National Library of Energy BETA

Sample records for response demand response

  1. Demand Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee ...

  2. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  3. Demand Response | Department of Energy

    Energy Savers [EERE]

    Technology Development Smart Grid Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the ...

  4. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  5. Demand Response Analysis Tool

    SciTech Connect (OSTI)

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be used by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.

  6. Demand Response Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be usedmore » by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.« less

  7. Demand Response- Policy

    Broader source: Energy.gov [DOE]

    Demand response is an electricity tariff or program established to motivate changes in electric use by end-use customers, designed to induce lower electricity use typically at times of high market prices or when grid reliability is jeopardized.

  8. Demand Response Dispatch Tool

    SciTech Connect (OSTI)

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for both reliability and economic conditions.

  9. Demand Response Dispatch Tool

    Energy Science and Technology Software Center (OSTI)

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for bothmore » reliability and economic conditions.« less

  10. Demand Response | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in

  11. Demand Response Research Center and Open Automated Demand Response

    Broader source: Energy.gov (indexed) [DOE]

    ... Capacity Bidding Real- Dme Pricing Demand Response Opportunities: Advance Notice and Duration of Response End Use Type Modulate OnOff Max. Response Time HVAC Chiller ...

  12. Demand Response Quick Assessment Tool

    Energy Science and Technology Software Center (OSTI)

    2008-12-01

    DRQAT (Demand Response Quick Assessment Tool) is the tool for assessing demand response saving potentials for large commercial buildings. This tool is based on EnergyPlus simulations of prototypical buildings and HVAC equipment. The opportunities for demand reduction and cost savings with building demand responsive controls vary tremendously with building type and location. The assessment tools will predict the energy and demand savings, the economic savings, and the thermal comfor impact for various demand responsive strategies.more » Users of the tools will be asked to enter the basic building information such as types, square footage, building envelope, orientation, utility schedule, etc. The assessment tools will then use the prototypical simulation models to calculate the energy and demand reduction potential under certain demand responsive strategies, such as precooling, zonal temperature set up, and chilled water loop and air loop set points adjustment.« less

  13. Demand Response Programs, 6. edition

    SciTech Connect (OSTI)

    2007-10-15

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  14. Demand Response Technology Roadmap A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meetings and workshops convened to develop content for the Demand Response Technology Roadmap. The project team has developed this companion document in the interest of providing...

  15. Demand Response for Ancillary Services

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R

    2013-01-01

    Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

  16. Automated Demand Response and Commissioning

    SciTech Connect (OSTI)

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  17. Residential Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in-home displays with controllable home area network capabilities and thermal storage devices for home heating. Goals and objectives: Reduce the City's NCP demand above...

  18. Honeywell Demonstrates Automated Demand Response Benefits for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility, ...

  19. Demand Response for Ancillary Services

    Office of Energy Efficiency and Renewable Energy (EERE)

    Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and implement a methodology to construct detailed temporal and spatial representations of demand response resources and to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to assess economic value of the realizable potential of demand response for ancillary services.

  20. Demand Response- Policy: More Information

    Broader source: Energy.gov [DOE]

    OE's commitment to ensuring non-wires options to modernize the nation's electricity delivery system includes ongoing support of a number of national and regional activities in support of demand response.

  1. Demand Response Spinning Reserve Demonstration

    SciTech Connect (OSTI)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  2. Demand Response Valuation Frameworks Paper

    SciTech Connect (OSTI)

    Heffner, Grayson

    2009-02-01

    While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

  3. Demand Response in the ERCOT Markets

    SciTech Connect (OSTI)

    Patterson, Mark

    2011-10-25

    ERCOT grid serves 85% of Texas load over 40K+ miles transmission line. Demand response: voluntary load response, load resources, controllable load resources, and emergency interruptible load service.

  4. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    none,

    2010-01-01

    Summarizes existing research and discusses current practices, opportunities, and barriers to coordinating energy efficiency and demand response programs.

  5. Demand Response Performance and Communication Strategy: AHRI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Demand Response Performance and Communication Strategy: AHRI and CEE DOE Building Technologies Office Conference NREL, Golden, Colorado, May 1, 2014 | 2 A Growing Crisis: Peak ...

  6. Energy Efficiency, Demand Response, and Volttron

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY EFFICIENCY, DEMAND RESPONSE, AND VOLTTRON Presented by Justin Sipe SEEMINGLY SIMPLE STATEMENTS Utilities need more capacity to handle growth on the grid ...

  7. Demand Response (transactional control) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Demand Response (transactional control) Pacific Northwest ...

  8. Retail Demand Response in Southwest Power Pool

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LBNL-1470E Retail Demand Response in Southwest Power Pool Ranjit Bharvirkar, Grayson Heffner and Charles Goldman Lawrence Berkeley National Laboratory Environmental Energy ...

  9. Distributed Automated Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Distributed Automated Demand Response Lawrence Livermore ...

  10. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable...

  11. BPA, Energy Northwest launch demand response pilot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA-Energy-Northwest-launch-demand-response-pilot Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand...

  12. Robust Unit Commitment Considering Uncertain Demand Response

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Guodong; Tomsovic, Kevin

    2014-09-28

    Although price responsive demand response has been widely accepted as playing an important role in the reliable and economic operation of power system, the real response from demand side can be highly uncertain due to limited understanding of consumers' response to pricing signals. To model the behavior of consumers, the price elasticity of demand has been explored and utilized in both research and real practice. However, the price elasticity of demand is not precisely known and may vary greatly with operating conditions and types of customers. To accommodate the uncertainty of demand response, alternative unit commitment methods robust to themore » uncertainty of the demand response require investigation. In this paper, a robust unit commitment model to minimize the generalized social cost is proposed for the optimal unit commitment decision taking into account uncertainty of the price elasticity of demand. By optimizing the worst case under proper robust level, the unit commitment solution of the proposed model is robust against all possible realizations of the modeled uncertain demand response. Numerical simulations on the IEEE Reliability Test System show the e ectiveness of the method. Finally, compared to unit commitment with deterministic price elasticity of demand, the proposed robust model can reduce the average Locational Marginal Prices (LMPs) as well as the price volatility.« less

  13. Robust Unit Commitment Considering Uncertain Demand Response

    SciTech Connect (OSTI)

    Liu, Guodong; Tomsovic, Kevin

    2014-09-28

    Although price responsive demand response has been widely accepted as playing an important role in the reliable and economic operation of power system, the real response from demand side can be highly uncertain due to limited understanding of consumers' response to pricing signals. To model the behavior of consumers, the price elasticity of demand has been explored and utilized in both research and real practice. However, the price elasticity of demand is not precisely known and may vary greatly with operating conditions and types of customers. To accommodate the uncertainty of demand response, alternative unit commitment methods robust to the uncertainty of the demand response require investigation. In this paper, a robust unit commitment model to minimize the generalized social cost is proposed for the optimal unit commitment decision taking into account uncertainty of the price elasticity of demand. By optimizing the worst case under proper robust level, the unit commitment solution of the proposed model is robust against all possible realizations of the modeled uncertain demand response. Numerical simulations on the IEEE Reliability Test System show the e ectiveness of the method. Finally, compared to unit commitment with deterministic price elasticity of demand, the proposed robust model can reduce the average Locational Marginal Prices (LMPs) as well as the price volatility.

  14. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect (OSTI)

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  15. Strategies for Demand Response in Commercial Buildings

    SciTech Connect (OSTI)

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-06-20

    This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

  16. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  17. Detailed Modeling and Response of Demand Response Enabled Appliances

    SciTech Connect (OSTI)

    Vyakaranam, Bharat; Fuller, Jason C.

    2014-04-14

    Proper modeling of end use loads is very important in order to predict their behavior, and how they interact with the power system, including voltage and temperature dependencies, power system and load control functions, and the complex interactions that occur between devices in such an interconnected system. This paper develops multi-state time variant residential appliance models with demand response enabled capabilities in the GridLAB-DTM simulation environment. These models represent not only the baseline instantaneous power demand and energy consumption, but the control systems developed by GE Appliances to enable response to demand response signals and the change in behavior of the appliance in response to the signal. These DR enabled appliances are simulated to estimate their capability to reduce peak demand and energy consumption.

  18. Demand Response and Energy Storage Integration Study

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study is a multi-national laboratory effort to assess the potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable...

  19. Retail Demand Response in Southwest Power Pool | Department of...

    Energy Savers [EERE]

    Retail Demand Response in Southwest Power Pool Retail Demand Response in Southwest Power Pool In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) ...

  20. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  1. Centralized and Decentralized Control for Demand Response

    SciTech Connect (OSTI)

    Lu, Shuai; Samaan, Nader A.; Diao, Ruisheng; Elizondo, Marcelo A.; Jin, Chunlian; Mayhorn, Ebony T.; Zhang, Yu; Kirkham, Harold

    2011-04-29

    Demand response has been recognized as an essential element of the smart grid. Frequency response, regulation and contingency reserve functions performed traditionally by generation resources are now starting to involve demand side resources. Additional benefits from demand response include peak reduction and load shifting, which will defer new infrastructure investment and improve generator operation efficiency. Technical approaches designed to realize these functionalities can be categorized into centralized control and decentralized control, depending on where the response decision is made. This paper discusses these two control philosophies and compares their relative advantages and disadvantages in terms of delay time, predictability, complexity, and reliability. A distribution system model with detailed household loads and controls is built to demonstrate the characteristics of the two approaches. The conclusion is that the promptness and reliability of decentralized control should be combined with the predictability and simplicity of centralized control to achieve the best performance of the smart grid.

