Cummings, D. G.; Johnson, S. G.; Goff, K. M.; Bateman, K. J.; Frank, S. M.

    1999-11-11T23:59:59.000Z

    Argonne National Laboratory has developed a ceramic waste form to immobilize radioactive waste salt produced during the electrometallurgical treatment of spent fuel. This study presents the first results from electron microscopy and durability testing of a ceramic waste form produced from that radioactive electrorefiner salt. The waste form consists of two primary phases: sodalite and glass. The sodalite phase appears to incorporate most of the alkali and alkaline earth fission products. Other fission products (rare earths and yttrium) tend to form a separate phase and are frequently associated with the actinides, which form mixed oxides. Seven-day leach test results are also presented.

  18. 8, 7194, 2008 Sea salt aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 71­94, 2008 Sea salt aerosol refractive indices R. Irshad et al. Title Page Abstract Discussions Laboratory measurements of the optical properties of sea salt aerosol R. Irshad 1 , R. G. Grainger salt aerosol refractive indices R. Irshad et al. Title Page Abstract Introduction Conclusions

  19. Unconventional gas sources. Executive summary. [Coal seams, Devonian shale, geopressured brines, tight gas reservoirs

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The long lead time required for conversion from oil or gas to coal and for development of a synthetic fuel industry dictates that oil and gas must continue to supply the United States with the majority of its energy requirements over the near term. In the interim period, the nation must seek a resource that can be developed quickly, incrementally, and with as few environmental concerns as possible. One option which could potentially fit these requirements is to explore for, drill, and produce unconventional gas: Devonian Shale gas, coal seam gas, gas dissolved in geopressured brines, and gas from tight reservoirs. This report addresses the significance of these sources and the economic and technical conditions under which they could be developed.

  20. Unnatural landscapes in ecology: Generating the spatial distribution of brine spills

    SciTech Connect (OSTI)

    Jager, Yetta [ORNL; Efroymson, Rebecca Ann [ORNL; Sublette, K. [University of Tulsa; Ashwood, Tom L [ORNL

    2005-01-01T23:59:59.000Z

    Quantitative tools are needed to evaluate the ecological effects of increasing petroleum production. In this article, we describe two stochastic models for simulating the spatial distribution of brine spills on a landscape. One model uses general assumptions about the spatial arrangement of spills and their sizes; the second model distributes spills by siting rectangular well complexes and conditioning spill probabilities on the configuration of pipes. We present maps of landscapes with spills produced by the two methods and compare the ability of the models to reproduce a specified spill area. A strength of the models presented here is their ability to extrapolate from the existing landscape to simulate landscapes with a higher (or lower) density of oil wells.

  1. Brine-in-crude-oil emulsions at the Strategic Petroleum Reserve.

    SciTech Connect (OSTI)

    Nemer, Martin B.; Lord, David L.; MacDonald, Terry L.

    2013-10-01T23:59:59.000Z

    Metastable water-in-crude-oil emulsion formation could occur in a Strategic Petroleum Reserve (SPR) cavern if water were to flow into the crude-oil layer at a sufficient rate. Such a situation could arise during a drawdown from a cavern with a broken-hanging brine string. A high asphaltene content (> 1.5 wt %) of the crude oil provides the strongest predictor of whether a metastable water-in-crude-oil emulsion will form. However there are many crude oils with an asphaltene content > 1.5 wt % that don't form stable emulsions, but few with a low asphaltene content that do form stable emulsions. Most of the oils that form stable emulsions are %E2%80%9Csour%E2%80%9D by SPR standards indicating they contain total sulfur > 0.50 wt %.

  2. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Reddy, Ramana G. [The University of Alabama] [The University of Alabama

    2013-10-23T23:59:59.000Z

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go/no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt – and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500°C, rather than the current 400°C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank “direct” system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank “indirect” system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.

  3. Imaging dipping sediments at a salt dome flank -VSP seismic interferometry and reverse-time Rongrong Lu*, Mark Willis, Xander Campman, Jonathan Ajo-Franklin, M. Nafi Toksz, ERL, MIT

    E-Print Network [OSTI]

    Ajo-Franklin, Jonathan

    Imaging dipping sediments at a salt dome flank - VSP seismic interferometry and reverse We present results of applying seismic interferometry to image dipping sediments abutting a salt dome overhanging salt dome. The sediment reflectors in the model dip up towards the salt dome flank. To process

  4. Radar investigation of the Hockley salt dome

    E-Print Network [OSTI]

    Hluchanek, James Andrew

    1973-01-01T23:59:59.000Z

    : Geophysics RADAR INVESTIGATION OF THE HOCKLEY SALT DOME A Thesis by UAMES ANDREW HLUCHANEK A'pproved as to style and content by: (Head of Departme t ? Member) May 1. 973 ABSTRACT Radar investigation of the Hockley Salt Dome. . (Nay, 1973) James... Andrew Hluchanek, B. S. , Texas A&M University Directed by: Dr. Robert R. Unterberger Radar probing through salt was accomplished at 17 radar stations established in the United Salt Company mine at Hockley, Texas. The top of the salt dom is mapped...

  5. Thermophysical properties of reconsolidating crushed salt.

    SciTech Connect (OSTI)

    Bauer, Stephen J.; Urquhart, Alexander

    2014-03-01T23:59:59.000Z

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature up to 300oC, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.

  6. Improving Permeability and Salt Leaching in Irrigated Sports Fields: Exploratory Testing

    E-Print Network [OSTI]

    Miyamoto, S; Martinez, Ignacio; Luna, Francisco; Tirre, David

    corrugated surface to permit lateral drainage was also highly effective in salt leaching in deep clay. Subsoiling of Glendale and Saneli silty clay loam followed by topdressing with a thin layer of sand also resulted in good salt leaching, especially when...

  7. A Study of Novel Hexavalent Phosphazene Salts as Draw Solutes in Forward Osmosis

    SciTech Connect (OSTI)

    Mark L. Stone; Aaron D. Wilson; Mason K. Harrup; Frederick F. Stewart

    2013-03-01T23:59:59.000Z

    Two novel multi-valent salts based on phosphazene chemistry have been synthesized and characterized as forward osmosis (FO) draw solutes. Commercially obtained hexachlorocyclotriphosphazene was reacted with the sodium salt of 4-ethylhydroxybenzoate to yield hexa(4-ethylcarboxylatophenoxy)phosphazene. Hydrolysis, followed by and neutralization with NaOH or LiOH, of the resulting acidic moieties yielded water soluble sodium and lithium phosphazene salts, respectively. Degrees of dissociation were determined through osmometry over the range of 0.05-0.5 m, giving degrees of 3.08-4.95 per mole, suggesting a high osmotic potential. The Li salt was found to be more ionized in solution than the sodium salt, and this was reflected in FO experiments where the Li salt gave higher initial fluxes (~ 7 L/m2h) as compared to the sodium salt (~6 L/m2h) at identical 0.07 m draw solution concentrations at 30 °C. Longer term experiments revealed no detectable degradation of the salts; however some hydrolysis of the cellulose acetate membrane was observed, presumably due to the pH of the phosphazene salt draw solution (pH = ~8).

  8. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect (OSTI)

    Siemer, D.D. [Idaho National Laboratory, 12N 3167E, Idaho Falls, ID 83402 (United States)

    2013-07-01T23:59:59.000Z

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  9. A mechanical model of early salt dome growth

    E-Print Network [OSTI]

    Irwin, Frank Albert

    1988-01-01T23:59:59.000Z

    of Department) December 1988 A Mechanical Analysis of Early Salt Dome Growth. (December 1988) Frank Albert Irwin, B. S. , Texas A&M University Chair of Advisory Committee: Dr. Raymond C. Fletcher A two-layer superposition model, the lower layer representing... of the sediments results in growth rates much higher than those observed. Analysis of the case with a diffusivity of 104m2/Ka agrees with all observa- tions. A range of diffusivities which will produce a realistic salt dome model is then determined. The lower...

  10. Solving the structure of disordered mixed salts

    SciTech Connect (OSTI)

    Frenkel, A. (School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978 (Israel)); Stern, E.A. (Department of Physics FM-15, University of Washington, Seattle, Washington 98195 (United States)); Voronel, A. (School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978 (Israel)); Qian, M. (Princeton Materials Institute, Princeton University, Princeton, New Jersey 08540 (United States)); Newville, M. (Department of Physics FM-15, University of Washington, Seattle, Washington 98195 (United States))

    1994-05-01T23:59:59.000Z

    A detailed x-ray-absorption fine-structure (XAFS) investigation of two mixed alkali halides Rb[sub 0.76]K[sub 0.24]Br and RbBr[sub 0.62]Cl[sub 0.38] was performed. The concentrations of the mixtures had been chosen to produce a single homogeneous phase for each, and it was checked by XAFS that the salts were randomly mixed on the atomic level. Detailed analysis of the data including multiple-scattering contributions revealed an rms buckling angular deviation of both mixtures from the average NaCl collinear structure of 7--9[degree]. The angles are defined by three atomic positions determined through double- and triple-scattering paths. These angles are new parameters which should be added to characterize the buckled crystals. Adding to diffraction results the parameters determined from XAFS as input into a molecular-dynamics simulation the structures of the mixed salts with their fluctuations about the NaCL structure are solved and displayed.

  11. Effects of a sulfide system produced by a natural brine seep on sandy-bottom community structure at the East Flower Garden Bank, northwest Gulf of Mexico

    E-Print Network [OSTI]

    Woods, Edward Andrew

    1982-01-01T23:59:59.000Z

    30%. Videophotography and doppler-based rangefinder measurements were used to map the seep area. Current measurements of the brine stream were made using a Savonius rotor attached to the manipulator Analysis of data was carried out using...

  12. Underground Natural Gas Storage Wells in Bedded Salt (Kansas)

    Broader source: Energy.gov [DOE]

    These regulations apply to natural gas underground storage and associated brine ponds, and includes the permit application for each new underground storage tank near surface water bodies and springs.

  13. Molten fluoride fuel salt chemistry

    SciTech Connect (OSTI)

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1994-09-01T23:59:59.000Z

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Fission product behavior is described along with processing experience. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior, processing and recycle of the fuel components is a necessary factor if future systems are to be established.

  14. Factors influencing algal biomass in hydrologically dynamic salt ponds in a subtropical salt marsh

    E-Print Network [OSTI]

    Miller, Carrie J.

    2009-05-15T23:59:59.000Z

    by channels and shallow ponds that are subject to flooding by winds, tides, and storm surges. Coastal salt marshes are widely regarded as zones of high macrophyte productivity. However, microalgae may contribute more to salt marsh productivity than previously...

  15. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05T23:59:59.000Z

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  16. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Xu, Wu (Tempe, AZ)

    2008-01-01T23:59:59.000Z

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  17. Granular Salt Summary: Reconsolidation Principles and Applications

    SciTech Connect (OSTI)

    Hansen, Frank; Popp, Till; Wieczorek, Klaus; Stührenberg, Dieter

    2014-07-01T23:59:59.000Z

    The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

  18. Detection of frozen salt in pipes using gamma-ray spectrometry of potassium self-activity

    SciTech Connect (OSTI)

    Grena, Roberto; Scafe, Raffaele; Pisacane, Fabrizio; Pilato, Renzo; Crescenzi, Tommaso; Mazzei, Domenico [ENEA, Casaccia Research Centre, via Anguillarese 301, 00123 S. Maria di Galeria, Rome (Italy)

    2010-01-15T23:59:59.000Z

    Solar plants that use molten salts as heat transfer fluid need careful control to avoid the freezing of the salt in the pipes; if such a problem occurs, a diagnostic instrument to localize where is the frozen salt plug and to determine its length is useful. If the salt contains potassium (as is the case of the most common mixture used in solar plants, NaNO{sub 3}/KNO{sub 3} 60/40% by weight), the gamma decay of the natural unstable isotope {sup 40}K can be exploited to detect the frozen salt in a non-invasive way. Simulations and experimental results regarding the detectability of such plugs with different masses/lengths are presented. (author)

  19. Water, Vapor, and Salt Dynamics in a Hot Repository

    SciTech Connect (OSTI)

    Bahrami, Davood; Danko, George [Department of Mining Engineering, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557 (United States); Walton, John [Department of Civil Engineering, University of Texas at El Paso, 500 W. University, El Paso, TX, 79968 (United States)

    2007-07-01T23:59:59.000Z

    The purpose of this paper is to report the results of a new model study examining the high temperature nuclear waste disposal concept at Yucca Mountain using MULTIFLUX, an integrated in-drift- and mountain-scale thermal-hydrologic model. The results show that a large amount of vapor flow into the drift is expected during the period of above-boiling temperatures. This phenomenon makes the emplacement drift a water/moisture attractor during the above-boiling temperature operation. The evaporation of the percolation water into the drift gives rise to salt accumulation in the rock wall, especially in the crown of the drift for about 1500 years in the example. The deposited salts over the drift footprint, almost entirely present in the fractures, may enter the drift either by rock fall or by water drippage. During the high temperature operation mode, the barometric pressure variation creates fluctuating relative humidity in the emplacement drift with a time period of approximately 10 days. Potentially wet and dry conditions and condensation on salt-laden drift wall sections may adversely affect the storage environment. Salt accumulations during the above-boiling temperature operation must be sufficiently addressed to fully understand the waste package environment during the thermal period. Until the questions are resolved, a below-boiling repository design is favored where the Alloy-22 will be less susceptible to localized corrosion. (authors)

  20. Decommissioning of the Molten Salt Reactor Experiment: A technical evaluation

    SciTech Connect (OSTI)

    Notz, K.J.

    1988-01-01T23:59:59.000Z

    This report completes a technical evaluation of decommissioning planning for the former Molten Salt Reactor Experiment, which was shut down in December, 1969. The key issues revolve around the treatment and disposal of some five tons of solid fuel salt which contains over 30 kg of fissionable uranium-233 plus fission products and higher actinides. The chemistry of this material is complicated by the formation of elemental fluorine via a radiolysis reaction under certain conditions. Supporting studies carried out as part of this evaluation include (a) a broad scope analysis of possible options for storage/disposal of the salts, (b) calculation of nuclide decay in future years, (c) technical evaluation of the containment facility and hot cell penetrations, (d) review and update of surveillance and maintenance procedures, (e) measurements of facility groundwater radioactivity and sump pump operation, (f) laboratory studies of the radiolysis reaction, and (g) laboratory studies which resulted in finding a suitable getter for elemental fluorine. In addition, geologic and hydrologic factors of the surrounding area were considered, and also the implications of entombment of the fuel in-place with concrete. The results of this evaluation show that the fuel salt cannot be left in its present form and location permanently. On the other hand, extended storage in its present form is quite acceptable for 20 to 30 years, or even longer. For continued storage in-place, some facility modifications are recommended. 30 refs., 5 figs., 9 tabs.

  1. Management of Salt Waste from Electrochemical Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    Michael F. Simpson; Michael N. Patterson; Joon Lee; Yifeng Wang; Joshua Versey; Ammon Williams; Supathorn Phongikaroon; James Allensworth; Man-Sung Yim

    2013-10-01T23:59:59.000Z

    Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electrorefiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form.

  2. Management of salt waste from electrochemical processing of used nuclear fuel

    SciTech Connect (OSTI)

    Simpson, M.F.; Patterson, M.N. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415 (United States); Lee, J.; Wang, Y. [Sandia National Laboratory, Albuquerque, NM (United States); Versey, J.; Phongikaroon, S. [University of Idaho, Idaho Falls, ID (United States)

    2013-07-01T23:59:59.000Z

    Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electro-refiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form. (authors)

  3. Ketone Production from the Thermal Decomposition of Carboxylate Salts 

    E-Print Network [OSTI]

    Landoll, Michael 1984-

    2012-08-15T23:59:59.000Z

    . Mixtures of calcium carboxylate salts were thermally decomposed at 450 degrees C. Low lime-to-salt ratios (g Ca(OH)2/g salt) of 0.00134 and less had a negligible effect on ketone yield. In contrast, salts with higher lime-to-salt ratios of 0.00461, 0.0190...

  4. Molten-Salt Depleted-Uranium Reactor

    E-Print Network [OSTI]

    Dong, Bao-Guo; Gu, Ji-Yuan

    2015-01-01T23:59:59.000Z

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

  5. Technical review of Molten Salt Oxidation

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The process was reviewed for destruction of mixed low-level radioactive waste. Results: extensive development work and scaleup has been documented on coal gasification and hazardous waste which forms a strong experience base for this MSO process; it is clearly applicable to DOE wastes such as organic liquids and low-ash wastes. It also has potential for processing difficult-to-treat wastes such as nuclear grade graphite and TBP, and it may be suitable for other problem waste streams such as sodium metal. MSO operating systems may be constructed in relatively small units for small quantity generators. Public perceptions could be favorable if acceptable performance data are presented fairly; MSO will likely require compliance with regulations for incineration. Use of MSO for offgas treatment may be complicated by salt carryover. Figs, tabs, refs.

  6. The Effect of Salt Stoichiometry on Protein-Salt Interactions Determined by Ternary Diffusion in Aqueous Solutions

    E-Print Network [OSTI]

    Annunziata, Onofrio

    The Effect of Salt Stoichiometry on Protein-Salt Interactions Determined by Ternary Diffusion of salt stoichiometry on the transport properties of lysozyme-salt aqueous mixtures. We find that the two cross-diffusion coefficients are very sensitive to salt stoichiometry. One of the cross

  7. Summary Results for Brine Migration Modeling Performed by LANL, LBNL, and SNL for the Used Fuel Disposition Program

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski -Blueprint | DepartmentExcellenceGuidanceS EM Pr ETRMay

  8. Effect of antagonistic salt on confined near-critical mixture

    E-Print Network [OSTI]

    Faezeh Pousaneh; Alina Ciach

    2014-06-13T23:59:59.000Z

    We consider a near-critical binary mixture with addition of antagonistic salt confined between weakly charged and selective surfaces. A mesoscopic functional for this system is developed from a microscopic description by a systematic coarse-graining procedure. The functional reduces to the Landau-Brazovskii functional for amphiphilic systems for sufficiently large ratio between the correlation length in the critical binary mixture and the screening length. Our theoretical result agrees with the experimental observation [Sadakane et.al. J. Chem. Phys. {\\bf 139}, 234905 (2013)] that the antagonistic salt and surfactant both lead to a similar mesoscopic structure. For very small salt concentration $\\rho_{ion}$ the Casimir potential is the same as in a presence of inorganic salt. For larger $\\rho_{ion}$ the Casimir potential takes a minimum followed by a maximum for separations of order of tens of nanometers, and exhibits an oscillatory decay very close to the critical point. For separations of tens of nanometers the potential between surfaces with a linear size of hundreds of nanometers can be of order of $k_BT$. We have verified that in the experimentally studied samples [Sadakane et.al. J. Chem. Phys. {\\bf 139}, 234905 (2013), Leys et.al. Soft Matter {\\bf 9}, 9326 (2013)] the decay length is too small compared to the period of oscillations of the Casimir potential, but the oscillatory force could be observed closer to the critical point.

