Sample records for response industry doe

  1. What does an Industrial Engineer really do???

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    What does an Industrial Engineer really do??? #12;What you will learn · What Industrial Engineering is · Examples of Industrial Engineering (IE) activities · The advantages of an IE college degree #12;Engineering does that engineer do? Where? #12;Industrial Engineers Find a Better Way... · A better way to make

  2. DOE to Launch Collaborative Effort with Industry to Improve Natural...

    Energy Savers [EERE]

    DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems July 30, 2014 -...

  3. DOE to Launch Collaborative Effort with Industry to Improve Natural...

    Energy Savers [EERE]

    29, 2014 - 2:54pm Addthis DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems DOE will launch a collaborative effort with industry to evaluate and scope...

  4. DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed...

    Energy Savers [EERE]

    Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) DOE Hydrogen and Fuel Cells Program Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) This record from the...

  5. What Does Industry Expect From An Electrical Utility 

    E-Print Network [OSTI]

    Jensen, C. V.

    1989-01-01T23:59:59.000Z

    WHAT DOES INDUSTRY EXPECT FROM AN ELECTRICAL UTILITY C. V. JENSEN Manager, Energy Policy and Supply Union Carbide Corporation Danbury, Connecticut ABSTRACT and federal laws, rules and regulations. The electric utility industry...

  6. DOE Fuel Cell Technologies Office Record 14009: Industry Deployed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09: Industry Deployed Fuel Cell Backup Power (BuP) DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP) This program record from the U.S....

  7. DOE Fuel Cell Technologies Office Record 14010: Industry Deployed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Industry Deployed Fuel Cell Powered Lift Trucks DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks This program record from the U.S....

  8. DOE Seeks Industry Participation for Engineering Services to...

    Broader source: Energy.gov (indexed) [DOE]

    Participation for Engineering Services to Design Next Generation Nuclear Plant DOE Seeks Industry Participation for Engineering Services to Design Next Generation Nuclear Plant...

  9. Proceedings of the 1992 DOE-industry thermal distribution conference

    SciTech Connect (OSTI)

    Andrews, J.W. [ed.

    1992-06-01T23:59:59.000Z

    The subject of the conference was thermal distribution in small buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the equipment in which the heat or cooling is produced to the building spaces in which it is used. The small buildings category is defined to include single-family residential and multifamily and commercial buildings with less than 10,000 ft{sup 2} floor area. The 1992 DOE-Industry Thermal Distribution Conference was conceived as the beginning of a process of information transfer between the DOE and the industries having a stake in thermal distribution systems, whereby the DOE can make the industry aware of its thinking and planned directions early enough for changes to be made, and whereby the industries represented can provide this input to the DOE on a timely and informed basis. In accordance with this, the objectives of the Conference were: To present--to a representative group of researchers and industry representative--the current industry thinking and DOE`s current directions for research in small-building thermal distribution. To obtain from industry and the research community a critique of the DOE priorities and additional ideas concerning how DOE can best assist the industry in promoting energy conservation in thermal distribution systems.

  10. An industry response to recycle 2000

    SciTech Connect (OSTI)

    Motl, G.P.; Loiselle, V.

    1996-06-01T23:59:59.000Z

    The US DOE is expected to issue a policy early this year articulating DOE`s position on the recycle of DOE radioactive scrap metal. In anticipation of this `Recycle 2000` initiative, the nuclear industry has formed a new trade association called the Association of Radioactive Metal Recyclers (ARMR). This article describes the Recycle 2000 initiative, provides some background on the ARMR and its membership, and identifies industry views on the actions to be taken and issues to be resolved in Recycle 2000 is to become a reality.

  11. Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor

    E-Print Network [OSTI]

    Gross, T. J.

    The Department of Energy’s Office of Industrial Programs supports research and development leading to improved energy efficiency and greater overall productivity in the industrial sector. Its basic strategy is a program of cost-shared R...

  12. Proceedings of the 1992 DOE-industry thermal distribution conference

    SciTech Connect (OSTI)

    Andrews, J.W. (ed.)

    1992-06-01T23:59:59.000Z

    The subject of the conference was thermal distribution in small buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the equipment in which the heat or cooling is produced to the building spaces in which it is used. The small buildings category is defined to include single-family residential and multifamily and commercial buildings with less than 10,000 ft{sup 2} floor area. The 1992 DOE-Industry Thermal Distribution Conference was conceived as the beginning of a process of information transfer between the DOE and the industries having a stake in thermal distribution systems, whereby the DOE can make the industry aware of its thinking and planned directions early enough for changes to be made, and whereby the industries represented can provide this input to the DOE on a timely and informed basis. In accordance with this, the objectives of the Conference were: To present--to a representative group of researchers and industry representative--the current industry thinking and DOE's current directions for research in small-building thermal distribution. To obtain from industry and the research community a critique of the DOE priorities and additional ideas concerning how DOE can best assist the industry in promoting energy conservation in thermal distribution systems.

  13. DOE Seeks Industry Proposals for Feasibility Study to Produce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Plants DOE Seeks Industry Proposals for Feasibility Study to Produce Greenhouse Gas-Free Hydrogen at Existing Nuclear Power Plants April 13, 2006 - 10:19am Addthis...

  14. NAP Coalition Response to DOE RFI: Addressing Policy and Logistical...

    Energy Savers [EERE]

    NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation NAP Coalition Response to DOE RFI: Addressing Policy and Logistical...

  15. DOE Responses to DOE Challenge Home (formerly Builders Challenge) National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and PolicyCybersecurityThis version ofDOE Response

  16. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the following comments response NAESB

  17. Microsoft Word - Response to DOEs Questions.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goodyear Tire & Rubber Company Response to DOE's Questions Technology Transfer Practices at DOE Laboratories March 24, 2009 Submitted to GC-62@hq.doe.gov Office of the Assistant...

  18. DOE response to questions from AHAM on the supplemental proposed...

    Energy Savers [EERE]

    response to questions from AHAM on the supplemental proposed test procedure for residential clothes washers DOE response to questions from AHAM on the supplemental proposed test...

  19. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    demand response programs identifies three clusters of industries as the key participants: • petroleum, plastic,Demand Response Potential from Audit Database Top 25 Industries by Average kW Table 1 3344 Semiconductors & Electronics 3261 Plastic

  20. Demand Response Opportunities in Industrial Refrigerated Warehouses in

    E-Print Network [OSTI]

    LBNL-4837E Demand Response Opportunities in Industrial Refrigerated Warehouses in California Sasank thereof or The Regents of the University of California. #12;Demand Response Opportunities in Industrial centralized control systems can be excellent candidates for Automated Demand Response (Auto- DR) due

  1. Opportunities, Barriers and Actions for Industrial Demand Response in

    E-Print Network [OSTI]

    LBNL-1335E Opportunities, Barriers and Actions for Industrial Demand Response in California A.T. Mc of Global Energy Partners. This work described in this report was coordinated by the Demand Response Demand Response in California. PIER Industrial/Agricultural/Water EndUse Energy Efficiency Program. CEC

  2. Opportunities for industry participation in DOE`s environmental management technology development program

    SciTech Connect (OSTI)

    Bedick, R.C. [USDOE Morgantown Energy Technology Center, WV (United States); Walker, J.S. [USDOE Assistant Secretary for Environmental Management, Washington, DC (United States). Office of Science and Technology

    1996-09-01T23:59:59.000Z

    METC has managed about 85 research, development, and demonstration projects on behalf of DOE-EM`s Office of Science and Technology that include those in each of the four major environmental remediation and waste management problem areas: subsurface contaminants (radionuclides, heavy metals, dense nonaqueous phase liquids); decontamination and decommissioning of facilities; high-level waste tank remediation; and mixed waste characterization/treament/disposal. All projects within the Industry Programs are phased or have optional tasks at specific go/no-go decision points, allowing DOE to make investment decisions at various points in the technology development cycle to ensure that we are meeting the technology development goals and the needs of the customer or end-user. This decision making process is formalized in a Technology Investment Decision Model. A brief summary is given of R&D requirements (technology needs) in each of the above-mentioned 4 problem areas.

  3. DOE Announces $1.4 Million for Industry-Laboratory Teams to Study...

    Office of Environmental Management (EM)

    .4 Million for Industry-Laboratory Teams to Study Using Nuclear Energy for Clean Hydrogen DOE Announces 1.4 Million for Industry-Laboratory Teams to Study Using Nuclear Energy for...

  4. U.S. Industries: Partner with DOE to Save Energy and Money

    SciTech Connect (OSTI)

    Not Available

    2005-11-01T23:59:59.000Z

    This DOE Industrial Program fact sheet describes Save Energy Now, part of a national campaign to engage the public, the government, and industry in making simple but effective energy-saving choices.

  5. Industry Leaders, Research Experts Gather for 2006 DOE Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alliance, designed to enhance the manufacturing and commercialization focus of the DOE SSL portfolio. In 2005, the Alliance provided input on a number of DOE commercialization...

  6. Organizations' Assignment of Responsibility - DOE Directives,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbon About

  7. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R [ORNL; Alkadi, Nasr E [ORNL; Letto, Daryl [Enbala Power Networks; Johnson, Brandon [University of Tennessee, Knoxville (UTK); Dowling, Kevin [University of Tennessee, Knoxville (UTK); George, Raoule [Enbala Power Networks; Khan, Saqib [University of Texas, Austin

    2013-01-01T23:59:59.000Z

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  8. DOE Report Tracks Maturation of U.S. Wind Industry

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2007-01-01T23:59:59.000Z

    the Growth of the U.S. Wind Industry The U.S. Department ofAnnual Report on U.S. Wind Power Installation, Cost, andkey trends in the U.S. wind industry, in many cases using

  9. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  10. Using DOE Industrial Energy Audit Data for Utility Program Design

    E-Print Network [OSTI]

    Glaser, C. J.; Packard, C. P.; Parfomak, P.

    . Baltimore Gas & Electric Company BG&E provides natural gas and electric service to central Maryland, serving approximately 1,000,000 residential customers, 100,000 commercial customers, and 3,000 industrial customers. The industrial customers in BG... time-of-use rates, credits for reducing demand during critical periods, and rebates for efficient lighting, motors, and air compressors. In 1992, BG&E also began the design of its Custom Industrial Plant Upgrade Program, intended to provide custom...

  11. DOE and Japanese Ministry of Economy, Trade, and Industry Sign...

    Broader source: Energy.gov (indexed) [DOE]

    Statement between the U.S. Department of Energy and the Japanese Ministry of Economy, Trade, and Industry on Memorandum of Cooperation and Implementing Arrangement MOC focuses on...

  12. DOE Announces First Companies to Receive Industrial Energy Efficiency...

    Energy Savers [EERE]

    is accredited by the American National Standards Institute (ANSI) and will serve as a roadmap for industrial facilities to help continually improve their efficiency and maintain...

  13. Energy Responsibility Accounting - An Energy Conservation Tool for Industrial Facilities

    E-Print Network [OSTI]

    Kelly, R. L.

    1980-01-01T23:59:59.000Z

    As energy costs continue to rise faster than the rate of inflation, industrial energy management becomes a more important issue in the control of manufacturing costs. Energy Responsibility Accounting (ERA) is a tool which improves management...

  14. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...

    Broader source: Energy.gov (indexed) [DOE]

    program record from the DOE Hydrogen and Fuel Cells Program focuses on deployments of fuel cell powered lift trucks. 13008industrylifttruckdeployments.pdf More Documents &...

  15. Industry Leaders, Research Experts Gather for Fourth Annual DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SSL projects. These presentations provided attendees with a snapshot of DOE's current SSL project portfolio and provided a useful reference point for discussions and potential...

  16. Radiological Assistance Program, DOE Region 6 response plan

    SciTech Connect (OSTI)

    Jakubowski, F.M.

    1993-02-01T23:59:59.000Z

    This program plan meets all the requirements identified in DOE Order 5530.3, Radiological Assistance Program and supports those requirements leading to the establishment of a Federal Radiological Monitoring and Assessment Center (FRMAC) as required by DOE 5530-5. Requests for radiological assistance may come from other DOE facilities, Federal or state agencies, tribal officials, or from any private corporation or individual. Many of the requests will be handled by a telephone call, a conference or a letter, teletype or memorandum. Other requests for assistance may involve radioactive material in serious accidents, fire, personal injuries, contamination or possible hazards to the general public. Some occurrences may require the dispatch of trained personnel equipped with radiation monitoring instruments and related equipment necessary to evaluate, control and neutralize the hazard. The primary responsibility for incidents involving radioactive material always remains with the party having custody of the radioactive materials. In addition, the DOE recognizes that the assistance provided shall not in any way preempt state, tribal, or local authority and/or responsibility on state or tribal properties. Toward this end, DOE assistance for non-DOE radioactive materials, is limited to technical assistance, advice, measurement and other resources as deemed necessary by the local authorities but excludes DOE interface with the public media. This is a function handled by the local or state Incident Commander.

  17. Assessment of Industrial Load for Demand Response across Western Interconnect

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL; Ma, Ookie [United States Department of Energy (DOE), Office of Efficiency and Renewable Energy (EERE)

    2013-11-01T23:59:59.000Z

    Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

  18. What Does Industry Expect From An Electrical Utility

    E-Print Network [OSTI]

    Jensen, C. V.

    The electric utility industry is an important supplier to Union Carbide and as such must become a proactive participant in our quality programs which are aimed at continuous improvement in everything we do. The essential ingredients in the supplier...

  19. DOE Announces Award Selections for Academic-Industry Collaboration...

    Energy Savers [EERE]

    (Raleigh, NC): Development of a Multi-User Network Testbed for Wide-Area Monitoring and Control of Power Systems Using Distributed Synchrophasors. DOE share 200,000; recipient...

  20. Industry Leaders, Research Experts Gather for Second Annual DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Day 2 discussion and prioritization for future R&D topic areas. The 2005 Project Portfolio (PDF 2.1 MB) provides more detail on each of the current DOE SSL projects....

  1. Satellite Television Industry Meeting Regarding DOE Set-Top Box...

    Broader source: Energy.gov (indexed) [DOE]

    regarding the pending DOE rulemaking to establish energy conservation standards on set-top boxes (STBs) under title Ill of the Energy Policy and Conservation Act of 1974, as...

  2. Steam Challenge: Developing A New DOE Program to Help Industry be Steam Smart

    E-Print Network [OSTI]

    Jones, T.; Hart, F.

    Last year, the Alliance to Save Energy, the Department of Energy's Office of Industrial Technologies, and a cadre of private companies and associations formed an innovative "Steam Partnership" with the goal of developing a new, DOE technical...

  3. Sandia Energy - JBEI Research Receives Strong Industry Interest in DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePower

  4. DOE Announces Additional Steps in Developing Sustainable Biofuels Industry

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentI Office of ENERGYAgreesof Energy DOE|

  5. DOE Launches New Website Aimed at Improving Industrial Energy Savings |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE Fits PrincetonHealthcareDepartment of

  6. DOE Recognizes Midwest Industrial Efficiency Leaders | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOEDepartment| DepartmentRailcarDOE

  7. DOE Seeks Industry Input on Nickel Disposition Strategy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions andDefinition of Showerhead DOE Seeks

  8. DOE Seeks Industry Participation for Engineering Services to Design Next

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions andDefinition of Showerhead DOE SeeksGeneration

  9. DOE Issues Funding Opportunity for Academic-Industry Collaboration -

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 ChairsEnergy DOE CitesFuel CellFINAL.pdf DOEDOE

  10. Public-policy responsibilities in a restructured electricity industry

    SciTech Connect (OSTI)

    Tonn, B.; Hirst, E.; Bauer, D.

    1995-06-01T23:59:59.000Z

    In this report, we identify and define the key public-policy values, objectives, and actions that the US electricity industry currently meets. We also discuss the opportunities for meeting these objectives in a restructured industry that relies primarily on market forces rather than on government mandates. And we discuss those functions that governments might undertake, presumably because they will not be fully met by a restructured industry on its own. These discussions are based on a variety of inputs. The most important inputs came from participants in an April 1995 workshop on Public-Policy Responsibilities and Electric Industry Restructuring: Shaping the Research Agenda. Other sources of information and insights include the reviews of a draft of this report by workshop participants and others and the rapidly growing literature on electric-industry restructuring and its implications. One of the major concerns about the future of the electricity industry is the fate of numerous social and environmental programs supported by today`s electric utilities. Many people worry that a market-driven industry may not meet the public-policy objectives that electric utilities have met in the past. Examples of potentially at-risk programs include demand-side management (DSM), renewable energy, low-income weatherization, and fuel diversity. Workshop participants represented electric utilities, public utility commissions (PUCs), state energy offices, public-interest groups, other energy providers, and the research community.

  11. Industry Leaders, Research Experts Gather for Fourth Annual DOE Solid-State Lighting Workshop

    Broader source: Energy.gov [DOE]

    More than 250 attendees gathered in Phoenix, Arizona, to participate in the 2007 DOE Solid-State Lighting (SSL) Program Planning Workshop on January 31-February 2, 2007. Lighting industry leaders, fixture manufacturers, researchers, academia, trade associations, lighting designers, energy efficiency organizations, and utilities joined DOE to share perspectives on the rapidly evolving SSL market. The workshop provided a forum for building partnerships and strategies to accelerate technology advances and guide market introduction of high efficiency, high-performance SSL products.

  12. Industry Leaders, Research Experts Gather for Second Annual DOE Solid-State Lighting Workshop

    Broader source: Energy.gov [DOE]

    Technology leaders from industry, research institutions, universities, and national laboratories gathered in San Diego, California, on February 3 and 4, 2005 to attend a workshop focused on advancing solid-state lighting (SSL) technology from the laboratory to the marketplace. Sponsored by the U.S. Department of Energy (DOE) Building Technologies Office, the workshop provided an interactive forum for shaping and prioritizing DOE's SSL research and development activities.

  13. DOE Response to EAC Recommendations - March 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and PolicyCybersecurityThis version ofDOE Response to

  14. COV Response | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.0 - HOISTING30, 2006COV Response High

  15. Opportunities, Barriers and Actions for Industrial Demand Response in California

    SciTech Connect (OSTI)

    McKane, Aimee T.; Piette, Mary Ann; Faulkner, David; Ghatikar, Girish; Radspieler Jr., Anthony; Adesola, Bunmi; Murtishaw, Scott; Kiliccote, Sila

    2008-01-31T23:59:59.000Z

    In 2006 the Demand Response Research Center (DRRC) formed an Industrial Demand Response Team to investigate opportunities and barriers to implementation of Automated Demand Response (Auto-DR) systems in California industries. Auto-DR is an open, interoperable communications and technology platform designed to: Provide customers with automated, electronic price and reliability signals; Provide customers with capability to automate customized DR strategies; Automate DR, providing utilities with dispatchable operational capability similar to conventional generation resources. This research began with a review of previous Auto-DR research on the commercial sector. Implementing Auto-DR in industry presents a number of challenges, both practical and perceived. Some of these include: the variation in loads and processes across and within sectors, resource-dependent loading patterns that are driven by outside factors such as customer orders or time-critical processing (e.g. tomato canning), the perceived lack of control inherent in the term 'Auto-DR', and aversion to risk, especially unscheduled downtime. While industry has demonstrated a willingness to temporarily provide large sheds and shifts to maintain grid reliability and be a good corporate citizen, the drivers for widespread Auto-DR will likely differ. Ultimately, most industrial facilities will balance the real and perceived risks associated with Auto-DR against the potential for economic gain through favorable pricing or incentives. Auto-DR, as with any ongoing industrial activity, will need to function effectively within market structures. The goal of the industrial research is to facilitate deployment of industrial Auto-DR that is economically attractive and technologically feasible. Automation will make DR: More visible by providing greater transparency through two-way end-to-end communication of DR signals from end-use customers; More repeatable, reliable, and persistent because the automated controls strategies that are 'hardened' and pre-programmed into facility's software and hardware; More affordable because automation can help reduce labor costs associated with manual DR strategies initiated by facility staff and can be used for long-term.

  16. DOE Responses to DOE Challenge Home (formerly Builders Challenge) National Program Requirements Public Comments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and PolicyCybersecurityThis version ofDOE Response-

  17. DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems

    Broader source: Energy.gov [DOE]

    DOE will launch a collaborative effort with industry to evaluate and scope high-impact manufacturing R&D to improve natural gas systems efficiency and leak reduction. The goal of this effort is to establish an advanced manufacturing initiative. AMO will lead this effort.

  18. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    Demand Side Management Framework for Industrial Facilities provides three major areas for changing electric loads in industrial buildings:

  19. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    Site Industry Chem Repackaging Fruit Proc & Cold StorageCold storage Data centers and test labs for high tech industriesCold storage Data centers and test labs for high tech industries

  20. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research

    SciTech Connect (OSTI)

    Bickford, D.F.

    1993-12-31T23:59:59.000Z

    The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

  1. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

  2. DOE Receives Responses on the Implementation of Large-Capacity...

    Broader source: Energy.gov (indexed) [DOE]

    Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE Energy Star Testing...

  3. Proceedings of EPRI/DOE workshop on nuclear industry valve problems

    SciTech Connect (OSTI)

    Sprung, J.L. (ed.) [ed.

