Powered by Deep Web Technologies
Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus 2010 DOE Vehicle...

2

Fuel Consumption and Emissions  

Science Journals Connector (OSTI)

Calculating fuel consumption and emissions is a typical offline analysis ... simulations or real trajectory data) and the engine speed (as obtained from gear-shift schemes ... as input and is parameterized by veh...

Martin Treiber; Arne Kesting

2013-01-01T23:59:59.000Z

3

Chapter 4. Fuel Economy, Consumption and Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

4. Fuel Economy, Consumption, and Expenditures 4. Fuel Economy, Consumption, and Expenditures Chapter 4. Fuel Economy, Consumption, and Expenditures This chapter analyzes trends in fuel economy, fuel consumption, and fuel expenditures, using data unique to the Residential Transportation Energy Consumption Survey, as well as selected data from other sources. Analysis topics include the following: Following the oil supply and price disruptions caused by the Arab oil embargo of 1973-1974, motor gasoline price increases, the introduction of corporate average fuel economy standards, and environmental quality initiatives helped to spur major changes in vehicle technology. But have the many advances in vehicle technology resulted in measurable gains in the fuel economy of the residential vehicle fleet?

4

The Impact of Using Derived Fuel Consumption Maps to Predict...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Impact of Using Derived Fuel Consumption Maps to Predict Fuel Consumption The Impact of Using Derived Fuel Consumption Maps to Predict Fuel Consumption Poster presented at the...

5

Fuel Consumption | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Consumption, CO2 Emissions, And A Simple Connection To the Vehicle Fuel Consumption, CO2 Emissions, And A Simple Connection To the Vehicle Road Load Equation Jan 15 2014 11:30 AM - 12:30 PM Glen E. Johnson Tennessee Tech University, Cookeville Energy and Transportation Science Division Seminar National Transportation Research Center, Room C-04 CONTACT : Email: Andreas Malikopoulos Phone:865.382.7827 Add to Calendar SHARE Ambitious goals have been set to reduce fuel consumption and CO2 emissions over the next generation. Starting from first principles, we will derive relations to connect fuel consumption and carbon dioxide emissions to a vehicle's road load equation. The model suggests approaches to facilitate achievement of future fuel and emissions targets. About the speaker: Dr. Johnson is a 1973 Mechanical Engineering graduate of Worcester

6

Demonstrating Fuel Consumption and Emissions Reductions with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation...

7

Fuel consumption model for FREFLO  

E-Print Network [OSTI]

above, Biggs and Akcelik (1985) proposed a model of the following form: f = fsito + &Pr + z[apr)o o (5) where, Po = total drag power P, = inertia power a = instantaneous acceleration 8, = fuel consumption per unit power 8, = fuel consumption per... that is additional to S, P, . This component is expressed as SzaP, , where &z is considered to be a secondary efficiency parameter that relates fuel to the product of inertia power and acceleration rate, for positive accelerations. This term allows for the effects...

Rao, Kethireddipalli Srinivas

1992-01-01T23:59:59.000Z

8

Reduction of fuel consumption  

Science Journals Connector (OSTI)

Replacing standard oil pumps with bypass control by regulated oil pumps with variable oil pressure which adapt their variable oil pumping quantity to the engine oil pressure requirements promises reductions in fuel

Dieter Voigt

2003-12-01T23:59:59.000Z

9

Canada's Fuel Consumption Guide | Open Energy Information  

Open Energy Info (EERE)

Canada's Fuel Consumption Guide Canada's Fuel Consumption Guide Jump to: navigation, search Tool Summary Name: Canada's Fuel Consumption Guide Agency/Company /Organization: Natural Resources Canada Focus Area: Fuels & Efficiency Topics: Analysis Tools Website: oee.nrcan.gc.ca/transportation/tools/fuel-consumption-guide/fuel-consu Natural Resources Canada has compiled fuel consumption ratings for passenger cars and light-duty pickup trucks, vans, and special purpose vehicles sold in Canada. The website links to the Fuel Consumption Guide and allows users to search for vehicles from current and past model years. It also provides information about vehicle maintenance and other practices to reduce fuel consumption. How to Use This Tool This tool is most helpful when using these strategies:

10

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

11

Reducing fuel consumption on the field, by continuously measuring...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuel consumption on the field, by continuously measuring fuel quality on electronically fuel injected engines. Reducing fuel consumption on the field, by continuously measuring...

12

Reducing fishing vessel fuel consumption and NOX emissions  

Science Journals Connector (OSTI)

There is a growing concern with the impact of marine operations on the environment. This requires reducing fuel consumption and vessel pollution during operation. On-board computers and satellite communications will enable the operator to reduce fuel consumption and NOX emissions during vessel operations. This paper presents the results of a study on this problem and how such an on-board system could be implemented to reduce fuel consumption and engine NOX emissions.

Robert Latorre

2001-01-01T23:59:59.000Z

13

Manufacturing Consumption of Energy 1991--Combined Consumption and Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

< < Welcome to the U.S. Energy Information Administration's Manufacturing Web Site. If you are having trouble, call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of Energy 1991 (Combined Consumption and Fuel Switching) Overview Full Report Tables & Spreadsheets This report presents national-level estimates about energy use and consumption in the manufacturing sector as well as manufacturers' fuel-switching capability. Contact: Stephanie.battle@eia.doe.gov Stephanie Battle Director, Energy Consumption Division Phone: (202) 586-7237 Fax: (202) 586-0018 URL: http://www.eia.gov/emeu/mecs/mecs91/consumption/mecs1a.html File Last Modified: May 25, 1996

14

Fuel Consumption per Vehicle.xls  

U.S. Energy Information Administration (EIA) Indexed Site

... 729 NA 618 628 652 681 Table 9. Fuel Consumption per Vehicle, Selected Survey Years (Gallons) Survey Years Page A-1 of A-5 1983 1985...

15

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program 2012 DOE Hydrogen and Fuel Cells...

16

Fuel Consumption Monitoring and Diesel Engines  

Science Journals Connector (OSTI)

In a perspective to explore how fuel monitoring and diesel engine life are interconnected, it’s necessary to ... touch several issues such as specifics of diesel engines in fuel consumption, the effects of precis...

Anna Antimiichuk

2014-09-01T23:59:59.000Z

17

Complex System Method to Assess Commercial Vehicle Fuel Consumption...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Complex System Method to Assess Commercial Vehicle Fuel Consumption Complex System Method to Assess Commercial Vehicle Fuel Consumption Two case studies for commercial vehicle...

18

Fact #705: December 12, 2011 Fuel Consumption Standards for Combinatio...  

Broader source: Energy.gov (indexed) [DOE]

5: December 12, 2011 Fuel Consumption Standards for Combination Tractors Fact 705: December 12, 2011 Fuel Consumption Standards for Combination Tractors The National Highway...

19

Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

6: December 19, 2011 Vocational Vehicle Fuel Consumption Standards Fact 706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards The National Highway Traffic Safety...

20

Impact of Driving Behavior on PHEV Fuel Consumption for Different...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control Impact of Driving Behavior on PHEV Fuel Consumption for Different Powertrain,...

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hydraulic HEV Fuel Consumption Potential | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Consumption Potential Hydraulic HEV Fuel Consumption Potential 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

22

Current Demands on Fuel Consumption Measurement  

Science Journals Connector (OSTI)

The general focus on the reduction of greenhouse gases, specifically of CO2..., is also increasingly drawing the attention of engine developers back to the priority of lowering fuel consumption. Fundamental to th...

Karl Köck; Romain Lardet; Rainer Schantl

2011-09-01T23:59:59.000Z

23

Table 3.1 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010; 1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99 3112 Grain and Oilseed Milling 350 16,479 * * 118 * 6 0 45 311221 Wet Corn Milling 214 7,467 * * 51 * 5 0 25 31131 Sugar Manufacturing 107 1,218 * * 15 * 2 * 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 9,203

24

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

25

Table E7.1. Consumption Ratios of Fuel, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit:...

26

"Table A2. Total Consumption of LPG, Distillate Fuel Oil,...  

U.S. Energy Information Administration (EIA) Indexed Site

. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in...

27

Fossil Fuel-Generated Energy Consumption Reduction for New Federal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Fossil Fuel-Generated Energy...

28

The individual contribution of automotive components to vehicle fuel consumption  

E-Print Network [OSTI]

Fuel consumption has grown to become a major point of interest as oil reserves are depleted. The purpose of this study is to determine the key components that cause variation in the instantaneous fuel consumption of vehicles ...

Napier, Parhys L

2011-01-01T23:59:59.000Z

29

Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

30

Colorado Natural Gas Lease Fuel Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

31

Fact #704: December 5, 2011 Fuel Consumption Standards for New...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans Fact 704: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans In September...

32

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING...

33

Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis  

E-Print Network [OSTI]

of steady state engine fuel consumption and emission maps.affecting engine load and consequently fuel consumption. Theand engine speed which it then relates to fuel consumption

Scora, George Alexander

2011-01-01T23:59:59.000Z

34

Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model  

E-Print Network [OSTI]

that the diesel engines fuel consumption and emissions doEmissions and Fuel Consumption Model engine manufacturersEmissions and Fuel Consumption Model Connection to engine

Barth, Matthew; Younglove, Theodore; Scora, George

2005-01-01T23:59:59.000Z

35

Heavy-Duty Diesel Vehicle Fuel Consumption Modeling Based on Road Load and Power Train Parameters  

E-Print Network [OSTI]

Injection Diesel Engine Fuel Consumption”, SAE 971142, 11.engine load, engine speed, and fuel consumption. The tirevehicle speed, engine speed, fuel consumption, engine load,

Giannelli, R; Nam, E K; Helmer, K; Younglove, T; Scora, G; Barth, M

2005-01-01T23:59:59.000Z

36

Table 6.2 Consumption Ratios of Fuel, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Consumption Ratios of Fuel, 2002;" 2 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,"Consumption" " ",,"Consumption","per Dollar"," " " ","Consumption","per Dollar","of Value","RSE" "Economic","per Employee","of Value Added","of Shipments","Row" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

37

Berth allocation considering fuel consumption and vessel emissions  

Science Journals Connector (OSTI)

We propose a more elaborate model on berth allocation considering fuel consumption than before, and overcome the nonlinear complexity by casting it as a mixed integer second order cone programming model. Furthermore, we conduct the vessel emission (in sailing periods) calculation with the widely-used emission factors. Besides, vessel emissions in mooring periods are also analyzed through a post-optimization phase on waiting time. Experimental results demonstrate that the new berth allocation strategy, reflected by the proposed model, is competent to significantly reduce fuel consumption and vessel emissions, while simultaneously retaining the service level of the terminal.

Yuquan Du; Qiushuang Chen; Xiongwen Quan; Lei Long; Richard Y.K. Fung

2011-01-01T23:59:59.000Z

38

Table 3.2 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010; 2 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. NAICS Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 1,158 257 12 22 579 6 182 2 99 3112 Grain and Oilseed Milling 350 56 * 1 121 * 126 0 45 311221 Wet Corn Milling 214 25 * * 53 * 110 0 25 31131 Sugar Manufacturing 107 4 1 1 15 * 49 2 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 31 1 Q 100 1 2 0 4 3115 Dairy Products 105 33 2 2 66 1 * 0 2 3116 Animal Slaughtering and Processing 212 69 5 3 125 2 Q 0 8 312 Beverage and Tobacco Products 86 29 1 1 38 1 10 0 7 3121 Beverages

39

Table 3.3 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2010; 3 Fuel Consumption, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Net Residual Distillate LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,148 314 6 53 446 14 25 Q 291 20-49 1,018 297 13 22 381 18 97 5 185 50-99 1,095 305 7 13 440 6 130 9 186 100-249 1,728 411 16 11 793 7 131 7 353 250-499 1,916 391 16 11 583 3 185 5 722 500 and Over 7,323 720 21 21 2,569 21 300 348 3,323 Total 14,228 2,437 79 130 5,211 69 868 376 5,059 Employment Size Under 50 1,149 305 12 45 565 21 31

40

Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Plan to Reduce State Plan to Reduce Petroleum Consumption to someone by E-mail Share Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Facebook Tweet about Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Twitter Bookmark Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Google Bookmark Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Delicious Rank Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Digg Find More places to share Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Plan to Reduce Petroleum Consumption

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: August 9, 5: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment to someone by E-mail Share Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Facebook Tweet about Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Twitter Bookmark Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Google Bookmark Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Delicious Rank Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Digg Find More places to share Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on

42

Reducing fuel consumption on the field, by continuously measuring...  

Broader source: Energy.gov (indexed) [DOE]

session part 1- poster nP-03 10PFT047 - NIRIS - DEER elevator 1 2 Reducing fuel consumption on the field, by continuously measuring fuel quality on electronically fuel...

43

Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline...

44

Canada's Fuel Consumption Guide Website | Open Energy Information  

Open Energy Info (EERE)

Canada's Fuel Consumption Guide Website Canada's Fuel Consumption Guide Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canada's Fuel Consumption Guide Website Focus Area: Fuel Efficiency Topics: Market Analysis Website: oee.nrcan.gc.ca/transportation/tools/fuelratings/ratings-search.cfm Equivalent URI: cleanenergysolutions.org/content/canadas-fuel-consumption-guide-websit Language: English Policies: Regulations Regulations: Fuel Efficiency Standards This website provides a compilation of fuel consumption ratings for passenger cars and light-duty pickup trucks, vans and special purpose vehicles sold in Canada. The website links to the Fuel Consumption Guide and allows users to search for vehicles from current and past model years. It also provides information about vehicle maintenance and other practices

45

Causal relationship between fossil fuel consumption and economic growth in the world  

Science Journals Connector (OSTI)

Fossil fuels are major sources of energy, and have several advantages over other primary energy sources. Without extensive dependence on fossil fuels, it is questionable whether our economic prosperity can continue. This paper analyses cointegration and causality between fossil fuel consumption and economic growth in the world over the period 1971 to 2008. The estimation results indicate that fossil fuel consumption and GDP are cointegrated and there exists long-run unidirectional causality from fossil fuel consumption to GDP. This paper also investigates the nexus between non-fossil energy consumption and GDP, and shows that there is no causality between the variables. The conclusions are that reducing fossil fuel consumption may hamper economic growth, and that it is unlikely that non-fossil energy will substantially replace fossil fuels. This paper also examines causal linkages between the variables using a trivariate model, and obtains the same results as those from the bivariate model.

Hazuki Ishida

2012-01-01T23:59:59.000Z

46

Vehicle Technologies Office: Fact #705: December 12, 2011 Fuel Consumption  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: December 12, 5: December 12, 2011 Fuel Consumption Standards for Combination Tractors to someone by E-mail Share Vehicle Technologies Office: Fact #705: December 12, 2011 Fuel Consumption Standards for Combination Tractors on Facebook Tweet about Vehicle Technologies Office: Fact #705: December 12, 2011 Fuel Consumption Standards for Combination Tractors on Twitter Bookmark Vehicle Technologies Office: Fact #705: December 12, 2011 Fuel Consumption Standards for Combination Tractors on Google Bookmark Vehicle Technologies Office: Fact #705: December 12, 2011 Fuel Consumption Standards for Combination Tractors on Delicious Rank Vehicle Technologies Office: Fact #705: December 12, 2011 Fuel Consumption Standards for Combination Tractors on Digg Find More places to share Vehicle Technologies Office: Fact #705:

47

Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards  

Broader source: Energy.gov [DOE]

The National Highway Traffic Safety Administration recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single...

48

,"New York Natural Gas Lease and Plant Fuel Consumption (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

49

,"New York Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","1031...

50

Farm Motorization, Consumption and Prices of Motor Fuels  

Science Journals Connector (OSTI)

... Development of Farm Motorization and Consumption and Prices of Motor ... of Motor Fuels in Member Countries is the title of a publication recently issued by the Organization for ...

1963-12-21T23:59:59.000Z

51

Table E3.1. Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

E3.1. Fuel Consumption, 1998;" E3.1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

52

Table 4.3 Offsite-Produced Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2002;" 3 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

53

Table 3.5 Selected Byproducts in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2002;" 5 Selected Byproducts in Fuel Consumption, 2002;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke","Waste","Petroleum","or","Wood Chips,","and Waste","Row"

54

Hydrogen Consumption Measurement Research Platform for Fuel Cell Vehicles  

Science Journals Connector (OSTI)

Hydrogen consumption measurement research platform is designed for fuel economy test of the proton exchange membrane fuel cell vehicle (PEM FCV). Hardware is constructed with industrial PC (IPC), field bus data acquisition module and device control module. ... Keywords: Hydrogen Consumption Measuremen, LabVIEW, Data Acquisition

Fang Maodong; Chen Mingjie; Lu Qingchun; Jin Zhenhua

2010-06-01T23:59:59.000Z

55

Table 5.2 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010; 2 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280

56

Table 5.1 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5.1 End Uses of Fuel Consumption, 2010; 5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process

57

Table 5.7 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2010; 7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18 39 Indirect Uses-Boiler Fuel 12,979 7 3 2,074 3 26 Conventional Boiler Use 12,979 3 1 712 1 3 CHP and/or Cogeneration Process -- 4 3 1,362 2 23 Direct Uses-Total Process 675,152 4 9 2,549 7 13 Process Heating

58

Table 5.5 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010; 5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process -- 0 4 3 1,362 2 23 -- Direct Uses-Total Process

59

Table 5.6 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010; 6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280 -- Process Cooling and Refrigeration -- 182 * Q 25

60

Table 5.4 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2010; 4 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP and/or Cogeneration Process -- 26 15 1,401 7 500 Direct Uses-Total Process 2,304 26 54 2,623 29 289 Process Heating 318 25 14 2,362 24 280 Process Cooling and Refrigeration

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model  

E-Print Network [OSTI]

fact that the diesel engines fuel consumption and emissionsDiesel Modal Emissions and Fuel Consumption Model Connection to engineDiesel Modal Emissions and Fuel Consumption Model unit; 5) engine-

Barth, Matthew; Younglove, Theodore; Scora, George

2005-01-01T23:59:59.000Z

62

The impact of residential density on vehicle usage and fuel consumption  

E-Print Network [OSTI]

residential density on vehicle usage and energy consumption.of residential density on vehicle usage and fuel consumptionresidential density on vehicle usage and fuel consumption*

Kim, Jinwon; Brownstone, David

2010-01-01T23:59:59.000Z

63

RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION  

SciTech Connect (OSTI)

Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

Bunting, Bruce G [ORNL] [ORNL

2012-01-01T23:59:59.000Z

64

Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus Preprint Robb Barnitt and Jeff Gonder To be presented at the SAE 2011 World Congress...

65

Fuel consumption and emissions of hybrid diesel applications  

Science Journals Connector (OSTI)

GM Powertrain Europe and the Politecnico di Torino have experimentally assessed the potentialities in terms of fuel consumption reduction and the challenges in terms of ... 1.9 l four-cylinder in-line diesel engine

Prof.-Dr. Andrea Emilio Catania; Prof.-Dr. Ezio Spessa…

2008-12-01T23:59:59.000Z

66

,"New York Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:26:12 PM" "Back to Contents","Data 1: New York Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570SNY2"...

67

Multiscale Impact of Fuel Consumption on Air Quality  

Science Journals Connector (OSTI)

Multiscale Impact of Fuel Consumption on Air Quality ... A key element in the technical approaches is the application of air quality and exposure modeling using spatially nested descriptions of atmospheric phenomena. ...

G. M. Hidy

2002-01-08T23:59:59.000Z

68

Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,225 1,736 1,807 1,582 4,278 2,390 2,537 1990's 27,720 36,088 36,741 35,503 37,347 39,116 40,334 40,706 39,601 41,149 2000's 42,519 42,243 44,008 44,762 44,016 43,386 38,938 41,197 40,286 39,447 2010's 37,316 35,339 37,397 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Alaska Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

69

Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 121,848 123,993 104,292 102,185 123,008 121,936 134,132 1990's 82,828 83,733 86,623 74,925 66,600 75,845 69,235 71,155 63,368 68,393 2000's 69,174 63,137 63,031 56,018 55,970 45,837 46,205 51,499 42,957 39,002 2010's 40,814 42,633 42,123 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Louisiana Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

70

Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 29,750 31,237 31,121 29,705 35,751 40,508 38,392 1990's 39,249 42,166 39,700 39,211 35,432 34,900 35,236 30,370 26,034 25,055 2000's 25,934 28,266 25,525 26,276 27,818 27,380 28,435 28,213 27,161 24,089 2010's 23,238 24,938 27,809 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Oklahoma Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

71

Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,572 16,185 17,090 13,633 16,249 17,446 19,820 1990's 12,182 14,154 13,217 13,051 13,939 14,896 15,409 15,597 16,524 19,272 2000's 20,602 20,991 25,767 28,829 24,053 24,408 23,868 25,276 23,574 25,282 2010's 27,104 28,582 29,157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Wyoming Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

72

Effect of idling on fuel consumption and emissions of a diesel engine fueled by Jatropha biodiesel blends  

Science Journals Connector (OSTI)

Abstract An engine running at low load and low rated speed is said to be subject to high idling conditions, a mode which represents one of the major problems currently the transport industry is facing. During this time, the engine can not work at peak operating temperature. This leads to incomplete combustion and emissions level increase due to having fuel residues in the exhaust. Also, idling results in increase in fuel consumption. The purpose of this study is to evaluate fuel consumption and emissions parameters under high idling conditions when diesel blended with Jatropha curcas biodiesel is used to operate a diesel engine. Although biodiesel–diesel blends decrease carbon monoxide and hydrocarbon emissions, they increase nitrogen oxides emissions in high idling modes. Compared to pure diesel fuel, fuel consumption also increases under all high idling conditions for biodiesel–diesel blends, with a further increase occurring as blend percentage rises.

S.M. Ashrafur Rahman; H.H. Masjuki; M.A. Kalam; M.J. Abedin; A. Sanjid; S. Imtenan

2014-01-01T23:59:59.000Z

73

World Energy Consumption by Fuel Type, 1970-2020  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Fuel Type, 1970-2020 Energy Consumption by Fuel Type, 1970-2020 Source: EIA, International Energy Outlook 2000 Previous slide Next slide Back to first slide View graphic version Notes: Natural gas is projected to be the fastest-growing component of primary world energy consumption, more than doubling between 1997 and 2020. Gas accounts for the largest increment in electricity generation (41 percent of the total increment of energy used for electricity generation). Combined-cycle gas turbine power plants offer some of the highest commercially available plant efficiencies, and natural gas is environmentally attractive because it emits less sulfur dioxide, carbon dioxide, and particulate matter than does oil or coal. In the IEO2000 projection, world natural gas consumption reaches the level of coal by

74

Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,270 1,530 1,924 1970's 2,251 2,419 2,847 2,725 1,649 1,760 3,043 3,210 2,134 2,889 1980's 1,320 1,580 3,278 3,543 5,236 4,575 4,715 5,799 4,983 4,767 1990's 6,031 3,502 3,381 4,145 3,252 3,069 3,299 2,275 1,706 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Pennsylvania Natural Gas Consumption by End Use Lease and Plant

75

Alaska Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,603 109,333 62,341 71,104 112,404 151,280 189,702 1990's 166,155 187,106 197,975 202,199 200,809 253,695 255,500 230,578 242,271 224,355 2000's 226,659 229,206 241,469 255,701 237,530 259,829 218,153 227,374 211,878 219,161 2010's 211,918 208,531 214,335 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease Fuel Consumption Alaska Natural Gas Consumption by End Use Lease

76

Texas Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Texas Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 183,870 204,390 193,822 189,173 229,053 200,239 163,218 1990's 228,485 125,198 123,111 130,916 139,427 178,827 177,508 144,787 176,262 136,708 2000's 141,785 135,786 114,919 123,585 129,825 134,434 138,558 154,323 166,500 169,631 2010's 157,751 147,268 163,325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease Fuel Consumption Texas Natural Gas Consumption by End Use Lease

77

Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,582 9,158 8,521 1970's 7,893 5,840 9,153 6,152 5,357 7,894 4,836 4,979 5,421 8,645 1980's 4,428 4,028 7,236 6,632 7,202 6,296 6,562 8,091 7,100 5,021 1990's 7,257 4,585 4,945 4,829 3,632 3,507 3,584 3,652 3,710 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Mississippi Natural Gas Consumption by End Use Lease and Plant

78

Fuel consumption of a vehicle with power split CVT system  

Science Journals Connector (OSTI)

Continuously variable transmissions have made notable progress, especially in the automotive industry, in recent years. In this work, we study the performance of a mid passenger car provided with an original Power Split CVT (PS-CVT) system. The main advantage of the proposed solution is to improve the efficiency of the CVT by means of a power flow without recirculation using two separate phases of operation. By means of a simulation model we evaluate the vehicle's fuel consumption with the hypothesis to consider the value of transmission ratio speed that minimises the specific fuel consumption. Furthermore the PS-CVT performance is compared with that of traditional CVT.