  9. Metal salt catalysts for enhancing hydrogen spillover

    DOE Patents [OSTI]

    Yang, Ralph T; Wang, Yuhe

    2013-04-23T23:59:59.000Z

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  10. Modeling of Porous Electrodes in Molten-Salt Systems

    E-Print Network [OSTI]

    Newman, John

    1986-01-01T23:59:59.000Z

    of Porous Electrodes in Molten-Salt Systems^ John Newmanon High-Temperature Molten Salt B a t - teries, Argonneby the modeling of molten-salt cells, including some

  11. Neutrinoless Double Beta Decay in Light of SNO Salt Data

    E-Print Network [OSTI]

    Murayama, Hitoshi

    2009-01-01T23:59:59.000Z

    Beta Decay in Light of SNO Salt Data Hitoshi Murayama andBeta Decay in Light of SNO Salt Data Hitoshi Murayama ? andIn the SNO data from its salt run, probably the most signi?

  12. Advances in alleviating growth limitations of maize under salt stress

    E-Print Network [OSTI]

    Schubert, Sven

    2009-01-01T23:59:59.000Z

    during the first phase of salt stress. J. Appl. Bot. 2004;during the first phase of salt stress. J. Plant Nutr. SoilC, Hartung W, Schubert S. Salt resistance is determined by

  13. Salt glacier and composite sediment-salt glacier models for the emplacement and early burial of allochthonous salt sheets

    SciTech Connect (OSTI)

    Fletcher, R.C.; Hudec, M.R.; Watson, I.A. [Exxon Production Research Company, Houston, TX (United States)

    1996-12-31T23:59:59.000Z

    Allochthonous salt sheets in the northern Gulf of Mexico were emplaced as extrusive {open_quotes}salt glaciers{close_quotes} at the sediment-water interface. Massive dissolution was suppressed by a thin carapace of pelagic sediments. During emplacement, several hundred meters of bathymetric relief restricted rapid sedimentation to outside the glacial margins. The glaciers acted as sediment dams, influencing the transport and deposition of sediment from an upslope source. Because of contemporaneous sedimentation, the base of the glaciers climbed upward in all directions away from their feeder stocks, and successive sedimentary horizons were truncated against it. The local slope at the base of the sheets is equal to the local rate of sedimentation divided by the local rate of salt advance. Alternating episodes of slow and rapid sedimentation gave rise to a basal salt surface of alternating flats and ramps, which are preserved. Many salt sheets have nearly circular map patterns but are strongly asymmetric. Feeder stocks occur near upslope edges, and base-of-salt slopes are greater updip of the feeder. The asymmetry is due to more rapid sedimentation at the upslope edge and to slower advance induced by the smaller hydraulic head between the salt fountain and the upslope edge compared to the downslope edge. Rapid emplacement of the Mickey salt sheet (Mitchell dome) from a preexisting salt stock took {approximately}4 m.y, as {approximately}1 km of sediment was deposited. A three-dimensional geomechanical model for the rapid salt emplacement yields the following relationship for the diapir`s downdip radius versus time: R(t) {approx} Mt{sup q} {approx} B[({rho} - {rho}{sub w})gK{sup 3} / {eta}]{sup 1/8}t{sup q}, where M, q, b, and K are constants related to salt supply into the sheet, {rho} and {rho}{sub w} are the densities of salt water, g is the acceleration of gravity, {eta} is salt viscosity, and t is a model time extrapolated back to zero sheet volume at t = 0.

  14. Solar Policy Environment: Salt Lake

    Broader source: Energy.gov [DOE]

    The overall objective of the “Solar Salt Lake” (SSL) team is to develop a fully-scoped city and county-level implementation plan that will facilitate at least an additional ten megawatts of solar photovoltaic (PV) installations in the government, commercial, industrial, and residential sectors by 2015. To achieve this aggressive goal, the program strategy includes a combination of barrier identification, research, and policy analysis that utilizes the input of various stakeholders. Coupled with these activities will be the development and implementation of pilot installations in the government and residential sectors, and broad outreach to builders and potential practitioners of solar energy products in the process. In this way, while creating mechanisms to enable a demand for solar, SSL will also facilitate capacity building for suppliers, thereby helping to ensure long-term sustainability for the regional market.

  15. Effect of debonded interfaces on corrosion of mild steel composites in supercritical CO2-saturated brines

    SciTech Connect (OSTI)

    John, Han [Los Alamos National Laboratory; Carey, James W [Los Alamos National Laboratory; Zhang, Jinsuo [Los Alamos National Laboratory

    2010-10-07T23:59:59.000Z

    The geologic sequestration of CO{sub 2} is a proposed method to limit greenhouse gas emissions and has been the subject of many studies in the last decade. Wellbore systems achieve isolation of the storage reservoir through a combination of steel (generally carbon steel) and Portland cement. CO{sub 2} leakage along the steel-cement interface has the potential to accelerate corrosion. We conduct experiments to assess the corrosion risk at cement-steel interface under in situ wellbore conditions. Wellbore interfaces were simulated by assemblies constructed of J55 mild steel and Portland class G (Epoxy was used in this study to separate) cement and corrosion was investigated in supercritical CO{sub 2} saturated brines, (NaCl = 1 wt%) at T = 50 C, pCO{sub 2} = 1200 psi with interface gap size = 100 {micro}m and {infinity} (open surface). The experiments were carried out in a high-pressure, 1.8 L autoclave. The corrosion kinetics were measured employing electrochemical techniques including linear polarization resistance and electrochemical impedance spectroscopy techniques. The corrosion scales were analyzed using secondary electron microscopy, back scattering electron microscopy, energy dispersive spectroscopy and x-ray diffraction. Corrosion rates decreased as time with or without interface gap. In this case corrosion rates are controlled by scale protectivity through the interface gap. Scaled steel corrosion rates were two orders of magnitude less compared with fresh steel. The corrosion scale is pseudo crystalline at the open interface. Well-crystallized scale was observed at interface gap sizes 100 {micro}m. All corrosion scales were composed of iron carbonates.

  16. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc....

  17. Sandia National Laboratories: molten salt energy storage demonstration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molten salt energy storage demonstration Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power,...

  18. Enterprise Assessments Review of the Savannah River Site Salt...

    Energy Savers [EERE]

    the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans - June 2015 Enterprise Assessments Review of the Savannah River Site Salt Waste...

  19. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Broader source: Energy.gov (indexed) [DOE]

    of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants, seeks to determine whether the inorganic fluids (molten salts) offer a sufficient...

  20. Development Wells At Salt Wells Area (Nevada Bureau of Mines...

    Open Energy Info (EERE)

    Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Salt Wells Area...

  1. Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes...

  2. New lithium-based ionic liquid electrolytes that resist salt...

    Energy Savers [EERE]

    lithium-based ionic liquid electrolytes that resist salt concentration polarization New lithium-based ionic liquid electrolytes that resist salt concentration polarization...

  3. Effects of Carbonate Solvents and Lithium Salts on Morphology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode. Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic...

  4. Compound and Elemental Analysis At Salt Wells Area (Shevenell...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells...

  5. Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance...

    Open Energy Info (EERE)

    Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance To The Hydrocarbon Exploration In The Tuz Golu (Salt Lake) Basin, Central Anatolia, Turkey Jump to: navigation,...

  6. DOE - Office of Legacy Management -- Penn Salt Manufacturing...

    Office of Legacy Management (LM)

    Salt Manufacturing Co Whitemarsh Research Laboratories - PA 20 FUSRAP Considered Sites Site: PENN SALT MANUFACTURING CO., WHITEMARSH RESEARCH LABORATORIES (PA.20) Eliminated from...

  7. Characterization of Organic Coatings on Hygroscopic Salt Particles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Coatings on Hygroscopic Salt Particles and their Atmospheric Impacts. Characterization of Organic Coatings on Hygroscopic Salt Particles and their Atmospheric Impacts....

  8. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...

    Office of Environmental Management (EM)

    Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility October...

  9. acid salt solutions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  10. asse ii salt: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  11. arutlus salt lake: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  12. alkaline salt solution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  13. avery island salt: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  14. awra salt lake: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  15. alkaline salt solutions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  16. alkyl ammonium salts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  17. alkali salt deposition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  18. aluminium salt cakes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  19. aminodifluorosulfinium tetrafluoroborate salts: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  20. aqueous salt systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  1. aromatic diazonium salts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  2. alkyl ester salts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  3. allylic silanolate salts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  4. alternative salt processing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  5. Energy Department Completes Salt Coolant Material Transfer to...

    Office of Environmental Management (EM)

    Completes Salt Coolant Material Transfer to Czech Republic for Advanced Reactor Research Energy Department Completes Salt Coolant Material Transfer to Czech Republic for Advanced...

  6. Voluntary Protection Program Onsite Review, Salt Waste Processing...

    Broader source: Energy.gov (indexed) [DOE]

    Salt Waste Processing Facility Construction Project - February 2013 Voluntary Protection Program Onsite Review, Salt Waste Processing Facility Construction Project - February 2013...

  7. Voluntary Protection Program Onsite Review, Parsons Corp., Salt...

    Office of Environmental Management (EM)

    Parsons Corp., Salt Waste Processing Facility Construction Project - May 2014 Voluntary Protection Program Onsite Review, Parsons Corp., Salt Waste Processing Facility Construction...

  8. Experiments and analysis on the molten-salt direct-contact absorption receiver concept

    SciTech Connect (OSTI)

    Bohn, M.S.; Wang, K.Y.

    1986-11-01T23:59:59.000Z

    This paper presents results of recent experiments on the Direct Absorption Receiver (DAR) concept using molten salt as the working fluid. The DAR concept may result in a solar central receiver that costs 50% less than the current tube receiver and has significantly lower operational and maintenance costs. These experiments were aimed at determining whether the DAR concept is technically feasible and were carried out at the Advanced Components Test Facility, Atlanta, GA. Results are based on several days of operating with solar flux ranging up to 50 W/cm/sup 2/ and also on a numerical model that is capable of predicting the thermal performance of the DAR salt film. Issues relating to thermal efficiency, absorber-to-salt heat transfer, and salt film stability are addressed.

  9. Nuclear Hybrid Energy System: Molten Salt Energy Storage (Summer Report 2013)

    SciTech Connect (OSTI)

    Piyush Sabharwall; Michael George mckellar; Su-Jong Yoon

    2013-11-01T23:59:59.000Z

    Effective energy use is a main focus and concern in the world today because of the growing demand for energy. The nuclear hybrid energy system (NHES) is a valuable technical concept that can potentially diversify and leverage existing energy technologies. This report considers a particular NHES design that combines multiple energy systems including a nuclear reactor, energy storage system (ESS), variable renewable generator (VRG), and additional process heat applications. Energy storage is an essential component of this particular NHES because its design allows the system to produce peak power while the nuclear reactor operates at constant power output. Many energy storage options are available, but this study mainly focuses on a molten salt ESS. The primary purpose of the molten salt ESS is to enable the nuclear reactor to be a purely constant heat source by acting as a heat storage component for the reactor during times of low demand, and providing additional capacity for thermo-electric power generation during times of peak electricity demand. This report will describe the rationale behind using a molten salt ESS and identify an efficient molten salt ESS configuration that may be used in load following power applications. Several criteria are considered for effective energy storage and are used to identify the most effective ESS within the NHES. Different types of energy storage are briefly described with their advantages and disadvantages. The general analysis to determine the most efficient molten salt ESS involves two parts: thermodynamic, in which energetic and exergetic efficiencies are considered; and economic. Within the molten salt ESS, the two-part analysis covers three major system elements: molten salt ESS designs (two tank direct and thermocline), the molten salt choice, and the different power cycles coupled with the molten salt ESS. Analysis models are formulated and analyzed to determine the most effective ESS. The results show that the most efficient idealized energy storage system is the two tank direct molten salt ESS with an Air Brayton combined cycle using LiF-NaF-KF as the molten salt, and the most economical is the same design with KCl MgCl2 as the molten salt. With energy production being a major worldwide industry, understanding the most efficient molten salt ESS boosts development of an effective NHES with cheap, clean, and steady power.

  10. Geomechanical Analysis and Design Considerations for Thin-Bedded Salt Caverns

    SciTech Connect (OSTI)

    Michael S. Bruno

    2005-06-15T23:59:59.000Z

    The bedded salt formations located throughout the United States are layered and interspersed with non-salt materials such as anhydrite, shale, dolomite and limestone. The salt layers often contain significant impurities. GRI and DOE have initialized this research proposal in order to increase the gas storage capabilities by providing operators with improved geotechnical design and operating guidelines for thin bedded salt caverns. Terralog has summarized the geologic conditions, pressure conditions, and critical design factors that may lead to: (1) Fracture in heterogeneous materials; (2) Differential deformation and bedding plane slip; (3) Propagation of damage around single and multiple cavern; and (4) Improved design recommendations for single and multiple cavern configurations in various bedded salt environments. The existing caverns within both the Permian Basin Complex and the Michigan and Appalachian Basins are normally found between 300 m to 1,000 m (1,000 ft to 3,300 ft) depth depending on local geology and salt dissolution depth. Currently, active cavern operations are found in the Midland and Anadarko Basins within the Permian Basin Complex and in the Appalachian and Michigan Basins. The Palo Duro and Delaware Basins within the Permian Basin Complex also offer salt cavern development potential. Terralog developed a number of numerical models for caverns located in thin bedded salt. A modified creep viscoplastic model has been developed and implemented in Flac3D to simulate the response of salt at the Permian, Michigan and Appalachian Basins. The formulation of the viscoplastic salt model, which is based on an empirical creep law developed for Waste Isolation Pilot Plant (WIPP) Program, is combined with the Drucker-Prager model to include the formation of damage and failure. The Permian salt lab test data provided by Pfeifle et al. 1983, are used to validate the assumptions made in the material model development. For the actual cavern simulations two baseline models are developed for single and multiple caverns, respectively. Different parameters that affect damage propagation and deformation of salt cavern, such as cavern pressure, operating conditions, cavern height/diameter ratio, overburden stiffness and roof thickness are analyzed and the respective results summarized. For multiple horizontal caverns numerical models are developed to determine the cavern interaction and the minimum safe center to center distance. A step by step methodology for operators to assess critical cavern design parameters for thin bedded salt formations is also presented.

  11. Examination of the Effects of Sea Salt Aerosols on Southeast Texas Ozone and Secondary Organic Aerosol

    E-Print Network [OSTI]

    Benoit, Mark David

    2013-02-06T23:59:59.000Z

    condensation nuclei CPC Cloud condensation nuclei counter e-PTFE Expanded polytetrafluoroethylene HR-ToF-AMS High-resolution time-of-flight mass spectrometer HTDMA Humidified Tandem Differential Mobility Analyzer GHG Greenhouse Gas..., but their remains a gap in research of the aging process of sea salt aerosols, their impact on a polluted environment, and their role in heterogeneous reactions of gas phase species. The evolution of sea salt aerosols in the atmosphere results from interactions...

  12. Advanced heat exchanger development for molten salts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01T23:59:59.000Z

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet materialmore »in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically « less

  13. Salt Lake City- High Performance Buildings Requirement

    Broader source: Energy.gov [DOE]

    Salt Lake City's mayor issued an executive order in July 2005 requiring that all public buildings owned and controlled by the city be built or renovated to meet the requirements of LEED "silver"...

  14. Novel coordination geometries in fluoroaluminate salts

    SciTech Connect (OSTI)

    Herron, N.; Harlow, R.L.; Thorn, D.L. (E.I. du Pont de Nemours and Comp., Wilmington, DE (United States))

    1993-07-07T23:59:59.000Z

    Two tetramethylammonium salts of new fluoroaluminate species have been crystallographically characterized and reveal structural motifs previously unknown for such species. The elusive tetrahedral [AlF[sub 4][sup [minus

  15. Molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Pruneda, Cesar O. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  16. Molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18T23:59:59.000Z

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  17. SALT---Structured Assertion Language for Temporal Logic

    E-Print Network [OSTI]

    Leucker, Martin

    SALT---Structured Assertion Language for Temporal Logic Andreas Bauer, Martin Leucker,leucker,streit}@informatik.tu­muenchen.de Abstract. This paper presents Salt. Salt is a general purpose speci­ fication and assertion language other formalisms used for temporal specification of properties, Salt does not target a specific domain

  18. SALT--Structured Assertion Language for Temporal Logic

    E-Print Network [OSTI]

    SALT--Structured Assertion Language for Temporal Logic Andreas Bauer, Martin Leucker , and Jonathan,leucker,streit}@informatik.tu-muenchen.de Abstract. This paper presents Salt. Salt is a general purpose speci- fication and assertion language other formalisms used for temporal specification of properties, Salt does not target a specific domain

  19. Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks

    E-Print Network [OSTI]

    Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks Geoffrey is usually measured by immersing the membrane in a salt solution at a single, fixed concentration. While salt resistance of the membranes separating different salt concentration solutions has implications for modeling

  20. SALT CREEK ROADWI-80North STADIUMDRIVE

    E-Print Network [OSTI]

    Powers, Robert

    thSt. 0thSt. 1thSt. 2thSt. 3thSt. 4thSt. . t. 10 SALT CREEK ROADWI-80North 10THSTREET 14THSTREET W STADIUM DRIVE PARKING GARAGE 9thSt. 10thSt. 11thSt. 12thSt. 13thSt. 14thSt. 16thSt. 10thSt. SALT CREEK

  1. Salt tolerance of grasses for range seeding

    E-Print Network [OSTI]

    Hartmann, Francis Stephen

    1973-01-01T23:59:59.000Z

    . 0 bars with polyethylene glycol. Emergence and rate of growth were measured for caryopses planted in an artificially salinized soil where the osmotic tensions of the saturated extract were the same as those of the salt solu- tions during..., chloride, and sulfate i n the saturated extract were measured by ti tration (Richards et al. , 1954). The mechanical analyses were taken from unpublished data of the Fanning et al. , 1965. Movement of salts was studied in Catarina, Montell...

  2. Salt Tolerance of Guayule (Parthenium argentatum).

    E-Print Network [OSTI]

    Miyamoto, S.; Davis, J.; Madrid, L.

    1990-01-01T23:59:59.000Z

    TDOC Z TA245 .7 8873 NO.1651 ---- Salt Tolerance of yUayu{e ~" y r , B -1651 The Texas Agricultural Experiment Station? Charles J. Arntzen, Director? The Texas A&M University System? College Station, Texas (Blank Pille In Origblll...BUUetlal? . "! . . . " k ? ..... . . - ... Salt Tolerance of Guayule (Parthenium argentatum) by s. Miyamoto J. Davis L. Madrid 1 1 Professor, former research technician, and graduate assistant, respectively, Texas A&M University Agricultural Research Center at EI...

  3. The Effect of Salt Water on Rice.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1909-01-01T23:59:59.000Z

    ERIME .-- - --- - -- BULLETIN NO. izz. June, 1909. THE EFFECT OF SALT WATE ON RICE, LAPS, Che Postoffice College Station, 1 --- Texas. TEXAS AGRICULTURAL EXPERIMENT S I'ATIONS. OFFICERS. GOVERNING BOARD. (Board of Directors A. and M... is Col- lege Station, Texas. Reports and bulletins are sent upon application to the Director. The Effect of Salt Water on Rice. . ...... By G. S. FRAPS. At some of the rice farms located near the coast, the amount of water lxml~etl is sometimes...