    1981-01-01T23:59:59.000Z

    Representatives from 29 nuclear industry organizations (11 valve manufacturers, 4 nuclear steam supply system vendors, 5 utilities, 3 national laboratories, 2 architect/engineering firms, the Department of Energy (DOE), EPRI, and 2 others) attended the workshop. Working sessions on key valves and on valve stem and seat leakage developed the following recommendations: (1) establish a small permanent expert staff to collect, analyze, and disseminate information about nuclear valve problems; (2) perform generic key valve programs for pressurized water reactors and for boiling water reactors, and several plant specific key valve programs, the latter to demonstrate the cost-effectiveness of such studies; (3) confirm the identity of, define, and initiate needed longer term research and development programs dealing with seat and stem leakage; and (4) establish an industry working group to review and advise on these efforts. Separate abstracts were prepared for three papers which are included in the appendix. (DLC)

  4. Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop

    Broader source: Energy.gov [DOE]

    Solid-state lighting (SSL) technology leaders from industry, research institutions, universities, and national laboratories gathered in Orlando, Florida from February 1-3, 2006 to attend a workshop focused on advancing SSL technologies from the laboratory to the marketplace. The workshop was hosted by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (Building Technologies Office) and the Office of Science (Basic Energy Sciences Program). The 2006 workshop provided a forum for sharing updates on basic research underlying SSL technology, SSL core technology research, product development, commercialization support, and the ultimate goal of bringing energy-efficient, cost-competitive products to the market.

  5. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Goli, Sasank; McKane, Aimee; Olsen, Daniel

    2011-06-14T23:59:59.000Z

    Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

  6. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Goli, Sasank

    2012-01-01T23:59:59.000Z

    and Open Automated Demand Response. In Grid Interop Forum.work was sponsored by the Demand Response Research Center (load-management.php. Demand Response Research Center (2009).

  7. ORISE: Helping Strengthen Emergency Response Capabilities for DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE ProjectCrisis andExercise Golden Guardian

  8. DOE Response to 2014 EAC Recommendations Available | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOE F 243.2 Records Scheduling3-2008 DOEof5.3MRecognizedDOE

  9. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    13 Table 2. Demand Side Management Framework for IndustrialDR Strategies The demand-side management (DSM) frameworkpresented in Table 2. Demand Side Management Framework for

  10. Assessing the Control Systems Capacity for Demand Response in California Industries

    SciTech Connect (OSTI)

    Ghatikar, Girish; McKane, Aimee; Goli, Sasank; Therkelsen, Peter; Olsen, Daniel

    2012-01-18T23:59:59.000Z

    California's electricity markets are moving toward dynamic pricing models, such as real-time pricing, within the next few years, which could have a significant impact on an industrial facility's cost of energy use during the times of peak use. Adequate controls and automated systems that provide industrial facility managers real-time energy use and cost information are necessary for successful implementation of a comprehensive electricity strategy; however, little is known about the current control capacity of California industries. To address this gap, Lawrence Berkeley National Laboratory, in close collaboration with California industrial trade associations, conducted a survey to determine the current state of controls technologies in California industries. This,study identifies sectors that have the technical capability to implement Demand Response (DR) and Automated Demand Response (Auto-DR). In an effort to assist policy makers and industry in meeting the challenges of real-time pricing, facility operational and organizational factors were taken into consideration to generate recommendations on which sectors Demand Response efforts should be focused. Analysis of the survey responses showed that while the vast majority of industrial facilities have semi- or fully automated control systems, participation in Demand Response programs is still low due to perceived barriers. The results also showed that the facilities that use continuous processes are good Demand Response candidates. When comparing facilities participating in Demand Response to those not participating, several similarities and differences emerged. Demand Response-participating facilities and non-participating facilities had similar timings of peak energy use, production processes, and participation in energy audits. Though the survey sample was smaller than anticipated, the results seemed to support our preliminary assumptions. Demonstrations of Auto-Demand Response in industrial facilities with good control capabilities are needed to dispel perceived barriers to participation and to investigate industrial subsectors suggested of having inherent Demand Response potential.

  11. Microsoft Word - DOE RFI Response 10-27-10

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S. DEPARTMENTthe UseCR-091April 6,DOE/NNSA

  12. Does Corporate Social Responsibility Affect the Cost of Capital? * Sadok El Ghoul

    E-Print Network [OSTI]

    Saskatchewan, University of

    capital for a large sample of U.S. firms. Using several approaches to estimate firms' ex ante costDoes Corporate Social Responsibility Affect the Cost of Capital? * Sadok El Ghoul University the effect of corporate social responsibility (CSR) on the cost of equity capital for a large sample of U

  13. Responses by CPower, Inc. to DOE RFI | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof Enhanced Dr.ResponseEnergy

  14. EnerNOC Inc. Commercial & Industrial Demand Response

    E-Print Network [OSTI]

    Valley Authority C&I DR: 560 MW Tucson Electric Power C&I DR: 40 MW Xcel Energy (Colorado) C&I DR: 44 MW Baltimore Gas & Electric C&I DR:120 MW Bonneville Power Administration C&I DR: Multiple Pilots Delmarva with 2010 revenues of $280 million 500+ full-time employees Energy Efficiency Industrial EE Program

  15. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    SciTech Connect (OSTI)

    Reaven, S.J. [State Univ. of New York, Stony Brook, NY (United States)

    1994-12-01T23:59:59.000Z

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

  16. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    energy cost for DR; The packaging of DR offerings is perceived as inadequate; A business’energy costs. o Several demand response programs offer financial and other benefits to businesses

  17. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

  18. U.S. Department of Energy (DOE) Industrial Programs and Their Impacts 

    E-Print Network [OSTI]

    Weakley, S. A.; Roop, J. M.

    2005-01-01T23:59:59.000Z

    with these industries and their supporting industries to improve energy efficiency: • • • • • • • • Aluminum Chemicals Forest Products Glass Metal Casting Mining Steel Supporting Industries: process heating heat treating forging welding... are limited in their choice of fuels because the technologies currently used in specific processes require a certain fuel. For example, aluminum production requires large amounts of electricity to reduce the alumina to metal. Paper pulping leaves a...

  19. DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks

    Broader source: Energy.gov [DOE]

    This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell powered lift trucks deployed by industry.

  20. DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP)

    Broader source: Energy.gov [DOE]

    This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell backup power deployed by industry.

  1. Proceedings of the DOE/Industry Sensor Working Group meeting, Austin, Texas

    SciTech Connect (OSTI)

    Not Available

    1988-11-01T23:59:59.000Z

    This paper report contains topics presented at a sensor workshop group meeting. The topics describe measuring instruments of use in the pulp and paper industry. Topics include: measurement of solids fraction; process instrumentation research for the pulp paper industry; real-time non-contact optical surface motion monitor; on-machine sensors to measure paper mechanical properties; hierarchical intelligent control of industrial processes -- an in-parallel lime kiln application; proposal for research on lignin concentration measurement in pulping liquors; and advanced polymeric sensor materials for industrial drying.

  2. DOE responses to CDH October 1993 comments on the Remedical Action Plan for the Naturita, Colorado, Umtra Site

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This document includes the October 1993 comments provided by the Colorado Department of Health (CDH) on the Department of Energy (DOE) Preliminary Final Remedial Action Plan for the Naturita, Colorado, UMTRA Site. DOE`s responses are included after each CDH comment.

  3. Seasonal reproduction in Spanish does and reproductive response to suckling manipulation

    E-Print Network [OSTI]

    Lawson, Janet Lee

    1983-01-01T23:59:59.000Z

    37 21 50. 00 e 157 Treatments differ from contre) (P&. 10) 13 Tr eatments di f 1'er from contr oi (P&. 05) c Treatments differ I'rom contr oi (P&. 001) d Conception between groups differs (P&. 05) e Three does wane removed from group III...SEASONAL REPRODUCTION IN SPANISH DOES AND REPRODUCTIVE RESPONSE TO SUCKLING MANIPULATION A Thesis By JANET LEE LAWSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree...

  4. DOE Responses to EAC Work Products - June 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and PolicyCybersecurityThis version ofDOE Response-DOE

  5. Estimating Demand Response Market Potential Among Large Commercialand Industrial Customers:A Scoping Study

    SciTech Connect (OSTI)

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan,Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    Demand response is increasingly recognized as an essentialingredient to well functioning electricity markets. This growingconsensus was formalized in the Energy Policy Act of 2005 (EPACT), whichestablished demand response as an official policy of the U.S. government,and directed states (and their electric utilities) to considerimplementing demand response, with a particular focus on "price-based"mechanisms. The resulting deliberations, along with a variety of stateand regional demand response initiatives, are raising important policyquestions: for example, How much demand response is enough? How much isavailable? From what sources? At what cost? The purpose of this scopingstudy is to examine analytical techniques and data sources to supportdemand response market assessments that can, in turn, answer the secondand third of these questions. We focus on demand response for large(>350 kW), commercial and industrial (C&I) customers, althoughmany of the concepts could equally be applied to similar programs andtariffs for small commercial and residential customers.

  6. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    oil, starch and corn refining, since these can be a source of fuel products. The sugar cane industry

  7. Research and development separation technology: The DOE Industrial Energy Conservation Program

    SciTech Connect (OSTI)

    Not Available

    1987-07-01T23:59:59.000Z

    This brochure summarizes the Office of Industrial Programs' RandD efforts in the advancement of separation technology. The purpose of this brochure is to provide interested parties with information on federal industrial energy conservation activities in separation technology. The brochure is comprised of the following sections: Separation Technology, summarizes the current state of separation technology and its uses. Potential Energy Savings, discusses the potential for industrial energy conservation through the implementation of advanced separation processes. Office of Industrial Programs' RandD Efforts in Separation Technology Development, describes the separation RandD projects conducted by IP. RandD Data Base, lists contractor, principal investigator, and location of each separation-related RandD effort sponsored by IP.

  8. DOE Seeks Proposals to Increase Investment in Industrial Carbon Capture and Sequestration Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has issued a Funding Opportunity Announcement soliciting projects to capture and sequester carbon dioxide from industrial sources and to put CO2 to beneficial use.

  9. U.S. Department of Energy (DOE) Industrial Programs and Their Impacts

    E-Print Network [OSTI]

    Weakley, S. A.; Roop, J. M.

    2008-01-01T23:59:59.000Z

    SOx NOx Carbon CROSSCUTTING Adjustable-Speed Drives for 500 to 4000 Horsepower Industrial Applications 0.342 0.160 0.002 0.001 0.074 0.055 6.72 Autotherm ? Energy Recovery...

  10. The DOE s In-Plant Training (INPLT) Model to Promote Energy Efficiency in the Industrial Sector

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL] [ORNL; Nimbalkar, Sachin U [ORNL] [ORNL; De Fontaine, Mr. Andre [United States Department of Energy (DOE), Industrial Technology Program] [United States Department of Energy (DOE), Industrial Technology Program; Schoeneborn, Fred C [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    In-Plant Training (INPLT) is a new model for developing energy efficiency expertise within the US manufacturing companies participating in the U.S. Department of Energy s (DOE s) Better Buildings, Better Plants Program-a nationwide initiative to drive a 25% reduction in industrial energy intensity in 10 years. INPLTs are designed to fill a market niche by providing hands on training in a real world manufacturing plant environment. Through INPLTs, participants from multiple manufacturing plants, supply chains, utilities, and other external stakeholders learn how to conduct energy assessments, use energy analysis tools to analyze energy saving opportunities, develop energy management systems, and implement energy savings projects. Typical INPLT events are led by DOE-certified Energy Experts and range from 2-4 days. Topics discussed include: identification of cross-cutting or system specific opportunities; introduction to ISO 50001 Energy Management Systems; and energy project implementation and replication. This model is flexible, and can be tailored to suit the needs of specific industries. The INPLTs are a significant departure from the traditional single plant energy assessment model previously employed by DOE. INPLTs shift the focus from the concept of a single-plant s energy profile to a broader focus on training and capacity building among multiple industrial participants. The objective is to enable trainees to identify, quantify, implement and replicate future energy saving projects without continued external assistance. This paper discusses the INPLT model and highlights some of the initial outcomes from the successfully delivered INPLTs and the overall impact in terms of numbers of plants/participants trained, impacted energy footprints, and potential replication of identified opportunities.

  11. Solid State Research CenterDOE Fuel Cell Portable Power Workshop End User Perspective Industrial

    E-Print Network [OSTI]

    Usage :KU 19901980 :KU 2000 :KU 2010 :KU On Body Energy Solid State Research CenterDOE Fuel Cell · Notebook - ~20.0W ·High unit growth of Mobile phones driving energy demand ·Laptop computer power demands) Power(W) Energy & Power of Portable Devices Cellular Phone Laptop Computer Palm III Palm VII 2-way Radio

  12. Updated Site Response Analyses for the Waste Treatment Plant, DOE Hanford, Site, Washington.

    SciTech Connect (OSTI)

    Youngs, Robert R.

    2007-06-29T23:59:59.000Z

    This document describes the calculations performed to develop updated relative amplification functions for the Waste Treatment and Immobilization Plant (WTP) facility at the DOE Hanford Site, Washington State. The original 2,000-year return period design spectra for the WTP were based on the results of a probabilistic seismic hazard analysis (PSHA) performed for the DOE Hanford Site by Geomatrix (1996). Geomatrix (1996) performed the PSHA using empirical soil-site ground motion models based primarily on recordings from California. As part of that study, site response analyses were performed to evaluate ground motions at the Hanford sites and California deep soil sites. As described in Appendix A of Geomatrix (1996), characteristic site profiles and dynamic soil properties representative of conditions at various Hanford sites and California deep soil strong motion recording stations were defined. Relative site responses of the Hanford profiles and California profiles were then compared. Based on the results of those site response analyses, it was concluded that ground motions at the Hanford sites underlain by deep soil deposits are similar in character to those on California deep soil sites and it was judged appropriate to use empirical deep soil site attenuation relationships based primarily on California ground motion data to develop design spectra for the Hanford sites. In a subsequent analysis, Geomatrix (2003) updated the site response analyses of Geomatrix (1996, Appendix A) to incorporate randomization of the California and Hanford profiles. The results of that analysis also led to the conclusion that the response of the Hanford profiles was similar to the response of deep soil sites in California.

  13. DOE and Japanese Ministry of Economy, Trade, and Industry Sign Memorandum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE Contract DOEEnergyLighting

  14. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  15. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    process residual like bagasse are now available (Cornland etsugar in- dustry uses bagasse and the edible oils industrySection 7.4.7. ). The use of bagasse for energy is likely to

  16. U.S. Department of Energy (DOE) Industrial Programs and Their Impacts

    E-Print Network [OSTI]

    Weakley, S. A.; Roop, J. M.

    2005-01-01T23:59:59.000Z

    .062 - 0.003 - 0.093 12.6 Aluminum Scrap Sorting 0.361 0.270 0.002 0.001 0.078 0.058 7.09 Detection and Removal of Molten Salts from Molten Aluminum Alloys - - - - - - - High-Capacity Melt Furnace 0.000 0.000 - 0.000 - 0.000 0.000 Oxygen-Enhanced Combustion... evaluation, including assessing past programs and the benefits that have accrued from investments. Through emphasis on technologies and practices, the ITP uses its IOF process to increase the efficiency of industrial energy use, both now...

  17. U.S. Department of Energy (DOE) Industrial Programs and Their Impacts

    E-Print Network [OSTI]

    Weakley, S. A.; Roop, J. M.

    2004-01-01T23:59:59.000Z

    of Molten Salts from Molten Aluminum Alloys - - - - - High-Capacity Melt Furnace 0.000 0.000 - 0.000 0.000 Onsite Process for Recovering Waste Aluminum 0.139 0.016 - 0.016 2.20 Oxygen-Enhanced Combustion for Recycled Aluminum 0.025 - - 0.003 0... of the best energy-saving tech- nologies and practices within industry. In addition to these strategies, ITP partners with other program areas within EERE and performs on- going program evaluation, including assessing past programs and the benefits...

  18. Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRY ENERGYEnergyIndustrial

  19. DOE (Department of Energy) nuclear weapon R and T (research, development, and testing): Objectives, roles, and responsibilities

    SciTech Connect (OSTI)

    Otey, G.R.

    1989-07-01T23:59:59.000Z

    An overview of the DOE nuclear weapons research, development, and testing program is given along with a description of the program objectives and the roles and responsibilities of the various involved organizations. The relationship between the DoD and DOE is described and the division of responsibilities for weapon development as well as the coordinated planning and acquisition activities are reviewed. Execution of the RD T program at the nuclear weapons laboratories is outlined. 24 refs., 3 figs.

  20. DOE Paducah Site Tour - Industry Workshop, July 31, 2012 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009) | DepartmentDepartmentDOE,Energy

  1. DOE to Launch Collaborative Effort with Industry to Improve Natural Gas

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 ChairsEnergyawards contract for sludgeDOE to HostSystems |

  2. Ames Lab Interns Make Their Research Mark in Industry, Academia and at DOE National Labs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta Fe MetroWeinbergAmericanSixAmerican-Made SRF

  3. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01T23:59:59.000Z

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  4. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11T23:59:59.000Z

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  5. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    about 1.2% of world energy consumption and is responsible7.2: Design energy consumption trends in world ammonia

  6. Characterizing the Response of Commercial and Industrial Facilities to Dynamic Pricing Signals from the Utility

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Callaway, Duncan S.; Price, Phillip N.; Kiliccote, Sila

    2010-07-01T23:59:59.000Z

    We describe a method to generate statistical models of electricity demand from Commercial and Industrial (C&I) facilities including their response to dynamic pricing signals. Models are built with historical electricity demand data. A facility model is the sum of a baseline demand model and a residual demand model; the latter quantifies deviations from the baseline model due to dynamic pricing signals from the utility. Three regression-based baseline computation methods were developed and analyzed. All methods performed similarly. To understand the diversity of facility responses to dynamic pricing signals, we have characterized the response of 44 C&I facilities participating in a Demand Response (DR) program using dynamic pricing in California (Pacific Gas and Electric's Critical Peak Pricing Program). In most cases, facilities shed load during DR events but there is significant heterogeneity in facility responses. Modeling facility response to dynamic price signals is beneficial to the Independent System Operator for scheduling supply to meet demand, to the utility for improving dynamic pricing programs, and to the customer for minimizing energy costs.

  7. U.S. DOE's Response to the Fukushima Daiichi Reactor Accident: Answers and Data Products for Decision Makers

    SciTech Connect (OSTI)

    Reed, A. L.

    2012-05-01T23:59:59.000Z

    The Fukushima Daiichi response posed a plethora of scientific questions to the U.S. Department of Energy’s (DOE) radiological emergency response community. As concerns arose for decision makers, the DOE leveraged a community of scientists well-versed in the tenants of emergency situations to provide answers to time-sensitive questions from different parts of the world. A chronology of the scientific Q and A that occurred is presented along with descriptions of the challenges that were faced and how new methods were employed throughout the course of the response.

  8. Compliance by Design: Industry Response to Energy Efficiency By KATE S. WHITEFOOT, MEREDITH FOWLIE, AND STEVEN J. SKERLOS*

    E-Print Network [OSTI]

    Fowlie, Meredith

    1 Compliance by Design: Industry Response to Energy Efficiency Standards* By KATE S. WHITEFOOT, MEREDITH FOWLIE, AND STEVEN J. SKERLOS* Policies designed to improve industrial environmental performance for household appliances, lighting products, light-duty and heavy-duty vehicles. How firms respond

  9. Manufacturing industry challenges and responses to EU, California, and other product-targeted environmental regulations

    E-Print Network [OSTI]

    Kirschner, Michael

    2008-01-01T23:59:59.000Z

    that it took the automotive industry until 2002 to unifycounterparts in the automotive industry on lessons learned,but predating it, the automotive industry started developing

  10. Industrial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP »summerlectures [ICO]default Sign In About |

  11. Integrated Safety Management System Guide (Volume 1) for use with Safety Management System Policies (DOE P 450.4, DOE P 450.5, and DOE P 450.6); The Functions, Responsibilities, and Authorities Manual; and DOE Acquisition Regulation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-03-01T23:59:59.000Z

    This Department of Energy (DOE) Integrated Safety Management System (ISMS) Guide is approved for use by the Office of Environment, Safety and Health (EH) and the National Nuclear Security Administration (NNSA). This Guide is available for use by all DOE components and their contractors. This Guide is a consensus document coordinated by EH and prepared under the direction of the DOE Safety Management Implementation Team (SMIT). Replaces DOE G 450.4-1A. Canceled by DOE G 450.4-1C.

  12. Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Callaway, Duncan S.; Kiliccote, Sila

    2011-08-16T23:59:59.000Z

    Changes in the electricity consumption of commercial buildings and industrial facilities (C&I facilities) during Demand Response (DR) events are usually estimated using counterfactual baseline models. Model error makes it difficult to precisely quantify these changes in consumption and understand if C&I facilities exhibit event-to-event variability in their response to DR signals. This paper seeks to understand baseline model error and DR variability in C&I facilities facing dynamic electricity prices. Using a regression-based baseline model, we present a method to compute the error associated with estimates of several DR parameters. We also develop a metric to determine how much observed DR variability results from baseline model error rather than real variability in response. We analyze 38 C&I facilities participating in an automated DR program and find that DR parameter errors are large. Though some facilities exhibit real DR variability, most observed variability results from baseline model error. Therefore, facilities with variable DR parameters may actually respond consistently from event to event. Consequently, in DR programs in which repeatability is valued, individual buildings may be performing better than previously thought. In some cases, however, aggregations of C&I facilities exhibit real DR variability, which could create challenges for power system operation.