  2. Wireless Demand Response Controls for HVAC Systems

    SciTech Connect (OSTI)

    Federspiel, Clifford

    2009-06-30

    The objectives of this scoping study were to develop and test control software and wireless hardware that could enable closed-loop, zone-temperature-based demand response in buildings that have either pneumatic controls or legacy digital controls that cannot be used as part of a demand response automation system. We designed a SOAP client that is compatible with the Demand Response Automation Server (DRAS) being used by the IOUs in California for their CPP program, design the DR control software, investigated the use of cellular routers for connecting to the DRAS, and tested the wireless DR system with an emulator running a calibrated model of a working building. The results show that the wireless DR system can shed approximately 1.5 Watts per design CFM on the design day in a hot, inland climate in California while keeping temperatures within the limits of ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy.

  3. Refrigerated Warehouse Demand Response Strategy Guide

    SciTech Connect (OSTI)

    Scott, Doug; Castillo, Rafael; Larson, Kyle; Dobbs, Brian; Olsen, Daniel

    2015-11-01

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lighting reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.

  4. FERC sees huge potential for demand response

    SciTech Connect (OSTI)

    2010-04-15

    The FERC study concludes that U.S. peak demand can be reduced by as much as 188 GW -- roughly 20 percent -- under the most aggressive scenario. More moderate -- and realistic -- scenarios produce smaller but still significant reductions in peak demand. The FERC report is quick to point out that these are estimates of the potential, not projections of what could actually be achieved. The main varieties of demand response programs include interruptible tariffs, direct load control (DLC), and a number of pricing schemes.

  5. Taxonomy for Modeling Demand Response Resources

    SciTech Connect (OSTI)

    Olsen, Daniel; Kiliccote, Sila; Sohn, Michael; Dunn, Laura; Piette, Mary, A

    2014-08-01

    Demand response resources are an important component of modern grid management strategies. Accurate characterizations of DR resources are needed to develop systems of optimally managed grid operations and to plan future investments in generation, transmission, and distribution. The DOE Demand Response and Energy Storage Integration Study (DRESIS) project researched the degree to which demand response (DR) and energy storage can provide grid flexibility and stability in the Western Interconnection. In this work, DR resources were integrated with traditional generators in grid forecasting tools, specifically a production cost model of the Western Interconnection. As part of this study, LBNL developed a modeling framework for characterizing resource availability and response attributes of DR resources consistent with the governing architecture of the simulation modeling platform. In this report, we identify and describe the following response attributes required to accurately characterize DR resources: allowable response frequency, maximum response duration, minimum time needed to achieve load changes, necessary pre- or re-charging of integrated energy storage, costs of enablement, magnitude of controlled resources, and alignment of availability. We describe a framework for modeling these response attributes, and apply this framework to characterize 13 DR resources including residential, commercial, and industrial end-uses. We group these end-uses into three broad categories based on their response capabilities, and define a taxonomy for classifying DR resources within these categories. The three categories of resources exhibit different capabilities and differ in value to the grid. Results from the production cost model of the Western Interconnection illustrate that minor differences in resource attributes can have significant impact on grid utilization of DR resources. The implications of these findings will be explored in future DR valuation studies.

  6. Demand Response and Energy Storage Integration Study - Past Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Energy Storage Integration Study - Past Workshops Demand Response and Energy Storage Integration Study - Past Workshops The project was initiated and informed...

  7. FERC Presendation: Demand Response as Power System Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy ...

  8. Demand Response and Smart Metering Policy Actions Since the Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the ...

  9. National Action Plan on Demand Response, June 2010 | Department...

    Energy Savers [EERE]

    Action Plan on Demand Response, June 2010 National Action Plan on Demand Response, June 2010 The Federal Energy Regulatory Commission (FERC) is required to develop the National ...

  10. SGDP Report: Interoperability of Demand Response Resources Demonstrati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SGDP Report: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report: Interoperability of Demand Response Resources Demonstration in NY ...

  11. A National Forum on Demand Response: Results on What Remains...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Forum on Demand Response: Results on What Remains to Be Done to Achieve Its Potential - Measurement and Verification Working Group A National Forum on Demand Response: ...

  12. SGDP Report Now Available: Interoperability of Demand Response...

    Energy Savers [EERE]

    SGDP Report Now Available: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report Now Available: Interoperability of Demand Response ...

  13. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect (OSTI)

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  14. The alchemy of demand response: turning demand into supply

    SciTech Connect (OSTI)

    Rochlin, Cliff

    2009-11-15

    Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

  15. Demand Responsive Lighting: A Scoping Study

    SciTech Connect (OSTI)

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03

    The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and

  16. Energy Efficiency, Demand Response, and Volttron

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY EFFICIENCY, DEMAND RESPONSE, AND VOLTTRON Presented by Justin Sipe      SEEMINGLY SIMPLE STATEMENTS Utilities need more capacity to handle growth on the grid Utilities need to balance the load on the grid for stability Business want lower their operating expenses. Business want remote control over their facilities How can bring these different users together to accomplish these goals Transformative Wave | 1012 Central Ave S Kent, WA 98032 |

  17. Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model Marissa Hummon, David Palchak, Paul Denholm, and Jennie Jorgenson National Renewable Energy Laboratory Daniel J. Olsen, Sila Kiliccote, Nance Matson, Michael Sohn, Cody Rose, Junqiao Dudley, and Sasank Goli Lawrence Berkeley National Laboratory Ookie Ma U.S. Department of Energy Technical Report NREL/TP-6A20-58492 December 2013 NREL is a national laboratory of the U.S. Department of Energy

  18. Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model

    SciTech Connect (OSTI)

    Hummon, Marissa; Palchak, David; Denholm, Paul; Jorgenson, Jennie; Olsen, Daniel J.; Kiliccote, Sila; Matson, Nance; Sohn, Michael; Rose, Cody; Dudley, Junqiao; Goli, Sasank; Ma, Ookie

    2013-12-01

    This report is one of a series stemming from the U.S. Department of Energy (DOE) Demand Response and Energy Storage Integration Study. This study is a multi-national-laboratory effort to assess the potential value of demand response (DR) and energy storage to electricity systems with different penetration levels of variable renewable resources and to improve our understanding of associatedmarkets and institutions. This report implements DR resources in the commercial production cost model PLEXOS.

  19. Price-responsive demand management for a smart grid world

    SciTech Connect (OSTI)

    Chao, Hung-po

    2010-01-15

    Price-responsive demand is essential for the success of a smart grid. However, existing demand-response programs run the risk of causing inefficient price formation. This problem can be solved if each retail customer could establish a contract-based baseline through demand subscription before joining a demand-response program. (author)

  20. Home Network Technologies and Automating Demand Response

    SciTech Connect (OSTI)

    McParland, Charles

    2009-12-01

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated

  1. National Action Plan on Demand Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 ACTUAL FORECAST National Action Plan on Demand Response the feDeRal eneRgy RegulatoRy commission staff 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 National Action Plan on Demand Response THE FEDERAL ENERGY REGULATORY COMMISSION

  2. Demand Response Energy Consulting LLC | Open Energy Information

    Open Energy Info (EERE)

    Response Energy Consulting LLC Jump to: navigation, search Name: Demand Response & Energy Consulting LLC Place: Delanson, New York Zip: NY 12053 Sector: Efficiency Product:...

  3. Demand Response: Lessons Learned with an Eye to the Future |...

    Energy Savers [EERE]

    Demand Response: Lessons Learned with an Eye to the Future Demand Response: Lessons Learned with an Eye to the Future July 11, 2013 - 11:56am Addthis Patricia A. Hoffman Patricia ...

  4. 2010 Assessment of Demand Response and Advanced Metering - Staff Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and Advanced Metering - Staff Report. The Federal Energy Regulatory Commission's 2010 Demand Response and Advanced Metering Survey (2010 FERC Survey, covering calendar year 2009) indicates that advanced metering penetration (i.e., the fraction of all installed meters that are advanced meters) reached

  5. Retail Demand Response in Southwest Power Pool

    SciTech Connect (OSTI)

    Bharvirkar, Ranjit; Heffner, Grayson; Goldman, Charles

    2009-01-30

    In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region. LBNL conducted a detailed survey of existing DR programs and dynamic pricing tariffs administered by SPP's member utilities. Survey respondents were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g. seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. Nearly all of the 30 load-serving entities in SPP responded to the survey. Of this group, fourteen SPP member utilities administer 36 DR programs, five dynamic pricing tariffs, and six voluntary customer response initiatives. These existing DR programs and dynamic pricing tariffs have a peak demand reduction potential of 1,552 MW. Other major findings of this study are: o About 81percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;14percent. o Arkansas accounts for ~;;50percent of the DR resources in the SPP footprint; these DR resources are primarily managed by cooperatives. o Publicly-owned cooperatives accounted for 54percent of the existing DR resources

  6. Measurement and evaluation techniques for automated demand response demonstration

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

    2004-08-01

    The recent electricity crisis in California and elsewhere has prompted new research to evaluate demand response strategies in large facilities. This paper describes an evaluation of fully automated demand response technologies (Auto-DR) in five large facilities. Auto-DR does not involve human intervention, but is initiated at a facility through receipt of an external communications signal. This paper summarizes the measurement and evaluation of the performance of demand response technologies and strategies in five large facilities. All the sites have data trending systems such as energy management and control systems (EMCS) and/or energy information systems (EIS). Additional sub-metering was applied where necessary to evaluate the facility's demand response performance. This paper reviews the control responses during the test period, and analyzes demand savings achieved at each site. Occupant comfort issues are investigated where data are available. This paper discusses methods to estimate demand savings and results from demand response strategies at five large facilities.

  7. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  8. Benefits of Demand Response in Electricity Markets and Recommendations...

    Broader source: Energy.gov (indexed) [DOE]

    Demand response is a tariff or program established to motivate changes in electric use by end-use customers in response to changes in the price of electricity over time, or to give ...