Giacomo Mantriota

2005-01-01T23:59:59.000Z

79

Chapter 14 - Ship Trials: Endurance and fuel consumption  

Science Journals Connector (OSTI)

Publisher Summary This chapter is designed to discuss endurance and fuel consumption. In endurance and fuel consumption trials, the vessel is run at Maximum Continuous Rating (MCR) power for a fixed duration, say 6-24 hours. During this period of time, the following information is measured and recorded: fuel consumption in kg/kW hour, propeller and engine rpm, indicated power (Pi) within the engine room, feed water used, and engine oil pressures and temperatures. There are certain factors that the engine room staff need to take care of. On making a group of runs at a given speed, the original engine settings used when first approaching the measured distance should be rigorously maintained throughout the group. When a controllable-pitch propeller is fitted, the pitch settings used when first approaching the measured mile should be left unaltered throughout the group of runs. By fitting diesel machinery in a ship of similar power, displacement, and speed, a saving of about 10% in the daily fuel consumption can be achieved. The differences in the cost of fuel/tonne must be taken into account plus the size of the machinery arrangement installed in the ship.

C.B. Barrass

2004-01-01T23:59:59.000Z

80

Table 4.1 Offsite-Produced Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010; 1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4 563 1 8 * 54 3112 Grain and Oilseed Milling 346 16,620 * * 118 * 6 0 41 311221 Wet Corn Milling 214 7,481 * * 51 * 5 0 25 31131 Sugar Manufacturing 72 1,264 * * 15 * 2 * * 3114 Fruit and Vegetable Preserving and Specialty Foods 142 9,258 * Q 97

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Measured effect of wind generation on the fuel consumption of an isolated diesel power system  

SciTech Connect (OSTI)

The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60% of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7% while generating 11% of the total electrical energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

Stiller, P.; Scott, G.; Shaltens, R.

1983-06-01T23:59:59.000Z

82

Emissions and fuel consumption characteristics of an HCNG-fueled heavy-duty engine at idle  

Science Journals Connector (OSTI)

Abstract The idle performance of an 11-L, 6-cylinder engine equipped with a turbocharger and an intercooler was investigated for both compressed natural gas (CNG) and hydrogen-blended CNG (HCNG) fuels. HCNG, composed of 70% CNG and 30% hydrogen in volume, was used not only because it ensured a sufficient travel distance for each fueling, but also because it was the optimal blending rate to satisfy EURO-6 emission regulation according to the authors' previous studies. The engine test results demonstrate that the use of HCNG enhanced idle combustion stability and extended the lean operational limit from excess air ratio (?) = 1.5 (CNG) to 1.6. A decrease of more than 25% in the fuel consumption rate was achieved in HCNG idle operations compared to CNG. Total hydrocarbon and carbon monoxide emissions decreased when fueled with HCNG at idle because of the low carbon content and enhanced combustion characteristics. In particular, despite hydrogen enrichment, less nitrogen oxides (NOx) were emitted with HCNG operations because the amount of fuel supplied for a stable idle was lower than with CNG operations, which eventually induced lower peak in-cylinder combustion temperature. This low HCNG fuel quantity in idle condition also induced a continuous decrease in \\{NOx\\} emissions with an increase in ?. The idle engine test results also indicate that cold-start performance can deteriorate owing to low exhaust gas temperature, when fueled with HCNG. Therefore, potential solutions were discussed, including combustion strategies such as retardation of spark ignition timing combined with leaner air/fuel ratios.

Sunyoup Lee; Changgi Kim; Young Choi; Gihun Lim; Cheolwoong Park

2014-01-01T23:59:59.000Z

83

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

84

Federal Offshore--Gulf of Mexico Natural Gas Lease Fuel Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Lease Fuel Consumption (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

85

Energy management of HEV to optimize fuel consumption and pollutant emissions  

E-Print Network [OSTI]

AVEC'12 Energy management of HEV to optimize fuel consumption and pollutant emissions Pierre Michel, several energy management strategies are proposed to optimize jointly the fuel consumption and pollutant-line strategy are given. Keywords: Hybrid Electric Vehicle (HEV), energy management, pollution, fuel consumption

Paris-Sud XI, Université de

86

Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks  

Science Journals Connector (OSTI)

This study presents an artificial neural network (ANN) model to predict the torque and brake specific fuel consumption of a gasoline engine. An explicit ANN based formulation is developed to predict torque and brake specific fuel consumption of a gasoline engine in terms of spark advance, throttle position and engine speed. The proposed ANN model is based on experimental results. Experimental studies were completed to obtain training and testing data. Of all 81 data sets, the training and testing sets consisted of randomly selected 63 and 18 sets, respectively. An ANN model based on a back-propagation learning algorithm for the engine was developed. The performance and an accuracy of the proposed ANN model are found satisfactory. This study demonstrates that ANN is very efficient for predicting the engine torque and brake specific fuel consumption. Moreover, the proposed ANN model is presented in explicit form as a mathematical function.

Necla Kara Togun; Sedat Baysec

2010-01-01T23:59:59.000Z

87

Table 3.5 Selected Byproducts in Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2010; 5 Selected Byproducts in Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Blast Pulping Liquor NAICS Furnace/Coke Petroleum or Wood Chips, Code(a) Subsector and Industry Total Oven Gases Waste Gas Coke Black Liquor Bark Total United States 311 Food 11 0 7 0 0 1 3112 Grain and Oilseed Milling 5 0 2 0 0 * 311221 Wet Corn Milling * 0 * 0 0 0 31131 Sugar Manufacturing * 0 * 0 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 1 0 1 0 0 0 3115 Dairy Products 1 0 1 0 0 0 3116 Animal Slaughtering and Processing 4 0 4 0 0 * 312 Beverage and Tobacco Products 3 0 2 0 0 1 3121 Beverages 3 0 2 0 0 1 3122 Tobacco 0 0 0 0 0 0 313 Textile Mills 0 0 0 0 0 0 314 Textile Product Mills

88

Fuel Consumption for Electricity Generation, All Sectors United States  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption for Electricity Generation, All Sectors Fuel Consumption for Electricity Generation, All Sectors United States Coal (thousand st/d) .................... 2,361 2,207 2,586 2,287 2,421 2,237 2,720 2,365 2,391 2,174 2,622 2,286 2,361 2,437 2,369 Natural Gas (million cf/d) ............. 20,952 21,902 28,751 21,535 20,291 22,193 28,174 20,227 20,829 22,857 29,506 21,248 23,302 22,736 23,627 Petroleum (thousand b/d) ........... 128 127 144 127 135 128 135 119 131 124 134 117 131 129 127 Residual Fuel Oil ...................... 38 28 36 29 30 31 33 29 31 30 34 27 33 31 30 Distillate Fuel Oil ....................... 26 24 27 28 35 30 30 26 31 26 28 25 26 30 28 Petroleum Coke (a) .................. 59 72 78 66 63 63 66 59 62 63 67 60 69 63 63 Other Petroleum Liquids (b) ..... 5 3 4 4 7 5 5 5 7 5 5 5 4 6 6 Northeast Census Region Coal (thousand st/d) ....................

89

Multiple Injection and Boosting Benefits for Improved Fuel Consumption on a Spray Guided Direct Injection Gasoline Engine  

Science Journals Connector (OSTI)

The combination of turbocharging and direct injection offers a significant potential for SI engines to improve fuel consumption, specific power output, raw emissions and ... shows the latest results of the T-SGDI...

Jason King; Oliver Böcker

2013-01-01T23:59:59.000Z

90

Energy Information Administration - Table 2. End Uses of Fuel Consumption,  

Gasoline and Diesel Fuel Update (EIA)

2 2 Page Last Modified: June 2010 Table 2. End Uses of Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 1998 2002 2006 Total 2 1,672 1,455 1,147 Net Electricity 3 158 184 175 Natural Gas 456 388 326 Coal 48 36 14 Boiler Fuel -- -- -- Coal 8 W 1 Residual Fuel Oil 10 * 4 Natural Gas 52 39 27 Process Heating -- -- -- Net Electricity 74 79 76 Residual Fuel Oil 19 * 11 Natural Gas 369 329 272 Machine Drive -- -- -- Net Electricity 68 86 77 Notes 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. 'Total' is the sum of all energy sources listed below, including net steam (the sum of purchases, generation from renewable resources, and net transfers), and other energy that respondents indicated was used to produce heat and power. It is the fuel quantities across all end-uses.

91

Berth and quay-crane allocation problem considering fuel consumption and emissions from vessels  

Science Journals Connector (OSTI)

Abstract Resolving the berth and quay-crane allocation problem improves the efficiency of seaside operations by optimally allocating berthing spaces and quay cranes to vessels, typically by considering a vessel’s sailing speed and arrival time at a port as constant parameters, while ignoring the impact of arrival times on fuel consumption and emissions when sailing. This work applied a novel nonlinear multi-objective mixed-integer programming model that considered a vessel’s fuel consumption and emissions, and then transformed this model into a second-order mixed-integer cone programming model to solve the problem’s computational intractability. Furthermore, the impact of number of allocated quay cranes on port operational cost, and a vessel’s fuel consumption and emissions was analyzed. Additionally, a vessel’s emissions while moored are also calculated based on wait time. Experimental results demonstrate that the new berth and quay-crane allocation strategy with a vessel’s arrival time as a decision variable can significantly improve vessels’ fuel consumption and emissions, the air quality around ports and utilization of berths and quay cranes without reducing service quality.

Qing-Mi Hu; Zhi-Hua Hu; Yuquan Du

2014-01-01T23:59:59.000Z

92

Fuel consumption rate in a heat-powered unit analyzed as a function of the temperature and consumption ratio of the air  

Science Journals Connector (OSTI)

An analysis of fuel consumption for a heat-powered unit in the ... of ceramic materials is given. The heat consumption rate is analyzed as a function of ... generating the working medium, and of the consumption r...

N. A. Tyutin

2006-01-01T23:59:59.000Z

93

Virginia Tech Comprehensive Power-based Fuel Consumption Model: Model Development and Testing  

E-Print Network [OSTI]

sources such as hybrid-electric technologies, bio-ethanol, and hydrogen fuel cells are emergingVirginia Tech Comprehensive Power-based Fuel Consumption Model: Model Development and Testing, Moran, Saerens, and Van den Bulck 2 ABSTRACT Existing fuel consumption and emission models suffer from

Rakha, Hesham A.

94

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

SciTech Connect (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL] [ORNL; LaClair, Tim J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

95

Effect Of Platooning on Fuel Consumption of Class 8 Vehicles Over a Range of Speeds, Following Distances, and Mass  

SciTech Connect (OSTI)

This research project evaluates fuel consumption results of two Class 8 tractor-trailer combinations platooned together compared to their standalone fuel consumption. A series of ten modified SAE Type II J1321 fuel consumption track tests were performed to document fuel consumption of two platooned vehicles and a control vehicle at varying steady-state speeds, following distances, and gross vehicle weights (GVWs). The steady-state speeds ranged from 55 mph to 70 mph, the following distances ranged from a 20-ft following distance to a 75-ft following distance, and the GVWs were 65K lbs and 80K lbs. All tractors involved had U.S. Environmental Protection Agency (EPA) SmartWay-compliant aerodynamics packages installed, and the trailers were equipped with side skirts. Effects of vehicle speed, following distance, and GVW on fuel consumption were observed and analyzed. The platooning demonstration system used in this study consisted of radar systems, Dedicated Short-Range Communication (DSRC) vehicle-to-vehicle (V2V) communications, vehicle braking and torque control interface, cameras and driver displays. The lead tractor consistently demonstrated an improvement in average fuel consumption reduction as following distance decreased, with results showing 2.7% to 5.3% fuel savings at a GVW of 65k. The trailing vehicle achieved fuel consumption savings ranging from 2.8% to 9.7%; tests during which the engine cooling fan did not operate achieved savings of 8.4% to 9.7%. 'Team' fuel savings, considering the platooned vehicles as one, ranged from 3.7% to 6.4%, with the best combined result being for 55 mph, 30-ft following distance, and 65k GVW.

Lammert, M. P.; Duran, A.; Diez, J.; Burton, K.; Nicholson, A.

2014-10-01T23:59:59.000Z

96

Computer simulation of optimal functioning regimes with minimum fuel consumption for automotives  

Science Journals Connector (OSTI)

The paper deals with computer simulation that allows the calculus of operating regimes with minimum fuel consumption for road vehicles, using engine’s mechanical characteristics for power and consumption, charact...

Salvadore Mugurel Burciu

2014-10-01T23:59:59.000Z

97

Oxygen consumption by asphalt films and resulting viscosity changes  

E-Print Network [OSTI]

OXYGEN CONSUMPTION BY ASPHALT FILNS AND RESULTING VISCOSITY CHANGES A Thesis by FRANK LEE CARTER, JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... Nay 1965 Major Subject: Chemistry OXYGEN CONSUMPTION BY ASPHALT FILMS AND RESULTING VISCOSITY CHANGES A Thesis by FRANK LEE CARTER, JR. Approved as to style and content by: (Chairm of Committee) (H o Depa ( mb ) (Membe May 1965...

Carter, Frank Lee

2012-06-07T23:59:59.000Z

98

The Potential of Turboprops to Reduce Aviation Fuel Consumption  

E-Print Network [OSTI]

and adoption, is challenged by fuel price uncertainty.Fuel price uncertainty is due fuel and energy priceplanning under such fuel price uncertainty and environmental

Smirti, Megan; Hansen, Mark

2009-01-01T23:59:59.000Z

99

Minimising cold start fuel consumption and emissions from a gasoline fuelled engine.  

E-Print Network [OSTI]

??Several constrained optimisation problems are considered, in which different tailpipe emissions regulations are the constraints under which the fuel consumption is minimised. The solutions of… (more)

Andrianov, Denis

2011-01-01T23:59:59.000Z

100

Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden...  

Broader source: Energy.gov (indexed) [DOE]

by lawn and garden equipment. The fuel used in this equipment accounts for only 1.8% of total gasoline use. Fuel Consumption from Lawn and Garden Equipment, 2008 Bar graph...

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mixing Correlations for Smoke and Fuel Consumption of Direct Injection Engines  

Science Journals Connector (OSTI)

The mixing of fuel with air in a diesel engine strongly dictates the specific fuel consumption and exhaust smoke. Many experimental studies reported the optimum swirl for a given diesel engine at a given operatin...

P. A. Lakshminarayanan; Yogesh V. Aghav

2010-01-01T23:59:59.000Z

102

Optimisation of gasoline engine performance and fuel consumption through combination of technologies  

Science Journals Connector (OSTI)

The gasoline engine has undergone intensive development in recent history ... introduction of technologies such as turbocharging and direct fuel injection. In addition to the reduction of part load fuel consumption

Dr.-Ing. Peter Wieske; Bernhardt Lüddecke; Sebastian Ewert…

2009-11-01T23:59:59.000Z

103

Cable length optimization for trawl fuel consumption reduction  

Science Journals Connector (OSTI)

A numerical method for optimization of the cable lengths in trawls with respect to the ratio between the estimated trawl drag and the predicted catch efficiency is developed and applied. The trawl cables of interest are warps, bridles, headline and footrope. The optimization algorithm applies an ordered sequential process changing one cable length at the time. It is assumed in the predictions that the catch efficiency of the trawl is proportional with the trawl mouth area. In a case study optimizing a bottom trawl used on a research vessel by applying the new method it is predicted that it would be possible to reduce the ratio between trawl drag and catch efficiency by up to 46% by optimizing the cable lengths. Thus this would enable a considerable reduction in fuel consumption to catch a specific amount of fish. Moreover, we predict an increase in the value of the trawl mouth area leading to better catching efficiency without increase in otter door drag.

Ramez Khaled; Daniel Priour; Jean-Yves Billard

2013-01-01T23:59:59.000Z

104

An experimental study of the effect of a homogeneous combustion catalyst on fuel consumption and smoke emission in a diesel engine  

Science Journals Connector (OSTI)

This paper presents the results of an experimental investigation into the influence of a ferrous picrate based homogeneous combustion catalyst on fuel consumption and smoke emission of a laboratory diesel engine. The catalyst used in this study was supplied by Fuel Technology Pty. Ltd. The fuel consumption and smoke emission were measured as a function of engine load, speed and catalyst dosing ratio. The brake specific fuel consumption and smoke emission decreased as the dosing ratio of the catalyst doped in the diesel fuel increased. At the catalyst dosing ratio of 1:3200, the brake specific fuel consumption was reduced by from 2.1% to 2.7% and the smoke emission was reduced by from 6.7% to 26.2% at the full engine load at speeds from 2600 rpm to 3400 rpm. The results also indicated that the potential of the fuel saving seems to be greater when the engine was run under light load.

Mingming Zhu; Yu Ma; Dongke Zhang

2011-01-01T23:59:59.000Z

105

Table N5.1. Selected Byproducts in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Byproducts in Fuel Consumption, 1998;" 1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

106

New Zealand Energy Data: Oil Consumption by Fuel and Sector | OpenEI  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector Oil Consumption by Fuel and Sector Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other petroleum products. Included here are two oil consumption datasets: quarterly petrol consumption by sector (agriculture, forestry and fishing; industrial; commercial; residential; transport industry; and international transport), from 1974 to 2010; and oil consumption by fuel type (petrol, diesel, fuel oil, aviation fuels, LPG, and other), also for the years 1974 through 2010. The full 2010 Energy Data File is available: http://www.med.govt.nz/upload/73585/EDF%202010.pdf. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 02nd, 2010 (4 years ago)

107

Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China  

Science Journals Connector (OSTI)

Abstract The increasing discrepancy between on-road and type-approval fuel consumption for \\{LDPVs\\} (light-duty passenger vehicles) has attracted tremendous attention. We measured on-road emissions for 60 \\{LDPVs\\} in three China's cities and calculated their fuel consumption and CO2 (carbon dioxide) emissions. We further evaluated the impacts of variations in area-averaged speed on relative fuel consumption of gasoline \\{LDPVs\\} for the UAB (urban area of Beijing). On-road fuel consumption under the average driving pattern is 10 ± 2% higher than that normalized to the NEDC (new European driving cycle) cycle for all tested vehicles, and the on-road NEDC-normalized fuel consumption is higher by 30 ± 12% compared to type-approval values for gasoline vehicles. We observed very strong correlations between relative fuel consumption and average speed. Traffic control applied to \\{LDPVs\\} driving within the UAB during weekdays can substantially reduce total fleet fuel consumption by 23 ± 5% during restriction hours by limiting vehicle use and improving driving conditions. Our results confirmed that a new cycle for the type approval test for \\{LDPVs\\} with more real-world driving features is of great necessity. Furthermore, enhanced traffic control measures could play an important role in mitigating real-world fuel consumption and CO2 emissions for \\{LDPVs\\} in China.

Shaojun Zhang; Ye Wu; Huan Liu; Ruikun Huang; Puikei Un; Yu Zhou; Lixin Fu; Jiming Hao

2014-01-01T23:59:59.000Z

108

Effects of Magnetic Field on Fuel Consumption and Exhaust Emissions in Two-Stroke Engine  

Science Journals Connector (OSTI)

The energy of permanent magnets was used in this research for the treatment of vehicle fuel (Iraqi gasoline), to reducing consumption, as well as reducing the emission of certain pollutants rates. The experiments in current research comprise the using of permanent magnets with different intensity (2000, 4000, 6000, 9000) Gauss, which installed on the fuel line of the two-stroke engine, and study its impact on gasoline consumption, as well as exhaust gases. For the purpose of comparing the results necessitated the search for experiments without the use of magnets. The overall performance and exhaust emission tests showed a good result, where the rate of reduction in gasoline consumption ranges between (9-14) %, and the higher the value of a reduction in the rate of 14% was obtained using field intensity 6000 Gauss as well as the intensity 9000 Gauss. It was found that the percentages of exhaust gas components (CO, HC) were decreased by 30%, 40% respectively, but CO2 percentage increased up to 10%. Absorption Spectrum of infrared and ultraviolet radiation showed a change in physical and chemical properties in the structure of gasoline molecules under the influence of the magnetic field. Surface tension of gasoline exposed to different intensities of magnetic field was measured and compared with these without magnetization.

Ali S. Faris; Saadi K. Al-Naseri; Nather Jamal; Raed Isse; Mezher Abed; Zainab Fouad; Akeel Kazim; Nihad Reheem; Ali Chaloob; Hazim Mohammad; Hayder Jasim; Jaafar Sadeq; Ali Salim; Aws Abas

2012-01-01T23:59:59.000Z

109

A parametric study for specific fuel consumption of an intercooled diesel engine using a neural network  

Science Journals Connector (OSTI)

Turbocharging is a process wherein the amount of oxygen used in a combustion reaction is increased to raise output and decrease specific fuel consumption. On account of this, fuel economy and thermal efficiency are more important for all engines. The use of an intercooler reduces the temperature of intake air to the engine, and this cooler and denser air increases thermal and volumetric efficiency. Most research projects on engineering problems usually take the form of experimental studies. However, experimental research is relatively expensive and time consuming. In recent years, Neural Networks (NNs) have increasingly been used in a diverse range of engineering applications. In this study, various parametric studies are executed to investigate the interrelationship between a single variable and two steadies and two constant parameters on the brake specific fuel consumption (BSFC, g/kW h). The variables selected are engine speed, load and Crankshaft Angel (CA). The data used in the present study were obtained from previous experimental research by the author. These data were used to enhance, train and test a NN model using a MATLAB-based program. The results of the NN based model were found to be convincing and were consistent with the experimental results. The trained NN based model was then used to perform the parametric studies. The performance of the NN based model and the results of parametric studies are presented in graphical form and evaluated.

Abdullah Uzun

2012-01-01T23:59:59.000Z

110

,"Oklahoma Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sok_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sok_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:52 PM"

111

,"Michigan Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_smi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_smi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

112

,"Mississippi Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sms_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sms_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:50 PM"

113

,"Louisiana Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

114

,"Florida Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sfl_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sfl_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:48 PM"

115

,"Wyoming Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_swy_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_swy_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:54 PM"

116

,"Pennsylvania Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_spa_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_spa_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:52 PM"

117

,"Kentucky Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sky_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sky_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

118

,"South Dakota Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1840_ssd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1840_ssd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:44 PM"

119

,"Alaska Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sak_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sak_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:46 PM"

120

,"Kentucky Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1840_sky_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1840_sky_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:39 PM"

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

,"Arkansas Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sar_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sar_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:47 PM"

122

,"Nebraska Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sne_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sne_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:51 PM"

123

,"California Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sca_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sca_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:47 PM"

124

,"Illinois Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Consumption (MMcf)" Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sil_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sil_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:21 PM"

125

,"Colorado Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sco_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sco_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:48 PM"

126

,"Utah Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sut_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sut_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:53 PM"

127

,"Kansas Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sks_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sks_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

128

,"Tennessee Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_stn_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_stn_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:52 PM"

129

,"Montana Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_smt_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_smt_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:50 PM"

130

Modeling effects of vehicle specifications on fuel economy based on engine fuel consumption map and vehicle dynamics  

Science Journals Connector (OSTI)

Abstract The present study conducts a vehicle dynamic modeling of gasoline and diesel vehicles by using the AVL commercial program. 10 passenger vehicles were tested for 7 types of driving modes containing city, express and highway driving mode. The various vehicle data (specifications, fuel consumption map, gear shifting curve data, etc.) were collected and implemented as input data. The calculations were conducted with changing driving modes and vehicle types, and prediction accuracy of the calculation results were validated based on chassis dynamometer test data. In order to increase prediction accuracy for a wide vehicle operating range, some modifications regarding gear shifting was also conducted. From these processes, it is confirmed that the prediction accuracy of fuel efficiency and CO2 emissions shows a strong correlations with test results. After ensuring the accuracy of the calculation result, parametric studies were conducted to reveal correlations between vehicle specifications (e.g., vehicle weight and frontal area) on fuel efficiency and CO2 emissions and check which parameters were highly impact on fuel efficiency.