  13. Markets during world oil supply crises: an analysis of industry, consumer, and governmental response

    SciTech Connect (OSTI)

    Erfle, Stephen; Pound, John; Kalt, Joseph

    1981-04-01T23:59:59.000Z

    An analysis of the response of American markets to supply crises in world oil markets is presented. It addresses four main issues: the efficiency of the operation of American oil markets during oil supply crises; the problems of both economic efficiency and social equity which arise during the American adaptation process; the propriety of the Federal government's past policy responses to these problems; and the relationship between perceptions of the problems caused by world oil crises and the real economic natures of these problems. Specifically, Chapter 1 presents a theoretical discussion of the effects of a world supply disruption on the price level and supply availability of the world market oil to any consuming country including the US Chapter 2 provides a theoretical and empirical analysis of the efficiency of the adaptations of US oil product markets to higher world oil prices. Chapter 3 examines the responses of various groups of US oil firms to the alterations observed in world markets, while Chapter 4 presents a theoretical explanation for the price-lagging behavior exhibited by firms in the US oil industry. Chapter 5 addresses the nature of both real and imagined oil market problems in the US during periods of world oil market transition. (MCW)

  14. Seasonal reproduction in Spanish does and reproductive response to suckling manipulation 

    E-Print Network [OSTI]

    Lawson, Janet Lee

    1983-01-01T23:59:59.000Z

    interval of 149 days) ware also compared. Study 2 A group of 160 fall- and early-winter kidding Spanish does managed in three locations were used in this study. Appendix table 1 illus- trates the experimental design. These 160 does were divided... in table 1. Does appeared to be totally anestrus in March and April (figure 2. ), Most does demonstrated ovarian activity from August through January. The ovarian data concurred with the parturition data. Pebruary was a month of transition into anestrus...

  15. Integrated Safety Management System Guide (Volume 1) for use with Safety Management System Policies (DOE P 450.4, DOE P 450.5, and DOE P 450.6); The Functions, Responsibilities, and Authorities Manual; and DOE Acquisition Regulation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-03-01T23:59:59.000Z

    This Department of Energy (DOE) Integrated Safety Management System (ISMS) Guide is approved for use by the Office of Environment, Safety and Health (EH) and the National Nuclear Security Administration (NNSA). This Guide is available for use by all DOE components and their contractors. This Guide is a consensus document coordinated by EH and prepared under the direction of the DOE Safety Management Implementation Team (SMIT). Canceled by DOE G 450.4-1C.

  16. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22T23:59:59.000Z

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  17. Analysis of Open Automated Demand Response Deployments in California and Guidelines to Transition to Industry Standards

    E-Print Network [OSTI]

    Ghatikar, Girish

    2014-01-01T23:59:59.000Z

    Automated  Demand  Response  in  Commercial  Buildings.  Demand  Response  Infrastructure  for   Commercial  Buildings.  

  18. DOE Issues ESPC IDIQ Solicitation: Deadline for Response April 29, 2015

    Broader source: Energy.gov [DOE]

    DOE today released a request for proposals (RFP) solicitation for the implementation of energy savings performance contracts (ESPCs) at U.S. federal government sites worldwide.

  19. Comments of Santiago Grijalva: High-Level Response to DOE RFI...

    Office of Environmental Management (EM)

    to DOE RFI on Smart Grid Policy More Documents & Publications Initial Comments of Honeywell, Inc. on Policy and Logistical Challenges in Implementing Smart Grid Solutions...

  20. Comments of the Demand Response and Smart Grid Coalition on DOE...

    Broader source: Energy.gov (indexed) [DOE]

    The Demand Response and Smart Grid Coalition (DRSG), the trade association for companies that provide products and services in the areas of demand response and smart grid...

  1. RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions

    SciTech Connect (OSTI)

    Wright, Anthony L [ORNL; Martin, Michaela A [ORNL; Gemmer, Bob [U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Scheihing, Paul [U.S. Department of Energy, Industrial Technologies Program; Quinn, James [U.S. Department of Energy

    2007-09-01T23:59:59.000Z

    In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club on October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the nation's largest manufacturing plants--those that consume a total of 1 trillion British thermal units (Btu) or more annually. The approximately 6800 U.S. facilities that fall into this category collectively account for about 53% of all energy consumed by industry in the United States. The 2006 Save Energy Now energy assessments departed from earlier DOE plant assessments by concentrating solely on steam and process heating systems, which are estimated to account for approximately 74% of all natural gas use for manufacturing. The assessments also integrated a strong training component designed to teach industrial plant personnel how to use DOE's steam or process heating opportunity assessment software tools. This approach had the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. The Save Energy Now initiative also included provisions to help plants that applied for but did not qualify for assessments (based on the 1 trillion Btu criterion). Services offered to these plants included (1) an assessment by one of DOE's 26 university-based Industrial Assessment Centers (IACs), (2) a telephone consultation with a systems expert at the DOE's Energy Efficiency and Renewable Energy Information Center, or (3) other technical materials and services available through ITP (e.g., the Save Energy Now CD). By the end of 2006, DOE had completed all 200 of the promised assessments, identifying potential natural gas savings of more than 50 trillion Btu and energy cost savings of about $500 million. These savings, if fully implemented, could reduce CO2 emissions by 4.04 million metric tons annually. These results, along with the fact that a large percentage of U.S. energy is used by a relatively small number of very large plants, clearly suggest that assessments are an expedient and cost-effective way to significantly affect large amounts of energy use. Building on the success of the 2006 initiative, ITP has expanded the effort in 2007 with the goal of conducting 250 more asse

  2. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    of Program Participation Rates on Demand Response MarketTable 3-1. Methods of Estimating Demand Response PenetrationDemand Response

  3. Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    building control strategies and techniques for demand response,”demand response and energy ef?ciency in commercial buildings,”building electricity use with application to demand response,”

  4. Product strategy in response to technological innovation in the semiconductor test industry

    E-Print Network [OSTI]

    Lin, Robert W. (Robert Wei-Pang), 1976-

    2004-01-01T23:59:59.000Z

    After the market boom of 2000 in the semiconductor industry changed significantly. The changes included stricter limits on capital cost spending, and the increased propensity of the industry to outsource the manufacturing ...

  5. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    EIA), 2005. Form EIA-861 Database http://www.eia.doe.gov/Energy Consumption Survey database (EIA 2003), and personal

  6. Comment Response for DOE O 475.2B, Identifying Classified Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This draft has been scheduled for final review before the Directives Review Board on 8-21-14. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-1014). All major comments and concerns should be submitted by COB 8-19-2014.

  7. A Cooperative Demand Response Scheme Using Punishment Mechanism and Application to Industrial Refrigerated Warehouses

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas J

    2014-01-01T23:59:59.000Z

    ? min . [1] U. D. of Energy, “Benefits of demand response inHong, and X. Li, “A demand response energy management schemefor energy efficiency and automated demand response in

  8. Microsoft Word - NAP Coalition Response to DOE RFI DRAFT 10.11...

    Broader source: Energy.gov (indexed) [DOE]

    the importance of consumer engagement and decision making in ensuring success in demand response and the smart grid. In enacting the legislation in 2007 that mandated the...

  9. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    E-Print Network [OSTI]

    Olsen, Daniel

    2012-01-01T23:59:59.000Z

    Opportunities for Energy  Efficiency and Demand Response in Agricultural/Water End?Use Energy Efficiency Program.    i 1   4.0   Energy Efficiency and Demand Response 

  10. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    demand response options, or benchmarking, are probably not all that meaningful. The “best practices”

  11. Manufacturing industry challenges and responses to EU, California, and other product-targeted environmental regulations

    E-Print Network [OSTI]

    Kirschner, Michael

    2008-01-01T23:59:59.000Z

    directive (2002/96/EC, “WEEE” ) the EU expanded its scope ofe-waste”) regulation like WEEE, decided to take matters intake its cues from RoHS and WEEE. While industry lobbying

  12. DOE-FLEX: DOE's Telework Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-02-11T23:59:59.000Z

    The order establishes the requirements and responsibilities for the Departments telework program. Cancels DOE N 314.1.

  13. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    demand response, participation can imply: (1) customer enrollment in voluntary programs and tariffs, or (2) the retention

  14. Letter: EPA has reviewed the DOE's proposals for the following four interim response actions

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-I I2 m.m\ LILTS PlanI9

  15. DOE RFI Policy & Logistical Challenges_PHI_response_vFinal_logo

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009)|PublishesDOE QualifiedEP9425 701 9th

  16. DOE Responses to EAC Work Products - September 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and PolicyCybersecurityThis version ofDOE

  17. Microsoft Word - NAP Coalition Response to DOE RFI DRAFT 10.11.01.docx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S.Fluor-B&W OE-781R DOE111009 Volume01 15thNAP

  18. Microsoft Word - 2010O-01_DOE Response to Beryllium.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverviewCleanupShipping Form3 -Rick Jansons

  19. Does living near heavy industry cause lung cancer in women? A case control study using life grid interviews. 

    E-Print Network [OSTI]

    Edwards, R; Pless-Mulloli, T; Howel, D; Chadwick, TJ; Bhopal, Raj; Harrison, R N; Gribbin, H

    2006-10-13T23:59:59.000Z

    >25 years v 0 years near (within 0–5 km) heavy industry in Teesside was 2.13 (95% CI 1.34 to 3.38). After adjustment for confounding factors the OR was 1.83 (95% CI 0.82 to 4.08) for >25 years or 1.10 (95% CI 0.96 to 1.26) for an additional 10 years...

  20. Microsoft Word - DOE-ID-14-090 NGNP Industry Alliance EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title: Acquisition76724 SECTION90

  1. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Lekov, Alex

    2009-01-01T23:59:59.000Z

    Best Practices. Kiliccote, S. (2008). Automated Demand Responsebest operation practices and behaviors to enhance the impact of DR activities. 1.0 Introduction Background and Overview Demand Response (

  2. Examining Synergies between Energy Management and Demand Response: A Case Study at Two California Industrial Facilities

    E-Print Network [OSTI]

    Olsen, Daniel

    2013-01-01T23:59:59.000Z

    Capabilities due to Energy Management Improvement inSummary Introduction Energy Management Demand Responseand Processes Energy Management and Demand Response History

  3. Strategizing Bhopal: motives and manipulation in response to an industrial disaster

    E-Print Network [OSTI]

    Stephens, Robert Mitchell

    1997-01-01T23:59:59.000Z

    This thesis examines the political and economic motives behind the responses of the Indian Government and nongovernmental organizations to the Union Carbide chemical disaster that occurred on December 3, 1984 in Bhopal India. Using F. G. Bailey...

  4. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    of Residential Response in Time of Use Pricing Experiments”,as critical-peak pricing, time-of-use rates, and real-timebusinesses. Time-of-use and real-time-pricing (RTP)-type

  5. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    choices in the face of real options, or surveys can beoptions may differ from their actual behavior when faced with realReal-Time Demand Response (RTDR) program offers customers two advance-notice options:

  6. DOE explosives safety manual

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The Department of Energy (DOE) policy requires that all DOE activities be conducted in a manner that protects the safety of the public and provides a safe and healthful workplace for employees. DOE has also prescribed that all personnel be protected in any explosives operation undertaken. The level of safety provided shall be at least equivalent to that of the best industrial practice. The risk of death or serious injury shall be limited to the lowest practicable minimum. DOE and contractors shall continually review their explosives operations with the aim of achieving further refinements and improvements in safety practices and protective features. This manual describes the Department's explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. It is intended to reflect the state-of-the-art in explosives safety. In addition, it is essential that applicable criteria and requirements for implementing this policy be readily available and known to those responsible for conducting DOE programs.

  7. Analysis of Open Automated Demand Response Deployments in California and Guidelines to Transition to Industry Standards

    SciTech Connect (OSTI)

    Ghatikar, Girish; Riess, David; Piette, Mary Ann

    2014-01-02T23:59:59.000Z

    This report reviews the Open Automated Demand Response (OpenADR) deployments within the territories serviced by California?s investor-owned utilities (IOUs) and the transition from the OpenADR 1.0 specification to the formal standard?OpenADR 2.0. As demand response service providers and customers start adopting OpenADR 2.0, it is necessary to ensure that the existing Automated Demand Response (AutoDR) infrastructure investment continues to be useful and takes advantage of the formal standard and its many benefits. This study focused on OpenADR deployments and systems used by the California IOUs and included a summary of the OpenADR deployment from the U.S. Department of Energy-funded demonstration conducted by the Sacramento Municipal Utility District (SMUD). Lawrence Berkeley National Laboratory collected and analyzed data about OpenADR 1.0 deployments, categorized architectures, developed a data model mapping to understand the technical compatibility of each version, and compared the capabilities and features of the two specifications. The findings, for the first time, provided evidence of the total enabled load shed and average first cost for system enablement in the IOU and SMUD service territories. The OpenADR 2.0a profile specification semantically supports AutoDR system architectures and data propagation with a testing and certification program that promotes interoperability, scaled deployments by multiple vendors, and provides additional features that support future services.

  8. Industrial Geospatial Analysis Tool for Energy Evaluation

    E-Print Network [OSTI]

    Alkadi, N.; Starke, M.; Ma, O.; Nimbalkar, S.; Cox, D.; Dowling, K.; Johnson, B.; Khan, S.

    2013-01-01T23:59:59.000Z

    of manufacturing industries based on each type of industries using information from DOE's Industrial Assessment Center database (IAC-DB) and DOE's Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition...

  9. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    TerraTek

    2007-06-30T23:59:59.000Z

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

  10. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  11. DOE-FLEX: DOE's Telework Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-05T23:59:59.000Z

    The directive establishes the requirements and responsibilities for the Department’s telework program. Canceled by DOE O 314.1.

  12. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01T23:59:59.000Z

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO{sub 2}) and oxides of nitrogen (NO{sub x}) from electric power generating stations. The restrictions on SO{sub 2} take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry`s response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  13. 1996 DOE technical standards program workshop: Proceedings

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The workshop theme is `The Strategic Standardization Initiative - A Technology Exchange and Global Competitiveness Challenge for DOE.` The workshop goal is to inform the DOE technical standards community of strategic standardization activities taking place in the Department, other Government agencies, standards developing organizations, and industry. Individuals working on technical standards will be challenged to improve cooperation and communications with the involved organizations in response to the initiative. Workshop sessions include presentations by representatives from various Government agencies that focus on coordination among and participation of Government personnel in the voluntary standards process; reports by standards organizations, industry, and DOE representatives on current technology exchange programs; and how the road ahead appears for `information superhighway` standardization. Another session highlights successful standardization case studies selected from several sites across the DOE complex. The workshop concludes with a panel discussion on the goals and objectives of the DOE Technical Standards Program as envisioned by senior DOE management. The annual workshop on technical standards has proven to be an effective medium for communicating information related to standards throughout the DOE community. Technical standards are used to transfer technology and standardize work processes to produce consistent, acceptable results. They provide a practical solution to the Department`s challenge to protect the environment and the health and safety of the public and workers during all facility operations. Through standards, the technologies of industries and governments worldwide are available to DOE. The DOE Technical Standards Program, a Department-wide effort that crosscuts all organizations and disciplines, links the Department to those technologies.

  14. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01T23:59:59.000Z

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO[sub 2]) and oxides of nitrogen (NO[sub x]) from electric power generating stations. The restrictions on SO[sub 2] take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry's response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  15. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    chemicals, light industry (iron foundries, cold storage andindustry ? Use of CHP ? Debottlenecking ? Increased production capacity ? Better use of production capacity ? Energy management Cold storage

  16. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    industry (iron foundries, cold storage and refrigeration,Energy management Cold storage and refrigeration ? Newelectric power; heat/cold storage; heat pumps using ambient

  17. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    energy monitoring system Paper and Paperboard industry ? Integrated energy management system ?monitoring was handled by “accredited organizations that certify the energy management systems” (

  18. The Impact of Control Technology on the Demand Response Potential of California Industrial Refrigerated Facilities Final Report

    E-Print Network [OSTI]

    Scott, Doug

    2014-01-01T23:59:59.000Z

    detailed the energy efficiency and demand response measuresto control both their energy usage and demand in order torequires balancing energy efficiency and demand response.

  19. Response

    Office of Environmental Management (EM)

    year) to unify national lab efforts around a single high-impact technical problem of additive manufacturing and to coordinate that effort with industry and other governmental...

  20. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    20april%202006.pdf ETSU, 1999. Industrial Sector CarbonSee discussion of this report in ETSU, AEA Technology, 2001.a report prepared by ETSU (now AEA Energy & Environment) on

  1. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    to provide training and energy audits and to help industrial1997 to end of March - Energy audits have allow to avoidagrees to undertake an energy audit, develop a management

  2. DOE and FERC Jointly Submit Implementation Proposal for The National Action Plan on Demand Response to Congress

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy and the Federal Energy Regulatory Commission (FERC) jointly submitted to Congress a required “Implementation Proposal for The National Action Plan on Demand Response.”

  3. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21T23:59:59.000Z

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  4. Activation of retinal tyrosine hydroxylase: tolerance induced by chronic treatment with haloperidol does not modify response to light

    SciTech Connect (OSTI)

    Cohen, J.; Neff, N.H.

    1982-05-01T23:59:59.000Z

    A single dose of haloperidol administered to rats in the dark increases the activity of retinal tyrosine hydroxylase. The ability of haloperidol to activate the enzyme is diminished 24 hr after terminating 22 to 30 days of treatment with haloperidol. The retinal enzyme is also tolerant to activation by treatment with chlorpromazine. In contrast, exposure of the animals to light activates the enzyme to the same extent in chronic haloperidol-treated and control animals. Thus, chronic haloperidol treatment does not modify the ability of the retinal enzyme system to respond to the physiological stimulus, light. Apparently, activation of retinol tyrosine hydroxylase by haloperidol and light occurs by independent mechanisms.

  5. FAQS Reference Guide – Industrial Hygiene

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the November 2007 edition of DOE-STD-1138-2007, Industrial Hygiene Functional Area Qualification Standard.

  6. Response Elements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11T23:59:59.000Z

    The Guide provides acceptable methods for meeting the requirement of DOE O 151.1C for response elements that respond or contribute to response as needed in an emergency. Cancels DOE G 151.1-1, Volume 3-1, DOE G 151.1-1, Volume 3-2, DOE G 151.1-1, Volume 3-3, DOE G 151.1-1, Volume 3-4, DOE G 151.1-1, Volume 4-1, DOE G 151.1-1, Volume 4-2, DOE G 151.1-1, Volume 4-3, DOE G 151.1-1, Volume 4-4, DOE G 151.1-1, Volume 4-5, and DOE G 151.1-1, Volume 4-6.

  7. National emission standards for hazardous air pollutants (NESHAP) for the polyether polyols manufacturing industry: Summary of public comments and responses

    SciTech Connect (OSTI)

    Not Available

    1999-05-01T23:59:59.000Z

    This document contains a summary of public comments received on the NESHAP for Polyether Polyols Production (40 CFR 63, subpart PPP), which was proposed on September 4, 1997 (62 FR 46804). This document also provides the EPA's response to each comment, and outlines the changes made to the regulation in response to public comments.

  8. Accident Response Group

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-09-20T23:59:59.000Z

    To establish Department of Energy (DOE) policy for DOE response to accidents and significant incidents involving nuclear weapons or nuclear weapon components. Cancels DOE O 5530.1. Canceled by DOE O 153.1.

  9. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP »summerlectures [ICO]default Sign InIndustrial

  10. DOE FEMA Videos | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE FEMA Videos DOE FEMA Videos EMERGENCY RESPONSE TO A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL This training video and user guide was designed to supplement the...

  11. Challenges Facing the Green Industry The floriculture, nursery and landscape industries,

    E-Print Network [OSTI]

    and environmental issues. Extension's Response Designed for both industry and consumers, a web- based seminar

  12. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-11-06T23:59:59.000Z

    The order establishes policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. Cancels DOE O 483.1 Admin Chg 1 and DOE M 483.1-1.

  13. DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research

    SciTech Connect (OSTI)

    Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

    2009-07-31T23:59:59.000Z

    General Electric’s (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energy’s cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

  14. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE's industrial technical assistance efforts are critical to the deployment of existing and future advanced energy efficiency technologies, as well as energy management...

  15. turbine thermal index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    obtained through this project can directly benefit the U.S. power and utility turbine industry by improving product development that specifically meets DOE advanced turbine program...

  16. commercial buildings initiative | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Buildings Initiative The DOE Building Technologies Office works with the commercial building industry to accelerate the use of energy efficiency technologies in both...

  17. Demand Response and Open Automated Demand Response Opportunities for Data Centers

    E-Print Network [OSTI]

    Mares, K.C.

    2010-01-01T23:59:59.000Z

    Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

  18. Analysis of residential, industrial and commercial sector responses to potential electricity supply constraints in the 1990s

    SciTech Connect (OSTI)

    Fisher, Z.J.; Fang, J.M.; Lyke, A.J.; Krudener, J.R.