  9. Opportunities for Automated Demand Response in California Agricultural Irrigation

    SciTech Connect (OSTI)

    Olsen, Daniel; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-01

    Pumping water for agricultural irrigation represents a significant share of California’s annual electricity use and peak demand. It also represents a large source of potential flexibility, as farms possess a form of storage in their wetted soil. By carefully modifying their irrigation schedules, growers can participate in demand response without adverse effects on their crops. This report describes the potential for participation in demand response and automated demand response by agricultural irrigators in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use in California. Typical on-­farm controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Case studies of demand response programs in California and across the country are reviewed, and their results along with overall California demand estimates are used to estimate statewide demand response potential. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  10. Estimating Demand Response Market Potential | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentestimating-demand-response-market-pot Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  11. Automated Demand Response Benefits California Utilities and Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of Energy |September 2014 Automated Demand Response Benefits California Utilities and Commercial & Industrial Customers Page 1 Under the American Recovery and ...

  12. SGDP Report Now Available: Interoperability of Demand Response...

    Broader source: Energy.gov (indexed) [DOE]

    Interoperability of Demand Response Resources Demonstration in NY was awarded to Con Edison in 2009 as part of DOE's Smart Grid Demonstration Project (SGDP) grants funded by the ...

  13. Demand Response National Trends: Implications for the West? ...

    Broader source: Energy.gov (indexed) [DOE]

    Committee on Regional Electric Power Cooperation. San Francisco, CA. March 25, 2004 Demand Response National Trends: Implications for the West? (116.66 KB) More Documents & ...

  14. Demand Response is Focus of New Effort by Electricity Industry...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Utilities, Grid Operators, Others Come Together in National Effort to Tackle Important New Electricity Area Demand Response is Focus of New Effort by Electricity Industry ...

  15. Opportunities for Mass Market Demand Response to Provide Ancillary Services

    SciTech Connect (OSTI)

    Pratt, Rob; Najewicz, Dave

    2011-10-01

    Discusses what is meant by mass market demand response to provide ancillary services and outlines opportunities for adoption, and barriers to adoption.

  16. Coordination of Energy Efficiency and Demand Response: A Resource...

    Open Energy Info (EERE)

    Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  17. ECIS-Princeton Power Systems, Inc.: Demand Response Inverter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Power Systems, Inc.: Demand Response Inverter - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ...

  18. EnergySolve Demand Response | Open Energy Information

    Open Energy Info (EERE)

    Demand Response Place: Somerset, New Jersey Product: Somerset-based utility bill outsourcing company that provides electronic utility bill auditing, tariff analysis, late fee...

  19. Response

    Office of Environmental Management (EM)

    | Department of Energy Impacts of Demand-Side Resources on Electric Transmission Planning Report: Impacts of Demand-Side Resources on Electric Transmission Planning This report assesses the relationship between high levels of demand-side resources (including end-use efficiency, demand response, and distributed generation) and investment in new transmission or utilization of existing transmission. It summarizes the extensive modeling of transmission scenarios done through DOE-funded studies

  20. Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model

    Broader source: Energy.gov [DOE]

    Renewable integration studies have evaluated many challenges associated with deploying large amounts of variable wind and solar generation technologies. These studies can evaluate operational impacts associated with variable generation, benefits of improved wind and solar resource forecasting, and trade-offs between institutional changes, including increasing balancing area cooperation and technical changes such as installing new flexible generation. Demand response (DR) resources present a potentially important source of grid flexibility and can aid in integrating variable generation; however, integration analyses have not yet incorporated these resources explicitly into grid simulation models as part of a standard toolkit for resource planners.

  1. Progress toward Producing Demand-Response-Ready Appliances

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Sastry, Chellury

    2009-12-01

    This report summarizes several historical and ongoing efforts to make small electrical demand-side devices like home appliances more responsive to the dynamic needs of electric power grids. Whereas the utility community often reserves the word demand response for infrequent 2 to 6 hour curtailments that reduce total electrical system peak load, other beneficial responses and ancillary services that may be provided by responsive electrical demand are of interest. Historically, demand responses from the demand side have been obtained by applying external, retrofitted, controlled switches to existing electrical demand. This report is directed instead toward those manufactured products, including appliances, that are able to provide demand responses as soon as they are purchased and that require few, or no, after-market modifications to make them responsive to needs of power grids. Efforts to be summarized include Open Automated Demand Response, the Association of Home Appliance Manufacturer standard CHA 1, a simple interface being developed by the U-SNAP Alliance, various emerging autonomous responses, and the recent PinBus interface that was developed at Pacific Northwest National Laboratory.

  2. Interoperability of Demand Response Resources Demonstration in NY

    SciTech Connect (OSTI)

    Wellington, Andre

    2014-03-31

    The Interoperability of Demand Response Resources Demonstration in NY (Interoperability Project) was awarded to Con Edison in 2009. The objective of the project was to develop and demonstrate methodologies to enhance the ability of customer sited Demand Response resources to integrate more effectively with electric delivery companies and regional transmission organizations.

  3. Demand response compensation, net Benefits and cost allocation: comments

    SciTech Connect (OSTI)

    Hogan, William W.

    2010-11-15

    FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

  4. Demand Response - Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    OE's mission includes assisting states and regions in developing policies that decrease demand on existing energy infrastructure. Appropriate cost-effective demandresponse ...

  5. Assessment of Industrial Load for Demand Response across Western Interconnect

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R; Ma, Ookie

    2013-11-01

    Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

  6. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Aghajanzadeh, Arian; Wray, Craig; McKane, Aimee

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  7. Open Automated Demand Response Communications Specification (Version 1.0)

    SciTech Connect (OSTI)

    Piette, Mary Ann; Ghatikar, Girish; Kiliccote, Sila; Koch, Ed; Hennage, Dan; Palensky, Peter; McParland, Charles

    2009-02-28

    The development of the Open Automated Demand Response Communications Specification, also known as OpenADR or Open Auto-DR, began in 2002 following the California electricity crisis. The work has been carried out by the Demand Response Research Center (DRRC), which is managed by Lawrence Berkeley National Laboratory. This specification describes an open standards-based communications data model designed to facilitate sending and receiving demand response price and reliability signals from a utility or Independent System Operator to electric customers. OpenADR is one element of the Smart Grid information and communications technologies that are being developed to improve optimization between electric supply and demand. The intention of the open automated demand response communications data model is to provide interoperable signals to building and industrial control systems that are preprogrammed to take action based on a demand response signal, enabling a demand response event to be fully automated, with no manual intervention. The OpenADR specification is a flexible infrastructure to facilitate common information exchange between the utility or Independent System Operator and end-use participants. The concept of an open specification is intended to allow anyone to implement the signaling systems, the automation server or the automation clients.

  8. Analysis of Residential Demand Response and Double-Auction Markets

    SciTech Connect (OSTI)

    Fuller, Jason C.; Schneider, Kevin P.; Chassin, David P.

    2011-10-10

    Demand response and dynamic pricing programs are expected to play increasing roles in the modern Smart Grid environment. While direct load control of end-use loads has existed for decades, price driven response programs are only beginning to be explored at the distribution level. These programs utilize a price signal as a means to control demand. Active markets allow customers to respond to fluctuations in wholesale electrical costs, but may not allow the utility to control demand. Transactive markets, utilizing distributed controllers and a centralized auction can be used to create an interactive system which can limit demand at key times on a distribution system, decreasing congestion. With the current proliferation of computing and communication resources, the ability now exists to create transactive demand response programs at the residential level. With the combination of automated bidding and response strategies coupled with education programs and customer response, emerging demand response programs have the ability to reduce utility demand and congestion in a more controlled manner. This paper will explore the effects of a residential double-auction market, utilizing transactive controllers, on the operation of an electric power distribution system.

  9. Demand Response in U.S. Electricity Markets: Empirical Evidence...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in U.S. Electricity Markets: Empirical Evidence Demand Response in U.S. Electricity Markets: Empirical Evidence The work described in this paper was funded by the Office of ...

  10. Value of Demand Response: Quantities from Production Cost Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Value of Demand Response: Quantities from Production Cost Modeling Marissa Hummon PLMA Spring 2014 April 15-16, 2014 Denver, CO NRELPR-6A20-61815 2 Background DOE-led, multiple ...

  11. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R; Alkadi, Nasr E; Letto, Daryl; Johnson, Brandon; Dowling, Kevin; George, Raoule; Khan, Saqib

    2013-01-01

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  12. Demand Response and Open Automated Demand Response Opportunities for Data Centers

    SciTech Connect (OSTI)

    Ghatikar, Girish; Piette, Mary Ann; Fujita, Sydny; McKane, Aimee; Dudley, Junqiao Han; Radspieler, Anthony; Mares, K.C.; Shroyer, Dave

    2009-12-30

    This study examines data center characteristics, loads, control systems, and technologies to identify demand response (DR) and automated DR (Open Auto-DR) opportunities and challenges. The study was performed in collaboration with technology experts, industrial partners, and data center facility managers and existing research on commercial and industrial DR was collected and analyzed. The results suggest that data centers, with significant and rapidly growing energy use, have significant DR potential. Because data centers are highly automated, they are excellent candidates for Open Auto-DR. 'Non-mission-critical' data centers are the most likely candidates for early adoption of DR. Data center site infrastructure DR strategies have been well studied for other commercial buildings; however, DR strategies for information technology (IT) infrastructure have not been studied extensively. The largest opportunity for DR or load reduction in data centers is in the use of virtualization to reduce IT equipment energy use, which correspondingly reduces facility cooling loads. DR strategies could also be deployed for data center lighting, and heating, ventilation, and air conditioning. Additional studies and demonstrations are needed to quantify benefits to data centers of participating in DR and to address concerns about DR's possible impact on data center performance or quality of service and equipment life span.