  4. Calcite dissolution kinetics and solubility in Na-Ca-Mg-Cl brines of geologically relevant composition at 0.1 to 1 bar pCO2 and 25 to 80°C 

    E-Print Network [OSTI]

    Gledhill, Dwight Kuehl

    2006-08-16T23:59:59.000Z

    injection of CO2. This study measured calcite solubility and dissolution rates in geologically relevant Na-Ca-Mg-Cl synthetic brines (35 to 200 g L-1 TDS). In brines < 50 g L-1 TDS, the EQPITZER calculated calcium carbonate ion activity product (IAP...

  5. STAINLESS STEEL INTERACTIONS WITH SALT CONTAINING PLUTONIUM OXIDES

    SciTech Connect (OSTI)

    Nelson, Z.; Chandler, G.; Dunn, K.; Stefek, T.; Summer, M.

    2010-02-01T23:59:59.000Z

    Salt containing plutonium oxide materials are treated, packaged and stored within nested, stainless steel containers based on requirements established in the DOE 3013 Standard. The moisture limit for the stored materials is less than 0.5 weight %. Surveillance activities which are conducted to assess the condition of the containers and assure continuing 3013 container integrity include the destructive examination of a select number of containers to determine whether corrosion attack has occurred as a result of stainless steel interactions with salt containing plutonium oxides. To date, some corrosion has been observed on the innermost containers, however, no corrosion has been noted on the outer containers and the integrity of the 3013 container systems is not expected to be compromised over a 50 year storage lifetime.

  6. Dam constructions as sealing systems in rock salt

    SciTech Connect (OSTI)

    Engelmann, H.J.; Bollingerfehr, W.; Fischer, H. [Deutsche Gesellschaft zum Bau und Betrieb von Endlagern fuer Abfallstoffe mbH, Peine (Germany)

    1993-12-31T23:59:59.000Z

    Dam constructions represent an essential component of the multibarrier safety concept in the Federal Republic of Germany for a repository of radioactive waste in salt formations. They enhance safety during the operational phase as well as in the post operational phase of the repository. In the framework of a joint R and D-project between BGR, DBE and GSF the components of a suitable dam have been developed and will be constructed and tested in the GSF-Asse salt mine in Lower-Saxony. The aims of the investigation program, its realization and some results on the development of construction materials will be presented and discussed. Experiences gained during these tests in laboratory and in situ will be described.

  7. Wetting behavior of selected crude oil/brine/rock systems. Topical report, March 1, 1995--March 31, 1996

    SciTech Connect (OSTI)

    Zhou, X.; Morrow, N.R.; Ma, S.

    1996-12-31T23:59:59.000Z

    Previous studies of crude oil/brine/rock (COBR) and related ensembles showed that wettability and its effect on oil recovery depend on numerous complex interactions. In the present work, the wettability of COBR ensembles prepared using Prudhoe Bay crude oil, a synthetic formation brine, and Berea Sandstone was varied by systematic change in initial water saturation and length of aging time at reservoir temperature (88 C). All displacement tests were run at ambient temperature. Various degrees of water wetness were achieved and quantified by a modified Amott wettability index to water, the relative pseudo work of imbibition, and a newly defined apparent advancing dynamic contact angle. Pairs of spontaneous imbibition (oil recovery by spontaneous imbibition of water) and waterflood (oil recovery vs. pore volumes of water injected) curves were measured for each of the induced wetting states. Several trends were observed. Imbibition rate, and hence water wetness, decreased with increase in aging time and with decrease in initial water saturation. Breakthrough recoveries and final oil recovery by waterflooding increased with decrease in water wetness. Correlations between water wetness and oil recovery by waterflooding and spontaneous imbibition are presented.

  8. Environmental assessment of the brine pipeline replacement for the Strategic Petroleum Reserve Bryan Mound Facility in Brazoria County, Texas

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0804, for the proposed replacement of a deteriorated brine disposal pipeline from the Strategic Petroleum Reserve (SPR) Bryan Mound storage facility in Brazoria County, Texas, into the Gulf of Mexico. In addition, the ocean discharge outfall would be moved shoreward by locating the brine diffuser at the end of the pipeline 3.5 miles offshore at a minimum depth of 30 feet. The action would occur in a floodplain and wetlands; therefore, a floodplain/wetlands assessment has been prepared in conjunction with this EA. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 USC. 4321, et seg.). Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact (FONSI). This FONSI also includes a Floodplain Statement of Findings in accordance with 10 CFR Part 1022.

  9. Near-surface gas mapping studies of salt geologic features at Weeks Island and other sites

    SciTech Connect (OSTI)

    Molecke, M.A. [Sandia National Lab., Albuquerque, NM (United States); Carney, K.R.; Autin, W.J.; Overton, E.B. [Louisiana State Univ., Baton Rouge, LA (United States)

    1996-10-01T23:59:59.000Z

    Field sampling and rapid gas analysis techniques were used to survey near-surface soil gases for geotechnical diagnostic purposes at the Weeks Island Strategic Petroleum Reserve (SPR) site and other salt dome locations in southern Louisiana. This report presents the complete data, results and interpretations obtained during 1995. Weeks Island 1994 gas survey results are also briefly summarized; this earlier study did not find a definitive correlation between sinkhole No. 1 and soil gases. During 1995, several hundred soil gas samples were obtained and analyzed in the field by gas chromatography, for profiling low concentrations and gas anomalies at ppm to percent levels. The target gases included hydrogen, methane, ethane and ethylene. To supplement the field data, additional gas samples were collected at various site locations for laboratory analysis of target gases at ppb levels. Gases in the near-surface soil originate predominantly from the oil, from petrogenic sources within the salt, or from surface microbial activity. Surveys were conducted across two Weeks Island sinkholes, several mapped anomalous zones in the salt, and over the SPR repository site and its perimeter. Samples were also taken at other south Louisiana salt dome locations for comparative purposes. Notable results from these studies are that elevated levels of hydrogen and methane (1) were positively associated with anomalous gassy or shear zones in the salt dome(s) and (2) are also associated with suspected salt fracture (dilatant) zones over the edges of the SPR repository. Significantly elevated areas of hydrogen, methane, plus some ethane, were found over anomalous shear zones in the salt, particularly in a location over high pressure gas pockets in the salt, identified in the mine prior to SPR operations. Limited stable isotope ratio analyses, SIRA, were also conducted and determined that methane samples were of petrogenic origin, not biogenic.

  10. Salt Stress in Desulfovibrio vulgaris Hildenborough: An integratedgenomics approach

    SciTech Connect (OSTI)

    Mukhopadhyay, Aindrila; He, Zhili; Alm, Eric J.; Arkin, Adam P.; Baidoo, Edward E.; Borglin, Sharon C.; Chen, Wenqiong; Hazen, Terry C.; He, Qiang; Holman, Hoi-Ying; Huang, Katherine; Huang, Rick; Hoyner,Dominique C.; Katz, Natalie; Keller, Martin; Oeller, Paul; Redding,Alyssa; Sun, Jun; Wall, Judy; Wei, Jing; Yang, Zamin; Yen, Huei-Che; Zhou, Jizhong; Keasling Jay D.

    2005-12-08T23:59:59.000Z

    The ability of Desulfovibrio vulgaris Hildenborough to reduce, and therefore contain, toxic and radioactive metal waste has made all factors that affect the physiology of this organism of great interest. Increased salinity is an important and frequent fluctuation faced by D. vulgaris in its natural habitat. In liquid culture, exposure to excess salt resulted in striking elongation of D. vulgaris cells. Using data from transcriptomics, proteomics, metabolite assays, phospholipid fatty acid profiling, and electron microscopy, we used a systems approach to explore the effects of excess NaCl on D. vulgaris. In this study we demonstrated that import of osmoprotectants, such as glycine betaine and ectoine, is the primary mechanism used by D. vulgaris to counter hyperionic stress. Several efflux systems were also highly up-regulated, as was the ATP synthesis pathway. Increases in the levels of both RNA and DNA helicases suggested that salt stress affected the stability of nucleic acid base pairing. An overall increase in the level of branched fatty acids indicated that there were changes in cell wall fluidity. The immediate response to salt stress included up-regulation of chemotaxis genes, although flagellar biosynthesis was down-regulated. Other down-regulated systems included lactate uptake permeases and ABC transport systems. The results of an extensive NaCl stress analysis were compared with microarray data from a KCl stress analysis, and unlike many other bacteria, D. vulgaris responded similarly to the two stresses. Integration of data from multiple methods allowed us to develop a conceptual model for the salt stress response in D. vulgaris that can be compared to those in other microorganisms.

  11. Salt as non-food 1 Salt as a `non-food': to what extent do gustatory perceptions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Salt as non-food 1 Salt as a `non-food': to what extent do gustatory perceptions determine non chloride. In the same vein, the present utilisation of salt in cooked foods throughout the world led several scientists to consider that salt is a basic and compulsory part of the human diet and that our

  12. Low temperature oxidation using support molten salt catalysts

    DOE Patents [OSTI]

    Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.

    2003-05-20T23:59:59.000Z

    Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.

  13. Eustatic and salt-tectonic controls on sequence development, northern east Texas basin

    SciTech Connect (OSTI)

    Demarest, J.M. II; Ehman, K.D. (Exxon Production Research Co., Houston, TX (USA))

    1990-05-01T23:59:59.000Z

    Detailed log and seismic interpretation of the Woodbine/Eagle Ford interval in the vicinity of the Hainesville dome of east Texas resulted in the recognition of salt-tectonic and eustatic controls on depositional patterns. Major cycles of transgression and regression within this interval correspond to eustatic cycles recognized worldwide. The late Cenomanian lowstand resulted in the deposition of fluvial Woodbine sandstones above the marine Maness Shale (93 Ma). Transgressive and highstand marine shales of the Eagle Ford rest above the fluvial Woodbine sands. A late Turonian sequence boundary (90 Ma) separates the highstand shales of the Eagle Ford from the lowstand and transgressive marine sands and shales of the sub-Clarksville. The section is capped by the transgressive Austin Chalk. Between the Woodbine (93 Ma) and the sub-Clarksville (90 Ma), the Hainesville salt dome evolved from a nonpiercement to a piercement salt dome. This evolution of the Hainesville dome caused the area adjacent to the present-day dome to change from a structural high to a rapidly subsiding basin adjacent to the dome. With the rapid loss of salt into the piercement dome around 92 Ma, conditions adjacent to the dome changed from subaerial onlapping of the Woodbine fluvial facies to distal downlapping of the Eagle Ford marine shales into the center of the Hainesville withdrawal syncline. Thus, the detailed timing of salt movement is recorded in the thickness and facies distribution around the salt dome within the context of major global eustatic cycles.

  14. Incorporating supercritical steam turbines into molten-salt power tower plants : feasibility and performance.

    SciTech Connect (OSTI)

    Pacheco, James Edward; Wolf, Thorsten [Siemens Energy, Inc., Orlando, FL; Muley, Nishant [Siemens Energy, Inc., Orlando, FL

    2013-03-01T23:59:59.000Z

    Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600%C2%B0C were evaluated, which resulted in main steam temperatures of 553 and 580%C2%B0C, respectively. Also, the effects of final feedwater temperature (between 260 and 320%C2%B0C) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600%C2%B0C and the other 565%C2%B0C. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565%C2%B0C. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.

  15. Chemistry control and corrosion mitigation of heat transfer salts for the fluoride salt reactor (FHR)

    SciTech Connect (OSTI)

    Kelleher, B. C.; Sellers, S. R.; Anderson, M. H.; Sridharan, K.; Scheele, R. D. [Dept. of Engineering Physics, Univ.of Wisconsin - Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

    2012-07-01T23:59:59.000Z

    The Molten Salt Reactor Experiment (MSRE) was a prototype nuclear reactor which operated from 1965 to 1969 at Oak Ridge National Laboratory. The MSRE used liquid fluoride salts as a heat transfer fluid and solvent for fluoride based {sup 235}U and {sup 233}U fuel. Extensive research was performed in order to optimize the removal of oxide and metal impurities from the reactor's heat transfer salt, 2LiF-BeF{sub 2} (FLiBe). This was done by sparging a mixture of anhydrous hydrofluoric acid and hydrogen gas through the FLiBe at elevated temperatures. The hydrofluoric acid reacted with oxides and hydroxides, fluorinating them while simultaneously releasing water vapor. Metal impurities such as iron and chromium were reduced by hydrogen gas and filtered out of the salt. By removing these impurities, the corrosion of reactor components was minimized. The Univ. of Wisconsin - Madison is currently researching a new chemical purification process for fluoride salts that make use of a less dangerous cleaning gas, nitrogen trifluoride. Nitrogen trifluoride has been predicted as a superior fluorinating agent for fluoride salts. These purified salts will subsequently be used for static and loop corrosion tests on a variety of reactor materials to ensure materials compatibility for the new FHR designs. Demonstration of chemistry control methodologies along with potential reduction in corrosion is essential for the use of a fluoride salts in a next generator nuclear reactor system. (authors)

  16. Geomechanical testing of MRIG-9 core for the potential SPR siting at the Richton salt dome.

    SciTech Connect (OSTI)

    Dunn, Dennis P.; Broome, Scott Thomas; Bronowski, David R.; Bauer, Stephen J.; Hofer, John H.

    2009-02-01T23:59:59.000Z

    A laboratory testing program was developed to examine the mechanical behavior of salt from the Richton salt dome. The resulting information is intended for use in design and evaluation of a proposed Strategic Petroleum Reserve storage facility in that dome. Core obtained from the drill hole MRIG-9 was obtained from the Texas Bureau of Economic Geology. Mechanical properties testing included: (1) acoustic velocity wave measurements; (2) indirect tensile strength tests; (3) unconfined compressive strength tests; (4) ambient temperature quasi-static triaxial compression tests to evaluate dilational stress states at confining pressures of 725, 1450, 2175, and 2900 psi; and (5) confined triaxial creep experiments to evaluate the time-dependent behavior of the salt at axial stress differences of 4000 psi, 3500 psi, 3000 psi, 2175 psi and 2000 psi at 55 C and 4000 psi at 35 C, all at a constant confining pressure of 4000 psi. All comments, inferences, discussions of the Richton characterization and analysis are caveated by the small number of tests. Additional core and testing from a deeper well located at the proposed site is planned. The Richton rock salt is generally inhomogeneous as expressed by the density and velocity measurements with depth. In fact, we treated the salt as two populations, one clean and relatively pure (> 98% halite), the other salt with abundant (at times) anhydrite. The density has been related to the insoluble content. The limited mechanical testing completed has allowed us to conclude that the dilatational criteria are distinct for the halite-rich and other salts, and that the dilation criteria are pressure dependent. The indirect tensile strengths and unconfined compressive strengths determined are consistently lower than other coastal domal salts. The steady-state-only creep model being developed suggests that Richton salt is intermediate in creep resistance when compared to other domal and bedded salts. The results of the study provide only limited information for structural modeling needed to evaluate the integrity and safety of the proposed cavern field. This study should be augmented with more extensive testing. This report documents a series of test methods, philosophies, and empirical relationships, etc., that are used to define and extend our understanding of the mechanical behavior of the Richton salt. This understanding could be used in conjunction with planned further studies or on its own for initial assessments.

  17. Restoration of cross sections above intrusive salt domes

    SciTech Connect (OSTI)

    Brewer, R.C.; Groshong, R.H. Jr. (Univ. of Alabama, Tuscaloosa, AL (United States))

    1993-10-01T23:59:59.000Z

    The applicability of bed-length restoration to the sequence above a vertical intrusion of salt was tested on an experimental model that included deposition of units during uplift. Restoration of the model resulted in an apparently unbalanced cross section due to excess bed length in the pre-growth interval. The excess bed length was due to significant internal strain. For a correct restoration, it is thus important to distinguish between the growth and pre-growth sequences. The thinning index, which quantifies the thinning onto the uplift, aids in making this distinction. A thinning index vs. depth curve has a sharp inflection at the top of the pre-growth sequence. The pre-growth sequence is restored by area balancing. The growth sequence deforms mainly by formation of a crestal graben, with little other strain. Sequential restoration of growth intervals shows the growth history of the dome. When applied to the Pool Creek salt dome from the Mississippi Interior Salt basin, the methods developed for the model served to separate the pre-growth from the growth sequence and to indicate a growth history of vertical intrusion changing through time to vertical intrusion plus regional extension.

  18. Monitoring CO 2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time lapse electrical resistivity tomography

    SciTech Connect (OSTI)

    Chuan Lu; CHI Zhang; Hai Hanag; Timothy C. Johnson

    2014-04-01T23:59:59.000Z

    Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoring the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.

  19. Borehole locations on seven interior salt domes

    SciTech Connect (OSTI)

    Simcox, A.C.; Wampler, S.L.

    1982-08-01T23:59:59.000Z

    This report is designed as an inventory of all wells known to have been drilled within a five-mile radius of each of seven salt domes within the Interior Salt Basin in east Texas, northern Louisiana and Mississippi. There are 72 boreholes that entered salt above an elevation of -3000 feet mean sea level. For these, details of location, drilling dates, depth of casing and cement, elevation of top of caprock and salt, etc., are given on tables in the appendix. Of the seven domes, Oakwood has the largest number of boreholes, thirty-eight (including two sidetracked wells) that enter the salt stock above -3000 feet mean sea level; another dome in northeast Texas, Keechi, has eight; in northern Louisiana, Rayburn's has four and Vacherie has five; in southern Mississippi, Cypress Creek has seven, Lampton has one, and Richton has nine. In addition, all wells known outside the supra-domal area, but within a five-mile radius of the center of the 7 domes are separately catalogued.

  20. Semi-analytical model of brine and CO2 leakage through an abandoned plugged well. Applications for determining an Area of Review and CO2 leakage rate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Semi-analytical model of brine and CO2 leakage through an abandoned plugged well. Applications for determining an Area of Review and CO2 leakage rate Arnaud Réveillère, Jérémy Rohmer, Frédéric Wertz / contact the leak, and of CO2,g as a first approach. Compared to the state of the art, it adds the possibility

  1. New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry

    E-Print Network [OSTI]

    Girguis, Peter R.

    , likely exceeding reserves of conventional oil and gas (Collett and Kuuskraa, 1998). In deep-ocean regionsNew constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico Keywords: Methane flux Mass spectrometer Brine pool Methane oxidation Gulf of Mexico a b s t r a c t Deep

  2. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine

    E-Print Network [OSTI]

    94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine operation in Nevada. The mine's production capacity was expanded in 2012, and a new lithium hydroxide plant opened in North

  3. Disposition of the fluoride fuel and flush salts from the Molten Salt Reactor experiment at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Peretz, F.J.