    1986-09-01T23:59:59.000Z

    There is considerable debate over the ability of electric generation capacity to meet the growing needs of the US economy in the 1990s. This study provides new perspective on that debate and examines the possibility of power outages resulting from electricity supply constraints. Previous studies have focused on electricity supply growth, demand growth, and on the linkages between electricity and economic growth. This study assumes the occurrence of electricity supply shortfalls in the 1990s and examines the steps that homeowners, businesses, manufacturers, and other electricity users might take in response to electricity outages.

  19. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection Obeying Environmental Laws Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the...

  20. The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the official position of ASAE, and its printing and distribution does not constitute an endorsement of views which m

    E-Print Network [OSTI]

    Kentucky, University of

    presentation does not necessarily reflect the official position of ASAE, and its printing and distribution does and system performance as caused by factors such as operation static pressure, fan belt condition, and dust alternative to estimating ventilation rate. The reliability of CO2 balance method depends on the validity

  1. DOE Energy Challenge Project

    SciTech Connect (OSTI)

    Frank Murray; Michael Schaepe

    2009-04-24T23:59:59.000Z

    Project Objectives: 1. Promote energy efficiency concepts in undergraduate and graduate education. 2. Stimulate and interest in pulp and paper industrial processes, which promote and encourage activities in the area of manufacturing design efficiency. 3. Attract both industrial and media attention. Background and executive Summary: In 1997, the Institute of Paper Science and Technology in conjunction with the U.S. Department of Energy developed a university design competition with an orientation to the Forest Products Industry. This university design competition is in direct alignment with DOE’s interests in instilling in undergraduate education the concepts of developing energy efficient processes, minimizing waste, and providing environmental benefits and in maintaining and enhancing the economic competitiveness of the U.S. forest products industry in a global environment. The primary focus of the competition is projects, which are aligned with the existing DOE Agenda 2020 program for the industry and the lines of research being established with the colleges comprising the Pulp and Paper Education and Research Alliance (PPERA). The six design competitions were held annually for the period 1999 through 2004.

  2. Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof Enhanced Dr. JuliaPOINTRespond to theResponse SEAB

  3. Departmental Radiological Emergency Response Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-06-27T23:59:59.000Z

    The order establishes requirements and responsibilities for the DOE/NNSA national radiological emergency response assets and capabilities and Nuclear Emergency Support Team assets. Cancels DOE O 5530.1A, DOE O 5530.2, DOE O 5530.3, DOE O 5530.4, and DOE O 5530.5.

  4. The Use of DOE Technologies at The World Trade Center Incident: Lessons Learned

    SciTech Connect (OSTI)

    McCabe, B.; Kovach, J.; Carpenter, C.; Blair, D.

    2003-02-25T23:59:59.000Z

    In response to the attack of the World Trade Center (WTC) on September 11, 2001, the International Union of Operating Engineers (IUOE) National Hazmat Program (OENHP) assembled and deployed a HAZMAT Emergency Management Team (Team) to the disaster site (Site). The response team consisted of a Certified Industrial Hygienist and a rotating team of industrial hygienists, safety professionals, and certified HAZMAT instructors. Through research funded by the Department of Energy (DOE) Office of Environmental Management (EM) and managed by the National Energy Technology Laboratory (NETL), the IUOE conducted human factors assessments on baseline and innovative technologies during real-world conditions and served as an advocate at the WTC disaster site to identify opportunities for the use and evaluation of DOE technologies. From this work, it is clear that opportunities exist for more DOE technologies to be made readily available for use in future emergencies.

  5. Maintenance Management Program for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-06-01T23:59:59.000Z

    To define the program for the management of cost-effective maintenance of Department of Energy (DOE) nuclear facilities. Guidance for compliance with this Order is contained in DOE G 433.1-1, Nuclear Facility Maintenance Management Program Guide for use with DOE O 433.1, which references Federal regulations, DOE directives, and industry best practices using a graded approach to clarify requirements and guidance for maintaining DOE-owned Government property. (Cancels DOE 4330.4B, Chapter II, Maintenance Management Program, dated 2-10-94.) Cancels DOE 4330.4B (in part). Canceled by DOE O 433.1A.

  6. Industrial Relations Specialist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will be responsible for the oversight of all human resources functions for one or more DOE/NNSA Management and Operating (M&O;) contracts. The contracts...

  7. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    s Nuclear Industry After Fukushima Jingdong YUAN SummaryT he March 2011 Fukushima nuclear accident has had aand speedy responses to Fukushima-like and other unexpected

  8. Development Requirements for Advanced Industrial Heat Pumps 

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    1985-01-01T23:59:59.000Z

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  9. Development Requirements for Advanced Industrial Heat Pumps

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  10. Industrial Energy Efficiency Projects Improve Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of Energy (DOE)...

  11. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect (OSTI)

    Zull, Lawrence M.; Yeniscavich, William [Defense Nuclear Facilities Safety Board, 625 Indiana Ave., NW, Suite 700, Washington, DC 20004-2901 (United States)

    2008-01-15T23:59:59.000Z

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  12. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials R&D More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Advanced Manufacturing Office Overview Microwave and Radio Frequency Workshop...

  13. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  14. DOE standard: Radiological control

    SciTech Connect (OSTI)

    Not Available

    1999-07-01T23:59:59.000Z

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

  15. Summary of the energy efficient, waste-reducing technology assessment conducted for DOE and EPAct 2108

    SciTech Connect (OSTI)

    Weinbrecht, E. [Sandia National Labs., Albuquerque, NM (United States); Zachritz, W. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1995-04-01T23:59:59.000Z

    The industrial sector is the most complex and diverse segment of the US economy. There are more than 360,000 industrial facilities in the US, using tens of thousands of processes with millions of different pieces of equipment and employing nearly 30 million people to make hundreds of thousands of products. These facilities consume large quantities of raw materials and energy resources every year. Their waste streams, as well as the technology options for preventing them, are very specific not only to individual industries, but even to plants within the same industry that produce similar products. On October 24, 1992, President Bush signed the Energy Policy Act of 1992 (EPAct) into law as Public Law 102-486. Section 2108 of the Act requires the DOE to identify opportunities to demonstrate energy efficient pollution prevention technologies and processes. As a first step in DOE`s response to congress, Sandia National Laboratories lead a fast tracked project to compile information from the open literature, and pilot a process for identifying and prioritizing opportunity areas from industrial and federal experts. Approximately 300 documents were collected and reviewed, and knowledgeable individuals in government, universities, and trade associations were interviewed. A panel of experts from petroleum industry was assembled for the future opportunity assessments pilot These activities were conducted between May and August, 1993. Project background and results are summarized.

  16. DOE/EA-1565: Environmental Assessment for Adopted Energy Conservation...

    Office of Environmental Management (EM)

    and request for comments (NODA). 72 FR 6186. DOE published this notice in response to stakeholders who had commented in the NOPR that DOE's proposed standards might...

  17. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    SciTech Connect (OSTI)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States); Hemenway, A. [USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States)

    1991-12-31T23:59:59.000Z

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

  18. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    SciTech Connect (OSTI)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States)); Hemenway, A. (USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States))

    1991-01-01T23:59:59.000Z

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

  19. Annual report to the Office of Industrial Relations, fiscal year 1983

    SciTech Connect (OSTI)

    Not Available

    1983-12-01T23:59:59.000Z

    The Assessment and Field Support Program (AFSP) of the Manpower Education, Research, and Training Division, ORAU, provides lead technical assistance to the Office of Industrial Relations (OIR), DOE. OIR has headquarters responsibility for monitoring and supporting DOE national laboratories and other government-owned, contractor-operated (GOCO) facilities in developing and maintaining an efficient and effective workforce. In addition to providing support to GOCOs, this mission includes coordination and assistance to DOE program offices in carrying out their mission includes coordination and assistance to DOE program offices in carrying out their human resource development activities. The Division of Contractor Personnel Management, Human Resource Development Branch, is responsible for carrying out four major functions: (1) policy development and communication, (2) manpower planning and analysis, (3) training program development, administration, and evaluation, and (4) sharing training resources and expertise. AFSP's support to OIR is organized around these four major functions.

  20. EA-1936: Proposed Changes to Parcel ED-1 Land Uses, Utility Infrastructure, and Natural Area Management Responsibility, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of DOE’s proposed modifications to the allowable land uses, utility infrastructure, and Natural Area management responsibility for Parcel ED-1. The purpose of the modifications is to enhance the development potential of the Horizon Center business/industrial park, while ensuring protection of the adjacent Natural Area. The area addressed by the proposed action was evaluated for various industrial/business uses in the Environmental Assessment Addendum for the Proposed Title Transfer of Parcel ED-1, DOE/EA-1113-A.

  1. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12T23:59:59.000Z

    To establish Department of Energy (DOE) policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. No cancellation.

  2. DOE Facilities Technology Partnering Programs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12T23:59:59.000Z

    The Order establishes roles and responsibilities for the oversight, management and administration of technology partnerships and associated technology transfer mechanisms, and clarifies related policies and procedures. Does not cancel other directives.

  3. State Level Analysis of Industrial Energy Use 

    E-Print Network [OSTI]

    Elliott, R. N.; Shipley, A. M.; Brown, E.

    2003-01-01T23:59:59.000Z

    in the global aluminum market. Similarly, increases in electricity prices combined with declining old-growth timber inventories lead to a decline in the wood products and primary paper industries. The outlook for these industries is equally uncertain.... Available: http://www.eia.doe.gov/cneaf/electricity/esr/ esr sum.html. Washington, D.C.: USDOE. [DOE/EIA] Department of Energy, Energy Information Administration. 2000. Annual Energy Outlook 2001. DOE/EIA 0383(2001). Washington, D.C.: Department...

  4. Safety Management Functions, Responsibilities, and Authorities Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-12-31T23:59:59.000Z

    This Manual defines safety management functions, responsibilities, and authorities for DOE senior management with responsibilities for line, support, oversight, and enforcement actions. Cancels DOE M 411.1-1B. Canceled by DOE O 450.2.

  5. Safety Management Functions, Responsibilities, and Authorities Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-10-08T23:59:59.000Z

    This Manual defines safety management functions, responsibilities, and authorities for DOE senior management with responsibilities for line, support, oversight, and enforcement actions. Canceled by DOE M 411.1-1A. Does not cancel other directives.

  6. DOE/OIT Plant-Wide Energy Assessment Experience Summary

    E-Print Network [OSTI]

    Olszewski, M.; Leach, R.; McElhaney, K.

    The Department of Energy (DOE) Office of Industrial Technologies (OIT) is sponsoring cost-shared, plant-wide energy assessments of industrial facilities through its BestPractices Program. The purpose of these assessments is to examine plant utility...

  7. Modulation of Root Microbiome Community Assembly by the Plant Immune Response (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Lebeis, Sarah [University of North Carolina

    2013-03-01T23:59:59.000Z

    Sarah Lebeis of University of North Carolina on "Modulation of root microbiome community assembly by the plant immune response" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  8. 1994 DOE Technical Standards Program Workshop: Proceedings

    SciTech Connect (OSTI)

    Spellman, D.J.

    1994-12-31T23:59:59.000Z

    The DOE Technical Standards Program has been structured to provide guidance and assistance for the development, adoption, and use of voluntary standards within the Department. OMB Circular A-119, ``Federal Participation in the Development and Use of Voluntary Standards`` establishes the policy to be followed in working with voluntary standards bodies, and in adopting and using voluntary standards whenever feasible. The DOE Technical Standards Program is consistent with this policy and is dedicated to the task of promoting its implementation. The theme of this year`s workshop is ``Standards Initiatives in Environmental Management fostering the development and use of industry standards for safe, environmentally responsible operations.`` The objective of the workshop is to increase the participant`s awareness of the standardization activities taking place nationally and internationally and the impact of these activities on their efforts, and to facilitate the exchange of experiences, processes, and tools for implementing the program. Workshop sessions will include presentations by industry and Government notables in the environment, safety, and health arena with ample opportunity for everyone to ask questions and share experiences. There will be a breakout session which will concentrate on resolution of issues arising from the implementation of the DOE Technical Standards Program and a plenary session to discuss the plans developed by the breakout groups. Many organizations provide services and products which support the development, processing, distribution, and retrieval of standards. Those organizations listed at the end of the agenda will have exhibits available for your perusal throughout the workshop. Last year`s workshop was very successful in stimulating an understanding of an interest in the standards program. This year, we hope to build on that success and provide an environment for the synergism of ideas to enhance the program and advance its implementation.

  9. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06T23:59:59.000Z

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  10. DOE Announces Over $30 Million to Help Universities Train the...

    Office of Environmental Management (EM)

    30 Million to Help Universities Train the Next Generation of Industrial Energy Efficiency Experts DOE Announces Over 30 Million to Help Universities Train the Next Generation of...

  11. FY06 DOE Energy Storage Program PEER Review

    Office of Environmental Management (EM)

    9 DOE Energy Storage PEER Review John D. Boyes Sandia National Laboratories Mission Develop advanced electricity storage and PE technologies, in partnership with industry, for...

  12. 2015 DOE Annual Occupational Medicine Workshop & Webinar (OMWW...

    Office of Environmental Management (EM)

    This training will advance DOE's mission as follows: By providing medical and allied health professionals (eg, Industrial Hygiene) and their management with updates regarding...

  13. Comparison of Real World Energy Consumption to Models and DOE...

    Broader source: Energy.gov (indexed) [DOE]

    energy performance of appliances and equipment as it compares with models and test procedures. The study looked to determine whether DOE and industry test procedures...

  14. DEPARTMENT OF ENERGY Excess Uranium Management: Effects of DOE...

    Broader source: Energy.gov (indexed) [DOE]

    Excess Uranium Management: Effects of DOE Transfers of Excess Uranium on Domestic Uranium Mining, Conversion, and Enrichment Industries; Request for Information AGENCY: Office of...

  15. BTU Accounting for Industry

    E-Print Network [OSTI]

    Redd, R. O.

    1979-01-01T23:59:59.000Z

    , salesmen cars, over the highway trucks, facilities startup, waste used as fuel and fuels received for storage. This is a first step in the DOE's effort to establish usage guidelines for large industrial users and, we note, it requires BTU usage data...-generated electricity, heating, ventilating, air conditioning, in-plant transportation, ore hauling, raw material storage and finished product warehousing. Categories which are excluded are corporate and divisional offices, basic research, distribution centers...

  16. DOE Collegiate Wind Competition (Presentation)

    SciTech Connect (OSTI)

    Jones, J.

    2014-02-01T23:59:59.000Z

    This presentation for the January Stakeholder Engagement and Outreach webinar outlines the expanded need for workers in the wind industry and provides an overview of the DOE Wind Competition (to be held in May 2014) and the guiding principles of the competition.

  17. Letter of Intent Meeting Environmental Responsibilities For Doe's Remaining Groundwater Clean-up Activities At the Young-Rainey STAR Center

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-I I2 m.m\ LILTS PlanI9

  18. Does the Quantum Vacuum Fall Near the Earth? The Downward Acceleration of the Quantum Vacuum is Responsible for the Equivalence Principle

    E-Print Network [OSTI]

    Ostoma, T; Ostoma, Tom; Trushyk, Mike

    1999-01-01T23:59:59.000Z

    The downward acceleration of the virtual electrically charged fermion particles of the quantum vacuum is responsible for the Einstein Weak Equivalence Principle and for our perception of 4D space-time curvature near the earth. Since the virtual fermion particles of the quantum vacuum (virtual electrons for example) possess mass, we assume that during their short lifetimes the virtual fermions are in a state of downward acceleration (or free-fall) near the earth. Many of the virtual fermions also possess electrical charge, and are thus capable of interacting electrically with a real test mass, since a test mass is composed of real, electrically charged, fermion particles. The electrical interaction between the downward accelerated virtual fermions with nearby light or matter is responsible for the equivalence of inertial and gravitational mass, and also responsible for our perception of 4D space-time curvature near the earth. In pure accelerated frames the apparent acceleration of the virtual particles of the ...

  19. US Department of Energy Public Participation Policy Comment Response Document

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    Niney-nine respondents provided comments to DOE on its ``Draft Public Involvement Policy`` (Dec. 1, 1993). Their comments and DOE`s responses are listed.

  20. Materials needs and opportunities in the pulp and paper industry

    SciTech Connect (OSTI)

    Angelini, P. [comp.

    1995-08-01T23:59:59.000Z

    The Department of Energy`s (DOE) Office of Industrial Technologies (OIT) supports research and development (R&D) in industry, the DOE national laboratories, and in universities to develop energy efficient, environmentally-acceptable industrial technologies. The Office of Industrial Technologies is working with seven energy-intensive industries to develop R&D roadmaps that will facilitate cooperative government-industry efforts to achieve energy-efficient, environmentally-acceptable, sustainable industries of the future. The forest products industry is one of the industries with which OIT is working to develop an R&D roadmap. The Advanced Industrial Materials (AIM) Program of the Office of Industrial Technologies sponsors long-term, directed research on materials that will enable industry to develop and utilize more energy-efficient, sustainable processes and technologies. The purpose of the study described in this report was to identify the material R&D needs and opportunities for the pulp and paper mill of the future.

  1. Expanding the Industrial Assessment Center Program: Building an Industrial Efficiency Workforce

    E-Print Network [OSTI]

    Trombley, D.; Elliott, R. N.; Chittum, A.

    Expanding the Industrial Assessment Center Program: Building an Industrial Efficiency Workforce Daniel Trombley Engineering Associate R. Neal Elliott, Ph.D., P.E. Associate Director of Research American Council for an Energy-Efficient... of access to technical information and trained workforce. One of the most successful programs for achieving energy efficiency savings in the manufacturing sector is the US Department of Energy (DOE)'s Industrial Assessment Center (IAC) program...

  2. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  3. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-12T23:59:59.000Z

    To establish Department of Energy (DOE) policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. Admin Chg, dated 9-18-2013. Canceled by DOE O 483.1A.

  4. Geothermal industry employment: Survey results & analysis

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    The Geothermal Energy Association (GEA) is ofteh asked about the socioeconomic and employment impact of the industry. Since available literature dealing with employment involved in the geothermal sector appeared relatively outdated, unduly focused on certain activities of the industry (e.g. operation and maintenance of geothermal power plants) or poorly reliable, GEA, in consultation with the DOE, decided to conduct a new employment survey to provide better answers to these questions. The main objective of this survey is to assess and characterize the current workforce involved in geothermal activities in the US. Several initiatives have therefore been undertaken to reach as many organizations involved in geothermal activities as possible and assess their current workforce. The first section of this document describes the methodology used to contact the companies involved in the geothermal sector. The second section presents the survey results and analyzes them. This analysis includes two major parts. The first part analyzes the survey responses, presents employment numbers that were captured and describes the major characteristics of the industry that have been identified. The second part of the analysis estimates the number of workers involved in companies that are active in the geothermal business but did not respond to the survey or could not be reached. Preliminary conclusions and the study limits and restrictions are then presented. The third section addresses the potential employment impact related to manufacturing and construction of new geothermal power facilities. Indirect and induced economic impacts related with such investment are also investigated.

  5. Combustion Turbine CHP System for Food Processing Industry -...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation on Combustion Turbine CHP System for Food Processing Industry, given by Kevin Chilcoat of Frito-Lay North America, at the U.S. DOE Industrial Distributed Energy...

  6. A R&D Program for Advanced Industrial Heat Pumps 

    E-Print Network [OSTI]

    Hayes, A. J.

    1985-01-01T23:59:59.000Z

    The overall goal of the DOE Industrial Heat Pump Program is to foster research and development which will allow more efficient and economical recovery of waste energy in industry. Specifically, the program includes the identification of appropriate...

  7. A R&D Program for Advanced Industrial Heat Pumps

    E-Print Network [OSTI]

    Hayes, A. J.

    The overall goal of the DOE Industrial Heat Pump Program is to foster research and development which will allow more efficient and economical recovery of waste energy in industry. Specifically, the program includes the identification of appropriate...

  8. Understanding and reducing energy and costs in industrial cooling systems

    E-Print Network [OSTI]

    Muller, M.R.; Muller, M.B.

    2012-01-01T23:59:59.000Z

    Industrial cooling remains one of the largest potential areas for electrical energy savings in industrial plants today. This is in spite of a relatively small amount of attention paid to it by energy auditors and rebate program designers. US DOE...

  9. Rationale for State Support of Industries of the Future

    E-Print Network [OSTI]

    Trabachino, C.; Muller, M.

    Through its Industries of the Future (IOF) strategy, the US DOE's Office of Industrial Technologies (OIT) seeks to develop and deploy advanced technologies and practices that will increase energy efficiency, environmental performance...

  10. Program Name: Energy Smart Industrial (ESI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    remote industrial facilities with limited staff resources. Energy Efficiency-Demand Response (EE-DR) Demonstration Demonstration project to investigate the effects and...

  11. Improving Pumping System Performance: A Sourcebook for Industry, Second Edition

    SciTech Connect (OSTI)

    Not Available

    2006-05-01T23:59:59.000Z

    Prepared for the DOE Industrial Technologies Program, this sourcebook contains the practical guidelines and information manufacturers need to improve the efficiency of their pumping systems.

  12. Sandia Energy - JBEI Research Receives Strong Industry Interest...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Receives Strong Industry Interest in DOE Technology Transfer Call Home Renewable Energy Energy Biofuels Facilities Partnership JBEI News News & Events Research &...