  13. Role of Storage and Demand Response, Greening the Grid

    SciTech Connect (OSTI)

    2015-09-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of a Greening the Grid toolkit, examines storage and demand response as means to match renewable energy supply with demand.

  14. Regulation Services with Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regulation Services with Demand Response Pacific Northwest National Laboratory Contact PNNL About This Technology Using grid frequency information, researchers have created algorithms that intelligently control power demand while meeting consumer objectives (i.e. target pricing). Using grid frequency information, researchers have created algorithms that intelligently control power demand while meeting consumer objectives (i.e. target pricing). Technology Marketing Summary Grid Friendly(tm)

  15. A Look Ahead at Demand Response in New England

    SciTech Connect (OSTI)

    Burke, Robert B.; Henderson, Michael I.; Widergren, Steven E.

    2008-08-01

    The paper describes the demand response programs developed and in operation in New England, and the revised designs for participation in the forward capacity market. This description will include how energy efficiency, demand-side resources, and distributed generation are eligible to participate in this new forward capacity market. The paper will also discuss various methods that can be used to configure and communicate with demand response resources and important concerns in specifying interfaces that accommodate multiple technologies and allow technology choice and evolution.

  16. Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.

    SciTech Connect (OSTI)

    Starke, Michael R; Kirby, Brendan J; Kueck, John D; Todd, Duane; Caulfield, Michael; Helms, Brian

    2009-02-01

    Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter, electric power

  17. Open Automated Demand Response for Small Commerical Buildings

    SciTech Connect (OSTI)

    Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2009-05-01

    This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

  18. Evaluation of Representative Smart Grid Investment Project Technologies: Demand Response

    SciTech Connect (OSTI)

    Fuller, Jason C.; Prakash Kumar, Nirupama; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of a limited number of demand response technologies and implementations deployed in the SGIG projects.

  19. Electric Water Heater Modeling and Control Strategies for Demand Response

    SciTech Connect (OSTI)

    Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

    2012-07-22

    Abstract Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms Centralized control, decentralized control, demand response, electrical water heater, smart grid

  20. Automation systems for Demand Response, ForskEL (Smart Grid Project...

    Open Energy Info (EERE)

    systems for Demand Response, ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Automation systems for Demand Response, ForskEL Country Denmark Coordinates...

  1. Demand Response: Lessons Learned with an Eye to the Future

    Broader source: Energy.gov [DOE]

    Under the Recovery Act, the Energy Department awarded $3.5 billion in funds to the electricity industry, including OG&E, to help catalyze the adoption of smart grid tools, technologies and techniques such as demand response that are designed to increase the electric grid’s flexibility, reliability, efficiency, affordability, and resiliency. Understanding lessons learned from these projects is vital.

  2. Demand Response and Energy Storage Integration Study- Past Workshops

    Broader source: Energy.gov [DOE]

    The project was initiated and informed by the results of two DOE workshops; one on energy storage and the other on demand response. The workshops were attended by members of the electric power industry, researchers, and policy makers; and the study design and goals reflect their contributions to the collective thinking of the project team.

  3. Aggregate Model for Heterogeneous Thermostatically Controlled Loads with Demand Response

    SciTech Connect (OSTI)

    Zhang, Wei; Kalsi, Karanjit; Fuller, Jason C.; Elizondo, Marcelo A.; Chassin, David P.

    2012-07-22

    Due to the potentially large number of Distributed Energy Resources (DERs) demand response, distributed generation, distributed storage - that are expected to be deployed, it is impractical to use detailed models of these resources when integrated with the transmission system. Being able to accurately estimate the fast transients caused by demand response is especially important to analyze the stability of the system under different demand response strategies. On the other hand, a less complex model is more amenable to design feedback control strategies for the population of devices to provide ancillary services. The main contribution of this paper is to develop aggregated models for a heterogeneous population of Thermostatic Controlled Loads (TCLs) to accurately capture their collective behavior under demand response and other time varying effects of the system. The aggregated model efficiently includes statistical information of the population and accounts for a second order effect necessary to accurately capture the collective dynamic behavior. The developed aggregated models are validated against simulations of thousands of detailed building models using GridLAB-D (an open source distribution simulation software) under both steady state and severe dynamic conditions caused due to temperature set point changes.

  4. The Role of Demand Response in Default Service Pricing

    SciTech Connect (OSTI)

    Barbose, Galen; Goldman, Chuck; Neenan, Bernie

    2006-03-10

    Dynamic retail electricity pricing, especially real-time pricing (RTP), has been widely heralded as a panacea for providing much-needed demand response in electricity markets. However, in designing default service for competitive retail markets, demand response often appears to be an afterthought. But that may be changing as states that initiated customer choice in the past 5-7 years reach an important juncture in retail market design. Most states with retail choice established an initial transitional period, during which utilities were required to offer a default or ''standard offer'' generation service, often at a capped or otherwise administratively-determined rate. Many retail choice states have reached, or are nearing, the end of their transitional period and several states have adopted an RTP-type default service for large commercial and industrial (C&I) customers. Are these initiatives motivated by the desire to induce greater demand response, or is RTP being called upon to serve a different role in competitive markets? Surprisingly, we found that in most cases, the primary reason for adopting RTP as the default service was not to encourage demand response, but rather to advance policy objectives related to the development of competitive retail markets. However, we also find that, if efforts are made in its design and implementation, default RTP service can also provide a solid foundation for developing price responsive demand, creating an important link between wholesale and retail market transactions. This paper, which draws from a lengthier report, describes the experience to date with default RTP in the U.S., identifying findings related to its actual and potential role as an instrument for cultivating price responsive demand [1]. For each of the five states currently with default RTP, we conducted a detailed review of the regulatory proceedings leading to its adoption. To further understand the intentions and expectations of those involved in its design

  5. Effects of Demand Response on Retail and Wholesale Power Markets

    SciTech Connect (OSTI)

    Chassin, David P.; Kalsi, Karanjit

    2012-07-26

    Demand response has grown to be a part of the repertoire of resources used by utilities to manage the balance between generation and load. In recent years, advances in communications and control technology have enabled utilities to consider continuously controlling demand response to meet generation, rather than the other way around. This paper discusses the economic applications of a general method for load resource analysis that parallels the approach used to analyze generation resources and uses the method to examine the results of the US Department of Energys Olympic Peninsula Demonstration Testbed. A market-based closed-loop system of controllable assets is discussed with necessary and sufficient conditions on system controllability, observability and stability derived.

  6. The Role of Demand Response in Default Service Pricing

    SciTech Connect (OSTI)

    Barbose, Galen; Goldman, Charles; Neenan, Bernie

    2005-11-09

    Dynamic retail pricing, especially real-time pricing (RTP), has been widely heralded as a panacea for providing much-needed demand response in electricity markets. However, in designing default service for competitive retail markets, demand response has been an afterthought, and in some cases not given any weight at all. But that may be changing, as states that initiated customer choice in the past 5-7 years reach an important juncture in retail market design. Most states with retail choice established an initial transitional period during which utilities were required to offer a default or standard offer generation service, often at a capped or otherwise administratively-determined rate. Many retail choice states have reached the end of their transitional period, and several have adopted or are actively considering an RTP-type default service for large commercial and industrial (C&I) customers. In most cases, the primary reason for adopting RTP as the default service has been to advance policy objectives related to the development of competitive retail markets. However, if attention is paid in its design and implementation, default RTP service can also provide a solid foundation for developing price responsive demand, creating an important link between wholesale and retail market transactions. This article, which draws from a lengthier report, describes experience to date with RTP as a default service, focusing on its role as an instrument for cultivating price responsive demand.1 As of summer 2005, default service RTP was in place or approved for future implementation in five U.S. states: New Jersey, Maryland, Pennsylvania, New York, and Illinois. For each of these states, we conducted a detailed review of the regulatory proceedings leading to adoption of default RTP and interviewed regulatory staff and utilities in these states, as well as eight competitive retail suppliers active in these markets.

  7. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    SciTech Connect (OSTI)

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  8. Laboratory Testing of Demand-Response Enabled Household Appliances

    SciTech Connect (OSTI)

    Sparn, B.; Jin, X.; Earle, L.

    2013-10-01

    With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses. The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

  9. Laboratory Testing of Demand-Response Enabled Household Appliances

    SciTech Connect (OSTI)

    Sparn, B.; Jin, X.; Earle, L.

    2013-10-01

    With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses.The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

  10. The Impact of Uncertain Physical Parameters on HVAC Demand Response

    SciTech Connect (OSTI)

    Sun, Yannan; Elizondo, Marcelo A.; Lu, Shuai; Fuller, Jason C.

    2014-03-01

    HVAC units are currently one of the major resources providing demand response (DR) in residential buildings. Models of HVAC with DR function can improve understanding of its impact on power system operations and facilitate the deployment of DR technologies. This paper investigates the importance of various physical parameters and their distributions to the HVAC response to DR signals, which is a key step to the construction of HVAC models for a population of units with insufficient data. These parameters include the size of floors, insulation efficiency, the amount of solid mass in the house, and efficiency of the HVAC units. These parameters are usually assumed to follow Gaussian or Uniform distributions. We study the effect of uncertainty in the chosen parameter distributions on the aggregate HVAC response to DR signals, during transient phase and in steady state. We use a quasi-Monte Carlo sampling method with linear regression and Prony analysis to evaluate sensitivity of DR output to the uncertainty in the distribution parameters. The significance ranking on the uncertainty sources is given for future guidance in the modeling of HVAC demand response.