    1996-03-01T23:59:59.000Z

    The Molten Salt Reactor Experiment (MSRE) is an 8 MW reactor that was operated at Oak Ridge National Laboratory (ORNL) from 1965 through 1969. The reactor used a unique liquid salt fuel, composed of a mixture of LIF, BeF{sub 2}, ZrF{sub 4}, and UF{sub 4}, and operated at temperatures above 600{degrees}C. The primary fuel salt circulation system consisted of the reactor vessel, a single fuel salt pump, and a single primary heat exchanger. Heat was transferred from the fuel salt to a coolant salt circuit in the primary heat exchanger. The coolant salt was similar to the fuel salt, except that it contains only LiF (66%) and BeF, (34%). The coolant salt passed from the primary heat exchanger to an air-cooled radiator and a coolant salt pump, and then returned to the primary heat exchanger. Each of the salt loops was provided with drain tanks, located such that the salt could be drained out of either circuit by gravity. A single drain tank was provided for the non-radioactive coolant salt. Two drain tanks were provided for the fuel salt. Since the fuel salt contained radioactive fuel, fission products, and activation products, and since the reactor was designed such that the fuel salt could be drained immediately into the drain tanks in the event of a problem in the fuel salt loop, the fuel salt drain tanks were provided with a system to remove the heat generated by radioactive decay. A third drain tank connected to the fuel salt loop was provided for a batch of flush salt. This batch of salt, similar in composition to the coolant salt, was used to condition the fuel salt loop after it had been exposed to air and to flush the fuel salt loop of residual fuel salt prior to accessing the reactor circuit for maintenance or experimental activities. This report discusses the disposition of the fluoride fuel and flush salt.

  4. {gamma}-Radiolysis of NaCl Brine in the Presence of UO{sub 2}(s): Effects of Hydrogen and Bromide

    SciTech Connect (OSTI)

    Metz, Volker; Bohnert, Elke; Kelm, Manfred; Schild, Dieter; Kienzler, Bernhard [Institute for Radioactive Waste Disposal (FZK-INE), Forschungszentrum Karlsruhe / Research Center Karlsruhe, Helmholtz-Platz, Eggenstein-Leopoldshafen, D-76344 (Germany); Reinhardt, Juergen; Buchmeiser, Michael R. [Leibniz-Institut fuer Oberflaechenmodifizierung, IOM, Permoserstr. 15, Leipzig, D-04318 (Germany)

    2007-07-01T23:59:59.000Z

    A concentrated NaCl solution was {gamma}-irradiated in autoclaves under a pressure of 25 MPa. A set of experiments were conducted in 6 mol (kg H{sub 2}O){sup -1} NaCl solution in the presence of UO{sub 2}(s) pellets; in a second set of experiments, {gamma}-radiolysis of the NaCl brine was studied without UO{sub 2}(s). Hydrogen, oxygen and chlorate were formed as long-lived radiolysis products. Due to the high external pressure, all radiolysis products remained dissolved. H{sub 2} and O{sub 2} reached steady state concentrations in the range of 5.10{sup -3} to 6.10{sup -2} mol (kg H{sub 2}O){sup -1} corresponding to a partial gas pressure of {approx}2 to {approx}20 MPa. Radiolytic formation of hydrogen and oxygen increased with the concentration of bromide added to solution. Both, in the presence of bromide, resulting in a relatively high radiolytic yield, and in the absence of bromide surfaces of the UO{sub 2}(s) samples were oxidized, and concentration of dissolved uranium reached the solubility limit of the schoepite / NaUO{sub 2}O(OH)(cr) transition. At the end of the experiments, the pellets were covered by a surface layer of a secondary solid phase having a composition close to Na{sub 2}U{sub 2}O{sub 7}. The experimental results demonstrate that bromide counteracts an H{sub 2} inhibition effect on radiolysis gas production, even at a concentration ratio of [H{sub 2}] / [Br{sup -}] > 100. The present observations are related to the competitive reactions of OH radicals with H{sub 2}, Br{sup -} and Cl{sup -}. A similar competition of hydrogen and bromide, controlling the yield of {gamma}-radiolysis products, is expected for solutions of lower Cl{sup -} concentration. (authors)

  5. Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes

    SciTech Connect (OSTI)

    Wishau, R.; Ramsey, K.B.; Montoya, A.

    1998-12-31T23:59:59.000Z

    This paper presents the technical and economic feasibility of molten salt oxidation technology as a volume reduction and recovery process for {sup 238}Pu contaminated waste. Combustible low-level waste material contaminated with {sup 238}Pu residue is destroyed by oxidation in a 900 C molten salt reaction vessel. The combustible waste is destroyed creating carbon dioxide and steam and a small amount of ash and insoluble {sup 2328}Pu in the spent salt. The valuable {sup 238}Pu is recycled using aqueous recovery techniques. Experimental test results for this technology indicate a plutonium recovery efficiency of 99%. Molten salt oxidation stabilizes the waste converting it to a non-combustible waste. Thus installation and use of molten salt oxidation technology will substantially reduce the volume of {sup 238}Pu contaminated waste. Cost-effectiveness evaluations of molten salt oxidation indicate a significant cost savings when compared to the present plans to package, or re-package, certify and transport these wastes to the Waste Isolation Pilot Plant for permanent disposal. Clear and distinct cost advantages exist for MSO when the monetary value of the recovered {sup 238}Pu is considered.

  6. Measurements of radio propagation in rock salt for the detection of high-energy neutrinos

    E-Print Network [OSTI]

    Amy Connolly; Abigail Goodhue; Christian Miki; Ryan Nichol; David Saltzberg

    2008-06-12T23:59:59.000Z

    We present measurements of the transmission of radio/microwave pulses through salt in the Cote Blanche salt mine operated by the North American Salt Company in St. Mary Parish, Louisiana. These results are from data taken in the southwestern region of the 1500 ft. (457 m) deep level of the mine on our third and most recent visit to the mine. We transmitted and received a fast, high-power, broadband pulse from within three vertical boreholes that were drilled to depths of 100 ft. (30 m) and 200 ft. below the 1500 ft. level using three different pairs of dipole antennas whose bandwidths span 125 to 900 MHz. By measuring the relative strength of the received pulses between boreholes with separations of 50 m and 169 m, we deduce the attenuation of the signal attributed to the salt medium. We fit the frequency dependence of the attenuation to a power law and find the best fit field attenuation lengths to be 93 \\pm 7 m at 150 MHz, 63 \\pm 3 m at 300 MHz, and 36 \\pm 2 m at 800 MHz. This is the most precise measurement of radio attenuation in a natural salt formation to date. We assess the implications of this measurement for a future neutrino detector in salt.

  7. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    SciTech Connect (OSTI)

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01T23:59:59.000Z

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  8. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    SciTech Connect (OSTI)

    Morgan, Dane; Eapen, Jacob

    2013-10-01T23:59:59.000Z

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt at the eutectic composition (58 mol% LiCl, 42 mol% KCl), which is used for treating spent EBR-II fuel. The same process being used for EBRII fuel is currently being studied for widespread international implementation. The methods will focus on first-principles and first- principles derived interatomic potential based simulations, primarily using molecular dynamics. Results will be validated against existing literature and parallel ongoing experimental efforts. The simulation results will be of value for interpreting experimental results, validating analytical models, and for optimizing waste separation by potentially developing new salt configurations and operating conditions.

  9. Molecular-Based Mechanisms of Mendelian Forms of Salt-Dependent Hypertension: Questioning the Prevailing Theory.

    E-Print Network [OSTI]

    Kurtz, TW; Dominiczak, AF; DiCarlo, SE; Pravenec, M; Morris, RC

    2015-01-01T23:59:59.000Z

    Inherited disorders of renal salt homeostasis: Insights fromof Mendelian Forms of Salt-Dependent Hypertension:AC. Hypertension caused by salt loading in the dog. 3. Onset

  10. Effect of Salt Stress on Purslane and Potential Health Benefits: Oxalic Acid and Fatty Acids Profile

    E-Print Network [OSTI]

    Carvalho, Isabel S.; Teixeira, Mónica; Brodelius, Maria

    2009-01-01T23:59:59.000Z

    IS. 2009. Effects of salt stress on purslane (Portulacaacid concentration occurs when the salt stress concentrationfor higher concentration of salt in both purslanes. In GL

  11. Control of Soluble Salts in Farming and Gardening.

    E-Print Network [OSTI]

    Longenecker, D. E.; Lyerly, P. J.

    1974-01-01T23:59:59.000Z

    waters pass through beds of salt, dissolving appreciable quantities before they emerge and enter the rivers. Ocean waters, much too salty for irrigation, contain about 3 percent salt, or about 40 tons of salt per acre-foot of water... ater are applied each year are shown in Table 2. Salts I (.in ilrcnmulate very rapidly. The water containing 1 ton of jdt per acre-foot is generally considered to be good ,I~,~lit\\* water, yet in 2 years enough salt could accumu- I,ltr to harm salt...

  12. Method for using salt deposits for storage

    SciTech Connect (OSTI)

    Hooper, M. W.; Voorhees, E. J.

    1984-12-18T23:59:59.000Z

    A method for developing, evacuating, using, sealing, and re-entering multiple stacked cavities which are created from a single well in salt deposits. The cavities are created in a salt deposit by circulating raw water through concentric casing strings in the well. Each of the cavities is evacuated of liquids prior to use. After storage material is injected into a cavity, the cavity is sealed by setting a plug in the well bore above the top of the cavity. The cavities may be re-entered by drilling out the plug or by drilling a directional well directly into the cavity.

  13. The Effect of Salt Water on Rice.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1927-01-01T23:59:59.000Z

    mq A QTF *'. ' . - - . 1 bC1 r*. .. r * - .=.-ksl-, G v $. THE EFFECT OF SALT WATER ON RICE AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS T. 0. WALTON, President \\ STATION ,,,bfINISTRATION: *B. YOUNGBLOOD, M. S., Ph. D.,, Director A B CONNER... of Agriculture. ****In cooperation with the School of Agriculture. SYNOPSIS Rice farmers sometimes have trouble with salt in the water used for irrigation. Varying conditions, such as character of soil, amount of water already on the land, stage of growth...

  14. Pore-scale dynamics of salt transport and distribution in drying porous media

    SciTech Connect (OSTI)

    Shokri, Nima, E-mail: nima.shokri@manchester.ac.uk [School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL (United Kingdom)] [School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-01-15T23:59:59.000Z

    Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, water quality, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI{sub 2} solution (5% concentration by mass) with a spatial and temporal resolution of 12 ?m and 30 min, respectively. Every time the drying sand column was set to be imaged, two different images were recorded using distinct synchrotron x-rays energies immediately above and below the K-edge value of Iodine. Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI{sub 2} concentration at pore scale. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow acting as evaporating spots. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. Higher salt concentration was observed close to the evaporating surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray tomography as an effective tool to investigate the dynamics of salt transport in porous media at high spatial and temporal resolution.

  15. Potential vertical movement of large heat-generating waste packages in salt.

    SciTech Connect (OSTI)

    Clayton, Daniel James; Martinez, Mario J.; Hardin, Ernest L.

    2013-05-01T23:59:59.000Z

    With renewed interest in disposal of heat-generating waste in bedded or domal salt formations, scoping analyses were conducted to estimate rates of waste package vertical movement. Vertical movement is found to result from thermal expansion, from upward creep or heave of the near-field salt, and from downward buoyant forces on the waste package. A two-pronged analysis approach was used, with thermal-mechanical creep modeling, and coupled thermal-viscous flow modeling. The thermal-mechanical approach used well-studied salt constitutive models, while the thermal-viscous approach represented the salt as a highly viscous fluid. The Sierra suite of coupled simulation codes was used for both approaches. The waste package in all simulations was a right-circular cylinder with the density of steel, in horizontal orientation. A time-decaying heat generation function was used to represent commercial spent fuel with typical burnup and 50-year age. Results from the thermal-mechanical base case showed approximately 27 cm initial uplift of the package, followed by gradual relaxation closely following the calculated temperature history. A similar displacement history was obtained with the package density set equal to that of salt. The slight difference in these runs is attributable to buoyant displacement (sinking) and is on the order of 1 mm in 2,000 years. Without heat generation the displacement stabilizes at a fraction of millimeter after a few hundred years. Results from thermal-viscous model were similar, except that the rate of sinking was constant after cooldown, at approximately 0.15 mm per 1,000 yr. In summary, all calculations showed vertical movement on the order of 1 mm or less in 2,000 yr, including calculations using well-established constitutive models for temperature-dependent salt deformation. Based on this finding, displacement of waste packages in a salt repository is not a significant repository performance issue.

  16. I-NERI ANNUAL TECHNICAL PROGRESS REPORT: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels

    SciTech Connect (OSTI)

    S. Frank

    2009-09-01T23:59:59.000Z

    An attractive alternative to the once-through disposal of electrorefiner salt is to selectively remove the active fission products from the salt and recycle the salt back to the electrorefiner (ER). This would allow salt reuse for some number of cycles before ultimate disposal of the salt in a ceramic waste form. Reuse of ER salt would, thus, greatly reduce the volume of ceramic waste produced during the pyroprocessing of spent nuclear fuel. This final portion of the joint I-NERI research project is to demonstrate the separation of fission products from molten ER salt by two methods previously selected during phase two (FY-08) of this project. The two methods selected were salt/zeolite contacting and rare-earth fission product precipitation by oxygen bubbling. The ER salt used in these tests came from the Mark-IV electrorefiner used to anodically dissolved driver fuel from the EBR-II reactor on the INL site. The tests were performed using the Hot Fuel Dissolution Apparatus (HFDA) located in the main cell of the Hot Fuels Examination Facility (HFEF) at the Materials and Fuels complex on the INL site. Results from these tests were evaluated during a joint meeting of KAERI and INL investigators to provide recommendations as to the future direction of fission product removal from electrorefiner salt that accumulate during spent fuel treatment. Additionally, work continued on kinetic measurements of surrogate quaternary salt systems to provide fundamental kinetics on the ion exchange system and to expand the equilibrium model system developed during the first two phases of this project. The specific objectives of the FY09 I-NERI research activities at the INL include the following: • Perform demonstration tests of the selected KAERI precipitation and INL salt/zeolite contacting processes for fission product removal using radioactive, fission product loaded ER salt • Continue kinetic studies of the quaternary Cs/Sr-LiCl-KCl system to determine the rate of ion exchange during the salt/zeolite contacting process • Compare the adsorption models to experimentally obtained, ER salt results • Evaluate results obtained from the oxygen precipitation and salt/zeolite ion exchange studies to determine the best processes for selective fission-product removal from electrorefiner salt.

  17. Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel

    SciTech Connect (OSTI)

    Toni Y. Gutknecht; Guy L. Fredrickson; Vivek Utgikar

    2012-04-01T23:59:59.000Z

    This project is a fundamental study to measure thermal properties (liquidus, solidus, phase transformation, and enthalpy) of molten salt systems of interest to electrorefining operations, which are used in both the fuel cycle research & development mission and the spent fuel treatment mission of the Department of Energy. During electrorefining operations the electrolyte accumulates elements more active than uranium (transuranics, fission products and bond sodium). The accumulation needs to be closely monitored because the thermal properties of the electrolyte will change as the concentration of the impurities increases. During electrorefining (processing techniques used at the Idaho National Laboratory to separate uranium from spent nuclear fuel) it is important for the electrolyte to remain in a homogeneous liquid phase for operational safeguard and criticality reasons. The phase stability of molten salts in an electrorefiner may be adversely affected by the buildup of fission products in the electrolyte. Potential situations that need to be avoided are: (i) build up of fissile elements in the salt approaching the criticality limits specified for the vessel (ii) freezing of the salts due to change in the liquidus temperature and (iii) phase separation (non-homogenous solution) of elements. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This work describes the experimental results of typical salts compositions, consisting of chlorides of strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium (as a surrogate for both uranium and plutonium), used in the processing of used nuclear fuels. Differential scanning calorimetry was used to analyze numerous salt samples providing results on the thermal properties. The property of most interest to pyroprocessing is the liquidus temperature. It was previously known the liquidus temperature of the molten salt would change as spent fuel is processed through the Mk-IV electrorefiner. However, the extent of the increase in liquidus temperature was not known. This work is first of its kind in determining thermodynamic properties of a molten salt electrolyte containing transuranics, fission products and bond sodium. Experimental data concluded that the melting temperature of the electrolyte will become greater than the operating temperature of the Mk-IV ER during current fuel processing campaigns. Collected data also helps predict when the molten salt electrolyte will no longer be able to support electrorefining operations.

  18. Waste Stream Generated and Waste Disposal Plans for Molten Salt Reactor Experiment at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Haghighi, M. H.; Szozda, R. M.; Jugan, M. R.

    2002-02-26T23:59:59.000Z

    The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR), south of the Oak Ridge National Laboratory (ORNL) main plant across Haw Ridge in Melton Valley. The MSRE was run by ORNL to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503 (Figure 1). The reactor was operated from June 1965 to December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed t o cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. As a result of the S&M program, it was discovered in 1994 that gaseous uranium (233U/232U) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 was generated when radiolysis of the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine.Some of the free fluorine combined with uranium fluorides (UF4) in the salt to form UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE.

  19. Ion aggregation in high salt solutions: Ion network versus ion cluster

    SciTech Connect (OSTI)

    Kim, Seongheun; Kim, Heejae; Choi, Jun-Ho; Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of)

    2014-09-28T23:59:59.000Z

    The critical aggregation phenomena are ubiquitous in many self-assembling systems. Ions in high salt solutions could also spontaneously form larger ion aggregates, but their effects on hydrogen-bond structures in water have long been controversial. Here, carrying out molecular dynamics (MD) simulation studies of high salt solutions and comparing the MD simulation results with infrared absorption and pump-probe spectroscopy of O–D stretch mode of HDO in highly concentrated salt solutions and {sup 13}C-NMR chemical shift of S{sup 13}CN{sup ?} in KSCN solutions, we find evidence on the onset of ion aggregate and large-scale ion-ion network formation that concomitantly breaks water hydrogen-bond structure in certain salt solutions. Despite that these experimental results cannot provide direct evidence on the three-dimensional morphological structures of ion aggregates, they serve as reference data for verifying MD simulation methods. The MD results suggest that disrupted water hydrogen-bond network is intricately intertwined with ion-ion network. This further shows morphological variation of ion aggregate structures from ion cluster to ion network in high salt solutions that are interrelated to the onset of macroscopic aggregate formation and the water hydrogen-bond structure making and breaking processes induced by Hofmeister ions.

  20. Tank 41-H salt level fill history 1985 to 1987

    SciTech Connect (OSTI)

    Ross, R.H.

    1996-05-16T23:59:59.000Z

    The fill rate of the evaporator drop waste tank (i.e., salt tank) at Savannah River Site contained in the Waste Management Technology (WMT) monthly data record is based upon a simple formula that apportioned 10 percent of the evaporator output concentrate to the salt fill volume. Periodically, the liquid level of the salt tank would be decanted below the salt level surface and a visual inspection of the salt profile would be accomplished. The salt volume of the drop tank would then be corrected, if necessary, based upon the visual elevation of the salt formation. This correction can erroneously indicate an excess amount of salt fill occurred in a short time period. This report established the correct fill history for Tank 41H.