Yunjung Oh; Junhong Park; Jongtae Lee; Myung Do Eom; Sungwook Park

2014-01-01T23:59:59.000Z

131

Monthly, global emissions of carbon dioxide from fossil fuel consumption  

SciTech Connect (OSTI)

This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

Andres, Robert Joseph [ORNL; Gregg, JS [Riso National Laboratory, Roskilde, Denmark; Losey, London M [ORNL; Marland, Gregg [ORNL; Boden, Thomas A [ORNL

2011-01-01T23:59:59.000Z

132

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network [OSTI]

to policy makers such as fuel price, GHG emission (bothdimensions, namely, fuel price, GHG emissions and marketa FGIS results in higher fuel price, lower fuel consumption,

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

133

A note on “Berth allocation considering fuel consumption and vessel emissions”  

Science Journals Connector (OSTI)

Du et al. [Du, Y., Chen, Q., Quan, X., Long, L., Fung, R.Y.K., 2011. Berth allocation considering fuel consumption and vessel emissions. Transportation Research Part E 47, 1021–1037] dealt with a berth allocation problem incorporating ship’ fuel consumption minimization. To address the difficulty posed by the power function between fuel consumption rate and sailing speed, they formulated a tractable mixed-integer second-order cone programming model. We propose two quadratic outer approximation approaches that can handle general fuel consumption rate functions more efficiently. In the static quadratic outer approximation approach, the approximation lines are generated a priori. In the dynamic quadratic outer approximation approach, the approximation lines are generated dynamically. Numerical experiments demonstrate the advantages of the two approaches.

Shuaian Wang; Qiang Meng; Zhiyuan Liu

2013-01-01T23:59:59.000Z

134

More efficiency in fuel consumption using gearbox optimization based on Taguchi method  

Science Journals Connector (OSTI)

Automotive emission is becoming a critical threat to today’s human health. Many researchers are studying engine designs leading to less fuel consumption. Gearbox selection plays a key role in an engine design. In...

Masoud Goharimanesh; Aliakbar Akbari…

2014-05-01T23:59:59.000Z

135

Characteristic fuel consumption and exhaust emissions in fully mechanized logging operations  

Science Journals Connector (OSTI)

A study was done using eight different logging machines (harvesters and forwarders) in clear-felling operations to quantify the associated fuel consumption, and to define the inherent relationship between engine ...

Radomir Klvac; Alois Skoupy

2009-12-01T23:59:59.000Z

136

Fuel consumption reduction through friction optimisation of a four-cylinder gasoline engine  

Science Journals Connector (OSTI)

Working in co-operation, BMW and PSA have created a completely new fourcylinder gasoline engine family which is presented in detail in ... objective throughout the development phase was to minimise fuel consumption

Wolfgang Meldt; Werner Tripolt; Gerald Gaberscik; Johann Schopp…

2007-07-01T23:59:59.000Z

137

Design features which influence pollutant emissions and fuel consumption in four-stroke engines  

Science Journals Connector (OSTI)

The efficiency of an internal-combustion engine and, hence, its specific fuel consumption are largely dependent on the process characteristics ... . As the internal-combustion process in the engine cannot really ...

Univ.-Prof. Dr. Ing. Fred Schäfer…

1995-01-01T23:59:59.000Z

138

Federal Offshore--Gulf of Mexico Natural Gas Plant Fuel Consumption...  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 - No Data Reported;...

139

Fact #705: December 12, 2011 Fuel Consumption Standards for Combination Tractors  

Broader source: Energy.gov [DOE]

The National Highway Traffic Safety Administration published a final rule setting fuel consumption standards for heavy trucks in September 2011. For tractor-trailers, the standards focus on the...

140

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Optimization to reduce fuel consumption in charge depleting mode  

DOE Patents [OSTI]

A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.

Roos, Bryan Nathaniel; Martini, Ryan D.

2014-08-26T23:59:59.000Z

142

Use of electromagnetic clutch water pumps in vehicle engine cooling systems to reduce fuel consumption  

Science Journals Connector (OSTI)

Abstract In general, when the internal combustion engine of a vehicle is started, its operationally connected cooling system provides excessive cooling, resulting in unnecessary energy consumption and excessive emission of exhaust gas. If the rotational speed of the engine is high, the excessive cooling causes the combustion efficiency to decrease. Therefore, better control of the operating temperature range of the engine through use of an active cooling system can achieve better fuel economy and reduction of exhaust gas emission. Effective control of the cooling system in accordance with the operating conditions of the engine can be realized by changing the mass flow rate of the coolant. In this study, we designed electromagnetic clutch water pumps that can control the coolant flow. We made two types of water pump: (1) a planetary gear (PG)-type water pump which can reduce the rotation speed of the water pump by 65%, compared with a pulley; and (2) an on/off-type water pump which can completely stop the rotation of the impeller. The performance evaluation of these pumps consisted of a warm-up test and the New European Driving Cycle (NEDC). Warm-up test results showed that the time required to achieve a temperature of approximately 80 °C with the PG water pump and the on/off water pump was improved by 7.3% and 24.7% respectively, compared with that of a conventional water pump. Based on the NEDC results, we determined that the fuel economy of the engine using the PG water pump and the on/off water pump was improved by 1.7% and 4.0% compared with the fuel economy when using the conventional water pump. The application of clutch water pumps is expected to contribute to the improvement of engine cooling system performance, because their effect in reducing the fuel consumption rate is similar to that of an electric water pump.

Yoon Hyuk Shin; Sung Chul Kim; Min Soo Kim

2013-01-01T23:59:59.000Z

143

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

SciTech Connect (OSTI)

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

144

U.S. Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) U.S. Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 383,077 389,525 367,572 348,731 408,115 398,180 429,269 1990's 428,657 456,954 460,571 448,822 423,878 427,853 450,033 426,873 401,314 399,509 2000's 404,059 371,141 382,503 363,903 366,341 355,193 358,985 365,323 355,590 362,009 2010's 368,830 384,248 408,316 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption U.S. Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

145

A fuel consumption model for off-road use of mobile machinery in agriculture  

Science Journals Connector (OSTI)

Abstract Until 2009, the annual reporting of emissions by off-road transport in agriculture in Belgium was based on a 1994 calculation model that needed to be updated. An energy consumption model was established for plant production in Belgium as a backbone for a new emission model. The model starts from agricultural activities involving off-road fuel consumption. Effects of soil type, tractor size, field size and machine load are modelled. Twenty-seven \\{FCIs\\} (fuel consumption indicators) were computed for plant production. \\{FCIs\\} are expressed per year and are used for emission estimates on a regional level. \\{FCIs\\} ranged from 37 to 311 L/ha. Sensitivity analysis showed the highest impact of tractor size with a surplus fuel consumption between 10 and 41% depending on the crop type. Fuel consumption (L) can be further processed into greenhouse gas emissions. \\{FCIs\\} can be adopted in LCA (life cycle assessment) studies. With ?310 L/ha, orchards are most fuel intensive, followed by field vegetables and sugar beets (?150 L/ha). The total off-road energy consumption of field vegetables is high because second cropping is a common practice.

Veerle Van linden; Lieve Herman

2014-01-01T23:59:59.000Z

146

Table 5.3 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand...

147

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2012. Status: 50% complete. Budget FY12 390K (Vehicle System) 50K (Fuel Cell Specific runs) 75K (link with market analysis) Barriers Evaluate the...

148

Simultaneous optimization of propeller–hull systems to minimize lifetime fuel consumption  

Science Journals Connector (OSTI)

Abstract In traditional naval architecture design methodologies optimization of the hull and propeller are done in two separate phases. This sequential approach can lead to designs that have sub-optimal fuel consumption and, thus, higher operational costs. This work presents a method to optimize the propeller–hull system simultaneously in order to design a vessel to have minimal fuel consumption. The optimization uses a probabilistic mission profile, propeller–hull interaction, and engine information to determine the coupled system with minimum fuel cost over its operational life. The design approach is tested on a KCS SIMMAN container ship using B-series propeller data and is shown to reduce fuel consumption compared to an optimized traditional design approach.

M. Nelson; D.W. Temple; J.T. Hwang; Y.L. Young; J.R.R.A. Martins; M. Collette

2013-01-01T23:59:59.000Z

149

World Energy Consumption by Fuel Type, 1970-2020  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Natural gas is projected to be the fastest-growing component of primary world energy consumption, more than doubling between 1997 and 2020. Gas accounts for the largest increment in electricity generation (41 percent of the total increment of energy used for electricity generation). Combined-cycle gas turbine power plants offer some of the highest commercially available plant efficiencies, and natural gas is environmentally attractive because it emits less sulfur dioxide, carbon dioxide, and particulate matter than does oil or coal. In the IEO2000 projection, world natural gas consumption reaches the level of coal by 2005, and by 2020 gas use exceeds coal by 29 percent. Oil currently provides a larger share of world energy consumption than any other energy source and is expected to remain in that position

150

Integrated probabilistic design of marine propulsors to minimize lifetime fuel consumption  

Science Journals Connector (OSTI)

Marine propellers are typically designed to achieve optimal performance at a single or a few design points. It is well understood that the performance of marine propulsion systems decays at off-design conditions, where the system operates for the majority of its life, where fuel consumption rates are high and the system as a whole operates at lower efficiencies. This paper presents a novel integrated design methodology that considers the propeller, prime mover, and vessel as one integrated system, and considers the probabilistic operational profile of the vessel, to minimize lifetime fuel consumption. The proposed design methodology represents a new approach to evaluate the tradeoffs between different design objectives and constraints by considering the system performance characteristics along with probability of occurrence, and hence allows for global optimization of the propeller geometry. Results are shown for a pair of fixed-pitch propellers designed for a twin-screw naval combatant craft. System performance for a design obtained using the proposed methodology is compared with designs obtained using traditional point-based design approaches. This methodology can be easily extended to investigate the effects of variations in resistance, operational profile or additional performance criteria, such as safety during extreme operations, lifetime carbon emission, and life cycle costs.

Michael R. Motley; Mayer Nelson; Yin L. Young

2012-01-01T23:59:59.000Z

151

Complete Fuel Combustion for Diesel Engines Resulting in Greatly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

152

Recent Trends in Emerging Transportation Fuels and Energy Consumption  

Science Journals Connector (OSTI)

Several recent trends indicate current developments in energy and transportation fuels. World trade in biofuels is developing in ethanol, wood chips, and vegetable oil / biodiesel with some countries being exp...

B. G. Bunting

2012-01-01T23:59:59.000Z

153

Microsoft Word - EVS25_Primary Factors Impact Fuel Consumption of PHEV_FINAL.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EVS-25 Shenzhen, China, Nov. 5-9, 2010 EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Factors Affecting the Fuel Consumption of Plug-In Hybrid Electric Vehicles Richard 'Barney' Carlson, Matthew G. Shirk, and Benjamin M. Geller Energy Storage and Transportation Systems Department, Idaho National Laboratory 2525 N. Fremont Ave., Idaho Falls, ID 83401, USA E-mail: richard.carlson@inl.gov Abstract- Plug-in hybrid electric vehicles (PHEVs) have proven to significantly reduce petroleum consumption when compared to conventional internal combustion engine vehicles by utilizing onboard electrical energy storage for propulsion. Through extensive testing of PHEVs, analysis has shown that fuel consumption of PHEVs is more

154

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document  

Broader source: Energy.gov [DOE]

Document details the Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in an OIRA Comparison Document.

155

Analysis and Simulation of Fuel Consumption and Energy Throughput on a Parallel Diesel-Electric Hybrid Powertrain.  

E-Print Network [OSTI]

??The aim of this master thesis is to study the energy throughput and fuel consumption of a parallel diesel-electric hybrid vehicle. This has been done… (more)

Gustafsson, Johanna

2009-01-01T23:59:59.000Z

156

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings  

Broader source: Energy.gov [DOE]

Document details Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in a Supplemental Notice of Proposed Rulemaking.

157

Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,659 2,240 6,864 1970's 4,748 8,459 16,056 15,217 14,402 17,842 15,972 17,336 15,895 12,153 1980's 30,250 15,249 94,232 97,828 111,069 64,148 72,686 116,682 153,670 192,239 1990's 193,875 223,194 234,716 237,702 238,156 292,811 295,834 271,284 281,872 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Alaska Natural Gas Consumption by End Use

158

Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,267 4,027 6,268 1970's 9,184 6,433 4,740 3,000 4,246 4,200 4,049 4,032 3,760 7,661 1980's 1,949 2,549 5,096 5,384 5,922 12,439 9,062 11,990 12,115 11,586 1990's 7,101 1,406 5,838 6,405 4,750 5,551 5,575 6,857 8,385 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Arkansas Natural Gas Consumption by End Use Lease and Plant

159

New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,793 46,331 45,309 1970's 47,998 46,114 48,803 52,553 43,452 38,604 49,160 43,751 37,880 50,798 1980's 36,859 22,685 55,722 47,630 50,662 46,709 35,615 48,138 41,706 42,224 1990's 65,889 44,766 53,697 49,658 54,786 52,589 81,751 64,458 59,654 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption New Mexico Natural Gas Consumption by End Use

160

Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,956 1,503 2,113 1970's 633 2,115 1,978 2,435 4,193 7,240 9,150 7,585 8,325 14,123 1980's 7,594 511 5,965 4,538 8,375 9,001 13,289 17,671 16,889 16,211 1990's 19,719 13,738 12,611 12,526 13,273 27,012 27,119 24,619 27,466 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Utah Natural Gas Consumption by End Use Lease and Plant

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,052 2,276 0 1970's 2,551 3,043 3,808 2,160 1,909 1,791 1,490 1,527 1,233 1,218 1980's 2,482 2,515 6,426 5,826 7,232 7,190 6,658 8,835 8,343 7,882 1990's 9,631 7,744 8,097 7,065 8,087 8,045 6,554 7,210 6,893 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption West Virginia Natural Gas Consumption by End Use Lease and Plant

162

Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,668 2,361 2,604 1970's 2,726 3,231 4,676 7,202 5,822 7,673 7,739 9,124 10,619 21,610 1980's 7,041 7,093 13,673 10,000 10,560 10,829 9,397 12,095 11,622 12,221 1990's 17,343 23,883 21,169 24,832 24,347 25,130 27,492 29,585 31,074 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Colorado Natural Gas Consumption by End Use

163

Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,828 1,992 2,277 1970's 2,317 2,212 1,509 1,238 1,206 1,218 1,040 1,107 1,160 1,214 1980's 989 1,040 9,772 8,361 9,038 9,095 6,335 3,254 2,942 2,345 1990's 3,149 2,432 2,812 3,262 2,773 2,647 2,426 2,457 2,325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Kentucky Natural Gas Consumption by End Use Lease and Plant

164

North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 17,133 16,163 14,691 1970's 14,067 13,990 12,773 12,462 11,483 12,008 15,998 13,697 12,218 3,950 1980's 1,017 13,759 3,514 4,100 4,563 4,710 3,974 5,194 4,014 3,388 1990's 6,939 11,583 8,462 8,256 11,306 11,342 11,603 8,572 8,309 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption North Dakota Natural Gas Consumption by End Use

165

Michigan Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Michigan Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,798 2,012 2,074 1970's 3,440 2,145 2,143 2,551 3,194 8,420 7,647 8,022 11,076 14,695 1980's 6,494 3,461 9,699 8,130 8,710 8,195 7,609 9,616 8,250 8,003 1990's 9,094 9,595 7,274 8,171 9,766 9,535 8,489 12,060 9,233 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Michigan Natural Gas Consumption by End Use Lease and Plant

166

Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,842 15,867 17,587 1970's 20,841 27,972 28,183 32,663 35,350 27,212 31,044 29,142 30,491 48,663 1980's 24,521 19,665 41,392 37,901 40,105 42,457 38,885 44,505 45,928 43,630 1990's 40,914 44,614 43,736 56,657 44,611 47,282 49,196 46,846 33,989 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Kansas Natural Gas Consumption by End Use

167

Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 65,167 84,259 103,361 1970's 98,417 101,126 98,784 80,233 80,780 79,728 84,025 77,631 82,046 128,475 1980's 59,934 56,785 91,465 79,230 91,707 88,185 84,200 104,415 100,926 90,225 1990's 111,567 88,366 92,978 99,869 91,039 80,846 73,039 81,412 61,543 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Oklahoma Natural Gas Consumption by End Use

168

U.S. Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Lease Fuel Consumption (Million Cubic Feet) Lease Fuel Consumption (Million Cubic Feet) U.S. Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 595,172 687,356 598,475 573,793 741,268 697,703 640,633 1990's 807,735 672,314 710,250 723,118 699,842 792,315 799,629 776,306 771,366 679,480 2000's 746,889 747,411 730,579 758,380 731,563 756,324 782,992 861,063 864,113 913,229 2010's 916,797 938,340 987,957 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease Fuel Consumption U.S. Natural Gas Consumption by End Use

169

Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,904 5,188 6,183 1970's 5,091 6,148 5,924 4,281 3,683 2,315 2,754 2,972 2,792 4,796 1980's 3,425 1,832 2,012 1,970 2,069 2,138 1,808 2,088 1,994 1,766 1990's 2,262 1,680 1,871 2,379 2,243 2,238 2,401 2,277 2,000 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Montana Natural Gas Consumption by End Use Lease and Plant

170

Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,656 3,505 2,879 1970's 3,140 4,302 3,397 3,548 2,957 2,925 2,742 2,814 3,477 22,094 1980's 1,941 1,776 3,671 4,377 5,741 5,442 5,243 5,802 4,869 3,876 1990's 5,129 1,476 1,450 1,366 1,332 1,283 1,230 1,201 1,125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Ohio Natural Gas Consumption by End Use Lease and Plant

171

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" 6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

172

Table N5.2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" 2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

173

2014 Annual Merit Review Results Report - Fuels & Lubricants...  

Energy Savers [EERE]

Fuels & Lubricants Technologies 2014 Annual Merit Review Results Report - Fuels & Lubricants Technologies Merit review of DOE Vehicle Technologies research activities...

174

Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 645,058 711,720 741,902 1970's 769,500 784,773 802,112 828,139 817,194 763,107 729,946 732,428 757,853 717,462 1980's 536,766 505,322 347,846 307,717 326,662 307,759 302,266 355,765 318,922 291,977 1990's 394,605 297,233 293,845 296,423 298,253 333,548 330,547 301,800 330,228 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption

175

Reaction-Diffusion Model for Combustion with Fuel Consumption: I. Dirichlet Boundary Conditions  

Science Journals Connector (OSTI)

......9JT, UK Department of Chemistry, University of Leeds...Reaction-Diffusion Model for Combustion with Fuel Consumption...SCOTT Department of Chemistry, University of Leeds...runaway in stockpiles of coal, wool, cellulose...smouldering or fully fledged combustion and their attendant......

G. ZHANG; J. H. MERKIN; S. K. SCOTT

1991-01-01T23:59:59.000Z

176

Genetic programming approach to predict torque and brake specific fuel consumption of a gasoline engine  

Science Journals Connector (OSTI)

This study presents genetic programming (GP) based model to predict the torque and brake specific fuel consumption a gasoline engine in terms of spark advance, throttle position and engine speed. The objective of this study is to develop an alternative robust formulations based on experimental data and to verify the use of GP for generating the formulations for gasoline engine torque and brake specific fuel consumption. Experimental studies were completed to obtain training and testing data. Of all 81 data sets, the training and testing sets consisted of randomly selected 63 and 18 sets, respectively. Considerable good performance was achieved in predicting gasoline engine torque and brake specific fuel consumption by using GP. The performance of accuracies of proposed GP models are quite satisfactory (R2 = 0.9878 for gasoline engine torque and R2 = 0.9744 for gasoline engine brake specific fuel consumption). The prediction of proposed GP models were compared to those of the neural network modeling, and strictly good agreement was observed between the two predictions. The proposed GP formulation is quite accurate, fast and practical.

Necla Togun; Sedat Baysec

2010-01-01T23:59:59.000Z

177

Berth and quay-crane allocation problem considering fuel consumption and emissions from vessels  

Science Journals Connector (OSTI)

Resolving the berth and quay-crane allocation problem improves the efficiency of seaside operations by optimally allocating berthing spaces and quay cranes to vessels, typically by considering a vessel's sailing speed and arrival time at a port as constant ... Keywords: Berth and quay crane allocation problem, Emission, Fuel consumption, Nonlinear optimization, Second-order cone programming

Qing-Mi Hu, Zhi-Hua Hu, Yuquan Du

2014-04-01T23:59:59.000Z

178

Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 195,990 212,134 273,213 1970's 287,222 292,589 312,145 336,832 347,098 301,816 556,772 591,292 558,877 305,181 1980's 196,033 180,687 337,398 275,698 303,284 258,069 243,283 301,279 272,455 256,123 1990's 258,267 195,526 220,711 222,813 207,171 209,670 213,721 227,542 194,963 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption

179

Table 4b. Relative Standard Errors for Total Fuel Oil Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

4b. Relative Standard Errors for Total Fuel Oil Consumption per 4b. Relative Standard Errors for Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion Btu) Fuel Oil Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 10 14 13 13 Building Floorspace (Square Feet) 1,001 to 5,000 10 16 11 11 5,001 to 10,000 15 22 18 18 10,001 to 25,000 15 24 19 19 25,001 to 50,000 13 25 29 29 50,001 to 100,000 14 27 21 22 100,001 to 200,000 13 36 34 34 200,001 to 500,000 13 37 33 33 Over 500,000 17 51 50 50 Principal Building Activity Education 17 17 16 17 Food Sales and Service 25 36 16 16 Health Care 29 48 47 47 Lodging 27 37 32 32 Mercantile and Service 14 25 26 26 Office 14 19 21 21 Public Assembly 23 46 35 34 Public Order and Safety 28 48 46 46 Religious Worship

180

Spark ignition engine control strategies for minimising cold start fuel consumption under cumulative tailpipe emissions constraints  

Science Journals Connector (OSTI)

Abstract This paper proposes a methodology for minimising the fuel consumption of a gasoline fuelled vehicle during cold starting. It first takes a validated dynamic model of an engine and its aftertreatment reported in a previous study (Andrianov, Brear, & Manzie, 2012) to identify optimised engine control strategies using iterative dynamic programming. This is demonstrated on a family of optimisation problems, in which fuel consumption is minimised subject to different tailpipe emissions constraints and exhaust system designs. Potential benefits of using multi-parameter optimisation, involving spark timing, air–fuel ratio and cam timing, are quantified. Single switching control policies are then proposed that perform close to the optimised strategies obtained from the dynamic programming but which require far less computational effort.

D.I. Andrianov; C. Manzie; M.J. Brear

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption . U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 1993 Household and 1994 Vehicle Characteristics RSE Column Factor: Number of Vehicles Vehicle-Miles Traveled Motor Fuel Consumption Motor Fuel Expenditures RSE Row Factor: (million) (percent) (billion) (percent) (billion gallons) (gallon percent) (quadril- lion Btu) (billion dollars) (percent) 0.9 0.8 1.1 1.0 1.1 1.0 1.1 1.1 1.0 Household Characteristics Total .................................................... 156.8 100.0 1,793 100.0 90.6 100.0 11.2 104.7 100.0 2.8 Census Region and Division Northeast ........................................... 26.6 17.0 299 16.7 14.5 16.0 1.8 17.2 16.4 5.7 New England ................................... 7.6 4.8 84 4.7 4.1 4.5 0.5 4.8 4.6 13.8 Middle Atlantic

182

Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a Diesel engine  

Science Journals Connector (OSTI)

The ability of an artificial neural network model, using a back propagation learning algorithm, to predict specific fuel consumption and exhaust temperature of a Diesel engine for various injection timings is studied. The proposed new model is compared with experimental results. The comparison showed that the consistence between experimental and the network results are achieved by a mean absolute relative error less than 2%. It is considered that a well-trained neural network model provides fast and consistent results, making it an easy-to-use tool in preliminary studies for such thermal engineering problems.