  11. A Distributed Intelligent Automated Demand Response Building Management System

    SciTech Connect (OSTI)

    Auslander, David; Culler, David; Wright, Paul; Lu, Yan; Piette, Mary

    2013-12-30

    The goal of the 2.5 year Distributed Intelligent Automated Demand Response (DIADR) project was to reduce peak electricity load of Sutardja Dai Hall at UC Berkeley by 30% while maintaining a healthy, comfortable, and productive environment for the occupants. We sought to bring together both central and distributed control to provide “deep” demand response1 at the appliance level of the building as well as typical lighting and HVAC applications. This project brought together Siemens Corporate Research and Siemens Building Technology (the building has a Siemens Apogee Building Automation System (BAS)), Lawrence Berkeley National Laboratory (leveraging their Open Automated Demand Response (openADR), Auto-­Demand Response, and building modeling expertise), and UC Berkeley (related demand response research including distributed wireless control, and grid-­to-­building gateway development). Sutardja Dai Hall houses the Center for Information Technology Research in the Interest of Society (CITRIS), which fosters collaboration among industry and faculty and students of four UC campuses (Berkeley, Davis, Merced, and Santa Cruz). The 141,000 square foot building, occupied in 2009, includes typical office spaces and a nanofabrication laboratory. Heating is provided by a district heating system (steam from campus as a byproduct of the campus cogeneration plant); cooling is provided by one of two chillers: a more typical electric centrifugal compressor chiller designed for the cool months (Nov-­ March) and a steam absorption chiller for use in the warm months (April-­October). Lighting in the open office areas is provided by direct-­indirect luminaries with Building Management System-­based scheduling for open areas, and occupancy sensors for private office areas. For the purposes of this project, we focused on the office portion of the building. Annual energy consumption is approximately 8053 MWh; the office portion is estimated as 1924 MWh. The maximum peak load

  12. Demand Response in the West: Lessons for States and Provinces

    SciTech Connect (OSTI)

    Douglas C. Larson; Matt Lowry; Sharon Irwin

    2004-06-29

    OAK-B135 This paper is submitted in fulfillment of DOE Grant No. DE-FG03-015F22369 on the experience of western states/provinces with demand response (DR) in the electricity sector. Demand-side resources are often overlooked as a viable option for meeting load growth and addressing the challenges posed by the region's aging transmission system. Western states should work together with utilities and grid operators to facilitate the further deployment of DR programs which can provide benefits in the form of decreased grid congestion, improved system reliability, market efficiency, price stabilization, hedging against volatile fuel prices and reduced environmental impacts of energy production. This report describes the various types of DR programs; provides a survey of DR programs currently in place in the West; considers the benefits, drawbacks and barriers to DR; and presents lessons learned and recommendations for states/provinces.

  13. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Goli, Sasank; McKane, Aimee; Olsen, Daniel

    2011-06-14

    Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

  14. Direct versus Facility Centric Load Control for Automated Demand Response

    SciTech Connect (OSTI)

    Koch, Ed; Piette, Mary Ann

    2009-11-06

    Direct load control (DLC) refers to the scenario where third party entities outside the home or facility are responsible for deciding how and when specific customer loads will be controlled in response to Demand Response (DR) events on the electric grid. Examples of third parties responsible for performing DLC may be Utilities, Independent System Operators (ISO), Aggregators, or third party control companies. DLC can be contrasted with facility centric load control (FCLC) where the decisions for how loads are controlled are made entirely within the facility or enterprise control systems. In FCLC the facility owner has more freedom of choice in how to respond to DR events on the grid. Both approaches are in use today in automation of DR and both will continue to be used in future market segments including industrial, commercial and residential facilities. This paper will present a framework which can be used to differentiate between DLC and FCLC based upon where decisions are made on how specific loads are controlled in response to DR events. This differentiation is then used to compare and contrast the differences between DLC and FCLC to identify the impact each has on:(1)Utility/ISO and third party systems for managing demand response, (2)Facility systems for implementing load control, (3)Communications networks for interacting with the facility and (4)Facility operators and managers. Finally a survey of some of the existing DR related specifications and communications standards is given and their applicability to DLC or FCLC. In general FCLC adds more cost and responsibilities to the facilities whereas DLC represents higher costs and complexity for the Utility/ISO. This difference is primarily due to where the DR Logic is implemented and the consequences that creates. DLC may be more certain than FCLC because it is more predictable - however as more loads have the capability to respond to DR signals, people may prefer to have their own control of end-use loads

  15. Market and Policy Barriers for Demand Response Providing Ancillary Services

    Broader source: Energy.gov [DOE]

    In this study, we attempt to provide a comprehensive examination of various market and policy barriers to demand response providing ancillary services in both ISO/RTO and non-ISO/RTO regions, especially at the program provider level. It is useful to classify barriers in order to create a holistic understanding and identify parties that could be responsible for their removal. This study develops a typology of barriers focusing on smaller customers that must rely on a program provider (i.e., electric investor owned utility or IOU, ARC) to create an aggregated DR resource in order to bring ancillary services to the balancing authority. The barriers were identified through examinations of regulatory structures, market environments, and product offerings; and discussions with industry stakeholders and regulators.

  16. Demand Response Resources for Energy and Ancillary Services (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind an solar power generation. However, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado test system. We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating

  17. Northwest Open Automated Demand Response Technology Demonstration Project

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao

    2010-03-17

    The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibility of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also provides

  18. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  19. Role of Standard Demand Response Signals for Advanced Automated Aggregation

    SciTech Connect (OSTI)

    Lawrence Berkeley National Laboratory; Kiliccote, Sila

    2011-11-18

    Emerging standards such as OpenADR enable Demand Response (DR) Resources to interact directly with Utilities and Independent System Operators to allow their facility automation equipment to respond to a variety of DR signals ranging from day ahead to real time ancillary services. In addition, there are Aggregators in today’s markets who are capable of bringing together collections of aggregated DR assets and selling them to the grid as a single resource. However, in most cases these aggregated resources are not automated and when they are, they typically use proprietary technologies. There is a need for a framework for dealing with aggregated resources that supports the following requirements: • Allows demand-side resources to participate in multiple DR markets ranging from wholesale ancillary services to retail tariffs without being completely committed to a single entity like an Aggregator; • Allow aggregated groups of demand-side resources to be formed in an ad hoc fashion to address specific grid-side issues and support the optimization of the collective response of an aggregated group along a number of different dimensions. This is important in order to taylor the aggregated performance envelope to the needs to of the grid; • Allow aggregated groups to be formed in a hierarchical fashion so that each group can participate in variety of markets from wholesale ancillary services to distribution level retail tariffs. This paper explores the issues of aggregated groups of DR resources as described above especially within the context of emerging smart grid standards and the role they will play in both the management and interaction of various grid-side entities with those resources.

  20. Opportunities, Barriers and Actions for Industrial Demand Response in California

    SciTech Connect (OSTI)

    McKane, Aimee T.; Piette, Mary Ann; Faulkner, David; Ghatikar, Girish; Radspieler Jr., Anthony; Adesola, Bunmi; Murtishaw, Scott; Kiliccote, Sila

    2008-01-31

    In 2006 the Demand Response Research Center (DRRC) formed an Industrial Demand Response Team to investigate opportunities and barriers to implementation of Automated Demand Response (Auto-DR) systems in California industries. Auto-DR is an open, interoperable communications and technology platform designed to: Provide customers with automated, electronic price and reliability signals; Provide customers with capability to automate customized DR strategies; Automate DR, providing utilities with dispatchable operational capability similar to conventional generation resources. This research began with a review of previous Auto-DR research on the commercial sector. Implementing Auto-DR in industry presents a number of challenges, both practical and perceived. Some of these include: the variation in loads and processes across and within sectors, resource-dependent loading patterns that are driven by outside factors such as customer orders or time-critical processing (e.g. tomato canning), the perceived lack of control inherent in the term 'Auto-DR', and aversion to risk, especially unscheduled downtime. While industry has demonstrated a willingness to temporarily provide large sheds and shifts to maintain grid reliability and be a good corporate citizen, the drivers for widespread Auto-DR will likely differ. Ultimately, most industrial facilities will balance the real and perceived risks associated with Auto-DR against the potential for economic gain through favorable pricing or incentives. Auto-DR, as with any ongoing industrial activity, will need to function effectively within market structures. The goal of the industrial research is to facilitate deployment of industrial Auto-DR that is economically attractive and technologically feasible. Automation will make DR: More visible by providing greater transparency through two-way end-to-end communication of DR signals from end-use customers; More repeatable, reliable, and persistent because the automated controls

  1. Demand Response and Smart Metering Policy Actions Since the Energy Policy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act of 2005: A Summary for State Officials | Department of Energy Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response Coordinating

  2. Examining Uncertainty in Demand Response Baseline Models and Variability in Automated Response to Dynamic Pricing

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Callaway, Duncan S.; Kiliccote, Sila

    2011-08-15

    Controlling electric loads to deliver power system services presents a number of interesting challenges. For example, changes in electricity consumption of Commercial and Industrial (C&I) facilities are usually estimated using counterfactual baseline models, and model uncertainty makes it difficult to precisely quantify control responsiveness. Moreover, C&I facilities exhibit variability in their response. This paper seeks to understand baseline model error and demand-side variability in responses to open-loop control signals (i.e. dynamic prices). Using a regression-based baseline model, we define several Demand Response (DR) parameters, which characterize changes in electricity use on DR days, and then present a method for computing the error associated with DR parameter estimates. In addition to analyzing the magnitude of DR parameter error, we develop a metric to determine how much observed DR parameter variability is attributable to real event-to-event variability versus simply baseline model error. Using data from 38 C&I facilities that participated in an automated DR program in California, we find that DR parameter errors are large. For most facilities, observed DR parameter variability is likely explained by baseline model error, not real DR parameter variability; however, a number of facilities exhibit real DR parameter variability. In some cases, the aggregate population of C&I facilities exhibits real DR parameter variability, resulting in implications for the system operator with respect to both resource planning and system stability.