  1. Thorium Molten Salt Reactor : from high breeding to simplified reprocessing

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Thorium Molten Salt Reactor : from high breeding to simplified reprocessing L. Mathieu, D. Heuer, A- ceptable. The Thorium Molten Salt Reactor (TMSR) may contribute to solve these problems. The thorium cycle

  2. Spatial and Temporal Dynamics of Salt Marsh Vegetation across Scales

    E-Print Network [OSTI]

    Kim, Daehyun

    2010-10-12T23:59:59.000Z

    Biogeographic patterns across a landscape are developed by the interplay of environmental processes operating at different spatial and temporal scales. This research investigated dynamics of salt marsh vegetation on the Skallingen salt marsh...

  3. Corrosion Studies in High-Temperature Molten Salt Systems for...

    Broader source: Energy.gov (indexed) [DOE]

    Corrosion Studies in High-Temperature Molten Salt Systems for CSP Applications - FY13 Q1 Corrosion Studies in High-Temperature Molten Salt Systems for CSP Applications - FY13 Q1...

  4. Fundamental Corrosion Studies in High-Temperature Molten Salt...

    Broader source: Energy.gov (indexed) [DOE]

    Fundamental Corrosion Studies in High-Temperature Molten Salt Systems for Next-Generation CSP Systems - FY13 Q2 Fundamental Corrosion Studies in High-Temperature Molten Salt...

  5. Accident Investigation of the February 5, 2014, Underground Salt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the...

  6. EM Completes Salt Waste Disposal Units $8 Million under Budget...

    Office of Environmental Management (EM)

    EM Completes Salt Waste Disposal Units 8 Million under Budget at Savannah River Site EM Completes Salt Waste Disposal Units 8 Million under Budget at Savannah River Site February...

  7. Ketone Production from the Thermal Decomposition of Carboxylate Salts

    E-Print Network [OSTI]

    Landoll, Michael 1984-

    2012-08-15T23:59:59.000Z

    The MixAlco process uses an anaerobic, mixed-culture fermentation to convert lignocellulosic biomass to carboxylate salts. The fermentation broth must be clarified so that only carboxylate salts, water, and minimal impurities remain. Carboxylate...

  8. Colloidal stability of magnetic nanoparticles in molten salts

    E-Print Network [OSTI]

    Somani, Vaibhav (Vaibhav Basantkumar)

    2010-01-01T23:59:59.000Z

    Molten salts are important heat transfer fluids used in nuclear, solar and other high temperature engineering systems. Dispersing nanoparticles in molten salts can enhance the heat transfer capabilities of the fluid. High ...

  9. Salt repository project closeout status report

    SciTech Connect (OSTI)

    NONE

    1988-06-01T23:59:59.000Z

    This report provides an overview of the scope and status of the US Department of Energy (DOE`s) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs.

  10. Nuclear salt-in-crude monitor

    SciTech Connect (OSTI)

    Sheikh, S.; Richter, A.P.

    1983-05-01T23:59:59.000Z

    The Arabian American Oil Co. (ARAMCO) recently installed a nuclear salt-in-crude monitor (SICM) that continuously measures the salt content of a flowing stream of crude oil. This device was developed by Texaco Inc.'s Bellaire (TX) Research Laboratory. The monitor consists of two parts: a counting chamber and an instrument console. The counting chamber is a length of 24-in.-diameter pipe containing a long-life neutron source and a gamma ray detector, both mounted in cross pipes so that there is no direct contact with the flowing crude. Neutrons from the source are absorbed by chloride ions in the stream, which in turn emit gamma rays. The intensity of the gamma rays is proportional to the amount of chlorine in the crude. The gamma ray detector is electrically connected to the instrument console, which is located in a control room. The console contains the necessary instrumentation to process the data from the detector, to compute the salt concentration, and to provide a continuous printed record of the salt per thousand barrels (PTB).

  11. Geothermal studies of seven interior salt domes

    SciTech Connect (OSTI)

    Not Available

    1983-06-01T23:59:59.000Z

    This report defines and compares the geothermal environments of eight selected Gulf Coast salt domes. The thermal regimes in and around Gulf Coast salt domes are not well documented. The data base used for this study is an accumulation of bottom-hole temperature readings from oil and gas exploration wells and temperature logs run for the National Waste Terminal Storage (NWTS) program. The bottom-hole tempreatures were corrected in order to estimate the actual geothermal environments. Prior thermal studies and models indicate temperatures in and around salt domes are elevated above the norm by 1/sup 0/F to 25/sup 0/F. Using existing geothermal data and accepted theory, geothermal gradients for the selected domes and surrounding sediments were estimated. This study concludes that salt domes within a given basin have similar geothermal gradients, but that the basins differ in average geothermal gradients. This relationship is probably controlled by deep basement structural trends. No evidence of residual heat of emplacement was found associated with any of the selected domes.

  12. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect (OSTI)

    Woolley, Robert D [PPPL; Miller, Laurence F [PPPL

    2014-04-01T23:59:59.000Z

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  13. Triaxial creep measurements on rock salt from the Jennings dome, Louisiana, borehole LA-1, core {number_sign}8

    SciTech Connect (OSTI)

    Wawersik, W.R.; Zimmerer, D.J.

    1994-05-01T23:59:59.000Z

    Tejas Power Company requested that facilities in the Rock Mechanics Laboratory at Sandia National Laboratories be used to assess the time-dependent properties of rock salt from the Jennings dome in Acadia Parish, Louisiana. Nominally 2.5-inch diameter slat core from borehole LA-1, core 8 (depth 3924.8 to 3837.8 ft; 1196.8--1197.1 m) was provided to accomplish two tasks: (1) Using the smallest possible number of experiments, evaluate the tendency of Jennings salt to undergo time-dependent deformation (creep) under constant applied stresses, and compare the creep of Jennings salt with creep data for rock salt from other locations. (2) Assess the applicability of published laboratory-derived creep properties for rock salt from several bedded and domal sites in finite element analyses concerning the design of new gas storage caverns in the Jennings dome. The characterization of Jennings salt followed the same strategy that was applied in earlier laboratory experiments on core from the Moss Bluff dome near Houston, Texas. This report summarizes the relevant details of five creep experiments on a sample from depth 3927.5 ft, the results obtained, and how these results compared with laboratory creep measurements gathered on rock salt from other locations including the West Hackberry, Bryan Mound and Moss Bluff domes. The report also considers the estimates of specific creep parameters commonly used in numerical engineering design analyses.

  14. The Salt or Sodium Chloride Content of Feeds

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach); Lomanitz, S. (Sebastian)

    1920-01-01T23:59:59.000Z

    1 EXAS AGRICULTURAL EXPERIMENT STATION AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS W. B. BIZZELL, Preeident BULLETIN NO. 271 OCTOBER, 1920 DIVISION OF CHEMISTRY THE SALT OR SODIUM CHLORIDE CONTENT OF FEEDS B. YOUNGBLOOD, DIRECTOK COLLEGE.... ............... Salt content of feecls.. ......... Salt content of mixed feeds.. ................... Summary ancl conclusions. Page. l1 [Blank Page in Original Bulletin] BULLETIN XO. 271. OCTOBE- '"On THE SALT OR SODIUM CHLORIDE CONTENT OF FEI The Texas feed...

  15. Method for preparing salt solutions having desired properties

    DOE Patents [OSTI]

    Ally, Moonis R. (Oak Ridge, TN); Braunstein, Jerry (Clinton, TN)

    1994-01-01T23:59:59.000Z

    The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.

  16. Baseload Nitrate Salt Central Receiver Power Plant Design Final Report

    SciTech Connect (OSTI)

    Tilley, Drake; Kelly, Bruce; Burkholder, Frank

    2014-12-12T23:59:59.000Z

    The objectives of the work were to demonstrate that a 100 MWe central receiver plant, using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator, can 1) operate, at full load, for 6,400 hours each year using only solar energy, and 2) satisfy the DOE levelized energy cost goal of $0.09/kWhe (real 2009 $). To achieve these objectives the work incorporated a large range of tasks relating to many different aspects of a molten salt tower plant. The first Phase of the project focused on developing a baseline design for a Molten Salt Tower and validating areas for improvement. Tasks included a market study, receiver design, heat exchanger design, preliminary heliostat design, solar field optimization, baseline system design including PFDs and P&IDs and detailed cost estimate. The baseline plant met the initial goal of less than $0.14/kWhe, and reinforced the need to reduce costs in several key areas to reach the overall $0.09/kWhe goal. The major improvements identified from Phase I were: 1) higher temperature salt to improve cycle efficiency and reduce storage requirements, 2) an improved receiver coating to increase the efficiency of the receiver, 3) a large receiver design to maximize storage and meet the baseload hours objective, and 4) lower cost heliostat field. The second Phase of the project looked at advancing the baseline tower with the identified improvements and included key prototypes. To validate increasing the standard solar salt temperature to 600 °C a dynamic test was conducted at Sandia. The results ultimately proved the hypothesis incorrect and showed high oxide production and corrosion rates. The results lead to further testing of systems to mitigate the oxide production to be able to increase the salt temperature for a commercial plant. Foster Wheeler worked on the receiver design in both Phase I and Phase II looking at both design and lowering costs utilizing commercial fossil boiler manufacturing. The cost and design goals for the project were met with this task, but the most interesting results had to do with defining the failure modes and looking at a “shakedown analysis” of the combined creep-fatigue failure. A separate task also looked at improving the absorber coatings on the receiver tubes that would improve the efficiency of the receiver. Significant progress was made on developing a novel paint with a high absorptivity that was on par with the current Pyromark, but shows additional potential to be optimized further. Although the coating did not meet the emissivity goals, preliminary testing the new paint shows potential to be much more durable, and potential to improve the receiver efficiency through a higher average absorptivity over the lifetime. Additional coatings were also designed and modeled results meet the project goals, but were not tested. Testing for low cycle fatigue of the full length receiver tubes was designed and constructed, but is still currently undergoing testing. A novel small heliostat was developed through an extensive brainstorming and down select. The concept was then detailed further with inputs from component testing and eventually a full prototype was built and tested. This task met or exceeded the accuracy and structure goals and also beat the cost goal. This provides a significant solar field costs savings for Abengoa that will be developed further to be used in future commercial plants. Ultimately the $0.09/kWhe (real 2009 $) and 6,400 hours goals of the project were met.

  17. Seismic stratigraphy and salt tectonics of the Alaminos Canyon area, Gulf of Mexico.

    E-Print Network [OSTI]

    Mechler, Suzanne Marie

    1994-01-01T23:59:59.000Z

    morphology, salt structure, and suprasalt sediments indicate the majority of the slope is covered by a shallow salt canopy. The salt structure map indicates that the Alaminos Canyon study area represents a transition from a semi-continuous salt sheet...

  18. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30T23:59:59.000Z

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

  19. Removal of uranium and salt from the Molten Salt Reactor Experiment

    SciTech Connect (OSTI)

    Peretz, F.J.; Rushton, J.E.; Faulkner, R.L.; Walker, K.L.; Del Cul, G.D.

    1998-06-01T23:59:59.000Z

    In 1994, migration of {sup 233}U was discovered to have occurred at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). This paper describes the actions now underway to remove uranium from the off-gas piping and the charcoal bed, to remove and stabilize the salts, and to convert the uranium to a stable oxide for long-term storage.

  20. Production of carboxylic acid and salt co-products

    DOE Patents [OSTI]

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09T23:59:59.000Z

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  1. Influence of Salt Purity on Na+ and Palmitic Acid Interactions

    E-Print Network [OSTI]

    Influence of Salt Purity on Na+ and Palmitic Acid Interactions Zishuai Huang, Wei Hua, Dominique of salt purity on the interactions between Na+ ions and the carboxylate (COO- ) head group of palmitic frequency generation (VSFG) spectroscopy. Ultrapure (UP) and ACS grade NaCl salts are used for aqueous

  2. Molten Salt Synthesis of Calcium Hydroxyapatite Whiskers A. Cuneyt Tas*,

    E-Print Network [OSTI]

    Tas, A. Cuneyt

    Molten Salt Synthesis of Calcium Hydroxyapatite Whiskers A. Cu¨neyt Tas¸*, Department hydroxyapatite (HA) whiskers and crystals were produced by the route of molten salt synthesis. The effects. A tentative X-ray diffraction pattern was proposed for the HA whiskers. Molten salt synthesis with a K2SO4

  3. Developing salt-tolerant crop plants: challenges and opportunities

    E-Print Network [OSTI]

    Blumwald, Eduardo

    Developing salt-tolerant crop plants: challenges and opportunities Toshio Yamaguchi and Eduardo areas of the world; the need to produce salt-tolerant crops is evident. Two main approaches are being used to improve salt tolerance: (i) the exploitation of natural genetic variations, either through

  4. Salt Frost Deterioration in Concrete Pavement --Causes and Mitigation

    E-Print Network [OSTI]

    Salt Frost Deterioration in Concrete Pavement --Causes and Mitigation Zhichao Liu, Will Hansen and special effects such as surface tension and osmotic effect (salt solution). ·Below the nucleation the surface contains a salt solution, pore suction attracts surface liquid and additional ice growth may

  5. SALT-flSH INPUSTRIES FISHERY LEAFLET 240

    E-Print Network [OSTI]

    SALT-flSH INPUSTRIES FISHERY LEAFLET 240 FISH AND WILDLIFE SERVICE UNITED STATES DEPARTMENT, Albert M. Day, Director #12;THE VENEZUKLAN SALT-FISH INDUSTRIES CONTE^fTS Part II Potential Productive and Craft 29 Development of Unused or Underutilized Species 29 Development of New Areas 35 Salt 35 Studies

  6. Simulation of salt migrations in density dependent groundwater flow

    E-Print Network [OSTI]

    Vuik, Kees

    Simulation of salt migrations in density dependent groundwater flow E.S. van Baaren Master's Thesis for the salt migration in the groundwater underneath the polders near the coast. The problem description of this thesis is to investigate the possibilities of modelling salt migrations in density dependent groundwater

  7. Structural restoration of Louann Salt and overlying sediments, De Soto Canyon Salt Basin, northeastern Gulf of Mexico

    E-Print Network [OSTI]

    Guo, Mengdong

    1997-01-01T23:59:59.000Z

    The continental margin of the northeastern Gulf of Mexico is suited for seismic stratigraphic analysis and salt tectonism analysis. Jurassic strata include the Louann Salt on the continental shelf and upper slope of the Destin Dome OCS area...

  8. Strategic Petroleum Reserve (SPR) additional geologic site characterization studies, Bryan Mound Salt Dome, Texas

    SciTech Connect (OSTI)

    Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R.; Ahmad, S. [Acres International Corp., Amherst, NY (United States)] [Acres International Corp., Amherst, NY (United States)

    1994-11-01T23:59:59.000Z

    This report revises the original report that was published in 1980. Some of the topics covered in the earlier report were provisional and it is now practicable to reexamine them using new or revised geotechnical data and that obtained from SPR cavern operations, which involves 16 new caverns. Revised structure maps and sections show interpretative differences as compared with the 1980 report and more definition in the dome shape and caprock structural contours, especially a major southeast-northwest trending anomalous zone. The original interpretation was of westward tilt of the dome, this revision shows a tilt to the southeast, consistent with other gravity and seismic data. This interpretation refines the evaluation of additional cavern space, by adding more salt buffer and allowing several more caverns. Additional storage space is constrained on this nearly full dome because of low-lying peripheral wetlands, but 60 MMBBL or more of additional volume could be gained in six or more new caverns. Subsidence values at Bryan Mound are among the lowest in the SPR system, averaging about 11 mm/yr (0.4 in/yr), but measurement and interpretation issues persist, as observed values are about the same as survey measurement accuracy. Periodic flooding is a continuing threat because of the coastal proximity and because peripheral portions of the site are at elevations less than 15 ft. This threat may increase slightly as future subsidence lowers the surface, but the amount is apt to be small. Caprock integrity may be affected by structural features, especially the faulting associated with anomalous zones. Injection wells have not been used extensively at Bryan Mound, but could be a practicable solution to future brine disposal needs. Environmental issues center on the areas of low elevation that are below 15 feet above mean sea level: the coastal proximity and lowland environment combined with the potential for flooding create conditions that require continuing surveillance.

  9. An evaluation of pressure and flow measurement in the Molten Salt Test Loop (MSTL) system.

    SciTech Connect (OSTI)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald J.

    2013-07-01T23:59:59.000Z

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL allows customers and researchers to test components in flowing, molten nitrate salt at plant-like conditions for pressure, flow, and temperature. An important need in thermal storage systems that utilize molten salts is for accurate flow and pressure measurement at temperatures above 535%C2%B0C. Currently available flow and pressure instrumentation for molten salt is limited to 535%C2%B0C and even at this temperature the pressure measurement appears to have significant variability. It is the design practice in current Concentrating Solar Power plants to measure flow and pressure on the cold side of the process or in dead-legs where the salt can cool, but this practice won't be possible for high temperature salt systems. For this effort, a set of tests was conducted to evaluate the use of the pressure sensors for flow measurement across a device of known flow coefficient Cv. To perform this task, the pressure sensors performance was evaluated and was found to be lacking. The pressure indicators are severely affected by ambient conditions and were indicating pressure changes of nearly 200psi when there was no flow or pressure in the system. Several iterations of performance improvement were undertaken and the pressure changes were reduced to less than 15psi. The results of these pressure improvements were then tested for use as flow measurement. It was found that even with improved pressure sensors, this is not a reliable method of flow measurement. The need for improved flow and pressure measurement at high temperatures remains and will need to be solved before it will be possible to move to high temperature thermal storage systems with molten salts.

  10. Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes

    SciTech Connect (OSTI)

    Wishau, R.

    1998-05-01T23:59:59.000Z

    Molten salt oxidation (MSO) is proposed as a {sup 238}Pu waste treatment technology that should be developed for volume reduction and recovery of {sup 238}Pu and as an alternative to the transport and permanent disposal of {sup 238}Pu waste to the WIPP repository. In MSO technology, molten sodium carbonate salt at 800--900 C in a reaction vessel acts as a reaction media for wastes. The waste material is destroyed when injected into the molten salt, creating harmless carbon dioxide and steam and a small amount of ash in the spent salt. The spent salt can be treated using aqueous separation methods to reuse the salt and to recover 99.9% of the precious {sup 238}Pu that was in the waste. Tests of MSO technology have shown that the volume of combustible TRU waste can be reduced by a factor of at least twenty. Using this factor the present inventory of 574 TRU drums of {sup 238}Pu contaminated wastes is reduced to 30 drums. Further {sup 238}Pu waste costs of $22 million are avoided from not having to repackage 312 of the 574 drums to a drum total of more than 4,600 drums. MSO combined with aqueous processing of salts will recover approximately 1.7 kilograms of precious {sup 238}Pu valued at 4 million dollars (at $2,500/gram). Thus, installation and use of MSO technology at LANL will result in significant cost savings compared to present plans to transport and dispose {sup 238}Pu TRU waste to the WIPP site. Using a total net present value cost for the MSO project as $4.09 million over a five-year lifetime, the project can pay for itself after either recovery of 1.6 kg of Pu or through volume reduction of 818 drums or a combination of the two. These savings show a positive return on investment.

