Powered by Deep Web Technologies
Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

TEPP Training - Modular Emergency Response Radiological Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Waste Management » Packaging and Transportation » Services » Waste Management » Packaging and Transportation » Transportation Emergency Preparedness Program » TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) Once the jurisdiction has completed an evaluation of their plans and procedures, they will need to address any gaps in training. To assist, TEPP has developed the Modular Emergency Response Radiological Transportation Training (MERRTT) program. MERRTT provides fundamental knowledge for responding to transportation incidents involving radiological material and builds on training in existing hazardous materials curricula. MERRTT satisfies the training requirements outlined in the Waste Isolation Pilot

2

Model Recovery Procedure for Response to a Radiological Transportation...  

Office of Environmental Management (EM)

Recovery Procedure for Response to a Radiological Transportation Incident Model Recovery Procedure for Response to a Radiological Transportation Incident This Transportation...

3

Model Recovery Procedure for Response to a Radiological Transportation Incident  

Energy.gov (U.S. Department of Energy (DOE))

This Transportation Emergency Preparedness Program (TEPP) Model Recovery Procedure contains the recommended elements for developing and conducting recovery planning at transportation incident scene...

4

Model Annex for Preparedness and Response to Radiological Transportation Incidents  

Energy.gov (U.S. Department of Energy (DOE))

This part should contain a general statement of the intent of this Annex. To provide for the planning, preparedness and coordination of emergency service efforts to respond to a transportation...

5

Model Annex for Preparedness and Response to Radiological Transportati...  

Office of Environmental Management (EM)

Annex for Preparedness and Response to Radiological Transportation Incidents Model Annex for Preparedness and Response to Radiological Transportation Incidents This part should...

6

Radiological transportation emergency response training course funding and timing in the southern states  

SciTech Connect

The following is a review of the enabling statutes of 16 southern states regarding training for personnel preparing for or responding to a transportation-related emergency involving highway route-controlled quantities of spent fuel and high-level radioactive waste. This report outlines the funding sources and procedures for administering funds for programs attended by state and local officials. Additionally, the report outlines the views of emergency response officials in the southem states concerning the timing and administration of future federal assistance to be provided under {section}180(c) of the Nuclear Waste Policy Amendments Act. Under {section}180(c) of the Nuclear Waste Policy Amendments Act of 1987, the US Department of Energy (DOE) is required to provide technical assistance and funds to states for training public safety officials of appropriate units of local government and Indian tribes when spent nuclear fuel or high-level radioactive waste is transported through their jurisdictions. The Comprehensive Cooperative Agreement (CCA) is the primary funding mechanism for federal assistance to states for the development of their overall emergency management capabilities. FEMA supports 12 separate emergency management programs including the Emergency Management Training program (EMT). This program provides funds for emergency management training and technical assistance to states for unique state training needs. Funds may be used for instructors, students and other related costs.

Not Available

1991-10-01T23:59:59.000Z

7

Radiological transportation emergency response training course funding and timing in the southern states  

SciTech Connect

The following is a review of the enabling statutes of 16 southern states regarding training for personnel preparing for or responding to a transportation-related emergency involving highway route-controlled quantities of spent fuel and high-level radioactive waste. This report outlines the funding sources and procedures for administering funds for programs attended by state and local officials. Additionally, the report outlines the views of emergency response officials in the southem states concerning the timing and administration of future federal assistance to be provided under [section]180(c) of the Nuclear Waste Policy Amendments Act. Under [section]180(c) of the Nuclear Waste Policy Amendments Act of 1987, the US Department of Energy (DOE) is required to provide technical assistance and funds to states for training public safety officials of appropriate units of local government and Indian tribes when spent nuclear fuel or high-level radioactive waste is transported through their jurisdictions. The Comprehensive Cooperative Agreement (CCA) is the primary funding mechanism for federal assistance to states for the development of their overall emergency management capabilities. FEMA supports 12 separate emergency management programs including the Emergency Management Training program (EMT). This program provides funds for emergency management training and technical assistance to states for unique state training needs. Funds may be used for instructors, students and other related costs.

Not Available

1991-10-01T23:59:59.000Z

8

Radiological Emergency Response Plan (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes a radiological emergency response plan fund, into which any entity operating a nuclear reactor or storing nuclear fuel and radioactive waste in this state (referred to...

9

US, UK, Kazakhstan Secure Radiological Transportation Vehicles...  

National Nuclear Security Administration (NNSA)

place them in secure storage, and improve radiological transportation security and site security. The United Kingdom-funded projects provide an immediate security and safety...

10

Departmental Radiological Emergency Response Assets  

Directives, Delegations, and Requirements

The order establishes requirements and responsibilities for the DOE/NNSA national radiological emergency response assets and capabilities and Nuclear Emergency Support Team assets. Cancels DOE O 5530.1A, DOE O 5530.2, DOE O 5530.3, DOE O 5530.4, and DOE O 5530.5.

2007-06-27T23:59:59.000Z

11

Operational Guidelines/Radiological Emergency Response  

Energy.gov (U.S. Department of Energy (DOE))

Operational Guidelines/Radiological Emergency Response. Provides information and resources concerning the development of Operational Guidelines as part of planning guidance for protection and recovery following Radiological Dispersal Device (RDD) and/or Improvised Nuclear Device (IND) incidents. Operational Guidelines Technical (OGT) Manual, 2009 RESRAD-RDD Complementing Software to OGT Manual EPA Protective Action Guidelines (2013), Interim Final Federal Radiological Monitoring and Assessment Center (FRMAC) Federal Radiological Preparedness Coordinating Committee (FRPCC)

12

EM-Led Radiological Incident Response Program Receives Honors...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM-Led Radiological Incident Response Program Receives Honors EM-Led Radiological Incident Response Program Receives Honors May 29, 2014 - 12:00pm Addthis Jessie Welch performs...

13

Radioactive Materials Transportation and Incident Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEMA 358, 05/10 FEMA 358, 05/10 Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program U.S. Department of Energy TRANSPORTATION AND INCIDENT RESPONSE Q&A About Incident Response Q Q Law Enforcement ____________________________________ Fire ___________________________________________ Medical ____________________________________________ State Radiological Assistance ___________________________ Local Government Official ______________________________ Local Emergency Management Agency ___________________ State Emergency Management Agency ___________________ HAZMAT Team ______________________________________ Water Pollution Control ________________________________ CHEMTEL (Toll-free US & Canada) 1-800-255-3924 _________ CHEMTREC (Toll-free US & Canada) 1-800-424-9300 _______

14

INL@Work Radiological Search & Response Training  

ScienceCinema (OSTI)

Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

Turnage, Jennifer

2013-05-28T23:59:59.000Z

15

Idaho National Laboratory Radiological Response Training Range draft  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho National Laboratory Radiological Response Training Range draft environmental assessment available for public review and comment Idaho National Laboratory Radiological Response Training Range draft environmental assessment available for public review and comment August 4, 2010 Media contact: Brad Bugger, 208-526-0833 The public is invited to read and comment on a draft environmental assessment that the U.S. Department of Energy has published for a proposed radiological response training range at the Idaho National Laboratory (INL). At the range, INL experts would train personnel, conduct exercises, and perform technology evaluation and demonstrations in support of national technical nuclear forensic and radiological emergency response programs. �The Radiological Response Training Range will allow emergency responders to prepare for a major radiological incident by training in an environment that safely simulates scenarios they might encounter,� said Vic Pearson, DOE�s document manager for the environmental assessment. �Activities at the range would directly support the nation�s readiness to respond to a radiological incident, but more importantly, would enable responders to develop proficiency in characterizing the scene in support of determining the origins of the incident.�

16

ASPECT Emergency Response Chemical and Radiological Mapping  

SciTech Connect

A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane Ike, was sent to the EPA Region 6 Rapid Needs Assessment and the State of Texas Joint Field Office in Austin, Texas. It appears that though there is considerable damage in Galveston and Texas City, there are fewer chemical leaks than during either hurricanes Katrina or Rita. Specific information gathered from the data was reported out to the U.S. Environmental Protection Agency Headquarters, the Federal Emergency Management Agency, the Department of Homeland Security, and the State of Texas Emergency Management Agency.

LANL

2008-05-12T23:59:59.000Z

17

Neutron Energy Measurements in Radiological Emergency Response Applications  

SciTech Connect

We present significant results in recent advances in the determination of neutron energy. Neutron energy measurements are a small but very significant part of radiological emergency response applications. Mission critical information can be obtained by analyzing the neutron energy given off from radioactive materials. In the case of searching for special nuclear materials, neutron energy information from an unknown source can be of paramount importance.

Sanjoy Mukhopadhyay, Paul Guss, Michael Hornish, Scott Wilde, Tom Stampahar, Michael Reed

2009-04-30T23:59:59.000Z

18

Hospital response for children as a vulnerable population in radiological/nuclear incidents  

Science Journals Connector (OSTI)

......hospital's response to a nuclear or radiological emergency...Stronger links between nuclear medicine programs and...operations and preparedness policies need to include paediatric...Infectious Disease. Policy statement: chemical-biological...population in radiological/nuclear incidents. | Emergency......

Brenda Conway; Jordan Pike

2010-11-01T23:59:59.000Z

19

Recent Developments in Field Response for Mitigation of Radiological Incidents  

Energy.gov (U.S. Department of Energy (DOE))

Recent Developments in Field Response for Mitigation of Radiological Incidents Carlos Corredor*, Department of Energy ; Charley Yu, Argonne National Labs Abstract: Since September 11, 2001, there has been a large effort by the government to develop new methods to reduce the consequence of potential radiological incidents. This is evident in the enhancement of technologies and methods to detect, prepare, or manage radiological incidents or accidents . With any radiological accident, radiological dispersal device (RDD), or improvised nuclear device (IND) , the major focus is always on the immediate phase of an incident or accident and less centered on the intermediate phase and the late recovery phase of that incident. In support of the 2008 protective action guides(PAGs) for RDDs , established by the Department of Homeland Security and by agreement with the EPA, the White House requested establishment of a series of operational guidelines that would focus on efforts during all phases of the incident and not just the immediate phase. Operational Guidelines were developed for this purpose. The operational guidelines are dose based pre-derived levels of radioactivity or radionuclide concentrations in various media that can be measured in the field and compared to the PAGs to quickly determine if protective actions are warranted. I.e can certain roads, bridges or metro systems be used, can the public return to their homes or businesses, can the public consume certain foods, etc. An operational guidelines manual, developed by a federal interagency working group led by the Department of Energy (DOE), was published in 2009 as the Preliminary Report on Operational Guidelines Developed for Use in Emergency Response to a Radiological Dispersal Device Incident, with its companion software RESidual RADiation (RESRAD)-RDD. With the development of the new PAG Manual (Interim Final 2013) by the EPA, an interagency working group was created under the auspices of the ISCORS to develop a revised operational guidelines manual that would reflect the changes by EPAs new PAG Manual, new best available technology based on new dosimetric models (ICRP 60+), include operational guidelines for INDs and increase the amount of radionuclides in the OGT Manual from 11 radioisotopes to 55. The new manual is scheduled for publication in 2015.

20

Application of a geographic information system for radiologic emergency response  

SciTech Connect

A geographic information system (GIS) is a multifunctional analytical tool that can be used to compile available data and derive information. A GIS is a computerized database management system for the capture, storage, retrieval, analysis, and display of spatial data. Maps are the most common type of spatial data, but any type of data that can be referenced by an x-y location or geographic coordinate can be used in a GIS. In a radiological emergency, it is critical that data of all types be rapidly compiled into a common format in order to make accurate observations and informed decisions. Developing a baseline GIS for nuclear facilities would offer a significant incentive for all organizations to contribute to and utilize this powerful data management tool. The system being developed could integrate all elements of emergency planning, from the initial protective actions based on models through the emergency monitoring phase, and finally ending with the complex reentry and recovery phase. Within the Federal Radiological Monitoring and Assessment Center (FRMAC), there is a continuing effort to improve the data management and communication process. To demonstrate the potential of GIS for emergency response, the system has been utilized in interagency FRMAC exercises. An interactive GIS system has been deployed and used to analyze the available spatial data to help determine the impact of a hypothetical radiological release and to develop mitigation plans. For this application, both hardcopy and real-time spatial displays were generated with the GIS. Composite maps with different sizes, scales, and themes were produced to support the exercises.

Best, R.G.; Doyle, J.F.

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Commercial low-level radioactive waste transportation liability and radiological risk  

SciTech Connect

This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

1992-08-01T23:59:59.000Z

22

Recent Developments in Field Response for Mitigation of Radiological...  

Office of Environmental Management (EM)

of Radiological Incidents Carlos Corredor*, Department of Energy; Charley Yu, Argonne National Labs Abstract: Since September 11, 2001, there has been a large effort by...

23

Handling and Packaging a Potentially Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handling and Packaging a Potentially Radiologically Contaminated Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients. This procedure applies to Emergency Medical Service care providers who respond to a radioactive material transportation incident that involves potentially contaminated injuries. Handling and Packaging a Potentially Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Emergency Response to a Transportation Accident Involving Radioactive Material Radioactive Materials Transportation and Incident Response

24

U.S. Department of Energy Region 6 Radiological Assistance Program response plan. Revision 2  

SciTech Connect

Upon request, the DOE, through the Radiological Assistance Program (RAP), makes available and will provide radiological advice, monitoring, and assessment activities during radiological incidents where the release of radioactive materials is suspected or has occurred. Assistance will end when the need for such assistance is over, or if there are other resources available to adequately address the incident. The implementation of the RAP is usually accomplished through the recommendation of the DOE Regional Coordinating Office`s (RCO) on duty Regional Response Coordinator (RRC) with the approval of the Regional Coordinating Office Director (RCOD). The DOE Idaho Operations Office (DOE-ID) is the designated RCO for DOE Region 6 RAP. The purpose of this document is: to describe the mechanism for responding to any organization or private citizen requesting assistance to radiological incidents; to coordinate radiological assistance among participating federal agencies, states, and tribes in DOE Region 6; and to describe the RAP Scaled Response concept of operations.

Jakubowski, F.M.

1998-02-01T23:59:59.000Z

25

Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant  

SciTech Connect

Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

Hickey, Eva E.; Strom, Daniel J.

2005-08-01T23:59:59.000Z

26

Transportation radiological risk assessment for the programmatic environmental impact statement: An overview of methodologies, assumptions, and input parameters  

SciTech Connect

The U.S. Department of Energy is considering a broad range of alternatives for the future configuration of radioactive waste management at its network of facilities. Because the transportation of radioactive waste is an integral component of the management alternatives being considered, the estimated human health risks associated with both routine and accident transportation conditions must be assessed to allow a complete appraisal of the alternatives. This paper provides an overview of the technical approach being used to assess the radiological risks from the transportation of radioactive wastes. The approach presented employs the RADTRAN 4 computer code to estimate the collective population risk during routine and accident transportation conditions. Supplemental analyses are conducted using the RISKIND computer code to address areas of specific concern to individuals or population subgroups. RISKIND is used for estimating routine doses to maximally exposed individuals and for assessing the consequences of the most severe credible transportation accidents. The transportation risk assessment is designed to ensure -- through uniform and judicious selection of models, data, and assumptions -- that relative comparisons of risk among the various alternatives are meaningful. This is accomplished by uniformly applying common input parameters and assumptions to each waste type for all alternatives. The approach presented can be applied to all radioactive waste types and provides a consistent and comprehensive evaluation of transportation-related risk.

Monette, F.; Biwer, B.; LePoire, D.; Chen, S.Y.

1994-02-01T23:59:59.000Z

27

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Considerations for First Aid Radiological Considerations for First Aid Study Guide 2.15-1 Course Title: Radiological Control Technician Module Title: Radiological Considerations for First Aid Module Number: 2.15 Objectives: 2.15.01 List the proper steps for the treatment of minor injuries occurring in various radiological areas. 2.15.02 List the requirements for responding to major injuries or illnesses in radiological areas. 2.15.03 State the RCT's responsibility at the scene of a major injury in a radiological area after medical personnel have arrived at the scene. i 2.15.04 List the requirements for treatment and transport of contaminated injured personnel at your facility. INTRODUCTION "Standard first aid is applied prior to contamination control whenever it is considered to have life-saving value, or is important to the patient for relief of pain or prevention of

28

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 Radiological Considerations for First Aid 5 Radiological Considerations for First Aid Instructor's Guide 2.15-1 Course Number: Radiological Control Technicians Module Title: Radiological Considerations for First Aid Module Number: 2.15 Objectives: 2.15.01 List the proper steps for the treatment of minor injuries occurring in various radiological areas. 2.15.02 List the requirements for responding to major injuries or illnesses in radiological areas. 2.15.03 State the RCT's responsibility at the scene of a major injury in a radiological area after medical personnel have arrived at the scene. L 2.15.04 List the requirements for treatment and transport of contaminated injured personnel at your facility. References: 1. Basic Radiation Protection Technology (2nd edition) - Daniel A. Gollnick 2. Operational Health Physics Training - H. J. Moe

29

RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel  

SciTech Connect

This report presents the technical details of RISIUND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, semiinteractive program that can be run on an IBM or equivalent personal computer. The program language is FORTRAN-77. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incidentfree models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionudide inventory and dose conversion factors.

Yuan, Y.C. [Square Y, Orchard Park, NY (United States); Chen, S.Y.; LePoire, D.J. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Rothman, R. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

1993-02-01T23:59:59.000Z

30

Packaging and Transportation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Packaging and Transportation Packaging and Transportation Packaging and Transportation Packaging and Transportation Radiological shipments are accomplished safely. Annually, about 400 million hazardous materials shipments occur in the United States by rail, air, sea, and land. Of these shipments, about three million are radiological shipments. Since Fiscal Year (FY) 2004, EM has completed over 150,000 shipments of radioactive material/waste. Please click here to see Office of Packaging and Transportation Fiscal Year 2012 Annual Report. SUPPORTING PROGRAMS SAFE TRANSPORTATION OF RADIOLOGICAL SHIPMENTS Transportation Emergency Preparedness Program (TEPP) TEPP provides the tools for planning, training and exercises, and technical assistance to assist State and Tribal authorities in preparing for response

31

RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel  

SciTech Connect

This report presents the technical details of RISKIND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, interactive program that can be run on an IBM or equivalent personal computer under the Windows{trademark} environment. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incident-free models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionuclide inventory and dose conversion factors. In addition, the flexibility of the models allows them to be used for assessing any accidental release involving radioactive materials. The RISKIND code allows for user-specified accident scenarios as well as receptor locations under various exposure conditions, thereby facilitating the estimation of radiological consequences and health risks for individuals. Median (50% probability) and typical worst-case (less than 5% probability of being exceeded) doses and health consequences from potential accidental releases can be calculated by constructing a cumulative dose/probability distribution curve for a complete matrix of site joint-wind-frequency data. These consequence results, together with the estimated probability of the entire spectrum of potential accidents, form a comprehensive, probabilistic risk assessment of a spent nuclear fuel transportation accident.

Yuan, Y.C. [Square Y Consultants, Orchard Park, NY (US); Chen, S.Y.; Biwer, B.M.; LePoire, D.J. [Argonne National Lab., IL (US)

1995-11-01T23:59:59.000Z

32

EMERGENCY RESPONSE TO A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emer Emer Emer Emer Emer Emergency Response to a T gency Response to a T gency Response to a T gency Response to a T gency Response to a Transportation ransportation ransportation ransportation ransportation Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond the scope of this video and requires either additional

33

Radioanalytical Data Quality Objectives and Measurement Quality Objectives during a Federal Radiological Monitoring and Assessment Center Response  

SciTech Connect

During the early and intermediate phases of a nuclear or radiological incident, the Federal Radiological Monitoring and Assessment Center (FRMAC) collects environmental samples that are analyzed by organizations with radioanalytical capability. Resources dedicated to quality assurance (QA) activities must be sufficient to assure that appropriate radioanalytical measurement quality objectives (MQOs) and assessment data quality objectives (DQOs) are met. As the emergency stabilizes, QA activities will evolve commensurate with the need to reach appropriate DQOs. The MQOs represent a compromise between precise analytical determinations and the timeliness necessary for emergency response activities. Minimum detectable concentration (MDC), lower limit of detection, and critical level tests can all serve as measurements reflecting the MQOs. The relationship among protective action guides (PAGs), derived response levels (DRLs), and laboratory detection limits is described. The rationale used to determine the appropriate laboratory detection limit is described.

E. C. Nielsen

2006-01-01T23:59:59.000Z

34

Radiological Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1098-2008 October 2008 DOE STANDARD RADIOLOGICAL CONTROL U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ii DOE-STD-1098-2008 This document is available on the Department of Energy Technical Standards Program Website at http://www.standards.doe.gov/ DOE-STD-1098-2008 Radiological Control DOE Policy October 2008 iii Foreword The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal

35

Radiological Assistance Program  

Directives, Delegations, and Requirements

To establish Department of Energy (DOE) policy, procedures, authorities, and responsibilities for its Radiological Assistance Program. Canceled by DOE O 153.1.

1992-04-10T23:59:59.000Z

36

Radiological transportation risk assessment of the shipment of sodium-bonded fuel from the Fast Flux Test Facility to the Idaho National Engineering Laboratory  

SciTech Connect

This document was written in support of Environmental Assessment: Shutdown of the Fast Flux Test Facility (FFTF), Hanford Site, Richland, Washington. It analyzes the potential radiological risks associated with the transportation of sodium-bonded metal alloy and mixed carbide fuel from the FFTF on the Hanford Site in Washington State to the Idaho Engineering Laboratory in Idaho in the T-3 Cask. RADTRAN 4 is used for the analysis which addresses potential risk from normal transportation and hypothetical accident scenarios.

Green, J.R.

1995-01-31T23:59:59.000Z

37

Emergency Response to a Transportation Accident Involving Radioactive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response to a Transportation Accident Involving Response to a Transportation Accident Involving Radioactive Material Emergency Response to a Transportation Accident Involving Radioactive Material The purpose of this User's Guide is to provide instructors with an overview of the key points covered in the video. The Student Handout portion of this Guide is designed to assist the instructor in reviewing those points with students. The Student Handout should be distributed to students after the video is shown and the instructor should use the Guide to facilitate a discussion on each response disciplines' activities or duties at the scene. During this discussion, the instructor can present response scenarios, each of which would have a different discipline arriving first at the accident scene. The purpose of this discussion

38

Spent Fuel Transportation Cask Response to the Caldecott Tunnel Fire Scenario  

SciTech Connect

On April 7, 1982, a tank truck and trailer carrying 8,800 gallons of gasoline was involved in an accident in the Caldecott tunnel on State Route 24 near Oakland, California. The tank trailer overturned and subsequently caught fire. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook analyses to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by truck. The Fire Dynamics Simulator (FDS) code developed by National Institute of Standards and Technology (NIST) was used to determine the thermal environment in the Caldecott tunnel during the fire. The FDS results were used to define boundary conditions for a thermal transient model of a truck transport cask containing spent nuclear fuel. The Nuclear Assurance Corporation (NAC) Legal Weight Truck (LWT) transportation cask was selected for this evaluation, as it represents a typical truck (over-the-road) cask, and can be used to transport a wide variety of spent nuclear fuels. Detailed analysis of the cask response to the fire was performed using the ANSYS computer code to evaluate the thermal performance of the cask design in this fire scenario. This report describes the methods and approach used to assess the thermal response of the selected cask design to the conditions predicted in the Caldecott tunnel fire. The results of the analysis are presented in detail, with an evaluation of the cask response to the fire. The staff concluded that some components of smaller transportation casks resembling the NAC LWT, despite placement within an ISO container, could degrade significantly. Small transportation casks similar to the NAC LWT would probably experience failure of seals in this severe accident scenario. USNRC staff evaluated the radiological consequences of the cask response to the Caldecott tunnel fire. Although some components heated up beyond their service temperatures, the staff determined that there would be no significant release as a result of the fire for the NAC LWT and similar casks.

Adkins, Harold E.; Koeppel, Brian J.; Cuta, Judith M.

2007-01-01T23:59:59.000Z

39

Radiological Areas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Radiological Areas On July 13, 2000, the Secretary of Energy imposed an agency-wide suspension on the unrestricted release of scrap metal originating from radiological areas at Department of Energy (DOE) facilities for the purpose of recycling. The suspension was imposed in response to concerns from the general public and industry groups about the potential effects of radioactivity in or on material released in accordance with requirements established in DOE Order 5400.5, Radiation Protection of the Public and Environment. The suspension was to remain in force until DOE developed and implemented improvements in, and better informed the public about, its release process. In addition, in 2001 the DOE announced its intention to prepare a

40

Pre-Hospital Practices for Handling a Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Hospital Practices for Handling a Radiologically Contaminated Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Pre-Hospital Practices for Handling a Radiologically Contaminated Patient The purpose of this User's Guide is to provide instructors with an overview of the key points covered in the video. The Student Handout portion of this Guide is designed to assist the instructor in reviewing those points with students. The Student Handout should be distributed to students after the video is shown and the instructor should use the Guide to facilitate a discussion on key activities and duties at the scene. PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED PATIENT More Documents & Publications Emergency Response to a Transportation Accident Involving Radioactive Material Handling and Packaging a Potentially Radiologically Contaminated Patient

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED PATIENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond the scope of this video and requires either additional specific areas of competency or more hours of training

42

Hospital response for children as a vulnerable population in radiological/nuclear incidents  

Science Journals Connector (OSTI)

......November 2010 research-article Papers Hospital response for children as a vulnerable...and Life Safety Department, Kingston Hospitals, Kingston, Ontario, Canada Emergency...initial response. The primary goals of the hospital in a hazardous event are to: Protect......

Brenda Conway; Jordan Pike

2010-11-01T23:59:59.000Z

43

Two-dimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles  

Science Journals Connector (OSTI)

...chemotherapy simulations demonstrate fundamental transport and tumor response...estimation that demonstrate fundamental convective and diffusive transport...which is drug-sensitive and does not develop resistance; targeted...our analysis shows that fundamental transport limitations are...

Vittorio Cristini; John Sinek; and Hermann Frieboes

2005-05-01T23:59:59.000Z

44

Development of the triage, monitoring and treatment Handbook for Members of the Public Affected by Radiological Terrorism - A European Response  

SciTech Connect

European national emergency response plans have long been focused on accidents at nuclear power plants. Recently, the possible threats by disaffected groups have shifted the focus to being prepared also for malevolent use of radiation that are aimed at creating disruption and panic in the society. The casualties will most likely be members of the public. According to the scenario, the number of affected people can vary from a few to mass casualties. The radiation exposure can range from very low to substantial, possibly combined with conventional injuries. There is a need to develop practicable tools for the adequate response to such acts and more specifically to address European guidelines for triage, monitoring and treatment of exposed people. Although European countries have developed emergency response plans for nuclear accidents they have not all made plans for handling malevolent use of radioactive material. Indeed, there is a need to develop practical guidance on emergency response and medical treatment of the public affected by malevolent acts. Generic guidance on this topic has been published by international organisations. They are, however, not operational documents to be used in emergency situations. The Triage, Monitoring and Treatment (TMT) Handbook aims to strengthen the European ability to efficiently respond to malevolent acts in terms of protecting and treating exposed people. Part of the Handbook is also devoted to public information and communication issues which would contribute to public reassurance in emergency situations. The Handbook will be drafted by European and international experts before it is circulated to all emergency response institutions in Europe that would be a part of the handling of malevolent acts using radioactive material. The institutions would be given a 6 months consultation time with encouragement to test the draft Handbook in national exercises. A workshop will allow feedback from these end users on the content, structure and usefulness of the Handbook before a final version is produced. In order to achieve the project's objectives a consortium has been drawn together including, Belgian Nuclear Research Centre, the Norwegian Radiation Protection Authority, Radiation and Nuclear Safety Authority of Finland, the UK Health Protection Agency, the Central Laboratory for Radiological Protection of Poland and the World Health Organisation. Enviros Consulting is acting as the technical secretariat for the project. The Handbook will aim to harmonise the approaches to handling malevolent acts across Europe. This harmonisation will have an added value on the public confidence in authorities since differing approaches in neighbouring countries could lead to public confusion and mistrust. (authors)

Kruse, P. [Enviros Consulting Limited, Culham Science Centre, Abingdon OX (United Kingdom); Rojas-Palma, C. [Belgian Nuclear Research Centre (SCK-CEN), Radiation Protection Div., Mol (Belgium)

2007-07-01T23:59:59.000Z

45

Nuclear tools for characterising radiological dispersion in complex terrain: evaluation of regulatory and emergency response models  

Science Journals Connector (OSTI)

Routine operations of a nuclear research reactor and its facilities offer opportunities for collection of rare environmental tracer datasets which can be used for atmospheric dispersion model evaluation studies. The HIFAR reactor near Sydney, Australia, routinely emits the radioactive noble gas 41Ar, and other radionuclides such as 133Xe and 135Xe are also emitted from nearby radiopharmaceutical production facilities. Despite extremely low emission levels of these gases, they are nevertheless detectable using state-of-the-art technology, and sensitive detectors have been placed at four locations in the surrounding region which features complex terrain. The high research potential of this unique dataset is illustrated in the current study, in which predictions from two atmospheric dispersion models used for emergency response are compared with 41Ar peak observations from the detector network under a range of stability conditions, and long-term integrated data is also compared with a routine impact assessment model.

Alastair G. Williams; Geoffrey H. Clark; Leisa Dyer; Richard Barton

2005-01-01T23:59:59.000Z

46

EMSL - radiological  

NLE Websites -- All DOE Office Websites (Extended Search)

radiological en Diffusional Motion of Redox Centers in Carbonate Electrolytes . http:www.emsl.pnl.govemslwebpublicationsdiffusional-motion-redox-centers-carbonate-electrolytes...

47

Hazardous Materials Incident Response Procedure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Materials Incident Response Procedure Hazardous Materials Incident Response Procedure Hazardous Materials Incident Response Procedure The purpose of this procedure is to provide guidance for developing an emergency response plan, as outlined in OSHA's 29 CFR 1910.120(q), for facility response. This model has been adopted and applied to work for response to transportation accidents involving radioactive material or other hazardous materials incidents Hazardous Materials Incident Response Procedure.docx More Documents & Publications Handling and Packaging a Potentially Radiologically Contaminated Patient Decontamination Dressdown at a Transportation Accident Involving Radioactive Material Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated

48

Radiological worker training  

SciTech Connect

This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance.

NONE

1998-10-01T23:59:59.000Z

49

Nuclear / Radiological Advisory Team | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

/ Radiological Advisory Team | National Nuclear Security / Radiological Advisory Team | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear / Radiological Advisory Team Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Operations > Nuclear / Radiological Advisory Team Nuclear / Radiological Advisory Team

50

Radiological Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1098-2008 October 2008 ------------------------------------- Change Notice 1 May 2009 DOE STANDARD RADIOLOGICAL CONTROL U.S. Department of Energy SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1098-2008 ii This document is available on the Department of Energy Technical Standards Program Website at http://www.standards.doe.gov/ iii DOE-STD-1098-2008 Change Notice 1: DOE-STD-1098-2008, Radiological Control Standard Section/page/paragraph Change Section 211, page 2-3, paragraph 1 Add new paragraph 1: "Approval by the appropriate Secretarial Officer or designee should be required

51

Handling and Packaging a Potentially Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handling and Packaging a Potentially Radiologically Contaminated Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients. This procedure applies to Emergency Medical Service care providers who respond to a radioactive material transportation incident that involves potentially contaminated injuries. Handling and Packaging a Potentially Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated

52

Industrial Radiology  

Science Journals Connector (OSTI)

... chief application of industrial radiology in Norway is in the examination of pipe welds in hydroelectric plant. H. Vinter (Denmark), director of the Akademiet for de Technische Videns ... and to compare various methods of non-destructive testing. He gave results of tests on turbine disk forgings of austenitic steel which showed satisfactory agreement between radiography, ultrasonic examination and ...

1950-11-18T23:59:59.000Z

53

A MODEL FOR THE FLEET SIZING OF DEMAND RESPONSIVE TRANSPORTATION SERVICES WITH TIME WINDOWS  

E-Print Network (OSTI)

A MODEL FOR THE FLEET SIZING OF DEMAND RESPONSIVE TRANSPORTATION SERVICES WITH TIME WINDOWS Marco a demand responsive transit service with a predetermined quality for the user in terms of waiting time models; Continuous approximation models; Paratransit services; Demand responsive transit systems. #12;3 1

Dessouky, Maged

54

Solving a Dial-a-Ride Problem with a Hybrid Evolutionary Multi-objective Application to Demand Responsive Transport  

E-Print Network (OSTI)

to Demand Responsive Transport R´emy Chevrier,a , Arnaud Liefoogheb,c , Laetitia Jourdanb,c , Clarisse, 59650 Villeneuve d'Ascq, France Abstract Demand responsive transport allows customers to be carried to improve the quality of service, demand responsive transport needs more flexibility. This paper tries

Boyer, Edmond

55

DOE standard: Radiological control  

SciTech Connect

The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

Not Available

1999-07-01T23:59:59.000Z

56

Dental Radiology  

Science Journals Connector (OSTI)

Dental radiology is the core diagnostic modality of veterinary dentistry. Dental radiographs assist in detecting hidden painful pathology, estimating the severity of dental conditions, assessing treatment options, providing intraoperative guidance, and also serve to monitor success of prior treatments. Unfortunately, most professional veterinary training programs provide little or no training in veterinary dentistry in general or dental radiology in particular. Although a technical learning curve does exist, the techniques required for producing diagnostic films are not difficult to master. Regular use of dental x-rays will increase the amount of pathology detected, leading to healthier patients and happier clients who notice a difference in how their pet feels. This article covers equipment and materials needed to produce diagnostic intraoral dental films. A simplified guide for positioning will be presented, including a positioning cheat sheet to be placed next to the dental x-ray machine in the operatory. Additionally, digital dental radiograph systems will be described and trends for their future discussed.

Tony M. Woodward

2009-01-01T23:59:59.000Z

57

Radiological training for tritium facilities  

SciTech Connect

This program management guide describes a recommended implementation standard for core training as outlined in the DOE Radiological Control Manual (RCM). The standard is to assist those individuals, both within DOE and Managing and Operating contractors, identified as having responsibility for implementing the core training recommended by the RCM. This training may also be given to radiological workers using tritium to assist in meeting their job specific training requirements of 10 CFR 835.