  3. Pilot Testing of Commercial Refrigeration-Based Demand Response

    SciTech Connect (OSTI)

    Hirsch, Adam; Clark, Jordan; Deru, Michael; Trenbath, Kim; Doebber, Ian; Studer, Daniel

    2015-10-08

    Supermarkets potentially offer a substantial demand response (DR) resource because of their high energy intensity and use patterns. This report describes a pilot project conducted to better estimate supermarket DR potential. Previous work has analyzed supermarket DR using heating, ventilating, and air conditioning (HVAC), lighting, and anti-condensate heaters. This project was concerned with evaluating DR using the refrigeration system and quantifying the DR potential inherent in supermarket refrigeration systems. Ancillary aims of the project were to identify practical barriers to the implementation of DR programs in supermarkets and to determine which high-level control strategies were most appropriate for achieving certain DR objectives. The scope of this project does not include detailed control strategy development for DR or development of a strategy for regional implementation of DR in supermarkets.

  4. Value of Demand Response: Quantities from Production Cost Modeling (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind and solar power generation. However, managed loads in grid models are limited by data availability and modeling complexity. This presentation focuses on the value of co-optimized DR resources to provide energy and ancillary services in a production cost model. There are significant variations in the availabilities of different types of DR resources, which affect both the operational savings as well as the revenue for each DR resource. The results presented include the system-wide avoided fuel and generator start-up costs as well as the composite revenue for each DR resource by energy and operating reserves. In addition, the revenue is characterized by the capacity, energy, and units of DR enabled.

  5. Opportunities for Automated Demand Response in California’s Dairy Processing Industry

    SciTech Connect (OSTI)

    Homan, Gregory K.; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-30

    During periods of peak electrical demand on the energy grid or when there is a shortage of supply, the stability of the grid may be compromised or the cost of supplying electricity may rise dramatically, respectively. Demand response programs are designed to mitigate the severity of these problems and improve reliability by reducing the demand on the grid during such critical times. In 2010, the Demand Response Research Center convened a group of industry experts to suggest potential industries that would be good demand response program candidates for further review. The dairy industry was suggested due to the perception that the industry had suitable flexibility and automatic controls in place. The purpose of this report is to provide an initial description of the industry with regard to demand response potential, specifically automated demand response. This report qualitatively describes the potential for participation in demand response and automated demand response by dairy processing facilities in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use. Typical process equipment and controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Two case studies of demand response at dairy facilities in California and across the country are reviewed. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  6. Real-time Pricing Demand Response in Operations

    SciTech Connect (OSTI)

    Widergren, Steven E.; Marinovici, Maria C.; Berliner, Teri; Graves, Alan

    2012-07-26

    Abstract—Dynamic pricing schemes have been implemented in commercial and industrial application settings, and recently they are getting attention for application to residential customers. Time-of-use and critical-peak-pricing rates are in place in various regions and are being piloted in many more. These programs are proving themselves useful for balancing energy during peak periods; however, real-time (5 minute) pricing signals combined with automation in end-use systems have the potential to deliver even more benefits to operators and consumers. Besides system peak shaving, a real-time pricing system can contribute demand response based on the locational marginal price of electricity, reduce load in response to a generator outage, and respond to local distribution system capacity limiting situations. The US Department of Energy (DOE) is teaming with a mid-west electricity service provider to run a distribution feeder-based retail electricity market that negotiates with residential automation equipment and clears every 5 minutes, thus providing a signal for lowering or raising electric consumption based on operational objectives of economic efficiency and reliability. This paper outlines the capability of the real-time pricing system and the operational scenarios being tested as the system is rolled-out starting in the first half of 2012.

  7. Northwest Open Automated Demand Response Technology Demonstration Project

    SciTech Connect (OSTI)

    Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann

    2009-08-01

    Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) performed a technology demonstration and evaluation for Bonneville Power Administration (BPA) in Seattle City Light's (SCL) service territory. This report summarizes the process and results of deploying open automated demand response (OpenADR) in Seattle area with winter morning peaking commercial buildings. The field tests were designed to evaluate the feasibility of deploying fully automated demand response (DR) in four to six sites in the winter and the savings from various building systems. The project started in November of 2008 and lasted 6 months. The methodology for the study included site recruitment, control strategy development, automation system deployment and enhancements, and evaluation of sites participation in DR test events. LBNL subcontracted McKinstry and Akuacom for this project. McKinstry assisted with recruitment, site survey collection, strategy development and overall participant and control vendor management. Akuacom established a new server and enhanced its operations to allow for scheduling winter morning day-of and day-ahead events. Each site signed a Memorandum of Agreement with SCL. SCL offered each site $3,000 for agreeing to participate in the study and an additional $1,000 for each event they participated. Each facility and their control vendor worked with LBNL and McKinstry to select and implement control strategies for DR and developed their automation based on the existing Internet connectivity and building control system. Once the DR strategies were programmed, McKinstry commissioned them before actual test events. McKinstry worked with LBNL to identify control points that can be archived at each facility. For each site LBNL collected meter data and trend logs from the energy management and control system. The communication system allowed the sites to receive day-ahead as well as day-of DR test event signals. Measurement of DR was

  8. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    SciTech Connect (OSTI)

    Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2010-08-02

    This study examines the use of OpenADR communications specification, related data models, technologies, and strategies to send dynamic prices (e.g., real time prices and peak prices) and Time of Use (TOU) rates to commercial and industrial electricity customers. OpenADR v1.0 is a Web services-based flexible, open information model that has been used in California utilities' commercial automated demand response programs since 2007. We find that data models can be used to send real time prices. These same data models can also be used to support peak pricing and TOU rates. We present a data model that can accommodate all three types of rates. For demonstration purposes, the data models were generated from California Independent System Operator's real-time wholesale market prices, and a California utility's dynamic prices and TOU rates. Customers can respond to dynamic prices by either using the actual prices, or prices can be mapped into"operation modes," which can act as inputs to control systems. We present several different methods for mapping actual prices. Some of these methods were implemented in demonstration projects. The study results demonstrate show that OpenADR allows interoperability with existing/future systems/technologies and can be used within related dynamic pricing activities within Smart Grid.

  9. An Informatics Approach to Demand Response Optimization in Smart Grids

    SciTech Connect (OSTI)

    Simmhan, Yogesh; Aman, Saima; Cao, Baohua; Giakkoupis, Mike; Kumbhare, Alok; Zhou, Qunzhi; Paul, Donald; Fern, Carol; Sharma, Aditya; Prasanna, Viktor K

    2011-03-03

    Power utilities are increasingly rolling out “smart” grids with the ability to track consumer power usage in near real-time using smart meters that enable bidirectional communication. However, the true value of smart grids is unlocked only when the veritable explosion of data that will become available is ingested, processed, analyzed and translated into meaningful decisions. These include the ability to forecast electricity demand, respond to peak load events, and improve sustainable use of energy by consumers, and are made possible by energy informatics. Information and software system techniques for a smarter power grid include pattern mining and machine learning over complex events and integrated semantic information, distributed stream processing for low latency response,Cloud platforms for scalable operations and privacy policies to mitigate information leakage in an information rich environment. Such an informatics approach is being used in the DoE sponsored Los Angeles Smart Grid Demonstration Project, and the resulting software architecture will lead to an agile and adaptive Los Angeles Smart Grid.

  10. Modeling, Analysis, and Control of Demand Response Resources

    SciTech Connect (OSTI)

    Mathieu, Johanna L.

    2012-05-01

    While the traditional goal of an electric power system has been to control supply to fulfill demand, the demand-side can plan an active role in power systems via Demand Response (DR), defined by the Department of Energy (DOE) as “a tariff or program established to motivate changes in electric use by end-use customers in response to changes in the price of electricity over time, or to give incentive payments designed to induce lower electricity use at times of high market prices or when grid reliability is jeopardized” [29]. DR can provide a variety of benefits including reducing peak electric loads when the power system is stressed and fast timescale energy balancing. Therefore, DR can improve grid reliability and reduce wholesale energy prices and their volatility. This dissertation focuses on analyzing both recent and emerging DR paradigms. Recent DR programs have focused on peak load reduction in commercial buildings and industrial facilities (C&I facilities). We present methods for using 15-minute-interval electric load data, commonly available from C&I facilities, to help building managers understand building energy consumption and ‘ask the right questions’ to discover opportunities for DR. Additionally, we present a regression-based model of whole building electric load, i.e., a baseline model, which allows us to quantify DR performance. We use this baseline model to understand the performance of 38 C&I facilities participating in an automated dynamic pricing DR program in California. In this program, facilities are expected to exhibit the same response each DR event. We find that baseline model error makes it difficult to precisely quantify changes in electricity consumption and understand if C&I facilities exhibit event-to-event variability in their response to DR signals. Therefore, we present a method to compute baseline model error and a metric to determine how much observed DR variability results from baseline model error rather than real

  11. Response Response

    National Nuclear Security Administration (NNSA)

    Attachment 7 Response Response Response Response Response Response Response Response Response Response Response Response Percent of Mentors that are People with Disabilities 9.00% Total number of Mentors (The count used to calculate the Mentor percentages) 252 Demographic Information Percent of Mentors Two or More Races Not reported Percent of White Mentors 63.00% Percent of Female Mentors 39.00% Percent of Male Mentors 61.00% Percent of Veteran Mentors 21.00% Percent of Asian American Mentors

  12. Estimating Demand Response Market Potential Among Large Commercialand Industrial Customers:A Scoping Study

    SciTech Connect (OSTI)

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan,Bernie; Cappers, Peter

    2007-01-01

    Demand response is increasingly recognized as an essentialingredient to well functioning electricity markets. This growingconsensus was formalized in the Energy Policy Act of 2005 (EPACT), whichestablished demand response as an official policy of the U.S. government,and directed states (and their electric utilities) to considerimplementing demand response, with a particular focus on "price-based"mechanisms. The resulting deliberations, along with a variety of stateand regional demand response initiatives, are raising important policyquestions: for example, How much demand response is enough? How much isavailable? From what sources? At what cost? The purpose of this scopingstudy is to examine analytical techniques and data sources to supportdemand response market assessments that can, in turn, answer the secondand third of these questions. We focus on demand response for large(>350 kW), commercial and industrial (C&I) customers, althoughmany of the concepts could equally be applied to similar programs andtariffs for small commercial and residential customers.