  11. Halite depositional facies in a solar salt pond: A key to interpreting physical energy and water depth in ancient deposits

    SciTech Connect (OSTI)

    Handford, C.R. (ARCO Oil and Gas Co., Plano, TX (USA))

    1990-08-01T23:59:59.000Z

    Subaqueous deposits of aragonite, gypsum, and halite are accumulating in shallow solar salt ponds constructed in the Pekelmeer, a sea-level salina on Bonaire, Netherlands Antilles. Several halite facies are deposited in the crystallizer ponds in response to difference in water depth and wave energy. Cumulate halite, which originates as floating rafts, is present only along the protected, upwind margins of ponds where low-energy conditions foster their formation and preservation. Cornet crystals with peculiar mushroom- and mortarboard-shaped caps precipitate in centimetre-deep brine sheets within a couple of metres of the upwind or low-energy margins. Downwind from these margins, cornet and chevron halite precipitate on the pond floors in water depths ranging from a few centimetres to {approximately} 60 cm. Halite pisoids with radial-concentric structure are precipitated in the swash zone along downwind high-energy shorelines where they form pebbly beaches. This study suggests that primary halite facies are energy and/or depth dependent and that some primary features, if preserved in ancient halite deposits, can be used to infer physical energy conditions, subenvironments such as low- to high-energy shorelines, and extremely shallow water depths in ancient evaporite basins.

  12. Radar investigation of the Cote Blanche salt dome

    E-Print Network [OSTI]

    Stewart, Robert Donald

    1974-01-01T23:59:59.000Z

    THE COTE BLANCHE SALT DOME. Geology of the Cote Blanche Salt-Dome Azea. . Economic History of the Cote BLanche Salt-Dome Azea, Salt. . Oil and gas. III. ELECTROMAGNETIC WAVE PROPAGATION. . . Radar Speed in Air and in Salt. . . Velocity...' zznd i'r. mzznz 1959) . The east, south, end west flanks are nearly vertical. However, the north side oi the dome is characterised by a massive overhang. A well drilled by Shell Oil Company, Caffrey No. 1, confirmed the presence of a minimum of 3300...

  13. Cementitious Stabilization of Mixed Wastes with High Salt Loadings

    SciTech Connect (OSTI)

    Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

    1999-04-01T23:59:59.000Z

    Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt.

  14. Polymeric salt bridges for conducting electric current in microfluidic devices

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA); Tichenor, Mark S. (San Diego, CA); Artau, Alexander (Humacao, PR)

    2009-11-17T23:59:59.000Z

    A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

  15. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOE Patents [OSTI]

    Mullins, L.J.; Christensen, D.C.

    1982-09-20T23:59:59.000Z

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  16. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOE Patents [OSTI]

    Mullins, Lawrence J. (Los Alamos, NM); Christensen, Dana C. (Los Alamos, NM)

    1984-01-01T23:59:59.000Z

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  17. Global transcriptional, physiological and metabolite analyses of Desulfovibrio vulgaris Hildenborough responses to salt adaptation

    SciTech Connect (OSTI)

    He, Z.; Zhou, A.; Baidoo, E.; He, Q.; Joachimiak, M. P.; Benke, P.; Phan, R.; Mukhopadhyay, A.; Hemme, C.L.; Huang, K.; Alm, E.J.; Fields, M.W.; Wall, J.; Stahl, D.; Hazen, T.C.; Keasling, J.D.; Arkin, A.P.; Zhou, J.

    2009-12-01T23:59:59.000Z

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by physiological, global transcriptional, and metabolite analyses. The growth of D. vulgaris was inhibited by high levels of NaCl, and the growth inhibition could be relieved by the addition of exogenous amino acids (e.g., glutamate, alanine, tryptophan) or yeast extract. Salt adaptation induced the expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). Genes involved in carbon metabolism, cell motility, and phage structures were repressed. Comparison of transcriptomic profiles of D. vulgaris responses to salt adaptation with those of salt shock (short-term NaCl exposure) showed some similarity as well as a significant difference. Metabolite assays showed that glutamate and alanine were accumulated under salt adaptation, suggesting that they may be used as osmoprotectants in D. vulgaris. A conceptual model is proposed to link the observed results to currently available knowledge for further understanding the mechanisms of D. vulgaris adaptation to elevated NaCl.

  18. Laboratory evaluation of damage criteria and permeability of Big Hill salt.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Park, Byoung Yoon; Lee, Moo Yul; Bronowski, David R.

    2004-11-01T23:59:59.000Z

    To establish strength criteria of Big Hill salt, a series of quasi-static triaxial compression tests have been completed. This report summarizes the test methods, set-up, relevant observations, and results. The triaxial compression tests established dilatant damage criteria for Big Hill salt in terms of stress invariants (I{sub 1} and J{sub 2}) and principal stresses ({sigma}{sub a,d} and {sigma}{sub 3}), respectively: {radical}J{sub 2}(psi) = 1746-1320.5 exp{sup -0.00034I{sub 1}(psi)}; {sigma}{sub a,d}(psi) = 2248 + 1.25 {sigma}{sub 3} (psi). For the confining pressure of 1,000 psi, the dilatant damage strength of Big Hill salt is identical to the typical salt strength ({radical}J{sub 2} = 0.27 I{sub 1}). However, for higher confining pressure, the typical strength criterion overestimates the damage strength of Big Hill salt.

  19. Predicting viscosities of aqueous salt mixtures

    SciTech Connect (OSTI)

    Zaltash, A.; Ally, M.R.

    1992-01-01T23:59:59.000Z

    Viscosity plays an important role in quantifying heat and mass transfer rates as depicted in theoretical and semi-empirical correlations. In practical problems where extreme temperatures and solute concentrations are encountered, viscosity data is usually unavailable. At these conditions, no dependable correlation appears to exist in the literature. This paper uses the hole type model to predict the viscosity of aqueous electrolytes containing single and mixed salts up to the molten salt regime. This model needs two parameters which can be evaluated from sparse data. For LiBr/water and (Li, K, na) NO[sub 3]/water mixtures, it is shown that the agreement between predicted and experimental values is very good over wide temperature and concentration ranges. The deviation between these two values was found to be less than 9%.

  20. Predicting viscosities of aqueous salt mixtures

    SciTech Connect (OSTI)

    Zaltash, A.; Ally, M.R.

    1992-12-01T23:59:59.000Z

    Viscosity plays an important role in quantifying heat and mass transfer rates as depicted in theoretical and semi-empirical correlations. In practical problems where extreme temperatures and solute concentrations are encountered, viscosity data is usually unavailable. At these conditions, no dependable correlation appears to exist in the literature. This paper uses the hole type model to predict the viscosity of aqueous electrolytes containing single and mixed salts up to the molten salt regime. This model needs two parameters which can be evaluated from sparse data. For LiBr/water and (Li, K, na) NO{sub 3}/water mixtures, it is shown that the agreement between predicted and experimental values is very good over wide temperature and concentration ranges. The deviation between these two values was found to be less than 9%.

  1. Molten salts database for energy applications

    E-Print Network [OSTI]

    Serrano-López, Roberto; Cuesta-López, Santiago

    2013-01-01T23:59:59.000Z

    The growing interest in energy applications of molten salts is justified by several of their properties. Their possibilities of usage as a coolant, heat transfer fluid or heat storage substrate, require thermo-hydrodynamic refined calculations. Many researchers are using simulation techniques, such as Computational Fluid Dynamics (CFD) for their projects or conceptual designs. The aim of this work is providing a review of basic properties (density, viscosity, thermal conductivity and heat capacity) of the most common and referred salt mixtures. After checking data, tabulated and graphical outputs are given in order to offer the most suitable available values to be used as input parameters for other calculations or simulations. The reviewed values show a general scattering in characterization, mainly in thermal properties. This disagreement suggests that, in several cases, new studies must be started (and even new measurement techniques should be developed) to obtain accurate values.

  2. Dense QCD: a Holographic Dyonic Salt

    E-Print Network [OSTI]

    Mannque Rho; Sang-Jin Sin; Ismail Zahed

    2009-10-23T23:59:59.000Z

    Dense QCD at zero temperature with a large number of colors is a crystal. We show that in the holographic dual description, the crystal is made out of pairs of dyons with $e=g=\\pm 1$ charges in a salt-like arrangement. We argue that with increasing density the dyon masses and topological charges equalize, turning the salt-like configuration to a bcc of half-instantons. The latter is dual to a cubic crystal of half-skyrmions. We estimate the transition from an fcc crystal of instantons to a bcc crystal of dyons to about 3 times nuclear matter density with a dyon binding energy of about 180 MeV.

  3. Stationary phase deposition based on onium salts

    DOE Patents [OSTI]

    Wheeler, David R. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM); Dirk, Shawn M. (Albuquerque, NM); Trudell, Daniel E. (Albuquerque, NM)

    2008-01-01T23:59:59.000Z

    Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.

  4. Reference repository design concept for bedded salt

    SciTech Connect (OSTI)

    Carpenter, D.W.; Martin, R.W.

    1980-10-08T23:59:59.000Z

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

  5. Modified phosphate ceramics for stabilization and solidification of salt mixed wastes.

    SciTech Connect (OSTI)

    Singh, D.

    1998-06-26T23:59:59.000Z

    Novel chemically bonded phosphate ceramics have been investigated for stabilization and solidification of chloride and nitrate salt wastes. Using low-temperature processing, we stabilized and solidified chloride and nitrate surrogate salts (with hazardous metals) in magnesium potassium phosphate ceramics up to waste loadings of 70-80 wt.%. A variety of characterizations, including strength, microstructure, and leaching, were then conducted on the waste forms. Leaching tests show that all heavy metals in the leachant are well below the EPAs universal treatment standard limits. Long-term leaching tests, per ANS 16. 1 procedure, yields leachability index for nitrate ions > 12. Chloride ions are expected to have an even higher (i.e., better) leachability index. Structural performance of these final waste forms, as indicated by compression strength and durability in aqueous environments, satisfies the regulatory criteria. Thus, based on the results of this study, it seems that phosphate ceramics are viable option for containment of salt wastes.

  6. Effect of sodium monofluorophosphate treatment on microstructure and frost salt scaling durability of slag cement paste

    SciTech Connect (OSTI)

    Copuroglu, O. [Delft University of Technology, Faculty of CiTG, Micromechanics Laboratory (MICROLAB) (Netherlands)]. E-mail: o.copuroglu@citg.tudelft.nl; Fraaij, A.L.A. [Delft University of Technology, Faculty of CiTG, Materials Science and Sustainable Construction (Netherlands); Bijen, J.M.J.M. [Delft University of Technology, Faculty of CiTG, Materials Science and Sustainable Construction (Netherlands)

    2006-08-15T23:59:59.000Z

    Sodium-monofluorophosphate (Na-MFP) is currently in use as a surface applied corrosion inhibitor in the concrete industry. Its basic mechanism is to protect the passive layer of the reinforcement steel against disruption due to carbonation. Carbonation is known as the most detrimental environmental effect on blast furnace slag cement (BFSC) concrete with respect to frost salt scaling. In this paper the effect of Na-MFP on the microstructure and frost salt scaling resistance of carbonated BFSC paste is presented. The results of electron microscopy, mercury intrusion porosimetry (MIP) and X-ray diffraction (XRD) are discussed. It is found that the treatment modifies the microstructure and improves the resistance of carbonated BFSC paste against frost salt attack.

  7. Transient Analysis for the Multimechanism-Deformation Parameters of Several Domal Salts

    SciTech Connect (OSTI)

    Munson, Darrell E.

    1999-08-16T23:59:59.000Z

    Use of Gulf Coast salt domes for construction of very large storage caverns by solution mining has grown significantly in the last several decades. In fact, a nationally important Strategic Petroleum Reserve (SPR) storage occurs in large cavern arrays in some of these domes. Although caverns have been operated economically for these many years, these caverns have a range of relatively poorly understood behaviors, involving creep closure fluid loss and damage from salt falls. It is certainly possible to postulate that many of these behaviors stem from geomechanical or deformational aspects of the salt response. As a result, a method of correlating the cavern response to mechanical creep behavior as determined in the laboratory could be of considerable importance. Recently, detailed study of the creep response of domal salts has cast some insight into the influence of different salt origins on cavern behavior. The study used a simple graphical analysis of the limited non-steady state data to give a bound, or an approach to steady state, as an estimate of the steady state behavior of a given domal salt. This permitted the analysis of sparse creep databases for domal salts. It appears that a shortcoming of the steady state analysis was in masking some of the salt material differences. In an attempt to overcome the steady state analysis shortcomings, a method was developed based on the integration of the Multimechanism-Deformation (M-D) creep constitutive model to fit the transient response. This integration process essentially permits definition of the material sensitive parameters of the model, while those parameters that are either constants or material insensitive parameters are fixed independently. The transient analysis method has proven more sensitive to differences in the creep characteristics and has provided a way of defining different behaviors within a given dome. Creep characteristics, as defined by the transient analysis of the creep rate, are related quantitatively to the volume loss creep rate of the caverns. This type of understanding of the domal material creep response already has pointed to the possibility of establishing various distinct material spines within a given dome. Furthermore, if the creep databases for domal salts can be expanded, one could expect additional definition of domal geology and structure.

  8. Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

    2001-10-31T23:59:59.000Z

    This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report

  9. Salt disposal of heat-generating nuclear waste.

    SciTech Connect (OSTI)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01T23:59:59.000Z

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

  10. Tank 37H Salt Removal Batch Process and Salt Dissolution Mixing Study

    SciTech Connect (OSTI)

    Kwon, K.C.

    2001-09-18T23:59:59.000Z

    Tank 30H is the receipt tank for concentrate from the 3H Evaporator. Tank 30H has had problems, such as cooling coil failure, which limit its ability to receive concentrate from the 3H Evaporator. SRS High Level Waste wishes to use Tank 37H as the receipt tank for the 3H Evaporator concentrate. Prior to using Tank 37H as the 3H Evaporator concentrate receipt tank, HLW must remove 50 inches of salt cake from the tank. They requested SRTC to evaluate various salt removal methods for Tank 37H. These methods include slurry pumps, Flygt mixers, the modified density gradient method, and molecular diffusion.

  11. Delivery system for molten salt oxidation of solid waste

    DOE Patents [OSTI]

    Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

    2002-01-01T23:59:59.000Z

    The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

  12. The Salt Industry at Sterling, Kansas

    E-Print Network [OSTI]

    Horner, Robert Messenger

    1914-01-01T23:59:59.000Z

    work more cheaply than coal and the rail~ road. For such reasons the snlt industry of Oreat Britain has dwindled steadily for some years. In twenty-two years her exports shrunk one half. She has no effective sunlight and all her salt plants...^r prepared in con- tact with a metal kills the plants. Addition of Kg CI and Mg SO to the above -2 4 mixture enabled the plants to live practically as long as in sea-water. Although Ca CI added 2 singly to Ha CI inhibits the poisonous effect of Na CI...

  13. Salt dome gas storage solves curtailment threat

    SciTech Connect (OSTI)

    Watts, J.

    1982-04-01T23:59:59.000Z

    In November 1981, Valero Transmission Co. (San Antonio, TX) opened two salt-dome storage caverns with a combined capacity of 5 billion CF (1.5 billion of cushion gas, 3.5 of working gas). The facility's maximum deliverability is 400 million CF/day for 9 days; when two more caverns are finished in late 1982, the $55 million complex will be able to sustain that level for 18 days, making Valero less dependent on linepacking and spot sales to avoid curtailing deliveries to its customers.

  14. Experimental studies of actinides in molten salts

    SciTech Connect (OSTI)

    Reavis, J.G.

    1985-06-01T23:59:59.000Z

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  15. Salt River Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:Energysource History ViewJumpSaintSalmonSalt

  16. Salt Wells Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLandSRTHelena:Sakti3RiverSalt Wells

  17. The Salt Defense Disposal Investigations (SDDI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2Dand WaterThe FutureRiskSalt Defense Disposal

  18. Salt River Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Salt River Electric serves as the rural electric provider in Kentucky's Bullitt, Nelson, Spencer, and Washington counties. Residential customers are eligible for a variety of cash incentives for...

  19. Project Profile: Deep Eutectic Salt Formulations Suitable as...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as Advanced Heat Transfer Fluids Halotechnics logo Halotechnics, under the Thermal Storage FOA, is conducting high-throughput, combinatorial research and development of salt...

  20. Method for the production of uranium chloride salt

    DOE Patents [OSTI]

    Westphal, Brian R.; Mariani, Robert D.

    2013-07-02T23:59:59.000Z

    A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

  1. Molten salt bath circulation design for an electrolytic cell

    DOE Patents [OSTI]

    Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

    1999-08-17T23:59:59.000Z

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

  2. Salt Lake City, Utah: Solar in Action (Brochure), Solar America...

    Broader source: Energy.gov (indexed) [DOE]

    a lack of understanding about solar contributed to preventing the widespread adoption of solar energy in all markets. Salt Lake City's prior solar successes with support from...

  3. alternative salt transfer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dish concentrator Renewable Energy Websites Summary: the receiver is dominated by the solar irradiance profile over the cavity surface; with the heat exchangeMolten salt as heat...

  4. administration salt lake: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gsa2005AMfinalprogramabstract96987.htm 2005 Salt Lake City Annual Meeting (October 1619, 2005) Geosciences Websites Summary: http:gsa.confex.comgsa2005AM...

  5. Molten salt bath circulation design for an electrolytic cell

    DOE Patents [OSTI]

    Dawless, Robert K. (Monroeville, PA); LaCamera, Alfred F. (Trafford, PA); Troup, R. Lee (Murrysville, PA); Ray, Siba P. (Murrysville, PA); Hosler, Robert B. (Sarver, PA)

    1999-01-01T23:59:59.000Z

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

  6. avoid salt induced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multidisciplinary Databases and Resources Websites Summary: thermal gradients around the waste depository. Natural occurring salt formations contain small quantities is directed...

  7. Surface Indicators of Geothermal Activity at Salt Wells, Nevada...

    Open Energy Info (EERE)

    Activity at Salt Wells, Nevada, USA, Including Warm Ground, Borate Deposits, and Siliceous Alteration Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  8. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    SciTech Connect (OSTI)

    Hsu, P.C.

    1997-11-01T23:59:59.000Z

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

  9. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    SciTech Connect (OSTI)

    Kobayashi, Kazuya; Liang, Yunfeng, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Matsuoka, Toshifumi, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp [Environment and Resource System Engineering, Kyoto University, Kyoto 615-8540 (Japan)] [Environment and Resource System Engineering, Kyoto University, Kyoto 615-8540 (Japan); Sakka, Tetsuo [Department of Energy and Hydrocarbon Chemistry, Kyoto University, Kyoto 615-8510 (Japan)] [Department of Energy and Hydrocarbon Chemistry, Kyoto University, Kyoto 615-8510 (Japan)

    2014-04-14T23:59:59.000Z

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.