Adnan Parlak; Yasar Islamoglu; Halit Yasar; Aysun Egrisogut

2006-01-01T23:59:59.000Z

183

Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations  

Broader source: Energy.gov [DOE]

Development and validation of a simple strategy-based technique using four engine parameters to minimize emissions and fuel consumption

184

Reduction of Heavy-Duty Fuel Consumption and CO2 Generation-- What the Industry Does and What the Government Can Do  

Broader source: Energy.gov [DOE]

Smart regulations, funding for advanced technologies, and improvements to operations and infrastructure play important roles in reducing fuel consumption

185

Poster Session--Fuel Consumption During Prescribed Fires in Big Sage--Wright, Ottmar USDA Forest Service Gen. Tech. Rep. PSW-GTR-189. 2008. 363  

E-Print Network [OSTI]

Poster Session--Fuel Consumption During Prescribed Fires in Big Sage--Wright, Ottmar USDA Forest Service Gen. Tech. Rep. PSW-GTR-189. 2008. 363 Fuel Consumption During Prescribed Fires in Big Sage Ecosystems1 Clinton S. Wright2 and Roger D. Ottmar2 Introduction Fuel consumption was evaluated for a series

Standiford, Richard B.

186

,"Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:26 PM" "Back to Contents","Data 1: Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SLA_2" "Date","Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,34 33419,9 33785,9 34150,8 34515,22

187

,"Florida Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sfl_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sfl_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:14 PM" "Back to Contents","Data 1: Florida Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SFL_2" "Date","Florida Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,7 33785,9 34150,27 34515,68 34880,75

188

,"Idaho Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sid_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sid_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:20 PM" "Back to Contents","Data 1: Idaho Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SID_2" "Date","Idaho Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,6 40224,5 40252,6 40283,6 40313,6 40344,6 40374,6

189

,"Alabama Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sal_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sal_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:04 PM" "Back to Contents","Data 1: Alabama Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAL_2" "Date","Alabama Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,3 33419,0 33785,3 34150,4 34515,3 34880,4

190

,"California Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sca_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sca_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:08 PM" "Back to Contents","Data 1: California Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SCA_2" "Date","California Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,4 33419,9 33785,27 34150,255 34515,550

191

,"California Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sca_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sca_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:09 PM" "Back to Contents","Data 1: California Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SCA_2" "Date","California Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,1153 40224,1041 40252,1153 40283,1116

192

,"Massachusetts Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sma_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sma_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:28 PM" "Back to Contents","Data 1: Massachusetts Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SMA_2" "Date","Massachusetts Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,1 33785,2 34150,2

193

,"Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sar_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sar_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:06 PM" "Back to Contents","Data 1: Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAR_2" "Date","Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,1 40224,1 40252,1 40283,1 40313,1 40344,1

194

,"Alabama Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sal_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sal_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:05 PM" "Back to Contents","Data 1: Alabama Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAL_2" "Date","Alabama Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,9 40224,8 40252,9 40283,9 40313,9 40344,9

195

,"Connecticut Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sct_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sct_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:10 PM" "Back to Contents","Data 1: Connecticut Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SCT_2" "Date","Connecticut Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,2

196

,"South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_ssd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_ssd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:57 PM" "Back to Contents","Data 1: South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SSD_2" "Date","South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,2 33785,5 34150,7 34515,5

197

,"Kansas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sks_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sks_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:24 PM" "Back to Contents","Data 1: Kansas Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SKS_2" "Date","Kansas Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,10 34880,2

198

,"Florida Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sfl_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sfl_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:14 PM" "Back to Contents","Data 1: Florida Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SFL_2" "Date","Florida Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,5 40224,5 40252,5 40283,5 40313,5 40344,5

199

,"Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_shi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_shi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:17 PM" "Back to Contents","Data 1: Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SHI_2" "Date","Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" 35611,284 35976,0 36341,380 36707,0 37072,0 37437,0 37802,0 38168,0

200

,"Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sla_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sla_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:27 PM" "Back to Contents","Data 1: Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SLA_2" "Date","Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,1 40224,1 40252,1 40283,1 40313,1

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

,"South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_ssd_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_ssd_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:58 PM" "Back to Contents","Data 1: South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SSD_2" "Date","South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,0 40224,0 40252,0 40283,0 40313,0

202

,"Idaho Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sid_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sid_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:19 PM" "Back to Contents","Data 1: Idaho Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SID_2" "Date","Idaho Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,10 34880,19

203

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0 312 Beverage and Tobacco Products 0 1 0 0 1 0 321 Wood Products 0 218 * 13 199 6 321113 Sawmills 0 100 * 5 94 1 3212 Veneer, Plywood, and Engineered Woods 0 95 * 6 87 2 321219 Reconstituted Wood Products 0 52 0 6 46 1 3219 Other Wood Products

204

,"Indiana Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sin_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sin_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:23 PM" "Back to Contents","Data 1: Indiana Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SIN_2" "Date","Indiana Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,4 40224,4 40252,4 40283,4 40313,4 40344,4

205

,"Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_shi_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_shi_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:17 PM" "Back to Contents","Data 1: Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SHI_2" "Date","Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,0 40224,0 40252,0 40283,0 40313,0 40344,0

206

,"Colorado Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sco_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sco_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:10 PM" "Back to Contents","Data 1: Colorado Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SCO_2" "Date","Colorado Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,21 40224,19 40252,21 40283,20 40313,21

207

,"Arizona Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_saz_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_saz_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:07 PM" "Back to Contents","Data 1: Arizona Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAZ_2" "Date","Arizona Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,37 33785,46 34150,44 34515,61 34880,118

208

,"Georgia Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sga_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sga_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:16 PM" "Back to Contents","Data 1: Georgia Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SGA_2" "Date","Georgia Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,78 40224,70 40252,78 40283,75 40313,78

209

,"Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sar_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sar_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:06 PM" "Back to Contents","Data 1: Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAR_2" "Date","Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,3 34880,2

210

,"Delaware Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sde_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sde_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:13 PM" "Back to Contents","Data 1: Delaware Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SDE_2" "Date","Delaware Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,1 34880,1

211

,"Alaska Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sak_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sak_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:04 PM" "Back to Contents","Data 1: Alaska Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAK_2" "Date","Alaska Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,2 40224,2 40252,2 40283,2 40313,2 40344,2

212

,"South Carolina Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_ssc_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_ssc_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:56 PM" "Back to Contents","Data 1: South Carolina Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SSC_2" "Date","South Carolina Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,1 40224,1 40252,1 40283,1

213

,"Kansas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sks_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sks_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:24 PM" "Back to Contents","Data 1: Kansas Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SKS_2" "Date","Kansas Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,1 40224,1 40252,1 40283,1 40313,1 40344,1

214

Life Cycle Inventory Energy Consumption and Emissions for Biodiesel versus Petroleum Diesel Fueled Construction Vehicles  

Science Journals Connector (OSTI)

Life Cycle Inventory Energy Consumption and Emissions for Biodiesel versus Petroleum Diesel Fueled Construction Vehicles ... In general, LCI emissions of HC and CO are lower if NSPS-compliant soyoil plants are used. ... The purpose of this study is to demonstrate a methodology for characterizing at high resolution the energy use and emissions of a plug-in parallel-hybrid diesel-electric school bus (PHSB) to support assessments of sensitivity to driving cycles and ... ...

Shih-Hao Pang; H. Christopher Frey; William J. Rasdorf

2009-07-16T23:59:59.000Z

215

The methodology of variable management of propellant fuel consumption by jet-propulsion engines of a spacecraft  

Science Journals Connector (OSTI)

Traditionally, management of propellant fuel consumption on board of a spacecraft is only associated with the operation of jet-propulsion engines (JPE) that are actuator devices of ... systems (MCS). The efficien...

V. S. Kovtun

2012-12-01T23:59:59.000Z

216

Assessment of the influence of different cooling system configurations on engine warm-up, emissions and fuel consumption  

Science Journals Connector (OSTI)

One of the major goals of engine designers is the reduction of fuel consumption and pollutant emissions while keeping or even improving engine performance. In recent years, different technical ... have been inves...

A. J. Torregrosa; A. Broatch; P. Olmeda…

2008-08-01T23:59:59.000Z

217

Effect of stratified water injection on exhaust gases and fuel consumption of a direct injection diesel engine  

Science Journals Connector (OSTI)

The direct injection Diesel engine with its specific fuel consumption of about 200 g/kWh is one of the most efficient thermal engines. However in case of relatively low CH...x...concentration in the exhaust gas t...

Rainer Pauls; Christof Simon

2004-01-01T23:59:59.000Z

218

Two-Dimensional Property Distributions, Ohmic Losses, and Power Consumption within a Fuel Cell Polymer Electrolyte Membrane  

Science Journals Connector (OSTI)

Two-Dimensional Property Distributions, Ohmic Losses, and Power Consumption within a Fuel Cell Polymer Electrolyte Membrane ... The land provides both mechanical support and electrical contact to the porous transport layer (PTL), while the fuel and oxidant are distributed to the catalyst layer (CL) through the channels, again via the PTL. ... The anisotropic nature of the distributions suggest that there may be localized “hot spots” where an increased rate of power consumption could heat the membrane and cause it to fail. ...

Venkateshwar R. Devulapalli; Aaron V. Phoenix

2010-06-24T23:59:59.000Z

219

Experimental Results for SimFuels  

SciTech Connect (OSTI)

Assessing the performance of Spent (or Used) Nuclear Fuel (UNF) in geological repository requires quantification of time-dependent phenomena that may influence its behavior on a time-scale up to millions of years. A high-level waste repository environment will be a dynamic redox system because of the time-dependent generation of radiolytic oxidants and reductants and the corrosion of Fe-bearing canister materials. One major difference between used fuel and natural analogues, including unirradiated UO2, is the intense radiolytic field. The radiation emitted by used fuel can produce radiolysis products in the presence of water vapor or a thin-film of water that may increase the waste form degradation rate and change radionuclide behavior. To study UNF, we have been working on producing synthetic UO2 ceramics, or SimFuels that can be used in testing and which will contain specific radionuclides or non-radioactive analogs so that we can test the impact of radiolysis on fuel corrosion without using actual spent fuel. Although, testing actual UNF would be ideal for understanding the long term behavior of UNF, it requires the use of hot cells and is extremely expensive. In this report, we discuss, factors influencing the preparation of SimFuels and the requirements for dopants to mimic the behavior of UNF. We have developed a reliable procedure for producing large grain UO2 at moderate temperatures. This process will be applied to a series of different formulations.

Buck, Edgar C.; Casella, Andrew M.; Skomurski, Frances N.; MacFarlan, Paul J.; Soderquist, Chuck Z.; Wittman, Richard S.; Mcnamara, Bruce K.

2012-08-22T23:59:59.000Z

220

The implications of using hydrocarbon fuels to generate electricity for hydrogen fuel powered automobiles on electrical capital, hydrocarbon consumption, and anthropogenic emissions  

Science Journals Connector (OSTI)

This paper considers some of the impacts of adopting hydrogen fuel cell powered electric automobiles in the US. The change will need significant adjustments to the electrical generation industry including additional capital and hydrocarbon fuel consumption as well as impacting anthropogenic greenhouse emissions. Examining the use of three fuels to generate hydrogen fuels, using three production methods, distributed in three geographic scenarios, we determine that while the change reduces anthropogenic greenhouse emissions with minimal additional electrical generation capital expenditures, it accelerates the use of natural gas. Electrolysis provides a sustainable, longer-term solution, but requires more capital investment in electrical generation and yields an increase in anthropogenic greenhouse emissions.

Derek Tittle; Jingwen Qu

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reduction of fuel consumption in gasoline engines by introducing HHO gas into intake manifold  

Science Journals Connector (OSTI)

Brown’s gas (HHO) has recently been introduced to the auto industry as a new source of energy. The present work proposes the design of a new device attached to the engine to integrate an HHO production system with the gasoline engine. The proposed HHO generating device is compact and can be installed in the engine compartment. This auxiliary device was designed, constructed, integrated and tested on a gasoline engine. Test experiments were conducted on a 197cc (Honda G 200) single-cylinder engine. The outcome shows that the optimal surface area of an electrolyte needed to generate sufficient amount of HHO is twenty times that of the piston surface area. Also, the volume of water needed in the cell is about one and half times that of the engine capacity. Eventually, the goals of the integration are: a 20–30% reduction in fuel consumption, lower exhaust temperature, and consequently a reduction in pollution.

Ammar A. Al-Rousan

2010-01-01T23:59:59.000Z

222

Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis  

E-Print Network [OSTI]

27% of the total US energy consumption and 72% of theof Figures Figure 2-1 U.S. energy consumption by source andU.S. (FHWA, Figure 2-1 U.S. energy consumption by source and

Scora, George Alexander

2011-01-01T23:59:59.000Z

223

E-Print Network 3.0 - aviation turbine fuels Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuels Search Powered by Explorit Topic List Advanced Search Sample search results for: aviation turbine fuels...

224

E-Print Network 3.0 - aviation turbine fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel Search Powered by Explorit Topic List Advanced Search Sample search results for: aviation turbine fuel...

225

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network [OSTI]

about half of the total energy consumption from Wii consolescan estimate total national energy consumption due to videoof on mode energy consumption to the total AEC. For most

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

226

Fuel Cell Vehicle Learning Demonstration: Spring 2008 Results (Presentation)  

SciTech Connect (OSTI)

Presentation prepared for the 2008 National Hydrogen Association Conference that describes the spring 2008 results for DOE's Fuel Cell Vehicle Learning Demonstration.

Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

2008-04-02T23:59:59.000Z

227

Fuel Cell Vehicle Learning Demonstration: Spring 2007 Results (Presentation)  

SciTech Connect (OSTI)

This presentation provides the results, as of Spring 2007, for the fuel cell vehicle learning demonstration conducted by the National Renewable Energy Laboratory.

Wipke, K.; Sprik, S.; Thomas, H.; Welch, C.; Gronich, S.; Garbak, J.

2007-03-20T23:59:59.000Z

228

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results  

Broader source: Energy.gov [DOE]

This report provides preliminary results from the evaluation of a protoptye fuel cell transit bus operating at Connecticut Transit in Hartford. Included are descriptions of the planned fuel cell bus demonstration and equipment, early results and agency experience are also provided.

229

EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 1b. End Uses of Fuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,044 1,116 1,186 312 Beverage and Tobacco Products 108 104 109 313 Textile Mills 254 205 178 314 Textile Product Mills 49 60 72 315 Apparel 48 30 14 316 Leather and Allied Products 8 7 3 321 Wood Products 504 375 445 322 Paper 2,744 2,361 2,354 323 Printing and Related Support 98 98 85 324 Petroleum and Coal Products 3,622 3,202 3,396 325 Chemicals 3,704 3,769 3,195 326 Plastics and Rubber Products 327 348 336 327 Nonmetallic Mineral Products 969 1,052 1,105 331 Primary Metals 2,576 2,123 1,744 332 Fabricated Metal Products 441 387 397

230

EIA Energy Efficiency-Table 2b. Primary Fuel Consumption for Selected  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,468 1,572 1,665 312 Beverage and Tobacco Products 156 156 166 313 Textile Mills 457 375 304 314 Textile Product Mills 85 94 110 315 Apparel 84 54 27 316 Leather and Allied Products 14 11 5 321 Wood Products 647 518 619 322 Paper 3,221 2,803 2,833 323 Printing and Related Support 199 197 171 324 Petroleum and Coal Products 3,873 3,454 3,657 325 Chemicals 4,851 4,803 4,181 326 Plastics and Rubber Products 691 707 683 327 Nonmetallic Mineral Products 1,235 1,331 1,385 331 Primary Metals 3,660 3,100 2,617 332 Fabricated Metal Products 791 706 670 333 Machinery 404 341 416 334 Computer and Electronic Products

231

Effects of Village Power Quality on Fuel Consumption and Operating Expenses  

SciTech Connect (OSTI)

Alaska's rural village electric utilities are isolated from the Alaska railbelt electrical grid intertie and from each other. Different strategies have been developed for providing power to meet demand in each of these rural communities. Many of these communities rely on diesel electric generators (DEGs) for power. Some villages have also installed renewable power sources and automated generation systems for controlling the DEGs and other sources of power. For example, Lime Village has installed a diesel battery photovoltaic hybrid system, Kotzebue and Wales have wind-diesel hybrid systems, and McGrath has installed a highly automated system for controlling diesel generators. Poor power quality and diesel engine efficiency in village power systems increases the cost of meeting the load. Power quality problems may consist of poor power factor (PF) or waveform disturbances, while diesel engine efficiency depends primarily on loading, the fuel type, the engine temperature, and the use of waste heat for nearby buildings. These costs take the form of increased fuel use, increased generator maintenance, and decreased reliability. With the cost of bulk fuel in some villages approaching $1.32/liter ($5.00/gallon) a modest 5% decrease in fuel use can result in substantial savings with short payback periods depending on the village's load profile and the cost of corrective measures. This project over its five year history has investigated approaches to improving power quality and implementing fuel savings measures through the use of performance assessment software tools developed in MATLAB{reg_sign} Simulink{reg_sign} and the implementation of remote monitoring, automated generation control, and the addition of renewable energy sources in select villages. The results have shown how many of these communities would benefit from the use of automated generation control by implementing a simple economic dispatch scheme and the integration of renewable energy sources such as wind generation.

Richard Wies; Ron Johnson

2008-12-31T23:59:59.000Z

232

Fact #634: August 2, 2010 Off-highway Transportation-related Fuel Consumption  

Broader source: Energy.gov [DOE]

The Environmental Protection Agency's NONROAD2008a model estimates fuel use for off-highway equipment. Construction and mining equipment using diesel fuel account for the majority of this fuel use....

233

E-Print Network 3.0 - automotive fuel consumption Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 August 2005 Fuel Tank Capacity and Gas Pump...

234

NOx is emitted. In addition, extended idling can result in a consid-erable waste of fuel and cause wear on truck engines. More than  

E-Print Network [OSTI]

wear on truck engines. More than 2 million gal of diesel is wasted on a daily basis nationwide (6). Studies (5) have shown that a long-haul truck can idle away more than a gallon of diesel fuel per hour emissions and fuel consumption, · Examination of factors affecting results and analysis, and · Measurement

235

Loss of spent fuel pool cooling PRA: Model and results  

SciTech Connect (OSTI)

This letter report documents models for quantifying the likelihood of loss of spent fuel pool cooling; models for identifying post-boiling scenarios that lead to core damage; qualitative and quantitative results generated for a selected plant that account for plant design and operational practices; a comparison of these results and those generated from earlier studies; and a review of available data on spent fuel pool accidents. The results of this study show that for a representative two-unit boiling water reactor, the annual probability of spent fuel pool boiling is 5 {times} 10{sup {minus}5} and the annual probability of flooding associated with loss of spent fuel pool cooling scenarios is 1 {times} 10{sup {minus}3}. Qualitative arguments are provided to show that the likelihood of core damage due to spent fuel pool boiling accidents is low for most US commercial nuclear power plants. It is also shown that, depending on the design characteristics of a given plant, the likelihood of either: (a) core damage due to spent fuel pool-associated flooding, or (b) spent fuel damage due to pool dryout, may not be negligible.

Siu, N.; Khericha, S.; Conroy, S.; Beck, S.; Blackman, H.

1996-09-01T23:59:59.000Z

236

Computer usage and national energy consumption: Results from a field-metering study  

SciTech Connect (OSTI)

The electricity consumption of miscellaneous electronic loads (MELs) in the home has grown in recent years, and is expected to continue rising. Consumer electronics, in particular, are characterized by swift technological innovation, with varying impacts on energy use. Desktop and laptop computers make up a significant share of MELs electricity consumption, but their national energy use is difficult to estimate, given uncertainties around shifting user behavior. This report analyzes usage data from 64 computers (45 desktop, 11 laptop, and 8 unknown) collected in 2012 as part of a larger field monitoring effort of 880 households in the San Francisco Bay Area, and compares our results to recent values from the literature. We find that desktop computers are used for an average of 7.3 hours per day (median = 4.2 h/d), while laptops are used for a mean 4.8 hours per day (median = 2.1 h/d). The results for laptops are likely underestimated since they can be charged in other, unmetered outlets. Average unit annual energy consumption (AEC) for desktops is estimated to be 194 kWh/yr (median = 125 kWh/yr), and for laptops 75 kWh/yr (median = 31 kWh/yr). We estimate national annual energy consumption for desktop computers to be 20 TWh. National annual energy use for laptops is estimated to be 11 TWh, markedly higher than previous estimates, likely reflective of laptops drawing more power in On mode in addition to greater market penetration. This result for laptops, however, carries relatively higher uncertainty compared to desktops. Different study methodologies and definitions, changing usage patterns, and uncertainty about how consumers use computers must be considered when interpreting our results with respect to existing analyses. Finally, as energy consumption in On mode is predominant, we outline several energy savings opportunities: improved power management (defaulting to low-power modes after periods of inactivity as well as power scaling), matching the rated power of power supplies to computing needs, and improving the efficiency of individual components.

Desroches, Louis-Benoit; Fuchs, Heidi; Greenblatt, Jeffery; Pratt, Stacy; Willem, Henry; Claybaugh, Erin; Beraki, Bereket; Nagaraju, Mythri; Price, Sarah; Young, Scott

2014-12-01T23:59:59.000Z

237

Reduction of Fuel Consumption By Thermodynamical Optimization of the Otto-Engine  

Science Journals Connector (OSTI)

By the example of the PORSCHE 924 2-liter Otto engine it was demonstrated that the optimization of ... the compression ratio, combustion chamber shape, air/fuel ratio, and ignition timing is a means to reduce fuel

Dr. D. Gruden; R. Hahn; H. Lörcher

1980-01-01T23:59:59.000Z

238

Heavy-Duty Diesel Vehicle Fuel Consumption Modeling Based on Road Load and Power Train Parameters  

E-Print Network [OSTI]

Diesel Engines Using Four Fuels,” Southwest Research Institute, 25. J.B.Heywood, “Internal Combustion Engine Fundamentals”,

Giannelli, R; Nam, E K; Helmer, K; Younglove, T; Scora, G; Barth, M

2005-01-01T23:59:59.000Z

239

Fuel Cell Technologies Office: Plans, Implementation, and Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About About Key Activities Plans, Implementation, & Results Budget Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Codes & Standards Education Systems Analysis Plans, Implementation, and Results The Fuel Cell Technologies Office carries out technology research, development, and deployment through an ongoing process of planning and analysis, implementation, and review. This Web page includes links to documents that support and document the program management process, and the results and public benefits that derive from it. Overview Learn more about this EERE Office. Plans Discover the plans, budgets, and analyses that set the direction of office priorities and activities.

240

Table 5.3. U.S. per Vehicle Miles Traveled, Vehicle Fuel Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Consumption (gallons) Expenditures (dollars) 1.8 1.0 1.0 1.0 0.5 Race of Householder White ... 138.6 11.5 581 670 19.8 1.4 Black...

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Demonstrating Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control  

Broader source: Energy.gov [DOE]

Presents a next generation model-based engine controller that incorporates real-time fuel efficiency optimization and tested under fully transient engine and vehicle operating conditions.

242

Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption  

Broader source: Energy.gov [DOE]

Self-cleaning ceramic filter cartridges offer the advantage of better fuel economy, faster regeneration time, improved heat transfer, and reduction in manufacturing steps

243

Coal consumption: An alternate energy resource to fuel economic growth in Pakistan  

Science Journals Connector (OSTI)

Abstract This study is an attempt to revisit the causal relationship between coal consumption and economic growth in case of Pakistan. The present study covers the period of 1974–2010. The direction of causality between the variables is investigated by applying the VECM Granger causality approach. Our findings have exposed that there exists bidirectional Granger causality between economic growth and coal consumption. The Cumulative Sum (CUSUM) and Cumulative Sum of Square (CUSUMSQ) diagrams have not found any structural instability over the period of 1974–2010.