NONE

1996-12-01T23:59:59.000Z

58

Evaluation of ANSI N42-17A by investigating the effects of temperature and humidity on the response of radiological instruments  

SciTech Connect

The American National Standards Institute (ANSI) N42.17A-1989 standard`s performance criteria and test methods has been evaluated by investigating the effects of temperature and humidity on the response of 105 portable direct-reading radiological instruments (45 beta-gamma survey meters, 32 neutron rem meters, 1O alpha contamination and 18 tritium-in-air monitors). The US Department of Energy (DOE) mandates the use of ANSI standards for the calibration and performance testing of radiological instruments, and requires that instruments be appropriate for existing environmental conditions. Random tests conducted in an environmental chamber determined the effects of temperatures ranging from {minus}10{degree}C to 50{degree}C and humidity at levels of 40% RH and 95% RH on the response of a cross section of instruments used in routine health physics operations at Los Alamos. The following instruments were tested: Eberline RO-2 and RO-C ionization chambers, Eberline E-530 survey meter with the Model HP-C stainless steel Geiger-Muller (G) wall probe, Eberline PIC-6A and PIC-6B ion chambers, Eberline ESP-1 survey meter with the Model HP-260 pancake G detector, Ludlum 3 survey meter with the Model 44-6 stainless steel G wall probe, Eberline ESP-1, ESP-2 and PAR-4 survey meters with the neutron rem detector, Health Physics Instruments 2080 survey meter with the moderator detector, Ludlum 139 survey meter with the Model 43-32 air-proportional alpha detector, and the Overhoff 394-C, Johnston J-111 and J-110 tritium monitors. Experimental results encompass 1128 temperature tests (1269-hours exposure in the chamber) and 735 humidity tests (1890-hours exposure in the chamber). The study shows the standard`s test requirement for temperature at or near the extreme conditions, and the standard`s test requirement for humidity at 95% RH may be too restrictive for instruments used in the work environment.

Clement, R.S.

1995-06-01T23:59:59.000Z

59

Radiological Assistance Program | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance Program | National Nuclear Security Administration Assistance Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiological Assistance Program Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > First Responders > Radiological Assistance Program Radiological Assistance Program RAP Logo NNSA's Radiological Assistance Program (RAP) is the nation's

60

Radiological Assistance Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Assistance Program | National Nuclear Security Administration Assistance Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiological Assistance Program Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > First Responders > Radiological Assistance Program Radiological Assistance Program RAP Logo NNSA's Radiological Assistance Program (RAP) is the nation's

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

RADIOLOGICAL SURWY  

Office of Legacy Management (LM)

111 111 j -,~ ' - et- -*\. _(a v - r\lfs+8 plY 45+ c iill I r\l&; p) :;!I..; .: .. :,, ,m -,< :' - ' ec-. :-*% ". _(.*- ~ . . : : : ' .. : : : .. ..:, . . . :. : : ,, :;I;:~~:; :.:.!,;;y ' 1;: .: 1. .., ; ' . :. : c :...: .;: .: RADIOLOGICAL SURWY - RADIoL~BI~L.::.~~~y:- : ::: 1 ,: . . : : :: :. :..." - OFi~:,~~~~:poRTI~~~ 0J-g ,m_ ,. :. y.;,:. ,.:I; .:. F~~~~~~as~~~ ~~~~~~~:~~~~ :co~~~:~~~~~; ;, .. ; I : : ::.. :.. :. - ,B~~Lo,.~-~~~. ..; .:I ,,,, :--:.;:I:: ;' #I Y' i ' 11". .. .. ; :;: ;I, ' . 1::. J;,;. ~;_:y,;:::::; - T.J..:+~uS~~ .' .:' : : . . .. ...: .:.. : OFTHE EXCERIORPORTIONS O F THE FORIMER BLISS ANT3 LAUGHLIN STEEL COMPANY FAC' KJTy - BUFFALO,NEw YORK - T. J.VITKUS I : . . : : ' . .:. : I : : .. :. Prepaied for.:the:' 6ffice.iibfiEnvir~nmenfal Re$o&idn z . . :

62

Women in pediatric radiology  

E-Print Network (OSTI)

AM et al. (2001) Pediatric radiology at the millennium.a case study of pediatric radiology. J Am Coll Radiol 6:635WORKPLACE Women in pediatric radiology M. Ines Boechat # The

Boechat, M. Ines

2010-01-01T23:59:59.000Z

63

Transportation Emergency Preparedness Program Exercise Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exercise Exercise Program TEPP Exercise Program Tom Clawson TEPP Contractor tom@trgroupinc.com Brief TEPP History Brief TEPP History * In 1988, identified need to address emergency preparedness concerns of DOE emergency preparedness concerns of DOE radiological shipments bl h d * EM established in 1989 - Identified need for responder training along all transportation corridors as key to EM mission - TEPP incorporated into DOE Order 151.1, with responsibility assigned to EM * WIPP adopted the the TEPP training in 2000, and began using MERRTT along their routes in 2000 * Created a single DOE radiological transportation training program * Created a single DOE radiological transportation training program for the Department TEPP Exercise Program TEPP Exercise Program * TEPP's exercise program is just

64

Federal Radiological Monitoring and Assessment Center  

Directives, Delegations, and Requirements

To establish Department of Energy (DOE) policy, procedures, authorities, and requirements for the establishment of a Federal Radiological Monitoring and Assessment Center (FRMAC), as set forth in the Federal Radiological Emergency Response Plan (FRERP). This directive does not cancel another directive. Canceled by DOE O 153.1.

1992-12-02T23:59:59.000Z

65

Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program U.S. Department of Energy TRANSPORTATION AND INCIDENT RESPONSE Q&A About Incident Response Q Q Law Enforcement ____________________________________ Fire ___________________________________________ Medical ____________________________________________ State Radiological Assistance ___________________________ Local Government Official ______________________________ Local Emergency Management Agency ___________________ State Emergency Management Agency ___________________ HAZMAT Team ______________________________________ Water Pollution Control ________________________________ CHEMTEL (Toll-free US & Canada) 1-800-255-3924 _________ CHEMTREC (Toll-free US & Canada) 1-800-424-9300 _______

66

Implementation of a Radiological Safety Coach program  

SciTech Connect

The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets.

Konzen, K.K. [Safe Sites of Colorado, Golden, CO (United States). Rocky Flats Environmental Technology Site; Langsted, J.M. [M.H. Chew and Associates, Golden, CO (United States)

1998-02-01T23:59:59.000Z

67

A Local Incident Flux Response Expansion Transport Method for Coupling to the Diffusion Method in Cylindrical Geometry  

SciTech Connect

A local incident flux response expansion transport method is developed to generate transport solutions for coupling to diffusion theory codes regardless of their solution method (e.g., fine mesh, nodal, response based, finite element, etc.) for reactor core calculations in both two-dimensional (2-D) and three-dimensional (3-D) cylindrical geometries. In this approach, a Monte Carlo method is first used to precompute the local transport solution (i.e., response function library) for each unique transport coarse node, in which diffusion theory is not valid due to strong transport effects. The response function library is then used to iteratively determine the albedo coefficients on the diffusion-transport interfaces, which are then used as the coupling parameters within the diffusion code. This interface coupling technique allows a seamless integration of the transport and diffusion methods. The new method retains the detailed heterogeneity of the transport nodes and naturally constructs any local solution within them by a simple superposition of local responses to all incoming fluxes from the contiguous coarse nodes. A new technique is also developed for coupling to fine-mesh diffusion methods/codes. The local transport method/module is tested in 2-D and 3-D pebble-bed reactor benchmark problems consisting of an inner reflector, an annular fuel region, and a controlled outer reflector. It is found that the results predicted by the transport module agree very well with the reference fluxes calculated directly by MCNP in both benchmark problems.

Dingkang Zhang; Farzad Rahnema; Abderrafi M. Ougouag

2013-09-01T23:59:59.000Z

68

Radiological Triage | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Triage | National Nuclear Security Administration Triage | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiological Triage Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Render Safe > Radiological Triage Radiological Triage Triage Logo NNSA's Triage is a non-deployable, secure, on-line capability

69

WIPP transportation exercise to test emergency response capablities for Midland-Odessa  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Exercise to Test Transportation Exercise to Test Emergency Response Capabilities for Midland-Odessa CARLSBAD, N.M., January 10, 2000 - Emergency response agencies from Midland and Odessa, Texas, will take part in a 1 p.m. (CST) training exercise Jan. 12 at the Ector County Coliseum. The graded exercise will help agencies determine whether emergency personnel are prepared to respond to a possible accident involving a shipment of transuranic radioactive waste headed for the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). "This is an excellent opportunity for emergency responders to test the skills they've learned," said Dale Childers, assistant chief of the Odessa Fire Department and emergency management coordinator for Ector County. "It will also help us determine what improvements,

70

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation Transportation of Depleted Uranium Materials in Support of the Depleted Uranium Hexafluoride Conversion Program Issues associated with transport of depleted UF6 cylinders and conversion products. Conversion Plan Transportation Requirements The DOE has prepared two Environmental Impact Statements (EISs) for the proposal to build and operate depleted uranium hexafluoride (UF6) conversion facilities at its Portsmouth and Paducah gaseous diffusion plant sites, pursuant to the National Environmental Policy Act (NEPA). The proposed action calls for transporting the cylinder at ETTP to Portsmouth for conversion. The transportation of depleted UF6 cylinders and of the depleted uranium conversion products following conversion was addressed in the EISs.

71

Genes Related to Ion-Transport and Energy Production Are Upregulated in Response to CO2-Driven pH Decrease  

E-Print Network (OSTI)

Genes Related to Ion-Transport and Energy Production Are Upregulated in Response to CO2-Driven p. (2013) Genes Related to Ion-Transport and Energy Production Are Upregulated in Response to CO2-Driven p

Paris-Sud XI, Université de

72

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Risks » Transportation Health Risks » Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

73

An overview of dental radiology: a primer on dental radiology  

SciTech Connect

To provide medical and scientific background on certain selected technologies generally considered to be of particular significance, the National Center for Health Care Technology (NCHCT) has commissioned a series of overview papers. This is one of several projects entered into jointly by the Bureau of Radiological Health (BRH) and NCHCT relating to the use of radiation for health care. Dental radiation protection has been a long-time interest of BRH. Both past and on-going efforts to minimize population radiation exposure from electronic products have included specific action programs directed at minimizing unnecessary radiation exposure to the population from dental radiology. Current efforts in quality assurance and referral criteria are two aspects of NCHCT's own assessment of this technology which are described within the larger picture presented in this overview. The issues considered in this document go beyond the radiation exposure aspects of dental x-ray procedures. To be responsive to the informational needs of NCHCT, the assessment includes various other factors that influence the practice of dental radiology. It is hoped this analysis will serve as the basis for planning and conducting future programs to improve the practice of dental radiology.

Manny, E.F.; Carlson, K.C.; McClean, P.M.; Ra1hlin, J.A.; Segal, P.

1980-11-07T23:59:59.000Z

74

Apparatus for safeguarding a radiological source  

DOE Patents (OSTI)

A tamper detector is provided for safeguarding a radiological source that is moved into and out of a storage location through an access porthole for storage and use. The radiological source is presumed to have an associated shipping container approved by the U.S. Nuclear Regulatory Commission for transporting the radiological source. The tamper detector typically includes a network of sealed tubing that spans at least a portion of the access porthole. There is an opening in the network of sealed tubing that is large enough for passage therethrough of the radiological source and small enough to prevent passage therethrough of the associated shipping cask. Generally a gas source connector is provided for establishing a gas pressure in the network of sealed tubing, and a pressure drop sensor is provided for detecting a drop in the gas pressure below a preset value.

Bzorgi, Fariborz M

2014-10-07T23:59:59.000Z

75

Roadmap: Radiologic Imaging Sciences -Nuclear Medicine (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology) - Bachelor Safety 3 C #12;Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-NMRT] Regional College Catalog Year: 2013-2014 Page 1

Sheridan, Scott

76

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MEASUREMENT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix B December 2008 Reaffirmed 2013 DOE HANDBOOK RADIOLOGICAL WORKER TRAINING RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ . ii Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 Foreword This Handbook describes a recommended implementation process for core training as outlined in

77

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix A Change Notice 2 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 Foreword This Handbook describes an implementation process for training as recommended in

78

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix A Change Notice 2 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 Foreword This Handbook describes an implementation process for training as recommended in

79

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix C December 2008 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training Radiological Safety Training for Radiation Producing (X-Ray) Devices U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008

80

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix C December 2008 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training Radiological Safety Training for Radiation Producing (X-Ray) Devices U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EMSL Research and Capability Development Proposals Nonlinear Radiation Response and Transport Properties in Scintillating Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Figure 1. Time-of-Flight (TOF) versus light Figure 1. Time-of-Flight (TOF) versus light output (L) of CsI:Tl to He + ions. The inset is an example where L=263 is determined for particles with certainty energy (TOF=840). The energy resolution can be determined by ∆L/L = 45/263. The light-energy dependence and energy resolution can be observed as the difference in curvature and dispersive of the data. EMSL Research and Capability Development Proposals Nonlinear Radiation Response and Transport Properties in Scintillating Materials Project start date: Spring 2007 EMSL Lead Investigator: Yanwen Zhang Deposition and Microfabrication, EMSL, PNNL Co-investigators: Vaithiyalingam Shutthanandan Deposition and Microfabrication, EMSL, PNNL Scintillation response has wide applications in the field of astronomy, medical physics, high-energy

82

Panoramic Radiology: Endodontic Considerations  

Science Journals Connector (OSTI)

Endodontics is concerned with the morphology, physiology, and pathology of the human dental pulp and periradicular tissues. Radiology is especially important for diagnosis in the...

2007-01-01T23:59:59.000Z

83

Dealing with at-risk populations in radiological/nuclear emergencies  

Science Journals Connector (OSTI)

......Biological, Radiological-Nuclear, and Explosives (CBRNE...Device (RDD) and Improvised Nuclear Device (IND) Incidents...Security Council Interagency Policy Coordination Subcommittee for...Response to Radiological and Nuclear Threats. Planning guidance......

Diana Wilkinson

2009-06-01T23:59:59.000Z

84

Transportation  

Science Journals Connector (OSTI)

The romantic rides in Sandburgs eagle-car changed society. On the one hand, motor vehicle transportation is an integral thread of societys fabric. On the other hand, excess mobility fractures old neighborh...

David Hafemeister

2014-01-01T23:59:59.000Z

85

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Incidents and Emergencies Radiological Incidents and Emergencies Instructor's Guide 2.13-1 Course Title: Radiological Control Technician Module Title: Radiological Incidents and Emergencies Module Number: 2.13 Objectives: 2.13.01 Describe the general response and responsibilities of an RCT during any incident. L 2.13.02 Identify any emergency equipment and facilities that are available, including the location and contents of emergency equipment kits. L 2.13.03 Describe the RCT response to a Continuous Air Monitor (CAM) alarm. L 2.13.04 Describe the RCT response to a personnel contamination monitor alarm. L 2.13.05 Describe the RCT response to off scale or lost dosimetry. L 2.13.06 Describe the RCT response to rapidly increasing, unanticipated radiation levels or an area radiation monitor alarm. L

86

DOE-HDBK-1122-99; Radiological Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Incidents and Emergencies Radiological Incidents and Emergencies Study Guide 2.13-1 Course Title: Radiological Control Technician Module Title: Radiological Incidents and Emergencies Module Number: 2.13 Objectives: 2.13.01 Describe the general response and responsibilities of an RCT during any incident. i 2.13.02 Identify any emergency equipment and facilities that are available, including the location and contents of emergency equipment kits. i 2.13.03 Describe the RCT response to a Continuous Air Monitor (CAM) alarm. i 2.13.04 Describe the RCT response to a personnel contamination monitor alarm. i 2.13.05 Describe the RCT response to off scale or lost dosimetry. i 2.13.06 Describe the RCT response to rapidly increasing, unanticipated radiation levels or an area radiation monitor alarm. i 2.13.07

87

GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material |  

National Nuclear Security Administration (NNSA)

Removing Vulnerable Civilian Nuclear and Radiological Material | Removing Vulnerable Civilian Nuclear and Radiological Material | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material Fact Sheet GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material

88

NNSA Helps Vietnam Establish Nuclear, Radiological Emergency Management  

National Nuclear Security Administration (NNSA)

Helps Vietnam Establish Nuclear, Radiological Emergency Management Helps Vietnam Establish Nuclear, Radiological Emergency Management System | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA Helps Vietnam Establish Nuclear, Radiological Emergency ... Press Release NNSA Helps Vietnam Establish Nuclear, Radiological Emergency Management

89

GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material |  

NLE Websites -- All DOE Office Websites (Extended Search)

Removing Vulnerable Civilian Nuclear and Radiological Material | Removing Vulnerable Civilian Nuclear and Radiological Material | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material Fact Sheet GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material

90

Radiological risk evaluation for risk-based design criteria of the multiple canister overpack packaging  

SciTech Connect

The Multiple Canister Overpack (MCO) cask will be used in the transportation of irradiated nuclear fuel from the K Basins to a Canister Storage Building. This report presents the radiological risk evaluation, which is used in the development of the design criteria for the MCO cask. The radiological risk evaluation ensures compliance with the onsite transportation safety program.

Green, J.R., Westinghouse Hanford

1996-07-18T23:59:59.000Z

91

DOE-HDBK-1141-2001; Radiological Assessor Training, Student's Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Student's Guide Notes Module 4-1 I. Introduction II. Radiological Control Program A. Overall program The Radiological Control Program consists of the commitments, policies, and procedures that are administered by a site or facility to meet the EH Health and Safety Policy. The Radiation Protection Program required by 10 CFR Part 835 is an element of the overall Radiological Control Program. The Radiological Control Program should address the following: * Requirements * Responsibilities * Programs/procedures * Assessments B. Size of the program Radiological Control Programs vary in size. There are several factors that may affect the magnitude of a Radiological Control Program. The specific mission, types and quantities of

92

Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7of 9 7of 9 Radiological Control Technician Training Practical Training Phase II Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii Table of Contents Page Introduction.............................................................................. ......1 Development of Job Performance Measures (JPMs)............................ .....1 Conduct Job Performance Evaluation...................................................3 Qualification Area: Radiological Instrumentation.......................................5 Task 2-1.................. ..................................................................... 5 Objective.............................................................................. 5

93

Radiological Worker Training - Radiological Control Training for Supervisors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A A December 2008 DOE HANDBOOK Radiological Worker Training Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 iii Foreword This Handbook describes an implementation process for training as recommended in

94

An external dose reconstruction involving a radiological dispersal device  

E-Print Network (OSTI)

emergency situation. In response, the Department of Homeland Security has published Protective Action Guides (DHS 2006) to help minimize these exposures and associated risks. This research attempts to provide some additional radiological exposure knowledge...

Hearnsberger, David Wayne

2007-04-25T23:59:59.000Z

95

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Due to limited parking, all visitors are strongly encouraged to: Due to limited parking, all visitors are strongly encouraged to: 1) car-pool, 2) take the Lab's special conference shuttle service, or 3) take the regular off-site shuttle. If you choose to use the regular off-site shuttle bus, you will need an authorized bus pass, which can be obtained by contacting Eric Essman in advance. Transportation & Visitor Information Location and Directions to the Lab: Lawrence Berkeley National Laboratory is located in Berkeley, on the hillside directly above the campus of University of California at Berkeley. The address is One Cyclotron Road, Berkeley, California 94720. For comprehensive directions to the lab, please refer to: http://www.lbl.gov/Workplace/Transportation.html Maps and Parking Information: On Thursday and Friday, a limited number (15) of barricaded reserved parking spaces will be available for NON-LBNL Staff SNAP Collaboration Meeting participants in parking lot K1, in front of building 54 (cafeteria). On Saturday, plenty of parking spaces will be available everywhere, as it is a non-work day.

96

Radiological Assessor Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-2008 1-2008 August 2008 DOE HANDBOOK Radiological Assessor Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document is available on the Department of Energy Technical Standards Program Web site at http://tis.eh.doe.gov/techs\ Foreword This Handbook describes an implementation process for training as recommended in Implementation Guide G441.1-1B, Radiation Protection Programs, March 2007, and as outlined in DOE- STD- 1098-99, CN1, March 2005, DOE Radiological Control (the Radiological Control Standard - RCS). The Handbook is meant to assist those individuals within the Department of

97

Roadmap: Radiologic Imaging Sciences -Computed Tomography (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Computed Tomography (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-CTRT] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 30-Apr-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

98

Roadmap: Radiologic Imaging Sciences -Computed Tomography (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Computed Tomography (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-CTRT] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 25-Oct-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

99

Roadmap: Radiologic Imaging Sciences -Radiation Therapy (with AAS Radiologic Technology)  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Radiation Therapy (with AAS Radiologic Technology) ­ Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-RTAA] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

100

Roadmap: Radiologic Imaging Sciences -Radiation Therapy (with AAS Radiologic Technology)  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Radiation Therapy (with AAS Radiologic Technology) ­ Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-RTAA] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 21-May-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Roadmap: Radiologic Imaging Sciences -Nuclear Medicine (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-NMRT] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 21-May-12/LNHD This roadmap is a recommended semester-by-semester plan of study

Sheridan, Scott

102

Radiological assessment. A textbook on environmental dose analysis  

SciTech Connect

Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. The material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.

Till, J.E.; Meyer, H.R. (eds.)

1983-09-01T23:59:59.000Z

103

Transporting TMI-2 (Three Mile Island Unit 2) core debris to INEL: Public safety and public response  

SciTech Connect

This paper describes the approach taken by the US Department of Energy (DOE) to ensure that public safety is maintained during transport of core debris from the Unit-2 reactor at the Three Mile Island Nuclear Power Station near Harrisburg, PA, to the Idaho National Engineering Laboratory near Idaho Falls, ID. It provides up-to-date information about public response to the transport action and discusses DOE's position on several institutional issues. The authors advise that planners of future transport operations be prepared for a multitude of comments from all levels of federal, state, and local governments, special interest groups, and private citizens. They also advise planners to keep meticulous records concerning all informational transactions.

Schmitt, R.C.; Reno, H.W.; Young, W.R.; Hamric, J.P.

1987-01-01T23:59:59.000Z

104

Trade, transport, and sinks extend the carbon dioxide responsibility of countries: An editorial essay  

SciTech Connect

Globalization and the dynamics of ecosystem sinks need be considered in post-Kyoto climate negotiations as they increasingly affect the carbon dioxide concentration in the atmosphere. Currently, the allocation of responsibility for greenhouse gas mitigation is based on territorial emissions from fossil-fuel combustion, process emissions and some land-use emissions. However, at least three additional factors can significantly alter a country's impact on climate from carbon dioxide emissions. First, international trade causes a separation of consumption from production, reducing domestic pollution at the expense of foreign producers, or vice versa. Second, international transportation emissions are not allocated to countries for the purpose of mitigation. Third, forest growth absorbs carbon dioxide and can contribute to both carbon sequestration and climate change protection. Here we quantify how these three factors change the carbon dioxide emissions allocated to China, Japan, Russia, USA, and European Union member countries. We show that international trade can change the carbon dioxide currently allocated to countries by up to 60% and that forest expansion can turn some countries into net carbon sinks. These factors are expected to become more dominant as fossil-fuel combustion and process emissions are mitigated and as international trade and forest sinks continue to grow. Emission inventories currently in wide-spread use help to understand the global carbon cycle, but for long-term climate change mitigation a deeper understanding of the interaction between the carbon cycle and society is needed. Restructuring international trade and investment flows to meet environmental objectives, together with the inclusion of forest sinks, are crucial issues that need consideration in the design of future climate policies. And even these additional issues do not capture the full impact of changes in the carbon cycle on the global climate system.

Peters, Glen P [Center for International Climate and Energy Research (CICERO), Oslo, Norway; Marland, Gregg [ORNL; Hertwich, Edgar G. [Norwegian University of Science and Technology; Saikku, Laura [University of Helsinki

2009-01-01T23:59:59.000Z

105

Nuclear Radiological Threat Task Force Established | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiological Threat Task Force Established | National Nuclear Radiological Threat Task Force Established | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Nuclear Radiological Threat Task Force Established Nuclear Radiological Threat Task Force Established November 03, 2003 Washington, DC Nuclear Radiological Threat Task Force Established

106

NNSA Conducts Radiological Training in Slovenia | National Nuclear Security  

National Nuclear Security Administration (NNSA)

NNSA Blog > NNSA Conducts Radiological Training in Slovenia NNSA Blog > NNSA Conducts Radiological Training in Slovenia NNSA Conducts Radiological Training in Slovenia Posted By Office of Public Affairs NNSA Blog NNSA today concluded International Radiological Assistance Program Training for Emergency Response (I-RAPTER) in Slovenia. The training, co-sponsored by the International Atomic Energy Agency, was provided to 36 nuclear/radiological emergency responders, which included 15 participants from Slovenia and 21 students from 20 other countries. The training was conducted with involvement of personnel from Sandia National Laboratories, the Remote Sensing Laboratory and Idaho National Laboratory. To read more about the training see: http://www.nnsa.energy.gov/mediaroom/pressreleases/slovenia Posted on March 22, 2012 at 4:13 pm ET

107

Radiology of thoracic diseases  

SciTech Connect

This book presents the essential clinical and radiologic findings of a wide variety of thoracic diseases. The authors include conventional, CT and MR images of each disease discussed. In addition, they present practical differential diagnostic considerations for most of the radiographic findings or patterns portrayed.

Swensen, S.J.; Pugatch, R.D.

1989-01-01T23:59:59.000Z

108

GTRI's Nuclear and Radiological Material Protection | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Protection | National Nuclear Protection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog GTRI's Nuclear and Radiological Material Protection Home > About Us > Our Programs > Nonproliferation > Global Threat Reduction Initiative > GTRI's Nuclear and Radiological Material Protection GTRI's Nuclear and Radiological Material Protection

109

General Employee Radiological Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-HDBK-1131-2007 iii Foreword This Handbook describes an implementation process for core training as recommended in chapter 14, Radiation Safety Training, of Implementation Guide G44.1B, Radiation Protection Programs Guide, and as outlined in the DOE Radiological Control Standard [RCS - DOE-STD-1098-99, Ch. 1]. The Handbook is meant to assist those individuals

110

Radiological Assessor Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

141-2001 141-2001 April 2001 Change Notice No. 1 and Reaffirmation January 2007 DOE HANDBOOK Radiological Assessor Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Assessor Training DOE-HDBK-1141-2001 iii

111

Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Control Technician Training Facility Practical Training Attachment Phase IV Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii This page intentionally left blank DOE-HDBK-1122-2009 iii Table of Contents Page Introduction................................................................................................................................1 Facility Job Performance Measures ........................................................................................2 Final Verification Signatures ....................................................................................................3 DOE-HDBK-1122-2009 iv

112

Radiological Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Part 2 of 9 Radiological Control Technician Training Technician Qualification Standard Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii This page intentionally left blank. DOE-HDBK-1122-2009 iii Table of Contents Page Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Purpose of Qualification Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Phase I: RCT Academics Training . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 1 Phase II: RCT Core Practical (JPMs) Training . . . . . . . . . . . . . . . . . .. . . . . . . 1

113

Radiological Worker Training - Radiological Contamination Control for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B B December 2008 DOE HANDBOOK RADIOLOGICAL WORKER TRAINING RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ . Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 iii Foreword This Handbook describes a recommended implementation process for core training as outlined in

114

Probabilistic assessment of spent fuel shipping cask response to severe transportation accident conditions. Report summary  

SciTech Connect

The licensing of commercial nuclear spent shipping casks in the United States is regulated by 10CFR71. In order to be licensed, casks must be designed not to fail under hypothetical test conditions specified in Appendix B of this regulation. Questions have been raised about the suitability of these tests in simulating actual transportation accident conditions. Our study addresses the adequacy of current regulations by comparing real-world accident conditions with regulatory test specifications using more complete accident statistics and more sophisticated structural analyses than have been used in studies to date. Our objective is to evaluate the protection provided by current regulations against severe accident conditions for commercial spent nuclear fuel casks that are transported by truck or rail. The complete spectrum of truck and rail accidents will be reviewed in order to determine the frequency (or infrequency) of cask failures during transportation accidents. 3 references, 1 figure.

Fischer, L.E.; Kimura, C.Y.; Witte, M.C.

1985-01-01T23:59:59.000Z

115

Going the Distance? NRC's Response to the National Academy of Science's Transportation Study  

SciTech Connect

In February 2006, the National Academy of Sciences (NAS) published the results of a 3 1/2-year study, titled Going the Distance, that examined the safety of transporting spent nuclear fuel (SNF) and high level waste (HLW) in the United States. NAS initiated this study to address what it perceived to be a national need for an independent, objective, and authoritative analysis of SNF and HLW transport in the United States. The study was co-sponsored by the U.S. Nuclear Regulatory Commission (NRC), the U.S. Department of Energy (DOE), the U.S. Department of Transportation (DOT), the Electric Power Research Institute and the National Cooperative Highway Research Program. This paper addresses some of the recommendations made in the NAS study related to the performance of SNF transportation casks in long duration fires, the use of full-scale package testing, and the need for an independent review of transportation security prior to the commencement of large scale shipping campaigns to an interim storage site or geologic repository. In conclusion: The NRC believes that the current regulations in 10 CFR Part 71 for the design of SNF and HLW transportation packages provide a very high level of protection to the public for very severe accidents and credible threat scenarios. As recommended by the NAS study, additional studies of accidents involving severe fires have been completed. These studies have confirmed that spent fuel casks would be expected to withstand very severe fires without the release of any fission products from the spent fuel. Additionally, changes in rail operating procedures such as the use of dedicated trains and prohibition on the co-location of SNF and flammable liquids in rail tunnels can further reduce the already low probability of severe rail accident fires involving SNF and HLW. (authors)

Easton, E.P.; Bajwa, C.S. [United States Nuclear Regulatory Commission, Washington, DC (United States)

2008-07-01T23:59:59.000Z

116

Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions  

SciTech Connect

To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flow model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted to Pu uptake by corn roots and xylem transport. Plants were started in wet paper wrapped around each corn seed. When the tap roots were sufficiently long, the seedlings were transplanted to a soil container with the tap root extending out the container bottom. The soil container was then placed over a nutrient solution container, and the solution served as an additional medium for root growth. To conduct an uptake study, a radioactive substance, such as Pu complexed with the bacterial siderophore DFOB, was added to the nutrient solution. After a suitable elapsed time, the corn plant was sacrificed, cut into 10 cm lengths, and the activity distribution measured. Experimental results clarified the basic nature of Pu uptake and transport in corn plants, and resulting simulations suggested that each growing season Pu in the SRS lysimeters would move into the plant shoots and be deposited on the soil surface during the Fall dieback. Subsequent isotope ratio analyses showed that this did happen. OVERALL RESULTS AND CONCLUSIONS - (1) Pu transport downward from the source is controlled by advection, dispersion and adsorption, along with surface-mediated REDOX reactions. (2) Hysteresis, extreme root distribution functions, air-content dependent oxidation rate constants, and large evaporation rates from the soil surface were not able to explain the observed upward migration of Pu. (3) Small amounts of Pu uptake by plant roots and translocation in the transpiration stream creates a realistic mechanism for upward Pu migration (4) Realistic xylem cross-sectional areas imply high flow velocities under hot, wet conditions. Such flow velocities produce the correct shape for the observed activity distributions in the top 20 cm of the lysimeter soil. (5) Simulations imply that Pu should have moved into the above-ground grass tissue each year during the duration of the experiments, resulting in an activity residual accumulating on the soil surface. An isotope ratio analysis showed that the observed surface Pu residue was from the buried sources, not atmospheric fallout. (6) The

Fred J. Molz, III

2010-05-28T23:59:59.000Z

117

Radiological hazards of alpha-contaminated waste  

SciTech Connect

The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process.

Rodgers, J.C.

1982-01-01T23:59:59.000Z

118

Emergency response planning for railroad transportation related spills of oil or other hazardous materials  

E-Print Network (OSTI)

In December 1984 an unintentional release of poison gas from a chemical plant in Bhopal, India killed over 2,500 people. Thousands of others were injured. Although this material was not in transportation at the time, this accident raised public...

Reeder, Geoffrey Benton

2012-06-07T23:59:59.000Z

119

Nuclear & Radiological Activity Center (NRAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear & Radiological Activity Center (NRAC) Where nuclear research and deployment capabilities come together to solve nuclear nonproliferation challenges. Skip Navigation Links...

120

Panoramic Radiology: Oncologic Dentistry Considerations  

Science Journals Connector (OSTI)

Panoramic radiology can serve as an important input supporting ... they are also important (1) for planning dental treatment in preparation of the oral cavity...

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Change Notice No. 1 2009 Change Notice No. 2 2011 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-HDBK-1122-2009 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1122-2009 Original Change Part 3 1.05-1 NCRP Report No. 93 "Ionizing Radiation Exposure of the Population of the United States". NCRP Report No. 160 "Ionizing Radiation Exposure of the Population

122

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

98 98 October 1998 Change Notice No. 1 June 2001 Change Notice No. 2 December 2003 Reaffirmation with Errata May 2004 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-98 ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration,

123

Radiological standards and calibration laboratory capabilities  

SciTech Connect

The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest Laboratory (PNL), performs calibrations and upholds reference standards necessary to maintain traceability to national radiological standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE sites, and research programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site`s 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, and thermoluminescent and radiochromic dosimetry. The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, and a beta standards laboratory used for beta energy response studies and beta reference calibrations. Calibrations are routinely performed for personnel dosimeters, health physics instrumentations, photon transfer standards and alpha, beta and gamma field sources used throughout the Hanford Site. This report describes the standards and calibrations laboratory. Photographs that accompany the text appear in the Appendix and are designated Figure A.1 through A.29.

Goles, R.W.

1995-01-01T23:59:59.000Z

124

SRNL EMERGENCY RESPONSE CAPABILITY FOR ATMOSPHERIC CONTAMINANT RELEASES  

SciTech Connect

Emergency response to an atmospheric release of chemical or radiological contamination is enhanced when plume predictions, field measurements, and real-time weather information are integrated into a geospatial framework. The Weather Information and Display (WIND) System at Savannah River National Laboratory (SRNL) utilizes such an integrated framework. The rapid availability of predictions from a suite of atmospheric transport models within this geospatial framework has proven to be of great value to decision makers during an emergency involving an atmospheric contaminant release.

Koffman, L; Chuck Hunter, C; Robert Buckley, R; Robert Addis, R

2006-07-12T23:59:59.000Z

125

GTRI commended for work to secure radiological sources | National Nuclear  

National Nuclear Security Administration (NNSA)

GTRI commended for work to secure radiological sources | National Nuclear GTRI commended for work to secure radiological sources | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > GTRI commended for work to secure radiological sources GTRI commended for work to secure radiological sources Posted By Office of Public Affairs Container NNSA's Global Threat Reduction Initiative (GTRI) was recently commended

126

GTRI commended for work to secure radiological sources | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

GTRI commended for work to secure radiological sources | National Nuclear GTRI commended for work to secure radiological sources | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > GTRI commended for work to secure radiological sources GTRI commended for work to secure radiological sources Posted By Office of Public Affairs Container NNSA's Global Threat Reduction Initiative (GTRI) was recently commended

127

ORISE: REAC/TS Radiological Incident Medical Consultation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiological Incident Medical Consultation Radiological Incident Medical Consultation Radiological Incident Medical Consultation The Oak Ridge Institute for Science and Education (ORISE) provides the U.S. Department of Energy (DOE) with a comprehensive capability to respond effectively to medical emergencies involving radiological or nuclear materials. Through the management of the Radiation Emergency Assistance Center/Training Site (REAC/TS), ORISE provides advice and consultation to emergency personnel responsible for the medical management of radiation accidents. REAC/TS strengthens hospital preparedness for radiation emergencies by preparing and educating first responders, medical personnel and occupational health professionals who will provide care to patients with a radiation injury or illness. REAC/TS staff provide medical advice,

128

Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National  

National Nuclear Security Administration (NNSA)

Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Insider Threat to Nuclear and Radiological Materials: ... Fact Sheet Insider Threat to Nuclear and Radiological Materials: Fact Sheet

129

Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. I. The Numerical Model  

Science Journals Connector (OSTI)

Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self-consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the Naval Research Laboratory flux tube code. We calculated the collisional heating rate directly from the particle transport code, which is more accurate than those in previous studies based on approximate analytical solutions. We repeated the simulation of Mariska et al. with an injection of power law, downward-beamed electrons using the new heating rate. For this case, a ~10% difference was found from their old result. We also used a more realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a nonthermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (versus chromosphere) and thus a larger downward heat conduction flux. The interplay of electron heating, conduction, and radiative loss leads to stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced emission, which, in principle, can be imaged by X-ray telescopes. This model can be applied to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas.