  10. EXAMINE AND EVALUATE A PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LIQUEFIED NATURAL GAS

    SciTech Connect (OSTI)

    Michael M. McCall; William M. Bishop; D. Braxton Scherz

    2003-04-24T23:59:59.000Z

    The goal of the U.S. Department of Energy cooperative research project is to define, describe, and validate, a process to utilize salt caverns to receive and store the cargoes of LNG ships. The project defines the process as receiving LNG from a ship, pumping the LNG up to cavern injection pressures, warming it to cavern compatible temperatures, injecting the warmed vapor directly into salt caverns for storage, and distribution to the pipeline network. The performance of work under this agreement is based on U.S. Patent 5,511,905, and other U.S. and Foreign pending patent applications. The cost sharing participants in the research are The National Energy Technology Laboratory (U.S. Department of Energy), BP America Production Company, Bluewater Offshore Production Systems (U.S.A.), Inc., and HNG Storage, L.P. Initial results indicate that a salt cavern based receiving terminal could be built at about half the capital cost, less than half the operating costs and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. There is a significant body of knowledge and practice concerning natural gas storage in salt caverns, and there is a considerable body of knowledge and practice in handling LNG, but there has never been any attempt to develop a process whereby the two technologies can be combined. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or terrorist acts, and much more acceptable to the community. The project team developed conceptual designs of two salt cavern based LNG terminals, one with caverns located in Calcasieu Parish Louisiana, and the second in Vermilion block 179 about 50 miles offshore Louisiana. These conceptual designs were compared to conventional tank based LNG terminals and demonstrate superior security, economy and capacity. The potential for the development of LNG receiving terminals, utilizing salt caverns for storage and the existing comprehensive pipeline system has profound implications for the next generation of LNG terminals. LNG imports are expected to become an increasingly more important part of the U.S. energy supply and the capacities to receive LNG securely, safely, and economically must be expanded. Salt cavern LNG receiving terminals both in onshore and offshore locations can be quickly built and provide additional import capacity into the U.S. exceeding 6-10 Bcf/day in the aggregate.

  11. Salt Screening and Selection: New Challenges and Considerations in the Modern

    E-Print Network [OSTI]

    Tipple, Brett

    Salt Screening and Selection: New Challenges and Considerations in the Modern Pharmaceutical R · Introduction · Theoretical Considerations · pH-solubility profiles, pKa and salt formation · Prediction of salt solubility · Solubility product and in situ salt screening · Solubility/dissolution rate of salts

  12. Solid state voltammetry of an anthraquinone molten salt

    SciTech Connect (OSTI)

    Williams, M.E.; Murray, R.W.

    1999-11-18T23:59:59.000Z

    The solid-state voltammetries of the two reduction steps of a novel redox polyether hybrid--an anthraquinone molten salt (triethyl(MePEG350)ammonium anthraquinone sulfonate, (Et{sub 3}NMePEG350{sup +})(AQSO{sub 3}{sup {minus}}))--and its disulfonated analogue, are reported. Multiple effects on charge transport rates are encountered. Currents for the first reduction wave are greater than 10-fold smaller. The relative charge transport rates of the two reductions are examined as a function of temperature and of incrementally replacing the AQSO{sub 3}{sup {minus}} anion in the melt with the electro-inactive BF{sub 4}{sup {minus}} anion. An analysis that includes ionic conductivity measurements shows that the apparent charge transport rate of the second anthraquinone reduction is attenuated primarily as a result of ionic migration of the products of comproportionation reactions occurring in the diffusion layer.

  13. Lead and other metals distribution in local cooking salt from the Fofi salt- spring in Akwana, Middle Benue Trough, Nigeria

    SciTech Connect (OSTI)

    Dim, L.A.; Kinyua, A.M.; Munyithya, J.M.; Adetunji, J. (Centre for Nuclear Science Techniques, Faculty of Engineering, University of Nairobi (Kenya))

    1991-06-01T23:59:59.000Z

    Energy Dispersive X-ray Fluorescence (EDXRF) technique has been used to determine the concentrations of lead(Pb) and other heavy metals in local cooking salts (LCS) from Akwana village, Middle Benue Trough, Nigeria. The comparison of the distribution of these metals in LCS, fake salt (FS) and the usual common salts (CS) are given. Lead was found to be enriched in LCS by factor exceeding 200 times compared to the other salts. The origin of Pb contamination in the LCS is examined and its effects on the inhabitants of the village are considered.

  14. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    SciTech Connect (OSTI)

    Grogan, Dylan C. P.

    2013-08-15T23:59:59.000Z

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50¢/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12¢/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

  15. Laboratory investigation of crushed salt consolidation and fracture healing

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    A laboratory test program was conducted to investigate the consolidation behavior of crushed salt and fracture healing in natural and artificial salt. Crushed salt is proposed for use as backfill in a nuclear waste repository in salt. Artificial block salt is proposed for use in sealing a repository. Four consolidation tests were conducted in a hydrostatic pressure vessel at a maximum pressure of 2500 psi (17.2 MPa) and at room temperature. Three 1-month tests were conducted on salt obtained from the Waste Isolation Pilot Plant and one 2-month test was conducted on salt from Avery Island. Permeability was obtained using argon and either a steady-state or transient method. Initial porosities ranged from 0.26 to 0.36 and initial permeabilities from 2000 to 50,000 md. Final porosities and permeabilities ranged from 0.05 to 0.19 and from <10/sup -5/ md to 110 md, respectively. The lowest final porosity (0.05) and permeability (<10/sup -5/ md) were obtained in a 1-month test in which 2.3% moisture was added to the salt at the beginning of the test. The consolidation rate was much more rapid than in any of the dry salt tests. The fracture healing program included 20 permeability tests conducted on fractured and unfractured samples. The tests were conducted in a Hoek cell at hydrostatic pressures up to 3000 psi (20.6 MPa) with durations up to 8 days. For the natural rock salt tested, permeability was strongly dependent on confining pressure and time. The effect of confining pressure was much weaker in the artificial salt. In most cases the combined effects of time and pressure were to reduce the permeability of fractured samples to the same order of magnitude (or less) as the permeability measured prior to fracturing.

  16. STORAGE OF CHILLED NATURAL GAS IN BEDDED SALT STORAGE CAVERNS

    SciTech Connect (OSTI)

    JOel D. Dieland; Kirby D. Mellegard

    2001-11-01T23:59:59.000Z

    This report provides the results of a two-phase study that examines the economic and technical feasibility of converting a conventional natural gas storage facility in bedded salt into a refrigerated natural gas storage facility for the purpose of increasing the working gas capacity of the facility. The conceptual design used to evaluate this conversion is based on the design that was developed for the planned Avoca facility in Steuben County, New York. By decreasing the cavern storage temperature from 43 C to -29 C (110 F to -20 F), the working gas capacity of the facility can be increased by about 70 percent (from 1.2 x 10{sup 8} Nm{sup 3} or 4.4 billion cubic feet (Bcf) to 2.0 x 10{sup 8} Nm{sup 3} or 7.5 Bcf) while maintaining the original design minimum and maximum cavern pressures. In Phase I of the study, laboratory tests were conducted to determine the thermal conductivity of salt at low temperatures. Finite element heat transfer calculations were then made to determine the refrigeration loads required to maintain the caverns at a temperature of -29 C (-20 F). This was followed by a preliminary equipment design and a cost analysis for the converted facility. The capital cost of additional equipment and its installation required for refrigerated storage is estimated to be about $13,310,000 or $160 per thousand Nm{sup 3} ($4.29 per thousand cubic feet (Mcf)) of additional working gas capacity. The additional operating costs include maintenance refrigeration costs to maintain the cavern at -29 C (-20 F) and processing costs to condition the gas during injection and withdrawal. The maintenance refrigeration cost, based on the current energy cost of about $13.65 per megawatt-hour (MW-hr) ($4 per million British thermal units (MMBtu)), is expected to be about $316,000 after the first year and to decrease as the rock surrounding the cavern is cooled. After 10 years, the cost of maintenance refrigeration based on the $13.65 per MW-hr ($4 per MMBtu) energy cost is estimated to be $132,000. The gas processing costs are estimated to be $2.05 per thousand Nm{sup 3} ($0.055 per Mcf) of gas injected into and withdrawn from the facility based on the $13.65 per MW-hr ($4 per MMBtu) energy cost. In Phase II of the study, laboratory tests were conducted to determine mechanical properties of salt at low temperature. This was followed by thermomechanical finite element simulations to evaluate the structural stability of the cavern during refrigerated storage. The high thermal expansion coefficient of salt is expected to result in tensile stresses leading to tensile failure in the roof, walls, and floor of the cavern as it is cooled. Tensile fracturing of the cavern roof may result in loss of containment of the gas and/or loss of integrity of the casing shoe, deeming the conversion of this facility not technically feasible.

  17. Salt plays an important role in our daily lives. True, salt makes our food tastier, but perhaps its most significant role is as an ingredient in

    E-Print Network [OSTI]

    Waliser, Duane E.

    Salt plays an important role in our daily lives. True, salt makes our food tastier, but perhaps its, or the concentration of salt at the ocean's surface, gives scientists vital information on global ocean circulation changes, so does salinity! Ocean salinity is affected by the water cycle. As salt water evaporates

  18. Hazard Evaluation for a Salt Well Centrifugal Pump Design Using Service Water for Lubrication and Cooling

    SciTech Connect (OSTI)

    GRAMS, W.H.

    2000-10-09T23:59:59.000Z

    This report documents the results of a preliminary hazard analysis (PHA) covering the new salt well pump design. The PHA identified ten hazardous conditions mapped to four analyzed accidents: flammable gas deflagrations, fire in contaminated area, tank failure due to excessive loads, and waste transfer leaks. This document also presents the results of the control decision/allocation process. A backflow preventer and associated limiting condition were assigned.

  19. Molecular dynamics study of interfacial confinement effects of aqueous NaCl brines in nanoporous carbon

    SciTech Connect (OSTI)

    Wander, M. C.F.; Shuford, K. L.

    2010-01-01T23:59:59.000Z

    In this paper, studies of aqueous electrolyte solutions in contact with a family of porous carbon geometries using classical molecular dynamics simulations are presented. These simulations provide an atomic scale depiction of ion transport dynamics in different environments to elucidate power of aqueous electrolyte supercapacitors. The electrolyte contains alkali metal and halide ions, which allow for the examination of size trends within specific geometries as well as trends in concentration. The electrode pores are modeled as planar graphite sheets and carbon nanotubes with interstices ranging from one to four nanometers. Ordered layers form parallel to the carbon surface, which facilitates focused ion motion under slightly confining conditions. As a result, the ion’s diffusivities are enhanced in the direction of the slit or pore. Further confining the system leads to decreased ion diffusivities. The ions are fully hydrated in all but the smallest slits and pores with those sizes showing increased ion pairing. There is strong evidence of charge separation perpendicular to the surface at all size scales, concentrations, and ion types, providing a useful baseline for examining differential capacitance behavior and future studies on energy storage. These systems show promise as high-power electrical energy storage devices.

  20. Measurements of radio propagation in rock salt for the detection of high-energy neutrinos

    E-Print Network [OSTI]

    Connolly, Amy; Miki, Christian; Nichol, Ryan; Saltzberg, David

    2008-01-01T23:59:59.000Z

    We present measurements of the transmission of radio/microwave pulses through salt in the Cote Blanche salt mine operated by the North American Salt Company in St. Mary Parish, Louisiana. These results are from data taken in the southwestern region of the 1500 ft. (457 m) deep level of the mine on our third and most recent visit to the mine. We transmitted and received a fast, high-power, broadband pulse from within three vertical boreholes that were drilled to depths of 100 ft. (30 m) and 200 ft. below the 1500 ft. level using three different pairs of dipole antennas whose bandwidths span 125 to 900 MHz. By measuring the relative strength of the received pulses between boreholes with separations of 50 m and 169 m, we deduce the attenuation of the signal attributed to the salt medium. We fit the frequency dependence of the attenuation to a power law and find the best fit field attenuation lengths to be 93 \\pm 7 m at 150 MHz, 63 \\pm 3 m at 300 MHz, and 36 \\pm 2 m at 800 MHz. This is the most precise measuremen...

  1. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    SciTech Connect (OSTI)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30T23:59:59.000Z

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  2. Destruction of LP XM46 using the molten salt destruction process. Revision 1

    SciTech Connect (OSTI)

    Upadhye, R.S.; Watkins, B.E.

    1994-04-01T23:59:59.000Z

    The preliminary experimental work done on the destruction of the liquid gun propellant LP XM46 (the new designation for LGP-1846) using the Molten Salt Destruction (MSD) Process at the Lawrence Livermore National Laboratory (LLNL) for the US Army is described in this report. A series of 18 continuous experimental runs were made wherein a solution of LP XM46 and water was injected into a bed of molten salt comprising the carbonates of sodium, potassium and lithium, along with air. The purpose of these initial Phase 1 runs was to collect information on the applicability of the Molten Salt Destruction Process for the destruction of LP XM46, identify the key technical uncertainties, and to plan future runs. The tentative results from these experiments, described in detail in the main body of this report, indicate that: (1) LP XM46 can be safely and completely destroyed in a bed of molten salt at temperatures well below those needed for incineration; and (2) under optimum operating conditions, less than 1% of the chemically bound nitrogen in the LP XM46 is converted to NOx, and less than 1% carbon is converted to CO.

  3. Boron mineralization in Louann Salt and Norphlet Shale, Clarke County, Alabama

    SciTech Connect (OSTI)

    Simmons, W.B.

    1988-09-01T23:59:59.000Z

    A suite of unusual boron minerals is present in the upper Louann Salt and immediately overlying Norphlet Shale in Clarke County, Alabama. Core samples come from a depth of about 12,000 ft in a well located on the flank of a nonpiecement salt dome. The suite consists of calcium and magnesium borates similar to those occurring in the Zechstein salt deposits of Germany. Well-developed micron-size to millimeter-size crystals were recovered from water-insoluble residue from the salt. The minerals identified include boracite (modified pseudoisometric cubes), hilgardite (prismatic crystal aggregates), szaibelyite (acicular crystal aggregates), and volkovskite (plates, rare prisms). Associated minerals are anhydrite, gypsum, magnesite, phlogopite, tlc, and quartz. Boracite and hilgardite have boron isotopic compositions indicative of marine evaporite deposits. Danburite occurs in irregular nodules up to 2 cm in diameter in the overlying Norphlet Shale. The nodules constitute up to 30% of the Norphlet immediately adjacent to the Louann but disappear within about 1 m from the contact. The danburite appears to be the result of boron-rich fluids derived from the underlying marine evaporite sequence, infiltrating and reacting with the shale.

  4. Economic comparison of CAES designs employing hardrock, salt, and aquifer storage reservoirs

    SciTech Connect (OSTI)

    Reilly, R.W.; Schainker, R.B.

    1981-01-01T23:59:59.000Z

    The economic performance of three CAES designs is briefly examined. Each design was developed by a different A and E under different assumptions and constraints, and each employed a different type of air storage facility: a hardrock-mined cavity, a solution-mined salt deposit, and an aquifer. The results indicate that aquifer and salt storage facilities cost roughly 60 to 70% of the equivalent hardrock-mined cavern. In this comparison the aquifer storage facility was somewhat less expensive than the salt cavity, but this difference could be reversed with different salt and/or aquifer characteristics. For instance, if the aquifer had been less permeable, then more wells would have been required for the same power level, and total storage cost would have been higher. The major difference between the plant cost estimates lies not in the cost of storage facilities, but rather in vendor estimates of turbomachinery cost. And, since turbomachinery contributes about half of total plant cost, this difference could be critical to the decision to build a CAES plant.

  5. Le Thorium Molten Salt Reactor : Au del du MSBR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Le Thorium Molten Salt Reactor : Au delà du MSBR L. Mathieu, D. Heuer, A. Billebaud, R. Brissot, C réflexion est menée afin de trou- ver des solutions et ainsi d'aboutir au concept du Thorium Mol- ten Salt optimale du minerai d'uranium ou de thorium, une conception résistante à la prolifération, une meilleur

  6. Laboratory Measurements of Sea Salt Aerosol Refractive Index

    E-Print Network [OSTI]

    Oxford, University of

    . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 Complex Refractive Index . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Size Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.5 Coagulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 Sea Salt AerosolsLaboratory Measurements of Sea Salt Aerosol Refractive Index Thesis submitted for the degree

  7. Leucobacter salsicius sp. nov., from a salt-fermented food

    E-Print Network [OSTI]

    Bae, Jin-Woo

    contained 2,4-diaminobutyric acid, glutamic acid, alanine, glycine and c-aminobutyric acid. The majorLeucobacter salsicius sp. nov., from a salt- fermented food Ji-Hyun Yun,1 Seong Woon Roh,1,2 Min, Daejeon 305-806, Republic of Korea Strain M1-8T was isolated from jeotgal, a Korean salt-fermented food

  8. Exploratory Research on Simulation of CO2-Brine-Mineral Interactions

    SciTech Connect (OSTI)

    Chen Zhu; Shiao hung Chiang

    2005-11-01T23:59:59.000Z

    Application of many carbon sequestration strategies requires knowledge of thermodynamic properties for the extremely complex chemical system of CO{sub 2}-SO{sub 2}-H{sub 2}O-NaCl-CaCl{sub 2}-MgCl{sub 2}. This University Coal Research Phase I program has been successful and highly productive in exploring an approach to develop an equation of state (EOS) to describe thermodynamic properties in the above chemical system. We have compiled available laboratory experimental data and thermodynamic models, and evaluated their appropriateness for the carbon sequestration process. Based on this literature review, we provided an improved CO{sub 2} solubility model for the CO{sub 2}-H{sub 2}O-NaCl system, which incorporates newly available experimental measurements funded by DOE, and is valid in temperature range from 273 to 533 K, pressure from 0 to 2000 bar, and salinity from 0 to 4.5 molality of NaCl equivalent. The improved model also greatly improves the computational efficiency of CO{sub 2} solubility calculations and thus is better suited to be incorporated into large computer simulation models (e.g., reservoir simulation models). The literature review and model development provided insights of the data needs and directions for future work. Synergetic collaboration with DOE scientists has resulted in simulations of injected CO{sub 2} fate in sandstone aquifer with a one-dimensional numerical coupled reactive transport model. We evaluated over 100 references on CO{sub 2} solubility and submitted two manuscripts to peer-reviewed journals. One paper has been accepted for publication in ''Environmental Geosciences''.

  9. E-Print Network 3.0 - attributes saturated salt Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: attributes saturated salt Page: << < 1 2 3 4 5 > >> 1 This thesis focuses on the restoration of salt marshes in north-west Europe. Salt marshes are important habitats that...

  10. Metals concentration in salt marshes plants and kelp around San Diego: A window to environment quality

    E-Print Network [OSTI]

    Deheyn, Dimitri

    2009-01-01T23:59:59.000Z

    in salt marshes plants and kelp around San Diego: A windowassessing levels of metals in kelp and salt marsh plants inmetals levels found in kelp and salt marsh plants reflect

  11. Effect of salt identity on the phase diagram for a globular protein in aqueous electrolyte solution

    E-Print Network [OSTI]

    Bostrom, Mathias; Tavares, Frederico W.; Ninham, Barry W.; Prausnitz, John M.