Saqlain Latif Satti; Muhammad Shahid Hassan; Haider Mahmood; Muhammad Shahbaz

2014-01-01T23:59:59.000Z

244

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

245

Fact #704: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans  

Broader source: Energy.gov [DOE]

In September 2011 the National Highway Traffic Safety Administration issued the final rule to set standards regulating the fuel use of new vehicles heavier than 8,500 lbs. gross vehicle weight....

246

Reduced Energy Consumption through the Development of Fuel-Flexible Gas Turbines  

Broader source: Energy.gov [DOE]

Gas turbines—heat engines that use high-temperature and high-pressure gas as the combustible fuel—are used extensively throughout U.S. industry to power industrial processes. The majority of...

247

Zhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA-444, Proceedings, 100th  

E-Print Network [OSTI]

the Alternative Fuel Data Center (AFDC) of the U.S. Department of Energy.4 Carbon dioxide (CO2), CO, and nitricZhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonçalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA

Frey, H. Christopher

248

"Cumulated Vehicle Acceleration": An Attribute of GPS Probe Vehicle Traces for On-Line Assessment of Vehicle Fuel Consumption in Traffic and Transportation Networks  

E-Print Network [OSTI]

To perform a reliable on-line assessment of fuel consumption in vehicles, we introduce "cumulated vehicle acceleration" as an attribute of GPS probe vehicle traces. The objective of the calculation of the attribute "cumulated vehicle acceleration" in the GPS probe vehicle data is to perform a reliable on-line dynamic traffic assignment for the reduction of vehicle consumption in traffic and transportation networks.

Kerner, Boris S

2014-01-01T23:59:59.000Z

249

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network [OSTI]

Video game console usage and national energy consumption:data, consoles with non-zero usage are actively used (forthat this estimate of active usage is far lower than our

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

250

Fuel System and Fuel Measurement  

Science Journals Connector (OSTI)

Fuel management provides optimal solutions to reduce fuel consumption. Merchant vessels, such as container ships, drive at a reduced speed to save fuel since the reduction of the speed from...?1 lowers consumption

Michael Palocz-Andresen

2013-01-01T23:59:59.000Z

251

A Study of the Discrepancy Between Federal and State Measurements of On-Highway Motor Fuel Consumption  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TM TM -2003/171 A Study of the Discrepancy Between Federal and State Measurements of On-Highway Motor Fuel Consumption July 2003 Ho-Ling Hwang Lorena F. Truett Stacy C. Davis DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the followi ng source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail info@ntis.fedworld.gov Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange

252

Reducing Fuel Consumption through Semi-Automated Platooning with Class 8 Tractor Trailer Combinations (Poster)  

SciTech Connect (OSTI)

This poster describes the National Renewable Energy Laboratory's evaluation of the fuel savings potential of semi-automated truck platooning. Platooning involves reducing aerodynamic drag by grouping vehicles together and decreasing the distance between them through the use of electronic coupling, which allows multiple vehicles to accelerate or brake simultaneously. The NREL study addressed the need for data on American style line-haul sleeper cabs with modern aerodynamics and over a range of trucking speeds common in the United States.

Lammert, M.; Gonder, J.

2014-07-01T23:59:59.000Z

253

Problems of attracting nuclear energy resources in order to provide economical and rational consumption of fossil fuels  

Science Journals Connector (OSTI)

Depletion of fossil fuels resources and the gradual increase in cost of their extraction and transportation to the places of their consumption put forward into a line of the most urgent tasks the problem of rational and economical utilization of fuel and energy resources, as well as introduction of new energy sources into various sectors of the national economy. The nuclear energy sources which are widely spread in power engineering have not yet been used to a proper extent in the sectors of industrial technologies and residentidal space heating, which are the most energy consuming sectors in the national economy. The most effective way of solving this problem can be the development and commercialization of high temperature nuclear reactors, as the majority of power consuming industrial processes and those involved in chemico-thermal systems of distant heat transmission demand the temperature of a heat carrier generated by nuclear reactors and assimilated by the above processes to be in the range from 900° to 1000°C.

E.K. Nazarov; A.T. Nikitin; N.N. Ponomarev-Stepnoy; A.N. Protsenko; A.Ya. Stolyarevskii; N.A. Doroshenko

1990-01-01T23:59:59.000Z

254

Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries  

Science Journals Connector (OSTI)

Countries differ considerably in terms of the price drivers pay for gasoline. This paper uses data for 132 countries for the period 1995–2008 to investigate the implications of these differences for the consumption of gasoline for road transport. To address the potential for simultaneity bias, we use both a country's oil reserves and the international crude oil price as instruments for a country's average gasoline pump price. We obtain estimates of the long-run price elasticity of gasoline demand of between ? 0.2 and ? 0.5. Using newly available data for a sub-sample of 43 countries, we also find that higher gasoline prices induce consumers to substitute to vehicles that are more fuel-efficient, with an estimated elasticity of + 0.2. Despite the small size of our elasticity estimates, there is considerable scope for low-price countries to achieve gasoline savings and vehicle fuel economy improvements via reducing gasoline subsidies and/or increasing gasoline taxes.

Paul J. Burke; Shuhei Nishitateno

2013-01-01T23:59:59.000Z

255

2008 Annual Merit Review Results Summary - 10. Fuels Technologies  

Broader source: Energy.gov (indexed) [DOE]

enable high fuel economy, deliver lower emissions, and contribute to petroleum displacement. Activities aim to identify advanced petroleum- and non-petroleum-based...

256

E-Print Network 3.0 - apex nuclear fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear fuel Search Powered by Explorit Topic List Advanced Search Sample search results for: apex nuclear fuel Page: << < 1 2 3 4 5 > >> 1 FY 2010 Highlights Faculty and Summary:...

257

E-Print Network 3.0 - ac transit fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample search results for: ac transit fuel Page: << < 1 2 3 4 5 > >> 1 Hydrogen and Fuel Cell Vehicle Evaluation Richard Parish, Leslie Eudy, and Ken Proc Summary: and the...

258

Assessment of the effect of low viscosity oils usage on a light duty diesel engine fuel consumption in stationary and transient conditions  

Science Journals Connector (OSTI)

Abstract Regarding the global warming due to CO2 emissions, the crude oil depletion and its corresponding rising prices, \\{OEMs\\} are exploring different solutions to increase the internal combustion engine efficiency, among which, the use of Low Viscosity Oils (LVO) represents one attractive cost-effective way to accomplish this goal. Reported in terms of fuel consumption, the effect of LVO is round 2%, depending on the test conditions, especially if the test has taken place in laboratory or “on road” conditions. This study presents the fuel consumption benefits of a commercial 5W20, compared against higher SAE grade oils, on a light duty diesel engine, when it is running under motored test, stationary fired test and the New European Driving Cycle (NEDC).

Vicente Macián; Bernardo Tormos; Vicente Bermúdez; Leonardo Ramírez

2014-01-01T23:59:59.000Z

259

VTA Prototype Fuel Cell Bus Evaluation: Interim Results (Presentation)  

Broader source: Energy.gov [DOE]

Details hydrogen fuel cell buses being evaluated in service at AC Transit. Presented at the APTA Bus and Paratransit Conference in Anaheim, California, April 30 through May 3, 2006.

260

BC Transit Fuel Cell Bus Project: Evaluation Results Report  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

energy: 47 kWh Accessories Electrical Fuel storage Eight roof mounted, Dynetek, type 3 tanks; 5,000 psi rated; 56 kg hydrogen (useful) Range 5 337-381 km (210-237 miles) Bus...

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

BC Transit Fuel Cell Bus Project Evaluation Results: Second Report  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

energy: 47 kWh Accessories Electrical Fuel storage Eight roof mounted, Dynetek, type 3 tanks; 5,000 psi rated; 56 kg hydrogen (useable) Range 7 337-381 km (210-237 miles) Bus...

262

Commercial Buildings Energy Consumption and Expenditures 1992...  

U.S. Energy Information Administration (EIA) Indexed Site

1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

263

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

264

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square...

265

US ENC IL Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

IL IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Illinois households spending 2% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

266

US ENC IL Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

IL IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Illinois households spending 2% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

267

US ENC MI Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

MI MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Michigan households spending 6% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

268

US ENC MI Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

MI MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Michigan households spending 6% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

269

Waste biomass from production process co-firing with coal in a steam boiler to reduce fossil fuel consumption: A case study  

Science Journals Connector (OSTI)

Abstract Waste biomass is always generated during the production process in industries. The ordinary way to get rid of the waste biomass is to send them to landfill or burn it in the open field. The waste may potentially be used for co-firing with coal to save fossil fuel consumption and also reduce net carbon emissions. In this case study, the bio-waste from a Nicotiana Tabacum (NT) pre-treatment plant is used as the biomass to co-fire with coal. The samples of NT wastes were analysed. It was found that the wastes were of the relatively high energy content which were suitable for co-firing with coal. To investigate the potential and benefits for adding NT wastes to a Fluidised Bed Combustion (FBC) boiler in the plant, detailed modelling and simulation are carried out using the European Coal Liquefaction Process Simulation and Evaluation (ECLIPSE) process simulation package. The feedstock blending ratios of NT waste to coal studied in this work are varied from 0% to 30%. The results show that the addition of NT wastes may decrease the emissions of CO2 and \\{SOx\\} without reducing the boiler performance.

Hongyan Gu; Kai Zhang; Yaodong Wang; Ye Huang; Neil Hewitt; Anthony P Roskilly

2013-01-01T23:59:59.000Z

270

Alternative fuel transit buses: Interim results from the National Renewable Energy Laboratory (NREL) Vehicle Evaluation Program  

SciTech Connect (OSTI)

The transit bus program is designed to provide a comprehensive study of the alternative fuels currently used by the transit bus industry. The study focuses on the reliability, fuel economy, operating costs, and emissions of vehicles running on the various fuels and alternative fuel engines. The alternative fuels being tested are methanol, ethanol, biodiesel and natural gas. The alternative fuel buses in this program use the most common alternative fuel engines from the heavy-duty engine manufacturers. Data are collected in four categories: Bus and route descriptions; Bus operating data; Emissions data; and, Capital costs. The goal is to collect 18 months of data on each test bus. This report summarizes the interim results from the project to date. The report addresses performance and reliability, fuel economy, costs, and emissions of the busses in the program.

Motta, R.; Norton, P.; Kelly, K.J.; Chandler, K.

1995-05-01T23:59:59.000Z

271

A Two-Phase Pressure Drop Model Incorporating Local Water Balance and Reactant Consumption in PEM Fuel Cell Gas Channels  

E-Print Network [OSTI]

), and directly affects cost and sizing of fuel cell subsystems. Within several regions of PEMFC operating Fuel Cell Gas Channels E. J. See and S. G. Kandlikar Department of Mechanical Engineering, Rochester in proton exchange membrane fuel cells (PEMFCs). The ability to model two-phase flow and pressure drop

Kandlikar, Satish

272

Alameda-Contra Costa Transit District Fuel Cell Transit Buses: Evalluation Results Update  

Broader source: Energy.gov [DOE]

This report is an update to the 2007 preliminary results report on hydrogen fuel cell and diesel buses operating at Alameda-Contra Costa Transit District.

273

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

274

BC Transit Fuel Cell Bus Project: Evaluation Results Report  

SciTech Connect (OSTI)

This report evaluates a fuel cell electric bus demonstration led by British Columbia Transit (BC Transit) in Whistler, Canada. BC Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory to evaluate the buses in revenue service. This evaluation report covers two years of revenue service data on the buses from April 2011 through March 2013.

Eudy, L.; Post, M.

2014-02-01T23:59:59.000Z

275

Displacing Natural Gas Consumption and Lowering Emissions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels and thereby reduce their natural gas consumption. Opportunity gas fuels include biogas from animal and agri- cultural wastes, wastewater plants, and landfills, as well as...

276

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

277

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand)...

278

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace...

279

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

280

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

282

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace...

283

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total...

284

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and alternative fuel vehicles; promotes the development, sale, distribution, and consumption of alternative fuels; promotes the development and use of alternative fuel vehicles...

285

BC Transit Fuel Cell Bus Project Evaluation Results: Second Report  

SciTech Connect (OSTI)

Second report evaluating a fuel cell electric bus (FCEB) demonstration led by British Columbia Transit (BC Transit) in Whistler, Canada. BC Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory to evaluate the buses in revenue service. NREL published its first report on the demonstration in February 2014. This report is an update to the previous report; it covers 3 full years of revenue service data on the buses from April 2011 through March 2014 and focuses on the final experiences and lessons learned.

Eudy, L.; Post, M.

2014-09-01T23:59:59.000Z

286

Impact of Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard Optimisation  

Broader source: Energy.gov [DOE]

A matrix of 10 diesel fuels was prepared and tested to establish an optimized ECU setting and a compensating algorithm for the engine.

287

Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap  

Broader source: Energy.gov [DOE]

Lean-burn improves PFI fuel economy by ~3% relative to best stoichiometric VCT/EGR conditions, when used in combination with VCT & EGR.

288

Plutonium Consumption Program, CANDU Reactor Project: Feasibility of BNFP Site as MOX Fuel Supply Facility. Final report  

SciTech Connect (OSTI)

An evaluation was made of the technical feasibility, cost, and schedule for converting the existing unused Barnwell Nuclear Fuel Facility (BNFP) into a Mixed Oxide (MOX) CANDU fuel fabrication plant for disposition of excess weapons plutonium. This MOX fuel would be transported to Ontario where it would generate electricity in the Bruce CANDU reactors. Because CANDU MOX fuel operates at lower thermal load than natural uranium fuel, the MOX program can be licensed by AECB within 4.5 years, and actual Pu disposition in the Bruce reactors can begin in 2001. Ontario Hydro will have to be involved in the entire program. Cost is compared between BNFP and FMEF at Hanford for converting to a CANDU MOX facility.

NONE

1995-06-30T23:59:59.000Z

289

Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications  

E-Print Network [OSTI]

Existing Vessels, Reducing Shipboard Fuel Consumption and48 Navy vessels have reported fuel consumption into the Navy

Williams, Charles

2014-01-01T23:59:59.000Z

290

Fuel Cell Research at DLR-Latest Results and current Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Research at DLR-Latest Results and current Projects Fuel Cell Research at DLR-Latest Results and current Projects Speaker(s): Werner Schnurnberger Date: March 27, 2008 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Galen Barbose Fuel cell R&D at the German Aerospace Center is focussing on both Membrane Fuel Cells (PEFC and DMFC) and high temperature Solid Oxide Fuel Cells (SOFC). The status of advanced DLR Manufacturing Technologies based on dry powder coating of membranes and plasma spray concepts for metal supported SOFC will be reported shortly. Fundamental research activities actually are focussed on in situ diagnostics using segmented cells and short stacks. Some latest results will be given for locally resolved current density distribution and temperature for both PEFC and SOFC. In addition,

291

Analysis Results for ARRA Projects: Enabling Fuel Cell Market Transformation (Presentation)  

SciTech Connect (OSTI)

This presentation discusses analysis results for American Recovery and Reinvestment Act early market fuel cell deployments and describes the objective of the project and its relevance to the Department of Energy Hydrogen and Fuel Cells Program; NREL's analysis approach; technical accomplishments including publication of a fourth set of composite data products; and collaborations and future work.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

2012-06-01T23:59:59.000Z

292

Development of a control-oriented model to optimise fuel consumption and NOX emissions in a DI Diesel engine  

Science Journals Connector (OSTI)

Abstract This paper describes a predictive NOX and consumption model, which is oriented to control and optimisation of DI Diesel engines. The model applies the Response Surface Methodology following a two-step process: firstly, the relationship between engine inputs (intake charge conditions and injection settings) and some combustion parameters (peak pressure, indicated mean effective pressure and burn angles) is determined; secondly, engine outputs (NOX and consumption) are predicted from the combustion parameters using NOX and mechanical losses models. Splitting the model into two parts allows using either experimental or modelled combustion parameters, thus enhancing the model flexibility. If experimental in-cylinder pressure is used to obtain combustion parameters, the mean error of predicted NOX and consumption are 2% and 6% respectively, with a calculation time of 5.5 ms. Using modelled parameters reduces the calculation time to 1.5 ms, with a penalty in the accuracy. The model performs well in a multi-objective optimisation, reducing NOX and consumption in different amounts depending on the objective of the optimisation.

S. Molina; C. Guardiola; J. Martín; D. García-Sarmiento

2014-01-01T23:59:59.000Z

293

A Photovoltaic-Hydrogen-Fuel Cell Energy System: Preliminary Operational Results  

Science Journals Connector (OSTI)

We report preliminary operational results for a photovoltaic (PV) energy system which uses hydrogen as the storage medium and a fuel cell as the regeneration technology. The system installed at the Humboldt St...

P. A. Lehman; C. E. Chamberlin

1991-01-01T23:59:59.000Z

294

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network [OSTI]

AND FUEL CONSUMPTION FOR DIESEL - POWERED NONROAD FORKLIFT ENGINES ,AND FUEL CONSUMPTION FOR DIESEL - POWERED NONROAD FORKLIFT ENGINES ,

Delucchi, Mark

2003-01-01T23:59:59.000Z

295

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Consumption and Efficiency Consumption and Efficiency All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 13 results Generated_thumb20130810-31804-1ox6tpc Average Annual Fuel Use of Major Vehicle Categories Generated_thumb20130810-31804-1ox6tpc Comparison of fuel use, miles traveled, and fuel economy among vehicle types Last update April 2013 View Graph Graph Download Data Generated_thumb20130810-31804-ufdolp Average Annual Vehicle Miles Traveled of Major Vehicle Categories

296

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimize the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimize gaseous emissions, such as NOx. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R.

1998-07-01T23:59:59.000Z

297

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimise the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimise gaseous emissions, such as NO{sub x}. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The next sections of the paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R. [ABB Combustion Services Limited, Derby (United Kingdom)

1998-04-01T23:59:59.000Z

298

Natural Gas Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Lease Fuel Consumption Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential Volumes Delivered to Commercial Consumers Volumes Delivered to Industrial Consumers Volumes Delivered to Vehicle Fuel Consumers Volumes Delivered to Electric Power Consumers Period: Monthly Annual Lease Fuel Consumption Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential Volumes Delivered to Commercial Consumers Volumes Delivered to Industrial Consumers Volumes Delivered to Vehicle Fuel Consumers Volumes Delivered to Electric Power Consumers Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 23,103,793 23,277,008 22,910,078 24,086,797 24,477,425 25,533,448 1949-2012 Alabama 418,512 404,157 454,456 534,779 598,514 666,738 1997-2012 Alaska 369,967 341,888 342,261 333,312 335,458 343,110 1997-2012

299

Low-Volume Power Supply for Vehicular Fuel Injection Systems  

E-Print Network [OSTI]

include reduced fuel consumption, pollution and noise levels. The fuel injectors adjust the engine actuated fuel injection systems have resulted in major advances in internal combustion engines [1]. Those for the engine injection system The fuel is supplied using fast motion injector needles. The motion

Prodiæ, Aleksandar

300

Cost-Effective Choices of Marine Fuels in a Carbon-Constrained World: Results from a Global Energy Model  

Science Journals Connector (OSTI)

Cost-Effective Choices of Marine Fuels in a Carbon-Constrained World: Results from a Global Energy Model ... † Department

Maria Taljegard; Selma Brynolf; Maria Grahn; Karin Andersson; Hannes Johnson

2014-10-06T23:59:59.000Z

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program  

SciTech Connect (OSTI)

Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO2 particle fuel up to about 10% FIMA and 1150°C, UO2 fuel is known to have limitations because of CO formation and kernel migration at the high burnups, power densities, temperatures, and temperature gradients that may be encountered in the prismatic modular HTGRs. With uranium oxycarbide (UCO) fuel, the kernel composition is engineered to prevent CO formation and kernel migration, which are key threats to fuel integrity at higher burnups, temperatures, and temperature gradients. Furthermore, the recent poor fuel performance of UO2 TRISO fuel pebbles measured in Chinese irradiation testing in Russia and in German pebbles irradiated at 1250°C, and historic data on poorer fuel performance in safety testing of German pebbles that experienced burnups in excess of 10% FIMA [1] have each raised concern about the use of UO2 TRISO above 10% FIMA and 1150°C and the degree of margin available in the fuel system. This continues to be an active area of study internationally.

David Petti

2014-06-01T23:59:59.000Z

302

Evaluation of coal-derived liquids as boiler fuels. Volume 2: boiler test results. Final report  

SciTech Connect (OSTI)

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases. The first phase included the combustion tests of the two conventional fuels (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). The second phase involved the evaluation of three additional CDL fuels (H-Coal light distillate, Exxon Donor Solvent full range distillate and Solvent Refined Coal-II middle distillate). The test boiler was a front wall-fired Babcock and Wilcox unit with a rated steam flow of 425,000 lb/h and a generating capacity of 40 MW. Boiler performance and emissions were evaluated with baseline and CDL fuels at 15, 25, 40 MW loads and at various excess air levels. Low NO/sub x/ (staged) combustion techniques were also implemented. Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. The CDL fuels could be handled similarly to No. 2 oil with appropriate safety procedures and materials compatibility considerations. Volume 2 of a five-volume report contains the detailed boiler test results. 96 figs., 26 tabs.

Not Available

1985-09-01T23:59:59.000Z

303

Consumption & Efficiency - Data - U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Find statistics on energy consumption and efficiency across all fuel sources. + EXPAND ALL Residential Energy Consumption Survey Data Household characteristics Release Date: March 28, 2011 Survey data for occupied primary housing units. Residential Energy Consumption Survey (RECS)

304

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

end-use Residential primary energy consumption was 6.6 EJ inof primary energy. Primary energy consumption includes final14 Residential Primary Energy Consumption by Fuel (with

Zhou, Nan

2010-01-01T23:59:59.000Z

305

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

18 Figure 6 Primary Energy Consumption by End-Use in24 Figure 7 Primary Energy Consumption by Fuel in Commercialbased on total primary energy consumption (source energy),

Fridley, David G.

2008-01-01T23:59:59.000Z

306

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

liters Figure 7 Primary Energy Consumption (EJ) Refrigeratorby Efficiency Class Primary Energy Consumption (EJ) Figure 8by Fuel Figure 1 Primary Energy Consumption by End-use)

Zhou, Nan

2010-01-01T23:59:59.000Z

307

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels & Infrastructure Fuels & Infrastructure All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 49 results Fuel Trends - Generated_thumb20131212-30432-1q2ycmx Average Retail Fuel Prices in the U.S. Generated_thumb20131212-30432-1q2ycmx Trend of alternative and traditional motor fuel prices from 2000-2013 Last update December 2013 View Graph Graph Download Data Generated_thumb20130810-31804-eaiva6 Consumption of Natural Gas in the U.S.

308

Hybrid Cars Now, Fuel Cell Cars Later  

Science Journals Connector (OSTI)

...Cars Now, Fuel Cell Cars...manufacturer of diesel engines) and an advisor...Power, a fuel cell manufacturer...2). This consumption resulted in...vehicles and fuel cell (FC...combustion engine (ICE) drive...gasoline, or diesel). For each...

Nurettin Demirdöven; John Deutch

2004-08-13T23:59:59.000Z

309

Monitoring and Management of Refinery Energy Consumption  

E-Print Network [OSTI]

the effects of same other nOl1"operational variables on the energy target. Figure 10 shows the results of the monitoring period in rep;Jrt form. The actual consumption for each utility is listed and converted to energy content. The base target consumption... ===============~===~.========.=.=====.=========~====================~===== ENERGY TOTAL CONTENT ENEF~GY ACTW~L CONSUMPT I ON UI\\lITS BTU/UI\\lIT MMBTU/DAY FUEL G?\\S: 441425.0 SCFH 1401.0 14842.5 FUEL OIL: O.C' BPO 6470000.0 0.0 HP STEAI1: -79344.0 tt/Hf~ 1136. C' -2163.2 MP STEAI1: 48488.0 tt/HR 952.0 1107.9 LP STEAM: BFW...

Pelham, R. O.; Moriarty, R. D.; Hudgens, P. D.