  13. Coordination of Retail Demand Response with Midwest ISO Markets

    SciTech Connect (OSTI)

    Bharvirkar, Ranjit; Bharvirkar, Ranjit; Goldman, Charles; Heffner, Grayson; Sedano, Richard

    2008-05-27

    The Organization of Midwest ISO States (OMS) launched the Midwest Demand Resource Initiative (MWDRI) in 2007 to identify barriers to deploying demand response (DR) resources in the Midwest Independent System Operator (MISO) region and develop policies to overcome them. The MWDRI stakeholders decided that a useful initial activity would be to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This additional detail could then be used to assess any"seams issues" affecting coordination and integration of retail DR resources with MISO's wholesale markets. Working with state regulatory agencies, we conducted a detailed survey of existing DR programs, dynamic pricing tariffs, and their features in MISO states. Utilities were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g., seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. This report describes the results of this comprehensive survey and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into organized wholesale markets. Survey responses from 37 MISO members and 4 non-members provided information on 141 DR programs and dynamic pricing tariffs with a peak load reduction potential of 4,727 MW of retail DR resource. Major findings of this study area:- About 72percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;18percent. Almost 90percent of the DR resources included in this survey are provided by investor-owned utilities. - Approximately, 90percent of the DR resources are available with less than

  14. A National Forum on Demand Response: What Remains to Be Done to Achieve Its

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential | Department of Energy A National Forum on Demand Response: What Remains to Be Done to Achieve Its Potential A National Forum on Demand Response: What Remains to Be Done to Achieve Its Potential In July 2011, the Federal Energy Regulatory Commission's (FERC) staff and the Department of Energy (DOE) jointly submitted to Congress a required "Implementation Proposal for the National Action Plan on Demand Response." The Implementation Proposal was for FERC's June 2010

  15. Assessment of Industrial Load for Demand Response across U.S. Regions of the Western Interconnection

    Office of Energy Efficiency and Renewable Energy (EERE)

    Demand response has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles for demand response that can provide more regional understanding and can be inserted into analysis software for further study.

  16. A National Forum on Demand Response: What Remains to Be Done...

    Broader source: Energy.gov (indexed) [DOE]

    Commission's (FERC) staff and the Department of Energy (DOE) jointly submitted to Congress a required "Implementation Proposal for the National Action Plan on DemandResponse." ...

  17. Comments of the Demand Response and Smart Grid Coalition on DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Demand Response and Smart Grid Coalition on DOE's Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy ...

  18. FERC Presendation: Demand Response as Power System Resources, October 29, 2010

    Broader source: Energy.gov [DOE]

    Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010

  19. Introduction to Commercial Building Control Strategies and Techniques for Demand Response -- Appendices

    SciTech Connect (OSTI)

    Motegi, N.; Piette, M.A.; Watson, D.S.; Kiliccote, S.; Xu, P.

    2007-05-01

    There are 3 appendices listed: (A) DR strategies for HVAC systems; (B) Summary of DR strategies; and (C) Case study of advanced demand response.

  20. On the Inclusion of Energy-Shifting Demand Response in Production...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the Inclusion of Energy- Shifting Demand Response in Production Cost Models: Methodology and a Case Study Niamh O'Connell Technical University of Denmark Elaine Hale, Ian ...

  1. Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation

    SciTech Connect (OSTI)

    2012-02-11

    GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframes—incentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales —making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

  2. Export demand response in the Ontario electricity market

    SciTech Connect (OSTI)

    Peerbocus, Nash; Melino, Angelo

    2007-11-15

    Export responses to unanticipated price shocks can be a key contributing factor to the rapid mean reversion of electricity prices. The authors use event analysis - a technique more familiar from financial applications - to demonstrate how hourly export transactions respond to negative supply shocks in the Ontario electricity market. (author)

  3. Drivers for the Value of Demand Response under Increased Levels of Wind and Solar Power; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Hale, Elaine

    2015-07-30

    Demand response may be a valuable flexible resource for low-carbon electric power grids. However, there are as many types of possible demand response as there are ways to use electricity, making demand response difficult to study at scale in realistic settings. This talk reviews our state of knowledge regarding the potential value of demand response in several example systems as a function of increasing levels of wind and solar power, sometimes drawing on the analogy between demand response and storage. Overall, we find demand response to be promising, but its potential value is very system dependent. Furthermore, demand response, like storage, can easily saturate ancillary service markets.

  4. SGDP Report: Interoperability of Demand Response Resources Demonstration in NY (February 2015)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Interoperability of Demand Response Resources Demonstration in NY was awarded to Con Edison in 2009 as part of DOE's Smart Grid Demonstration Project (SGDP) grants funded by the Recovery Act. The objective of the project was to develop and demonstrate methodologies to enhance the ability of customer sited demand response resources, both conventional and renewable, to integrate more effectively with electric delivery companies.

  5. SGDP Report Now Available: Interoperability of Demand Response Resources Demonstration in NY (February 2015)

    Broader source: Energy.gov [DOE]

    The Interoperability of Demand Response Resources Demonstration in NY was awarded to Con Edison in 2009 as part of DOE's Smart Grid Demonstration Project (SGDP) grants funded by the Recovery Act. The objective of the project was to develop and demonstrate methodologies to enhance the ability of customer sited demand response resources, both conventional and renewable, to integrate more effectively with electric delivery companies

  6. Assessing the Control Systems Capacity for Demand Response in California Industries

    SciTech Connect (OSTI)

    Ghatikar, Girish; McKane, Aimee; Goli, Sasank; Therkelsen, Peter; Olsen, Daniel

    2012-01-18

    California's electricity markets are moving toward dynamic pricing models, such as real-time pricing, within the next few years, which could have a significant impact on an industrial facility's cost of energy use during the times of peak use. Adequate controls and automated systems that provide industrial facility managers real-time energy use and cost information are necessary for successful implementation of a comprehensive electricity strategy; however, little is known about the current control capacity of California industries. To address this gap, Lawrence Berkeley National Laboratory, in close collaboration with California industrial trade associations, conducted a survey to determine the current state of controls technologies in California industries. This,study identifies sectors that have the technical capability to implement Demand Response (DR) and Automated Demand Response (Auto-DR). In an effort to assist policy makers and industry in meeting the challenges of real-time pricing, facility operational and organizational factors were taken into consideration to generate recommendations on which sectors Demand Response efforts should be focused. Analysis of the survey responses showed that while the vast majority of industrial facilities have semi- or fully automated control systems, participation in Demand Response programs is still low due to perceived barriers. The results also showed that the facilities that use continuous processes are good Demand Response candidates. When comparing facilities participating in Demand Response to those not participating, several similarities and differences emerged. Demand Response-participating facilities and non-participating facilities had similar timings of peak energy use, production processes, and participation in energy audits. Though the survey sample was smaller than anticipated, the results seemed to support our preliminary assumptions. Demonstrations of Auto-Demand Response in industrial facilities with

  7. Demand response medium sized industry consumers (Smart Grid Project...

    Open Energy Info (EERE)

    demand and regulation power in Danish Industry consumers via a price and control signal from the supplier of electricity. The aim is to develop a valuable solution for the...

  8. Response to several FOIA requests - Renewable Energy. Demand...

    Broader source: Energy.gov (indexed) [DOE]

    Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that ...

  9. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann

    2008-10-01

    This report summarizes San Diego Gas& Electric Company?s collaboration with the Demand Response Research Center to develop and test automation capability for the Capacity Bidding Program in 2007. The report describes the Open Automated Demand Response architecture, summarizes the history of technology development and pilot studies. It also outlines the Capacity Bidding Program and technology being used by an aggregator that participated in this demand response program. Due to delays, the program was not fully operational for summer 2007. However, a test event on October 3, 2007, showed that the project successfully achieved the objective to develop and demonstrate how an open, Web?based interoperable automated notification system for capacity bidding can be used by aggregators for demand response. The system was effective in initiating a fully automated demand response shed at the aggregated sites. This project also demonstrated how aggregators can integrate their demand response automation systems with San Diego Gas& Electric Company?s Demand Response Automation Server and capacity bidding program.

  10. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  11. Chilled Water Thermal Storage System and Demand Response at the University of California at Merced

    SciTech Connect (OSTI)

    Granderson, Jessica; Dudley, Junqiao Han; Kiliccote, Sila; Piette, Mary Ann

    2009-10-08

    The University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods. This makes demand response more subtle and challenges typical evaluation protocols. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced summer electric loads are characterized; second, its participation in two demand response events is detailed. In each event a set of strategies were pre-programmed into the campus control system to enable semi-automated response. Finally, demand savings results are applied to the utility's DR incentives structure to calculate the financial savings under various DR programs and tariffs. A key conclusion to this research is that there is significant demand reduction using a zone temperature set point change event with the full off peak storage cooling in use.