  13. Webinar: ASRAC Commercial/Industrial Pumps Working Group

    Broader source: Energy.gov [DOE]

    DOE is conducting a public meeting and webinar for the Appliance Standards and Rulemaking Federal Advisory Committee's (ASRAC) Commercial and Industrial Pumps Working Group. For more information,...

  14. Integrated Lab/Industry Research Project at LBNL

    Broader source: Energy.gov (indexed) [DOE]

    Integrated LabIndustry Research Project at LBNL Jordi Cabana Lawrence Berkeley National Laboratory May 12 th , 2011 ES102 This presentation does not contain any proprietary,...

  15. Libyan oil industry

    SciTech Connect (OSTI)

    Waddams, F.C.

    1980-01-01T23:59:59.000Z

    Three aspects of the growth and progress of Libya's oil industry since the first crude oil discovery in 1961 are: (1) relations between the Libyan government and the concessionary oil companies; (2) the impact of Libyan oil and events in Libya on the petroleum markets of Europe and the world; and (3) the response of the Libyan economy to the development of its oil industry. The historical review begins with Libya's becoming a sovereign nation in 1951 and traces its subsequent development into a position as a leading world oil producer. 54 references, 10 figures, 55 tables.

  16. DOE ZERH Webinar: Updates to the DOE Zero Energy Ready Home Specs...

    Energy Savers [EERE]

    updated the DOE Zero Energy Ready Home specs, we've continued to track our partner feedback and other industry issues. This brings us to the release of Revision 05, which...

  17. Nuclear Industry Job Descriptions Boilermaker

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOE Directives,838NuclearForensicsIndustry

  18. Hayward Industries: Proposed Penalty (2010-CE-1110)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Hayward Industries, Inc. failed to certify a variety of pool heaters as compliant with the applicable energy conservation standards.

  19. DOE HANDBOOK

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOE FuelProgram |Guide for

  20. DOE-0336

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear EnergyMeetingMetricDOE,to

  1. DOE-0344

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear EnergyMeetingMetricDOE,to4

  2. Healy Clean Coal Project: A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2003-09-01T23:59:59.000Z

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict environmental requirements. DOE provided $117,327,000 of the total project cost of $282,300,000, or 41.6 percent. Construction for the demonstration project was started in May 1995, and completed in November 1997. Operations were initiated in January 1998, and completed in December 1999. The evaluation contained herein is based primarily on information from the AIDEA's Final Report (Alaska Industrial Development and Export Authority, 2001), as well as other references cited.

  3. Online Supplement: Sea salt aerosol response to climate change: last glacial maximum, pre-industrial, and doubled-carbon dioxide climates

    E-Print Network [OSTI]

    Mahowald, Natalie

    Online Supplement: Sea salt aerosol response to climate change: last glacial maximum, pre simulations in the current climate using the CCSM3 sea salt aerosols. We use the sea salt source deposition and wet deposition as loss mechanisms [Rasch et al., 2001]. The source of sea salt aerosols

  4. DOE Responses to DOE Challenge Home (formerly Builders Challenge) National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department of Energy81stEnforcementEnergyEAC Recommendations -

  5. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01T23:59:59.000Z

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  6. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  7. Coal industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  8. Energy Efficiency and Pollution Prevention: Industrial Efficiency Strategies

    E-Print Network [OSTI]

    Pye, M.; Elliott, R. N.

    . Beginning in the late 1980s, some in the industrial energy efficiency arena recognized that significant energy savings could be realized from P2 programs. Notable program examples are EPRI's (Electric Power Research Institute)2 Partnership... for Industrial Competitiveness program, and DOE's Industrial Assessment Center (lAC) program. EPRI's Partnership for Industrial Competitiveness (EPIC) program focuses on maximizing energy efficiency, pollution prevention and industrial competitiveness...

  9. Wyoming DOE EPSCoR

    SciTech Connect (OSTI)

    Gern, W.A.

    2004-01-15T23:59:59.000Z

    All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

  10. DOE Policy on Decommissioning DOE Facilities Under CERCLA | Department...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Policy on Decommissioning DOE Facilities Under CERCLA DOE Policy on Decommissioning DOE Facilities Under CERCLA In May 1995, the Department of Energy (DOE) issued a policy in...

  11. LG to DOE General Counsel; Re:Request for Comment on Large Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clothes Washers LG response to DOE's request for information regarding alternative test procedures for large-capacity clothes washer models, December 7, 2010. After DOE...

  12. Order Module--DOE Order 225.1B, ACCIDENT INVESTIGATIONS

    Broader source: Energy.gov [DOE]

    DOE O 225.1B prescribes organizational responsibilities, authorities, and requirements for conducting investigations of certain accidents occurring at DOE sites, facilities, areas, operations, and...

  13. Notice of Intent to Issue DOE N 314.1, DOE-Flex: DOE's Telework Program while Developing a Successor Order (5-6-11)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-06T23:59:59.000Z

    This is to develop DOE N 3XX, which will establish the requirements and responsibilities for the Department's telework/flexiplace program.

  14. Office of Industrial Technologies research in progress

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  15. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    advanced metering and demand response in electricityGoldman, and D. Kathan. “Demand response in U.S. electricity29] DOE. Benefits of demand response in electricity markets

  16. MIT and Automotive Industries MIT Industry Brief

    E-Print Network [OSTI]

    Ceder, Gerbrand

    MIT and Automotive Industries MIT Industry Brief MIT's Industrial Liaison Program (ILP) can bring@ilp.mit.edu, or visit http://ilp-www.mit.edu. MIT and Automotive Industries The Massachusetts Institute of Technology (MIT) is a leading center of research and education on topics important to the automotive industry

  17. WECC Response to DOE Quadrennial Energy Review

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director of Transmission Planning - WECC WesternWECC

  18. ATI Allegheny Ludlum's response to DOE's May

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 of 5) ALARA TrainingANDREW (

  19. Organizations' Assignment of Responsibility - DOE Directives,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeedingthis siteOrgLeadership

  20. The federal market for ESCO services: How does it measure up?

    E-Print Network [OSTI]

    Hopper, Nicole; Goldman, Charles; Birr, Dave

    2004-01-01T23:59:59.000Z

    Market Trends in the U.S. ESCO Industry: Results from theefficiency projects and ESCO industry activity: TatianaThe Federal Market for ESCO Services: How Does it Measure

  1. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial Users The

  2. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial Users

  3. CONFERENCE PROCEEDINGS EIGHTH ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION -DOE/NETL

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    CONFERENCE PROCEEDINGS EIGHTH ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION - DOE/NETL May ON CARBON CAPTURE AND SEQUESTRATION - DOE/NETL May 4 ­ 7, 2009 Abstract Reservoir simulation is the industry

  4. Industry Economists

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP »summerlectures [ICO]default Sign

  5. Comments of Tendril Networks, Inc. on DOE Request for Information...

    Broader source: Energy.gov (indexed) [DOE]

    Consumers and the Smart Grid: Data Access, Third Party Use and Privacy Comments of the Demand Response and Smart Grid Coalition on DOE's Implementing the National Broadband Plan...

  6. DRAFT - DOE O 333.1, Administering Work Force Discipline

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    To provide requirements and responsibilities for administering workforce discipline that includes disciplinary, adverse, and alternative corrective actions in the Department of Energy (DOE).

  7. DOE Office of Indian Energy Tribal Renewable Energy Project Developmen...

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Project Development and Financing Essentials Introduction The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs is responsible for...

  8. Order DOE O 205.1B | Department of Energy

    Energy Savers [EERE]

    set forth requirements and responsibilities for a Departmental Cyber Security Program (CSP) that protects information and information systems for the Department of Energy (DOE)...

  9. DOE 10 CFR Part 431 EERE-2010-BT-TP-0036 RIN 1904-AC-38 Submission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certain Commercial and Industrial Equipment: Test Procedures for Automatic Commercial Ice Makers SubmissionofCommentsbyHowe.pdf More Documents & Publications Howe-DOE...

  10. Awake Animal Imaging at BNL | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    currently being supported by: DOE BER, academia, industrial partners, medical school partners Impactbenefit to spin-off field: Improved sensitivity and resolution for...

  11. US DOE Sponsored Graduate Automotive Technology Education (GATE) Program at Penn State Emphasizing

    E-Print Network [OSTI]

    Lee, Dongwon

    US DOE Sponsored Graduate Automotive Technology Education (GATE) Program at Penn State Emphasizing in the automotive industry and academia. Develop relationships between GATE students, faculty, employers

  12. DOE MENTOR-PROTÉGÉ

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    small business subcontracting goal, and statutory socio-economic goal 2 HISTORY OF DOE MENTOR-PROTG PROGRAM June 9, 1995 The DOE Mentor Protg Program Initiative was...

  13. DOE MENTOR-PROTÉGÉ

    Broader source: Energy.gov (indexed) [DOE]

    business subcontracting goal, and statutory socio-economic goals 2 HISTORY OF DOE MENTOR-PROTG PROGRAM June 9, 1995 The DOE Mentor Protg Program Initiative was...

  14. DOE lockout/tagout safety handbook

    SciTech Connect (OSTI)

    Ulm, B.

    1993-09-02T23:59:59.000Z

    In September 1989, the Occupational Safety and Health Administration (OSHA) issued a final ruling on lockout/tagout procedures. This ruling became effective in January 1990 and was eventually incorporated into the Code of Federal Regulations. The purpose of these procedures is to safeguard employees from hazardous energy while performing service or maintenance activities on machines and equipment. Approximately 39 million workers are protected by lockout/tagout procedures in general industry. OSHA estimates that adherence to the requirements in lockout/tagout procedures will eliminate nearly two percent of all workplace deaths. A lockout/tagout program is essential to the safe operation of all Department of Energy (DOE) facilities. The program outlined in this document consists of energy-control procedures, employee training and periodic inspections, and establishes the minimum requirements for lockout/tagout of equipment or system-energy sources that could cause injury to personnel. Because serious consequences can occur due to a lack of understanding and improper administration of this program, this document also includes a method for: Providing guidance for the control of hazardous energy, protecting employees from injury, defining responsibilities, and protecting equipment and facilities from damage.

  15. Safety and Health Regulatory and Policy Response Line- General Information

    Broader source: Energy.gov [DOE]

    The DOE Worker Safety and Health Standards Response Line, established in 1992, is a service that responds to questions DOE, DOE contractor, and DOE subcontractor personnel regarding DOE-adopted and -prescribed standards and directives. These responses may not represent official OSHA policies.

  16. Ex Parte Communications Memorandum Meeting among DOE staff and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Memorandum to DOE re Battery Chargers Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future...

  17. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

  18. Industrial Decision Making 

    E-Print Network [OSTI]

    Elliott, R. N.; McKinney, V.; Shipley, A.

    2008-01-01T23:59:59.000Z

    and industrial investment decision-making. The paper will also address several important questions: • Why has industrial investment declined? • What is the outlook for industrial investment? • How can programs engage industry for future opportunities?...

  19. DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability Awards DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability Awards Newsletter highlights the...

  20. DOE's General Counsel Determines Sudan Act Does Not Bar Areva...

    Office of Environmental Management (EM)

    DOE's General Counsel Determines Sudan Act Does Not Bar Areva Enrichment Services LLC Loan Application DOE's General Counsel Determines Sudan Act Does Not Bar Areva Enrichment...

  1. WHEN DOES COMPROMISE PREVENT MORE POLLUTION?

    E-Print Network [OSTI]

    Ferrara, Mike

    WHEN DOES COMPROMISE PREVENT MORE POLLUTION? C. CLEMONS1, J. COSSEY2, M. FERRARA3, S. FORCEY4, T an industrial firm has the option of voluntar- ily controlling the pollutants it originates. A regu- lating agency sets the tax rate on corporate profits as well as a Pigouvian pollution tax: preset per- centages

  2. User's guide to DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    The Department of Energy's research laboratories represent valuable, often unique, resources for university and industrial scientists. It is DOE policy to make these laboratories and facilities available to qualified scientists. The answers to such questions as who are eligible, what and where are the facilities, what is the cost, when can they be used, are given. Data sheets are presented for each facility to provide information such as location, user contact, description of research, etc. A subject index refers to areas of research and equipment available.

  3. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

  4. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

  5. General Responsibilities and Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The material presented in this guide provides suggestions and acceptable ways of implementing DOE M 435.1-1 and should not be viewed as additional or mandatory requirements. The objective of the guide is to ensure that responsible individuals understand what is necessary and acceptable for implementing the requirements of DOE M 435.1-1.

  6. DOE Mentoring Program

    Broader source: Energy.gov [DOE]

    The Office of Learning and Workforce Development coordinates this mentoring program for DOE Federal Employees.

  7. DOE Lessons Learned

    Broader source: Energy.gov [DOE]

    DOE Lessons Learned Information Services Catches the Eye of Corporations and Educational Institutions

  8. Control and Accountability of Nuclear Materials: Responsibilities and Authorities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-09-23T23:59:59.000Z

    The order prescribes the Department of Energy (DOE) policies, responsibilities, and authorities for control and accountability of nuclear materials. Cancels DOE O 5633.2.

  9. Safety Management Functions, Responsibilities, and Authorities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-05-22T23:59:59.000Z

    This Manual provides the responsibilities of Headquarters and field element offices required by DOE P 411.1, Safety Management Functions, Responsibilities and Authorities Policy, dated 1-28-97. It also contains detailed requirements to supplement the policy's direction for each DOE organization having safety management functions to establish and maintain separate documentation of their responsibilities and authorities. Cancels DOE M 411.1-1A. Canceled by DOE M 411.1-1C.

  10. China's Energy Management System Program for Industry

    E-Print Network [OSTI]

    Hedman, B.; Yu, Y.; Friedman, Z.; Taylor, R.

    2014-01-01T23:59:59.000Z

    En er gy C o n su m p ti o n , Q u ad s Source: DOE EIA International Energy Outlook 2013 4 * Includes fuel for electricity generation and T&D losses ESL-IE-14-05-24 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New... y En er gy C o n su m p ti o n , Q u ad s Source: DOE EIA International Energy Outlook 2013 Total Non-OECD Total OECD China U.S. India 5 ESL-IE-14-05-24 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May...

  11. China's Energy Management System Program for Industry 

    E-Print Network [OSTI]

    Hedman, B.; Yu, Y.; Friedman, Z.; Taylor, R.

    2014-01-01T23:59:59.000Z

    En er gy C o n su m p ti o n , Q u ad s Source: DOE EIA International Energy Outlook 2013 4 * Includes fuel for electricity generation and T&D losses ESL-IE-14-05-24 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New... y En er gy C o n su m p ti o n , Q u ad s Source: DOE EIA International Energy Outlook 2013 Total Non-OECD Total OECD China U.S. India 5 ESL-IE-14-05-24 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May...

  12. Occupational safety and health training in DOE

    SciTech Connect (OSTI)

    Farabaugh, M.J. [Pacific Northwest Lab., Richland, WA (United States); O`Dell, C. [USDOE Office of Safety and Qualtiy Assurance, Germantown, Maryland (United States)

    1991-11-01T23:59:59.000Z

    Occupational safety and health (OSH) policies, programs and activities within DOE are changing rapidly. In June 1989, Secretary of Energy Watkins launched his ``Ten Point Initiative`` charting a new course for the Department of Energy (DOE) toward full accountability in the areas of environment, safety and health. Full compliance with Occupational Safety and Health Administration (OSHA) standards is now mandatory within the Department. Independent ``Tiger Teams`` are performing safety and health compliance assessments at DOE facilities to identify OSH deficiencies. A recent extensive OSHA audit of DOE OSH programs and related activities has resulted in additional changes in DOE OSH requirements. These changes coupled with those pending in the proposed OSHA Reform Act, have had, and will continue to have, a tremendous impact on the roles and responsibilities each of us has within DOE, particularly in the area of OSH training. This presentation focuses on the specific implications these changes have relating to OSH Training Requirements.

  13. Occupational safety and health training in DOE

    SciTech Connect (OSTI)

    Farabaugh, M.J. (Pacific Northwest Lab., Richland, WA (United States)); O'Dell, C. (USDOE Office of Safety and Qualtiy Assurance, Germantown, Maryland (United States))

    1991-11-01T23:59:59.000Z

    Occupational safety and health (OSH) policies, programs and activities within DOE are changing rapidly. In June 1989, Secretary of Energy Watkins launched his Ten Point Initiative'' charting a new course for the Department of Energy (DOE) toward full accountability in the areas of environment, safety and health. Full compliance with Occupational Safety and Health Administration (OSHA) standards is now mandatory within the Department. Independent Tiger Teams'' are performing safety and health compliance assessments at DOE facilities to identify OSH deficiencies. A recent extensive OSHA audit of DOE OSH programs and related activities has resulted in additional changes in DOE OSH requirements. These changes coupled with those pending in the proposed OSHA Reform Act, have had, and will continue to have, a tremendous impact on the roles and responsibilities each of us has within DOE, particularly in the area of OSH training. This presentation focuses on the specific implications these changes have relating to OSH Training Requirements.

  14. Gasification world database 2007. Current industry status

    SciTech Connect (OSTI)

    NONE

    2007-10-15T23:59:59.000Z

    Information on trends and drivers affecting the growth of the gasification industry is provided based on information in the USDOE NETL world gasification database (available on the www.netl.doe.gov website). Sectors cover syngas production in 2007, growth planned through 2010, recent industry changes, and beyond 2010 - strong growth anticipated in the United States. A list of gasification-based power plant projects, coal-to-liquid projects and coal-to-SNG projects under consideration in the USA is given.

  15. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect (OSTI)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14T23:59:59.000Z

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  16. Research Progress in the DOE/SERI Amorphous Silicon Research Project

    SciTech Connect (OSTI)

    Sabisky, E.; Wallace, W.; Stafford, B.; Sadlon, K.; Luft, W.

    1985-04-01T23:59:59.000Z

    The Amorphous Silicon Research Project (ASRP), established at the Solar Energy Research Institute (SERI) in 1983, is responsible for all U.S. DOE government-supported research activities in the field of amorphous silicon photovoltaics. The objectives and research directions of the project have been established by a Five-Year Research Plan developed at SERI in cooperation with the Department of Energy in 1984. In order to accomplish project goals, research is performed by a combination of i) multi-year programs consisting of multi-disciplinary research teams based on strong government/industry partnerships and ii) basic research performed in university, government, and industrial laboratories. A summary of recent research progress in the ASRP program is presented.

  17. Results From the Industrial Assessment Center (IAC) Steam Tool Benchmarking Support Project

    E-Print Network [OSTI]

    Wright, A. L.; Bassett, K.; Eckerlin, H.; Ganji, A.; Hengeveld, D.; Jendrucko, R.; Kosanovic, D.; Turner, W.

    The U. S. Department of Energy's (DOE) Office of Industrial Technology (OIT) BestPractices effort is developing a number of software tools to assist industrial energy users to improve the efficiency of their operations. One of the software tools...

  18. Combined Welcome and iManage OM Industry Day PP Presentation...

    Broader source: Energy.gov (indexed) [DOE]

    iportal.doe.gov Connecting Our People, Simplifying Our Work, Liberating Our Data iManage Industry Day 2 iportal.doe.gov Connecting Our People, Simplifying Our Work, Liberating Our...

  19. Logarithmic transformation of response Logarithmic transformation of response

    E-Print Network [OSTI]

    Komarek, Arnost

    Logarithmic transformation of response Logarithmic transformation of response Often, support S of Y is S = (0, ). Logarithm is then one of transformations to consider when trying to obtain a correct (wrong. Model Building 1. Transformation of response #12;Logarithmic transformation of response When does

  20. Industrial ecology Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Beck, D.; Boyack, K.; Berman, M.

    1998-03-01T23:59:59.000Z

    Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

  1. DRAFT - DOE G 580.1-1A, Personal Property

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This Guide provides non-regulatory guidance and information to assist DOE organizations and contractors in implementing the DOE-wide and site-specific personal property management programs. It supplements the policy, requirements, and responsibilities information contained in the DOE Order cited above and clarifies the regulatory requirements contained in the Federal Property Management Regulation (FMR) and specific contracts.

  2. DOE plan for UMTRA Project water protection standards

    SciTech Connect (OSTI)

    Not Available

    1986-07-01T23:59:59.000Z

    This plan was developed to define DOE`s implementation of water protection standards for the UMTRA Project, on an interim basis, until the EPA promulgates revised standards in response to the September, 1985, decision by the Tenth Circuit Court of Appeals. This plan presents the historical background of the development of the Title I standards and the rationale for the DOE implementation approach.

  3. Industrial Waste Landfill IV upgrade package

    SciTech Connect (OSTI)

    Not Available

    1994-03-29T23:59:59.000Z

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  4. U.S. Department of Energy Announces Completion of 500 Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of Energy (DOE) today announced that it has completed the 500th Energy Saving Assessment (ESA) at the nation's largest industrial facilities. These assessments...

  5. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect (OSTI)

    Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

    2006-04-01T23:59:59.000Z

    United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and reuse this energy. As shown in Table E-1, non-CO2 GHG emissions from U.S. industry were identified as having 2180 peta joules (PJ) or 2 Quads (quadrillion Btu) of residual chemical fuel value. Since landfills are not traditionally considered industrial organizations, the industry component of these emissions had a value of 1480 PJ or 1.4 Quads. This represents approximately 4.3% of the total energy used in the United States Industry.