Wei Liu; Vah Petrosian; John T. Mariska

2009-01-01T23:59:59.000Z

130

COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL  

SciTech Connect

Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self-consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the Naval Research Laboratory flux tube code. We calculated the collisional heating rate directly from the particle transport code, which is more accurate than those in previous studies based on approximate analytical solutions. We repeated the simulation of Mariska et al. with an injection of power law, downward-beamed electrons using the new heating rate. For this case, a {approx}10% difference was found from their old result. We also used a more realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a nonthermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (versus chromosphere) and thus a larger downward heat conduction flux. The interplay of electron heating, conduction, and radiative loss leads to stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced emission, which, in principle, can be imaged by X-ray telescopes. This model can be applied to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas.

Liu Wei [Stanford-Lockheed Institute for Space Research, 466 Via Ortega, Cypress Hall, Stanford, CA 94305-4085 (United States); Petrosian, Vahe [Department of Physics, Stanford University, Stanford, CA 94305-4060 (United States); Mariska, John T. [Naval Research Laboratory, Code 7673, Washington, DC 20375-5000 (United States)

2009-09-10T23:59:59.000Z

131

Handling and Packaging a Potentially Radiologically Contaminated...  

Office of Environmental Management (EM)

Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Medical ExaminerCoroner...

132

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TS TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 December 2008 Change Notice 2 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 2 DOE-HDBK-1130-2008 Original Change Throughout Program Management Guide Instructor's Guide Student's Guide "Shall" and "Must" statements Program Management Instructor's Material Student's Material Reworded to non-mandatory language unless associated with a requirement document.

133

General Employee Radiological Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Not Measurement Not Measurement Sensitive DOE-HDBK-1131-2007 December 2007_______ Change Notice 1 Reaffirmed 2013 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1131-2007 Original Change Part 2 page 5 The average annual radiation dose to a member of the general population is about 360 millirem/year. The average annual radiation dose to a member of the general population is about 620 millirem/year. Part 2 page 5 Natural background radiation is by far the

134

General Employee Radiological Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

_______ _______ Change Notice 1 June 2009 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1131-2007 Original Change Part 2 page 5 The average annual radiation dose to a member of the general population is about 360 millirem/year. The average annual radiation dose to a member of the general population is about 620 millirem/year. Part 2 page 5 Natural background radiation is by far the

135

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 December 2008 Change Notice 1 June 2009 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1130-2008 Original Change Part 2 Module 2 page 17 Medical radiation sources (total average dose ~ 54 mrem/yr) 1) X rays (total average dose ~ 40mrem/yr) a) X rays are similar to gamma rays; however, they originate outside the nucleus.

136

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TS TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 December 2008 Change Notice 2 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 2 DOE-HDBK-1130-2008 Original Change Throughout Program Management Guide Instructor's Guide Student's Guide "Shall" and "Must" statements Program Management Instructor's Material Student's Material Reworded to non-mandatory language unless associated with a requirement document.

137

For S Radiological  

Office of Legacy Management (LM)

? . ? . -. .- * -* (\/If.r.-5- .* , d- For S Radiological ' mer Bridgepo pecial Metals Adrian, Survey of the Irt Brass Company Extrusion Plant, Michigan / /f?t' . ( F. F. Haywood H. W. Dickson W. D. Cottrell W. H. Shinpaugh _ : I., _-. .I ( ._ rc/ DOE/EV-0005128 ORNL-57 13 / J. E. Burden 0. R. Stone R. W. Doane W. A. Goldsmith 4 , Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes-Printed Copy: A06 Microfiche A01 This report was prepared as an account of work sponsored by an agency of the UnitedStatesGovernment. Neither theUnitedStatesGovernment noranyagency thereof, nor any of their employees, makes any warranty, express or implied, or

138

Case Based Dental Radiology  

Science Journals Connector (OSTI)

Dental radiology is quickly becoming integral to the standard of care in veterinary dentistry. This is not only because it is critical for proper patient care, but also because client expectations have increased. Furthermore, providing dental radiographs as a routine service can create significant practice income. This article details numerous conditions that are indications for dental radiographs. As you will see, dental radiographs are often critical for proper diagnosis and treatment. These conditions should not be viewed as unusual; they are present within all of our practices. When you choose not to radiograph these teeth, you leave behind painful pathology. Utilizing the knowledge gained from dental radiographs will both improve patient care and increase acceptance of treatment recommendations. Consequently, this leads to increased numbers of dental procedures performed at your practice.

Brook A. Niemiec

2009-01-01T23:59:59.000Z

139

Standardized radiological dose evaluations  

SciTech Connect

Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

Peterson, V.L.; Stahlnecker, E.

1996-05-01T23:59:59.000Z

140

Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

_______ _______ Change Notice 1 June 2009 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-HDBK-1122-2009 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1122-2009 Original Change Part 3 1.05-1 NCRP Report No. 93 "Ionizing Radiation Exposure of the Population of the United States". NCRP Report No. 160 "Ionizing Radiation Exposure of the Population of the United States". Part 3 1.05-9 4) U.S. national average from diagnostic

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Stanford Radiology LPCH Fast Pediatric MRI  

E-Print Network (OSTI)

Stanford Radiology LPCH Fast Pediatric MRI Shreyas Vasanawala, MD/PhD Stanford University Lucile Radiology LPCH Thank you Par Lab Briefer, lighter, safer anesthesia for pediatric MRI #12; practice #12;Stanford Radiology LPCH #12;Stanford Radiology LPCH Current Solution INVASIVE LIMITS ACCESS

California at Berkeley, University of

142

I COMPREHENSIVE RADIOLOGICAL SURVEY I  

Office of Legacy Management (LM)

im im I COMPREHENSIVE RADIOLOGICAL SURVEY I Prepared by Oak Ridge Associated Universities Prprd* OFF-SITE PROPERTY H' | Prepared for Office of Operational FORMER LAKE ONTARIO ORDNANCE WORKS SITE Safety U.S. Department LEWISTON, NEW YORK I of Energy i J.D. BERGER i Radiological Site Assessment Program Manpower Education, Research, and Training Division I l*~~~~~~ ~~~~DRAFT REPORT January 1983 I I I ------- COMPREHENSIVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY H' FORMER LAKE ONTARIO ORDNANCE WORKS SITE LEWISTON, NEW YORK Prepared for U.S. Department of Energy as part of the Formerly Utilized Sites -- Remedial Action Program J. D. Berger Project Staff L.W. Cole W.O. Helton R.D. Condra T.J. Sowell P.R. Cotten C.F. Weaver G.R. Foltz T.S. Yoo R.C. Gosslee Prepared by Radiological Site Assessment Program

143

Radiological Source Registry and Tracking  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiological Source Registry and Tracking (RSRT) Radiological Source Registry and Tracking (RSRT) Home HSS Logo Radiological Source Registry and Tracking (RSRT) Department of Energy (DOE) Notice N 234.1 Reporting of Radioactive Sealed Sources has been superseded by DOE Order O 231.1B Environment, Safety and Health Reporting. O 231.1B identifies the requirements for centralized inventory and transaction reporting for radioactive sealed sources. Each DOE site/facility operator that owns, possesses, uses or maintains in custody those accountable radioactive sealed sources identified in Title 10 Code of Federal Regulation Part 835, Occupational Radiation Protection (10 CFR 835), Appendix E, and International Atomic Energy Agency (IAEA) Categories 1 and 2 radioactive sealed sources identified in Attachment 5, Appendix A of O 321.1B, will submit information to the DOE Radiological Source Registry and Tracking (RSRT) System.

144

Radiological cleanup of Enewetak Atoll  

SciTech Connect

For 8 years, from 1972 until 1980, the United States planned and carried out the radiological cleanup, rehabilitation, and resettlement of Enewetak Atoll in the Marshall Islands. This documentary records, from the perspective of DOD, the background, decisions, actions, and results of this major national and international effort. The documentary is designed: First, to provide a historical document which records with accuracy this major event in the history of Enewetak Atoll, the Marshall Islands, the Trust Territory of the Pacific Islands, Micronesia, the Pacific Basin, and the United States. Second, to provide a definitive record of the radiological contamination of the Atoll. Third, to provide a detailed record of the radiological exposure of the cleanup forces themselves. Fourth, to provide a useful guide for subsequent radiological cleanup efforts elsewhere.

Not Available

1981-01-01T23:59:59.000Z

145

Radiological Protection for DOE Activities  

Directives, Delegations, and Requirements

Establishes radiological protection program requirements that, combined with 10 CFR 835 and its associated implementation guidance, form the basis for a comprehensive program for protection of individuals from the hazards of ionizing radiation in controlled areas. Extended by DOE N 441.3. Cancels DOE 5480.11, DOE 5480.15, DOE N 5400.13, DOE N 5480.11; please note: the DOE radiological control manual (DOE/EH-0256T)

1995-09-29T23:59:59.000Z

146

Radiological safety training for accelerator facilities: DOE handbook  

SciTech Connect

This program management guide describes the proper implementation standard for core training as outline in the DOE Radiological Control (RadCon) Manual. Its purpose is to assist DOE employees and Managing and Operating (M&O) contractors having responsibility for implementing the core training recommended by the RadCon Manual.

NONE

1997-03-01T23:59:59.000Z

147

External dosimetry in the aftermath of a radiological terrorist event  

Science Journals Connector (OSTI)

......Similarly, site assessment and cleanup...routinely at risk from many...case of a nuclear power plant accident...radiological assessments and may be...responsible for terrorism preparedness...Monitoring and Assessment Center...after the nuclear power plant accident......

Gladys A. Klemic; Paul D. Bailey; Kevin M. Miller; Matthew A. Monetti

2006-09-01T23:59:59.000Z

148

External dosimetry in the aftermath of a radiological terrorist event  

Science Journals Connector (OSTI)

......routinely at risk from many...case of a nuclear power plant accident...radiological attack, but its...responsible for terrorism preparedness...support of nuclear power plants. 3. Managing...Attachment G-Terrorism, is a supplement...actions for nuclear incidents......

Gladys A. Klemic; Paul D. Bailey; Kevin M. Miller; Matthew A. Monetti

2006-09-01T23:59:59.000Z

149

External dosimetry in the aftermath of a radiological terrorist event  

Science Journals Connector (OSTI)

......associated health risks. A framework...routinely at risk from many...case of a nuclear power plant accident...Homeland Security (DHS...radiological attack, but its...responsible for terrorism preparedness...of nuclear power plants. 3. Managing...Attachment G-Terrorism, is a supplement...actions for nuclear incidents...Homeland Security Working Group......

Gladys A. Klemic; Paul D. Bailey; Kevin M. Miller; Matthew A. Monetti

2006-09-01T23:59:59.000Z

150

Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling  

SciTech Connect

The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

NSTec Aerial Measurement Systems

2012-07-31T23:59:59.000Z

151

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ALARA Instructor's Guide ALARA Instructor's Guide 1.10-1 Course Title: Radiological Control Technician Module Title: ALARA Module Number: 1.10 Objectives: 1.10.01 Describe the assumptions on which the current ALARA philosophy is based. 1.10.02 Identify the ALARA philosophy for collective personnel exposure and individual exposure. 1.10.03 Identify the scope of an effective radiological ALARA program. 1.10.04 Identify the purposes for conducting pre-job and/or post-job ALARA reviews. 1.10.05 Identify RCT responsibilities for ALARA implementation. References: 1. NCRP Report No. 91 (1987) "Recommendations on Limits for Exposure to Ionizing Radiation" 2. U.S. Department of Energy, DOE-STD-1098-99, "Radiological Control Standard" 3. 10 CFR Part 835 (1998), "Occupational Radiation Protection"

152

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Access Control and Work Area Setup Access Control and Work Area Setup Instructor's Guide 2.10-1 Course Title: Radiological Control Technician Module Title: Access Control and Work Area Setup Module Number: 2.10 Objectives: L 2.10.01 State the purpose of and information found on a Radiological Work Permit (RWP) including the different classifications at your site. L 2.10.02 State responsibilities in using or initiating a RWP. L 2.10.03 State the document that governs the ALARA program at your site. L 2.10.04 Describe how exposure/performance goals are established at your site. L 2.10.05 State the conditions under which a pre-job ALARA review is required at your site. L 2.10.06 State the conditions under which a post-job ALARA review is required at your site. 2.10.07 State purpose of radiological postings, signs, labels, and barricades; and

153

LANL responds to radiological incident  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL responds to radiological incident LANL responds to radiological incident LANL responds to radiological incident Multiple tests indicate no health risks to public or employees. August 27, 2012 Aerial view of the Los Alamos Neutron Science Center(LANSCE). Aerial view of the Los Alamos Neutron Science Center (LANSCE). The contamination poses no danger to the public. The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE), a multidisciplinary accelerator facility used for both civilian and national security research. The Laboratory has determined that about a dozen people

154

Radiological Training for Tritium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Change Notice No. 2 Change Notice No. 2 May 2007 DOE HANDBOOK RADIOLOGICAL TRAINING FOR TRITIUM FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice 2. Radiological Safety Training for Tritium Facilities DOE-HDBK-1105-2002 Page/Section Change Part 1, page 14 Change: U.S. Department of Energy, Radiological Control

155

Nuclear Radiological Threat Task Force Established | National...  

National Nuclear Security Administration (NNSA)

Radiological Threat Task Force Established | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

156

WIPP radiological assistance team dispatched to Los Alamos as precautionary measure  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiological Assistance Team Dispatched Radiological Assistance Team Dispatched To Los Alamos as Precautionary Measure CARLSBAD, N.M., May 11, 2000 - A team of radiological experts has been dispatched from the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) in response to a week-long forest fire that is threatening Los Alamos National Laboratory (LANL), one of the nation's premiere research laboratories. "We are responding completely as a precautionary measure," said Jere Galle, team leader for the WIPP Radiological Assistance Program (RAP) team. "It is our understanding that nuclear materials at LANL are not in harm's way. Our primary concern, however, is always to protect human health and the environment." The RAP team's mission is to provide radiological assistance to federal agencies, state,

157

Search Response Team | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

expertise. SRT is a full-response asset, which includes the manpower and equipment to conduct aerial, vehicle, or search operations by foot to locate a potential radiological...

158

Best practice techniques for environmental radiological monitoring  

E-Print Network (OSTI)

Best practice techniques for environmental radiological monitoring Science Report ­ SC030308/SR SCHO0407BMNL-E-P #12;ii Science Report Best Practice Techniques for Environmental Radiological #12;iv Science Report Best Practice Techniques for Environmental Radiological Monitoring Executive

159

Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation Exercise Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation Exercise May 1, 2012 - 12:00pm Addthis A firefighter trained to respond to radiological events performs a radiological survey of the WIPP shipping package as part of a WIPP transportation exercise in Morgan County, Georgia. A firefighter trained to respond to radiological events performs a radiological survey of the WIPP shipping package as part of a WIPP transportation exercise in Morgan County, Georgia. The on-scene incident commander briefs a responder during an April 17 WIPP transportation exercise in Georgia. The on-scene incident commander briefs a responder during an April 17 WIPP transportation exercise in Georgia.

160

Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation Exercise Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation Exercise May 1, 2012 - 12:00pm Addthis A firefighter trained to respond to radiological events performs a radiological survey of the WIPP shipping package as part of a WIPP transportation exercise in Morgan County, Georgia. A firefighter trained to respond to radiological events performs a radiological survey of the WIPP shipping package as part of a WIPP transportation exercise in Morgan County, Georgia. The on-scene incident commander briefs a responder during an April 17 WIPP transportation exercise in Georgia. The on-scene incident commander briefs a responder during an April 17 WIPP transportation exercise in Georgia.

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Radiological Assistance Program (RAP)- Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Major Programs > Radiological Major Programs > Radiological Assistance Program Radiological Assistance Program Overview Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Radiological Assistance Program Bookmark and Share Survey equipment is used to detect and measure radiation Survey equipment is used to detect and measure radiation. Click on image to view larger image. The Radiological Assistance Program (RAP) team at Argonne can provide assistance in the event of a radiological accident or incident. Support ranges from giving technical information or advice over the telephone, to sending highly trained team members and state-of-the-art equipment to the accident site to help identify and minimize any radiological hazards. The

162

Radiological Training for Accelerator Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8-2002 8-2002 May 2002 Change Notice No 1. with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice 1. Radiological Safety Training for Accelerator Facilities

163

Radiological Training for Tritium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE HANDBOOK DOE HANDBOOK RADIOLOGICAL TRAINING FOR TRITIUM FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice 1. Radiological Safety Training for Tritium Facilities DOE-HDBK-1105-2002 Page/Section Change Cover sheets parts 1, 2, 3, and 4 Change: Office of Environment, Safety & Health

164

Radiological Control Training for Supervisors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-2001 3-2001 August 2001 Change Notice No 1. with Reaffirmation January 2007 DOE HANDBOOK Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Control Training for Supervisors

165

Environmental conditions and responses of circus elephants transported by truck and railcar during relatively high and low temperatures  

E-Print Network (OSTI)

, and solar radiation were continuously measured during both extremes. Concentrations of ammonia and carbon monoxide during transport were also determined. Body temperature from a sample of elephants for each circus or exhibitor was also measured...

Toscano, Michael Jeffrey

2001-01-01T23:59:59.000Z

166

Understanding Mechanisms of Radiological Contamination  

SciTech Connect

Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible loose contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

Rick Demmer; John Drake; Ryan James, PhD

2014-03-01T23:59:59.000Z

167

5 - Medical Considerations for Radiological Terrorism  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the medical considerations for radiological terrorism. Radiological warfare (RW) attack is the deliberate use of radiological materials to cause injury and death. The explosion of a radiological weapon causes damage by the heat and blast liberated at the time of detonation. The proliferation of nuclear material and technology has made the acquisition and terrorist use of ionizing radiation more probable than ever. Currently, there are three threat scenarios for radiological terrorism. The most probable scenario for the near future would be a radiological dispersion device. Such a weapon can be developed and used by any terrorist with conventional weapons and access to radionuclides. This is an expedient weapon in that the radioactive waste material is easy to obtain from any location that uses radioactive sources. These sites can include a nuclear-waste processor, a nuclear power plant, a university research facility, a medical radiotherapy clinic, or an industrial complex.

James Winkley; Paul D. Mongan

2006-01-01T23:59:59.000Z

168

Radiological Triage | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Data results provided back to the field within 30-60 minutes. All NNSA teams that conduct search, detection and identification operations, to include the Radiological...

169

Radiological Assistance Program | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

(trained personnel and equipment) to evaluate, assess, advise, isotopically identify, search for, and assist in the mitigation of actual or perceived nuclear or radiological...

170

Radiological Safety Training for Accelerator Facilities  

Office of Environmental Management (EM)

HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public...

171

Roadmap: Radiologic Imaging Sciences Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences ­ Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) - Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-MRHA] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May-13/LNHD This roadmap is a recommended

Sheridan, Scott

172

Roadmap: Radiologic Imaging Sciences Diagnostic Medical Sonography (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences ­ Diagnostic Medical Sonography (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-RTAS] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 11-Apr-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

173

Roadmap: Radiologic Imaging Sciences -Magnetic Resonance Imaging (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Magnetic Resonance Imaging (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-MRRT] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

174

Roadmap: Radiologic Imaging Sciences Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences ­ Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) - Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-MRHA] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 11-Apr-12/LNHD This roadmap is a recommended

Sheridan, Scott

175

Roadmap: Radiologic Imaging Sciences Nuclear Medicine (with certification and ATS Radiologic Technology)  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences ­ Nuclear Medicine (with certification and ATS Radiologic Technology) ­ Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-NMHO] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May 13/LNHD This roadmap is a recommended semester

Sheridan, Scott

176

Roadmap: Radiologic Imaging Sciences -Magnetic Resonance Imaging (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Magnetic Resonance Imaging (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-MRRT] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 21-May-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

177

Roadmap: Radiologic Imaging Sciences Nuclear Medicine (with certification and ATS Radiologic Technology)  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences ­ Nuclear Medicine (with certification and ATS Radiologic Technology) ­ Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-NMHO] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 11-Apr-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

178

Roadmap: Radiologic Imaging Sciences -Computed Tomography (with certification and ATS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Computed Tomography (with certification and ATS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-CTHA] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 30-Apr-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

179

Roadmap: Radiologic Imaging Sciences-Diagnostic Medical Sonography (with certification and ATS Radiologic Technology)  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences- Diagnostic Medical Sonography (with certification and ATS Radiologic Technology) Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-HATS] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 30-Apr-13/LNHD This roadmap is a recommended

Sheridan, Scott

180

Roadmap: Radiologic Imaging Sciences Diagnostic Medical Sonography (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences ­ Diagnostic Medical Sonography (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-RTAS] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 30-Apr-2013/LNHD This roadmap is a recommended

Sheridan, Scott

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Roadmap: Radiologic Imaging Sciences Radiation Therapy (with certification and ATS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences ­ Radiation Therapy ­ (with certification and ATS Radiologic Technology) - Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-RTHB] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

182

Roadmap: Radiologic Imaging Sciences-Diagnostic Medical Sonography (with certification and ATS Radiologic Technology)  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences- Diagnostic Medical Sonography (with certification and ATS Radiologic Technology) Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-HATS] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 21-May-12/LNHD This roadmap is a recommended

Sheridan, Scott

183

Roadmap: Radiologic Imaging Sciences -Computed Tomography (with certification and ATS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Computed Tomography (with certification and ATS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-CTHA] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 25-Oct-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

184

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ALARA ALARA Study Guide 1.10-1 Course Title: Radiological Control Technician Module Title: ALARA Module Number: 1.10 Objectives: 1.10.01 Describe the assumptions on which the current ALARA philosophy is based. 1.10.02 Identify the ALARA philosophy for collective personnel exposure and individual exposure. 1.10.03 Identify the scope of an effective radiological ALARA program. 1.10.04 Identify the purposes for conducting pre-job and/or post-job ALARA reviews. 1.10.05 Identify RCT responsibilities for ALARA implementation. INTRODUCTION All personnel at a facility must be committed to the ALARA philosophy. The RCT can play a major role in establishing and maintaining that commitment by understanding its concepts. This lesson will familiarize the student with the ALARA concepts and the

185

US Department of Energy radiological control manual. Revision 1  

SciTech Connect

This manual establishes practices for the conduct of Department of Energy radiological control activities. The Manual states DOE`s positions and views on the best courses of action currently available in the area of radiological controls. Accordingly, the provisions in the Manual should be viewed by contractors as an acceptable technique, method or solution for fulfilling their duties and responsibilities. This Manual shall be used by DOE in evaluating the performance of its contractors. This Manual is not a substitute for Regulations; it is intended to be consistent with all relevant statutory and regulatory requirements and shall be revised whenever necessary to ensure such consistency. Some of the Manual provisions, however, challenge the user to go well beyond minimum requirements. Following the course of action delineated in the Manual will result in achieving and surpassing related statutory or regulatory requirements.

Not Available

1994-04-01T23:59:59.000Z

186

DOE Order Self Study Modules - DOE STD 1098-2008, Radiological Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STD-1098-2008 STD-1098-2008 DOE STANDARD: RADIOLOGICAL CONTROL DOE-STD-1098-2008 Familiar Level August 2011 1 DOE-STD-1098-2008 RADIOLOGICAL CONTROL FAMILIAR LEVEL OBJECTIVES Given the familiar level of this module and the resources listed below, you will be able to answer the following questions: 1. What is the purpose of DOE-STD-1098-2008? 2. To which DOE position is the authority and responsibility to establish a comprehensive and effective radiological control training program assigned? 3. What is the definition of the term -total effective dose?‖ 4. What is the definition of the term -lifetime control level?‖ 5. What are three trigger levels that require a formal radiological review of work activities?

187

2012-2013 Diagnostic Radiology Fellows Cardiovascular Imaging  

E-Print Network (OSTI)

dbweinreb@ Pediatric Radiology Body Imaging 1st yr. Neuroradiology NCI Body Mammography Sonya Edwards 149042012-2013 Diagnostic Radiology Fellows Cardiovascular Imaging Nuclear Medicine David Weinreb 14895 14909 laxpati@ Michael Kim 14961 mjjkim@ Vascular and Interventional Radiology Charles Kosydar 14908

Sonnenburg, Justin L.

188

Neurotransmitter Transporters  

E-Print Network (OSTI)

at specialized synaptic junctions where electrical excitability in the form of an action potential is translated membrane of neurons and glial cells. Transporters harness electrochemical gradients to force the movement.els.net #12;The response produced when a transmitter interacts with its receptors, the synaptic potential

Bergles, Dwight

189

Nevada Test Site Radiological Control Manual  

SciTech Connect

This document supersedes DOE/NV/25946--801, Nevada Test Site Radiological Control Manual, Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

Radiological Control Managers' Council Nevada Test Site

2010-02-09T23:59:59.000Z

190

Nevada Test Site Radiological Control Manual  

SciTech Connect

This document supersedes DOE/NV/11718--079, NV/YMP Radiological Control Manual, Revision 5 issued in November 2004. Brief Description of Revision: A complete revision to reflect the recent changes in compliance requirements with 10 CFR 835, and for use as a reference document for Tenant Organization Radiological Protection Programs.

Radiological Control Managers' Council - Nevada Test Site

2009-10-01T23:59:59.000Z

191

Memorandum, Reporting of Radiological Sealed Sources Transactions  

Energy.gov (U.S. Department of Energy (DOE))

The requirements for reporting transactions involving radiological sealed sources are identified in Department of Energy (DOE) Notice (N) 234.1, Reporting of Radioactive Sealed Sources. The data reported in accordance with DOE N 234.1 are maintained in the DOE Radiological Source Registry and Tracking (RSRT) database by the Office of Information Management, within the Office of Environment, Health, Safety and Security.

192

Radiological health aspects of uranium milling  

SciTech Connect

This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized.

Fisher, D.R.; Stoetzel, G.A.

1983-05-01T23:59:59.000Z

193

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Instructor's Guide Instructor's Guide 2.12-1 Course Title: Radiological Control Technician Module Title: Shipment/Receipt of Radioactive Material Module Number: 2.12 Objectives: 2.12.01 List the applicable agencies which have regulations that govern the transport of radioactive material. 2.12.02 Define terms used in DOT regulations. 2.12.03 Describe methods that may be used to determine the radionuclide contents of a package. 2.12.04 Describe the necessary radiation and contamination surveys to be performed on packages and state the applicable limits. 2.12.05 Describe the necessary radiation and contamination surveys to be performed on exclusive use vehicles and state the applicable limits. 2.12.06 Identify the proper placement of placards on a transport vehicle. L 2.12.07 Identify inspection criteria that should be checked prior to releasing a

194

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Guide Study Guide 2.12-1 Course Title: Radiological Control Technician Module Title: Shipment/Receipt of Radioactive Material Module Number: 2.12 Objectives: 2.12.01 List the applicable agencies which have regulations that govern the transport of radioactive material. 2.12.02 Define terms used in DOT regulations. 2.12.03 Describe methods that may be used to determine the radionuclide contents of a package. 2.12.04 Describe the necessary radiation and contamination surveys to be performed on packages and state the applicable limits. 2.12.05 Describe the necessary radiation and contamination surveys to be performed on exclusive use vehicles and state the applicable limits. 2.12.06 Identify the proper placement of placards on a transport vehicle. i 2.12.07 Identify inspection criteria that should be checked prior to releasing a

195

Radiological survey results at 4400 Piehl Road, Ottawa Lake, Michigan  

SciTech Connect

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at 4400 Piehl Road in Ottawa Lake, Michigan. The survey was performed in September, 1992. The purpose of the survey was to determine if materials containing uranium from work performed under government contract at the former Baker Brothers facility in Toledo, Ohio had been transported off-site to this neighboring area. The radiological survey included surface gamma scans indoors and outdoors, alpha and beta scans inside the house and attached garage, beta-gamma scans of the hard surfaces outside, and the collection of soil, water, and dust samples for radionuclide analyses. Results of the survey demonstrated that the majority of the measurements on the property were within DOE guidelines. However, the presence of isolated spots of uranium contamination were found in two areas where materials were allegedly transported to the property from the former Baker Brothers site. Uranium uptake by persons on the property by ingestion is fairly unlikely, but inhalation is a possibility. Based on these findings, it is recommended that the residential property at 4400 Piehl Road in Ottawa Lake, Michigan be considered for inclusion under FUSRAP.

Foley, R.D.; Johnson, C.A.

1993-04-01T23:59:59.000Z

196

CRAD, Radiological Controls - Oak Ridge National Laboratory TRU...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Controls - Oak Ridge National Laboratory TRU ALPHA LLWT Project CRAD, Radiological Controls - Oak Ridge National Laboratory TRU ALPHA LLWT Project November 2003 A...

197

Unified Resolve 2014: A Proof of Concept for Radiological Support...  

Office of Environmental Management (EM)

Unified Resolve 2014: A Proof of Concept for Radiological Support to Incident Commanders Unified Resolve 2014: A Proof of Concept for Radiological Support to Incident Commanders...

198

Alarm Response Training | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

On Time: 4:04 min. View an introduction to our Alarm Response Training, which prepares and trains personnel responding to civilian nuclear and radiological security alarms...

199

DOE-HDBK-1122-99; Radiological Control Technical Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Access Control and Work Area Setup 10 Access Control and Work Area Setup Study Guide 2.10-1 Course Title: Radiological Control Technician Module Title: Access Control and Work Area Setup Module Number: 2.10 Objectives: i 2.10.01 State the purpose of and information found on a Radiological Work Permit (RWP) including the different classifications at your site. i 2.10.02 State responsibilities in using or initiating a RWP. i 2.10.03 State the document that governs the ALARA program at your site. i 2.10.04 Describe how exposure/performance goals are established at your site. i 2.10.05 State the conditions under which a pre-job ALARA review is required at your site. i 2.10.06 State the conditions under which a post-job ALARA review is required at your site. 2.10.07 State purpose of radiological postings, signs, labels, and barricades; and the

200

Estimating radiological background using imaging spectroscopy  

SciTech Connect

Optical imaging spectroscopy is investigated as a method to estimate radiological background by spectral identification of soils, sediments, rocks, minerals and building materials derived from natural materials and assigning tabulated radiological emission values to these materials. Radiological airborne surveys are undertaken by local, state and federal agencies to identify the presence of radiological materials out of regulatory compliance. Detection performance in such surveys is determined by (among other factors) the uncertainty in the radiation background; increased knowledge of the expected radiation background will improve the ability to detect low-activity radiological materials. Radiological background due to naturally occurring radiological materials (NORM) can be estimated by reference to previous survey results, use of global 40K, 238U, and 232Th (KUT) values, reference to existing USGS radiation background maps, or by a moving average of the data as it is acquired. Each of these methods has its drawbacks: previous survey results may not include recent changes, the global average provides only a zero-order estimate, the USGS background radiation map resolutions are coarse and are accurate only to 1 km 25 km sampling intervals depending on locale, and a moving average may essentially low pass filter the data to obscure small changes in radiation counts. Imaging spectroscopy from airborne or spaceborne platforms can offer higher resolution identification of materials and background, as well as provide imaging context information. AVIRIS hyperspectral image data is analyzed using commercial exploitation software to determine the usefulness of imaging spectroscopy to identify qualitative radiological background emissions when compared to airborne radiological survey data.

Bernacki, Bruce E.; Schweppe, John E.; Stave, Sean C.; Jordan, David V.; Kulisek, Jonathan A.; Stewart, Trevor N.; Seifert, Carolyn E.

2014-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Radioactive material (RAM) transportation accident and incident experience in the U.S.A. (1971--1997)  

SciTech Connect

The Radioactive Materials Incident Report (RMIR) database was developed in 1981 at the Transportation Technology Center of Sandia National Laboratories to support its research and development activities for the US Department of Energy (DOE). This database contains information about radioactive materials transportation incidents that have occurred in the US since 1971. These data were drawn from the US Department of Transportation`s (DOT) Hazardous Materials Incident Report system, from Nuclear Regulatory Commission (NRC) files, and from various agencies including state radiological control offices. Support for the RMIR data base is funded by the National Transportation Program (EM-70) of the US Department of Energy. Transportation events in RMIR are classified in one of the following ways: as a transportation accident, as a handling accident, or as a reported incident. This presentation will provide definitions for these classifications and give examples of each. The primary objective of this presentation is to provide information on nuclear materials transportation accident incident events in the US for the period 1971--1997. Among the areas to be examined are: transportation accidents by mode, package response during accidents and an examination of accidents where release of contents has occurred.

McClure, J.D.; Yoshimura, H.R.; Fagan, H.F. [Sandia National Labs., Albuquerque, NM (United States). Transportation Systems Analysis Dept.; Thomas, T. [Dept. of Energy National Transportation Program (United States)

1997-11-01T23:59:59.000Z

202

Radiological Worker Training - Radiological Safety Training for Radiation Producing (X-Ray) Devices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C C December 2008 DOE HANDBOOK Radiological Worker Training Radiological Safety Training for Radiation Producing (X-Ray) Devices U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management

203

Federal Radiological Monitoring and Assessment Center Health and Safety Manual  

SciTech Connect

This manual is a tool to provide information to all responders and emergency planners and is suggested as a starting point for all organizations that provide personnel/assets for radiological emergency response. It defines the safety requirements for the protection of all emergency responders. The intent is to comply with appropriate regulations or provide an equal level of protection when the situation makes it necessary to deviate. In the event a situation arises which is not addressed in the manual, an appropriate management-level expert will define alternate requirements based on the specifics of the emergency situation. This manual is not intended to pertain to the general public.

FRMAC Health and Safety Working Group

2012-03-20T23:59:59.000Z

204

Integrating pathology and radiology disciplines: an emerging opportunity?  

E-Print Network (OSTI)

Pediatric vascular malformations: pathophysiology, diagnosis, and the role of interventional radiology.