310

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

311

Bus HVAC energy consumption test method based on HVAC unit behavior  

Science Journals Connector (OSTI)

This paper presents a test method for determination of energy consumption of bus HVAC unit. The energy consumption corresponds to a bus engine fuel consumption increase during the HVAC unit operation period. The HVAC unit energy consumption is determined from the unit input power, which is measured under several levels of bus engine speeds and at different levels of testing heat load in the laboratory environment. Since the bus engine fuel consumption is incrementally induced by powering an HVAC unit, the results are subsequently recalculated to the unit fuel consumption under the defined road cycles in terms of standardized diesel engine. The method is likewise applicable either for classic or electric HVAC units with a main consumer (compressor or high voltage alternator) mechanically driven directly from the bus engine and also for electric HVAC units supplied from an alternative electric energy source in case of hybrid or fully electric buses.

M. Hegar; M. Kolda; M. Kopecka; V. Rajtmajer; A. Ryska

2013-01-01T23:59:59.000Z

312

A new hybrid pneumatic combustion engine to improve fuel consumption of wind–Diesel power system for non-interconnected areas  

Science Journals Connector (OSTI)

This paper presents an evaluation of an optimized Hybrid Pneumatic-Combustion Engine (HPCE) concept that permits reducing fuel consumption for electricity production in non-interconnected remote areas, originally equipped with hybrid Wind–Diesel System (WDS). Up to now, most of the studies on the pneumatic hybridization of Internal Combustion Engines (ICE) have dealt with two-stroke pure pneumatic mode. The few studies that have dealt with hybrid pneumatic-combustion four-stroke mode require adding a supplementary valve to charge compressed air in the combustion chamber. This modification means that a new cylinder head should be fabricated. Moreover, those studies focus on spark ignition engines and are not yet validated for Diesel engines. Present HPCE is capable of making a Diesel engine operate under two-stroke pneumatic motor mode, two-stroke pneumatic pump mode and four-stroke hybrid mode, without needing an additional valve in the combustion chamber. This fact constitutes this study’s strength and innovation. The evaluation of the concept is based on ideal thermodynamic cycle modeling. The optimized valve actuation timings for all modes lead to generic maps that are independent of the engine size. The fuel economy is calculated for a known site during a whole year, function of the air storage volume and the wind power penetration rate.

Tammam Basbous; Rafic Younes; Adrian Ilinca; Jean Perron

2012-01-01T23:59:59.000Z

313

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Third Results Reports  

SciTech Connect (OSTI)

This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. NREL has previously published two reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from July 2011 through January 2012.

Eudy, L.; Chandler, K.

2012-05-01T23:59:59.000Z

314

HTGR Unit Fuel Pebble k-infinity Results Using Chord Length Sampling, invited T.J. Donovan  

E-Print Network [OSTI]

HTGR Unit Fuel Pebble k-infinity Results Using Chord Length Sampling, invited T.J. Donovan Lockheed) fuel pebble element. This paper presents comparison results of k calculations performed on a LEUPRO-1 where the TRISO fuel particles within the pebble are randomly distributed. Finally, the heterogeneous

Danon, Yaron

315

Sensitivity Analysis of FEAST-Metal Fuel Performance Code: Initial Results  

SciTech Connect (OSTI)

This memo documents the completion of the LANL milestone, M3FT-12LA0202041, describing methodologies and initial results using FEAST-Metal. The FEAST-Metal code calculations for this work are being conducted at LANL in support of on-going activities related to sensitivity analysis of fuel performance codes. The objective is to identify important macroscopic parameters of interest to modeling and simulation of metallic fuel performance. This report summarizes our preliminary results for the sensitivity analysis using 6 calibration datasets for metallic fuel developed at ANL for EBR-II experiments. Sensitivity ranking methodology was deployed to narrow down the selected parameters for the current study. There are approximately 84 calibration parameters in the FEAST-Metal code, of which 32 were ultimately used in Phase II of this study. Preliminary results of this sensitivity analysis led to the following ranking of FEAST models for future calibration and improvements: fuel conductivity, fission gas transport/release, fuel creep, and precipitation kinetics. More validation data is needed to validate calibrated parameter distributions for future uncertainty quantification studies with FEAST-Metal. Results of this study also served to point out some code deficiencies and possible errors, and these are being investigated in order to determine root causes and to improve upon the existing code models.

Edelmann, Paul Guy [Los Alamos National Laboratory; Williams, Brian J. [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory; Yacout, Abdellatif [Argonne National Laboratories

2012-06-27T23:59:59.000Z

316

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

medium- and heavy-duty vehicles must implement strategies to reduce petroleum consumption and emissions by using alternative fuels and improving vehicle fleet fuel...

317

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Tax Exemption The retail sale, use, storage, and consumption of alternative fuels is exempt from the state retail sales and use tax. (Reference North Carolina...

318

Cost evaluation of a novel 5-kW diesel-powered solid oxide fuel cell auxiliary power unit (APU).  

E-Print Network [OSTI]

??Idling heavy-duty trucks result in poor fuel consumption and harmful emissions. The Auxiliary Power Unit (APU) is one of the methods to reduce idling. The… (more)

Pillala, Chakradhar.

2009-01-01T23:59:59.000Z

319

FTP Emissions Test Results from Flexible-Fuel Methanol Dodge Spirits and Ford Econoline Vans  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

FTP Emissions Test Results from Flexible-Fuel FTP Emissions Test Results from Flexible-Fuel Methanol Dodge Spirits and Ford Econoline Vans Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Wendy Clark Automotive Testing Laboratories, Inc. Leslie Eudy ManTech Environmental Technology, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S. Department of Energy, a U.S. government agency. As such, this information is in the public domain, may be copied and otherwise accessed freely, and is not subject to copyright laws. These papers were previously published in hard copy form by the Society of Automotive Engineers, Inc.

320

E-Print Network 3.0 - alternative fuel news Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alternative fuels and the vehicles that use them Define fuel efficiency... Identify automobile manufacturers currently making alternative fuel vehicles Identify automobile... to...

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

E-Print Network 3.0 - amazon state fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 2005 Fuel Tank Capacity and Gas Pump Accuracy By Juana Williams Often when fuel prices rise... to the accuracy of gasoline pumps (retail motor-fuel dispensers)....

322

E-Print Network 3.0 - air fuel ratio Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 3 Fuel Cell Power PlantsFuel...

323

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

considered: (a) Direct hydrogen fuel cell vehicles (FCVs)has focused mainly on hydrogen fuel cells and batteries.are considered: Direct hydrogen fuel cell vehicles (FCVs)

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

324

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network [OSTI]

on the attitude towards hydrogen fuel cell buses in the CUTEthe attitude towards hydrogen fuel cell buses in Stockholm.8680 BEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES AND

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

325

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network [OSTI]

a background on alternative fuel acceptance research, withexperience with alternative fuels, impressions of hydrogenRespondent experience with alternative fuels and hydrogen 3)

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

326

Energy Consumption  

Science Journals Connector (OSTI)

We investigated the relationship between electrical power consumption per capita and GDP per capita in 130 countries using the data reported by World Bank. We found that an electrical power consumption per capita...

Aki-Hiro Sato

2014-01-01T23:59:59.000Z

327

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

(MECS) > MECS 1994 Combined Consumption and Fuel Switching (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption Logo Full Report - (file size 5.4 MB) pages:531 Selected Sections (PDF format) Contents (file size 56 kilobytes, 10 pages). Overview (file size 597 kilobytes, 11 pages). Chapters 1-3 (file size 265 kilobytes, 9 pages). Chapter 4 (file size 1,070 kilobytes, 15 pages). Appendix A - Detailed Tables Tables A1 - A8 (file size 1,031 kilobytes, 139 pages). Tables A9 - A23 (file size 746 kilobytes, 119 pages). Tables A24 - A29 (file size 485 kilobytes, 84 pages). Tables A30 - A44 (file size 338 kilobytes, 39 pages). Appendix B (file size 194 kilobytes, 24 pages). Appendix C (file size 116 kilobytes, 16 pages).

328

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

diesel fuel consumption, lubricant changes, and enginefuel consumption, and costs associated with diesel engineDiesel Idling diesel consumption Diesel fuel cost Lubricant cost Engine

2002-01-01T23:59:59.000Z

329

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

diesel fuel consumption, lubricant changes, and enginefuel consumption, and costs associated with diesel enginediesel consumption Diesel fuel cost Lubricant cost Engine

2002-01-01T23:59:59.000Z

330

Results of PIE of experimental (U-Mo)-based LEU disperse fuel compositions  

SciTech Connect (OSTI)

Performed in frames of Russian RERTR Program were post-irradiation examinations of 12 types of disperse (U-Mo)-based fuel compositions in Al matrix. The goal of the work was to substantiate serviceability of the new fuel compositions being developed for utilization in Russian-built pool-type research reactors. Among the methods of PIE used in this work were visual examination, gamma-scanning, optical metallography, SEM, X-ray analysis and some others. The present paper is dedicated to an analysis of the main results of PIE completed so far. Special attention has been paid to the parameters affecting formation of interaction layer between fuel granules and matrix Al. (author)

Vatulin, A.; Dobrikova, I.; Suprun, V.; Petrov, Y.; Trifonov, Y. [VNIINM, Moscow (Russian Federation); Alexandrov, V.; Ijutov, A.; Novoselov, A.; Starkov, V.; Shishin, V.; Yakovlev, V. [RIAR, Dimitrovgrad (Russian Federation)

2008-07-15T23:59:59.000Z

331

E-Print Network 3.0 - autothermal jp5 fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Fuel Processing Valri...

332

1999 Commercial Buildings Energy Consumption Survey Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption and Expenditures Tables Table C1. Total Energy Consumption by Major Fuel ............................................... 124 Table C2. Total Energy Expenditures by Major Fuel................................................ 130 Table C3. Consumption for Sum of Major Fuels ...................................................... 135 Table C4. Expenditures for Sum of Major Fuels....................................................... 140 Table C5. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels................................................................................................... 145 Table C6. Expenditures by Census Region for Sum of Major Fuels......................... 150 Table C7. Consumption and Gross Energy Intensity by Building Size for Sum of

333

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2006;" 3 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

334

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2002;" 3 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

335

Results from Tight and Loose Coupled Multiphysics in Nuclear Fuels Performance Simulations using BISON  

SciTech Connect (OSTI)

The behavior of nuclear fuel in the reactor environment is affected by multiple physics, most notably heat conduction and solid mechanics, which can have a strong influence on each other. To provide credible solutions, a fuel performance simulation code must have the ability to obtain solutions for each of the physics, including coupling between them. Solution strategies for solving systems of coupled equations can be categorized as loosely-coupled, where the individual physics are solved separately, keeping the solutions for the other physics fixed at each iteration, or tightly coupled, where the nonlinear solver simultaneously drives down the residual for each physics, taking into account the coupling between the physics in each nonlinear iteration. In this paper, we compare the performance of loosely and tightly coupled solution algorithms for thermomechanical problems involving coupled thermal and mechanical contact, which is a primary source of interdependence between thermal and mechanical solutions in fuel performance models. The results indicate that loosely-coupled simulations require significantly more nonlinear iterations, and may lead to convergence trouble when the thermal conductivity of the gap is too small. We also apply the tightly coupled solution strategy to a nuclear fuel simulation of an experiment in a test reactor. Studying the results from these simulations indicates that perhaps convergence for either approach may be problem dependent, i.e., there may be problems for which a loose coupled approach converges, where tightly coupled won’t converge and vice versa.

S. R. Novascone; B. W. Spencer; D. Andrs; R. L. Williamson; J. D. Hales; D. M. Perez

2013-05-01T23:59:59.000Z

336

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel use and CO2 emissions, has resulted in  

E-Print Network [OSTI]

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel, combined with the expanded demand for biofuels, will result in higher food prices, since less land by using biofuels (vegetable oils). But the use of biofuels may not reduce CO2 emissions, even when

337

Santa Clara Valley Transportation Authority and San Mateo County Transit District; Fuel Cell Transit Buses: Preliminary Evaluation Results  

SciTech Connect (OSTI)

Report provides preliminary results from an evaluation of prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California.

Eudy, L.; Chandler, K.

2006-03-01T23:59:59.000Z

338

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results  

SciTech Connect (OSTI)

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

Chandler, K.; Eudy, L.

2006-11-01T23:59:59.000Z

339

Santa Clara Valley Transportation Authority and San Mateo County Transit District-- Fuel Cell Transit Buses: Evaluation Results  

Broader source: Energy.gov [DOE]

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

340

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: Second Results Report  

SciTech Connect (OSTI)

This report presents results of a demonstration of 12 new fuel cell electric buses (FCEB) operating in Oakland, California. The 12 FCEBs operate as a part of the Zero Emission Bay Area (ZEBA) Demonstration, which also includes two new hydrogen fueling stations. This effort is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. The first results report was published in August 2011, describing operation of these new FCEBs from September 2010 through May 2011. New results in this report provide an update through April 2012.

Eudy, L.; Chandler, K.

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuels Production Biofuels Production All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 17 results Generated_thumb20130810-31804-ue59qa Advanced Fuels RFS2 Mandates and Consumption Generated_thumb20130810-31804-ue59qa Last update August 2012 View Graph Graph Download Data Biofuelsatlas BioFuels Atlas Biofuelsatlas BioFuels Atlas is an interactive map for comparing biomass feedstocks and biofuels by location. This tool helps users select from and apply biomass

342

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

various data sets, estimates of bunker fuel consumption forvarious data sets, estimates of bunker fuel consumption foras international marine bunker fuel. For the remaining 5% of

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

343

2006-01-0434 Standardized Equation for Hydrogen Gas Densities for Fuel  

E-Print Network [OSTI]

the Fuel Consumption and Range of Fuel Cell Powered Electric and Hybrid Electric Vehicles Using Compressed are presented with experimental data and with the full 32-term equation of state. INTRODUCTION Motor vehicle in fuel economy results. The advent of new drive technology and fuels in motor vehicles has required

Magee, Joseph W.

344

Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Federal Test Procedure Emissions Test Results from Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Wendy Clark Automotive Testing Laboratories, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S. Department of Energy, a U.S. government agency. As such, this information is in the public domain, may be copied and otherwise accessed freely, and is not subject to copyright laws. These papers were previously published in hard copy form by the Society of Automotive Engineers, Inc. (Telephone: 412.776.4970; E-mail: publications@sae.org)

345

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Third Report  

SciTech Connect (OSTI)

This report presents results of a demonstration of 12 fuel cell electric buses (FCEB) operating in Oakland, California. The 12 FCEBs operate as a part of the Zero Emission Bay Area (ZEBA) Demonstration, which also includes two new hydrogen fueling stations. This effort is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published two previous reports, in August 2011 and July 2012, describing operation of these buses. New results in this report provide an update covering eight months through October 2013.

Eudy, L.; Post, M.

2014-05-01T23:59:59.000Z

346

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SunLine Transit Agency SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report L. Eudy and K. Chandler Technical Report NREL/TP-5600-57560 January 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report L. Eudy and K. Chandler Prepared under Task No. HT12.8210 Technical Report NREL/TP-5600-57560 January 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

347

Evaluation of coal-derived liquids as boiler fuels. Volume 3. Emissions test results. Final report  

SciTech Connect (OSTI)

A combustion demonstration using six coal-derived fuels was conducted on a utility boiler located at the plant, Sweatt Electric Generating Station of Mississippi Power Company, in Meridian, Mississippi. Volume 1, of a 5 volume report, contains a comprehensive report of the whole test program - see abstract of Volume 1 for a detailed abstract of the whole program. Volume 3 contains detailed emissions testing results. 41 figs., 6 tabs. (LTN)

Not Available

1985-09-01T23:59:59.000Z

348

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

May 13 - 16, Appendix I Fuel cell hybrid vehicles with loadarea: 510 cm 2 ) Appendix II Fuel cell vehicles with powerarea: 510 cm 2 ) Appendix III Fuel cell vehicles with load

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

349

E-Print Network 3.0 - air fuel spray Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and distribution of fuel drops in the spray field, fuel-air mixing... and amount of pollution are of importance in the combustion process. The fuel spray characteristics play......

350

EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report, Fleet Compliance Results for MY 2009/FY 2010 (Brochure)  

SciTech Connect (OSTI)

This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2009/fiscal year 2010.

Not Available

2010-12-01T23:59:59.000Z

351

Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

352

Electric utilities, fuel use, and responsiveness to fuel prices  

Science Journals Connector (OSTI)

Abstract This research tests the impact of changes in fuel price to explain fuel use by electric utilities. We employ a three-stage least squares model that explains changes in fuel use as a function of changes in three fuel prices. This model is repeated across sub-samples of data aggregated at the plant level and operating holding company level. We expect that plants and holding companies reduce fuel use when fuel prices rise. Several fuel substitution effects within and across plants and holding companies are demonstrated, as well as several frictions. At the plant level, higher prices of natural gas lead to less natural gas consumption, less coal consumption, and more fuel oil consumption. At the operating holding company level, results demonstrate the inelasticity of coal use and the increases of natural gas in response to higher coal prices. Subsamples demonstrate heterogeneity of results across different plants. Results emphasize that technological, market, and regulatory frictions may hinder the performance of energy policies.

Daniel C. Matisoff; Douglas S. Noonan; Jinshu Cui

2014-01-01T23:59:59.000Z

353

E-Print Network 3.0 - acr-1000 reference fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting Summary: Electricity and heatAC Electricity Gaseous fuel Pathways for Bioenergy Systems Reference Scott Turn "pathway... & Heat Other Fuels, Chemicals, &...

354

E-Print Network 3.0 - alternative fuel light Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CELL TECHNOLOGIES MARKET REPORT Summary: , soldier power and light electric vehicles. SFC markets its fuel cells for the leisure markets under... 2008 FUEL CELL TECHNOLOGIES MARKET...

355

FCV Learning Demonstration: First-Generation Vehicle Results and Factors Affecting Fuel Cell Degradation (Presentation)  

SciTech Connect (OSTI)

Presentaion on the FCV Learning Demonstration and factors affecting fuel cell degradation given at the Fuel Cell Seminar on October 17, 2007 in San Antonio, TX.

Wipke, K.; Sprik, S.; Kurtz, J.; Thomas, H.; Garbak, J.

2007-10-17T23:59:59.000Z

356

E-Print Network 3.0 - air force fuels Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 3 Hydrogen Fuel Cell Engines...

357

E-Print Network 3.0 - alcohol fuel cells Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Solid Oxide Fuel Cells...

358

E-Print Network 3.0 - advanced ule fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 3 August 2005 Fuel Tank...

359

E-Print Network 3.0 - acid fuel-cell buses Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Fuel Cells in Transit...

360

E-Print Network 3.0 - air fuel cell Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy to help develop fuel cell materials, processes, and systems... energy carrier for fuel ... Source: Argonne National Laboratory, Chemical Sciences and...

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

E-Print Network 3.0 - agency fuel cell Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 HYDROGEN FUEL CELL BUS...

362

E-Print Network 3.0 - ahwr fuel composition Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 3 August 2005 Fuel Tank Capacity and Gas Pump...

363

E-Print Network 3.0 - alternate fuel cycles Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanical Engineering Technical Elective Introduction to Fuel Cell Systems Summary: in alternative energy sources. Fuel Cell Basic Design COURSE TOPICS INCLUDE The prevalent...

364

E-Print Network 3.0 - alternative fuel buses Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

applications for alternative fuel or advanced... ) mandated a conversion from diesel to alternative fuel buses. Investigation into alternatives to diesel... , preliminary studies...

365

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

and simulation of a PEM fuel cell/ultra-capacitor hybridOptimal Control for a PEM Fuel Cell Hybrid Vehicle,

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

366

E-Print Network 3.0 - advanced fissile fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

will be exhausted in the foreseeable future. Spent fuel is dangerous... to the greenhouse effect. New Generation reactors to achieve the reuse of spent fuel. Fusion...

367

E-Print Network 3.0 - aviation fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for satisfying air transportation fuel requirements. Both... concerns due to the greenhouse effect of anthropogenic CO2 require that future fuel alternatives ... Source: Fisher,...

368

E-Print Network 3.0 - assess fossil fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Sciences and Ecology ; Geosciences 6 EARTH'S CLIMATE, THE GREENHOUSE EFFECT, AND ENERGY Summary: ,PgCyr Fossil Fuel Emissions Fossil Fuel - Marland...

369

E-Print Network 3.0 - atmospheric fossil fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Centre de mathmatiques Collection: Mathematics 10 EARTH'S CLIMATE, THE GREENHOUSE EFFECT, AND ENERGY Summary: ,PgCyr Fossil Fuel Emissions Fossil Fuel - Marland...

370

E-Print Network 3.0 - aviation fuels Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for satisfying air transportation fuel requirements. Both... concerns due to the greenhouse effect of anthropogenic CO2 require that future fuel alternatives ... Source: Fisher,...

371

Survey Consumption  

Gasoline and Diesel Fuel Update (EIA)

fsidentoi fsidentoi Survey Consumption and 'Expenditures, April 1981 March 1982 Energy Information Administration Wasningtoa D '" N """"*"""*"Nlwr. . *'.;***** -. Mik>. I This publication is available from ihe your COr : 20585 Residential Energy Consumption Survey: Consum ption and Expendi tures, April 1981 Through March 1982 Part 2: Regional Data Prepared by: Bruce Egan This report was prepared by the Energy Information Administra tion, the independent statistical

372

Performance analysis results of a battery fuel gauge algorithm at multiple temperatures  

Science Journals Connector (OSTI)

Abstract Evaluating a battery fuel gauge (BFG) algorithm is a challenging problem due to the fact that there are no reliable mathematical models to represent the complex features of a Li-ion battery, such as hysteresis and relaxation effects, temperature effects on parameters, aging, power fade (PF), and capacity fade (CF) with respect to the chemical composition of the battery. The existing literature is largely focused on developing different BFG strategies and BFG validation has received little attention. In this paper, using hardware in the loop (HIL) data collected form three Li-ion batteries at nine different temperatures ranging from ?20 °C to 40 °C, we demonstrate detailed validation results of a battery fuel gauge (BFG) algorithm. The BFG validation is based on three different BFG validation metrics; we provide implementation details of these three BFG evaluation metrics by proposing three different BFG validation load profiles that satisfy varying levels of user requirements.

B. Balasingam; G.V. Avvari; K.R. Pattipati; Y. Bar-Shalom

2015-01-01T23:59:59.000Z

373

Results from the Microcab fuel cell vehicle demonstration at the University of Birmingham  

Science Journals Connector (OSTI)

The UK's first fleet of hydrogen fuel cell vehicles – the Microcab H4 series – has been demonstrated at the University of Birmingham for 21 months. The five prototypes have been used interchangeably as four-seat urban taxis and light goods vehicles around campus, accumulating over 4,000 km on the campus road network and being filled with 68 kg of hydrogen. The performance and efficiency of these vehicles have been monitored in-situ throughout the trial, using custom-built data loggers for the fuel cell and other powertrain components. This paper presents the key findings relating to the powertrain performance and efficiency. While the peak tank-to-wheel efficiency was 27%, the Microcabs were found on average to be 18% efficient at converting hydrogen into tractive power. The causes of this loss in efficiency are analysed and discussed, and show that improving the control and interaction of the individual components would result in substantially improved vehicle performance.

Iain Staffell

2011-01-01T23:59:59.000Z

374

Operating results and simulations on a fuel cell for residential energy systems  

Science Journals Connector (OSTI)

This paper describes the performance evaluation of a polymer electrolyte fuel cell (PEFC) prototype and demonstration experiments of the electric power and domestic hot water system using it from a pragmatic view-point. Three types of demonstration experiments were carried out applying standard electric power and hot water demands. It was shown that the primary energy reduction rate of this system as compared to the conventional system reached up to 24% under double daily start and stop (DSS) operation. The amount of primary energy reduction in experiments using the energy demand of a household in Sapporo in winter exceeded the experimental results of the standard energy demand, demonstrating that the effects of the introduction of a fuel cell in cold regions could be considerable, in particular, during the winter season.