  6. An overview of DOE`s wind turbine development programs

    SciTech Connect (OSTI)

    Laxson, A; Dodge, D; Flowers, L [National Renewable Energy Lab., Golden, CO (United States); Loose, R; Goldman, P [Dept. of Energy, Washington, DC (United States)

    1993-09-01T23:59:59.000Z

    The development of technologically advanced, higher efficiency wind turbines continues to be a high priority activity of the US wind industry. The United States Department of Energy (DOE) is conducting and sponsoring a range of programs aimed at assisting the wind industry with system design, development, and testing. The overall goal is to develop systems that can compete with conventional electric generation for $.05/kWh at 5.8 m/s (13 mph sites) by the mid-1990s and with fossil-fuel-based generators for $.04/kWh at 5.8 m/s sites by the year 2000. These goals will be achieved through several programs. The Value Engineered Turbine Program will promote the rapid development of US capability to manufacture wind turbines with known and well documented records of performance, cost, and reliability, to take advantage of near-term market opportunities. The Advanced Wind Turbine Program will assist US industry to develop and integrate innovative technologies into utility-grade wind turbines for the near-term (mid 1990s) and to develop a new generation of turbines for the year 2000. The collaborative Electric Power Research Institute (EPRI)/DOE Utility Wind Turbine Performance Verification Program will deploy and evaluate commercial-prototype wind turbines in typical utility operating environments, to provide a bridge between development programs currently underway and commercial purchases of utility-grade wind turbines. A number of collaborative efforts also will help develop a range of small systems optimized to work in a diesel hybrid environment to provide electricity for smaller non-grid-connected applications.

  7. The Office of Industrial Technologies - enhancing the competitiveness, efficiency, and environmental quality of American industry through technology partnerships

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    A critical component of the Federal Government`s effort to stimulate improved industrial energy efficiency is the DOE`s Office of Industrial Technologies (OIT). OIT funds research, development, and demonstration (RD&D) efforts and transfers the resulting technology and knowledge to industry. This document describes OIT`s program, including the new Industries of the Future (IOF) initiative and the strategic activities that are part of the IOF process. It also describes the energy, economic, and environmental characteristics of the materials and process industries that consume nearly 80% of all energy used by manufacturing in the United States. OIT-supported RD&D activities relating to these industries are described, and quantitative estimates of the potential benefits of many OIT-supported technologies for industry are also provided.

  8. Gas production response to price signals: Implications for electric power generators

    SciTech Connect (OSTI)

    Ferrell, M.L.

    1995-12-31T23:59:59.000Z

    Natural gas production response to price signals is outlined. The following topics are discussed: Structural changes in the U.S. gas exploration and production industry, industry outlook, industry response to price signals, and implications for electric power generators.

  9. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-03-18T23:59:59.000Z

    The following directives are extended until 3-18-06: DOE N 205.8, Cyber Security Requirements for Wireless Devices and Information Systems, dated 2-11-04; DOE N 205.9, Certification and Accreditation Process for Information Systems Including National Security Systems, dated 02-19-04; DOE N 205.10, Cyber Security Requirements for Risk Management, dated 02-19-04; DOE N 205.11, Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems, dated 2-19-04. DOE N 205.12, Clearing, Sanitizing, and Destroying Information System Storage Media, Memory Devices, and Other Related Hardware, dated 2-19-04.

  10. Organic Rankine Cycles for the Petro-Chemical Industry 

    E-Print Network [OSTI]

    Rose, R. K.; Colosimo, D. D.

    1979-01-01T23:59:59.000Z

    Under a cooperatively funded DOE/MTI program, a packaged organic Rankine power recovery system is being developed specifically to meet the needs of the petroleum refining and chemical industries. Program objectives include an actual in...

  11. Advanced Mechanical Heat Pump Technologies for Industrial Applications 

    E-Print Network [OSTI]

    Mills, J. I.; Chappell, R. N.

    1985-01-01T23:59:59.000Z

    is currently being jointly explored by MTI, DOE, and the Electric Power Research Institute (EPRI). Marketing efforts are currently under way to place this hybrid heat pump in an industrial application. Companies who need help in determining whether...

  12. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1990-02-01T23:59:59.000Z

    This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

  13. Vintage DOE: Accomplishments

    Broader source: Energy.gov [DOE]

    This vintage video, from the Office of Scientific and Technical Information and the U.S. Department of Energy Office of Science, does a great job detailing DOE's accomplishments.

  14. DOE-STD-1104

    Office of Environmental Management (EM)

    Implementation 1 DOE-STD-1104-2014 Roll-out AU Roll-out Contacts 2 Garrett Smith, Director, Nuclear Safety Basis and Facility Design, Office of Nuclear Safety (DOE...

  15. The future steelmaking industry and its technologies

    SciTech Connect (OSTI)

    Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)]|[Pittsburgh Univ., PA (United States)

    1995-01-01T23:59:59.000Z

    The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

  16. DOE Sustainability SPOtlight

    Broader source: Energy.gov [DOE]

    Newsletter highlights the recipients of the U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) 2014 Sustainability Awards.

  17. Control and Accountability of Nuclear Materials Responsibilities and Authorities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-01-29T23:59:59.000Z

    The order prescribe the Department of Energy (DOE) policies, responsibilities, and authorities for control and accountability of nuclear materials. Cancels DOE O 5630.1. Canceled by DOE O 5633.2A.

  18. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-02-24T23:59:59.000Z

    This Notice extends the following directives until 2/16/04: DOE N 205.2, Foreign National Access to DOE Cyber Systems, and DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99-7/1/00.

  19. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-12T23:59:59.000Z

    The following directives are extended until 8-12-04. DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11/1/99. DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99.

  20. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-12T23:59:59.000Z

    The following directives are extended until 8-12-05: DOE N 205.2, Foreign National Access to DOE Cyber Security Systems, dated 11-1-99 and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99. No cancellations.

  1. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-15T23:59:59.000Z

    Effective immediately, DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11-1-99, and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99, are extended until 9-30-06, unless sooner rescinded.

  2. Capitalize on Existing Assets with Demand Response

    E-Print Network [OSTI]

    Collins, J.

    2008-01-01T23:59:59.000Z

    Industrial facilities universally struggle with escalating energy costs. EnerNOC will demonstrate how commercial, industrial, and institutional end-users can capitalize on their existing assets—at no cost and no risk. Demand response, the voluntary...

  3. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  4. Uranium industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  5. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IndustryCouncil.shtml The new members that joined the Industry Council include NPP owneroperators with analysis capability: Tyrone Stevens of Exelon, and SMR vendors:...

  6. Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry. Executive summary

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    This document briefly describes the Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) program. It profiles the energy, economic, and environmental characteristics of OIT`s principal customers--the materials and process industries--that consume nearly 80% of all energy used by industry in the US. OIT-supported research, development, and demonstration (RD and D) activities relating to these industries are described as well as OIT`s crosscutting technology programs that target the needs of multiple US industries. Quantitative estimates of the potential benefits (or metrics) to US industry of many current OIT-supported technologies are also discussed.

  7. CSEM WP 112 Consumer Choice and Industrial Policy

    E-Print Network [OSTI]

    California at Berkeley. University of

    CSEM WP 112 Consumer Choice and Industrial Policy: A Study of UK Energy Markets Monica Giulietti and Industrial Policy: a study of UK Energy Markets# Monica Giulietti Aston Business School Catherine Waddams are responsible for any remaining errors. #12;2 Consumer Choice and Industrial Policy: a study of UK Energy

  8. DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Articles DOE Energy Star Testing Reveals Inefficient ASKO Dishwasher Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE Energy Star Testing DOE Refers Four...

  9. DOE Announces $14 Million Industry Partnership Projects to Increase...

    Energy Savers [EERE]

    100 percent hydrogen and hydrogen enriched natural gas blended fuels); advanced climate control, power electronic, and other ancillary systems; and combinations of advanced...

  10. DOE Report Tracks Maturation of U.S. Wind Industry

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2007-01-01T23:59:59.000Z

    Figure 7. Installed Wind Project Costs Over Time Figure 8.on U.S. Wind Power Installation, Cost, and Performanceof a decline in wind project O&M costs in recent years.

  11. DOE Issues Funding Opportunity for Academic-Industry Collaboration...

    Broader source: Energy.gov (indexed) [DOE]

    However, only a limited number of professionals, researchers, and students have the knowledge and expertise to understand and analyze the high-speed, time-synchronized data...

  12. DOE and Industry Showcase New Control Systems Security Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    and technologies designed to secure the nation's energy infrastructure from cyber attack on Tuesday through Thursday, March 23-25. Visit Booth 231 at the DistribuTECH 2010...

  13. DOE and Japanese Ministry of Economy, Trade, and Industry Sign...

    Energy Savers [EERE]

    storage or utilization; exploration technology and methodology for seismic, logging and reservoir characterization; the development and production of technology for enhanced oil...

  14. DOE and Industry Showcase New Control Systems Security Technologies...

    Energy Savers [EERE]

    The project is led by Siemens Corporate Research in partnership with Rutgers University, Siemens Energy, and the NSTB's Idaho National Laboratory (INL). Detection and...

  15. DOE Hosts LED Industry Standards Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ANSI), Underwriters Laboratories (UL), International Electrotechnical Commission (IEC), International Commission on Illumination (CIE), and Canadian Standards Association...

  16. DOE's Industrial Assessment Centers (IAC) Program: Results and Benefits

    E-Print Network [OSTI]

    Nimbalker, S.; Martin, M.

    Energy efficiency is foundational to the creation of a clean energy economy. Recent studies have speculated on the size of job creation opportunities in the clean energy field, but many of those studies have not adequately involved companies...

  17. DOE Report Tracks Maturation of U.S. Wind Industry

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2007-01-01T23:59:59.000Z

    prices and/or negotiated power purchase agreements as muchintermediaries that purchase wind power under contract and

  18. DOE Announces Award Selections for Academic-Industry Collaboration -

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentI Office of ENERGYAgreesof Energy

  19. DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentI Office of ENERGYAgreesof Energy|

  20. DOE Announces First Companies to Receive Industrial Energy Efficiency

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentI Office ofDemonstration Project

  1. DOE Announces $14 Million Industry Partnership Projects to Increase Fuel

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact UsDepartment ofNuclear Energy for Clean

  2. DOE Announces Additional Steps in Developing Sustainable Biofuels Industry

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact UsDepartmentConsumers | Department of| Department

  3. DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact UsDepartmentConsumers | Department of||

  4. DOE Announces First Companies to Receive Industrial Energy Efficiency

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact UsDepartmentConsumers |DemonstrationFinal

  5. DOE Seeks Industry Participation for Engineering Services to Design Next

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2ViolatingRegulations | Department

  6. DOE Seeks Industry Proposals for Feasibility Study to Produce Greenhouse

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2ViolatingRegulations | DepartmentGas-Free

  7. DOE Selects 26 Universities to Assess Industrial Energy Efficiency |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2ViolatingRegulationsTechnologyDepartment of

  8. DOE and Industry Showcase New Control Systems Security Technologies at

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »DepartmentLaboratory |andEnergy and FWS Sign

  9. DOE Recognizes Midwest Industrial Efficiency Leaders | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU WasteAdministrator |20.1CPlanEP9425 701

  10. DOE Selects 26 Universities to Assess Industrial Energy Efficiency |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRUJuly 29, 2013 Agency/Energy SeeksTechnology

  11. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOEDepartmentWorkshop |20242014

  12. DOE and Industry Showcase New Control Systems Security Technologies at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials |Production |DistribuTECH | Department of

  13. DOE and Industry Showcase New Control Systems Security Technologies at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials |Production |DistribuTECH | Department

  14. DOE-STD-6005-2001; Industrial Hygiene Practices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002 October5-99 February 19995503-943-96

  15. Industrial Activities at DOE: Efficiency, Manufacturing, Process, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of EnergyTreatment andJune 25, 2012Materials R&D

  16. DOE - Office of Legacy Management -- ACF Industries - NM 05

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizona ArizonaWyoming Wyoming wy_mapHome Last11 E-

  17. DOE - Office of Legacy Management -- ACF Industries Inc - NY 13

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizona ArizonaWyoming Wyoming wy_mapHome Last11

  18. DOE - Office of Legacy Management -- Canonsburg Industrial Park - PA 05

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo - NYBowen Lab -C-B ToolCanonsburg

  19. DOE - Office of Legacy Management -- Seaway Industrial Park - NY 09

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K Le BlondSanta Susana FieldSeaway

  20. Industry | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link to facebook linkProtections more and

  1. An Operational Model for Optimal NonDispatchable Demand Response

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    FACTS, $ Demand Response Energy Storage HVDC Industrial Customer PEV Renewable Energy Source: U.S.-Canada Power

  2. What China Can Learn from International Experiences in Developing a Demand Response Program

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    K.C. Mares, D. Shroyer. , 2010. Demand Response andOpen Automated Demand Response Opportunities for DataProcessing Industry Demand Response Participation: A Scoping

  3. Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Open Automated Demand Response Demonstration Project” LBNL-2009a). “Open Automated Demand Response Communications inand Actions for Industrial Demand Response in California. ”

  4. Optimizing Student Use and Experiences in Industrial Assessments

    E-Print Network [OSTI]

    Ogot, M. M.; Muller, M. R.; Kasten, D. J.

    Using students in the performance of industrial assessments is a cost-effective way to staff a team and is likely to increase in popularity. Students have always been an integral part of the process in DOE's Industrial Assessment Center program...

  5. DOE technical standards list: Directory of points of contact for the DOE Technical Standards Program

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This Department of Energy (DOE) technical standards list (TSL) has been prepared by the Office of Nuclear Safety Policy and Standards (EH-31). This TSL is approved for use by all DOE Components (i.e., all DOE Headquarters and field organizations, management and operating contractors, and laboratories). This TSL supplements DOE manuals, directives, orders, and standards. It provides basic and fundamental information for DOE Component personnel involved in identifying standardization documents. It also provides listings of points of contact within DOE and identifies links to points of contact within the Department of Defense (DoD) for coordination of standardization activities. This TSL will be updated to reflect changes in organizations, addresses, and responsibilities as necessary.

  6. Forest Products Industry of the Future

    SciTech Connect (OSTI)

    Los Alamos Technical Associates, Inc

    2002-05-01T23:59:59.000Z

    Los Alamos Technical Associates, Inc (LATA) conducted an evaluation of the potential impact and value of a portion of the current portfolio of r&d projects supported by the Office of Industrial Technology and the Forest Products Industry of the Future. The mission of the evaluation was to (a) assess the potential impact of the projects to meet the critical goals of the industry as identified in the vision and roadmapping documents. (b) Evaluate the relationship between the current portfolio of projects and the Agenda 202 Implementation Plan. In addition, evaluate the relationship between the portfolio and the newly revised draft technology strategy being created by the industry. (c) Identify areas where current efforts are making significant progress towards meeting industry goals and identify areas where additional work my be required to meet these goals. (d) Make recommendations to the DOE and the Forest Products Industry on possible improvements in the portfolio and in the current methodology that DOE uses to assess potential impacts on its R&D activities.

  7. Industry Analysis February 2013

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    technology ­ Clean tech/ clean technology #12;7 Industry Studies · IbisWorld ­ U.S. and global industry-Industries · Biodiesel ­ Biofuel ­ Alternate fuels ­ Green fuels ­ Renewable fuels/energy ­ Green energy ­ Green Canada, Census, Industry Canada, the OECD, European Union, IMF, World Bank, UN . . . Never pay for stats

  8. INDUSTRIAL ENGINEERING GRADUATE PROGRAMS

    E-Print Network [OSTI]

    Gelfond, Michael

    : Occupational biomechanics, work physiology, industrial ergonomics, environmental hygiene, cognitive engineeringINDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor

  9. DOE/CF-0059

    Broader source: Energy.gov (indexed) [DOE]

    processes and specialized topics such as combined heat and power (CHP) and energy for computer centers. EERE teams work directly with industry to help audit their facilities,...

  10. DOE/EIA-0358

    U.S. Energy Information Administration (EIA) Indexed Site

    58 Report on the 1980 Manufacturing Industries Energy Consumption Study and Survey of Large Combustors Energy Information Administration Washington, D.C. January 1983 ; This...

  11. DOE Automotive Lightweighting Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    materials for fiber reinforced composites. Until now, they have only been used in the automotive industry with thermoplastics and not as a matrix for fiber reinforced...

  12. DOE/ID-Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    non-industrial private forest land who wish to establish, produce, and deliver biomass feedstocks. It provides two categories of assistance: (1) Matching payments may be...

  13. Critical technologies research: Opportunities for DOE

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  14. Optimization of Demand Response Through Peak Shaving

    E-Print Network [OSTI]

    2013-06-19T23:59:59.000Z

    Jun 19, 2013 ... efficient linear programming formulation for the demand response of such a consumer who could be a price taker, industrial or commercial user ...

  15. DOE handbook electrical safety

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  16. DOE/CF-0088

    Office of Environmental Management (EM)

    used to effectively improve coordination between other parts of DOE. EM has developed 16 corporate performance measures to enable the program to monitor annual and life-cycle...

  17. DOE Electricity Advisory Committee

    Office of Environmental Management (EM)

    limiters (SCCL) or fault current limiters are a family of technologies that can be applied to utility power delivery systems to address the growing problems associated with DOE...

  18. DOE Technical Assistance Program

    Broader source: Energy.gov (indexed) [DOE]

    Designing Effective Residential Retrofit Programs eere.energy.gov The Parker Ranch installation in Hawaii DOE Technical Assistance Program Quality Assurance for Residential...

  19. DOE Building Technologies Program

    Energy Savers [EERE]

    501c3 * DOE will continue to support SEED, and Lawrence Berkeley National Laboratory (LBNL) will provide oversight of the code, while the permanent management plan is established...

  20. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-03-29T23:59:59.000Z

    This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

  1. DOE Radiation Records Contacts List

    Broader source: Energy.gov [DOE]

    DOE radiation records contact list for individuals to obtain records of occupational exposure directly from a DOE site.

  2. The Office of Industrial Technologies technical reports

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  3. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    2007). A Survey of the U.S. ESCO Industry: Market Growth andDOE DSM EIS EMCS EMS EPA ESCO ESPC FERC GE HVAC ISO ISO-NEenergy service companies (ESCO) and curtailment service

  4. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-01-09T23:59:59.000Z

    The Manual describes the Departments explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. Cancels DOE M 440.1-1. Canceled by DOE O 440.1B Chg 1.

  5. The Department of Energy`s Solar Industrial Program: 1994 review

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This is a report on DOE`s Solar Industrial Program. The topics of the report include an overview of the program, it`s participants and it`s objectives; solar detoxification--using solar energy to destroy environmental contaminants in air, water, and soil; solar process heat--generating industrial quantities of hot water, steam, and hot air from solar energy; and advanced processes--using concentrated solar energy to manufacture high-technology materials and develop new industrial processes.

  6. Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    response, automation, commercial, industrial buildings, peakautomation system design. Auto-DR for commercial and industrialautomation server renamed as the DRAS. This server was operated at a secure industrial

  7. The Industrial Electrification Program

    E-Print Network [OSTI]

    Harry, I. L.

    1982-01-01T23:59:59.000Z

    EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

  8. Electrotechnologies in Process Industries

    E-Print Network [OSTI]

    Amarnath, K. R.

    The Industrial Program at the Electric Power Research Institute (EPRI) promotes the efficient use of electricity to improve the competitive position of the American industry. Electrotechnologies that improve productivity, improve quality...

  9. and Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    technologicalandlogisticssystemsbygathering, structuring, and managing information. Indus- trial engineers apply their knowledge not only45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle

  10. Demographics and industry returns

    E-Print Network [OSTI]

    Pollet, Joshua A.; DellaVigna, Stefano

    2007-01-01T23:59:59.000Z

    Industry category Child care Children’s books Children’s clothing Toysindustry Child care Children’s books Children’s clothing ToysIndustries are associated with high demand by children (child care, toys) and

  11. INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY

    E-Print Network [OSTI]

    Pohl, Karsten

    INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

  12. Industry Analysis October 2010

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    Different regulations for some industries in Canada, the U.S. and Europe ie. telecommunications, energy of energy, materials, industrial waste, byproducts #12;Contact Constance Adamson Stauffer Library adamsonc

  13. New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development

    E-Print Network [OSTI]

    Minnesota, University of

    New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development DOE Response based on contributions from Office of Biomass Program; Argonne National, Hill, Tilman, Polasky and Hawthorne study ("Land Clearing and the Biofuel Carbon Debt") claims

  14. State Level Analysis of Industrial Energy Use

    E-Print Network [OSTI]

    Elliott, R. N.; Shipley, A. M.; Brown, E.

    industrial energy use data is not readily available. The only data available is at the national or census regional level (DOE/EIA 200Ia). As a result, a methodology was developed based upon state-level economic activity data and national energy intensity... data reported in the 1998 Manufacturing Energy Consumption Survey (MECS)(DOE/EIA 2001a) and value of shipments data reported in the 1998 Annual Survey of Manufacturing (ASM)(Department of Commerce 2000) are used to estimate energy data from...