Sorace, James; Aberle, Denise R; Elimam, Dena; Lawvere, Silvana; Tawfik, Ossama; Wallace, W Dean

2012-01-01T23:59:59.000Z

205

2.04 - Oral and Maxillofacial Radiology  

Science Journals Connector (OSTI)

Abstract This chapter addresses the technologies and the applications of radiology used in the field of oral (or dental) and maxillofacial imaging. While the basic science and x-ray technology are the same as in general radiology, there are here important specialized differentiations that lead to very distinct equipment and procedures compared to general medical imaging. Four major subcategories are discussed: Dedicated x-ray sources for dental intraoral radiology, that is, radiography where the detector is located inside the oral cavity, and the radiographic object consisting of a few teeth Intraoral detectors: (classic) radiographic film, photostimulated-phosphor imaging plates, and solid-state digital detectors (that produce an image immediately) Equipment for panoramic and for cephalometric extraoral radiology Cone beam volumetric imaging (3D x-ray) of the head (aka CBCT)

R. Molteni

2014-01-01T23:59:59.000Z

206

Educational strategies in oral and maxillofacial radiology  

Science Journals Connector (OSTI)

In this paper, we interpret a trend in higher education in terms of its relation to oral and maxillofacial radiology education. Specifically, we describe an evidence-based dental education borrowing from the ...

Madeleine Rohlin; Koji Shinoda; Yumi Takano

2004-06-01T23:59:59.000Z

207

Radiological safety training for uranium facilities  

SciTech Connect

This handbook contains recommended training materials consistent with DOE standardized core radiological training material. These materials consist of a program management guide, instructor`s guide, student guide, and overhead transparencies.

NONE

1998-02-01T23:59:59.000Z

208

DOE Issues WIPP Radiological Release Investigation Report  

Energy.gov (U.S. Department of Energy (DOE))

Today, the Department of Energys Office of Environmental Management (EM) released the initial accident investigation report related to the Feb. 14 radiological release at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico.

209

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 of 3) 3 of 3) RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH Student's Guide Office of Environment, Safety & Health U.S. Department of Energy February 1997 DOE-HDBK-1106-97 ii This page intentionally left blank. DOE-HDBK-1106-97 iii Table of Contents Page TERMINAL OBJECTIVE............................................................................1 ENABLING OBJECTIVES...........................................................................1 I. RADIOLOGICAL CONTAMINATION................................................. 2 A. Comparison of Radiation and Radioactive Contamination ..................... 2 B. Types of Contamination.............................................................. 2

210

Environmental/Radiological Assistance Directory (ERAD)  

Energy.gov (U.S. Department of Energy (DOE))

The Environmental Radiological Assistance Directory or ERAD, developed by HS-22, serves as an assistance tool to the DOE complex for protection of the public and environment from radiation. The ERAD is a combination webinar/conference call, designed to provide DOE and its contractors a forum to share information, lessons-learned, best practices, emerging trends, compliance issues, etc. in support of radiological protection programs developed in accordance with DOE O 458.1. ERAD Presentations, Questions and Answers ERAD

211

A radiological evaluation of phosphogypsum  

SciTech Connect

Phosphogypsum is the by-product resulting from phosphoric acid or phosphate fertilizer production. The phosphate used in these chemical processes contains the naturally occurring radioactive material U and all its subsequent decay products. During processing, the U generally remains in the phosphoric acid product, while the daughter, {sup 226}Ra, tends to be concentrated in the phosphogypsum. Phosphogypsum has physical properties that make it useful as a sub-base for roadways, parking lots, and similar construction. A radiological evaluation, to determine exposures to workers mixing this material with a stabilizing agent (portland cement), was performed at a South Louisiana phosphoric acid chemical plant. Measurements of the {sup 226}Ra content of the phosphogypsum showed an average of 1.1 +/- 0.3 Bq g-1 (0.7-1.7 Bq g-1). The average measured gross gamma exposure rate on the phosphogypsum pile corresponded to a dose equivalent rate of 0.368 +/- 0.006 mu Sv h-1 (0.32-0.42 mu Sv h-1). Radon daughter concentrations measured on top of the phosphogypsum pile ranged from 0.0006 to 0.001 working levels. An analysis of the airborne {sup 226}Ra concentrations showed only background levels.

Laiche, T.P.; Scott, L.M. (Louisiana State Univ., Baton Rouge (USA))

1991-05-01T23:59:59.000Z

212

Contained radiological analytical chemistry module  

DOE Patents (OSTI)

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1989-01-01T23:59:59.000Z

213

Contained radiological analytical chemistry module  

DOE Patents (OSTI)

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1990-01-01T23:59:59.000Z

214

Roadmap: Radiologic Technology Radiology Department Management Technology Associate of Technical Study  

E-Print Network (OSTI)

Roadmap: Radiologic Technology ­ Radiology Department Management Technology ­ Associate-Nov-13/LNHD This roadmap is a recommended semester-by-semester plan of study for this major. However technology, housed at the Salem Campus. Course Subject and Title Credit Hours Min. Grade Major GPA Important

Sheridan, Scott

215

Finding of No Significant Impact Radiological/Nuclear Countermeasures Test and Evaluation Complex, Nevada Test Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RADIOLOGICAL/NUCLEAR COUNTERMEASURES TEST AND EVALUATION COMPLEX, NEVADA TEST SITE The U.S. Department of Homeland Security (DHS) is the Federal organization charged with defending the borders of the United States under the authority the Homeland Security Act of 2002 (Public Law 107-296). The DHS requested the National Nuclear Security Administration (NNSA) to develop at the Nevada Test Site (NTS) a complex for testing and evaluating countermeasures for interdicting potential terrorist attacks using radiological and/or nuclear weapons of mass destruction. In response to that request, NNSA proposes to construct, operate, and maintain the Radiological/Nuclear Countermeasures Test and Evaluation Complex (Rad/NucCTEC). NNSA has prepared an Environmental Assessment (DOE/EA-1499) (EA) which analyzes the potential

216

Fifth Anniversary of Radiological Alarm Response Training for...  

National Nuclear Security Administration (NNSA)

Related News DOENNSA Participates in Large-Scale CTBT On-Site Inspection Exercise in Jordan Y-12 recognized for outstanding procurement stewardship Pantex, Y-12 celebrate 'One...

217

Fifth Anniversary of Radiological Alarm Response Training for...  

National Nuclear Security Administration (NNSA)

Training The three-day course is held at NNSA's Y-12 National Security Complex in Oak Ridge, Tenn. While at Y-12, participants develop and discuss their own tactics,...

218

Response in the late phase to a radiological emergency  

Science Journals Connector (OSTI)

......the amount of waste generated. Recovery...large quantities. Storage facilities, both...the amount of waste milk being generated...makers to take long-term decisions with...large quantities. Storage facilities, both...the amount of waste milk being generated...makers to take long-term decisions with......

Mary Morrey; Anne Nisbet; Daryl Thome; Michael Savkin; Steen Hoe; Lisbeth Brynildsen

2004-06-01T23:59:59.000Z

219

Response in the late phase to a radiological emergency  

Science Journals Connector (OSTI)

......agricultural systems, the practical...guidance on the powers and duties...more practical handbook to assist those...and support systems; the identification...workshop on restoration management...a recovery handbook for nuclear...production systems. Based on...methods Europe Power Plants Radiation......

Mary Morrey; Anne Nisbet; Daryl Thome; Michael Savkin; Steen Hoe; Lisbeth Brynildsen

2004-06-01T23:59:59.000Z

220

Nuclear and Radiological Engineering and Medical Physics Programs  

E-Print Network (OSTI)

Nuclear and Radiological Engineering and Medical Physics Programs The George W. Woodruff School #12 Year Enrollment - Fall Semester Undergraduate Graduate #12; Nuclear Power Industry Radiological Engineering Industry Graduate School DOE National Labs Nuclear Navy #12; 104 Operating Nuclear Power plants

Weber, Rodney

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ORISE: DeepwaterHorizon and Nuclear & Radiological Incidents  

NLE Websites -- All DOE Office Websites (Extended Search)

Wi l l i a m H a l e y Wi l l i a m H a l e y B r a d P o t t e r C o mm o n C h a l l e n g e s a n d S o l u t i o n s J u n e 2 0 1 1 D e e p w a t e r H o r i z o n a n dN u c l e a r & R a d i o l o g i c a l I n c i d e n t s The 2010 Deepwater Horizon oil spill shares many of the same challenges associated with a radiological incident like the one considered in the Empire 09 1 exercise or even a much larger nuclear incident. By analyzing experiences during Deepwater Horizon, these challenges can be identified by the interagency in advance of a radiological or nuclear emergency and solutions made available. Establishing and staffing a UnifiEd Command strUCtUrE The demands of Deepwater Horizon challenged the traditional response construct envisioned by national planning systems.

222

E-Print Network 3.0 - arms aerial radiological Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

General Diagnostic Radiology * Clinical Rotation Breast Imaging... * Clinical Rotation Pediatric Radiology * Clinical Rotation Nuclear Medicine Semester ... Source: VandeVord,...

223

Environmental Health & Safety Office of Radiological Safety  

E-Print Network (OSTI)

Environmental Health & Safety Office of Radiological Safety Page 1 of 2 FORM LU-1 Revision 01 1 safety training and submit this registration to the LSO prior to use of Class 3B or 4 lasers. A copy will be returned to the Laser Supervisor to be filed in the Laboratory Laser Safety Notebook. Both the Laser

Houston, Paul L.

224

Feminist theoretical perspectives on ethics in radiology  

Science Journals Connector (OSTI)

......about the substantive public health issues? In the Western world...female cancer, and yet public health systems come under serious...accorded the best education, health care, nutrition or technology...unwanted food or inferior or even dangerous radiological or other technical......

Mary Condren

2009-07-01T23:59:59.000Z

225

Measurement of radiation dose in dental radiology  

Science Journals Connector (OSTI)

......product to effective dose and energy imparted to the patient. Phys...C. A. and Persliden, J. Energy imparted to the patient in diagnostic...factors for determining the energy imparted from measurements of...dental radiology. | Patient dose audit is an important tool for quality......

Ebba Helmrot; Gudrun Alm Carlsson

2005-05-01T23:59:59.000Z

226

Nuclear Engineering Catalog 2014 Radiological Concentration  

E-Print Network (OSTI)

Nuclear Engineering Catalog 2014 Radiological Concentration Fall Math 141 or 147 (4) FA, SP, SU-approved by the department. Courses in Nuclear Engineering other than 500, 502 or 598 may also be used as technical electives. No more than four (4) credit hours of nuclear engineering courses in which a C- or lower is the highest

Grissino-Mayer, Henri D.

227

Development of radiological concentrations and unit liter doses for TWRS FSAR radiological consequence calculations  

SciTech Connect

The analysis described in this report develops the Unit Liter Doses for use in the TWRS FSAR. The Unit Liter Doses provide a practical way to calculate conservative radiological consequences for a variety of potential accidents for the tank farms.

Cowley, W.L.

1996-04-25T23:59:59.000Z

228

THE RABIT: A RAPID AUTOMATED BIODOSIMETRY TOOL FOR RADIOLOGICAL TRIAGE  

E-Print Network (OSTI)

-priority need in an environment of heightened concern over possible radiological or nuclear terrorist attacks (Pellmar and Rockwell 2005). The detonation of even a small dirty bomb (radiological dispersal device of radiological injuries. A small improvised nuclear device (IND) would produce a major health emergency

229

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Instructor's Guide Instructor's Guide 2.17-1 Course Title: Radiological Control Technician Module Title: Contamination Monitoring Instrumentation Module Number: 2.17 Objectives: 2.17.01 List the factors which affects an RCT's selection of a portable contamination monitoring instrument. L 2.17.02 Describe the following features and specifications for commonly used count rate meter probes used at your site for beta/gamma and/or alpha surveys: a. Detector type b. Detector shielding and window c. Types of radiation detected/measured d. Energy response for measured radiation e. Specific limitations/characteristics L 2.17.03 Describe the following features and specifications for commonly used count rate instruments used at your site: a. Types of detectors available for use b. Operator-adjustable controls

230

Global Transport and Deposition of 137Cs Following the Fukushima Nuclear Power Plant Accident in Japan: Emphasis on Europe and Asia Using HighResolution Model Versions and Radiological Impact Assessment of the Human Population and the Environment Using Interactive Tools  

Science Journals Connector (OSTI)

Such doses are equivalent with the obtained dose from a simple X-ray; for the highly contaminated regions, they are close to the dose limit for exposure due to radon inhalation (10 mSv). ... The International Commission on Radiological Protection (ICRP) provides a system of protection against the risks from exposure to ionizing radiation, including recommended dosimetric quantities. ... The authors would like to acknowledge the funding source of the project (GIS Climat-Environnement-Socit, http://www.gisclimat.fr/projet/radioclimfire). ...

Nikolaos Evangeliou; Yves Balkanski; Anne Cozic; Anders Pape Mller

2013-05-01T23:59:59.000Z

231

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Protection Standards Radiological Protection Standards Instructor's Guide 1.09-1 Course Title: Radiological Control Technician Module Title: Radiological Protection Standards Module Number: 1.09 Objectives: 1.09.01 Identify the role of advisory agencies in the development of recommendations for radiological control. 1.09.02 Identify the role of regulatory agencies in the development of standards and regulations for radiological control. 1.09.03 Identify the scope of the 10 CFR Part 835. References: 1. ANL-88-26 (1988) "Operational Health Physics Training"; Moe, Harold; Argonne National Laboratory, Chicago 2. U.S. Department of Energy, DOE-STD-1098-99, "Radiological Control Standard" 3. 10 CFR Part 835 (1998) "Occupational Radiation Protection" Instructional Aids:

232

eFRMAC Overview: Data Management and Enabling Technologies for Characterization of a Radiological Release A Case Study: The Fukushima Nuclear Power Plant Incident  

SciTech Connect

The eFRMAC enterprise is a suite of technologies and software developed by the United States Department of Energy, National Nuclear Security Administrations Office of Emergency Response to coordinate the rapid data collection, management, and analysis required during a radiological emergency. This enables the Federal Radiological Monitoring and Assessment Center assets to evaluate a radiological or nuclear incident efficiently to facilitate protective actions to protect public health and the environment. This document identifies and describes eFRMAC methods including (1) data acquisition, (2) data management, (3) data analysis, (4) product creation, (5) quality control, and (6) dissemination.

Blumenthal, Daniel J. [NNSA; Clark, Harvey W. [NSTec; Essex, James J. [NSTec; Wagner, Eric C. [NSTec

2013-07-01T23:59:59.000Z

233

Microsoft Word - Berger Radiological Conditions.doc  

Office of Legacy Management (LM)

Dec. Dec. 2, 2009 1 Summary of Information Regarding Radiological Conditions of NFSS Vicinity Properties J. D. Berger, CHP DeNuke Contracting Services, Inc. Oak Ridge, TN The following is a summary of the information obtained from reviews of radiological survey reports, prepared by ORAU in support of the DOE Formerly Utilized Sites Remedial Action Program. These reports were obtained for review from the IVEA Program at ORAU/ORISE. A list of the reports, reviewed for this summary, is included at the end of this report. Hard copies of reports for ORAU survey activities of NFSS and NFSS Vicinity Properties are available at the South Campus Site of ORAU (these reports are not available in electronic form). In addition, there are 12 - 14 boxes of hard-copy supporting data and information, pertinent to the surveys. I inspected the contents of Box 54. That box contained records for NFSS Vicinity

234

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

06-97 06-97 February 1997 CHANGE NOTICE NO. 1 March 2002 Reaffirmation with Errata August 2002 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Reaffirmation with Errata DOE-HDBK-1106-97 Radiological Contamination Control for Laboratory Research

235

Radiological Safety Training for Accelerator Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TS TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1108-2002 May 2002 Reaffirmation with Change Notice 2 July 2013 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change Notice No.2 Radiological Training for Accelerator Facilities Page/Section Change Throughout the document: Program Management Guide Instructor's Guide Student's Guide "Shall" and "Must" statements Revised to: Program Management Instructor's Material Student's Material Reworded to non-mandatory language unless associated with a requirement

236

OAK RIDGE NATIONAL LABORATORY RESULTS OF RADIOLOGICAL  

Office of Legacy Management (LM)

2 7% 2 7% d &y / 7 ORNL/TM- 10076 OAK RIDGE NATIONAL LABORATORY RESULTS OF RADIOLOGICAL ~-T-m -~=- -~ w-~- -"" * ,<.~- ~w&$UREMENTs: TAKEN IN THE NIAGARA FALLS, NEW YORK, AREA (NF002) J. K. Williams B. A. Berven ~.~~;:;-~~~ ~. -,' - ~~ 7, OPERATED BY MARTIN MARIDTA ENERGY SYSTEMS, INC, FOR THE UNITED STATES DEPARTMENT OF ENERGY --... ORNL/TM-10076 HEALTH AND SAFETY RESEARCH DIVISION Nuclear and Chemical Waste Programs (Activity No. AH 10 05 00 0; ONLWCOI) RESULTS OF RADIOLOGICAL MEASUREMENTS TAKEN IN THE NIAGARA FALLS, NEW YORK, AREA (NFOO2) J. K. Williams* and B. A. Berven *Biology Division Date Published November 1986 Investigation Team B. A. Berven - RASA Program Manager W. D. Cottrell - FUSRAP Project Director W. H. Shinpaugh - Field Survey Supervisor

237

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

145-2008 145-2008 April 2008 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2008 Program Management Guide

238

Radiological Safety Training for Uranium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE HDBK-1113-2008 DOE HDBK-1113-2008 April 2008 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR URANIUM FACILITIES U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1113-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-HDBK-1113-2008 iii Foreword This Handbook describes a recommended implementation process for additional training as outlined in DOE-STD-1098-99, Radiological Control (RCS). Its purpose is to assist those individuals, Department of Energy (DOE) employees, Managing and Operating (M&O) contractors, and Managing and Integrating

239

Radiological Dispersion Devices and Basic Radiation Science  

Science Journals Connector (OSTI)

Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science it often fails to interest students to explore these concepts in a more rigorous manner. One reason for limited student interest is the failure to link the discussion to topics of current interest. The author has found that presenting this material with a link to radiological dispersion devices (RDDs) or dirty bombs and their associated health effects provides added motivation for students. The events of Sept. 11 2001 and periodic media focus on RDDs heighten student interest from both a scientific curiosity as well as a personal protection perspective. This article presents a framework for a more interesting discussion of the basics of radiation science and their associated health effects. The presentation can be integrated with existing radioactivitylectures or added as a supplementary or enrichment activity.

Joseph John Bevelacqua

2010-01-01T23:59:59.000Z

240

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-HDBK-1145-2013 March 2013 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy TRNG-0061 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. ii Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2013 Program Management Foreword

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 of 3) 2 of 3) Radiological Contamination Control Training for Laboratory Research Instructor's Guide Office of Environment, Safety & Health U.S. Department of Energy February 1997 DOE-HDBK-1106-97 ii This page intentionally left blank. DOE-HDBK-1106-97 iii Table of Contents Page DEPARTMENT OF ENERGY - Course/Lesson Plan.............................. 1 Standardized Core Course Materials................................................... 1 Course Goal.........................................................................1 Target Audience.................................................................. 1 Course Description............................................................... 1 Prerequisites...................................................................... 1

242

Nevada National Security Site Radiological Control Manual  

SciTech Connect

This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures.

Radiological Control Managers Council

2012-03-26T23:59:59.000Z

243

Radiological assessment of depleted uranium migration offsite from an ordnance range  

SciTech Connect

The military utilizes ordnance loaded with depleted uranium in order to maximize armor penetrating capabilities. These weapons are tested on open ranges where the weapons are fired through a cloth target and impact into the soil. This paper examines the potential environmental impact from use of depleted uranium in an open setting. A preliminary pathway analysis was performed to examine potential routes of exposure to nonhuman species in the vicinity and ultimately to man. Generic data was used in the study to estimate the isotopic mix and weight of the ordnance. Key factors in the analysis included analyzing the physics of weapon impact on soil, chemical changes in material upon impact, and mechanisms of offsite transport (including atmospheric and overland transport). Non-standard exposure scenarios were investigated, including the possibility of offsite contaminant transport due to range grassfires. Two radiological assessment codes, MEPAS (Multi media Environmental Pollutant Assessment System) and RESRAD were used to help analyze the scenarios.

Rynders, D.G. [Oregon State Univ., Corvallis, OR (United States)

1996-06-01T23:59:59.000Z

244

Transportation Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Services Transporting nuclear materials within the United States and throughout the world is a complicated and sometimes highly controversial effort requiring...

245

Local Transportation  

E-Print Network (OSTI)

Local Transportation. Transportation from the Airport to Hotel. There are two types of taxi companies that operate at the airport: special and regular taxis (

246

The Transcriptional Response of Lactobacillus sanfranciscensis DSM 20451T and Its tcyB Mutant Lacking a Functional Cystine Transporter to Diamide Stress  

Science Journals Connector (OSTI)

...Transcriptional Response of Lactobacillus...transcriptional response of L. sanfranciscensis...synthesis, and energy production, our...with a heat shock response are upregulated...genome and a high frequency of gene inactivation...all washing and storage solutions were cooled...

Mandy Stetina; Jrgen Behr; Rudi F. Vogel

2014-05-02T23:59:59.000Z

247

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Work Coverage Radiological Work Coverage Instructor's Guide 2.11-1 Course Title: Radiological Control Technician Module Title: Radiological Work Coverage Module Number: 2.11 Objectives: 2.11.01 List four purposes of job coverage. 2.11.02 Explain the differences between continuous and intermittent job coverage. 2.11.03 Given example conditions, identify those that should require job coverage. 2.11.04 Identify items that should be considered in planning job coverage. 2.11.05 Identify examples of information that should be discussed with workers during pre-job briefings. 2.11.06 Describe exposure control techniques that can be used to control worker and technician radiation exposures. L 2.11.07 Describe the in-progress radiological surveys that should be performed, at your site, under various radiological conditions.

248

DOE-HDBK-1122-99; Radiological Control Technican Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Work Coverage Radiological Work Coverage Study Guide 2.11-1 Course Title: Radiological Control Technician Module Title: Radiological Work Coverage Module Number: 2.11 Objectives: 2.11.01 List four purposes of job coverage. 2.11.02 Explain the differences between continuous and intermittent job coverage. 2.11.03 Given example conditions, identify those that should require job coverage. 2.11.04 Identify items that should be considered in planning job coverage. 2.11.05 Identify examples of information that should be discussed with workers during pre-job briefings. 2.11.06 Describe exposure control techniques that can be used to control worker and technician radiation exposures. i 2.11.07 Describe the in-progress radiological surveys that should be performed, at your site, under various radiological conditions.

249

Surveillance Guides - RPS 11.2 Radiological Work Practices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RADIOLOGICAL WORK PRACTICES RADIOLOGICAL WORK PRACTICES 1.0 Objective The objective of this surveillance is to evaluate the practices of workers performing tasks in radiological controlled areas to ensure that these practices protect the safety and health of the workers and comply with DOE requirements. 2.0 References 2.1 10 CFR 835, Occupational Radiation Protection 2.2 DOE/EH-0256T, rev. 1, Radiological Control Manual 3.0 Requirements Implemented This surveillance is conducted to implement requirement RP-0024 from the RL S/RID. This requirement comes from the Radiological Control Manual. 4.0 Surveillance Activities The Facility Representative performs the following activities to evaluate the effectiveness of work practices by contractor personnel in minimizing exposure to radiological hazards.

250

Chamber transport  

SciTech Connect

Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

OLSON,CRAIG L.

2000-05-17T23:59:59.000Z

251

Method and apparatus for laser-controlled proton beam radiology  

DOE Patents (OSTI)

A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

Johnstone, Carol J. (Warrenville, IL)

1998-01-01T23:59:59.000Z

252

Method and apparatus for laser-controlled proton beam radiology  

DOE Patents (OSTI)

A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H{sup {minus}} beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H{sup {minus}} beam and laser beam to produce a neutral beam therefrom within a subsection of the H{sup {minus}} beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H{sup {minus}} beam in order to form the neutral beam in subsections of the H{sup {minus}} beam. As the scanning laser moves across the H{sup {minus}} beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser. 9 figs.

Johnstone, C.J.

1998-06-02T23:59:59.000Z

253

Analysis of nuclear test TRINITY radiological and meteorological data  

SciTech Connect

This report describes the Weather Service Nuclear Support Office (WSNSO) analyses of the radiological and meteorological data collected for the TRINITY nuclear test. Inconsistencies in the radiological data and their resolution are discussed. The methods of normalizing the radiological data to a standard time and estimating fallout-arrival times are presented. The meteorological situations on event day and the following day are described. Comparisons of the WSNSO fallout analyses with analyses performed in the 1940s are presented. The radiological data used to derive the WSNSO 1987 fallout patterns are tabulated in appendices.

Quinn, V.E.

1987-09-01T23:59:59.000Z

254

OAK RIDGE NATIONAL LABORATORY RESULTS OF THE INDEPENDENT RADIOLOGICAL  

Office of Legacy Management (LM)

ornl< ORNLRASA-8664 (MJ18V) orni OAK RIDGE NATIONAL LABORATORY RESULTS OF THE INDEPENDENT RADIOLOGICAL EZ-BBBB - *VERIFICATION SURVEY AT THE BALLOD ASSOCIATES PROPERTY,...

255

CRAD, Radiological Controls - Oak Ridge National Laboratory High...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Radiological Controls - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C...

256

DOE, Westinghouse to Partner with NMJC To Train Radiological...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Partner with NMJC To Train Radiological and Waste Handling Technicians Hobbs, NM, December 5, 2001 -- Representatives of the Waste Isolation Pilot Plant (WIPP) yesterday...

257

Trending and root cause analysis of TWRS radiological problem reports  

SciTech Connect

This document provides a uniform method for trending and performing root cause analysis for radiological problem reports at Tank Waste Remediation System (TWRS).

Brown, R.L.

1997-07-31T23:59:59.000Z

258

Hospital Triage in First Hours After Nuclear or Radiological...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Medical professionals with the Radiation Emergency Assistance CenterTraining Site (REACTS) at the...

259

DOE Subpart H Report. Annual NESHAPS Meeting on Radiological...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NESHAPS Meeting on Radiological Emissions Gustavo Vazquez*, DOE; Sandra Snyder, PNNL Abstract: The National Emissions Standards for Hazardous Air Pollutants, Subpart H,...

260

Emergency Response | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

About Us > Our Programs > Emergency Response About Us > Our Programs > Emergency Response Emergency Response NNSA's Office of Emergency Operations is the United States government's primary capability for radiological and nuclear emergency response and for providing security to the nation from the threat of nuclear terrorism. The Office of Emergency Operations maintains a high level of readiness for protecting and serving the U.S. and its allies through the development, implementation and coordination of programs and systems designed to serve as a last line of defense in the event of a nuclear terrorist incident or other types of radiological accident. This readiness level provides the U.S. government with quickly deployable, dedicated resources capable of responding rapidly and comprehensively to nuclear or radiological incidents

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

YSL16 Is a Phloem-Localized Transporter of the Copper-Nicotianamine Complex That Is Responsible for Copper Distribution in Rice  

Science Journals Connector (OSTI)

...plants and is needed to deliver Cu to the ethylene receptors (Hirayama et al., 1999...A., Newville, M., Choi, Y., Price, A.H., and Meharg, A.A. (2011...disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97 : 383-393...

Luqing Zheng; Naoki Yamaji; Kengo Yokosho; Jian Feng Ma

2012-09-25T23:59:59.000Z

262

Departmental Materials Transportation and Packaging Management  

Directives, Delegations, and Requirements

Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

2010-11-18T23:59:59.000Z

263

The Present Role of Radiological Methods in Engineering  

Science Journals Connector (OSTI)

...Present Role of Radiological Methods in Engineering R. Halmshaw A brief outline of the history of industrial radiology is given. Major...of metals and metal thicknesses used in engineering, X-ray energies from 20 keV to 30 MeV...

1979-01-01T23:59:59.000Z

264

Estimation of the Transportation Risks for the Spent Fuel in Korea for Various Transportation Scenarios  

SciTech Connect

According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility (CISF) which is to start operation in 2016. Therefore, we have to determine the safe and economical logistics for the transportation of these spent fuels by considering their transportation risks and costs. In this study, we developed four transportation scenarios by considering the type of transportation casks and transport means in order to suggest safe and economical transportation logistics for the spent fuels in Korea. Also, we estimated and compared the transportation risks for these four transportation scenarios. From the results of this study, we found that these four transportation scenarios for spent fuels have a very low radiological risk activity with a manageable safety and health consequences. The results of this study can be used as basic data for the development of safe and economical logistics for a transportation of the spent fuels in Korea by considering the transportation costs for the four scenarios which will be needed in the near future. (authors)

Jongtae, Jeong; Cho, D.K.; Choi, H.J.; Choi, J.W. [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of)

2008-07-01T23:59:59.000Z

265

How ORISE is Making a Difference: Radiological Assessment and Monitoring  

NLE Websites -- All DOE Office Websites (Extended Search)

Develops Paperless Tool to Assist with Data Input Into Radiological Develops Paperless Tool to Assist with Data Input Into Radiological Assessment and Monitoring System During the Empire 09 exercise, the Oak Ridge Institute for Science and Education (ORISE) tested (for the first time) a paperless system of data management to support the operations of the Federal Radiological Monitoring and Assessment Center (FRMAC). The paperless FRMAC (pFRMAC) provides tools that enables the FRMAC to collect and process field measurements and samples following a radiological or nuclear event. The process allows field data to be entered into specialized electronic tablets that are then sent to the Radiological Assessment and Monitoring System (RAMS). RAMS is the hub of pFRMAC that provides data analysis to the consequence management home team and

266

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiation Protection Standards Radiation Protection Standards Study Guide 1.09-1 Course Title: Radiological Control Technician Module Title: Radiological Protection Standards Module Number: 1.09 Objectives: 1.09.01 Identify the role of advisory agencies in the development of recommendations for radiological control. 1.09.02 Identify the role of regulatory agencies in the development of standards and regulations for radiological control. 1.09.03 Identify the scope of 10 CFR Part 835. References: 1. ANL-88-26 (1988) "Operational Health Physics Training"; Moe, Harold; Argonne National Laboratory, Chicago 2. U.S. Department of Energy, DOE-STD-1098-99, "Radiological Control Standard" 3. 10 CFR Part 835 (1998) "Occupational Radiation Protection" DOE-HDBK-1122-99 Module 1.09 Radiation Protection Standards

267

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1919: Recycle of Scrap Metals Originating from Radiological EA-1919: Recycle of Scrap Metals Originating from Radiological Areas EA-1919: Recycle of Scrap Metals Originating from Radiological Areas Summary This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.) PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 28, 2012 EA-1919: Notice of Public Comment Period Extension Recycling of Scrap Metals Originating from Radiological Areas December 12, 2012 EA-1919: Notice of Availability of a Draft Programmatic Environmental

268

Radiological aspects of in situ uranium recovery  

SciTech Connect

In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium in situ leaching in situ recovery (ISL / ISR), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and may make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since 1975. Solution mining involves the pumping of groundwater, fortified with oxidizing and complexing agents into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant. Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which Radon gas is evolved in the process and the unique aspects of controlling solution flow patterns underground. An overview of the major aspects of the health physics and radiation protection programs that were developed at these facilities are discussed and contrasted to circumstances of the current generation and state of the art of Uranium ISR technologies and facilities. (authors)

BROWN, STEVEN H. [SHB INC., 7505 S. Xanthia Place, Centennial, Colorado (United States)

2007-07-01T23:59:59.000Z

269

Enhancing Diagnostic Accuracy in Oral Radiology: A Case for the Basic Sciences.  

E-Print Network (OSTI)

??Background: Cognitive processing in diagnostic oral radiology requires a solid foundation in the basic sciences as well as knowledge of the radiologic changes associated with (more)

Baghdady, Mariam

2014-01-01T23:59:59.000Z

270

E-Print Network 3.0 - aids radiological findings Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

pulmonary edema... administrative codes that will aid in billing and quality assurance. The radiology report should record... of Radiology. ACR prac- tice guideline for...

271

Radiological Control Programs for Special Tritium Compounds  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

84-2004 84-2004 SEPTEMBER 2004 CHANGE NOTICE NO. 1 Date June 2006 DOE HANDBOOK RADIOLOGICAL CONTROL PROGRAMS FOR SPECIAL TRITIUM COMPOUNDS U.S. Department of Energy AREA OCSH Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE ii Table of Changes Page Change 67 (near bottom) In row 1, column 2 of the table titled "dosimetric properties" 6 mrem was changed to 6 x 10 -2 mrem Available on the Department of Energy Technical Standards Program Web site at http://tis.eh.doe.gov/techstds/ DOE-HDBK-1184-2004 iii Foreword The Department of Energy (DOE) and its predecessor agencies have undertaken a wide variety

272

Radiological Control Programs for Special Tritium Compounds  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F 1325.8 F 1325.8 (08-93) United States Government Department of Energy memorandum DATE: May 11, 2006 REPLY TO EH-52:JRabovsky:3-2 135 ATTN OF: APPROVAL OF CHANGE NOTICE 1 TO DEPARTMENT OF ENERGY (DOE) SUBJECT. HANDBOOK 1184-2004, RADIOLOGICAL CONTROL PROGRAMS FOR SPECIAL TRITIUM COMPOUNDS TO: Dennis Kubicki, EH-24 Technical Standards Manager This memorandum forwards the subject Change Notice 1 to DOE Handbook, DOE- HDBK- 1184-2004, which has approved for publication and distribution. The change to this handbook consists of a correction to the rule of thumb, listed in Appendix A, for converting the uptake of tritium oxide into radiation dose. A factor of 1/100 was inadvertently omitted from this rule of thumb when this DOE Handbook was originally published. This change does not affect the references, is not of a technical nature, and

273

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Change Notice 2 Change Notice 2 with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1106-97 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1106-97 iii Page/Section Change

274

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reaffirmation Reaffirmation August 2002 Change Notice 1 December 2004 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1106-97 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1106-97 iii Page/Section Change

275

Radiological assessment of BWR recirculatory pipe replacement  

SciTech Connect

Replacement of primary recirculating coolant pipe in BWRs is a major effort that has been carried out at a number of nuclear generating stations. This report reviews the planned or actual pipe replacement projects at six sites: Nine Mile Point-1, Monticello, Cooper, Peach Bottom-2, Vermont Yankee, and Browns Ferry-1. It covers the radiological issues of the pipe replacement, measures taken to reduce doses to ALARA, estimated and actual occupational doses, and lessons learned during the various replacements. The basis for the decisions to replace the pipes, the methods used for preparation and decontamination, the removal of old pipe, and the installation of the new pipe are briefly described. Methods for reducing occupational radiation dose during pipe repairs/replacements are recommended. 32 refs., 12 figs., 17 tabs.

Parkhurst, M.A.; Hadlock, D.E.; Harty, R.; Pappin, J.L.

1986-02-01T23:59:59.000Z

276

Survey of radiologic practices among dental practitioners  

SciTech Connect

The purpose of this study was to determine the factors that influence and contribute to patient exposure in radiologic procedures performed in the offices of 132 staff members within the dental department of a teaching hospital. A questionnaire was prepared in which data were requested on brands of film used, type of x-ray unit used, processing, and use of leaded apron, cervical shield, and film holder. Offices were also visited to evaluate performance of existing dental x-ray equipment. Both the Dental Radiographic Normalizing and Monitoring Device and the Dental Quality Control Test Tool were evaluated. The average exposure was equivalent to the class D film (220 mR), but only 13% of those surveyed used the faster class E film, which would reduce patient exposure in half. The survey indicates that dentists are not using the newer low-exposure class E film in their practices.