    2006-01-01T23:59:59.000Z

    or NaSCN. For all cases, salt concentration is 0.2 M. StableEFFECT OF SALT IDENTITY ON THE PHASE DIAGRAM FOR A GLOBULARcannot account for the effect of salt identity on the phase

  12. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    E-Print Network [OSTI]

    Suo, Zhigang

    Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt 2014; published online 14 October 2014) Polyacrylamide hydrogels containing salt as electrolyte have of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced

  13. PEP-carboxylase activity supports organic acid metabolism of maize (Zea mays) under salt stress

    E-Print Network [OSTI]

    Hatzig, Sarah Vanessa; Kumar, Ashwani; Neubert, Anja; Schubert, Sven

    2009-01-01T23:59:59.000Z

    physical basis for improving salt resistance in maize. Inand their expression under salt stress. J. Plant Physiol.may have a function for the salt resistance of maize during

  14. Salt stress affects polyamine concentrations and plasma membrane H+-ATPase proton pumping in maize

    E-Print Network [OSTI]

    Ingold, Mariko; Hanstein, Stefan; Schubert, Sven

    2009-01-01T23:59:59.000Z

    during the first phase of salt stress? J. Plant Nutr. SoilH + -ATPase in roots, is lowered by salt treatment.synthesis of polyamines under salt stress may contribute to

  15. Does jasmonic acid control the maize shoot growth during the first phase of salt stress?

    E-Print Network [OSTI]

    Shahzad, Ahmad Naeem; Pollmann, Stephan; Schubert, Sven

    2009-01-01T23:59:59.000Z

    Introduction Salt stress affects plant growth in twohormones, pH) in response to salt/drought stress is notin response to osmotic/salt stress (Creelman and Mullet

  16. MONITORING OF SALT-INDUCED DEFORMATIONS IN POROUS SYSTEMS BY MICROSCOPIC SPECKLE PATTERN INTERFEROMETRY

    E-Print Network [OSTI]

    Hinsch, Klaus

    MONITORING OF SALT-INDUCED DEFORMATIONS IN POROUS SYSTEMS BY MICROSCOPIC SPECKLE PATTERN porosity distribution, and its negligible humidity expansion. The glass sam- ples, soaked with salt: electronic speckle pattern interferometry, deformation measurement, salt crys- tallization, phase transition

  17. Invasive Spartina densiflora Brongn. Reduces Primary Productivity in a Northern California Salt Marsh

    E-Print Network [OSTI]

    Lagarde, Luc A.

    2012-01-01T23:59:59.000Z

    and Distichlis spicata in salt marshes at Humboldt Bay,Carolina Spartina alterniflora salt marsh. Estuaries 4:97-die-off of southern U.S. salt marshes. Science 310:1803-

  18. Temperature dependent mechanical property testing of nitrate thermal storage salts.

    SciTech Connect (OSTI)

    Iverson, Brian DeVon; Broome, Scott Thomas; Siegel, Nathan Phillip

    2010-08-01T23:59:59.000Z

    Three salt compositions for potential use in trough-based solar collectors were tested to determine their mechanical properties as a function of temperature. The mechanical properties determined were unconfined compressive strength, Young's modulus, Poisson's ratio, and indirect tensile strength. Seventeen uniaxial compression and indirect tension tests were completed. It was found that as test temperature increases, unconfined compressive strength and Young's modulus decreased for all salt types. Empirical relationships were developed quantifying the aforementioned behaviors. Poisson's ratio tends to increase with increasing temperature except for one salt type where there is no obvious trend. The variability in measured indirect tensile strength is large, but not atypical for this index test. The average tensile strength for all salt types tested is substantially higher than the upper range of tensile strengths for naturally occurring rock salts.

  19. Natural gas storage in bedded salt formations

    SciTech Connect (OSTI)

    Macha, G.

    1996-09-01T23:59:59.000Z

    In 1990 Western Resources Inc. (WRI) identified the need for additional natural gas storage capacity for its intrastate natural gas system operated in the state of Kansas. Western Resources primary need was identified as peak day deliverability with annual storage balancing a secondary objective. Consequently, an underground bedded salt storage facility, Yaggy Storage Field, was developed and placed in operation in November 1993. The current working capacity of the new field is 2.1 BCF. Seventy individual caverns are in service on the 300 acre site. The caverns vary in size from 310,000 CF to 2,600,000 CF. Additional capacity can be added on the existing acreage by increasing the size of some of the smaller existing caverns by further solution mining and by development of an additional 30 potential well sites on the property.

  20. Disposal of NORM waste in salt caverns

    SciTech Connect (OSTI)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01T23:59:59.000Z

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  1. Analysis of Multistage and Other Creep Data for Domal Salts

    SciTech Connect (OSTI)

    Munson, D.E.

    1998-10-01T23:59:59.000Z

    There have existed for some time relatively sparse creep databases for a number of domal salts. Although all of these data were analyzed at the time they were reported, to date there has not been a comprehensive, overall evaluation within the same analysis framework. Such an evaluation may prove of value. The analysis methodology is based on the Multimechanism Deformation (M-D) description of salt creep and the corresponding model parameters determined from conventional creep tests. The constitutive model of creep wss formulated through application of principles involved in micromechanical modeling. It was possible, at minimum, to obtain the steady state parameters of the creep model from the data on the domal salts. When this was done, the creep of the domal salts, as compared to the well-defined Waste Isolation Pilot Plant (WIPP) bedded clean salt, was either essentially identical to, or significantly harder (more creep resistant) than WIPP salt. Interestingly, the domal salts form two distinct groups, either sofl or hard, where the difference is roughly a factor often in creep rate between the twcl groups. As might be expected, this classification corresponds quite well to the differences in magnitude of effective creep volume losses of the Strategic Petroleum Reserve (SPR) caverns as determined by the CAVEMAN cavern pressure history analysis, depending upon the specific dome or region within the dome. Creep response shoulcl also correlate to interior cavern conditions that produce salt falls. WMle, in general, the caverns in hard sah have a noticeably greater propensity for salt falls, a smaller number of similar events are exhibited even in the caverns in soft salt.

  2. 1 | De-icing salt damage to trees | November 2011 Pathology Advisory Note

    E-Print Network [OSTI]

    1 | De-icing salt damage to trees | November 2011 Pathology Advisory Note (No. 11) De-icing salt damage to trees De-icing Salt Damage to Trees Joan F Webber, David R Rose, Martin C Dobson #12;2 | De-icing salt damage to trees | November 2011 S a l t D a m a g e De-icing Salt Damage Introduction Rock salt

  3. Separation of CsCl from a Ternary CsCl-LiCl-KCl Salt via a Melt Crystallization Technique for Pyroprocessing Waste Minimization

    SciTech Connect (OSTI)

    Ammon Williams; Supathorn Phongikaroon; Michael Simpson

    2013-02-01T23:59:59.000Z

    A parametric study has been conducted to identify the effects of several parameters on the separation of CsCl from molten LiCl-KCl salt via a melt crystallization process. A reverse vertical Bridgman technique was used to grow the salt crystals. The investigated parameters were: (1) the advancement rate, (2) the crucible lid configuration, (3) the amount of salt mixture, (4) the initial composition of CsCl, and (5) the temperature difference between the high and low furnace zones. From each grown crystal, samples were taken axially and analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Results show that CsCl concentrations at the top of the crystals were low and increased to a maximum at the bottom of the salt. Salt (LiCl-KCl) recycle percentages for the experiments ranged from 50% to 75% and the CsCl composition in the waste salt was low. To increase the recycle percentage and the concentration of CsCl in the waste form, the possibility of using multiple crystallization stages was explored to further optimize the process. Results show that multiple crystallization stages are practical and the optimal experimental conditions should be operated at 5.0 mm/hr rate with a lid configuration and temperature difference of 200 °C for a total of five crystallization stages. Under these conditions, up to 88% of the salt can be recycled.

  4. Invasive Spartina densiflora Brongn. Reduces Primary Productivity in a Northern California Salt Marsh

    E-Print Network [OSTI]

    Lagarde, Luc A.

    2012-01-01T23:59:59.000Z

    alterniflora and benthic microalgae in salt marsh food webs:dynamics of benthic microalgae in salt marshes. Pages 81-106primary productivity of microalgae and cyanobacteria (Geider

  5. Levels of metals from salt marsh plants from Southern California, USA

    E-Print Network [OSTI]

    Hoyt, Kimberly Ann

    2009-01-01T23:59:59.000Z

    alterniflora and benthic microalgae in salt marsh foodalterniflora and benthic microalgae in salt marsh foodSpartina, but feed on microalgae (Currin,1990). Isotope

  6. Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Salt Wells Area...

  7. anion heavy-atom salt: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  8. aluminum-molten salt contactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  9. Elucidation of Mechanisms of Salinity Tolerance in Zoysia matrella Cultivars: A Study of Structure and Function of Salt Glands

    E-Print Network [OSTI]

    Rao, Sheetal

    2012-07-16T23:59:59.000Z

    Salt glands are important structural adaptations in some plant and animal species that are involved in the excretion of excess salts. Zoysia matrella is a highly salt tolerant turf grass that has salt glands. Two cultivars of Z. matrella, ‘Diamond...

  10. Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation

    SciTech Connect (OSTI)

    J. T. Case (DOE-ID); M. L. Renfro (INEEL)

    1998-12-01T23:59:59.000Z

    This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team downselected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their downselection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary alternative, the IPE Team suggests the following path forward: Complete all essential R and D activities for both alternatives and formulate an appropriate set of quantitative decision criteria that will be rigorously applied at the end of the R and D activities. Concurrent conceptual design activities should be limited to common elements of the alternatives.

  11. Three-dimensional representations of salt-dome margins at four active strategic petroleum reserve sites.

    SciTech Connect (OSTI)

    Rautman, Christopher Arthur; Stein, Joshua S.

    2003-01-01T23:59:59.000Z

    Existing paper-based site characterization models of salt domes at the four active U.S. Strategic Petroleum Reserve sites have been converted to digital format and visualized using modern computer software. The four sites are the Bayou Choctaw dome in Iberville Parish, Louisiana; the Big Hill dome in Jefferson County, Texas; the Bryan Mound dome in Brazoria County, Texas; and the West Hackberry dome in Cameron Parish, Louisiana. A new modeling algorithm has been developed to overcome limitations of many standard geological modeling software packages in order to deal with structurally overhanging salt margins that are typical of many salt domes. This algorithm, and the implementing computer program, make use of the existing interpretive modeling conducted manually using professional geological judgement and presented in two dimensions in the original site characterization reports as structure contour maps on the top of salt. The algorithm makes use of concepts of finite-element meshes of general engineering usage. Although the specific implementation of the algorithm described in this report and the resulting output files are tailored to the modeling and visualization software used to construct the figures contained herein, the algorithm itself is generic and other implementations and output formats are possible. The graphical visualizations of the salt domes at the four Strategic Petroleum Reserve sites are believed to be major improvements over the previously available two-dimensional representations of the domes via conventional geologic drawings (cross sections and contour maps). Additionally, the numerical mesh files produced by this modeling activity are available for import into and display by other software routines. The mesh data are not explicitly tabulated in this report; however an electronic version in simple ASCII format is included on a PC-based compact disk.

  12. Chemistry of fluid inclusions in halite from the Salina group of the Michigan basin: Implications for Late Silurian seawater and the origin of sedimentary brines

    SciTech Connect (OSTI)

    Das, N.; Horita, J.; Holland, H.D. (Harvard Univ., Cambridge, MA (USA))

    1990-02-01T23:59:59.000Z

    Fluid was extracted from 18 fluid inclusions in halite of the Late Silurian Salina Group exposed in the Crystal Mine on the outskirts of Detroit, Michigan. Compared with modern seawater evaporated to the same degree, the inclusion fluids are severely depleted in SO{sub 4}{sup {minus}2}, somewhat depleted in Na{sup +} and Mg{sup +2}, and greatly enriched in Ca{sup +2}. The composition of the inclusion fluids can be derived from Silurian seawater with a composition close to that of modern seawater, if it is assumed that the composition of the Silurian seawater was modified by dolomitizing CaCO{sub 3}-rich sediments and by albitizing silicate minerals during its evolution into evaporite brines. Since the evolution of the brines involved a number of chemical reactions, it is impossible to recover the initial concentration of all of the major ions in the parent Silurian seawater from the composition of the inclusion fluids alone. It is likely, however, that the m{sub K+}/m{sub Br-} ratio and the functions in Late Silurian seawater had values close to those of modern seawater. Measurements of the isotopic composition of sulfur and of Sr in anhydrite within and associated with the halite host of the fluid inclusions are consistent with previous measurements of {delta}{sup 34}S in Silurian marine anhydrites and with the {sup 87}Sr/{sup 86}Sr ratios of Late Silurian marine carbonates.

  13. Controlled black liquor viscosity reduction through salting-in

    SciTech Connect (OSTI)

    Roberts, J.E.; Khan, S.A.; Spontak, R.J. [North Carolina State Univ., Raleigh, NC (United States)] [North Carolina State Univ., Raleigh, NC (United States)

    1996-08-01T23:59:59.000Z

    Black liquor viscosity increases exponentially with solids content and therefore causes processing problems for the paper industry by being a limiting factor in the Kraft pulp process. This study investigates a new approach for achieving viscosity reduction by salting-in black liquor through the addition of thiocyanate salts. These salts generally increase the solubility of the polymer constituents in black liquor, leading to a decrease in its viscosity. Several thiocyanate salts capable of reducing liquor viscosity by more than two orders of magnitude have been identified, with viscosity reduction greatest at high solids content. Salting-in of black liquor depends on the cation paired with the thiocyanate anion, as well as on solution pH and temperature. Comparative studies reveal the most effective viscosity-reducing agent of the series examined and that lignin plays an important role in the viscosity behavior of both unmodified and salted-in black liquor at high solids concentrations. These experimental findings are interpreted in terms of the underlying principles that describe salting-in and how it affects aqueous solution structure.

  14. Using three dimensional structural simulations to study the interactions of multiple excavations in salt

    SciTech Connect (OSTI)

    Hoffman, E.L.; Ehgartner, B.L.

    1998-02-01T23:59:59.000Z

    Three-dimensional quasistatic finite element codes are being used at Sandia National Laboratories to simulate the interactions of multiple large room and pillar mines in rock salt. The calculations presented in this paper are of a salt dome which contains multiple closely-spaced room and pillar mines. One of the mines was used as an oil storage facility, supported by the US DOE under the auspices of the Strategic Petroleum Reserve (SPR) program. The facility has recently been decommissioned due to the discovery of geotechnical instabilities. The model, validated by field observations, has resulted in a better understanding of the mechanisms which can threaten the stability of an underground excavation, as well as the structural interactions of multiple excavations. Although these calculations were performed in the specific interest of the SPR, the results should be of interest to mine designers concerned with the interactions of multiple mines excavated in a common formation.

  15. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Mathur, Anoop [Terrafore Inc.] [Terrafore Inc.

    2013-08-14T23:59:59.000Z

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

  16. BASIN ANALYSIS OF THE MISSISSIPPI INTERIOR SALT BASIN AND PETROLEUM SYSTEM MODELING OF THE JURASSIC SMACKOVER FORMATION, EASTERN GULF COASTAL PLAIN

    SciTech Connect (OSTI)

    Ernest A,. Mancini

    1999-04-09T23:59:59.000Z

    Part 2 (Basin Analysis of the Mississippi Interior Salt Basin) objectives are to provide a comprehensive analysis of the Mississippi Interior Salt Basin in Years 2 and 3 of the project and to transfer effectively the research results to producers through workshops and topical reports. Work accomplished so far: (Task 1) Tectonic History--Petroleum traps in the Mississippi Interior Salt Basin have been characterized. (Task 2) Depositional History--The depositional systems for Mesozoic strata in the Mississippi Interior Salt Basin have been identified and characterized. (Task 3) Fluid Flow--Modeling of 1-D burial and thermal history profiles for 48 wells in the Mississippi Interior Salt Basin has been completed. Multidimensional thermal maturity modeling has been initiated. (Task 4) Underdeveloped Plays--Three major exploration plays have been identified. These include the basement ridge play, the regional peripheral fault trend play, and the salt anticline play. (Task 5) Technology Transfer--No work was performed on this task for this quarter. (Task 6) Topical Reports--The topical reports on the tectonic, depositional, burial and thermal histories of the Mississippi Interior Salt Basin have been completed and sent to DOE.

  17. The Thorium Molten Salt Reactor : Moving on from the MSBR

    E-Print Network [OSTI]

    L. Mathieu; D. Heuer; R. Brissot; C. Le Brun; E. Liatard; J. M. Loiseaux; O. Méplan; E. Merle-Lucotte; A. Nuttin; J. Wilson; C. Garzenne; D. Lecarpentier; E. Walle; the GEDEPEON Collaboration

    2005-06-02T23:59:59.000Z

    A re-evaluation of the Molten Salt Breeder Reactor concept has revealed problems related to its safety and to the complexity of the reprocessing considered. A reflection is carried out anew in view of finding innovative solutions leading to the Thorium Molten Salt Reactor concept. Several main constraints are established and serve as guides to parametric evaluations. These then give an understanding of the influence of important core parameters on the reactor's operation. The aim of this paper is to discuss this vast research domain and to single out the Molten Salt Reactor configurations that deserve further evaluation.

  18. A mechanical model of early salt dome growth 

    E-Print Network [OSTI]

    Irwin, Frank Albert

    1988-01-01T23:59:59.000Z

    salt and the upper layer representing the overlying sediment, is used to study the mechanics of growth in the early stages of salt dome formation. Three cases of this model, each representing a particular rate of removal of the surface topography..., are examined to determine which case best fits observations of salt domes in East Texas, Northwest Germany, and the North Sea. These observations include the spacing and growth rate of the dome and the amount of deformation of the sediments above the dome...

  19. The Estimation of Salt and Molasses in Mixed Feeds

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1931-01-01T23:59:59.000Z

    . THE ESTIMATION OF SALT The method described in Bulletin 271 referred to above, consists briefly in extracting the salt from 5.55 gm. of the feed with about 200 cc. water, purifying the extract by means of carbon black or lead acetate, making up to 200 cc... described in this publication is based upon the method of E. R. Theis, published in the Chemist-Analyst, No. 41, 1924, and consists in extracting the salt with a solution of picric acid, neutral- izing with calcium carbonate, and titrating an aliquot...

  20. The Thorium Molten Salt Reactor Moving on from the MSBR

    E-Print Network [OSTI]

    Mathieu, L; Brissot, R; Le Brun, C; Liatard, E; Loiseaux, J M; Méplan, O; Merle-Lucotte, E; Nuttin, A; Wilson, J; Garzenne, C; Lecarpentier, D; Walle, E

    2006-01-01T23:59:59.000Z

    A re-evaluation of the Molten Salt Breeder Reactor concept has revealed problems related to its safety and to the complexity of the reprocessing considered. A reflection is carried out anew in view of finding innovative solutions leading to the Thorium Molten Salt Reactor concept. Several main constraints are established and serve as guides to parametric evaluations. These then give an understanding of the influence of important core parameters on the reactor's operation. The aim of this paper is to discuss this vast research domain and to single out the Molten Salt Reactor configurations that deserve further evaluation.