  15. Radiological Protection for DOE Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-29T23:59:59.000Z

    Establishes radiological protection program requirements that, combined with 10 CFR 835 and its associated implementation guidance, form the basis for a comprehensive program for protection of individuals from the hazards of ionizing radiation in controlled areas. Extended by DOE N 441.3. Cancels DOE 5480.11, DOE 5480.15, DOE N 5400.13, DOE N 5480.11; please note: the DOE radiological control manual (DOE/EH-0256T)

  16. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  17. Advanced Industrial Materials Program. Annual progress report, FY 1993

    SciTech Connect (OSTI)

    Stooksbury, F. [comp.

    1994-06-01T23:59:59.000Z

    Mission of the AIM program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDAs. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  18. DOE-STD-5506-2007 DOE STANDARD

    E-Print Network [OSTI]

    DOE-STD-5506-2007 April 2007 DOE STANDARD Preparation of Safety Basis Documents for Transuranic on the Department of Energy Technical Standards Program Web Site at Http://tis.eh.doe.gov/techstds/ #12;DOE-STD-5506 STATEMENT A. Approved for public release; distribution is unlimited. #12;DOE-STD-5506-2007 ii Available

  19. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering Mario A. Rotea Professor and Department Head #12;2Mechanical & Industrial Engineering Outline · Undergraduate Degree Programs · Graduate Degree Programs · The Faculty · The Research · Summary #12;3Mechanical & Industrial Engineering Undergraduate Programs ­ BSME & BSIE 0 20 40 60

  20. DOE/CF-0090

    Energy Savers [EERE]

    in the U.S. doubled from roughly 35 percent to 70 percent. Creating a Strong Solar Industry through Public Private Partnerships. In 2011 EERE began a five-year, 110 million...

  1. DOE/ID-Number

    Energy Savers [EERE]

    Report UCRL-ID-133846. Walker, J.S. 2009. The Road to Yucca Mountain. Berkeley, CA: University of California Press. Warner, D.L. 1972. Survey of Industrial Waste Injection...

  2. Industrial waste reduction: The process problem

    SciTech Connect (OSTI)

    Valentino, F.W.; Walmet, G.E.

    1986-09-01T23:59:59.000Z

    Industrial waste problems, especially those involving hazardous waste, seem to be pervasive. The national media report newly discovered waste problems and sites with alarming regularity. Examples that immediately come to mind are Love Canal, New York; Times Beach, Missouri; and Seveso, Italy. Public perceptions of the industrial waste problem, reflecting the media's focus, appear to be that: large corporations are solely responsible for creating waste dumps, and the only role of government is to prevent illegal dumping and to regulate, fine, and require corporations to rectify the problem; all efforts should be directed toward preventing illegal dumping and treatment of the existing waste dumps; all industrial wastes can be classified as hazardous in nature. This general impression is both inaccurate and incomplete. All industrial waste is not hazardous (although most of it is not benign). All waste producers are not large corporations: nearly all industries produce some wastes. And, while existing waste sites must be effectively treated, additional efforts are needed at other points in the industrial waste cycle. Most people would agree both that waste dumping must be carefully regulated because of its negative impacts on the environment and that the less waste the better, even with carefully regulated disposal. Since nearly all industry now produces some waste and no one expects industry to shut down to resolve the waste problem, other strategies need to be available to deal with the problem at the front end. This paper discusses alternative strategies.

  3. DOE plan for UMTRA Project water protection standards

    SciTech Connect (OSTI)

    Not Available

    1986-07-01T23:59:59.000Z

    This plan was developed to define DOE's implementation of water protection standards for the UMTRA Project, on an interim basis, until the EPA promulgates revised standards in response to the September, 1985, decision by the Tenth Circuit Court of Appeals. This plan presents the historical background of the development of the Title I standards and the rationale for the DOE implementation approach.

  4. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued...

  5. Industrial policy and the Indian electronics industry

    E-Print Network [OSTI]

    Love, Robert (Robert Eric)

    2008-01-01T23:59:59.000Z

    Recently, production within India's Electronics sector amounted to a low $12 billion when compared to the global output of $1400 billion. The slow growth in the local industry is often judged to be the result of late ...

  6. LANSCE | Lujan Center | Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The Lujan Neutron Scattering Center offers a diverse set of capabilities and instruments for industrial projects. Industrial users are invited to contact Fredrik...

  7. Comparison of selected DOE and non-DOE requirements, standards, and practices for Low-Level Radioactive Waste Disposal

    SciTech Connect (OSTI)

    Cole, L. [Cole and Associates (United States); Kudera, D.; Newberry, W. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-12-01T23:59:59.000Z

    This document results from the Secretary of Energy`s response to Defense Nuclear Facilities Safety Board Recommendation 94--2. The Secretary stated that the US Department of Energy (DOE) would ``address such issues as...the need for additional requirements, standards, and guidance on low-level radioactive waste management. `` The authors gathered information and compared DOE requirements and standards for the safety aspects Of low-level disposal with similar requirements and standards of non-DOE entities.

  8. Expediting decommissioning under the DOE`s Environmental Restoration Program: Setting the standard, improving the process, and enhancing technological applications

    SciTech Connect (OSTI)

    Warren, S.; Dorries, J.; Buller, J. [Booz-Allen & Hamilton, Germantown, MD (United States)

    1995-12-31T23:59:59.000Z

    The U.S. Department of Energy`s (DOE`s) Office of Environmental Restoration has developed a joint policy with the U.S. Environmental Protection Agency for decommissioning under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The policy establishes CERCLA removal action (specifically, non-time-critical removal action) as the appropriate means of responding to releases or threats of releases from contaminated surplus facilities under the jurisdiction, custody, or control of the DOE.

  9. DOE 2014 Biomass Conference

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

  10. DOE/EA-2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Area Power Administration's Right-of-Way Application for the Tucson-Apache 115-kV Transmission Line Tohono O'odham Nation, San Xavier District, Pima County, Arizona (DOE...

  11. DOE Corporate FEOSH

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) Federal Employee Occupational Safety and Health (FEOSH) Program web site is the connection to current safety and health news and issues: Departmental special emphasis initiatives, upcoming activities, resources, contacts, and much, much more.

  12. DOE Technical Assistance Program

    Broader source: Energy.gov (indexed) [DOE]

    Solid-State Solutions for Municipal Lighting: What You'll Need to Know eere.energy.gov The Parker Ranch installation in Hawaii DOE Technical Assistance Program Solid-State...

  13. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01T23:59:59.000Z

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  14. Uranium industry annual 1998

    SciTech Connect (OSTI)

    NONE

    1999-04-22T23:59:59.000Z

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  15. Uranium industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  16. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

  17. Ames Lab Named an Industry Safety Leader

    ScienceCinema (OSTI)

    Wessels, Tom

    2013-03-01T23:59:59.000Z

    The U.S. Department of Energy's Ames Laboratory has been named a 2010 Industry Leader Award winner by the National Safety Council. The Ames Laboratory was one of only 81 companies/organizations to receive the award for their safety performance and the only DOE national laboratory on the list. The award represents the top 5 percent of members that have qualified for the National Safety Council 2010 Occupational Excellence Achievement Award, based on 2009 calendar year data.

  18. Critical technologies research: Opportunities for DOE

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Recent studies have identified a number of critical technologies that are essential to the nation's defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy's Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE's capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  19. Identifying a Collaborating DOE Laboratory Scientist | U.S. DOE...

    Office of Science (SC) Website

    Identifying a Collaborating DOE Laboratory Scientist DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to...

  20. Does Doctrine Drive Technology or Does Technology Drive Doctrine?

    E-Print Network [OSTI]

    Blasko, Dennis

    2010-01-01T23:59:59.000Z

    Brief No. 4 September 2010 Does Doctrine Drive Technology orDoes Technology Drive Doctrine? Dennis Blasko Summary Wthat emphasizes strategy over technology and may hold some

  1. DOE Policy on Decommissioning DOE Facilities Under CERCLA

    Broader source: Energy.gov [DOE]

    In May 1995, the Department of Energy (DOE) issued a policy in collaboration with the Environmental Protection Agency (EPA) for decommissioning surplus DOE facilities consistent with the...

  2. Website Policies / Important Links | DOE Data Explorer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRuralthe emergency response assets of DOE

  3. Overview of U. S. Department of Energy Program in Industrial Energy Conservation Technology Development

    E-Print Network [OSTI]

    Massey, R. G.

    1980-01-01T23:59:59.000Z

    The primary responsibility for Federal industrial energy conservation is in the Office of Industrial Programs which reports to the Assistant Secretary for Conservation and Solar Energy. The objectives of the Federal program are to: achieve maximum...

  4. For a Worldwide Leading Industrial Automation Company, we are looking for : Embedded Software Development Engineer

    E-Print Network [OSTI]

    Segatti, Antonio

    For a Worldwide Leading Industrial Automation Company, we are looking for : Embedded Software that will developing complex solutions in the framework of the industrial automation and takes full responsibility

  5. DOE Corporate Operating Experience Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-08T23:59:59.000Z

    The Order institutes a DOE wide program for the management of operating experience to prevent adverse operating incidents and facilitate the sharing of good work practices among DOE sites. Cancels DOE O 210.2.

  6. DOE Directives | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE O 414.1D, Quality Assurance DOE G 414.1-2B Admin Change 1, Quality Assurance Program Guide DOE O 221.1A, Reporting Fraud, Waste and Abuse to the Office of the Inspector...

  7. DOE weapons laboratories' contributions to the nation's defense technology base

    SciTech Connect (OSTI)

    Hecker, S.S.

    1988-04-01T23:59:59.000Z

    The question of how the Department of Energy (DOE) weapons laboratories can contribute to a stronger defense technology base is addressed in testimony before the Subcommittee on Defense Industry and Technology of the Senate Armed Services Committee. The importance of the defense technology base is described, the DOE technology base is also described, and some technology base management and institutional issues are discussed. Suggestions are given for promoting a more stable, long-term relationship between the DOE weapons laboratories and the Department of Defense. 12 refs., 2 figs.

  8. A guide for the gas and oil industry

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This guide has been prepared to assist those in the natural gas and oil industry who may not be familiar with how the Federal government, particularly the U.S. Department of Energy (DOE or Department), does business with private sector companies. Basic information is provided on what DOE is trying to do, why it wants to work with the natural gas and oil industry, how it can work with companies, who to contact, and where to inquire for further information. This last item is noteworthy because it is important for users of this guide to be able to access information about subjects that may interest them. Selected other Federal agencies and their activities related to those of DOE`s Office of Fossil Energy (FE or Fossil Energy) also are included in this document as Appendix A. This guide provides an address and/or phone number for every topic covered to prevent any information impasse. If a question is not adequately answered by the guide, please do not hesitate to contact the appropriate person or office. It is hoped that the information provided in this guide will lead to a better understanding of the mission, roles, and procedures of DOE and result in more and better cooperative working relationships between the natural gas and oil industry and DOE. Such relationships will provide a significant benefit to our Nation`s economic, technological, and energy security.

  9. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    SciTech Connect (OSTI)

    None

    1980-03-01T23:59:59.000Z

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  10. Comprehensive Environmental Response, Compensation, and Liability Act Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1989-10-06T23:59:59.000Z

    To establish and implement Department of Energy (DOE) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) policies and procedures as prescribed by the National Oil and Hazardous Substance Pollution Contingency Plan (NCP) and under the authorities of Executive Order 12580 within the framework of the environmental programs established under doe 5400.1. Cancels DOE O 5480.14, DOE N 5400.4 and DOE N 5400.5. Canceled by DOE N 251.6.

  11. DOE Seeks Further Public Input on How Best To Streamline Existing...

    Broader source: Energy.gov (indexed) [DOE]

    solve current problems. Engaging the public in an open, transparent process is a crucial step in DOE's regulatory review process. Because public comments in response to the...

  12. DOE/PPPO/03-0102&D1 U.S. Department of Energy Portsmouth Annual...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologynetwork support for DOE operations. UDS is responsible for construction of the Depleted Uranium Hexafluoride Conversion Facility at PORTS, the surveillance and...

  13. Complexity of Groundwater Contaminants at DOE Sites

    SciTech Connect (OSTI)

    Hazen, T.C.; Faybishenko, B.; Jordan, P.

    2010-12-03T23:59:59.000Z

    The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base (GWD) presents data as of 2003 for 221 groundwater plumes at 60 DOE sites and facilities. Note that Riley and Zachara analyzed the data from only 18 sites/facilities including 91 plumes. In this paper, we present the results of statistical analyses of the data in the GWD as guidance for planning future basic and applied research of groundwater contaminants within the DOE complex. Our analyses include the evaluation of a frequency and ranking of specific contaminants and contaminant groups, contaminant concentrations/activities and total contaminant masses and activities. We also compared the results from analyses of the GWD with those from the 1992 report by Riley and Zachara. The difference between our results and those summarized in the 1992 report by Riley and Zachara could be caused by not only additional releases, but also by the use of modern site characterization methods, which more accurately reveal the extent of groundwater contamination. Contaminated sites within the DOE complex are located in all major geographic regions of the United States, with highly variable geologic, hydrogeologic, soil, and climatic conditions. We assume that the information from the 60 DOE sites included in the GWD are representative for the whole DOE complex. These 60 sites include the major DOE sites and facilities, such as Rocky Flats Environmental Technology Site, Colorado; Idaho National Laboratory, Idaho; Savannah River Site, South Carolina; Oak Ridge Reservation, Tennessee; and Hanford Reservation, Washington. These five sites alone ccount for 71% of the value of the remediation work.

  14. The US glass industry: An energy perspective

    SciTech Connect (OSTI)

    Babcock, E.; Elaahi, A.; Lowitt, H.E.

    1988-09-01T23:59:59.000Z

    This report investigates the state of the US glass industry in terms of energy consumption and conservation. The specific objectives were: to update and verify energy consumption and production data for the various process steps in 1985; to determine the potential energy savings attainable by replacing current practices with state-of-the-art and advanced (year 2010) production practices and technologies; and to identify areas of research and development opportunity that will enable these potential future savings to be achieved. The results of this study concluded that for the year 2010 production level, there is potential to save between 21 and 44 percent of the projected energy use by replacing current technology practices with state-of-the-art and advanced technologies. RandD needs and opportunities were identified for the industry. Potential RandD candidates for DOE involvement were selected from the identified list, primarily based on their energy savings potential and the opinions of industry experts. 100 refs.

  15. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

  16. Assessment of industry needs for oil shale research and development

    SciTech Connect (OSTI)

    Hackworth, J.H.

    1987-05-01T23:59:59.000Z

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  17. Laboratory/industry partnerships for environmental remediation

    SciTech Connect (OSTI)

    Beskid, N.J.; Zussman, S.K.

    1994-09-01T23:59:59.000Z

    There are two measures of ``successful`` technology transfer in DOE`s environmental restoration and waste management program. The first is remediation of DOE sites, and the second is commercialization of an environmental remediation process or product. The ideal case merges these two in laboratory/industry partnerships for environmental remediation. The elements to be discussed in terms of their effectiveness in aiding technology transfer include: a decision-making champion; timely and sufficient funding; well organized technology transfer function; well defined DOE and commercial markets; and industry/commercial partnering. Several case studies are presented, including the successful commercialization of a process for vitrification of low-level radioactive waste, the commercial marketing of software for hazardous waste characterization, and the application of a monitoring technique that has won a prestigious technical award. Case studies will include: vitrification of low-level radioactive waste (GTS Duratek, Columbia, MD); borehole liner for emplacing instrumentation and sampling groundwater (Science and Engineering Associates, Inc., Santa Fe, NM); electronic cone penetrometer (Applied Research Associates, Inc., South Royalton, VT); and software for hazardous waste monitoring ConSolve, Inc. (Lexington, MA). The roles of the Department of Energy and Argonne National Laboratory in these successes will be characterized.

  18. An Economic Profile of the Biosciences Industry

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    An Economic Profile of the Biosciences Industry in West Virginia1 February 2008 By Anthony C. Gregory & Tom S. Witt Bureau of Business and Economic Research College of Business and Economics West are the responsibility of the authors. Mr. Gregory is a graduate research assistant, Bureau of Business and Economic

  19. DOE GIS core team - a best practice

    SciTech Connect (OSTI)

    Bollinger, J. (James); Bhaduri, Budhendra; Bleakly, D. R. (Denise R.); Brady-Sabeff, Liz; Guber, Al; Guziel, K. A.; Hargrove, Susan; Lee, J. (John); Lee, R. (Randy); Mickus, Kurt; Morehouse, David; Moore, K. (Kevin); Ramsdell, Amy; Rich, P. M. (Paul M.)

    2004-01-01T23:59:59.000Z

    Large government organizations such as the Department of Energy (DOE) are challenged with identifying and implementing best geospatial information management practices to ensure that operational needs are met and government objectives are achieved. Geographic Information System (GIS) professionals, complex wide within the Department, conduct spatial information management practices on a daily basis to complete a wide variety of science and engineering tasks. The DOE Office of the CIO recognized the wealth of geospatial information management knowledge within the DOE complex and formed the DOE GIS Core Team in 2001 as a result. The team is comprised of GIS experts-representing all major DOE labs, site facilities, and programs-who volunteer their time to address issues impacting the entire complex. These include the President's management agenda (with emphasis on the Geospatial One-Stop), homeland security, emergency response, site management, software and geospatial data licensing, and federal, national, and international standards governing the creation and dissemination of geospatial data. The strength of the DOE GIS Core Team is the wide diversity of GIS and scientific expertise represented on the team, which allows it to provide the DOE CIO's office with sound guidance on complex wide issues from a GIS practitioner's perspective. The Core Team's mission is 'to foster technical excellence and communication, to identify and advocate best business practices, and to provide sound recommendations on policy and standards.' As a first step toward identifying best practices the feam conducted a survey of all known GIS assets across the DOE complex. The survey identified each site's GIS expertise, operating systems architecture and software applications, major project areas supported, and a number of other metrics important to the operation of a GIS organization. Results of the survey will be discussed, along with the mission of the Core Team. A broad overview of best practices utilized by many of the leading GIS organizations across the complex will also be provided.

  20. Lessons learned by the DOE complex from recent earthquakes

    SciTech Connect (OSTI)

    Eli, M.W.

    1993-07-01T23:59:59.000Z

    Recent earthquake damage investigations at various industrial facilities have resulted in providing the DOE complex with reminders of practical lessons for structures, systems, and components (SSCs) involving: confinement of hazardous materials; continuous, safe operations; occupant safety; and protection of DOE investments and mission-dependent items. Recent assessments are summarized, showing examples of damage caused by the 1992 California Earthquakes (Cape Mendocino, Landers, and Big Bear) and the 1991 Costa Rica Earthquake (Valle de la Estrella). These lessons if applied along with the new DOE NPH Standards (1020--92 Series) can help assure that DOE facilities will meet the intent of the seismic requirements in the new DOE NPH Order 5480.28.

  1. Industrial Retrofits are Possible

    E-Print Network [OSTI]

    Stobart, E. W.

    . In April of 1987, the provincial government initiated a program to assist industrial energy users to reduce their energy usage. This program was designed to concentrate on an in-depth analysis of the complete operations of industrial plants... with the analyses being performed by specialist, private sector, engineering consultants. The program is in 3 phases providing an Ontario industrial plant with an Energy Analysis, a Feasibility Analysis Grant and a Project Engineering Design Grant...

  2. Presentations for Industry

    Broader source: Energy.gov [DOE]

    Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and...

  3. Industrial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

  4. Efficient Motor System Tools Sponsored by the DOE Motor Challenge Program

    E-Print Network [OSTI]

    Blazewicz, S.; McCoy, G. A.; Olszewski, M.; Scheihing, P.

    efficiency, purchase price, energy costs, hours of operation, load factor, and utility rebates are taken into account. -Utility rebate program data, which includes minimum qualifying efficiency and rebate dollar values. -Menus and extensive Help screens... in accordance with these two assumptions, the private sector will supply the delivery mechanisms for Motor Challenge tools because they will represent a value added to their existing commercial products. Industry and DOE Drivers Industry and DOE, in general...

  5. Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy...

    Broader source: Energy.gov (indexed) [DOE]

    undersigned members of the natural gas industry are pleased to submit for your consideration the following comments in response to the U.S. Department of Energy, Office of...

  6. Best Practices Manuals | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find MoreLawrence Berkeley Industrial8 Best EstimateBest

  7. DOE F 740-MX

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2 DOE F580.1 DOE F

  8. DOE O 451

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE Contract DOE Internationalwith 17O 451.1B Chg 3

  9. About | DOE Data Explorer

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Garyand TechnicalAbout About DOE Data Explorer The DOE

  10. DOE FOIA Request Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOST MANAGEMENT REPORT Page of DOE2 DOE

  11. Feedback | DOE PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FYU.S. DOE Office ofPublic Access Feedback

  12. PPG Industries Develops a Low-Cost Integrated OLED Substrate

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, PPG Industries, Inc., has developed a low-cost OLED substrate, using inexpensive soda-lime "float" glass that the company manufactures at high volume for the architectural industry. Float glass is thin sheet glass and is much less expensive than the borosilicate or double-side-polished display glass that's currently being used as substrates by OLED device manufacturers.

  13. Department of Energy Office of Nuclear Safety and Environmental Policy Technical Position NSEP-TP-2007- 1, Technical Position on the Requirement in DOE 0 420.1B to Use National Consensus Industry Standards and the Model Building CodesTechnical Position NS

    Broader source: Energy.gov [DOE]

    All new construction required to follow the provisions of Department of Energy(DOE) Order 420. lB, Facility Safety, must comply with national consensus industrystandards and the model building...