Goren, A.D.; Sciubba, J.J.; Friedman, R.; Malamud, H. (Long Island Jewish Medical Center, New Hyde Park, NY (USA))

1989-04-01T23:59:59.000Z

277

Radiological Control Change Notice 1 Memorandum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DATE: May DATE: May 20, 2004 REPLY TO EH-52:Judith D. Foulke:301 :903-5865 ATTN OF: CHANGE NOTICE TO DEPARTMENT OF ENERGY (DOE) HANDBOOK, DOE-STD- SUBJECT. 1098-99, RADIOLOGICAL CONTROL TO: George Detsis, EH-3 1 This memorandum forwards Change Notice Number 1 to subject DOE Technical Standard, DOE-STD-1098-99. The changes are being made as part of the 5-year review of the standard. The table inserted into the document details the changes. After the changes are made, a notice of intent to reaffirm memorandum will be issued. A compact disk (CD) of the revised document in MS Word and in PDF format is attached. If there are any questions, please contact Dr. Judith Foulke of my staff on 3-5865 or electronic mail (Judy.Foulke@eh.doe.gov). ill R. McArthur, PhD, C1}T Office Director Office of Worker Protection Policy

278

Unified Resolve 2014: A Proof of Concept for Radiological Support to Incident Commanders  

Energy.gov (U.S. Department of Energy (DOE))

Unified Resolve 2014: A Proof of Concept for Radiological Support to Incident Commanders Daniel Blumenthal*, U.S. Department of Energy ; John Crapo, Oak Ridge Institute for Science and Education; Gerard Vavrina, U.S. Department of Energy; Katharine McLellan McLellan, U.S. Department of Energy; Michael J. Gresalfi, Oak Ridge National Laboratory Abstract: In response to a radiological or nuclear (R/N) emergency, Incident Command and the associated response community will require requisite technical expertise, and the application of appropriate decision-support tools, and derivative products in order to effectively manage response operations. Unlike the spectrum of natural disasters which occur with some frequency, and which our nations first responder community has great familiarity with, an emergency that includes an R/N element, whether initiated by an accidental or manmade event, is at best an infrequent occurrence and generally not an operational emergency response experience most of our nations regional, state and local first responder communities have participated in. The Unified Resolve 2014 annual exercise, conducted by the National Capital Region's Incident Management Team (NCR IMT) during March, 2014, provided the U.S. Department of Energys Office of Emergency Response with an ideal opportunity to pilot and asses a proposed R/N operational support position, designed to provide state and local incident command with technical subject matter expertise within both the planning and operational elements of both area and unified command. This proposed cadre of R/N technical specialists, volunteers willing to support their home regions state and local incident commands when facing an R/N emergency, are presently referred to as Radiological Operations Support Specialists (ROSS). The role of the ROSS cadre is envisioned to be an on-scene R/N subject matter expert to Incident Command, to provide both adaptive planning support and operational advice, with respect to a wide range of R/N modeling, measurement, and analysis capabilities, decision-tools and products available from across the Federal community, to include both DOE, EPA and others. The ROSS cadre would include personnel who are already radiation professionals, to include health physicists and others. They would receive additional training in the specifics of radiological emergency response. The skills include knowing what Federal assets are available to help local responders, how do the data and modeling products provided by these Federal assets support local decision making, and how do the radiological issues impact or complicate local decision making. The exercise helped to define the role of this specialist, additional training required, and the types of data products needed by incident management personnel. The goal is to develop a nationwide cadre of local experts who can immediately support the local response to a radiological incident before any Federal expertise has time to arrive.

279

2013 Environmental/Radiological Assistance Directory (ERAD) Presentations  

Energy.gov (U.S. Department of Energy (DOE))

November 2013 Derived Intervention and Response Levels for Tritium Oxide at the Savannah River Site May 2013 THE MARSAME METHODOLOGY Fundamentals, Benefits, and Applications March 2013 Working to Keep our Shipments Safe, Secure and Economical ANL Facility Decommissioning Training Program January 2013 DOE Corporate Operating Experience Program Radiological Reporting Annual Site Environmental Reports (ASERs) & HSS Environmental and Radiation Protection Performance Dashboards November 2012 Environmental Measurements in an Emergency: This is not a Drill! BGRR D&D Presentation for the DOE ERAD Working Group September 2012 Development of Authorized Limits for Portsmouth Oil Inventory Disposition Development of Authorized Limits for Portsmouth Oil Inventory Disposition Development of Authorized Limits for Portsmouth Oil Inventory Disposition Clearance of Real and Personal Property Under DOE Radiation Protection Directive DOE Order 458.1 June 2012 RESRAD Codes for ERAD June 27, 2012 Florida International University (FIU) D&D Knowledge Management Information Tool, June 27, 2012 May 2012 Integrated Cloud Based Environmental Data Management System DOE Order 458.1, Radiation Protection of the Public and the Environment

280

21.01.05.M3 Transportation Services  

E-Print Network (OSTI)

21.01.05.M3 Transportation Services Page 1 of 4 UNIVERSITY RULE 21.01.05.M3 Transportation Services Transportation Services is responsible for managing all parking, traffic and transportation-related activities on campus. Transportation Services is guided by state and federal statutes and regulations. Official Rule 1

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Radiological Risk Assessment for King County Wastewater Treatment Division  

SciTech Connect

Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or moisture density gages may get into wastewater and be carried to a treatment plant. Other scenarios might include a terrorist deliberately putting a dispersible radioactive material into wastewater. Alternatively, a botched terrorism preparation of an RDD may result in radioactive material entering wastewater without anyone's knowledge. Drinking water supplies may also be contaminated, with the result that some or most of the radioactivity ends up in wastewater.

Strom, Daniel J.

2005-08-05T23:59:59.000Z

282

Radiological Conditions at Bikini Atoll: Prospects for ResettlementRadiological Conditions at the Semipalatinsk Test Site, Kazakhstan: Preliminary assessment and recommendations for further study  

Science Journals Connector (OSTI)

Radiological Conditions at the Semipalatinsk Test Site, Kazakhstan: Preliminary assessment and recommendations for further study Radiological Assessment Reports Series 1998 (Vienna: IAEA) 43 pp 200 Austr. Sch. ISBN 92 0 104098 9 These two reports stem from requests to the IAEA, from the local Government Authorities, for help and advice in assessing the radiological situations at two former nuclear weapons testing sites. Both reports have similar general structures - a discussion of the geographical context of the sites; a summary of the weapon tests, and their continuing impacts on the local populations; the basis for the IAEA programme; radiological concepts and criteria in the context of the residual contamination arising from the tests, and specifically the bases for intervention and remediation; assessments of the present and future radiation exposures of the actual/potential residents of the areas; and conclusions and recommendations. Because the indigenous Bikinian population is at present relocated elsewhere in the Marshall Islands archipelago, the report for Bikini Atoll is essentially concerned with an assessment of the current radiological situation, the prospects for resettlement, and the justification and available strategies for remedial action to reassure the Bikinians that it would be safe to return. Since the cessation of testing at the atoll in July 1958, there have been continuing radiological surveys of the local environment - the latest being the Marshall Islands Nationwide Radiological Study under an International Scientific Advisory Panel. The Panel report was not accepted by the Marshall Islands Government, who then requested the IAEA to carry out an independent peer review. The IAEA assessment (with some corroboratory data from a monitoring mission) confirmed the estimate of 15 mSv a-1 for the total potential dose rate to individuals relying entirely on locally produced foodstuffs, mainly from 137Cs in coconuts and other fruits. An examination of existing guidelines and practice concluded that 10 mSv a-1 is an appropriate generic action level to trigger consideration of remediation strategies prior to resettlement. From five potential remedial measures, two were considered in more detail - removal and disposal of the surface 40 cm of the topsoil, and treatment of the soil with high potassium fertilizers. It was concluded that the former, although reducing the dose rate from the residual contamination to less than 0.1 mSv a-1, would entail unacceptable environmental and social consequences. Experimental investigation of the latter showed that it would reduce the uptake of 137Cs significantly, with the total dose rate rapidly declining to about 1.2 mSv a-1; it was also found that the application of fertilizer would have to be repeated every 4-5 years to sustain the reduction. The latter was, therefore, the preferred option together with some localised soil removal in the living areas of the village to reduce both the external exposure and the inhalation pathway. The sole remaining concern of the Bikinians appears to relate to the identification of a reliable authority to assume responsibility for maintaining the implementation of the countermeasure to reduce the 137Cs uptake into foodstuffs for the foreseeable future. If this concern can be resolved, it appears that the way is open for the resettlement of the Bikinian people on the atoll. The situation at Semipalatinsk is somewhat different in one respect - the site, although large, has unrestricted access and small numbers of people already live within the boundaries. After the request to the IAEA from the Kazakhstan Government for assistance, the initial objective was to determine the magnitude of the problem. This was achieved on the first mission to the site when the main areas of contamination were identified using information available from the local authorities, and radiation measurements and sample collections were made at identified places both within, and external to, the site. A second mission extended the range of measurements and sample

Dennis Woodhead

1999-01-01T23:59:59.000Z

283

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 Radiological Control Technician Training Fundamental Academic Training Instructor's Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National Laboratory Bobby Oliver Lockheed Martin Energy Systems Richard Cooke Argonne National Laboratory Brian Thomson Sandia National Laboratory Michael McGough Westinghouse Savannah River Company Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers

284

DOE-HDBK-1141-2001; Radiological Assessor Training, Overheads  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13.1 13.1 Overhead 13.1 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators Objectives: * Identify the general characteristics of accelerators. * Identify the types of particles accelerated. * Identify the two basic types of accelerators. * Identify uses for accelerators. * Define prompt radiation. * Identify prompt radiation sources. OT 13.2 Overhead 13.2 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators (cont.) Objectives: * Define radioactivation. * Explain how contaminated material differs from activated material with regard to radiological concerns. * Identify activation sources. OT 13.3 Overhead 13.3 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators (cont.) Objectives: * Identify engineered and administrative controls at accelerator facilities. * Identify the special

285

Radiological Worker Training Power Point Slides for App. A  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30-2008 30-2008 DOE HANDBOOK Radiological Worker Training DOE-HDBK-1130-2008 Overheads December 2008 Reaffirmed 2013 OT 1.1 DOE-HDBK-1130-2008 Overhead 1.1 Regulatory Documents Objectives: * Identify the hierarchy of regulatory documents. * Define the purposes of 10 CFR Parts 820, 830 and 835. * Define the purpose of the DOE Radiological Control Standard. OT 1.2 DOE-HDBK-1130-2008 Overhead 1.2 Regulatory Documents (cont.) Objectives: * Define the terms "shall" and "should" as used in the above documents. * Describe the role of the Defense Nuclear Facilities Safety Board (DNFSB) at DOE sites and facilities. OT 1.3 DOE-HDBK-1130-2008 Overhead 1.3 DOE Radiological Health and Safety Policy * Conduct oversight to ensure compliance and that appropriate radiological work

286

CRAD, Radiological Controls - Los Alamos National Laboratory Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Controls - Los Alamos National Laboratory Waste Radiological Controls - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Radiological Controls - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Radiation Protection Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Radiological Controls - Los Alamos National Laboratory Waste

287

A comparative study of quality control in diagnostic radiology  

Science Journals Connector (OSTI)

......effective National Regulatory Authority in Syria...radiological and Nuclear Regulatory Office, for his...2 Atomic Energy Regulatory Board. Atlas of Reference Plans for Medical Diagnostic...Burkhart R. L. A review of the experience......

M. H. Kharita; M. S. Khedr; K. M. Wannus

2008-07-01T23:59:59.000Z

288

Bayesian Network Analysis of Radiological Dispersal Device Acquisitions  

E-Print Network (OSTI)

It remains unlikely that a terrorist organization could produce or procure an actual nuclear weapon. However, the construction of a radiological dispersal device (RDD) from commercially produced radioactive sources and conventional explosives could...

Hundley, Grant Richard

2012-02-14T23:59:59.000Z

289

Radiological Worker Training Power Point Slides for App. A  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30-2008 30-2008 DOE HANDBOOK Radiological Worker Training DOE-HDBK-1130-2008 Overheads December 2008 Reaffirmed 2013 OT 1.1 DOE-HDBK-1130-2008 Overhead 1.1 Regulatory Documents Objectives: * Identify the hierarchy of regulatory documents. * Define the purposes of 10 CFR Parts 820, 830 and 835. * Define the purpose of the DOE Radiological Control Standard. OT 1.2 DOE-HDBK-1130-2008 Overhead 1.2 Regulatory Documents (cont.) Objectives: * Define the terms "shall" and "should" as used in the above documents. * Describe the role of the Defense Nuclear Facilities Safety Board (DNFSB) at DOE sites and facilities. OT 1.3 DOE-HDBK-1130-2008 Overhead 1.3 DOE Radiological Health and Safety Policy * Conduct oversight to ensure compliance and that appropriate radiological work

290

DOE-HDBK-1143-2001; Radiological Control Training for Supervisors - Course Introduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

143-2001 143-2001 Instructor's Guide DEPARTMENT OF ENERGY LESSON PLAN Course Material Topic: Administrative Policies and Procedures Objectives: Upon completion of this training, the student will be able to: 1. Identify the radiological controlled areas a person should be allowed to enter after successfully completing General Employee Radiological Training, Radiological Worker I training, and Radiological Worker II training. 2. List five actions used to increase the awareness level of workers relating to proper radiological work practices. 3. Identify three conditions when a "Stop Radiological Work" should be initiated. 4. Identify the actions that should be performed, prior to recommencement of work, after a "Stop Radiological Work" order has been initiated.

291

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

292

Models and parameters for environmental radiological assessments  

SciTech Connect

This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)

Miller, C W [ed.] [ed.

1984-01-01T23:59:59.000Z

293

Autonomous mobile robot for radiologic surveys  

SciTech Connect

An apparatus for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm.

Dudar, Aed M. (Augusta, GA); Wagner, David G. (Augusta, GA); Teese, Gregory D. (Aiken, SC)

1994-01-01T23:59:59.000Z

294

Mobile autonomous robotic apparatus for radiologic characterization  

DOE Patents (OSTI)

A mobile robotic system that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console.

Dudar, Aed M. (Dearborn, MI); Ward, Clyde R. (Aiken, SC); Jones, Joel D. (Aiken, SC); Mallet, William R. (Cowichan Bay, CA); Harpring, Larry J. (North Augusta, SC); Collins, Montenius X. (Blackville, SC); Anderson, Erin K. (Pleasanton, CA)

1999-01-01T23:59:59.000Z

295

A mobile autonomous robot for radiological surveys  

SciTech Connect

The Robotics Development Group at the Savannah River Site is developing an autonomous robot (SIMON) to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The robot, a Cybermotion K2A base, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It uses an ultrasonic ranging system for collision avoidance. In addition, two safety bumpers located in the front and the back of the robot will stop the robots motion when they are depressed. Paths for the robot are preprogrammed and the robots motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/0 interface for remote operation. Up to 30 detectors may be configured with the RM22A.

Dudar, A.M.; Wagner, D.G.; Teese, G.D.

1992-01-01T23:59:59.000Z

296

A mobile autonomous robot for radiological surveys  

SciTech Connect

The Robotics Development Group at the Savannah River Site is developing an autonomous robot (SIMON) to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The robot, a Cybermotion K2A base, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It uses an ultrasonic ranging system for collision avoidance. In addition, two safety bumpers located in the front and the back of the robot will stop the robots motion when they are depressed. Paths for the robot are preprogrammed and the robots motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/0 interface for remote operation. Up to 30 detectors may be configured with the RM22A.

Dudar, A.M.; Wagner, D.G.; Teese, G.D.

1992-10-01T23:59:59.000Z

297

Radiological characterization of spent control rod assemblies  

SciTech Connect

This document represents the final report of an ongoing study to provide radiological characterizations, classifications, and assessments in support of the decommissioning of nuclear power stations. This report describes the results of non-destructive and laboratory radionuclide measurements, as well as waste classification assessments, of BWR and PWR spent control rod assemblies. The radionuclide inventories of these spent control rods were determined by three separate methodologies, including (1) direct assay techniques, (2) calculational techniques, and (3) by sampling and laboratory radiochemical analyses. For the BWR control rod blade (CRB) and PWR burnable poison rod assembly (BPRA), {sup 60}Co and {sup 63}Ni, present in the stainless steel cladding, were the most abundant neutron activation products. The most abundant radionuclide in the PWR rod cluster control assembly (RCCA) was {sup 108m}Ag (130 yr halflife) produced in the Ag-In-Cd alloy used as the neutron poison. This radionuclide will be the dominant contributor to the gamma dose rate for many hundreds of years. The results of the direct assay methods agree very well ({+-}10%) with the sampling/radiochemical measurements. The results of the calculational methods agreed fairly well with the empirical measurements for the BPRA, but often varied by a factor of 5 to 10 for the CRB and the RCCA assemblies. If concentration averaging and encapsulation, as allowed by 10CFR61.55, is performed, then each of the entire control assemblies would be classified as Class C low-level radioactive waste.

Lepel, E.A.; Robertson, D.E.; Thomas, C.W.; Pratt, S.L.; Haggard, D.L. [Pacific Northwest Lab., Richland, WA (United States)

1995-10-01T23:59:59.000Z

298

Mobile autonomous robotic apparatus for radiologic characterization  

DOE Patents (OSTI)

A mobile robotic system is described that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console. 4 figs.

Dudar, A.M.; Ward, C.R.; Jones, J.D.; Mallet, W.R.; Harpring, L.J.; Collins, M.X.; Anderson, E.K.

1999-08-10T23:59:59.000Z

299

WIPP Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across...

300

Transportation Security  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Draft - For Review Only 1 Transportation Security Draft Annotated Bibliography Review July 2007 Preliminary Draft - For Review Only 2 Work Plan Task * TEC STG Work...

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Checklist to Improve Patient Safety in Interventional Radiology  

SciTech Connect

To develop a specific RADiological Patient Safety System (RADPASS) checklist for interventional radiology and to assess the effect of this checklist on health care processes of radiological interventions. On the basis of available literature and expert opinion, a prototype checklist was developed. The checklist was adapted on the basis of observation of daily practice in a tertiary referral centre and evaluation by users. To assess the effect of RADPASS, in a series of radiological interventions, all deviations from optimal care were registered before and after implementation of the checklist. In addition, the checklist and its use were evaluated by interviewing all users. The RADPASS checklist has two parts: A (Planning and Preparation) and B (Procedure). The latter part comprises checks just before starting a procedure (B1) and checks concerning the postprocedural care immediately after completion of the procedure (B2). Two cohorts of, respectively, 94 and 101 radiological interventions were observed; the mean percentage of deviations of the optimal process per intervention decreased from 24 % before implementation to 5 % after implementation (p < 0.001). Postponements and cancellations of interventions decreased from 10 % before implementation to 0 % after implementation. Most users agreed that the checklist was user-friendly and increased patient safety awareness and efficiency. The first validated patient safety checklist for interventional radiology was developed. The use of the RADPASS checklist reduced deviations from the optimal process by three quarters and was associated with less procedure postponements.

Koetser, Inge C. J. [Academic Medical Centre, Department of Interventional Radiology (Netherlands)] [Academic Medical Centre, Department of Interventional Radiology (Netherlands); Vries, Eefje N. de [Academic Medical Centre, Department of Quality and Process Innovation (Netherlands)] [Academic Medical Centre, Department of Quality and Process Innovation (Netherlands); Delden, Otto M. van [Academic Medical Centre, Department of Interventional Radiology (Netherlands)] [Academic Medical Centre, Department of Interventional Radiology (Netherlands); Smorenburg, Susanne M. [Academic Medical Centre, Department of Quality and Process Innovation (Netherlands)] [Academic Medical Centre, Department of Quality and Process Innovation (Netherlands); Boermeester, Marja A. [Academic Medical Centre, Department of Surgery (Netherlands)] [Academic Medical Centre, Department of Surgery (Netherlands); Lienden, Krijn P. van, E-mail: k.p.vanlienden@amc.uva.nl [Academic Medical Centre, Department of Interventional Radiology (Netherlands)] [Academic Medical Centre, Department of Interventional Radiology (Netherlands)

2013-04-15T23:59:59.000Z

302

Assessment-oriented Java development vs. clickers' use in formal assessment of basic principles of dental radiology: the opinion of dentistry students  

Science Journals Connector (OSTI)

The integration of Information and Communication Technologies (ICTs) has generated a change in teaching methodologies au university level. The objective of this study is to check the effectiveness of interactive processes in summative assessment or learning-oriented ... Keywords: Java, audience response system, clickers, computers-assisted instruction, dental radiology, educational technology, formative assessment, teaching methods

Mara-Jos Rodrguez-Conde; Francisco Javier Cabrero Fraile; Alberto Cabrero Hernndez; Juan Juanes Mndez; Javier Borrajo Snchez; Blanca Garca-Riaza

2013-11-01T23:59:59.000Z

303

Radiological considerations of phosphogypsum utilization in agriculture  

SciTech Connect

The radiological concerns associated with phosphogypsum utilization in agriculture have been placed in perspective by considering the consequences of a hypothetical case involving heavy long term applications of phosphogypsum. In California, such a schedule might consist of an initial gypsum application of 10 tons/acre followed by alternate year applications of 5 tons/acre. If the radium content of the gypsum were 15 pCi/g and the till depth 6 inches, this schedule could be maintained for more than 100 years before the radium buildup in the soil would reach a proposed federal concentration limit of 5 pCi/g. An agricultural worker spending 40 h a week in a field containing 5 pCi/g of radium would be exposed to terrestrial radiation of about 7 ..mu..R/h above background. This exposure would result in an annual radiation dose of about 15 mrem, which is 3% of the recommended limit for an individual working in an uncontrolled area. Five pCi/g of radium in the soil could generate airborne radon daughter concentrations exceeding the concentration limit proposed for residential exposure. However, as residential exposure limits are predicated on 75% of continuous occupancy, these limits should not be applied to agricultural workers because of the seasonal nature of their work. Radium uptake by food crops grown in the hypothetical soil would result in a 50 year integrated dose to the bone surface of 1.4 rem. This dose is conservatively based on the assumption that an adult's total vegetable diet comes from this source and that consumption was continuous during the 50 year period.

Lindeken, C.L.

1980-10-31T23:59:59.000Z

304

Audit Report - Office of Secure Transportation Capabilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Secure Transportation Office of Secure Transportation Capabilities OAS-M-12-05 June 2012 Department of Energy Washington, DC 20585 June 29, 2012 UN MEMORANDUM FOR THE ASSISTANT DEPUTY ADMINISTRATOR, OFFICE OF SECURE TRANSPORTATION FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Office of Secure Transportation Capabilities" BACKGROUND The National Nuclear Security Administration's Office of Secure Transportation (OST) is responsible for safely and securely transporting nuclear weapons, weapon components and special nuclear material for customers such as the Department of Energy, Department of Defense and the Nuclear Regulatory Commission. Specifically, OST shipments support the nuclear

305

Transportation Market Distortions  

E-Print Network (OSTI)

of Highways, Volpe National Transportation Systems Center (Evaluating Criticism of Transportation Costing, VictoriaFrom Here: Evaluating Transportation Diversity, Victoria

Litman, Todd

2006-01-01T23:59:59.000Z

306

ENERGY EMERGENCY RESPONSE PLAN  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ENERGY EMERGENCY RESPONSE PLAN COMMISSIONREPORT October 2006 CEC-600-2006-014 Arnold Schwarzenegger, Governor #12;CALIFORNIA ENERGY COMMISSION Jackalyne Pfannenstiel Chairman James D Deputy Director FUELS AND TRANSPORTATION DIVISION #12;The Energy Emergency Response Plan is prepared

307

Radiological assessment of the consequences of the disposal of high-level radioactive waste in subseabed sediments  

SciTech Connect

The radiological assessment of the seabed option consists in estimating the detriment to man and to the environment that could result from the disposal of high-level waste (HLW) within the seabed sediments in deep oceans. The assessment is made for the high-level waste (vitrified glass) produced by the reprocessing of 10/sup 5/ tons of heavy metal from spent fuel, which represents the amount of waste generated by 3333 reactor-yr of 900-MW(electric) reactors, i.e., 3000 GW(electric) x yr. The disposal option considered is to use 14,667 steel penetrators, each of them containing five canisters of HLW glass (0.15 m/sup 3/ each). These penetrators would reach a depth of 50 m in the sediments and would be placed at an average distance of 180 m from each other, requiring a disposal area on the order of 22 x 22 km. Two such potential disposal areas in the Atlantic Ocean were studied, Great Meteor East (GME) and South Nares Abyssal Plains (SNAP). A special ship design is proposed to minimize transportation accidents. Approximately 100 shipments would be necessary to dispose of the proposed amount of waste. The results of this radiological assessment seem to show that the disposal of HLW in subseabed sediments is radiologically a very acceptable option.

de Marsily, G.; Behrendt, V.; Ensminger, D.A.; Flebus, C.; Hutchinson, B.L.; Kane, P.; Karpf, A.; Klett, R.D.; Mobbs, S.; Poulin, M.; Stanners, D.A.; Wuschke, D.

1987-01-01T23:59:59.000Z

308

Analysis of the Variability of Classsified and Unclassified Radiological Source term Inventories in the Frenchman Flat Area, Nevada test Site  

SciTech Connect

It has been proposed that unclassified source terms used in the reactive transport modeling investigations at NTS CAUs should be based on yield-weighted source terms calculated using the average source term from Bowen et al. (2001) and the unclassified announced yields reported in DOE/NV-209. This unclassified inventory is likely to be used in unclassified contaminant boundary calculations and is, thus, relevant to compare to the classified inventory. They have examined the classified radionuclide inventory produced by 10 underground nuclear tests conducted in the Frenchman Flat (FF) area of the Nevada Test Site. The goals were to (1) evaluate the variability in classified radiological source terms among the 10 tests and (2) compare that variability and inventory uncertainties to an average unclassified inventory (e.g. Bowen 2001). To evaluate source term variability among the 10 tests, radiological inventories were compared on two relative scales: geometric mean and yield-weighted geometric mean. Furthermore, radiological inventories were either decay corrected to a common date (9/23/1992) or the time zero (t{sub 0}) of each test. Thus, a total of four data sets were produced. The date of 9/23/1992 was chosen based on the date of the last underground nuclear test at the Nevada Test Site.

Zhao, P; Zavarin, M

2008-06-04T23:59:59.000Z

309

Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations  

SciTech Connect

In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

Mizell, Steve A [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; McCurdy, Greg [DRI; Etyemezian, Vicken [DRI; Miller, Julianne J [DRI

2014-10-01T23:59:59.000Z

310

Transportation System Risk Assessment (TSRA) bounding release model  

SciTech Connect

Transportation System Risk Assessments (TSRAs) document the compliance of proposed shipments of nuclear components with applicable federal regulations as well as the associated risks involved. If a relatively simple bounding analysis can show that the consequences resulting from a worst case scenario are acceptably low, a more time intensive and costly risk analysis can be avoided. Therefore, a bounding release FORTRAN model has been developed to determine the consequences of a worst case non-criticality transportation accident. The consequences of three conservative bounding accidents are determined by the model: (1) direct radiation exposure, (2) airborne release of radiological and/or hazardous solid material, and (3) release of radiological and/or hazardous solid material into a waterway and subsequent uptake by an individual through drinking water. Program output includes the direct radiation exposure (mrem), maximum downwind concentration (mg/m{sup 3}), radiation dose (mrem) received as a result of the postulated airborne release of radiological material, intake (mg) due to inhalation, radiation dose (mrem) received by an individual resulting from a release of radiological material into a waterway and uptake into drinking water, and uptake (mg) due to ingestion. This report documents the methodologies and correlations used in the numerical model to perform the bounding consequence calculations.

Anderson, J.C.

1997-10-01T23:59:59.000Z

311

Transportation Networks for Emergency Evacuations  

SciTech Connect

Evacuation modeling systems (EMS) have been developed to facilitate the planning, analysis, and deployment of emergency evacuation of populations at risk. For any EMS, data such as road network maps, traffic control characteristics, and population distribution play critical roles in delineating emergency zones, estimating population at risk, and determining evacuation routes. There are situations in which it is possible to plan in advance for an emergency evacuation including, for example, an explosion at a chemical processing facility or a radiological accident at a nuclear plant. In these cases, if an accident or a terrorist attack were to happen, then the best evacuation plan for the prevailing network and weather conditions would be deployed. In other instances -for example, the derailment of a train transporting hazardous materials-, there may not be any previously developed plan to be implemented and decisions must be made ad-hoc on if and how to identify and proceed with the best course of action to minimize losses. Although both cases require as a starting point the development of a transportation network model of the area at risk, which must include road capacity and topology, in the latter the available time to generate this network is extremely limited. This time constraint precludes the use of any traditional data gathering methodology and the network generation process has to rely on the use of GIS and stochastic modeling techniques. The generation of these transportation networks in real time is the focus of this entry.

Franzese, Oscar [ORNL; Liu, Cheng [ORNL

2008-01-01T23:59:59.000Z

312

Radiological Worker Training Power Point Slides for App. A  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1.1 1.1 DOE-HDBK-1130-2008 Overhead 1.1 Regulatory Documents Objectives: * Identify the hierarchy of regulatory documents. * Define the purposes of 10 CFR Parts 820, 830 and 835. * Define the purpose of the DOE Radiological Control Standard. OT 1.2 DOE-HDBK-1130-2008 Overhead 1.2 Regulatory Documents (cont.) Objectives: * Define the terms "shall" and "should" as used in the above documents. * Describe the role of the Defense Nuclear Facilities Safety Board (DNFSB) at DOE sites and facilities. OT 1.3 DOE-HDBK-1130-2008 Overhead 1.3 DOE Radiological Health and Safety Policy * Conduct oversight to ensure compliance and that appropriate radiological work practices are implemented. * Ensure accurate and appropriately made measurements. * Incorporate measures to minimize

313

Hawaii Department of Health Indoor and Radiological Health Branch | Open  

Open Energy Info (EERE)

Indoor and Radiological Health Branch Indoor and Radiological Health Branch Jump to: navigation, search Name Hawaii Department of Health Indoor and Radiological Health Branch From Open Energy Information Address 591 Ala Moana Blvd. Place Honolulu, Hawaii Zip 96813 Website http://hawaii.gov/health/envir Coordinates 21.300314°, -157.864542° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.300314,"lon":-157.864542,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 Radiological Control Technician Training Fundamental Academic Training Study Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Study Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Study Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National Laboratory Bobby Oliver Lockheed Martin Energy Systems Richard Cooke Argonne National Laboratory Brian Thomson Sandia National Laboratory Michael McGough Westinghouse Savannah River Company Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers U.S. Department of Energy

315

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 of 9 6 of 9 Radiological Control Technician Training Site Academic Training Study Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Study Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Study Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National Laboratory Bobby Oliver Lockheed Martin Energy Systems Richard Cooke Argonne National Laboratory Brian Thomson Sandia National Laboratory Michael McGough Westinghouse Savannah River Company Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers U.S. Department of Energy

316

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Monitoring Environmental Monitoring Study Guide 2.09-1 Course Title: Radiological Control Technician Module Title: Environmental Monitoring Module Number: 2.09 Objectives: 2.09.01 State the goals of an environmental monitoring program. 2.09.02 State the exposure limits to the general public as they apply to environmental monitoring. 2.09.03 Define the term "critical nuclide." 2.09.04 Define the term "critical pathway." i 2.09.05 State locations frequently surveyed for radiological contamination at outdoor waste sites associated with your site and the reasons for each. 2.09.06 Define the term "suspect waste site," and how they can be identified. i 2.09.07 Describe the methods used for environmental monitoring at your site. INTRODUCTION Environmental monitoring plays a large role in the field of radiological control.

317

Radiological planning and implementation for nuclear-facility decommissioning  

SciTech Connect

The need and scope of radiological planning required to support nuclear facility decommissioning are issues addressed in this paper. The role of radiation protection engineering and monitoring professionals during project implementation and closeout is also addressed. Most of the discussion focuses on worker protection considerations; however, project support, environmental protection and site release certification considerations are also covered. One objective is to identify radiological safety issues that must be addressed. The importance of the issues will vary depending on the type of facility being decommissioned; however, by giving appropriate attention to these issues difficult decommissioning projects can be accomplished in a safer manner with workers and the public receiving minimal radiation exposures.

Valentine, A.M.

1982-01-01T23:59:59.000Z

318

RSAC -6 Radiological Safety Analysis Computer Program  

SciTech Connect

RSAC-6 is the latest version of the RSAC program. It calculates the consequences of a release of radionuclides to the atmosphere. Using a personal computer, a user can generate a fission product inventory; decay and in-grow the inventory during transport through processes, facilities, and the environment; model the downwind dispersion of the activity; and calculate doses to downwind individuals. Internal dose from the inhalation and ingestion pathways is calculated. External dose from ground surface and plume gamma pathways is calculated. New and exciting updates to the program include the ability to evaluate a release to an enclosed room, resuspension of deposited activity and evaluation of a release up to 1 meter from the release point. Enhanced tools are included for dry deposition, building wake, occupancy factors, respirable fraction, AMAD adjustment, updated and enhanced radionuclide inventory and inclusion of the dose-conversion factors from FGR 11 and 12.

Schrader, Bradley J; Wenzel, Douglas Rudolph

2001-06-01T23:59:59.000Z

319

E-Print Network 3.0 - aspects radiological aspects Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Collection: Multidisciplinary Databases and Resources 14 Radiological Control Manual ESH Division Summary: Radiological Control Manual ESH Division SLAC-I-720-0A05Z-001-R005 1...

320

Paint for detection of corrosion and warning of chemical and radiological attack  

DOE Patents (OSTI)

A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

Farmer, Joseph C. (Tracy, CA)

2010-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

An assessment of the radiological scenario around uranium mines in Singhbhum East district, Jharkhand, India  

Science Journals Connector (OSTI)

......radiological scenario around uranium mines in Singhbhum East...The Health Hazards of Depleted Uranium Munitions (2001) The...in soil and lifetime cancer risk due to gamma radioactivity...radiological scenario around uranium mines in Singhbhum East......

R. M. Tripathi; S. K. Sahoo; S. Mohapatra; A. C. Patra; P. Lenka; J. S. Dubey; V. N. Jha; V. D. Puranik

2012-07-01T23:59:59.000Z

322

Yearly Chnages of Radiation Exposure Doses Received by Workers in Radiological Occupations at Kyushu University Hospital  

Science Journals Connector (OSTI)

......by Workers in Radiological Occupations at Kyushu University Hospital Hideo Irie * Chikara Takei * Shigeki Momii * Takehiko Higuchi...by workers in radiological occupations at Kyushu University Hospital from September 1962 to March 1966 were reported. The exposure......

Hideo Irie; Chikara Takei; Shigeki Momii; Takehiko Higuchi; Sigeaki Okamura; Kouji Masuda

1967-09-01T23:59:59.000Z

323

Quality Control in the Radiological Departments of the Florence General Hospital  

Science Journals Connector (OSTI)

......Quality Control in the Radiological Departments of the Florence General Hospital C. Gori G. Belli S. Calvagno L. Capaccioli A. Guasti G. Spano G. Zatelli At the Hospital of Careggi in Florence six radiological departments are currently active......