Yasuhiro Hamada; Ryuichiro Goto; Makoto Nakamura; Hideki Kubota; Kiyoshi Ochifuji

2006-01-01T23:59:59.000Z

375

Diesol: an alternative fuel for compression ignition engines  

SciTech Connect (OSTI)

Physical properties including specific gravity, kinematic viscosity, heat of combustion, flash point, cetane number and distillation curves are presented for several blends of No. 2 diesel fuel and soybean oil. The mixture is referred to as Diesol. The soybean oil received a minimal amount of refining by water-washing to remove most of the lecithin type gums. The Diesol fuels were tested in a Cooperative Fuel Research single cylinder diesel test engine to determine the short time engine performance using soybean oil as a diesel fuel extender. Brake specific fuel consumption, volumetric fuel consumption, exhaust smoke opacity and power were determined. Various blends of Diesol were also tested in a multicylinder diesel commercial power system. Results are presented to show the comparison between Diesol blends and diesel fuel. The fuel properties and engine performance test results indicate that soybean oil would be a viable extender of diesel fuel for compression-ignition engines.

Cochran, B.J.; Baldwin, J.D.C.; Daniel, L.R. Jr.

1981-01-01T23:59:59.000Z

376

Natural Gas Lease Fuel Consumption  

Gasoline and Diesel Fuel Update (EIA)

861,063 864,113 913,229 916,797 938,340 987,957 1983-2012 861,063 864,113 913,229 916,797 938,340 987,957 1983-2012 Alabama 11,345 11,136 10,460 10,163 10,367 12,389 1983-2012 Alaska 227,374 211,878 219,161 211,918 208,531 214,335 1983-2012 Arizona 20 20 17 19 17 12 1983-2012 Arkansas 1,502 2,521 4,091 5,340 6,173 6,599 1983-2012 California 56,936 64,689 63,127 64,931 44,379 51,154 1983-2012 Colorado 39,347 44,231 64,873 66,083 78,800 76,462 1983-2012 Florida 654 897 94 4,512 4,896 6,080 1983-2012 Gulf of Mexico 115,528 102,389 103,976 108,490 101,217 93,985 1999-2012 Illinois 39 41 62 50 101 122 1983-2012 Indiana 101 161 211 283 433 506 1983-2012 Kansas 10,232 12,803 15,169 13,461 12,781 17,017 1983-2012 Kentucky 2,676 3,914 4,862 5,626 5,925 6,095 1983-2012

377

Fossil Fuel Reserves Versus Consumption  

Science Journals Connector (OSTI)

In Table 2.1 of Chapter 2, data are presented which reveal that the U.S.’s known and recoverable reserves of petroleum are about 22.5 billion ... 2.2 percent of the known and recoverable reserves of the world. In...

Wendell H. Wiser

2000-01-01T23:59:59.000Z

378

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports An Assessment of EIA's Building Consumption Data Background image of CNSTAT logo The U.S. Energy Information Administration (EIA) routinely uses feedback from customers and outside experts to help improve its programs and products. As part of an assessment of its consumption

379

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network [OSTI]

hydrogen vehicles in public transportation, including taxis. This study exploring fuel cell powered passenger cars

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

380

Methanol: A Versatile Fuel for Immediate Use  

Science Journals Connector (OSTI)

...Specific fuel consumption-will certainly...necessitat-ing a larger fuel tank; but specific energy consumption (energy per...found that (i) fuel economy increased...Toyota (1900 cms engine, 85 brake horsepower...of knock and "Diesel operation...

T. B. Reed; R. M. Lerner

1973-12-28T23:59:59.000Z

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Trends Trends All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 9 results Generated_thumb20131212-30432-1q2ycmx Average Retail Fuel Prices in the U.S. Generated_thumb20131212-30432-1q2ycmx Trend of alternative and traditional motor fuel prices from 2000-2013 Last update December 2013 View Graph Graph Download Data Generated_thumb20130810-31804-eaiva6 Consumption of Natural Gas in the U.S. Generated_thumb20130810-31804-eaiva6

382

101. Natural Gas Consumption  

Gasoline and Diesel Fuel Update (EIA)

1. Natural Gas Consumption 1. Natural Gas Consumption in the United States, 1930-1996 (Million Cubic Feet) Table Year Lease and Plant Fuel Pipeline Fuel Delivered to Consumers Total Consumption Residential Commercial Industrial Vehicle Fuel Electric Utilities Total 1930 ....................... 648,025 NA 295,700 80,707 721,782 NA 120,290 1,218,479 1,866,504 1931 ....................... 509,077 NA 294,406 86,491 593,644 NA 138,343 1,112,884 1,621,961 1932 ....................... 477,562 NA 298,520 87,367 531,831 NA 107,239 1,024,957 1,502,519 1933 ....................... 442,879 NA 283,197 85,577 590,865 NA 102,601 1,062,240 1,505,119 1934 ....................... 502,352 NA 288,236 91,261 703,053 NA 127,896 1,210,446 1,712,798 1935 ....................... 524,926 NA 313,498 100,187 790,563 NA 125,239 1,329,487 1,854,413 1936 ....................... 557,404 NA 343,346

383

Tobacco Consumption  

Science Journals Connector (OSTI)

Tobacco consumption is the use of tobacco products in different forms such as , , , water-pipes or tobacco products. Cigarettes and tobacco products containing tobacco are highly engineered so as to creat...

Martina Pötschke-Langer

2008-01-01T23:59:59.000Z

384

Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low-Pressure Drop Systems to Reduce Engine Fuel Consumption  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

385

Results from NNWSI [Nevada Nuclear Waste Storage Investigations] Series 2 bare fuel dissolution tests  

SciTech Connect (OSTI)

The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Two bare spent fuel specimens plus the empty cladding hulls were tested in NNWSI J-13 well water in unsealed fused silica vessels under ambient hot cell air conditions (25{degree}C) in the currently reported tests. One of the specimens was prepared from a rod irradiated in the H. B. Robinson Unit 2 reactor and the other from a rod irradiated in the Turkey Point Unit 3 reactor. Results indicate that most radionuclides of interest fall into three groups for release modeling. The first group principally includes the actinides (U, Np, Pu, Am, and Cm), all of which reached solubility-limited concentrations that were orders of magnitude below those necessary to meet the NRC 10 CFR 60.113 release limits for any realistic water flux predicted for the Yucca Mountain repository site. The second group is nuclides of soluble elements such as Cs, Tc, and I, for which release rates do not appear to be solubility-limited and may depend on the dissolution rate of fuel. In later test cycles, {sup 137}Cs, {sup 90}Sr, {sup 99}Tc, and {sup 129}I were continuously released at rates between about 5 {times} 10{sup {minus}5} and 1 {times} 10{sup {minus}4} of inventory per year. The third group is radionuclides that may be transported in the vapor phase, of which {sup 14}C is of primary concern. Detailed test results are presented and discussed. 17 refs., 15 figs., 21 tabs.

Wilson, C.N.

1990-09-01T23:59:59.000Z

386

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Preliminary Evaluation Results  

SciTech Connect (OSTI)

This report provides an evaluation of three prototype fuel cell-powered transit buses operating at AC Transit in Oakland, California, and six baseline diesel buses similar in design to the fuel cell buses.

Chandler, K.; Eudy, L.

2007-03-01T23:59:59.000Z

387

E-Print Network 3.0 - annular fuel pellet Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

using biomass as a fuel source. Wood Pellets PhotoCredit:WoodPellets... throughout human history, but its prevalence as a heat source declined when fossil fuel prices dropped......

388

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

supercapacitors. Fuel cell/Li-ion battery hybrids achievedFUDS and US06 cycles Li-ion Battery Coupled to FC DC-Link16 Comparison of fuel cell/Li-ion battery hybrids with load

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

389

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Preliminary Evaluation Results  

Broader source: Energy.gov [DOE]

This report provides an evaluation of three prototype fuel cell-powered transit buses operating at AC Transit in Oakland, California, and six baseline diesel buses similar in design to the fuel cell buses.

390

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network [OSTI]

vehicles powered by clean fuel technology. Participants werewith respect to clean vehicle technology. The post-clinic

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

391

E-Print Network 3.0 - a-1 fuel production Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Biomaterials Waste Cooking Oil Crops Intermediate Products Conversion... Technologies Bioenergy Products Ethanol Biodiesel Electricity & Heat Other Fuels, Chemicals, &...

392

E-Print Network 3.0 - analysis phwr fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Biomaterials Waste Cooking Oil Crops Intermediate Products Conversion... Technologies Bioenergy Products Ethanol Biodiesel Electricity & Heat Other Fuels, Chemicals, & ......

393

Fuel Cell Vehicle and Infrastructure Learning Demonstration Status and Results (Presentation)  

SciTech Connect (OSTI)

Presentation on the Fuel Cell Vehicle and Infrastructure Learning Demonstration project prepared for the 215th Electrochemical Society Meeting.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2008-10-13T23:59:59.000Z

394

E-Print Network 3.0 - alkaline membrane fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Course Announcement:...

395

E-Print Network 3.0 - ap1000 fuel assembly Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 3 The Politically Correct...

396

E-Print Network 3.0 - atr wg-mox fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Experimental Study to...

397

E-Print Network 3.0 - advanced fuel cycles Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Course Announcement:...

398

E-Print Network 3.0 - advanced lcng fueling Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Alternative and Renewable ... Source: California Energy Commission Collection: Energy Storage, Conversion and Utilization 2 CALIFORNIA ALTERNATIVE FUELS MARKET...

399

E-Print Network 3.0 - advanced fuel cycle Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Course Announcement:...

400

Can Handling E85 Motor Fuel Cause Positive Breath Alcohol Test Results?  

Science Journals Connector (OSTI)

......unclear whether handling E85 fuel can falsely elevate BrAC. The...determine whether handling E85 fuel produces measurable BrAC and...semiconductor sensor powered by two AA batteries with a detection range of 0...8 US gallons (30 L) of E85 fuel under each of four scenarios......

Ran Ran; Michael E. Mullins

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network [OSTI]

Residential Density on Vehicle Usage and Energy ConsumptionType Choice, and Fuel Usage Total annual residentialResidential Density on Vehicle Usage and Energy Consumption

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

402

SRS 2010 Vegetation Inventory GeoStatistical Mapping Results for Custom Reaction Intensity and Total Dead Fuels.  

SciTech Connect (OSTI)

This report of the geostatistical analysis results of the fire fuels response variables, custom reaction intensity and total dead fuels is but a part of an SRS 2010 vegetation inventory project. For detailed description of project, theory and background including sample design, methods, and results please refer to USDA Forest Service Savannah River Site internal report “SRS 2010 Vegetation Inventory GeoStatistical Mapping Report”, (Edwards & Parresol 2013).

Edwards, Lloyd A. [Leading Solutions, LLC.; Paresol, Bernard [U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR.

2014-09-01T23:59:59.000Z

403

Manufacturing Consumption of Energy 1994 - Derived measures of end-use  

U.S. Energy Information Administration (EIA) Indexed Site

eialogo eialogo Calculation of MECS Energy Measures Reported energy values were used to construct several derived values, which, in turn, were used to prepare the estimates appearing in MECS consumption tables--First Use, Total Inputs, Offsite-Produced. These derived values are displayed in Table 1 and defined as follows: Energy produced offsite and consumed as a fuel. This derived value represents onsite consumption of fuels that were originally produced offsite. That is, they arrived at the establishment as the result of a purchase or were transferred to the establishment from outside sources. As such, this derived value is equivalent to consumption of "purchased" fuels as reported by the Census Bureau for the years 1974-1981. The Census Bureau defines "purchased" fuels to include those actually purchased plus those

404

Results of the MCNP analysis of 20/20 LEU fuel for the Oregon State University TRIGA Reactor  

SciTech Connect (OSTI)

The Monte Carlo Neutron/Photon (MCNP) code has been used to perform the neutronics analysis required to support revision of the Oregon State University TRIGA Reactor (OSTR) Safety Analysis Report (SAR). The SAR revision is a necessary part of the preparation of the application for authorization to convert the OSTR core from High Enriched Uranium (HEU) FLIP fuel to a Low Enriched Uranium (LEU) fuel. Before MCNP was applied to LEU-fueled cores, it was first validated by comparing MCNP calculations on FLIP cores to historical, measured values for these cores. The LEU fuel considered was the 20 wt%, 20% enriched (20/20) TRIGA fuel approved by the Nuclear Regulatory Commission (NRC) in NUREG 1282. The results show that the 20/20 fuel is much more reactive than FLIP fuel. A just-critical OSTR FLIP core contains 65 elements, while a just-critical 20/20 core only needs 51 elements. Similarly, the current operational FLIP core consists of 88 elements, whereas a 20/20 core giving the same core excess only requires 65 elements. This presents a significant problem for the OSTR because of potentially significant neutron flux loss in experimental facilities. Further analysis shows that to achieve a full size operational core of about 90 LEU elements the erbium content of the LEU fuel would need to be increased from 0.47wt% to about 0.85 wt%.

Dodd, B.; Klein, A.C.; Lewis, B.R.; Merritt, P.A.

1995-12-31T23:59:59.000Z

405

Results of the MCNP analysis of 20/20 LEU fuel for the Oregon State University TRIGA reactor  

SciTech Connect (OSTI)

The Monte Carlo Neutron/Photon (MCNP) code has been used to perform the neutronics analysis required to support revision of the Oregon State University TRIGA Reactor (OSTR) Safety Analysis Report (SAR). The SAR revision is a necessary part of the preparation of the application for authorization to convert the OSTR core from High Enriched Uranium (HEU) FLIP fuel to a Low Enriched Uranium (LEU) fuel. Before MCNP was applied to LEU-fueled cores, it was first validated by comparing MCNP calculations on FLIP cores to historical, measured values for these cores. The LEU fuel considered was the 20 wt%, 20 % enriched (20/20) TRIGA fuel approved by the Nuclear Regulatory Commission (NRC) in NUREG 1282. The results show that the 20/20 fuel is much more reactive than FLIP fuel. A just-critical OSTR FLIP core contains 65 elements, while a just-critical 20/20 core only needs 51 elements. Similarly, the current operational FLIP core consists of 88 elements, whereas a 20/20 core giving the same core excess only requires 65 elements. This presents a significant problem for the OSTR because of potentially significant neutron flux loss in experimental facilities. Further analysis shows that to achieve a full size operational core of about 90 LEU elements the erbium content of the LEU fuel would need to be increased from 0.47 wt% to about 0.85 wt%. (author)

Dodd, B.; Klein, A.C.; Lewis, B.R.; Merritt, P.A

1994-07-01T23:59:59.000Z

406

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fueling Stations Alternative Fueling Stations All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 13 results Arra-thumb ARRA Electrification Projects Arra-thumb Last update November 2012 View Map Graph Biofuelsatlas BioFuels Atlas Biofuelsatlas BioFuels Atlas is an interactive map for comparing biomass feedstocks and biofuels by location. This tool helps users select from and apply biomass data layers to a map, as well as query and download biofuels and feedstock

407

Physico-chemical characteristics of eight different biomass fuels and comparison of combustion and emission results in a small scale multi-fuel boiler  

Science Journals Connector (OSTI)

Abstract This study describes the results from the investigation of 7 different biomass fuel types produced on a farm, and a commercial grade wood pellet, for their physical, chemical, thermo-gravimetric and combustion properties. Three types of short rotation coppice (SRC) willow, two species of conifers, forest residues (brash), commercially produced wood-pellets and a chop harvested energy grass crop Miscanthus giganteus spp., (elephant grass) were investigated. Significant differences (p Combustion tests in a 120 kW multi-fuel boiler revealed differences, some significant, in the maximum output, energy conversion efficiency, gaseous emission profiles and ash residues produced from the fuels. It was concluded that some of the combustion results could be directly correlated with the inherent properties of the different fuels. Ash production and gaseous emissions were the aspects of performance that were clearly and significantly different though effects on energy outputs were more varied and less consistent. The standard wood pellet fuel returned the best overall performance and miscanthus produced the largest amount of total ash and clinker after combustion in the boiler.

E.G.A. Forbes; D.L. Easson; G.A. Lyons; W.C. McRoberts

2014-01-01T23:59:59.000Z

408

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

C3. Primary Energy Consumption Estimates, 2011 C3. Primary Energy Consumption Estimates, 2011 (Trillion Btu) State Fossil Fuels Fossil Fuels (as commingled) Coal Natural Gas excluding Supplemental Gaseous Fuels a Petroleum Total Natural Gas including Supplemental Gaseous Fuels a Motor Gasoline including Fuel Ethanol a Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline excluding Fuel Ethanol a Residual Fuel Oil Other d Total Alabama ........... 651.0 614.8 156.5 13.4 12.8 304.5 13.4 49.1 549.5 1,815.4 614.8 319.8 Alaska ............... 15.5 337.0 85.1 118.2 1.3 31.9 1.9 28.6 267.1 619.6 337.0 34.6 Arizona ............. 459.9 293.7 151.8 21.5 9.1 297.3 (s) 21.1 500.9 1,254.5 293.7 323.4 Arkansas ........... 306.1 288.6 134.9 5.9 9.4 165.4 0.2 19.8 335.7 930.5 288.6 175.6 California .......... 55.3 2,196.6 567.0 549.7 67.2 1,695.4 186.9 339.6 3,405.8 5,657.6 2,196.6

409

Alcohol Consumption  

Science Journals Connector (OSTI)

Different forms of alcohol have different functions: as part of cleaners, fuel, medicine, etc. Worldwide the substance is well known as a component of different alcoholic beverages. These beverages differ no...

Gundula Barsch

2008-01-01T23:59:59.000Z

410

EIA - Annual Energy Outlook 2008 (Early Release)-Energy-Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Annual Energy Outlook 2008 (Early Release) Energy Consumption Total primary energy consumption in the AEO2008 reference case increases at an average rate of 0.9 percent per year, from 100.0 quadrillion Btu in 2006 to 123.8 quadrillion Btu in 2030—7.4 quadrillion Btu less than in the AEO2007 reference case. In 2030, the levels of consumption projected for liquid fuels, natural gas, and coal are all lower in the AEO2008 reference case than in the AEO2007 reference case. Among the most important factors resulting in lower total energy demand in the AEO2008 reference case are lower economic growth, higher energy prices, greater use of more efficient appliances, and slower growth in energy-intensive industries. Figure 2. Delivered energy consumption by sector, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

411

E-Print Network 3.0 - afc-1 fuel rodlet Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Na rodlets. The reflector is made of Na and stainless steel (SS... in critical or subcritical configuration by changing the number of fuel assemblies. The core central zone......

412

E-Print Network 3.0 - actinide based fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MA represents minor actinides such as Np, Am, and Cm. Fuel... of the performance on the subcritical level. Numerical experiments are carried out on a ... Source: Royal Institute...

413

E-Print Network 3.0 - alcohol fuel production Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

using Electron Microscopy Summary: and better production paths. One of these is using biogas to create alcohol as a fuel. Higher... Characterization of Catalysts for Synthesis of...

414

E-Print Network 3.0 - alcohol fuels Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

using Electron Microscopy Summary: and better production paths. One of these is using biogas to create alcohol as a fuel. Higher... Characterization of Catalysts for Synthesis of...

415

E-Print Network 3.0 - ashless low-sulfur fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Blendstocks for Low Sulfur Diesel Fuel in PADD III . . . . . . . . . . . . . . . . 17... markets for low ... Source: Oak Ridge National Laboratory, Center for Transportation...

416

E-Print Network 3.0 - ai fuel summary Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

States Summary: advanced vehicle and fuel technologies, helps to move them from R&D to markets - Collaborate on R... &D with other agencies, public and private organizations,...

417

E-Print Network 3.0 - advanced pem fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tolerant PEM Fuel Cell System utilizing advanced components, high temperature membrane Praxair Process... Powders Reformate-Tolerant Membrane Electrode Assemblies (MEAs) for PEM...

418

E-Print Network 3.0 - acr-1000 fuel design Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Missouri-Columbia Collection: Environmental Sciences and Ecology 93 www.praxair.com H2 Storage and Summary: Design, Develop, Install & Operate H2 Fueling Station...

419

E-Print Network 3.0 - avr fuel pebble Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reactors identified in the FLIRA report. These reactors include the Pebble Bed Modular Reactor... , nuclear analysis, and severe accident and source term analysis); (4) fuels...

420

E-Print Network 3.0 - abb-2901 fuel pellet Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

P.O. Box 1663, Los Alamos, NM 87545 USA... fueling systems in support of magnetic fusion energy, particularly the International Thermonuclear... - tritium (D-T) gas puffing...

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

E-Print Network 3.0 - advanced spent fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

facilities should have more advanced technical monitoring... of the cycle to extract fis- sile material from the spent fuel removed from reactors. Although a complete... of...

422

E-Print Network 3.0 - advanced lwr fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 THE CASE FOR FUSION-FISSION HYBRIDS ENABLING SUSTAINABLE NUCLEAR POWER Summary: uranium energy content recovered in present LWR "once-through" fuel cycles (uranium would be...

423

E-Print Network 3.0 - advanced driver fuels Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... Source: Oak Ridge National Laboratory, Center for Transportation Analysis Collection: Energy Storage, Conversion and Utilization 3 Increased Fuel Mileage Jason Heiser, Brian...

424

E-Print Network 3.0 - advanced fuel science Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 3 College of the Desert...

425

E-Print Network 3.0 - applications fuel cell Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 A U.S. Department of...

426

E-Print Network 3.0 - advanced fuel elements Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 RESEARCH & DEVELOPMENT: PROGRAM ABSTRACTS Summary: OF ADVANCED AUTOMOTIVE TECHNOLOGIES ENERGY CONVERSION TEAM Fuel Cell System Development Patrick Davis (202... , we...

427

E-Print Network 3.0 - advanced fuel forms Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 3 College of the Desert...

428

E-Print Network 3.0 - aps alternative fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

compressed natural gas manuals published by College of the Desert and the National Alternative Fuels Training... Technology Initiative and has been designated as National...

429

E-Print Network 3.0 - approved spent fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exhaust ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

430

E-Print Network 3.0 - alternative fuels bus Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The bus ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

431

E-Print Network 3.0 - automotive fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2-3, 2003 ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

432

E-Print Network 3.0 - alloy dispersion fuels Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

information ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

433

E-Print Network 3.0 - aluminum alloy fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

such as ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

434

E-Print Network 3.0 - arpa advanced fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Connecticut ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

435

E-Print Network 3.0 - automatic fuel assembly Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assembly ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

436

E-Print Network 3.0 - atr fuel fabrication Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Environmental Management and Restoration Technologies 3 2003 Hydrogen and Fuel Cells Merit Review Meeting May 19-22, 2003, Berkeley, CA Summary: Argonne...

437

E-Print Network 3.0 - advanced fuel pin Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are all ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

438

E-Print Network 3.0 - automotive fuel economy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

proposed hydrogen tax credit supports the market introduction of hydrogen for use... in fuel cells and internal combustion engines in nearer-term applications, including forklifts,...

439

E-Print Network 3.0 - automotive fuel ratings Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(H2S, SO2, ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

440

E-Print Network 3.0 - automotive fuel cell Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

E-Print Network 3.0 - automotive fuels Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2-3, 2003 ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

442

Survey Results and Analysis of the Cost and Efficiency of Various Operating Hydrogen Fueling Stations  

SciTech Connect (OSTI)

Existing Hydrogen Fueling Stations were surveyed to determine capital and operational costs. Recommendations for cost reduction in future stations and for research were developed.

Cornish, John

2011-03-05T23:59:59.000Z

443

E-Print Network 3.0 - ag fuel fabrication Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in this ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

444

E-Print Network 3.0 - alternate fuels Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for satisfying air transportation fuel requirements. Both... concerns due to the greenhouse effect of anthropogenic CO2 require that future ... Source: Fisher, Frank - Department...

445

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Agency Petroleum Reduction Plan All state agencies must reduce their fleets' petroleum consumption by increasing vehicle fuel economy and operating efficiency and reducing...

446

Alternative Fuel Transit Buses: DART's (Dallas Area Rapid Transit) LNG Bus Fleet Final Results  

SciTech Connect (OSTI)

In 1998, Dallas Area Rapid Transit, a public transit agency in Dallas, Texas, began operating a large fleet of heavy-duty buses powered by liquefied natural gas. As part of a $16 million commitment to alternative fuels, DART operates 139 LNG buses serviced by two new LNG fueling stations.

Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Lab., Golden, CO (US); Clark, N.

2000-11-07T23:59:59.000Z

447

Electrolytic Reduction of Spent Light Water Reactor Fuel Bench-Scale Experiment Results  

SciTech Connect (OSTI)

A series of experiments were performed to demonstrate the electrolytic reduction of spent light water reactor fuel at bench-scale in a hot cell at the Idaho National Laboratory Materials and Fuels Complex. The process involves the conversion of oxide fuel to metal by electrolytic means, which would then enable subsequent separation and recovery of actinides via existing electrometallurgical technologies, i.e., electrorefining. Four electrolytic reduction runs were performed at bench scale using ~500 ml of molten LiCl – 1 wt% Li2O electrolyte at 650 şC. In each run, ~50 g of crushed spent oxide fuel was loaded into a permeable stainless steel basket and immersed into the electrolyte as the cathode. A spiral wound platinum wire was immersed into the electrolyte as the anode. When a controlled electric current was conducted through the anode and cathode, the oxide fuel was reduced to metal in the basket and oxygen gas was evolved at the anode. Salt samples were extracted before and after each electrolytic reduction run and analyzed for fuel and fission product constituents. The fuel baskets following each run were sectioned and the fuel was sampled, revealing an extent of uranium oxide reduction in excess of 98%.

Steven D. Herrmann

2007-04-01T23:59:59.000Z

448

Operation of Marine Diesel Engines on Biogenic Fuels: Modification of Emissions and Resulting Climate Effects  

Science Journals Connector (OSTI)

The modification of emissions of climate-sensitive exhaust compounds such as CO2, NOx, hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference ...

Andreas Petzold; Peter Lauer; Uwe Fritsche; Jan Hasselbach; Michael Lichtenstern; Hans Schlager; Fritz Fleischer

2011-11-01T23:59:59.000Z

449

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Technical Workshop on Behavior Economics Presentations Technical Workshop on Behavior Economics Presentations Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy

450

Steam thermolysis of discarded tires: testing and analysis of the specific fuel consumption with tail gas burning, steam generation, and secondary waste slime processing  

Science Journals Connector (OSTI)

This paper presents the process of steam thermolysis of shredded used tires for obtaining from them liquid fuel and technical carbon carried out in a screw reactor with heating due to the partial burning of obtai...

V. A. Kalitko; Morgan Chun Yao Wu…

2009-03-01T23:59:59.000Z

451

Rail Transit and Energy Consumption  

Science Journals Connector (OSTI)

...Transit and Energy Consumption In a recent issue...D.C. 20418 The Diesel's Advantages It...p. 517). The diesel car, while it has...Other types of engine can be made to meet...catalysts by using leaded fuel because it is 3 to...politically unpopular. The diesel car requires no add-on...

CHARLES A. LAVE

1977-09-02T23:59:59.000Z

452

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

that produces up to 5,000 gallons of biodiesel fuel in a calendar year for personal consumption is exempt from the requirement to obtain an Idaho motor fuel distributor's license....

453

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Market Vehicle Market All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 6 results Biofuelsatlas BioFuels Atlas Biofuelsatlas BioFuels Atlas is an interactive map for comparing biomass feedstocks and biofuels by location. This tool helps users select from and apply biomass data layers to a map, as well as query and download biofuels and feedstock data. The state zoom function summarizes state energy use and infrastructure for traditional and bioenergy power, fuels, and resources.

454

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State & Alt Fuel Providers State & Alt Fuel Providers All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 6 results Generated_thumb20130810-31804-1ch454p AFV Acquisitions by Regulated Fleets (by Fleet Type) Generated_thumb20130810-31804-1ch454p Trend of S&FP AFV acquisitions by fleet type from 1992-2010 Last update May 2011 View Graph Graph Download Data Generated_thumb20130810-31804-14nv4j5 AFV Acquisitions by Regulated Fleets (by Fuel Type)

455

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emissions Emissions All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 3 results Generated_thumb20130810-31804-53z5da Carbon Intensity of Alternative Fuels in California Heavy-Duty Vehicles Generated_thumb20130810-31804-53z5da California Low Carbon Fuel Program's assessment of lifecycle GHG emissions from alternative fuels Last update March 2011 View Graph Graph Download Data Generated_thumb20130810-31804-1b2rnlz

456

Consumption Behavior in Investment/Consumption Problems  

Science Journals Connector (OSTI)

In this chapter we study the consumption behavior of an agent in the dynamic framework of consumption/investment decision making that allows the presence of a subsistence consumption level and the possibility of ...

E. L. Presman

1997-01-01T23:59:59.000Z

457

Fleet Compliance Results for MY 2010/FY 2011, EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report (Brochure)  

SciTech Connect (OSTI)

This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2010/fiscal year 2011. The U.S. Department of Energy (DOE) regulates covered state and alternative fuel provider (SFP) fleets under the Energy Policy Act of 1992 (EPAct), as amended. For model year (MY) 2010, the compliance rate for the 2911 covered SFP fleets was 100%. Fleets used either Standard Compliance or Alternative Compliance. The 279 fleets that used Standard Compliance exceeded their aggregate MY 2010 acquisition requirements by 61%. The 12 covered fleets that complied using Alternative Compliance exceeded their aggregate MY 2010 petroleum-use-reduction requirements by 89%. Overall, DOE saw modest decreases from MY 2009 in biodiesel fuel use credits earned and in the number of light-duty vehicles (LDVs) acquired. Compared to years before MY 2009, these rates were far lower. Because covered fleets acquired fewer new vehicles overall in MY 2010, the requirement for alternative fuel vehicles (AFVs), which is proportional to new acquisitions, also dropped.

Not Available

2012-03-01T23:59:59.000Z

458

E-Print Network 3.0 - advanced fuel systems Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

States Summary: advanced vehicle and fuel technologies, helps to move them from R&D to markets - Collaborate on R... ethanol) - 50% for advanced biofuels (e.g., sugar ethanol)...

459

E-Print Network 3.0 - air conditioning fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage, Conversion and Utilization ; Renewable Energy 14 Hydrogen is a versatile energy carrier that can be used to power nearly every end-use energy need. The fuel...

460

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

N7.1. Consumption Ratios of Fuel, 1998;" N7.1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per Employee","of Value Added","of Shipments","Row" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Consumption Ratios of Fuel, 2002;" 1 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per Employee","of Value Added","of Shipments","Row" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

462

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, ÂŤEnergy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsÂŽ  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

463

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, ÂŤEnergy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsÂŽ  

Broader source: Energy.gov (indexed) [DOE]

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

464

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

465

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 All Buildings Using Fuel Oil Fuel Oil Consumption Fuel Oil Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million gallons) Total (million dollars) All Buildings ................................ 465 16,265 35 228 1,644 1,826 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 211 606 3 34 249 292 5,001 to 10,000 .............................. 102 736 7 36 262 307 10,001 to 25,000 ............................ 66 1,043 16 28 201 238 25,001 to 50,000 ............................ 24 895 38 17 124 134 50,001 to 100,000 .......................... 25 1,852 76 29 209 229

466

Improving operational efficiency of fuel oil facilities used at gas-and-oil-fired power stations  

Science Journals Connector (OSTI)

Results obtained from experimental investigations of energy consumption are described, and ways for considerably reducing it are proposed taking as an example the fuel oil facility at the 2400-MW Lukoml District ...

A. K. Vnukov; F. A. Rozanova; A. A. Bazylenko; V. L. Zhurbilo…

2009-09-01T23:59:59.000Z

467

Dynamic Tests and Results in an Oxy-fuel Circulating Fluidized Bed Combustor with Warm Flue Gas Recycle  

Science Journals Connector (OSTI)

Dynamic Tests and Results in an Oxy-fuel Circulating Fluidized Bed Combustor with Warm Flue Gas Recycle ... Dynamic step change tests concerning the coal feed rate and coal type were conducted. ... In the dynamic tests, the oxygen concentration in the flue gas fluctuates in the form of a sinusoidal wave because of the fast volatile combustion and the delay in the char ignition. ...

Jian-xin Zhou; Zhuang Shao; Feng-qi Si; Zhi-gao Xu

2014-11-17T23:59:59.000Z

468

Residential Energy Consumption Survey (RECS) - Energy Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Consumption Survey (RECS) - U.S. Energy Information Consumption Survey (RECS) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels

469

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine.

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

470

Verification Calculation Results to Validate the Procedures and Codes for Pin-by-Pin Power Computation in VVER Type Reactors with MOX Fuel Loading  

SciTech Connect (OSTI)

One of the important problems for ensuring the VVER type reactor safety when the reactor is partially loaded with MOX fuel is the choice of appropriate physical zoning to achieve the maximum flattening of pin-by-pin power distribution. When uranium fuel is replaced by MOX one provided that the reactivity due to fuel assemblies is kept constant, the fuel enrichment slightly decreases. However, the average neutron spectrum fission microscopic cross-section for {sup 239}Pu is approximately twice that for {sup 235}U. Therefore power peaks occur in the peripheral fuel assemblies containing MOX fuel which are aggravated by the interassembly water. Physical zoning has to be applied to flatten the power peaks in fuel assemblies containing MOX fuel. Moreover, physical zoning cannot be confined to one row of fuel elements as is the case with a uniform lattice of uranium fuel assemblies. Both the water gap and the jump in neutron absorption macroscopic cross-sections which occurs at the interface of fuel assemblies with different fuels make the problem of calculating space-energy neutron flux distribution more complicated since it increases nondiffusibility effects. To solve this problem it is necessary to update the current codes, to develop new codes and to verify all the codes including nuclear-physical constants libraries employed. In so doing it is important to develop and validate codes of different levels--from design codes to benchmark ones. This paper presents the results of the burnup calculation for a multiassembly structure, consisting of MOX fuel assemblies surrounded by uranium dioxide fuel assemblies. The structure concerned can be assumed to model a fuel assembly lattice symmetry element of the VVER-1000 type reactor in which 1/4 of all fuel assemblies contains MOX fuel.

Chizhikova, Z.N.; Kalashnikov, A.G.; Kapranova, E.N.; Korobitsyn, V.E.; Manturov, G.N.; Tsiboulia, A.A.

1998-12-01T23:59:59.000Z

471

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters  

SciTech Connect (OSTI)

A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

2005-11-01T23:59:59.000Z

472

Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection  

Broader source: Energy.gov [DOE]

Supercritical dieseline could be used in diesel engines having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions.

473

Residential energy consumption across different population groups: Comparative analysis for Latino and non-Latino households in U.S.A.  

SciTech Connect (OSTI)

Residential energy cost, an important part of the household budget, varies significantly across different population groups. In the United States, researchers have conducted many studies of household fuel consumption by fuel type -- electricity, natural gas, fuel oil, and liquefied petroleum gas (LPG) -- and by geographic areas. The results of past research have also demonstrated significant variation in residential energy use across various population groups, including white, black, and Latino. However, research shows that residential energy demand by fuel type for Latinos, the fastest-growing population group in the United States, has not been explained by economic and noneconomic factors in any available statistical model. This paper presents a discussion of energy demand and expenditure patterns for Latino and non-Latino households in the United States. The statistical model developed to explain fuel consumption and expenditures for Latino households is based on Stone and Geary`s linear expenditure system model. For comparison, the authors also developed models for energy consumption in non-Latino, black, and nonblack households. These models estimate consumption of and expenditures for electricity, natural gas, fuel oil, and LPG by various households at the national level. The study revealed significant variations in the patterns of fuel consumption for Latinos and non-Latinos. The model methodology and results of this research should be useful to energy policymakers in government and industry, researchers, and academicians who are concerned with economic and energy issues related to various population groups.

Poyer, D.A.; Teotia, A.P.S. [Argonne National Lab., IL (United States); Henderson, L. [Univ. of Baltimore, MD (United States)

1998-05-01T23:59:59.000Z

474

Reaction Profiles during Exhaust-Assisted Reforming of Diesel Engine Fuels  

Science Journals Connector (OSTI)

Reaction Profiles during Exhaust-Assisted Reforming of Diesel Engine Fuels ... The reforming efficiency was dependent on the fuel type and followed the general trend of bioethanol > rapeseed methyl ester > low-sulfur diesel fuel. ... The use of exhaust gas recirculation (EGR) in diesel engines reduces nitrogen oxide (NOx) emissions but results in an increased release of smoke and particulate matter (PM), as well as higher fuel consumption. ...

A. Tsolakis; A. Megaritis; S. E. Golunski

2005-03-10T23:59:59.000Z

475

Fuel Conservation and Applied Research  

Science Journals Connector (OSTI)

...the use ofbet-ter engines, better transmissions...1. Effect on energy consumption of specific improvements...Total automotive fuel consumption equals 19 percent ofnational...reduction 3 Adiabatic diesel engine Efficiency increase...

Jerry Grey; George W. Sutton; Martin Zlotnick

1978-04-14T23:59:59.000Z

476

Investigating the impact of nuclear energy consumption on GDP growth and CO2 emission: A panel data analysis  

Science Journals Connector (OSTI)

Abstract This study investigates the influence of nuclear energy consumption on GDP growth and CO2 emission in 30 major nuclear energy consuming countries. The panel mode was used taking the period 1990–2010. The results of the study indicated that nuclear energy consumption has a positive long run effect on GDP growth while it has no long run effect on CO2 emission. The Granger causality test results also revealed that nuclear energy consumption has a positive short run causal relationship with GDP growth while it has a negative short run causal relationship with CO2 emission. Based on the results of this study, nuclear energy consumption has an important role in increasing GDP growth in the investigated countries with no effect on CO2 emission. Consequently, unlike fossil fuels which also increase GDP growth, nuclear energy consumption causes less damage to the environment. From the results of the study, a number of recommendations were provided for the investigated countries.

Usama Al-mulali

2014-01-01T23:59:59.000Z

477

Consumption & Efficiency - Analysis & Projections - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports All Sectors Change category... All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Filter by: All Data Analysis Projections Today in Energy - Commercial Consumption & Efficiency Short, timely articles with graphs about recent commercial consumption and

478

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.5 pounds

479

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.0 pounds

480

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources a significant effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 15

Note: This page contains sample records for the topic "resulting fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.3 pounds

482

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 84 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.3 pounds

483

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

484

Household energy consumption and expenditures 1993  

SciTech Connect (OSTI)

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

485

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: First Results Report  

SciTech Connect (OSTI)

This report documents the early implementation experience for the Zero Emission Bay Area (ZEBA) Demonstration, the largest fleet of fuel cell buses in the United States. The ZEBA Demonstration group includes five participating transit agencies: AC Transit (lead transit agency), Santa Clara Valley Transportation Authority (VTA), Golden Gate Transit (GGT), San Mateo County Transit District (SamTrans), and San Francisco Municipal Railway (Muni). The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service.

Chandler, K.; Eudy, L.

2011-08-01T23:59:59.000Z

486

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

engine itself is more efficient, providing potentially more power for a given average fuel consumption.

Schipper, Lee

2008-01-01T23:59:59.000Z

487

Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques  

E-Print Network [OSTI]

Based Spent Fuel Analysis Safeguards Strategy Assessment,”on International Safeguards: Addressing VerificationNuclear Fuel,” European Safeguards R&D Association, Vilnius,

Tobin, S. J.

2010-01-01T23:59:59.000Z

488

MECS Fuel Oil Figures  

U.S. Energy Information Administration (EIA) Indexed Site

: Percentage of Total Purchased Fuels by Type of Fuel : Percentage of Total Purchased Fuels by Type of Fuel Figure 1. Percent of Total Purchased Fuel Sources: Energy Information Administration. Office of Energy Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry Groups and Industries: Statistical Abstract of the United States. Note: The years below the line on the "X" Axis are interpolated data--not directly from the Manufacturing Energy Consumption Survey or the Annual Survey of Manufactures. Figure 2: Changes in the Ratios of Distillate Fuel Oil to Natural Gas Figure 2. Changes in the Ratios of Distillate Fuel Oil to Natural Gas Sources: Energy Information Administration. Office of

489

Externality of Consumption  

Science Journals Connector (OSTI)

Externalities of consumption exist if one individual's consumption of a good or service has positive... utility of another person. A positive externality increases ...

2008-01-01T23:59:59.000Z

490

The technique and preliminary results of LEU U-Mo full-size IRT type fuel testing in the MIR reactor  

SciTech Connect (OSTI)

In March 2007 in-pile testing of LEU U-Mo full-size IRT type fuel elements was started in the MIR reactor. Four prototype fuel elements for Uzbekistan WWR SM reactor are being tested simultaneously - two of tube type design and two of pin type design. The dismountable irradiation devices were constructed for intermediate reloading and inspection of fuel elements during reactor testing. The objective of the test is to obtain the experimental results for determination of more reliable design and licensing fuel elements for conversion of the WWR SM reactor. The heat power of fuel elements is measured on-line by thermal balance method. The distribution of fission density and burn-up of uranium in the volume of elements are calculated by using the MIR reactor MCU code (Monte-Carlo) model. In this paper the design of fuel elements, the technique, main parameters and preliminary results are described. (author)

Izhutov, A.L.; Starkov, V.A.; Pimenov, V.V.; Fedoseev, V.Ye. [Research Reactor Complex, RIAR, 433510, Dimitrovgrad-10, Ulyanovsk Region (Russian Federation); Dobrikova, I.V.; Vatulin, A.V.; Suprun, V.B. [A.A. Bochvar All-Russian Scientific Research Institute of Inorganic Materials, P. O. Box 369, 123060, Moscow (Russian Federation); Kartashov, Ye.F.; Lukichev, V.A. [Research and Development Institute of Nuclear Energy and Industry, P. O. Box 788, 107014, Moscow (Russian Federation); Troyanov, V.M.; Enin, A.A.; Tkachev, A.A. [OAO 'TVEL' 119017, ul. B. Ordinka 24/26, Moscow (Russian Federation)

2008-07-15T23:59:59.000Z

491

World energy consumption  

SciTech Connect (OSTI)

Historical and projected world energy consumption information is displayed. The information is presented by region and fuel type, and includes a world total. Measurements are in quadrillion Btu. Sources of the information contained in the table are: (1) history--Energy Information Administration (EIA), International Energy Annual 1992, DOE/EIA-0219(92); (2) projections--EIA, World Energy Projections System, 1994. Country amounts include an adjustment to account for electricity trade. Regions or country groups are shown as follows: (1) Organization for Economic Cooperation and Development (OECD), US (not including US territories), which are included in other (ECD), Canada, Japan, OECD Europe, United Kingdom, France, Germany, Italy, Netherlands, other Europe, and other OECD; (2) Eurasia--China, former Soviet Union, eastern Europe; (3) rest of world--Organization of Petroleum Exporting Countries (OPEC) and other countries not included in any other group. Fuel types include oil, natural gas, coal, nuclear, and other. Other includes hydroelectricity, geothermal, solar, biomass, wind, and other renewable sources.

NONE

1995-12-01T23:59:59.000Z

492

Energy consumption analysis for CO2 separation from gas mixtures  

Science Journals Connector (OSTI)

Abstract CO2 separation is an energy intensive process, which plays an important role in both energy saving and CO2 capture and storage (CCS) implementation to deal with global warming. To quantitatively investigate the energy consumption of CO2 separation from different CO2 streams and analyze the effect of temperature, pressure and composition on energy consumption, in this work, the theoretical energy consumption of CO2 separation from flue gas, lime kiln gas, biogas and bio-syngas was calculated. The results show that the energy consumption of CO2 separation from flue gas is the highest and that from biogas is the lowest, and the concentration of CO2 is the most important factor affecting the energy consumption when the CO2 concentration is lower than 0.15 in mole fraction. Furthermore, if the CO2 captured from flue gases in CCS was replaced with that from biogases, i.e. bio-CO2, the energy saving would be equivalent to 7.31 million ton standard coal for China and 28.13 million ton standard coal globally, which corresponds to 0.30 billion US$ that can be saved for China and 1.36 billion US$ saved globally. This observation reveals the importance of trading fossil fuel-based CO2 with bio-CO2.

Yingying Zhang; Xiaoyan Ji; Xiaohua Lu

2014-01-01T23:59:59.000Z

493

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Petroleum Use Reduction Petroleum Use Reduction All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 4 results Generated_thumb20131211-30676-7w9hmt Clean Cities Cumulative Petroleum Savings Generated_thumb20131211-30676-7w9hmt Trend of displacement by all fuel and technology types from 1994-2012 Last update December 2013 View Graph Graph Download Data Generated_thumb20131211-30676-1y0adz7 Clean Cities Petroleum Savings by AFV Type

494

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFVs and HEVs AFVs and HEVs All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 21 results Generated_thumb20130810-31804-1ch454p AFV Acquisitions by Regulated Fleets (by Fleet Type) Generated_thumb20130810-31804-1ch454p Trend of S&FP AFV acquisitions by fleet type from 1992-2010 Last update May 2011 View Graph Graph Download Data Generated_thumb20130810-31804-14nv4j5 AFV Acquisitions by Regulated Fleets (by Fuel Type)

495

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Laws & Incentives Laws & Incentives All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 11 results - Biodiesel_li_by_state Biodiesel Incentives and Laws, by State Biodiesel_li_by_state View Map Graph L_i-electric Electric Vehicle Incentives and Laws, by State L_i-electric View Map Graph L_i-ethanol Ethanol Incentives and Laws, by State L_i-ethanol View Map Graph Generated_thumb20130810-31804-1h8ookf Fuel Taxes by Country Generated_thumb20130810-31804-1h8ookf

496

India Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

India India India Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends India's 2008 total fossil-fuel CO2 emissions rose 8.1% over the 2007 level to 475 million metric tons of carbon. From 1950 to 2008, India experienced dramatic growth in fossil-fuel CO2 emissions averaging 5.7% per year and becoming the world's third largest fossil-fuel CO2-emitting country. Indian total emissions from fossil-fuel consumption and cement production have more than doubled since 1994. Fossil-fuel emissions in India continue to result largely from coal burning with India being the world's third largest producer of coal. Coal contributed 87% of the emissions in 1950 and 71% in 2008; at the same time, the oil fraction increased from 11% to 20%. Indian emissions data reveal little impact from the oil price increases that

497

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Clean Cities Clean Cities All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 10 results Petroleum Use Reduction - Generated_thumb20131211-30676-7w9hmt Clean Cities Cumulative Petroleum Savings Generated_thumb20131211-30676-7w9hmt Trend of displacement by all fuel and technology types from 1994-2012 Last update December 2013 View Graph Graph Download Data Generated_thumb20131211-30676-1y0adz7 Clean Cities Petroleum Savings by AFV Type

498

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Regulated Fleets Regulated Fleets All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 7 results Federal Fleets - Generated_thumb20130810-31804-rbol8w AFV Acquisitions, Requirements, and Credits for Federal Agencies Generated_thumb20130810-31804-rbol8w Last update May 2012 View Graph Graph Download Data State & Alt Fuel Providers - Generated_thumb20130810-31804-1ch454p AFV Acquisitions by Regulated Fleets (by Fleet Type)

499

Baseline projections of transportation energy consumption by mode: 1981 update  

SciTech Connect (OSTI)

A comprehensive set of activity and energy-demand projections for each of the major transportation modes and submodes is presented. Projections are developed for a business-as-usual scenario, which provides a benchmark for assessing the effects of potential conservation strategies. This baseline scenario assumes a continuation of present trends, including fuel-efficiency improvements likely to result from current efforts of vehicle manufacturers. Because of anticipated changes in fuel efficiency, fuel price, modal shifts, and a lower-than-historic rate of economic growth, projected growth rates in transportation activity and energy consumption depart from historic patterns. The text discusses the factors responsible for this departure, documents the assumptions and methodologies used to develop the modal projections, and compares the projections with other efforts.

Millar, M; Bunch, J; Vyas, A; Kaplan, M; Knorr, R; Mendiratta, V; Saricks, C

1982-04-01T23:59:59.000Z

500

On an optimal consumption problem for p-integrable consumption plans  

Science Journals Connector (OSTI)

...A generalization is presented of the existence results for an optimal consumption problem of Aumann and Perles [4]...

Erik J. Balder; Martijn R. Pistorius

2001-05-01T23:59:59.000Z