  14. DOE Corporate Operating Experience Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12T23:59:59.000Z

    The Order establishes a DOE wide program for management of operating experience to prevent adverse operating incidents and to expand the sharing of good work practices among DOE sites. Canceled by DOE O 210.2A. Does not cancel other directives.

  15. Summary of DOE/PERF water program review.

    SciTech Connect (OSTI)

    Veil, J.; Gasper, J.; Puder, M.; Leath, P.; Environmental Science Division

    2006-01-31T23:59:59.000Z

    For many years, the U.S. Department of Energy (DOE) has supported and sponsored various types of water research relating to the oil and gas industry through its Office of Fossil Energy and its National Energy Technology Laboratory (NETL). In early 2005, the Petroleum Environmental Research Forum (PERF) submitted a proposal to DOE for funding an upcoming PERF meeting that would feature water research in the petroleum industry. PERF is a nonprofit organization created in 1986 to provide a stimulus to and a forum for the collection, exchange, and analysis of research information related to the development of technology concerning the petroleum industry, and a mechanism for establishing joint research projects in that field. Additional information on PERF can be accessed at http://www.perf.org. DOE agreed to provide funding to hold a review of its water research program in conjunction with the fall 2005 PERF meeting. Argonne National Laboratory (Argonne) was asked to coordinate and host the meeting, which was referred to as the DOE/PERF Water Program Review. The program review was held on November 1-4, 2005, in Annapolis, Maryland, at the Historic Inns of Annapolis. The purpose of the program review was to provide a forum for sharing information, reviewing current programs (especially recent unpublished research), and reviewing industry and regulatory needs regarding water use and reuse issues. PERF and DOE/NETL can use this information to plan for future water-related research projects. The water program review provided a unique opportunity in several ways. First, DOE was able to have all of the contractors currently receiving DOE funds for water research present in one room at the same time. Each contractor described his or her research and was able to learn about the research being conducted by the other researchers. Second, this forum allowed representatives of many large oil and gas companies to hear about the DOE research projects and offer their reactions to DOE and the researchers. Third, most oil and gas meetings focus on either upstream (the exploration and production sector) or downstream (the refining sector) issues. Typically, there is little overlap in content between the two industry sectors. At the program review, attendees with upstream and downstream orientations were able to spend much of their time in joint sessions and could learn more about the other sector.

  16. DOE JGI Welcome Remarks

    SciTech Connect (OSTI)

    Bristow, Jim [DOE Joint Genome Institute

    2010-06-03T23:59:59.000Z

    Jim Bristow, Deputy Director of Programs at the DOE Joint Genome Institute, discusses the impact of advances in sequencing technologies on large genome centers on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  17. Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL] [ORNL; Starke, Michael R [ORNL] [ORNL; Ma, Ookie [DOE EERE] [DOE EERE; Nimbalkar, Sachin U [ORNL] [ORNL; Cox, Daryl [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    IGATE-E is an energy analysis tool for industrial energy evaluation. The tool applies statistical modeling to multiple publicly available datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using DOE s Industrial Assessment Center database (IAC-DB) and DOE s Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to other commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool provides validation against DOE s EIA-MECS state level energy estimations and permits several statistical examinations. IGATE-E is intended to be a decision support and planning tool to a wide spectrum of energy analysts, researchers, government organizations, private consultants, industry partners, and alike.

  18. Growing Hawaii's agriculture industry,

    E-Print Network [OSTI]

    Program Overview Growing Hawaii's agriculture industry, one business at a time Website: http-3547 agincubator@ctahr.hawaii.edu Grow Your Business If you are looking to start an agriculture-related business with our program · Positively impact the agriculture industry in Hawaii with their success

  19. Geothermal industry assessment

    SciTech Connect (OSTI)

    Not Available

    1980-07-01T23:59:59.000Z

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  20. Industrial Optimization Compact Course

    E-Print Network [OSTI]

    Kirches, Christian

    Industrial Optimization Compact Course and Challenge Workshop Optimization plays a crucial role of the processes are typically nonlinear and dyna- mic. Thus, complex dynamic optimization or optimal control in industrial optimization. February 17­20, 2014 ·9.00­17.00 IWR ·Im Neuenheimer Feld 368 ·69120 Heidelberg www

  1. Assessing the Control Systems Capacity for Demand Response in

    E-Print Network [OSTI]

    LBNL-5319E Assessing the Control Systems Capacity for Demand Response in California Industries in this report was coordinated by the Demand Response Research Center and funded by the California Energy of the Demand Response Research Center Industrial Controls Experts Working Group: · Jim Filanc, Southern

  2. Opportunities for Energy Efficiency and Demand Response in the California

    E-Print Network [OSTI]

    LBNL-4849E Opportunities for Energy Efficiency and Demand Response in the California Cement in this report was coordinated by the Demand Response Research Center and funded by the California Energy. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry. PIER Industrial

  3. Uranium industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  4. Recent Developments in DOE FUSRAP - 13014

    SciTech Connect (OSTI)

    Clayton, Christopher [U.S. Department of Energy Office of Legacy Management, Washington, DC (United States)] [U.S. Department of Energy Office of Legacy Management, Washington, DC (United States); Kothari, Vijendra [U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia (United States)] [U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia (United States); Hooten, Gwen; Starr, Ken [U.S. Department of Energy Office of Legacy Management, Westminster, Colorado (United States)] [U.S. Department of Energy Office of Legacy Management, Westminster, Colorado (United States); Bahrke, Cheri; Gillespie, Joey; Widdop, Michael [Stoller LMS Team, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado (United States)] [Stoller LMS Team, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado (United States); Darr, Bob [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Westminster, Colorado (United States)] [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Westminster, Colorado (United States)

    2013-07-01T23:59:59.000Z

    The DOE Office of Legacy Management assumed responsibility for the DOE FUSRAP in 2003. Since then, DOE has evaluated existing guidance and program needs to ensure that the program will remain effective in maintaining protectiveness at remediated FUSRAP sites. DOE has identified crucial elements that must be addressed to meet this goal. Knowledge of the sites and the program must be preserved and accessible to future custodians. Program processes must be defined and coordinated with other agencies. Long-term surveillance and maintenance (LTS and M) requirements for the sites must be based on human health risk and regulatory compliance, and those requirements must be well defined. Useful and accurate program information must be available to stakeholders. DOE has addressed these needs through development of a comprehensive program plan, an LTS and M plan for each completed FUSRAP site, a records finding aid, and a public information web site. These developments help ensure that the current knowledge is preserved and passed on to future custodians and stakeholders. (authors)

  5. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

  6. Westinghouse-DOE integration: Meeting the challenge

    SciTech Connect (OSTI)

    Price, S.V.

    1992-12-31T23:59:59.000Z

    The Westinghouse Electric Corporation (WEC) is in a unique position to affect national environmental management policy approaching the 21st Century. Westinghouse companies are management and operating contractors (MOC,s) at several environmentally pivotal government-owned, contractor operated (GOCO) facilities within the Department of Energy`s (DOE`s) nuclear defense complex. One way the WEC brings its companies together is by activating teams to solve specific DOE site problems. For example, one challenging issue at DOE facilities involves the environmentally responsible, final disposal of transuranic and high-level nuclear wastes (TRUs and HLWS). To address these disposal issues, the DOE supports two Westinghouse-based task forces: The TRU Waste Acceptance Criteria Certification Committee (WACCC) and the HLW Vitrification Committee. The WACCC is developing methods to characterize an estimated 176,287 cubic meters of retrievably stored TRUs generated at DOE production sites. Once characterized, TRUs could be safely deposited in the WIPP repository. The Westinghouse HLW Vitrification Committee is dedicated to assess appropriate methods to process an estimated 380,702 cubic meters of HLWs currently stored in underground storage tanks (USTs). As planned, this processing will involve segregating, and appropriately treating, low level waste (LLW) and HLW tank constituents for eventual disposal. The first unit designed to process these nuclear wastes is the SRS Defense Waste Processing Facility (DWPF). Initiated in 1973, the DWPF project is scheduled to begin operations in 1991 or 1992. Westinghouse companies are also working together to achieve appropriate environmental site restoration at DOE sites via the GOCO Environmental Restoration Committee.

  7. Uranium industry annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  8. Photovoltaics (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  9. The DOE Office of Environmental Management International Cooperative Program: Current Status and Plans for Expansion

    SciTech Connect (OSTI)

    Gerdes, Kurt D.; Han, Ana M.; Marra, James C.; Fox, Kevin M.; Peeler, David K.; Smith, Michael E.; Jannik, Gerald T.; Farfan, Eduardo B.; Kim, Dong-Sang; Vienna, John D.; Roach, Jay; Aloy, A. S.; Stefanovsky, S. V.; Bondarkov, M. D.; Lopukh, D. P.; Kim, Chenwoo

    2009-01-15T23:59:59.000Z

    The DOE-EM Office of Engineering and Technology is responsible for implementing EM’s international cooperative program. The Office of Engineering and Technology’s international efforts are aimed at supporting EM’s mission of risk reduction and accelerated cleanup of the environmental legacy of the nation's nuclear weapons program and government-sponsored nuclear energy research. To do this, EM pursues collaborations with government organizations, educational institutions, and private industry to identify and develop technologies that can address the site cleanup needs of DOE. Currently, DOE-EM is performing collaborative work with researchers at the Khlopin Radium Institute (KRI) and the SIA Radon Institute in Russia and the Ukraine’s International Radioecology Laboratory (IRL). Additionally, a task was recently completed with the Nuclear Engineering Technology Institute (NETEC) in South Korea. The objectives of these collaborations were to explore issues relating to high-level waste and to investigate technologies that could be leveraged to support EM site cleanup needs. In FY09, continued collaboration with the current partners is planned. Additionally, new research projects are being planned to expand the International Program. A collaborative project with Russian Electrotechnical University is underway to evaluate CCIM control and monitoring technologies. A Statement of Intent was recently signed between DOE-EM and the U.K. Nuclear Decommissioning Authority (NDA) to work cooperatively on areas of mutual interest. Under this umbrella, discussions were held with NDA representatives to identify potential areas for collaboration. Information and technical exchanges were identified as near-term actions to help meet the objectives of the Statement of Intent. Technical exchanges in identified areas are being pursued in FY09

  10. The changing structure of the US coal industry: An update, July 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-29T23:59:59.000Z

    Section 205(a)(2) of the Department of Energy Organization Act of 1977 requires the Administrator of the Energy Information Administration (EIA) to carry out a central, comprehensive, and unified energy data and information program that will collect, evaluate, assemble, analyze, and disseminate data and information relevant to energy resources, reserves, production, demand, technology, and related economic and statistical information. The purpose of this report is to provide a comprehensive overview of changes in the structure of the US coal industry between 1976 and 1991. The structural elements examined include the number of mines, average mine size, the size distribution of mines, and the size distribution of coal firms. The report measures changes in the market shares of the largest coal producers at the national level and in various regions. The Central Appalachian low-sulfur coal market is given special attention, and the market for coal reserves is examined. A history of mergers in the coal industry is presented, and changes in the proportions of US coal output that are produced by various types of companies, including foreign-controlled firms, are described. Finally, the impact of post-1991 mergers on the structure of the industry is estimated. The legislation that created the EIA vested the organization with an element of statutory independence. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high-quality information and to perform objective, credible analyses in support of deliberations by both public and private decisionmakers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

  11. FDA Exemption Letter, 78EL-01DOE by LSSG for GOCG Facilities

    Broader source: Energy.gov [DOE]

    Food and Drug Administration response to Department of Energy's request for clarification of the circumstances under which a DOE Government Owned Contractor Operated (GOCO) facility may be considered a laser manufacturer and subject to FDA laser manufacturer requirements and other points of interpretation of the FDA Exemption Letter, 78EL-01DOE (DOE exemption or exemption) by the LSSG for GOCG facilities.

  12. DOE program guide for universities and other research groups. Part I. DOE Research and Development Programs; Part II. DOE Procurement and Assistance Policies/Procedures

    SciTech Connect (OSTI)

    Not Available

    1980-03-01T23:59:59.000Z

    This guide addresses the DOE responsibility for fostering advanced research and development of all energy resources, both current and potential. It is intended to provide, in a single publication, all the fundamental information needed by an institution to develop a potential working relationship with DOE. Part I describes DOE research and development programs and facilities, and identifies areas of additional research needs and potential areas for new research opportunities. It also summarizes budget data and identifies the DOE program information contacts for each program. Part II provides researchers and research administrators with an introduction to the DOE administrative policies and procedures for submission and evaluation of proposals and the administration of resulting grants, cooperative agreements, and research contracts. (RWR)

  13. U.S. Department of Energy Partners with the Next Generation Lighting Industry Alliance

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) and the Next Generation Lighting Industry Alliance (NGLIA) signed a Memorandum of Agreement (MOA) to support the development and commercialization of SSL...

  14. Comprehensive Approaches to Industrial Energy Efficiency: Examples from the Climate Wise Program 

    E-Print Network [OSTI]

    Milmoe, P. H.; Winkelman, S. R.; Asrael, J.

    1998-01-01T23:59:59.000Z

    The Climate Wise Program is a partnership initiative sponsored by the U.S. EPA, with technical support from the U.S. DOE, with industry. It is designed to stimulate the voluntary reduction of greenhouse gas emissions among participating...

  15. 1979 DOE statistical symposium

    SciTech Connect (OSTI)

    Gardiner, D.A.; Truett T. (comps. and eds.)

    1980-09-01T23:59:59.000Z

    The 1979 DOE Statistical Symposium was the fifth in the series of annual symposia designed to bring together statisticians and other interested parties who are actively engaged in helping to solve the nation's energy problems. The program included presentations of technical papers centered around exploration and disposal of nuclear fuel, general energy-related topics, and health-related issues, and workshops on model evaluation, risk analysis, analysis of large data sets, and resource estimation.

  16. DOE/CF-0090

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE ContractDepartment of4 Volume 1 Department

  17. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09T23:59:59.000Z

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  18. Industrial cogeneration optimization program. Final report, September 1979

    SciTech Connect (OSTI)

    Davis, Jerry; McWhinney, Jr., Robert T.

    1980-01-01T23:59:59.000Z

    This study program is part of the DOE Integrated Industry Cogeneration Program to optimize, evaluate, and demonstrate cogeneration systems, with direct participation of the industries most affected. One objective is to characterize five major energy-intensive industries with respect to their energy-use profiles. The industries are: petroleum refining and related industries, textile mill products, paper and allied products, chemicals and allied products, and food and kindred products. Another objective is to select optimum cogeneration systems for site-specific reference case plants in terms of maximum energy savings subject to given return on investment hurdle rates. Analyses were made that define the range of optimal cogeneration systems for each reference-case plant considering technology applicability, economic factors, and energy savings by type of fuel. This study also provides guidance to other parts of the program through information developed with regard to component development requirements, institutional and regulatory barriers, as well as fuel use and environmental considerations. (MCW)

  19. Technology Roadmap Research Program for the Steel Industry

    SciTech Connect (OSTI)

    Joseph R. Vehec

    2010-12-30T23:59:59.000Z

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  20. Incident Prevention, Warning, and Response (IPWAR) Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-09-30T23:59:59.000Z

    This Manual defines a structured, cohesive, and consistent process for performing incident prevention, warning, and response for DOE's Federal information systems and is consistent with the requirements of Federal laws, Executive orders, national security directives, and other regulations. The Manual also provides requirements and implementation instructions for the Department's Incident Prevention, Warning and Response process, and supplements DOE O 205.1, Department of Energy Cyber Security Management Program, dated 3-21-03. DOE N 205.17 cancels this manual. This manual cancels DOE N 205.4, Handling Cyber Security Alerts and Advisories and Reporting Cyber Security Incidents, dated 3/18/2002.

  1. Demand Response and Ancillary Services September 2008

    E-Print Network [OSTI]

    Demand Response and Ancillary Services September 2008 #12;© 2008 EnerNOC, Inc. All Rights Reserved programs The purpose of this presentation is to offer insight into the mechanics of demand response and industrial demand response resources across North America in both regulated and restructured markets As of 6

  2. The Department of Energy's Solar Industrial Program: New ideas for American industry

    SciTech Connect (OSTI)

    Anderson, J.V.; Hauser, S.G.; Clyne, R.J.

    1991-07-01T23:59:59.000Z

    As society becomes more and more sensitive to the environment, and energy supplies become more scarce, the application of solar energy is expanding into new areas. The industrial sector is one of the most difficult for solar energy to impact because of its technical diversity and economic requirements. However, the opportunities are still abundant. The Department of Energy's Solar Industrial Program is dedicated to advancing the applications of solar energy in this sector. Research and technology development activities are currently focused in three areas: solar process heat, advanced materials manufacturing, and destruction of chemical wastes. The Solar Energy Research Institute manages these activities for DOE with close interactions with other federal agencies, private industry, and universities. 7 figs.

  3. Extension of DOE Directives on Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-06T23:59:59.000Z

    The Notice extends the following directives until 12/31/02. DOE N 205.1, DOE N 205.2, DOE 205.3, DOE N 471.3, and DOE 473.6.

  4. Review of the Emergency Response Organization at the Los Alamos...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fire fighting, hazardous materials (HAZMAT) response, radiation protection, industrial hygiene, EPI, and protective force, rely on their own standard operating procedures (SOPs)....

  5. assessing clinical response: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: LBNL-5319E Assessing the Control Systems Capacity for Demand Response in California Industries in this report was coordinated by the Demand...

  6. Industrial Decision Making

    E-Print Network [OSTI]

    Elliott, R. N.; McKinney, V.; Shipley, A.

    2008-01-01T23:59:59.000Z

    Domestic industrial investment has declined due to unfavorable energy prices, and external markets. Investment behavior has changed over the past few years, and will continue due to high labor costs, tight markets and an unstable U.S. economy...

  7. AI Industrial Engineering 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    This paper describes the California Energy Commission’s (Commission) energy policies and programs that save energy and money for California’s manufacturing and food processing industries to help retain businesses in-state and reduce greenhouse gases...

  8. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28T23:59:59.000Z

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  9. Industrial energy use indices 

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2008-10-10T23:59:59.000Z

    Energy use index (EUI) is an important measure of energy use which normalizes energy use by dividing by building area. Energy use indices and associated coefficients of variation are computed for major industry categories ...

  10. Animal Industries Building 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    Plant managers around the world are interested in improving the energy efficiency of their facilities while both growing and modernizing their manufacturing capabilities. Emerging industrial technologies, both at the ...

  11. Animal Industries Building 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity ...

  12. Utility and Industrial Partnerships

    E-Print Network [OSTI]

    Sashihara, T. F.

    In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

  13. Engineering Industrial & Systems

    E-Print Network [OSTI]

    Berdichevsky, Victor

    powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I the skills necessary to be successful in today's global environment. EDGE exposes and trains engineering

  14. When Does Aid Conditionality Work?

    E-Print Network [OSTI]

    Montinola, Gabriella R.

    2010-01-01T23:59:59.000Z

    2005, the Group of Eight (G8) nations committed to increaseprogram conditions. Given the G8 industrialized nations’

  15. Energy Matters: An invitation to Chat About Industrial Efficiency

    ScienceCinema (OSTI)

    Hogan, Kathleen

    2013-05-29T23:59:59.000Z

    Do you have questions or ideas about how the U.S. Department of Energy can contribute to global competitiveness through industrial efficiency? Dr. Kathleen Hogan would like to hear them. Submit your questions via: Email ( newmedia@hq.doe.gov ) Twitter ( @Energy ) Facebook ( Facebook.com/Energygov ) **LIVE CHAT IS EXPIRED**

  16. Energy Matters: An invitation to Chat About Industrial Efficiency

    SciTech Connect (OSTI)

    Hogan, Kathleen

    2011-01-01T23:59:59.000Z

    Do you have questions or ideas about how the U.S. Department of Energy can contribute to global competitiveness through industrial efficiency? Dr. Kathleen Hogan would like to hear them. Submit your questions via: Email ( newmedia@hq.doe.gov ) Twitter ( @Energy ) Facebook ( Facebook.com/Energygov ) **LIVE CHAT IS EXPIRED**

  17. GNSS Driving Innovation in the Geospatial Industry/Community

    E-Print Network [OSTI]

    Sekercioglu, Y. Ahmet

    GNSS Driving Innovation in the Geospatial Industry/Community Don Grant Associate Professor in Geospatial Science, RMIT University GNSS Futures UNSW, Sydney, 7-8 July 2014 #12;Outline · Does my topic;So is this even the right topic? · Is GNSS driving geospatial innovation? · Or are geospatial

  18. Cool Storage Economic Feasibility Analysis for a Large Industrial Facility

    E-Print Network [OSTI]

    Fazzolari, R.; Mascorro, J. A.; Ballard, R. H.

    1988-01-01T23:59:59.000Z

    The analysis of economic feasibility for adding a cool storage facility to shift electric demand to off-peak hours for a large industrial facility is presented. DOE-2 is used to generate the necessary cooling load profiles for the analysis...

  19. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  20. DOE: Support Implementation of EEOICPA

    Broader source: Energy.gov [DOE]

    DOE’s primary role in the EEOICPA is to provide records to DOL, NIOSH and DOJ, to support claim processing, dose reconstruction and ultimately claim adjudication. The worker records provided by...