C. Gori; G. Belli; S. Calvagno; L. Capaccioli; A. Guasti; G. Span; G. Zatelli

1995-01-01T23:59:59.000Z

324

Method for warning of radiological and chemical substances using detection paints on a vehicle surface  

SciTech Connect

A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

Farmer, Joseph C. (Tracy, CA)

2012-03-13T23:59:59.000Z

325

E-Print Network 3.0 - action program radiological Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

program RWT Radiological Worker Training SLAC Stanford Linear Accelerator Center 12;DOE G 441.1-12 1 03... radiological hazards (10 CFR 835.901(c)). Radiation safety training...

326

An assessment of the radiological scenario around uranium mines in Singhbhum East district, Jharkhand, India  

Science Journals Connector (OSTI)

......radiological scenario around uranium mines in Singhbhum East district...radiological scenario around uranium-mining sites in the Singhbhum...3 The Royal Society. The Health Hazards of Depleted Uranium Munitions (2001) The Royal......

R. M. Tripathi; S. K. Sahoo; S. Mohapatra; A. C. Patra; P. Lenka; J. S. Dubey; V. N. Jha; V. D. Puranik

2012-07-01T23:59:59.000Z

327

Emergency response monitoring activities and environmental impact of the K-Reactor aqueous tritium release of December 1991  

SciTech Connect

Approximately 150 gallons of tritiated water leaked from one of the K-Reactor heat exchangers between December 22 and December 25, 1991. Upon notification, the Environmental Technology Section (ETS) activated its emergency response team to provide predictions of river concentrations, transport times, and radiological effects to downstream water users. Additionally, within a few days of the release, ETS and the Environmental Monitoring Section (EMS) began a comprehensive program to collect and analyze surface water samples from SRS down to the Savannah River estuary. The TRAC mobile laboratory was deployed to the Beaufort-Jasper water treatment plant to provide initial analyses for downriver water samples. This document discusses the results of the sampling activities. Concentration levels are provided along with hypothetical maximum individual doses.

Hamby, D.M.; Addis, R.P.; Beals, D.M.; Cadieux, J.R.; Carlton, W.H.; Dunn, D.L.; Hall, G.; Hayes, D.W.; Lorenz, R.; Kantelo, M.V.; Taylor, R.W.

1992-02-07T23:59:59.000Z

328

FAQS Qualification Card - Transportation and Traffic Management |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation and Traffic Management Transportation and Traffic Management FAQS Qualification Card - Transportation and Traffic Management A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-TransportationAndTrafficManagement.docx Description Transportation and Traffic Management Qualification Card

329

Independent Oversight Evaluation, Office of Secure Transportation -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluation, Office of Secure Transportation - Evaluation, Office of Secure Transportation - February 2004 Independent Oversight Evaluation, Office of Secure Transportation - February 2004 February 2004 Evaluation of the Office of Secure Transportation Emergency Management Program The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of emergency management programs at the National Nuclear Security Administration's (NNSA) Office of Secure Transportation (OST) in October 2003. Inspection activities included the observation of the OST annual emergency exercise and reviews of selected emergency management program elements. The exercise demonstrated that the OST emergency response organization could effectively provide for prompt event categorization, DOE and NNSA

330

Radiology utilizing a gas multiwire detector with resolution enhancement  

DOE Patents (OSTI)

This invention relates to a process and apparatus for obtaining filmless, radiological, digital images utilizing a gas multiwire detector. Resolution is enhanced through projection geometry. This invention further relates to imaging systems for X-ray examination of patients or objects, and is particularly suited for mammography.

Majewski, Stanislaw (Grafton, VA); Majewski, Lucasz A. (Grafton, VA)

1999-09-28T23:59:59.000Z

331

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas  

Energy.gov (U.S. Department of Energy (DOE))

This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.)

332

Radiological Habits Survey: Chapelcross Liquid Effluent Pipeline, 2002  

E-Print Network (OSTI)

Radiological Habits Survey: Chapelcross Liquid Effluent Pipeline, 2002 Science commissioned Pipeline, 2002 The Centre for Environment, Fisheries and Aquaculture Science Lowestoft Laboratory Pakefield OF SURVEY 5 2.1 Pipeline description 5 2.2 Occupancy 6 2.3 Gamma dose rate measurements 7 3 SURVEY FINDINGS

333

Radiological Survey Data for 38 Grove Avenue, Rochelle Park,...  

Office of Legacy Management (LM)

K e l l e r , D i r e c t o r T e c h n i c a l S e r v i c e s D i v i s i o n 0ak Ridge Operations 0ffice The radiological survey data for the subject vicinity property has been...

334

Depleted uranium residual radiological risk assessment for Kosovo sites  

Science Journals Connector (OSTI)

During the recent conflict in Yugoslavia, depleted uranium rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of areas in Kosovo with depleted uranium penetrators and dust. Although chemical toxicity is the most significant health risk related to uranium, radiation exposure has been allegedly related to cancers among veterans of the Balkan conflict. Uranium munitions are considered to be a source of radiological contamination of the environment. Based on measurements and estimates from the recent Balkan Task Force UNEP mission in Kosovo, we have estimated effective doses to resident populations using a well-established food-web mathematical model (RESRAD code). The UNEP mission did not find any evidence of widespread contamination in Kosovo. Rather than the actual measurements, we elected to use a desk assessment scenario (Reference Case) proposed by the UNEP group as the source term for computer simulations. Specific applications to two Kosovo sites (Planeja village and Vranovac hill) are described. Results of the simulations suggest that radiation doses from water-independent pathways are negligible (annual doses below 30 ?Sv). A small radiological risk is expected from contamination of the groundwater in conditions of effective leaching and low distribution coefficient of uranium metal. Under the assumptions of the Reference Case, significant radiological doses (>1 mSv/year) might be achieved after many years from the conflict through water-dependent pathways. Even in this worst-case scenario, DU radiological risk would be far overshadowed by its chemical toxicity.

Marco Durante; Mariagabriella Pugliese

2003-01-01T23:59:59.000Z

335

COMMENTARY/COMMENTAIRE The radiological consequences of the Chernobyl  

E-Print Network (OSTI)

COMMENTARY/COMMENTAIRE The radiological consequences of the Chernobyl accident The First­22 March 1996 Eric Voice Abstract: The human health consequences of the Chernobyl accident in 1986 have are discussed with particular focus on thyroid cancers and exposures to iodine-131. Key words: Chernobyl

Shlyakhter, Ilya

336

BACHELOR OF SCIENCE IN RADIOLOGICAL SCIENCE (Suggested 4 Year Plan)  

E-Print Network (OSTI)

Procedures II Clinical Experience Medical Terminology Radiation Protection II Elementary Radiation ProtectionBACHELOR OF SCIENCE IN RADIOLOGICAL SCIENCE (Suggested 4 Year Plan) Please note that this is a potential plan for completing your degree within four years. The order of classes does not necessarily need

Benos, Panayiotis "Takis"

337

24.01.01.M5 Radiological Safety Page 1 of 3 UNIVERSITY RULE  

E-Print Network (OSTI)

Radiological Safety Page 3 of 3 1.5 Employees, visitors and students shall only work with radiation sources24.01.01.M5 Radiological Safety Page 1 of 3 UNIVERSITY RULE 24.01.01.M5 Radiological Safety 25, 2011 Next scheduled review: March 25, 2014 Rule Statement Environmental Health and Safety (EHS

338

Program Led by EM's Carlsbad Field Office Joins Emergency Response in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Led by EM's Carlsbad Field Office Joins Emergency Response Program Led by EM's Carlsbad Field Office Joins Emergency Response in National Exercise Program Led by EM's Carlsbad Field Office Joins Emergency Response in National Exercise October 30, 2013 - 12:00pm Addthis Hnin Khaing of WIPP Laboratories checks a radiological sample, similar to what would be analyzed in an event like the one simulated in the exercise to test national readiness to respond to a large radiological event. Hnin Khaing of WIPP Laboratories checks a radiological sample, similar to what would be analyzed in an event like the one simulated in the exercise to test national readiness to respond to a large radiological event. CARLSBAD, N.M. - For the first time, a program led by EM's Carlsbad Field Office (CBFO) that coordinates analytical capabilities throughout DOE

339

Program Led by EM's Carlsbad Field Office Joins Emergency Response in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Led by EM's Carlsbad Field Office Joins Emergency Response Program Led by EM's Carlsbad Field Office Joins Emergency Response in National Exercise Program Led by EM's Carlsbad Field Office Joins Emergency Response in National Exercise October 30, 2013 - 12:00pm Addthis Hnin Khaing of WIPP Laboratories checks a radiological sample, similar to what would be analyzed in an event like the one simulated in the exercise to test national readiness to respond to a large radiological event. Hnin Khaing of WIPP Laboratories checks a radiological sample, similar to what would be analyzed in an event like the one simulated in the exercise to test national readiness to respond to a large radiological event. CARLSBAD, N.M. - For the first time, a program led by EM's Carlsbad Field Office (CBFO) that coordinates analytical capabilities throughout DOE

340

Alternative Fuel Transportation Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

federal federal register Monday May 17, 1999 Part II Department of Energy Office of Energy Efficiency and Renewable Energy 10 CFR Part 490 Alternative Fuel Transportation Program; P-series Fuels; Final Rule 26822 Federal Register / Vol. 64, No. 94 / Monday, May 17, 1999 / Rules and Regulations DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy 10 CFR Part 490 [Docket No. EE-RM-98-PURE] RIN 1904-AA99 Alternative Fuel Transportation Program; P-Series Fuels AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy (DOE). ACTION: Notice of final rulemaking. SUMMARY: In response to a petition filed by Pure Energy Corporation, DOE is amending the rules for the statutory program that requires certain alternative fuel providers and State government

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268  

SciTech Connect

Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to allow for the safe exhumation of the Special Nuclear Material in existing SLDA trenches. (authors)

Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike [Cabrera Services (United States); Matthews, Brian [Nuclear Safety Associates (United States)

2012-07-01T23:59:59.000Z

342

NREL: Transportation Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

News NREL provides a number of transportation and hydrogen news sources. Transportation News Find news stories that highlight NREL's transportation research, development, and...

343

Radioactive Materials Transportation and Incident Response  

Energy.gov (U.S. Department of Energy (DOE))

This booklet was written to answer questions most frequently asked by fire fighters, law enforcement officers, and emergency medical services personnel. The booklet is not intended as a substitute...

344

Comparison of the scientific quality of spanish radiologists that publish in international radiology journals and in Spanish radiology journals  

Science Journals Connector (OSTI)

Objective To determine that the quality, measured by the Hirsch index, of Spanish authors who publish in international radiology journals with an impact factor (AJR, European Radiology, Investigative Radiology, Radiographics, and Radiology) is higher of those who publish only in Spanish journals or in both types of journals. Material and methods We analyzed a total of 6 radiology journals, including 5 international journals and one national (Radiologa). We selected Spanish authors of original articles published in 2008 and 2009 who were working at Spanish centers when their articles were written. We classified the authors into three categories: a) those who published only in international journals; b) those who published only in Radiologa, and c) those who published in Radiologa and in an international journal. We calculated the Hirsch index score for each author and analyzed the groups using the Kolmogorov-Smirnov goodness-of-fit test, the Kruskal-Wallis nonparametric test, and the median test to evaluate the differences. Results Of the 440 identified Spanish authors as having published in the two-year period, 248 (56 %) published only in Radiologa, 172 (39 %) only in international journals, and 20 (5 %) in both. The mean Hirsch index score for the group of authors who published only in Radiologa (1.152.35) was lower than for those who published only in international journals (2.593.39). Authors who published in both international journals and Radiologa had the highest score on the Hirsch index (4.13.89) (P<.001). Conclusions The Spanish authors with the highest prestige and quality publish both in international journals and in Radiologa.

L. Mart-Bonmat; A.I. Catal-Gregori; A. Miguel-Dasit

2011-01-01T23:59:59.000Z

345

Potential Radiological Doses Associated with the Disposal of Petroleum Industry Norm Via Landspreading  

NLE Websites -- All DOE Office Websites (Extended Search)

Eng-38-5 Eng-38-5 (DE98000550) POTENTIAL RADIOLOGICAL DOSES ASSOCIATED WITH THE DISPOSAL OF PETROLEUM INDUSTRY NORM VIA LANDSPREADING Final Report, September 1998 By Karen P. Smith Deborah L. Blunt John J. Arnish December 1998 Performed Under Argonne National Laboratory Contract No. W-31-109-Eng-38 Argonne National Laboratory Environmental Assessment Division Lakewood, Colorado National Petroleum Technology Office U. S. DEPARTMENT OF ENERGY Tulsa, Oklahoma DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

346

ORNL/TM-11118 RESULTS OF THE RADIOLOGICAL SURVEY AT METPATH INCORPORATED,  

Office of Legacy Management (LM)

TM-11118 TM-11118 RESULTS OF THE RADIOLOGICAL SURVEY AT METPATH INCORPORATED, 1 MALCOLM AVENUE, TETERBORO, NEW JERSEY (TJOO3) FL D. Foley L. M. Floyd, Printed in the United States of America. Available from National Technical Information Serwce U.S. Department of Commerce I 5265 Port Royal Road. Springfield, Virginia 22161 NTIS price codes-Printed Copy:A03 Microfiche A01 This report was prepared as an account of work sponsored by an 8ge"cy of the UnitedSlaterGovernmenl.NeithertheUnitedStatesGovernmen~no,anyagency thereof. nor any 01 their employees. makes any warranty. express 0, implied. 0, assumes any legal liabhty or responsibility lo, the accuracy. completeness. 0, UJB~U~WSJ of any information. apparatus. product. or process disClosed. or represents that its use would not infringe privately owned rights. Reference herein

347

Areas for US-India civilian nuclear cooperation to prevent/mitigate radiological events.  

SciTech Connect

Over the decades, India and the United States have had very little formal collaboration on nuclear issues. Partly this was because neither country needed collaboration to make progress in the nuclear field. But it was also due, in part, to the concerns both countries had about the other's intentions. Now that the U.S.-India Deal on nuclear collaboration has been signed and the Hyde Act passed in the United States, it is possible to recognize that both countries can benefit from such nuclear collaboration, especially if it starts with issues important to both countries that do not touch on strategic systems. Fortunately, there are many noncontroversial areas for collaboration. This study, funded by the U.S. State Department, has identified a number of areas in the prevention of and response to radiological incidents where such collaboration could take place.

Balachandran, Gopalan; Forden, Geoffrey Ethan

2013-01-01T23:59:59.000Z

348

DOE-HDBK-1141-2001; Radiological Assessor Training, Instructor's Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4-1 4-1 DEPARTMENT OF ENERGY LESSON PLAN Course Material Topic: Elements of a Radiological Control Program Objectives: Upon completion of this lesson, the participant will be able to: 1. Identify factors that influence the scope and magnitude of a Radiological Control Program at any nuclear facility. 2. Identify typical elements of a Radiological Control Program. Training Aids: Overhead Transparencies (OTs): OT 4.1 - OT 4.5 (may be supplemented or substituted with updated or site-specific information) Handouts - "List of Radiological Control Program Elements" "Elements of a Radiological Control Program" Equipment Needs: Overhead projector Screen Flip chart Markers Masking tape Student Materials: Student's Guide

349

South Carolina Radioactive Waste Transportation and Disposal Act (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Health and Environmental Control is responsible for regulating the transportation of radioactive waste, with some exceptions, into or within the state for storage, disposal, or...

350

A unified model of electroporation and molecular transport  

E-Print Network (OSTI)

Biological membranes form transient, conductive pores in response to elevated transmembrane voltage, a phenomenon termed electroporation. These pores facilitate electrical and molecular transport across cell membranes that ...

Smith, Kyle Christopher

2011-01-01T23:59:59.000Z

351

DOE - Office of Legacy Management -- Rulsion Tritium Transport...  

Office of Legacy Management (LM)

September 2007 pdficon Tritium Transport Model Comments and Responses Colorado Oil and Gas Conservation Commission Colorado Department of Public Health and Environment...

352

Transportation Security  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

For Review Only 1 Transportation Security Draft Annotated Bibliography Review July 2007 Preliminary Draft - For Review Only 2 Work Plan Task * TEC STG Work Plan, dated 8/2/06, Product #16, stated: "Develop an annotated bibliography of publicly-available documents related to security of radioactive material transportation." * Earlier this year, a preliminary draft annotated bibliography on this topic was developed by T-REX , UNM, to initially address this STG Work Plan Task. Preliminary Draft - For Review Only 3 Considerations in Determining Release of Information * Some "Publicly-available" documents could potentially contain inappropriate information according to standards set by DOE information security policy and DOE Guides. - Such documents would not be freely

353

Transportation Issues  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Issues and Resolutions - Compilation of Laboratory Transportation Work Package Reports Prepared for U.S. Department of Energy Used Fuel Disposition Campaign Compiled by Paul McConnell Sandia National Laboratories September 30, 2012 FCRD-UFD-2012-000342 Transportation Issues and Resolutions ii September 2012 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any

354

ADVANTAGES OF INVESTIGATING CHEMICAL AND RADIOLOGICAL CONSTITUENTS SIMULTANEOUSLY IN SOIL AND GROUNDWATER  

SciTech Connect

At some sites both chemical and radiological investigation of soil and groundwater is required for overall site characterization. While the planning and execution of investigation activities is usually completed to fulfill regulatory (i.e., United States Environmental Protection Agency or United States Nuclear Regulatory Commission) requirements, coordination of chemical and radiological investigation programs may provide an opportunity for reducing the duration of investigation activities and reducing overall project costs. There are several similarities in the chemical and radiological investigation processes that one can take advantage of in program design and execution to efficiently plan and execute chemical and radiological investigations simultaneously. At sites where both chemical and radiological constituents are being investigated in soil and groundwater, various steps can be taken during the investigation processes to combine chemical and radiological investigation and characterization activities. With proper planning, investigating chemical and radiological constituents simultaneously in soil and groundwater can reduce the project schedule and provide cost savings for overall characterization of the site.

Downey, H.; Shephard, E.; Walter, N.

2003-02-27T23:59:59.000Z

355

Technical basis for setting Hanford Fire Department electronic dosimetry for emergency response (TBD-HSO-RC-009)  

SciTech Connect

This document addresses the need to establish a reasonable methodology for establishing alarm points for electronic dosimetry used by the Hanford Fire Department (HFD) for emergency response in radiological facilities.

EVANS, C.L.

2003-04-01T23:59:59.000Z

356

Departmental Materials Transportation and Packaging Management  

Directives, Delegations, and Requirements

The Order establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration (NNSA), materials transportation and packaging to ensure the safe, secure, efficient packaging and transportation of materials, both hazardous and nonhazardous. Cancels DOE O 460.2 and DOE O 460.2 Chg 1

2004-12-22T23:59:59.000Z

357

Clean Slate transportation and human health risk assessment  

SciTech Connect

Public concern regarding activities involving radioactive material generally focuses on the human health risk associated with exposure to ionizing radiation. This report describes the results of a risk analysis conducted to evaluate risk for excavation, handling, and transport of soil contaminated with transuranics at the Clean Slate sites. Transportation risks were estimated for public transport routes from the Tonopah Test Range (TTR) to the Envirocore disposal facility or to the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for both radiological risk and risk due to traffic accidents. Human health risks were evaluated for occupational and radiation-related health effects to workers. This report was generated to respond to this public concern, to provide an evaluation of the risk, and to assess feasibility of transport of the contaminated soil for disposal.

NONE

1997-02-01T23:59:59.000Z

358

Policy Research TRANSPORTATION  

E-Print Network (OSTI)

Policy Research TRANSPORTATION CENTER Thestate's transportation system is central to its ability movement of goods to maintain and enhance global economic competitiveness. An effective transportation, TTI has identified the following set of initial transportation issues which must be better understood

359

RADIOLOGICAL EVALUATION OF DECONTAMINATION DEBRIS LOCATED AT THE  

Office of Legacy Management (LM)

h h ' . * ' 1. MI). q-8 RADIOLOGICAL EVALUATION OF DECONTAMINATION DEBRIS LOCATED AT THE FUTURA CHEMICAL COMPANY FACILITY 9200 LATTY AVENUE HAZELWOOD, MISSOURI L.W. Cole J.D. Berger W.O. Helton B.M. Putnam T.J. Sowell C.F. Weaver R.D. Condra September 9, 1981 Work performed by Radiological Site Assessment Program Manpower Education, Research, and Training Division Oak Ridge Associated Universities Oak Ridge, Tennessee 37830 Under Interagency Agreement DOE No. 40-770-80 NRC Fin. No. A-9093-0 Between the U.S. Nuclear Regulatory Commission and the Department of Energy I_--___- ". TABLE OF CONTENTS Page List of Figures. . . . . . . . . . . . . . . . . . . . . . ii List of Tables . . . . . . . . . . . . . . . . . . . . . . iii Introduction . . . . . . . . . . . . . . . . . . . . . . . 1.

360

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Monitoring Environmental Monitoring Instructor's Guide 2.09-1 Course Title: Radiological Control Technician Module Title: Environmental Monitoring Module Number: 2.09 Objectives: 2.09.01 State the goals of an environmental monitoring program. 2.09.02 State the exposure limits to the general public as they apply to environmental monitoring. 2.09.03 Define the term "critical nuclide." 2.09.04 Define the term "critical pathway." L 2.09.05 State locations frequently surveyed for radiological contamination at outdoor waste sites associated with your site and the reasons for each. 2.09.06 Define the term "suspect waste site," and how they can be identified. L 2.09.07 Describe the methods used for environmental monitoring at your site. References: 1. Gollnick, Daniel, Basic Radiation Protection Technology, 2nd Edition, Pacific

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contamination Control Contamination Control Instructor's Guide 2.05-1 Course Title: Radiological Control Technician Module Title: Contamination Control Module Number: 2.05 Objectives: 2.05.01 Define the terms "removable and fixed surface contamination," state the difference between them and list common methods used to measure each. 2.05.02 State the components of a radiological monitoring program for contamination control and common methods used to accomplish them. 2.05.03 State the basic goal of a contamination control program and list actions that contribute to its success. 2.05.04 State the basic principles of contamination control and list examples of implementation methods. 2.05.05 List and describe the possible engineering control methods used for contamination control. 2.05.06

362

CRAD, Radiological Controls - Oak Ridge National Laboratory TRU ALPHA LLWT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRU TRU ALPHA LLWT Project CRAD, Radiological Controls - Oak Ridge National Laboratory TRU ALPHA LLWT Project November 2003 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Radiation Protection Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Radiological Controls - Oak Ridge National Laboratory TRU ALPHA LLWT Project More Documents & Publications CRAD, Quality Assurance - Oak Ridge National Laboratory TRU ALPHA LLWT

363

DOE-HDBK-1141-2001; Radiological Assessor Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41-2001 41-2001 April 2001 DOE HANDBOOK Radiological Assessor Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Assessor Training DOE-HDBK-1141-2001 iii Foreword This Handbook describes an implementation process for training as recommended in

364

I RADIOLOGICAL SCOPING SURVEY OF FO,RMER MONSANTO' FACILITIES  

Office of Legacy Management (LM)

-I a.d *4dk *-f--l- -I a.d *4dk *-f--l- --- I. ,e-- - .- --_ -- -. ;,. -* " . I . RADIOLOGICAL SCOPING SURVEY OF FO,RMER MONSANTO' FACILITIES (Unit XII and W a rehouse) DAYTON, OHIO Report Date: 4 September 1997 Survey Dak 27 Aitgust 1991 Prepared by: Mark L. Mays, Chief Radiation Safety Branch Sponsored by: M iamisburg Environmental Matigement Reject Office Ohio FTekl Ofice U.S.. Department of Energy Conducted by: %diation Safety Branch Of&e of Environmental Management ggtb Air Base W ing U.S. Departmtnt of the Air Force In Cooperation W ith: Southwest District Office Ohio Environmental Protection Agency - O h io Cnvironmwhl Protection Agenty Bureau of Radiological Health Ohio Department of Health. I Lb ^U .L*-u i-.-r- --- , .., II ,.--(_ ~_ -_- --- -_ _.. ;

365

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unit Analysis & Conversion Unit Analysis & Conversion Instructor's Guide 1.02-1 Course Title: Radiological Control Technician Module Title: Unit Analysis & Conversion Module Number: 1.02 Objectives: 1.02.01 Identify the commonly used unit systems of measurement and the base units for mass, length, and time in each system. 1.02.02 Identify the values and abbreviations for SI prefixes. 1.02.03 Given a measurement and the appropriate conversion factor(s) or conversion factor table, convert the measurement to the specified units. 1.02.04 Using the formula provided, convert a given temperature measurement to specified units. References: 1. "Health Physics and Radiological Health Handbook"; Scinta, Inc; 1989. 2. DOE-HDBK-1010-92 (June 1992) "Classical Physics" DOE Fundamental Handbook; US

366

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contamination Control Contamination Control Study Guide 2.05-1 Course Title: Radiological Control Technician Module Title: Contamination Control Module Number: 2.05 Objectives: 2.05.01 Define the terms "removable and fixed surface contamination," state the difference between them and list common methods used to measure each. 2.05.02 State the components of a radiological monitoring program for contamination control and common methods used to accomplish them. 2.05.03 State the basic goal of a contamination control program and list actions that contribute to its success. 2.05.04 State the basic principles of contamination control and list examples of implementation methods. 2.05.05 List and describe the possible engineering control methods used for contamination control. 2.05.06

367

CRAD, Radiological Controls - Oak Ridge National Laboratory High Flux  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High High Flux Isotope Reactor CRAD, Radiological Controls - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Radiation Protection Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Radiological Controls - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor

368

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Guide Study Guide 2.14-1 Course Title: Radiological Control Technician Module Title: Personnel Decontamination Module Number: 2.14 Objectives: 2.14.01 List the three factors which determine the actions taken in decontamination of personnel. i 2.14.02 List the preliminary actions and notifications required by the RCT for an individual suspected to be contaminated. i 2.14.03 List the actions to be taken by the RCT when contamination of clothing is confirmed. i 2.14.04 List the actions to be taken by the RCT when skin contamination is confirmed. i 2.14.05 List the steps for using decontamination reagents to decontaminate personnel. INTRODUCTION In our work environment, one of the major concerns of radiological control is the prevention of personnel contamination. When personnel contamination has been

369

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unit Analysis & Conversion Unit Analysis & Conversion Study Guide 1.02-1 Course Title: Radiological Control Technician Module Title: Unit Analysis & Conversion Module Number: 1.02 Objectives: 1.02.01 Identify the commonly used unit systems of measurement and the base units for mass, length, and time in each system. 1.02.02 Identify the values and abbreviations for SI prefixes. 1.02.03 Given a measurement and the appropriate conversion factor(s) or conversion factor table, convert the measurement to the specified units. 1.02.04 Using the formula provided, convert a given temperature measurement to specified units. INTRODUCTION A working knowledge of the unit analysis and conversion process is necessary for the Radiological Control Technician. It is useful for air and water sample activity

370

Release criteria and pathway analysis for radiological remediation  

SciTech Connect

Site-specific activity concentrations were derived for soils contaminated with mixed fission products (MFP), or uranium-processing residues, using the Department of Energy (DOE) pathway analysis computer code RESRAD at four different sites. The concentrations and other radiological parameters, such as limits on background-subtracted gamma exposure rate were used as the basis to arrive at release criteria for two of the sites. Valid statistical parameters, calculated for the distribution of radiological data obtained from site surveys, were then compared with the criteria to determine releasability or need for further decontamination. For the other two sites, RESRAD has been used as a preremediation planning tool to derive residual material guidelines for uranium. 11 refs., 4 figs., 3 tabs.

Subbaraman, G.; Tuttle, R.J.; Oliver, B.M. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.); Devgun, J.S. (Argonne National Lab., IL (United States))

1991-01-01T23:59:59.000Z

371

Hanford radiological protection support services annual report for 1988  

SciTech Connect

The report documents the performance of certain radiological protection sitewide services during calendar year (CY) 1988 by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy-Richland Operations Office (DOE-RL) and contractor activities on the Hanford Site. The routine program for each service is discussed along with any significant program changes and tasks, investigations, and studies performed in support of each program. Other related activities such as publications, presentations, and memberships on standard or industry committees are also listed. The programs covered provide services in the areas of (1) internal dosimetry, (2) in vivo measurements, (3) external dosimetry, (4) instrument calibration and evaluation, (5) calibration of radiation sources traceable to the National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards), and (6) radiological records. 23 refs., 15 figs., 15 tabs.

Lyon, M.; Fix, J.J.; Kenoyer, J.L.; Leonowich, J.A.; Palmer, H.E.; Sula, M.J.

1989-06-01T23:59:59.000Z

372

Analysis of meteorological and radiological data for selected fallout episodes  

SciTech Connect

The Weather Service Nuclear Support Office has analyzed the meteorological and radiological data collected for the following atmospheric nuclear tests: TRINITY; EASY of the Tumbler-Snapper series; ANNIE, NANCY, BADGER, SIMON, and HARRY of the Upshot-Knothole series; BEE and ZUCCHINI of the Teapot series; BOLTZMANN and SMOKY of the Plumbbob series; and SMALL BOY of the Dominic II series. These tests were chosen as having the greatest impact on nearby downwind populated locations, contributing approximately 80% of the collective estimated exposure. This report describes the methods of analysis used in deriving fallout-pattern contours and estimated fallout arrival times. Inconsistencies in the radiological data and their resolution are discussed. The methods of estimating fallout arrival times from the meteorological data are described. Comparisons of fallout patterns resulting from these analyses with earlier analyses show insignificant differences in the areas covered or people exposed.

Quinn, V.E. (Weather Service Nuclear Support Office, Las Vegas, NV (USA))

1990-11-01T23:59:59.000Z

373

Surface Contamination Guidelines/Radiological Clearance of Property  

Energy.gov (U.S. Department of Energy (DOE))

Table IV-1, DOE O 5400.5, DOE Draft 441.XX, Authorized Limits govern the control and clearance of personal and real property. They are radionuclide concentrations or activity levels approved by DOEto permit the clearance of property under DOE radiological control for either restricted or unrestricted use, consistent with DOEs radiation protection framework and standards for workers, the general public, and the environment.

374

DRAFT - Design of Radiological Survey and Sampling to Support Title Transfer or Lease of Property on the Department of Energy Oak Ridge Reservation  

SciTech Connect

The U.S. Department of Energy (DOE) owns, operates, and manages the buildings and land areas on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. As land and buildings are declared excess or underutilized, it is the intent of DOE to either transfer the title of or lease suitable property to the Community Reuse Organization of East Tennessee (CROET) or other entities for public use. It is DOE's responsibility, in coordination with the U.S. Environmental Protection Agency (EPA), Region 4, and the Tennessee Department of Environment and Conservation (TDEC), to ensure that the land, facilities, and personal property that are to have the title transferred or are to be leased are suitable for public use. Release of personal property must also meet site requirements and be approved by the DOE contractor responsible for site radiological control. The terms title transfer and lease in this document have unique meanings. Title transfer will result in release of ownership without any restriction or further control by DOE. Under lease conditions, the government retains ownership of the property along with the responsibility to oversee property utilization. This includes involvement in the lessee's health, safety, and radiological control plans and conduct of site inspections. It may also entail lease restrictions, such as limiting access to certain areas or prohibiting digging, drilling, or disturbing material under surface coatings. Survey and sampling requirements are generally more rigorous for title transfer than for lease. Because of the accelerated clean up process, there is an increasing emphasis on title transfers of facilities and land. The purpose of this document is to describe the radiological survey and sampling protocols that are being used for assessing the radiological conditions and characteristics of building and land areas on the Oak Ridge Reservation that contain space potentially available for title transfer or lease. After necessary surveys and sampling and laboratory analyses are completed, the data are analyzed and included in an Environmental Baseline Summary (EBS) report for title transfer or in a Baseline Environmental Analysis Report (BEAR) for lease. The data from the BEAR is then used in a Screening-Level Human Health Risk Assessment (SHHRA) or a risk calculation (RC) to assess the potential risks to future owners/occupants. If title is to be transferred, release criteria in the form of specific activity concentrations called Derived Concentration Guideline Levels (DCGLs) will be developed for the each property. The DCGLs are based on the risk model and are used with the data in the EBS to determine, with statistical confidence, that the release criteria for the property have been met. The goal of the survey and sampling efforts is to (1) document the baseline conditions of the property (real or personal) prior to title transfer or lease, (2) obtain enough information that an evaluation of radiological risks can be made, and (3) collect sufftcient data so that areas that contain minimal residual levels of radioactivity can be identified and, following radiological control procedures, be released from radiological control. (It should be noted that release from radiological control does not necessarily mean free release because DOE may maintain institutional control of the site after it is released from radiological control). To meet the goals of this document, a Data Quality Objective (DQO) process will be used to enhance data collection efficiency and assist with decision-making. The steps of the DQO process involve stating the problem, identifying the decision, identifying inputs to the decision, developing study boundaries, developing the decision rule, and optimizing the design. This document describes the DQOs chosen for surveys and sampling efforts performed for the purposes listed above. The previous version to this document focused on the requirements for radiological survey and sampling protocols that are be used for leasing. Because the primary focus at this time is on title transfer, th

Cusick L.T.

2002-09-25T23:59:59.000Z

375

Surety applications in transportation  

SciTech Connect

Infrastructure surety can make a valuable contribution to the transportation engineering industry. The lessons learned at Sandia National Laboratories in developing surety principles and technologies for the nuclear weapons complex and the nuclear power industry hold direct applications to the safety, security, and reliability of the critical infrastructure. This presentation introduces the concepts of infrastructure surety, including identification of the normal, abnormal, and malevolent threats to the transportation infrastructure. National problems are identified and examples of failures and successes in response to environmental loads and other structural and systemic vulnerabilities are presented. The infrastructure surety principles developed at Sandia National Laboratories are described. Currently available technologies including (a) three-dimensional computer-assisted drawing packages interactively combined with virtual reality systems, (b) the complex calculational and computational modeling and code-coupling capabilities associated with the new generation of supercomputers, and (c) risk-management methodologies with application to solving the national problems associated with threats to the critical transportation infrastructure are discussed.

Matalucci, R.V.; Miyoshi, D.S.

1998-01-01T23:59:59.000Z

376

Improvement of Photon Buildup Factors for Radiological Assessment  

SciTech Connect

Slant-path buildup factors for photons between 1 keV and 10 MeV for nine radiation shielding materials (air, aluminum, concrete, iron, lead, leaded glass, polyethylene, stainless steel, and water) are calculated with the most recent cross-section data available using Monte Carlo and discrete ordinates methods. Discrete ordinates calculations use a 244-group energy structure that is based on previous research at Los Alamos National Laboratory (LANL), but extended with the results of this thesis, and its focused studies on low-energy photon transport and the effects of group widths in multigroup calculations. Buildup factor calculations in discrete ordinates benefit from coupled photon/electron cross sections to account for secondary photon effects. Also, ambient dose equivalent (herein referred to as dose) buildup factors were analyzed at lower energies where corresponding response functions do not exist in literature. The results of these studies are directly applicable to radiation safety at LANL, where the dose modeling tool Pandemonium is used to estimate worker dose in plutonium handling facilities. Buildup factors determined in this thesis will be used to enhance the code's modeling capabilities, but should be of interest to the radiation shielding community.

F.G. Schirmers

2006-07-01T23:59:59.000Z

377

Intelligent Transportation Systems - Center for Transportation Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Intelligent Transportation Systems Intelligent Transportation Systems The Center for Transportation Analysis does specialty research and development in intelligent transportation systems. Intelligent Transportation Systems (ITS) are part of the national strategy for improving the operational safety, efficiency, and security of our nation's highways. Since the early 1990s, ITS has been the umbrella under which significant efforts have been conducted in research, development, testing, deployment and integration of advanced technologies to improve the measures of effectiveness of our national highway network. These measures include level of congestion, the number of accidents and fatalities, delay, throughput, access to transportation, and fuel efficiency. A transportation future that includes ITS will involve a significant improvement in these

378

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Emergency Response Effects of Radiation History Gallery Glossary of Nuclear Terms [Majority from NRC] Contacts Comments & Questions Agencies U. S. Department of Transportation (DOT), U. S. Nuclear Regulatory Commission (NRC) Postal Services (USPS) U. S. Department of Energy (DOE), National Conference of State Legislatures - Environment, Energy and Transportation Program, Hazardous and Radioactive Materials International Atomic Energy Agency (IAEA) U. S. Environmental Protection Agency (EPA) Regulations Code of Federal Regulations: Title 10 - Energy Code of Federal Regulations: Title 10, PART 71 - Packaging and Transportation of Radioactive Material Code of Federal Regulations: Title 49 - Transportation Code of Federal Regulations: Title 49, PART 173 - Shippers - General

379

Transportation of radionuclides in urban environs: draft environmental assessment  

SciTech Connect

This report assesses the environmental consequences of the transportation of radioactive materials in densely populated urban areas, including estimates of the radiological, nonradiological, and social impacts arising from this process. The chapters of the report and the appendices which follow detail the methodology and results for each of four causative event categories: incident free transport, vehicular accidents, human errors or deviations from accepted quality assurance practices, and sabotage or malevolent acts. The numerical results are expressed in terms of the expected radiological and economic impacts from each. Following these discussions, alternatives to the current transport practice are considered. Then, the detailed analysis is extended from a limited area of New York city to other urban areas. The appendices contain the data bases and specific models used to evaluate these impacts, as well as discussions of chemical toxicity and the social impacts of radioactive material transport in urban areas. The latter are evaluated for each causative event category in terms of psychological, sociological, political, legal, and organizational impacts. The report is followed by an extensive bibliography covering the many fields of study which were required in performing the analysis.

Finley, N.C.; Aldrich, D.C.; Daniel, S.L.; Ericson, D.M.; Henning-Sachs, C.; Kaestner, P.C.; Ortiz, N.R.; Sheldon, D.D.; Taylor, J.M.

1980-07-01T23:59:59.000Z

380

Preliminary results of the radiological survey at the former Dow Chemical Company site, Madison, Illinois  

SciTech Connect

During the late 1950s and early 1960s, the former Dow Chemical Company plant, now owned and operated by Spectrulite Consortium Inc., supplied materials and provided services for the Atomic Energy Commission (AEC) under purchase orders issued by the Mallinckrodt Chemical Company, a primary AEC contractor. Information indicates that research and development work involving gamma-phase extrusion of uranium metal was conducted at the Dow Chemical plant. Because documentation establishing the current radiological condition of the property was unavailable, a radiological survey was conducted by members of the Measurement Applications and Development Group of the Oak Ridge National Laboratory in March 1989. The survey included: measurement of indoor gamma exposure rates; collection and radionuclide analysis of dust and debris samples; and measurements to determine alpha and beta-gamma surface contamination. The results of the survey demonstrate that Building 6, the area uranium extrusion and rod-straightening work occurred, is generally free of radioactive residuals originating from former DOE-sponsored activities. However, {sup 238}U- and {sup 232}Th-contaminated dust was found on overhead beams at the south end of Building 6. These findings suggest that past DOE-supported operations were responsible for uranium-contaminated beam dust in excess of guidelines in Building 6. However, the contamination is localized and limited in extent, rendering it highly unlikely that under present use an individual working in or frequenting these remote areas would receive a significant radiation exposure. We recommend that additional scoping survey measurements and sampling be performed to further define the extent of indoor uranium contamination southward to include Building 4 and northward throughout Building 6. 5 refs., 11 figs., 4 tabs.

Cottrell, W.D.; Williams, J.K.

1990-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Order Module--DOE STD-1098-2008, DOE STANDARD: RADIOLOGICAL CONTROL |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STD-1098-2008, DOE STANDARD: RADIOLOGICAL CONTROL STD-1098-2008, DOE STANDARD: RADIOLOGICAL CONTROL Order Module--DOE STD-1098-2008, DOE STANDARD: RADIOLOGICAL CONTROL "The radiological control program discussed in DOE-STD-1098-2008 goes beyond the scope of, and includes more details than, the documented radiation protection program (RPP) required by 10 CFR 835, -Occupational Radiation Protection.‖ To ensure implementation of a comprehensive and coherent radiological control program that exceeds basic requirements and provides a substantial safety margin, DOE encourages its contractors to implement the provisions of DOE-STD-1098- 2008 to the extent appropriate to facility hazards and operations, consistent with DOE's integrated safety management program. Should any conflicts arise between the site-specific radiological control manual and the documented RPP, the

382

Idaho's Radiological and Environmental Sciences Laboratory , OAS-L-12-02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho's Radiological and Idaho's Radiological and Environmental Sciences Laboratory OAS-L-12-02 February 2012 Department of Energy Washington, DC 20585 February 21, 2012 MEMORANDUM FOR THE MANAGER, IDAHO OPERATIONS OFFICE FROM: Daniel M. Weeber, Director Eastern Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Idaho's Radiological and Environmental Sciences Laboratory" BACKGROUND The Department of Energy owns and operates the Radiological and Environmental Sciences Laboratory (RESL) through the Idaho Operations Office (Idaho). RESL is a reference measurements laboratory specializing in analytical chemistry, radiation measurements and calibrations, and quality assurance. RESL had been located at the Idaho National Laboratory

383

E-Print Network 3.0 - annual radiological environmental Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures 24.01.01.A1.05 RADIOLOGICAL SAFETY Approved: December 6, 1999 Revised: October 5, ... Source: Texas A&M University, Spatial Sciences Laboratory Collection:...

384

Development of an ambient lighting monitoring system for radiological image viewing application  

Science Journals Connector (OSTI)

Ambient lighting plays a very important role in radiological image viewing environment. Excessive room ambient lighting (or illuminance) degrades image contrast, introducing veiling glare, diffuse reflectivity...

Ahmad Azlan Che; K. H. Ng; N. F. Mohd. Nasir

2007-01-01T23:59:59.000Z

385

Extension of DOE N 441.1, Radiological Protection for DOE Activities  

Directives, Delegations, and Requirements

This Notice extends DOE N 441.1, Radiological Protection for DOE Activities, dated 9-30-95 until 6-30-00.

1998-11-20T23:59:59.000Z

386

NNSA Continues to Assist Vietnam in Enhancing its Nuclear/Radiological...  

National Nuclear Security Administration (NNSA)

to Assist Vietnam in Enhancing its NuclearRadiological Emergency Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

387

RESRAD Family of Codes - A Suite of Tools for Environmental Radiologic...  

Office of Environmental Management (EM)

Laboratory, Argonne, IL Presented at Environmental Radiological Assistance Directory Web Conference June 27, 2012 Presentation Outline RESRAD Family of Codes Overview ...

388

E-Print Network 3.0 - assess radiological risk Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Medicine 7 TRAINING & QUALIFICATIONS PROGRAM OFFICE Summary: and the policies and procedures in place to minimize their risk. Radiological Worker 1 Training is...

389

E-Print Network 3.0 - assisted radiology proceedings Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

staffing is maintained in CT, MR, Vascular... and outpatient populations are served from pediatric to adult. Within their role, the Radiology nurses Source: Duke University,...

390

E-Print Network 3.0 - aerial radiological monitoring Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

staffing is maintained in CT, MR, Vascular... and outpatient populations are served from pediatric to adult. Within their role, the Radiology nurses Source: Duke University,...

391

Analysis of Operation TEAPOT nuclear test BEE radiological and meteorological data  

SciTech Connect

This report describes the Weather Service Nuclear Support Office (WSNSO) analyses of the radiological and meteorological data collected for the BEE nuclear test of Operation TEAPOT. Inconsistencies in the radiological data and their resolution are discussed. The methods of normalizing the radiological data to a standard time and estimating fallout-arrival times are presented. The meteorological situations on event day and the following day are described. A comparison of the WSNSO fallout analysis with an analysis performed in the 1950's is presented. The radiological data used to derive the WSNSO fallout pattern are tabulated in an appendix.

Quinn, V.E.

1986-08-01T23:59:59.000Z

392

Analysis of operation TEAPOT nuclear test ZUCCHINI radiological and meterological data  

SciTech Connect

This report describes the Weather Service Nuclear Support Office (WSNSO) analyses of the radiological and meteorological data collected for the ZUCCHINI nuclear test of Operation TEAPOT. Inconsistencies in the radiological data and their resolution are discussed. The methods of normalizing the radiological data to a standard time and estimating fallout-arrival times are presented. The meteorological situations on event day and the following day are described. A comparison of the WSNSO fallout analysis with an analysis performed in the 1950's is presented. The radiological data used to derive the WSNSO 1986 fallout pattern are tabulated in an appendix.

Quinn, V.E.

1987-03-01T23:59:59.000Z

393

Analysis of the Variability of Classified and Unclassified Radiological Source term Inventories in the Rainier Mesa/Shoshone Mountain Area, Nevada Test Site  

SciTech Connect

It has been proposed that unclassified source terms used in RM/SM reactive transport modeling investigations should be based on yield-weighted source terms calculated using the RM/SM average source term from Bowen et al. (2001) and the unclassified announced yields reported in DOE/NV-209. This unclassified inventory is likely to be used in unclassified contaminant boundary calculations and is, thus, relevant to compare to the classified inventory. They have examined the classified radionuclide inventory produced by 73 underground nuclear tests conducted in the Rainier Mesa/Shoshone Mountain (RM/SM) area of the Nevada Test Site. The goals were to (1) evaluate the variability in classified radiological source terms among the 73 tests and (2) and compare that variability and inventory uncertainties to an average unclassified inventory (e.g. Bowen 2001). To evaluate source term variability among the 73 tests, radiological inventories were compared on two relative scales: geometric mean and yield-weighted geometric mean. Furthermore, radiological inventories were either decay corrected to a common date (9/23/1992) or the time zero (t{sub 0}) of each test. Thus, a total of four data sets were produced. The date of 9/23/1992 was chosen based on the date of the last underground nuclear test at the Nevada Test Site.

Zhao, P; Zavarin, M

2008-06-04T23:59:59.000Z

394

Radiological and Depleted Uranium Weapons: Environmental and Health Consequences  

Science Journals Connector (OSTI)

The effects of nuclear weapons are due to the release of blast and thermal energy and the immediate and residual ionizing radiation energy. Most of the short-term damages to the environment and the human health are caused by the blast and thermal energies. Ionizing radiation energy received in large doses at high dose rates (victims of nuclear explosions) can produce acute radiation sickness and can even be lethal. Individuals having received lower radiation doses, or even high doses at low dose rates, may suffer from stochastic effects, primarily, the induction of cancer. Studies of exposed populations suggest the probability of developing a lethal cancer following low dose rate exposure is increased by approximately 5% for each Sv the whole-body receives. This risk is added, of course, to the risk of dying from cancer without exposure to radiation, which is more than 20% worldwide. For radiological weapons (radiological dispersion devices or dirty bombs), the health effects due to radiation are expected to be minor in most cases. Casualties will mainly occur due to the conventional explosive. Fear, panic, and decontamination costs will be the major effects. Significant radiation damage to individuals would likely be limited to very few persons. Depleted uranium (DU) weapons leave in the battlefield fragmented or intact DU penetrators as well as DU dust. The latter, if inhaled, could represent a radiological risk, especially to individuals spending some time in vehicles hit by DU munitions. All studies conducted so far have shown the outdoors doses to be so low not to represent a significant risk. For those spending 10h per year in vehicles hit by DU munitions, the risk of developing a lethal cancer is slightly higher (?0.2%).

P.R. Danesi

2011-01-01T23:59:59.000Z

395

Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range  

SciTech Connect

Purpose: Photon dosimetry in the kilovolt (kV) energy range represents a major challenge for diagnostic and interventional radiology and superficial therapy. Plastic scintillation detectors (PSDs) are potentially good candidates for this task. This study proposes a simple way to obtain accurate correction factors to compensate for the response of PSDs to photon energies between 80 and 150 kVp. The performance of PSDs is also investigated to determine their potential usefulness in the diagnostic energy range. Methods: A 1-mm-diameter, 10-mm-long PSD was irradiated by a Therapax SXT 150 unit using five different beam qualities made of tube potentials ranging from 80 to 150 kVp and filtration thickness ranging from 0.8 to 0.2 mmAl + 1.0 mmCu. The light emitted by the detector was collected using an 8-m-long optical fiber and a polychromatic photodiode, which converted the scintillation photons to an electrical current. The PSD response was compared with the reference free air dose rate measured with a calibrated Farmer NE2571 ionization chamber. PSD measurements were corrected using spectra-weighted corrections, accounting for mass energy-absorption coefficient differences between the sensitive volumes of the ionization chamber and the PSD, as suggested by large cavity theory (LCT). Beam spectra were obtained from x-ray simulation software and validated experimentally using a CdTe spectrometer. Correction factors were also obtained using Monte Carlo (MC) simulations. Percent depth dose (PDD) measurements were compensated for beam hardening using the LCT correction method. These PDD measurements were compared with uncorrected PSD data, PDD measurements obtained using Gafchromic films, Monte Carlo simulations, and previous data. Results: For each beam quality used, the authors observed an increase of the energy response with effective energy when no correction was applied to the PSD response. Using the LCT correction, the PSD response was almost energy independent, with a residual 2.1% coefficient of variation (COV) over the 80-150-kVp energy range. Monte Carlo corrections reduced the COV to 1.4% over this energy range. All PDD measurements were in good agreement with one another except for the uncorrected PSD data, in which an over-response was observed with depth (13% at 10 cm with a 100 kVp beam), showing that beam hardening had a non-negligible effect on the PSD response. A correction based on LCT compensated very well for this effect, reducing the over-response to 3%.Conclusion: In the diagnostic energy range, PSDs show high-energy dependence, which can be corrected using spectra-weighted mass energy-absorption coefficients, showing no considerable sign of quenching between these energies. Correction factors obtained by Monte Carlo simulations confirm that the approximations made by LCT corrections are valid. Thus, PSDs could be useful for real-time dosimetry in radiology applications.

Lessard, Francois; Archambault, Louis; Plamondon, Mathieu [Departement de physique, de genie physique et d'optique, Universite Laval, Quebec, Quebec G1K 7P4, Canada and Departement de radio-oncologie, Hotel-Dieu de Quebec, Centre hospitalier universitaire de Quebec, Quebec G1R 2J6 (Canada); Departement de physique, de genie physique et d'optique, Universite Laval, Quebec, Quebec G1K 7P4 (Canada); Departement de radio-oncologie, Hotel-Dieu de Quebec, Centre hospitalier universitaire de Quebec, Quebec G1R 2J6 (Canada) and Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Departement de physique, de genie physique et d'optique, Universite Laval, Quebec, Quebec G1K 7P4, Canada and Departement de radio-oncologie, Hotel-Dieu de Quebec, Centre hospitalier universitaire de Quebec, Quebec G1R 2J6 (Canada); and others

2012-09-15T23:59:59.000Z

396

DOE-STD-1098-99; Radiological Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-STD-1098-99 July 1999 Reaffirmation December 2004 DOE STANDARD RADIOLOGICAL CONTROL U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National

397

Compact cyclone filter train for radiological and hazardous environments  

DOE Patents (OSTI)

A compact cyclone filter train for the removal of hazardous and radiologi particles from a gaseous fluid medium which permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired.

Bench, Thomas R. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

398

Compact cyclone filter train for radiological and hazardous environments  

DOE Patents (OSTI)

A compact cyclone filter train is disclosed for the removal of hazardous and radiological particles from a gaseous fluid medium. This filter train permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired. 3 figs.

Bench, T.R.

1998-04-28T23:59:59.000Z

399

Understanding Contamination; Twenty Years of Simulating Radiological Contamination  

SciTech Connect

A wide variety of simulated contamination methods have been developed by researchers to reproducibly test radiological decontamination methods. Some twenty years ago a method of non-radioactive contamination simulation was proposed at the Idaho National Laboratory (INL) that mimicked the character of radioactive cesium and zirconium contamination on stainless steel. It involved baking the contamination into the surface of the stainless steel in order to 'fix' it into a tenacious, tightly bound oxide layer. This type of contamination was particularly applicable to nuclear processing facilities (and nuclear reactors) where oxide growth and exchange of radioactive materials within the oxide layer became the predominant model for material/contaminant interaction. Additional simulation methods and their empirically derived basis (from a nuclear fuel reprocessing facility) are discussed. In the last ten years the INL, working with the Defense Advanced Research Projects Agency (DARPA) and the National Homeland Security Research Center (NHSRC), has continued to develop contamination simulation methodologies. The most notable of these newer methodologies was developed to compare the efficacy of different decontamination technologies against radiological dispersal device (RDD, 'dirty bomb') type of contamination. There are many different scenarios for how RDD contamination may be spread, but the most commonly used one at the INL involves the dispersal of an aqueous solution containing radioactive Cs-137. This method was chosen during the DARPA projects and has continued through the NHSRC series of decontamination trials and also gives a tenacious 'fixed' contamination. Much has been learned about the interaction of cesium contamination with building materials, particularly concrete, throughout these tests. The effects of porosity, cation-exchange capacity of the material and the amount of dirt and debris on the surface are very important factors. The interaction of the contaminant/substrate with the particular decontamination technology is also very important. Results of decontamination testing from hundreds of contaminated coupons have lead to certain conclusions about the contamination and the type of decontamination methods being deployed. A recent addition to the DARPA initiated methodology simulates the deposition of nuclear fallout. This contamination differs from previous tests in that it has been developed and validated purely to simulate a 'loose' type of contamination. This may represent the first time that a radiologically contaminated 'fallout' stimulant has been developed to reproducibly test decontamination methods. While no contaminant/methodology may serve as a complete example of all aspects that could be seen in the field, the study of this family of simulation methods provides insight into the nature of radiological contamination.

Emily Snyder; John Drake; Ryan James

2012-02-01T23:59:59.000Z

400

Hanford radiological protection support services annual report for 1990  

SciTech Connect

Various Hanford site-wide radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy-Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1990. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological records keeping. For each of these activities, the routine program, program changes and enhancements, associated tasks, investigations and studies, and related publications, presentations, and other staff professional activities are discussed as applicable. 22 refs., 10 figs., 19 tabs.

Lyon, M; Bihl, D E; Fix, J J; Piper, R K; Freolich, T J; Leonowich, J A; Lynch, T P

1991-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hanford Radiological Protection Support Services annual report for 1993  

SciTech Connect

Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1993. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological record keeping. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

Lyon, M.; Bihl, D.E.; Fix, J.J.; Froelich, T.J.; Piper, R.K.; Olsen, P.C.

1994-07-01T23:59:59.000Z

402

Hanford Radiological Protection Support Services annual report for 1992  

SciTech Connect

Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Field Office and Hanford contractors are described in this annual report of calendar year 1992. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological record keeping. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

Lyon, M; Bihl, D E; Fix, J J; Piper, R K; Froelich, T J; Lynch, T P

1993-07-01T23:59:59.000Z

403

Hanford radiological protection support services annual report for 1997  

SciTech Connect

Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1997. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

Lyon, M.; Bihl, D.E.; Fix, J.J.; Johnson, M.L.; Lynch, T.P.; Piper, R.K.

1998-06-01T23:59:59.000Z

404

Hanford radiological protection support services. Annual report for 1995  

SciTech Connect

Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the U.S. Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1995. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

Lyon, M.; Bihl, D.E.; Carbaugh, E.H. [and others

1996-05-01T23:59:59.000Z

405

Hanford radiological protection support services annual report for 1996  

SciTech Connect

Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1996. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

Lyon, M.; Bihl, D.E.; Fix, J.J.; Froelich, T.J.; Piper, R.K.; Schulze, S.A.

1997-06-01T23:59:59.000Z

406

Hanford radiological protection support services annual report for 1994  

SciTech Connect

Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for the calendar year 1994. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program- related publications, presentations, and other staff professional activities are also described.

Lyon, M.; Bihl, D.E.; Fix, J.J.; Piper, R.K.; Froelich, T.J.; Olsen, P.C.

1995-06-01T23:59:59.000Z

407

Hanford radiological protection support services annual report for 1989  

SciTech Connect

Certain sitewide radiation protection services operated by Pacific Northwest Laboratory for the US Department of Energy-Richland Operations office and Hanford contractor are documented in this annual report on these services provided during calendar year 1989. These activities include internal dosimetry, in vivo measurements, external dosimetry, instrument calibration and evaluation, radiation source calibration, and radiological records keeping. In each case the routine program, program changes, associated tasks, investigations, and studies, as well as related publications, presentations, and other professional activities are discussed as applicable. 26 refs., 19 figs., 18 tabs.

Lyon, M.; Bihl, D.E.; Fix, J.J.; Kenoyer, J.L.; Leonowich, J.A.; Palmer, H.E.

1990-07-01T23:59:59.000Z

408

Transportation Security | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Security SHARE Global Threat Reduction Initiative Transportation Security Cooperation Secure Transport Operations (STOP) Box Security of radioactive material while...

409

Transportation Security | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Security Transportation Security Transportation Security More Documents & Publications Overview for Newcomers West Valley Demonstration Project Low-Level Waste...

410

Radiological review of conditions created during & after a fire on the Hanford Site in the BC Crib controlled area & areas of radiological concern  

SciTech Connect

The radiological implications of fighting a wildland fire in the BC Crib controlled area with the surrounding Soil Contamination Area (SCA) and for fighting a wildland fire in the genera1 600 Area are addressed in this document. The primary focus is on the BC Crib controlled area; however, the 600 Area radiological concerns are much lower and generally have the same constraints as the BC Crib controlled area. This analysis addresses only radiological hazards and does not address any physical hazards or industrial hygiene hazards.

EVANS, C.L.

2003-04-01T23:59:59.000Z

411

Strategic Freight Transportation Contract Procurement  

E-Print Network (OSTI)

Based Procurement for Transportation Services, Journal ofCoia, A. , Evolving transportation exchanges, World trade,an Auction Based Transportation Marketplace, Transportation

Nandiraju, Srinivas

2006-01-01T23:59:59.000Z

412

"Educating transportation professionals."  

E-Print Network (OSTI)

"Educating transportation professionals." Michael Demetsky Henry L. Kinnier Professor mjd of Virginia Charlottesville, VA 434.924.7464 Transportation Engineering & Management Research Our group works closely with the Virginia Center for Transportation Innovation and Research (VCTIR), located

Acton, Scott

413

Transportation Efficiency Resources  

Energy.gov (U.S. Department of Energy (DOE))

Transportation efficiency reduces travel demand as measured by vehicle miles traveled (VMT). While transportation efficiency policies are often implemented under local governments, national and...

414

Transportation and its Infrastructure  

E-Print Network (OSTI)

cost to mitigate transports GHG emissions. There are alsoenergy consumption and GHG mitigation, especially inParis, 2005. ECON, 2003: GHG Emissions from International

2007-01-01T23:59:59.000Z

415

Transportation and its Infrastructure  

E-Print Network (OSTI)

Transport and its infrastructure Chapter 5 Hybrid vehiclesincluding hybrid- Transport and its infrastructure Chapter 5infrastructure Gt CO 2 -eq 1 - Diesels (LDVs) 2 - Hybrids (

2007-01-01T23:59:59.000Z

416

Sustainability and Transport  

E-Print Network (OSTI)

2005. Integrating Sustainability into the Trans- portationTHOUGHT PIECE Sustainability and Transport by Richardof the concept of sustainability to transport planning. In

Gilbert, Richard

2006-01-01T23:59:59.000Z

417

The use of panoramic radiology in dental practice  

Science Journals Connector (OSTI)

Objectives: Approximately 1.5 million panoramic radiographs are taken annually in the general dental service in England and Wales. The aim of this review was to assess the clinical role of panoramic radiology in the diagnosis of diseases associated with the teeth and to consider its value in routine screening of patients. Method: This was carried out by critical review of the literature. Results: In addition to common problems with radiographic technique and processing, there are limitations in image quality inherent to panoramic radiology. These factors contribute to a reduced diagnostic accuracy for caries diagnosis, demonstration of periodontal bone support and periapical pathology when compared with intraoral radiography. Routine screening is unproductive for large proportions of dentate and edentulous populations, while in those cases where pathology is detected the diagnostic accuracy can be questioned. Furthermore, the detection of asymptomatic anomalies may have no effect on patient management. Attempts to develop and test panoramic radiographic selection criteria are reviewed. Conclusion: New, high-yield selection criteria for panoramic radiography are proposed as a means of reducing unnecessary examinations, limiting radiation doses and reducing financial costs to patients and health service providers. However, research is indicated to develop further and to test such selection criteria.

V.E. Rushton; K. Horner

1996-01-01T23:59:59.000Z

418

Doses to patients from dental radiology in France  

SciTech Connect

In France, a national study was undertaken to estimate both dental radiology practices (equipment and activity) and the associated population collective dose. This study was done in two steps: A nationwide survey was conducted on the practitioner categories involved in dental radiology, and dosimetric measurements were performed on patients and on an anthropomorphic phantom by using conventional dental x-ray machines and pantomographic units. A total of 27.5 x 10(6) films were estimated to have been performed in 1984; 6% of them were pantomographic and 94% were conventional. Most of the organ doses measured for one intra-oral film were lower than 1 mGy (100 mrad); pantomogram dose values were generally higher than intra-oral ones. The collective effective dose equivalent figure was 2,000 person-Sv (2 x 10(5) person rem) leading to a per head dose equivalent of 0.037 mSv (3.7 mrem). The study allowed authors to identify ways to reduce the patient dose in France (e.g., implementing the use of long cone devices and controlling darkroom practices).

Benedittini, M.; Maccia, C.; Lefaure, C.; Fagnani, F. (Centre d'etude sur l'Evaluation de la Protection dans le domaine Nucleaire, Fontenay aux Roses (France))

1989-06-01T23:59:59.000Z

419

NV/YMP radiological control manual, Revision 2  

SciTech Connect

The Nevada Test Site (NTS) and the adjacent Yucca Mountain Project (YMP) are located in Nye County, Nevada. The NTS has been the primary location for testing nuclear explosives in the continental US since 1951. Current activities include operating low-level radioactive and mixed waste disposal facilities for US defense-generated waste, assembly/disassembly of special experiments, surface cleanup and site characterization of contaminated land areas, and non-nuclear test operations such as controlled spills of hazardous materials at the hazardous Materials (HAZMAT) Spill Center (HSC). Currently, the major potential for occupational radiation exposure is associated with the burial of low-level nuclear waste and the handling of radioactive sources. Planned future remediation of contaminated land areas may also result in radiological exposures. The NV/YMP Radiological Control Manual, Revision 2, represents DOE-accepted guidelines and best practices for implementing Nevada Test Site and Yucca Mountain Project Radiation Protection Programs in accordance with the requirements of Title 10 Code of Federal Regulations Part 835, Occupational Radiation Protection. These programs provide protection for approximately 3,000 employees and visitors annually and include coverage for the on-site activities for both personnel and the environment. The personnel protection effort includes a DOE Laboratory Accreditation Program accredited dosimetry and personnel bioassay programs including in-vivo counting, routine workplace air sampling, personnel monitoring, and programmatic and job-specific As Low as Reasonably Achievable considerations.

Gile, A.L. [comp.] [comp.

1996-11-01T23:59:59.000Z

420

Northern Marshall Islands radiological survey: sampling and analysis summary  

SciTech Connect

A radiological survey was conducted in the Northern Marshall Islands to document reamining external gamma exposures from nuclear tests conducted at Enewetak and Bikini Atolls. An additional program was later included to obtain terrestrial and marine samples for radiological dose assessment for current or potential atoll inhabitants. This report is the first of a series summarizing the results from the terrestrial and marine surveys. The sample collection and processing procedures and the general survey methodology are discussed; a summary of the collected samples and radionuclide analyses is presented. Over 5400 samples were collected from the 12 atolls and 2 islands and prepared for analysis including 3093 soil, 961 vegetation, 153 animal, 965 fish composite samples (average of 30 fish per sample), 101 clam, 50 lagoon water, 15 cistern water, 17 groundwater, and 85 lagoon sediment samples. A complete breakdown by sample type, atoll, and island is given here. The total number of analyses by radionuclide are 8840 for /sup 241/Am, 6569 for /sup 137/Cs, 4535 for /sup 239 +240/Pu, 4431 for /sup 90/Sr, 1146 for /sup 238/Pu, 269 for /sup 241/Pu, and 114 each for /sup 239/Pu and /sup 240/Pu. A complete breakdown by sample category, atoll or island, and radionuclide is also included.

Robison, W.L.; Conrado, C.L.; Eagle, R.J.; Stuart, M.L.

1981-07-23T23:59:59.000Z

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Radiological Instrumentation Assessment for King County Wastewater Treatment Division  

SciTech Connect

The King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into its combined sanitary and storm sewer system. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material. Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. Volume 2 of PNNL-15163 assesses the radiological instrumentation needs for detection of radiological or nuclear terrorism, in support of decisions to treat contaminated wastewater or to bypass the West Point Treatment Plant (WPTP), and in support of radiation protection of the workforce, the public, and the infrastructure of the WPTP. Fixed radiation detection instrumentation should be deployed in a defense-in-depth system that provides 1) early warning of significant radioactive material on the way to the WPTP, including identification of the radionuclide(s) and estimates of the soluble concentrations, with a floating detector located in the wet well at the Interbay Pump Station and telemetered via the internet to all authorized locations; 2) monitoring at strategic locations within the plant, including 2a) the pipe beyond the hydraulic ram in the bar screen room; 2b) above the collection funnels in the fine grit facility; 2c) in the sampling tank in the raw sewage pump room; and 2d) downstream of the concentration facilities that produce 6% blended and concentrated biosolids. Engineering challenges exist for these applications. It is necessary to deploy both ultra-sensitive detectors to provide early warning and identification and detectors capable of functioning in high-dose rate environments that are likely under some scenarios, capable of functioning from 10 microrems per hour (background) up to 1000 rems per hour. Software supporting fixed spectroscopic detectors is needed to provide prompt, reliable, and simple interpretations of spectroscopic outputs that are of use to operators and decision-makers. Software to provide scientists and homeland security personnel with sufficient technical detail for identification, quantification, waste management decisions, and for the inevitable forensic and attribution needs must be developed. Computational modeling using MCNP software has demonstrated that useful detection capabilities can be deployed. In particular, any of the isotopes examined can be detected at levels between 0.01 and 0.1 ?Ci per gallon. General purpose instruments that can be used to determine the nature and extent of radioactive contamination and measure radiation levels for purposes of protecting personnel and members of the public should be available. One or more portable radioisotope identifiers (RIIDs) should be available to WTD personnel. Small, portable battery-powered personal radiation monitors should be widely available WTD personnel. The personal monitors can be used for personal and group radiation protection decisions, and to alert management to the need to get expert backup. All considerations of radiological instrumentation require considerations of training and periodic retraining of personnel, as well as periodic calibration and maintenance of instruments. Routine innocent alarms will occur due to medical radionuclides that are legally discharged into sanitary sewers on a daily basis.

Strom, Daniel J.; McConn, Ronald J.; Brodzinski, Ronald L.

2005-05-19T23:59:59.000Z

422

DOE-HDBK-1141-2001; Radiological Assessor Training, Student's Guide, Part 4 of 5  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessor Training Assessor Training DOE-HDBK-1141-2001 Student's Guide Office of Environment, Safety & Health U.S. Department of Energy Radiological Assessor Training DOE-HDBK-1141-2001 Student's Guide ii This page intentionally left blank. Radiological Assessor Training DOE-HDBK-1141-2001 Student's Guide iii Table of Contents Regulatory Documents.....................................................................................

423

Roadmap: Radiologic Technology -Associate of Applied Science [RE-AAS-RADT  

E-Print Network (OSTI)

Roadmap: Radiologic Technology - Associate of Applied Science [RE-AAS-RADT] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 30-Oct-13/LNHD This roadmap is a recommended semester Introduction to Radiologic Technology 2 C RADT 14005 Clinical Education I 1 C RADT 14006 Radiographic

Sheridan, Scott

424

Roadmap: Radiologic Technology Associate of Technical Study [RE-ATS-RADT  

E-Print Network (OSTI)

Roadmap: Radiologic Technology ­ Associate of Technical Study [RE-ATS-RADT] Regional College Catalog Year: 2013-2014 Page 1 of 1 | Last Updated: 25-Nov-13/LNHD This roadmap is a recommended semester, but students must be advised by the director of radiologic technology, housed at the Salem Campus. Course

Sheridan, Scott

425

Ris-R-819(EN) The Radiological Exposure ofMan  

E-Print Network (OSTI)

Risø-R-819(EN) The Radiological Exposure ofMan from Ingestion ofCs-137 and Sr-90 in Seafood from describes a limited radiological assessment of the collective doses to man from the intake of seafood from-137« 5.2 Results for Sr-90 9 6 Collective Doses 10 6.1 Assumptions Concerning Seafood Consumption 10 6

426

2013 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond  

SciTech Connect

This report summarizes radiological monitoring performed of the Idaho National Laboratory Sites Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

Mike Lewis

2014-02-01T23:59:59.000Z

427

Department of Energy Receives Highest Transportation Industry Safety Award  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Receives Highest Transportation Industry Receives Highest Transportation Industry Safety Award Department of Energy Receives Highest Transportation Industry Safety Award May 1, 2007 - 12:45pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today received the Transportation Community Awareness and Emergency Response (TRANSCAER) Chairman's Award, one of industry's highest transportation safety awards, for helping local communities in emergency preparedness and response. TRANSCAER is a voluntary national organization that assists communities in emergency preparedness and response. "I'm very proud that The Department of Energy has raised the bar for community-based transportation emergency preparedness," Secretary of Energy Samuel W. Bodman said. "Safety is our number one priority, and we will

428

Graduate Certificate in Transportation  

E-Print Network (OSTI)

Graduate Certificate in Transportation Nohad A. Toulan School of Urban Studies and Planning of Engineering and Computer Science integrated transportation systems. The Graduate Certificate in Transportation their capabilities. Students in the program can choose among a wide range of relevant courses in transportation

Bertini, Robert L.

429

TRANSPORTATION Annual Report  

E-Print Network (OSTI)

2003 CENTER FOR TRANSPORTATION STUDIES Annual Report #12;Center for Transportation Studies University of Minnesota 200 Transportation and Safety Building 511 Washington Avenue S.E. Minneapolis, MN publication is a report of transportation research, education, and outreach activities for the period July

Minnesota, University of

430

Career Map: Transportation Worker  

Energy.gov (U.S. Department of Energy (DOE))

The Wind Program's Career Map provides job description information for Transportation Worker positions.

431

Transportation Organization and Functions  

Energy.gov (U.S. Department of Energy (DOE))

Office of Packaging and Transportation list of organizations and functions, with a list of acronyms.

432

Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freig pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestr  

E-Print Network (OSTI)

Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freig pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation ope

433

Department of Energy Announces Selection of Transportation Contractors at the Waste Isolation Pilot Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy Announces Selection of Transportation Department of Energy Announces Selection of Transportation Contractors at the Waste Isolation Pilot Plant Carlsbad, N.M., August 21, 2000 -- The U.S. Department of Energy (DOE) today announced the selection of Tri-State Motor Transit Co. (TSMT) and CAST Transportation, Inc. (CAST) to transport radioactive transuranic waste from DOE generator sites throughout the United States to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. Following a request for proposals issued on January 14, 2000, DOE determined that TSMT and CAST submitted the most advantageous offer to the government to transport transuranic waste to WIPP. TSMT, based in Joplin, MO, is a nationwide carrier with experience hauling hazardous and radiological shipments for DOE. CAST, based in Henderson, CO, is the current carrier

434

Graduate Studies Transportation Systems Engineering  

E-Print Network (OSTI)

Graduate Studies Transportation Systems Engineering TRANSPORTATION SYSTEMS The transportation that transportation systems engineering can promote a thriving economy and a better quality of life by ensuring that transportation systems themselves affect the environment through operations, construction, and maintenance

Jacobs, Laurence J.

435

Introduction Transport in disordered graphene  

E-Print Network (OSTI)

Introduction Transport in disordered graphene Summary Ballistic transport in disordered graphene P, Gornyi, Mirlin Ballistic transport in disordered graphene #12;Introduction Transport in disordered graphene Summary Outline 1 Introduction Model Experimental motivation Transport in clean graphene 2

Fominov, Yakov

436

Radiological accident and incident in Thailand: lesson to be learned  

Science Journals Connector (OSTI)

......was transported to a safe storage at the OAEP (Figure-3...the 137Cs source to a safety storage at the Radioactive Waste Management Center, Thailand...including instructions relating to long-term storage or disposition, had been......

Nanthavan Ya-anant; Kanokrat Tiyapun; Kittiphong Saiyut

2011-07-01T23:59:59.000Z

437

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Guide Study Guide 2.19-1 Course Title: Radiological Control Technician Module Title: Counting Room Equipment Module Number: 2.19 Objectives: 2.19.01 Describe the features and specifications for commonly used laboratory counters or scalers: a. Detector type b. Detector shielding c. Detector window d. Types of radiation detected and measured e. Operator-adjustable controls f. Source check g. Procedure for sample counting 2.19.02 Describe the features and specifications for low-background automatic counting systems: a. Detector type b. Detector shielding c. Detector window d. Types of radiation detected and measured e. Operator-adjustable controls f. Source check g. Procedure for sample counting 2.19.03 Describe the following features and specifications for commonly used gamma spectroscopy systems.

438

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Sampling Program/Methods Air Sampling Program/Methods Instructor's Guide 2.06-1 Course Title: Radiological Control Technician Module Title: Air Sampling Program/Methods Module Number: 2.06 Objectives: 2.06.01 State the primary objectives of an air monitoring program. 2.06.02 Describe the three physical states of airborne radioactive contaminants. 2.06.03 List and describe the primary considerations to ensure a representative air sample is obtained. 2.06.04 Define the term "isokinetic sampling" as associated with airborne radioactivity sampling. 2.06.05 Identify the six general methods for obtaining samples or measurements of airborne radioactivity concentrations and describe the principle of operation for each method. a. Filtration b. Volumetric c. Impaction/impingement d. Adsorption e. Condensation/dehumidification

439

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Communication Systems Communication Systems Instructor's Guide 2.02-1 Course Title: Radiological Control Technician Module Title: Communication Systems Module Number: 2.02 Objectives: 2.02.01 Explain the importance of good communication. 2.02.02 Identify two methods of communication and be able to determine different types of each. 2.02.03 Describe different types of communication systems. 2.02.04 Describe the FCC and DOE guidelines regarding proper use of communication systems. 2.02.05 Describe general attributes of good communications. 2.02.06 Explain the importance of knowing how to contact key personnel. i 2.02.07 Identify the communication systems available at your site and methods available to contact key personnel. i 2.02.08 Describe the emergency communication systems available at your site.

440

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Radiation Survey Instrumentation 6 Radiation Survey Instrumentation Instructor's Guide 2.16-1 Course Title: Radiological Control Technician Module Title: Radiation Survey Instrumentation Module Number: 2.16 Objectives: 2.16.01 List the factors which affect an RCT's selection of a portable radiation survey instrument, and identify appropriate instruments for external radiation surveys. L 2.16.02 Identify the following features and specifications for ion chamber instruments used at your facility: a. Detector type b. Instrument operating range c. Detector shielding d. Detector window e. Types of radiation detected/measured f. Operator-adjustable controls g. Markings for detector effective center h. Specific limitations/characteristics. L 2.16.03 Identify the following features and specifications for high range

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Good Practices for Ocupational Radiological Protection in Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Not Measurement Not Measurement Sensitive DOE- STD-1128-2013 April 2013 DOE STANDARD GOOD PRACTICES FOR OCCUPATIONAL RADIOLOGICAL PROTECTION IN PLUTONIUM FACILITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1128-2013 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii DOE-STD-1128-2013 Foreword This Technical Standard does not contain any new requirements. Its purpose is to provide information on good practices, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. U.S. Department of Energy (DOE) health

442

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-HDBK-1122-99 July 1999 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1122-99 iii Foreword This Handbook describes an implementation process for core training as recommended in DOE Guide G441.1-1, Management and Administration of Radiation Protection Programs and as

443

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 Radiological Control Technician Training Technician Qualification Standard Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 ii This page intentionally left blank. DOE-HDBK-1122-99 iii Course Developers Dave Lent Coleman Research Joe DeMers EG&G Mound Applied Technologies (formerly) Andy Hobbs FERMCO Dennis Maloney RUST - GJPO Richard Cooke Argonne National Laboratory Bobby Oliver Lockheed Martin Energy Systems Michael McNaughton Los Alamos National Laboratory Eva Lauber West Valley Nuclear Services Michael McGough Westinghouse Savannah River Corporation Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers U.S. Department of Energy Peter O'Connell U.S. Department of Energy

444

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

External Exposure Control External Exposure Control Instructor's Guide 1.11-1 Course Title: Radiological Control Technician Module Title: External Exposure Control Module Number: 1.11 Objectives: 1.11.01 Identify the four basic methods for minimizing personnel external exposure. 1.11.02 Using the Exposure Rate = 6CEN equation, calculate the gamma exposure rate for specific radionuclides. 1.11.03 Identify "source reduction" techniques for minimizing personnel external exposures. 1.11.04 Identify "time-saving" techniques for minimizing personnel external exposures. 1.11.05 Using the stay time equation, calculate an individual's remaining allowable dose equivalent or stay time. 1.11.06 Identify "distance to radiation sources" techniques for minimizing personnel external exposures.

445

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Counting Errors and Statistics Counting Errors and Statistics Instructor's Guide 2.03-1 Course Title: Radiological Control Technician Module Title: Counting Errors and Statistics Module Number: 2.03 Objectives: 2.03.01. Identify five general types of errors that can occur when analyzing radioactive samples, and describe the effect of each source of error on sample measurements. 2.03.02. State two applications of counting statistics in sample analysis. 2.03.03. Define the following terms: a. mode b. median c. mean 2.03.04. Given a series of data, determine the mode, median, or mean. 2.03.05. Define the following terms: a. variance b. standard deviation 2.03.06. Given the formula and a set of data, calculate the standard deviation. 2.03.07. State the purpose of a Chi-squared test. L 2.03.08. State the criteria for acceptable Chi-squared values at your site.

446

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dosimetry Dosimetry Instructor's Guide 2.04-1 Course Title: Radiological Control Technician Module Title: Dosimetry Module Number: 2.04 Objectives: 2.04.01 Identify the DOE external exposure limits for general employees. 2.04.02 Identify the DOE limits established for the embryo/fetus of a declared pregnant female general employee. L 2.04.03 Identify the administrative exposure control guidelines at your site, including those for the: a. General Employee b. Member of the Public/Minor c. Incidents and emergencies d. Embryo/Fetus L 2.04.04 Identify the requirements for a female general employee who has notified her employer in writing that she is pregnant. 2.04.05 Determine the theory of operation of a thermoluminescent dosimeter (TLD). 2.04.06 Determine how a TLD reader measures the radiation dose from a TLD.

447

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Instructor's Guide Instructor's Guide 2.14-1 Course Title: Radiological Control Technician Module Title: Personnel Decontamination Module Number: 2.14 Objectives: 2.14.01 List the three factors which determine the actions taken in decontamination of personnel. L 2.14.02 List the preliminary actions and notifications required by the RCT for an individual suspected to be contaminated. L 2.14.03 List the actions to be taken by the RCT when contamination of clothing is confirmed. L 2.14.04 List the actions to be taken by the RCT when skin contamination is confirmed. L 2.14.05 List the steps for using decontamination reagents to decontaminate personnel. References: (Site Specific) Instructional Aids: 1. Overheads 2. Overhead projector/screen 3. Chalkboard/whiteboard 4. Lessons learned DOE-HDBK-1122-99 Module 2.14 Personnel Decontamination

448

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Guide Study Guide 2.18-1 Course Title: Radiological Control Technician Module Title: Air Sampling Equipment Module Number: 2.18 Objectives: 2.18.01 Identify the factors that affect the operator's selection of a portable air sampler. i 2.18.02 Identify the physical and operating characteristics and the limitation(s) of the Staplex and Radeco portable air samplers. i 2.18.03 Identify the physical and operating characteristics and the limitation(s) of Motor air pumps. i 2.18.04 List the steps for a preoperational checkout of a portable air sampler. i 2.18.05 Identify the physical and operational characteristics and the limitation(s) of beta-gamma constant air monitors (CAMs). i 2.18.06 Identify the physical and operating characteristics and the limitation(s) of alpha constant air monitors (CAMs).

449

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biological Effects of Radiation Biological Effects of Radiation Instructor's Guide 1.08-1 Course Title: Radiological Control Technician Module Title: Biological Effects of Radiation Module Number: 1.08 Objectives: 1.08.01 Identify the function of the following cell structures: a. Cell membrane b. Cytoplasm c. Mitochondria d. Lysosome e. Nucleus f. DNA g. Chromosomes 1.08.02 Identify effects of radiation on cell structures. 1.08.03 Define the law of Bergonie and Tribondeau. 1.08.04 Identify factors which affect the radiosensitivity of cells. 1.08.05 Given a list of types of cells, identify which are most or least radiosensitive. 1.08.06 Identify primary and secondary reactions on cells produced by ionizing radiation. 1.08.07 Identify the following definitions and give examples of each: a. Stochastic effect b. Non-stochastic effect

450

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

External Exposure Control External Exposure Control Study Guide 1.11-1 Course Title: Radiological Control Technician Module Title: External Exposure Control Module Number: 1.11 Objectives: 1.11.01 Identify the four basic methods for minimizing personnel external exposure. 1.11.02 Using the Exposure Rate = 6CEN equation, calculate the gamma exposure rate for specific radionuclides. 1.11.03 Identify "source reduction" techniques for minimizing personnel external exposures. 1.11.04 Identify "time-saving" techniques for minimizing personnel external exposures. 1.11.05 Using the stay time equation, calculate an individual's remaining allowable dose equivalent or stay time. 1.11.06 Identify "distance to radiation sources" techniques for minimizing personnel external exposures.

451

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radioactive Source Control Radioactive Source Control Study Guide 2.08-1 Course Title: Radiological Control Technician Module Title: Radioactive Source Control Module Number: 2.08 Objectives: 2.08.01 Describe the requirements for radioactive sources per 10 CFR 835. i 2.08.02 Identify the characteristics of radioactive sources that must be controlled at your site. i 2.08.03 Identify the packaging, marking, and labeling requirements for radioactive sources. i 2.08.04 Describe the approval and posting requirements for radioactive materials areas. i 2.08.05 Describe the process and procedures used at your site for storage and accountability of radioactive sources. INTRODUCTION A radioactive source is material used for its emitted radiation. Sources are constructed as sealed or unsealed and are classified as accountable or exempt.

452

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Respiratory Protection Respiratory Protection Instructor's Guide 2.07-1 Course Title: Radiological Control Technician Module Title: Respiratory Protection Module Number: 2.07 Objectives: 2.07.01 Explain the purpose of respiratory protection standards and regulations. 2.07.02 Identify the OSHA, ANSI, and DOE respiratory protection program requirements. 2.07.03 Identify the standards which regulate respiratory protection. 2.07.04 Describe the advantages and disadvantages (limitations) of each of the following respirators: a. Air purifying, particulate removing filter respirators b. Air purifying, Chemical Cartridge and Canister respirators for Gases and Vapors c. Full-face, supplied-air respirators d. Self-contained breathing apparatus (SCBA) e. Combination atmosphere supplying respirators 2.07.05

453

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Internal Exposure Control Internal Exposure Control Study Guide 1.12-1 Course Title: Radiological Control Technician Module Title: Internal Exposure Control Module Number: 1.12 Objectives: 1.12.01 Identify four ways in which radioactive materials can enter the body. 1.12.02 Given a pathway for radioactive materials into the body, identify one method to prevent or minimize entry by that pathway. 1.12.03 Identify the definition and distinguish between the terms "Annual Limit on Intake" (ALI) and "Derived Air Concentration" (DAC). 1.12.04 Identify the basis for determining Annual Limit on Intake (ALI). 1.12.05 Identify the definition of "reference man". 1.12.06 Identify a method of using DACs to minimize internal exposure potential. 1.12.07 Identify three factors that govern the behavior of radioactive materials in the

454

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Radioactive Source Control 8 Radioactive Source Control Instructor's Guide 2.08-1 Course Title: Radiological Control Technician Module Title: Radioactive Source Control Module Number: 2.08 Objectives: 2.08.01 Describe the requirements for radioactive sources per 10 CFR 835. L 2.08.02 Identify the characteristics of radioactive sources that must be controlled at your site. L 2.08.03 Identify the packaging, marking, and labeling requirements for radioactive sources. L 2.08.04 Describe the approval and posting requirements for radioactive materials areas. L 2.08.05 Describe the process and procedures used at your site for storage and accountability of radioactive sources. References: 1. 10 CFR 835, "Occupational Radiation Protection," (1998) Instructional Aids: 1. Overheads 2. Overhead projector and screen

455

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Radioactivity and Radioactive Decay Study Guide - Radioactivity and Radioactive Decay Study Guide 1.06-1 Course Title: Radiological Control Technician Module Title: Radioactivity & Radioactive Decay Module Number: 1.06 Objectives: 1.06.01 Identify how the neutron to proton ratio is related to nuclear stability. 1.06.02 Identify the definition for the following terms: a. radioactivity b. radioactive decay 1.06.03 Identify the characteristics of alpha, beta, and gamma radiations. 1.06.04 Given simple equations identify the following radioactive decay modes: a. alpha decay b. beta decay c. positron decay d. electron capture 1.06.05 Identify two aspects associated with the decay of a radioactive nuclide. 1.06.06 Identify differences between natural and artificial radioactivity. 1.06.07 Identify why fission products are unstable.

456

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number TRNG-0003 Number TRNG-0003 Module 1.13 Radiation Detector Theory Study Guide 1.13-1 Course Title: Radiological Control Technician Module Title: Radiation Detector Theory Module Number: 1.13 Objectives: 1.13.01 Identify the three fundamental laws associated with electrical charges. 1.13.02 Identify the definition of current, voltage and resistance and their respective units. 1.13.03 Select the function of the detector and readout circuitry components in a radiation measurement system. 1.13.04 Identify the parameters that affect the number of ion pairs collected in a gas- filled detector. 1.13.05 Given a graph of the gas amplification curve, identify the regions of the curve. 1.13.06 Identify the characteristics of a detector operated in each of the useful regions of the gas amplification curve.

457

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Instructor's Guide Instructor's Guide 2.19-1 Course Title: Radiological Control Technician Module Title: Counting Room Equipment Module Number: 2.19 Objectives: L 2.19.01 Describe the following features and specifications for commonly used laboratory counter or scalers: a. Detector type b. Detector shielding c. Detector window d. Types of radiation detected and measured e. Operator-adjustable controls f. Source check g. Procedure for sample counting L 2.19.02 Describe the following features and specifications for low-background automatic counting systems: a. Detector type b. Detector shielding c. Detector window d. Types of radiation detected and measured e. Operator-adjustable controls d. Source check e. Procedures for sample counting L 2.19.03 Describe the following features and specifications for commonly used

458

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radioactivity & Radioactive Decay Radioactivity & Radioactive Decay Instructor's Guide 1.06-1 Course Title: Radiological Control Technician Module Title: Radioactivity & Radioactive Decay Module Number: 1.06 Objectives: 1.06.01 Identify how the neutron to proton ratio is related to nuclear stability. 1.06.02 Identify the definition for the following terms: a. radioactivity b. radioactive decay 1.06.03 Identify the characteristics of alpha, beta, and gamma radiations. 1.06.04 Given simple equations identify the following radioactive decay modes: a. alpha decay b. beta decay c. positron decay d. electron capture 1.06.05 Identify two aspects associated with the decay of a radioactive nuclide. 1.06.06 Identify differences between natural and artificial radioactivity. 1.06.07 Identify why fission products are unstable.

459

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Instructor's Guide Instructor's Guide 2.18-1 Course Title: Radiological Control Technician Module Title: Air Sampling Equipment Module Number: 2.18 Objectives: 2.18.01 Identify the factors that affect the operator's selection of a portable air sampler. L 2.18.02 Identify the physical and operating characteristics and the limitation(s) of the Staplex and Radeco portable air samplers. L 2.18.03 Identify the physical and operating characteristics and the limitation(s) of Motor air pumps. L 2.18.04 List the steps for a preoperational checkout of a portable air sampler. L 2.18.05 Identify the physical and operational characteristics and the limitation(s) of beta-gamma constant air monitors (CAM's). L 2.18.06 Identify the physical and operating characteristics and the limitation(s) of alpha constant air monitors (CAM's).

460

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Radiation Detector Theory 3 Radiation Detector Theory Instructor's Guide 1.13-1 Course Title: Radiological Control Technician Module Title: Radiation Detector Theory Module Number: 1.13 Objectives: 1.13.01 Identify the three fundamental laws associated with electrical charges. 1.13.02 Identify the definition of current, voltage and resistance and their respective units. 1.13.03 Select the function of the detector and readout circuitry components in a radiation measurement system. 1.13.04 Identify the parameters that affect the number of ion pairs collected in a gas- filled detector. 1.13.05 Given a graph of the gas amplification curve, identify the regions of the curve. 1.13.06 Identify the characteristics of a detector operated in each of the useful regions of the gas amplification curve. 1.13.07

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Counting Errors and Statistics Counting Errors and Statistics Study Guide 2.03-1 Course Title: Radiological Control Technician Module Title: Counting Errors and Statistics Module Number: 2.03 Objectives: 2.03.01. Identify five general types of errors that can occur when analyzing radioactive samples, and describe the effect of each source of error on sample measurements. 2.03.02. State two applications of counting statistics in sample analysis. 2.03.03. Define the following terms: a. mode b. median c. mean 2.03.04. Given a series of data, determine the mode, median, or mean. 2.03.05. Define the following terms: a. variance b. standard deviation 2.03.06. Given the formula and a set of data, calculate the standard deviation. 2.03.07. State the purpose of a Chi-squared test. i 2.03.08. State the criteria for acceptable Chi-squared values at your site.

462

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Physics Nuclear Physics Instructor's Guide 1.04-1 Course Title: Radiological Control Technician Module Title: Nuclear Physics Module Number: 1.04 Objectives: 1.04.01 Identify the definitions of the following terms: a. Nucleon b. Nuclide c. Isotope 1.04.02 Identify the basic principles of the mass-energy equivalence concept. 1.04.03 Identify the definitions of the following terms: a. Mass defect b. Binding energy c. Binding energy per nucleon 1.04.04 Identify the definitions of the following terms: a. Fission b. Criticality c. Fusion References: 1. "Nuclear Chemistry"; Harvey, B. G. 2. "Physics of the Atom"; Wehr, M. R. and Richards, J. A. Jr. 3. "Introduction to Atomic and Nuclear Physics"; Oldenburg, O. and Holladay, W. G. 4. "Health Physics Fundamentals"; General Physics Corp.

463

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Sources of Radiation - Sources of Radiation Study Guide 1.05-1 Course Title: Radiological Control Technician Module Title: Sources of Radiation Module Number: 1.05 Objectives: 1.05.01 Identify the following four sources of natural background radiation including the origin, radionuclides, variables, and contribution to exposure. a. Terrestrial b. Cosmic c. Internal Emitters d. Radon 1.05.02 Identify the following four sources of artificially produced radiation and the magnitude of dose received from each. a. Nuclear Fallout b. Medical Exposures c. Consumer Products d. Nuclear Facilities INTRODUCTION Apart from the amount of radiation a worker may receive while performing work, they will also be exposed to radiation because of the very nature of our environment. All individuals are subject to some irradiation even though they may not work with

464

DOE-HDBK-1131-98; General Employee Radiological Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HDBK-1131-98 HDBK-1131-98 December 1998 Change Notice No. 1 November 2003 Reaffirmation with Errata April 2004 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000.

465

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Internal Exposure Control Internal Exposure Control Instructor's Guide 1.12-1 Course Title: Radiological Control Technician Module Title: Internal Exposure Control Module Number: 1.12 Objectives: 1.12.01 Identify four ways in which radioactive materials can enter the body. 1.12.02 Given a pathway for radioactive materials into the body, identify one method to prevent or minimize entry by that pathway. 1.12.03 Identify the definition and distinguish between the terms "Annual Limit on Intake" (ALI) and "Derived Air Concentration" (DAC). 1.12.04 Identify the basis for determining Annual Limit on Intake (ALI). 1.12.05 Identify the definition of "reference man". 1.12.06 Identify a method of using DACs to minimize internal exposure potential. 1.12.07 Identify three factors that govern the behavior of radioactive materials in the

466

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Biological Effects of Radiation 8 Biological Effects of Radiation Study Guide 1.08-1 Course Title: Radiological Control Technician Module Title: Biological Effects of Radiation Module Number: 1.08 Objectives: 1.08.01 Identify the function of the following cell structures: a. Cell membrane b. Cytoplasm c. Mitochondria d. Lysosome e. Nucleus f. DNA g. Chromosomes 1.08.02 Identify effects of radiation on cell structures. 1.08.03 Define the law of Bergonie and Tribondeau. 1.08.04 Identify factors which affect the radiosensitivity of cells. 1.08.05 Given a list of types of cells, identify which are most or least radiosensitive. 1.08.06 Identify primary and secondary reactions on cells produced by ionizing radiation. 1.08.07 Identify the following definitions and give examples of each: a. Stochastic effect b. Non-stochastic effect

467

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dosimetry Dosimetry Study Guide 2.04-1 Course Title: Radiological Control Technician Module Title: Dosimetry Module Number: 2.04 Objectives: 2.04.01 Identify the DOE external exposure limits for general employees. 2.04.02 Identify the DOE limits established for the embryo/fetus of a declared pregnant female general employee. i 2.04.03 Identify the administrative exposure control guidelines at your site, including those for the: a. General employee b. Member of the public/minor c. Incidents and emergencies d. Embryo/fetus i 2.04.04 Identify the requirements for a female general employee who has notified her employer in writing that she is pregnant. 2.04.05 Determine the theory of operation of a thermoluminescent dosimeter (TLD). 2.04.06 Determine how a TLD reader measures the radiation dose from a TLD.

468

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Sampling Program/Methods Air Sampling Program/Methods Study Guide 2.06-1 Course Title: Radiological Control Technician Module Title: Air Sampling Program/Methods Module Number: 2.06 Objectives: 2.06.01 State the primary objectives of an air monitoring program. 2.06.02 Describe the three physical states of airborne radioactive contaminants. 2.06.03 List and describe the primary considerations to ensure a representative air sample is obtained. 2.06.04 Define the term "isokinetic sampling" as associated with airborne radioactivity sampling. 2.06.05 Identify the six general methods for obtaining samples or measurements of airborne radioactivity concentrations and describe the principle of operation for each method. a. Filtration b. Volumetric c. Impaction/impingement d. Adsorption e.

469

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Instrumentation Study Guide Instrumentation Study Guide 2.16-1 Course Title: Radiological Control Technician Module Title: Radiation Survey Instrumentation Module Number: 2.16 Objectives: 2.16.01 List the factors which affect an RCT's selection of a portable radiation survey instrument, and identify appropriate instruments for external radiation surveys. i 2.16.02 Identify the following features and specifications for ion chamber instruments used at your facility: a. Detector type b. Instrument operating range c. Detector shielding d. Detector window e. Types of radiation detected/measured f. Operator-adjustable controls g. Markings for detector effective center h. Specific limitations/characteristics i 2.16.03 Identify the following features and specifications for high range instruments used at your facility:

470

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 - Nuclear Physics 4 - Nuclear Physics Study Guide 1.04-1 Course Title: Radiological Control Technician Module Title: Nuclear Physics Module Number: 1.04 Objectives: 1.04.01 Identify the definitions of the following terms: a. Nucleon b. Nuclide c. Isotope 1.04.02 Identify the basic principles of the mass-energy equivalence concept. 1.04.03 Identify the definitions of the following terms: a. Mass defect b. Binding energy c. Binding energy per nucleon 1.04.04 Identify the definitions of the following terms: a. Fission b. Criticality c. Fusion INTRODUCTION Nuclear power is made possible by the process of nuclear fission. Fission is but one of a large number of nuclear reactions which can take place. Many reactions other than fission are quite important because they affect the way we deal with all aspects of

471

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Respiratory Protection Respiratory Protection Study Guide 2.07-1 Course Title: Radiological Control Technician Module Title: Respiratory Protection Module Number: 2.07 Objectives: 2.07.01 Explain the purpose of respiratory protection standards and regulations. 2.07.02 Identify the OSHA, ANSI, and DOE respiratory protection program requirements. 2.07.03 Identify the standards which regulate respiratory protection. 2.07.04 Describe the advantages and disadvantages (limitations) of each of the following respirators: a. Air purifying, particulate removing filter respirators b. Air purifying, Chemical Cartridge and Canister respirators for Gases and Vapors c. Full-face, supplied-air respirators d. Self-contained breathing apparatus (SCBA) e. Combination atmosphere supplying respirators 2.07.05 Define the term protection factor (PF).

472

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sources of Radiation Sources of Radiation Instructor's Guide 1.05-1 Course Title: Radiological Control Technician Module Title: Sources of Radiation Module Number: 1.05 Objectives: 1.05.01 Identify the following four sources of natural background radiation including the origin, radionuclides, variables, and contribution to exposure. a. Terrestrial b. Cosmic c. Internal Emitters d. Radon 1.05.02 Identify the following four sources of artificially produced radiation and the magnitude of dose received from each. a. Nuclear Fallout b. Medical Exposures c. Consumer Products d. Nuclear Facilities References: 1. "Basic Radiation Protection Technology"; Gollnick, Daniel; Pacific Radiation Press; 1983. 2. ANL-88-26 (1988) "Operational Health Physics Training"; Moe, Harold; Argonne National Laboratory, Chicago.

473

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Communication Systems Communication Systems Study Guide 2.02-1 Course Title: Radiological Control Technician Module Title: Communication Systems Module Number: 2.02 Objectives: 2.02.01 Explain the importance of good communication. 2.02.02 Identify two methods of communication and be able to determine different types of each. 2.02.03 Describe different types of communication systems. 2.02.04 Describe the FCC and DOE guidelines regarding proper use of communication systems. 2.02.05 Describe general attributes of good communications. 2.02.06 Explain the importance of knowing how to contact key personnel. i 2.02.07 Identify the communication systems available at your site and methods available to contact key personnel. i 2.02.08 Describe the emergency communication systems available at your site.

474

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Interaction of Radiation with Matter 7 Interaction of Radiation with Matter Instructor's Guide 1.07-1 Course Title: Radiological Control Technician Module Title: Interaction of Radiation with Matter Module Number: 1.07 Objectives: 1.07.01 Identify the definitions of the following terms: a. ionization b. excitation c. bremsstrahlung 1.07.02 Identify the definitions of the following terms: a. specific ionization b. linear energy transfer (LET) c. stopping power d. range e. W-value 1.07.03 Identify the two major mechanisms of energy transfer for alpha particulate radiation. 1.07.04 Identify the three major mechanisms of energy transfer for beta particulate radiation. 1.07.05 Identify the three major mechanisms by which gamma photon radiation interacts with matter. 1.07.06 Identify the four main categories of neutrons as they are classified by kinetic

475

Radiological safety at Argonne national laboratory's heavy ion research facility  

Science Journals Connector (OSTI)

This paper discusses the radiological safety system to be employed at the Argonne tandemlinac accelerator system (ATLAS). The design parameters of ATLAS that affect safety have remained unchanged since ATLAS construction began in 1982. The specialized radiological safety considerations of ATLAS were discussed in 1982 [1]. This paper will present the details of the hardware, the administrative controls, and the radiation monitoring that will be in effect when beam is produced in April 1985. The experimental hall utilizing the maximum energy beam ( ? 27 MeV per nucleon) from the completed ATLAS has been partitioned with shielding blocks into its final configuration. Because scientists want access to some of the partitioned-off areas while beam is present in other areas, an interlock and logic system allowing such occupancy has been designed. The rationale and hardware of the system will be discussed. Since one of the potential radiation hazards is high-energy forward-directed neutrons from any location where the beam impinges (such as collimators, bending and focussing systems, experimental targets, and beam stops), radiation surveys and hazard assessments are necessary for the administrative controls that allow occupancy of various areas. Because of the various uses of ATLAS, neutrons (the dominant beam hazard) will be non-existent in some experiments and will be of energies ? 10 MeV for a few experiments. These conditions may exist at specific locations during beam preparation but may change rapidly when beam is finally delivered to an experimental area. Monitoring and assessing such time varying and geographically changing hazards will be a challenge since little data will be available on source terms until various beams are produced of sufficient intensity and energy to make measurements. How the operating division for ATLAS and the Argonne safety division are addressing this aspect through administrative controls will also be discussed.

R.H. Cooke; R.A. Wynveen

1985-01-01T23:59:59.000Z

476

An aerial radiological survey of the Nevada Test Site  

SciTech Connect

A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/h at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys.

Hendricks, T J; Riedhauser, S R

1999-12-01T23:59:59.000Z

477

The Northern Marshall Islands radiological survey: Data and dose assessments  

SciTech Connect

Fallout from atmospheric nuclear tests, especially from those conducted at the Pacific Proving Grounds between 1946 and 1958, contaminated areas of the Northern Marshall Islands. A radiological survey at some Northern Marshall Islands was conducted from September through November 1978 to evaluate the extent of residual radioactive contamination. The atolls included in the Northern Marshall Islands Radiological Survey (NMIRS) were Likiep, Ailuk, Utirik, Wotho, Ujelang, Taka, Rongelap, Rongerik, Bikar, Ailinginae, and Mejit and Jemo Islands. The original test sites, Bikini and Enewetak Atolls, were also visited on the survey. An aerial survey was conducted to determine the external gamma exposure rate. Terrestrial (soil, food crops, animals, and native vegetation), cistern and well water samples, and marine (sediment, seawater, fish and clams) samples were collected to evaluate radionuclide concentrations in the atoll environment. Samples were processed and analyzed for {sup 137}Cs, {sup 90}Sr, {sup 239+240}Pu and {sup 241}Am. The dose from the ingestion pathway was calculated using the radionuclide concentration data and a diet model for local food, marine, and water consumption. The ingestion pathway contributes 70% to 90% of the estimated dose. Approximately 95% of the dose is from {sup 137}Cs accounts for about 10% to 30% of the dose. {sup 239+240}Pu and {sup 241}Am are the major contributors to dose via the inhalation pathway; however, inhalation accounts for only about 1% of the total estimated dose, based on surface soil levels and resuspension studies. All doses are computed for concentrations decay corrected to 1996. The maximum annual effective dose from manmade radionuclides at these atolls ranges from .02 mSv y{sup -1}. The background dose in the Marshall Islands is estimated to be 2.4 mSv y{sup -1} to 4.5 mSv y{sup -1}. The 50-y integral dose ranges from 0.5 to 65 mSv. 35 refs., 2 figs., 9 tabs.

Robison, W.L.; Noshkin, V.E.; Conrado, C.L. [Lawrence Livermore National Lab., CA (United States)] [and others

1997-07-01T23:59:59.000Z

478

The role of private participation in enhancing the Indian transport sector  

E-Print Network (OSTI)

The Indian transport sector, one of the largest transport networks in the world, faces some serious issues. These may be identified as follows: * Unmet demand for service and infrastructure * Conflicting responsibilities ...

Sharma, Nand, 1979-

2004-01-01T23:59:59.000Z

479

Introduction of e-learning in dental radiology reveals significantly improved results in final examination  

Science Journals Connector (OSTI)

Purpose Because a traditionally instructed dental radiology lecture course is very time-consuming and labour-intensive, online courseware, including an interactive-learning module, was implemented to support the lectures. The purpose of this study was to evaluate the perceptions of students who have worked with web-based courseware as well as the effect on their results in final examinations. Materials and methods Users (n3+4=138) had access to the e-program from any networked computer at any time. Two groups (n3=71, n4=67) had to pass a final exam after using the e-course. Results were compared with two groups (n1=42, n2=48) who had studied the same content by attending traditional lectures. In addition a survey of the students was statistically evaluated. Results Most of the respondents reported a positive attitude towards e-learning and would have appreciated more access to computer-assisted instruction. Two years after initiating the e-course the failure rate in the final examination dropped significantly, from 40% to less than 2%. Conclusions The very positive response to the e-program and improved test scores demonstrated the effectiveness of our e-course as a learning aid. Interactive modules in step with clinical practice provided learning that is not achieved by traditional teaching methods alone. To what extent staff savings are possible is part of a further study.

Sandra Meckfessel; Constantin Sthmer; Kai-Hendrik Bormann; Thomas Kupka; Marianne Behrends; Herbert Matthies; Bernhard Vaske; Meike Stiesch; Nils-Claudius Gellrich; Martin Rcker

2011-01-01T23:59:59.000Z

480

NREL: Transportation Research - Sustainable Transportation Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy's Alternative Fuels Data Center (AFDC) provide an introduction to sustainable transportation. NREL research supports development of electric, hybrid,...

Note: This page contains sample records for the topic "response radiological transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.