  12. A Full Demand Response Model in Co-Optimized Energy and

    SciTech Connect (OSTI)

    Liu, Guodong; Tomsovic, Kevin

    2014-01-01

    It has been widely accepted that demand response will play an important role in reliable and economic operation of future power systems and electricity markets. Demand response can not only influence the prices in the energy market by demand shifting, but also participate in the reserve market. In this paper, we propose a full model of demand response in which demand flexibility is fully utilized by price responsive shiftable demand bids in energy market as well as spinning reserve bids in reserve market. A co-optimized day-ahead energy and spinning reserve market is proposed to minimize the expected net cost under all credible system states, i.e., expected total cost of operation minus total benefit of demand, and solved by mixed integer linear programming. Numerical simulation results on the IEEE Reliability Test System show effectiveness of this model. Compared to conventional demand shifting bids, the proposed full demand response model can further reduce committed capacity from generators, starting up and shutting down of units and the overall system operating costs.

  13. Development and Validation of Aggregated Models for Thermostatic Controlled Loads with Demand Response

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Elizondo, Marcelo A.; Fuller, Jason C.; Lu, Shuai; Chassin, David P.

    2012-01-04

    Demand response is playing an increasingly important role in smart grid research and technologies being examined in recently undertaken demonstration projects. The behavior of load as it is affected by various load control strategies is important to understanding the degree to which different classes of end-use load can contribute to demand response programs at various times. This paper focuses on developing aggregated control models for a population of thermostatically controlled loads. The effects of demand response on the load population dynamics are investigated.

  14. Paying for demand-side response at the wholesale level

    SciTech Connect (OSTI)

    Falk, Jonathan

    2010-11-15

    The recent FERC Notice of Public Rulemaking regarding the payment to demand-side resources in wholesale markets has engendered a great deal of comments including FERC's obligation to ensure just and reasonable rates in the wholesale market and criteria for what FERC should do (on grounds of economic efficiency) without any real focus on what that commitment would really mean if FERC actually pursued it. (author)

  15. Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers

    Broader source: Energy.gov [DOE]

    Honeywell’s Smart Grid Investment Grant (SGIG) project demonstrates utility-scale performance of a hardware/software platform for automated demand response (ADR) for utility, commercial, and industrial customers. The case study is now available for downloading.

  16. Joint Real-Time Energy and Demand-Response Management using a...

    Office of Scientific and Technical Information (OSTI)

    Real-Time Energy and Demand-Response Management using a Hybrid Coalitional-Noncooperative Game Citation Details In-Document Search Title: Joint Real-Time Energy and ...

  17. Opportunities for Demand Response in California Agricultural Irrigation: A Scoping Study

    SciTech Connect (OSTI)

    Marks, Gary; Wilcox, Edmund; Olsen, Daniel; Goli, Sasank

    2013-01-02

    California agricultural irrigation consumes more than ten billion kilowatt hours of electricity annually and has significant potential for contributing to a reduction of stress on the grid through demand response, permanent load shifting, and energy efficiency measures. To understand this potential, a scoping study was initiated for the purpose of determining the associated opportunities, potential, and adoption challenges in California agricultural irrigation. The primary research for this study was conducted in two ways. First, data was gathered and parsed from published sources that shed light on where the best opportunities for load shifting and demand response lie within the agricultural irrigation sector. Secondly, a small limited survey was conducted as informal face-to-face interviews with several different California growers to get an idea of their ability and willingness to participate in permanent load shifting and/or demand response programs. Analysis of the data obtained from published sources and the survey reveal demand response and permanent load shifting opportunities by growing region, irrigation source, irrigation method, grower size, and utility coverage. The study examines some solutions for demand response and permanent load shifting in agricultural irrigation, which include adequate irrigation system capacity, automatic controls, variable frequency drives, and the contribution from energy efficiency measures. The study further examines the potential and challenges for grower acceptance of demand response and permanent load shifting in California agricultural irrigation. As part of the examination, the study considers to what extent permanent load shifting, which is already somewhat accepted within the agricultural sector, mitigates the need or benefit of demand response for agricultural irrigation. Recommendations for further study include studies on how to gain grower acceptance of demand response as well as other related studies such as

  18. Comments of the Demand Response and Smart Grid Coalition on DOE's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy | Department of Energy the Demand Response and Smart Grid Coalition on DOE's Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy Comments of the Demand Response and Smart Grid Coalition on DOE's Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access,

  19. When it comes to demand response, is FERC its own worst enemy?

    SciTech Connect (OSTI)

    Bushnell, James; Hobbs, Benjamin F.; Wolak, Frank A.

    2009-10-15

    There is a significant risk of creating conditions that will crowd out true price response by focusing too much on demand response programs with unverifiable baselines and reliability-based rather than price-based mechanisms for obtaining consumption reductions. (author)

  20. Aggregated Modeling of Thermostatic Loads in Demand Response: A Systems and Control Perspective

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Chassin, Forrest S.; Chassin, David P.

    2011-12-12

    Demand response is playing an increasingly important role in smart grid research and technologies being examined in recently undertaken demonstration projects. The behavior of load as it is affected by various load control strategies is important to understanding the degree to which different classes of end-use load can contribute to demand response programs at various times. This paper focuses on developing aggregated models for a homogeneous population of thermostatically controlled loads. The different types of loads considered in this paper include, but are not limited to, water heaters and HVAC units. The effects of demand response and user over-ride on the load population dynamics are investigated. The controllability of the developed lumped models is validated which forms the basis for designing different control strategies.

  1. Quantifying Changes in Building Electricity Use, with Application to Demand Response

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Price, Phillip N.; Kiliccote, Sila; Piette, Mary Ann

    2010-11-17

    We present methods for analyzing commercial and industrial facility 15-minute-interval electric load data. These methods allow building managers to better understand their facility's electricity consumption over time and to compare it to other buildings, helping them to ask the right questions to discover opportunities for demand response, energy efficiency, electricity waste elimination, and peak load management. We primarily focus on demand response. Methods discussed include graphical representations of electric load data, a regression-based electricity load model that uses a time-of-week indicator variable and a piecewise linear and continuous outdoor air temperature dependence, and the definition of various parameters that characterize facility electricity loads and demand response behavior. In the future, these methods could be translated into easy-to-use tools for building managers.

  2. Price Responsive Demand in New York Wholesale Electricity Market using OpenADR

    SciTech Connect (OSTI)

    Kim, Joyce Jihyun; Kiliccote, Sila

    2012-06-01

    In New York State, the default electricity pricing for large customers is Mandatory Hourly Pricing (MHP), which is charged based on zonal day-ahead market price for energy. With MHP, retail customers can adjust their building load to an economically optimal level according to hourly electricity prices. Yet, many customers seek alternative pricing options such as fixed rates through retail access for their electricity supply. Open Automated Demand Response (OpenADR) is an XML (eXtensible Markup Language) based information exchange model that communicates price and reliability information. It allows customers to evaluate hourly prices and provide demand response in an automated fashion to minimize electricity costs. This document shows how OpenADR can support MHP and facilitate price responsive demand for large commercial customers in New York City.

  3. Demand response pilot event conducted August 2,2011 : summary report.

    SciTech Connect (OSTI)

    Lincoln, Donald; Evans, Christoper

    2012-01-01

    Energy management in a commercial facility can be segregated into two areas: energy efficiency and demand response (DR). Energy efficiency focuses on steady-state load minimization. Demand response reduces load for event driven periods during the peak load. Demand-response-driven changes in electricity use are designed to be short-term in nature, centered on critical hours during the day when demand is high or when the electricity supplier's reserve margins are low. Due to the recent Federal Energy Regulatory Commission (FERC) Order 745, Demand Response Compensation in Organized Wholesale Energy Markets the potential annual compensation to Sandia National Laboratories (SNL) from performing DR ranges from $300K to $2,400K. While the current energy supply contract does not offer any compensation for participating in DR, there is benefit in understanding the issues and potential value in performing a DR event. This Report will be helpful in upcoming energy supply contract negotiations to quantify the energy savings and power reduction potential from DR at SNL. On August 25, 2011 the Facilities Management and Operations Center (FMOC) performed the first DR pilot event at SNL/NM. This report describes the details and results of this DR event.

  4. AMI Communication Requirements to Implement Demand-Response: Applicability of Hybrid Spread Spectrum Wireless

    SciTech Connect (OSTI)

    Hadley, Mark D.; Clements, Samuel L.; Carroll, Thomas E.

    2011-09-30

    While holistically defining the smart grid is a challenge, one area of interest is demand-response. In 2009, the Department of Energy announced over $4 billion in grant and project funding for the Smart Grid. A significant amount of this funding was allotted to utilities for cost sharing projects to deploy Smart Grid technologies, many of whom have deployed and are deploying advanced metering infrastructure (AMI). AMI is an enabler to increase the efficiency of utilities and the bulk power grid. The bulk electrical system is unique in that it produces electricity as it is consumed. Most other industries have a delay between generation and consumption. This aspect of the power grid means that there must be enough generation capacity to meet the highest demand whereas other industries could over produce during off-peak times. This requires significant investment in generation capacity to cover the few days a year of peak consumption. Since bulk electrical storage doesn't yet exist at scale another way to curb the need for new peak period generation is through demand-response; that is to incentivize consumers (demand) to curtail (respond) electrical usage during peak periods. Of the various methods proposed for enabling demand-response, this paper will focus on the communication requirements for creating an energy market using transactional controls. More specifically, the paper will focus on the communication requirements needed to send the peak period notices and receive the response back from the consumers.

  5. Reduced-Order Modeling of Aggregated Thermostatic Loads With Demand Response

    SciTech Connect (OSTI)

    Zhang, Wei; Lian, Jianming; Chang, Chin-Yao; Kalsi, Karanjit; Sun, Yannan

    2012-12-12

    Demand Response is playing an increasingly important role in smart grid control strategies. Modeling the behavior of populations of appliances under demand response is especially important to evaluate the effectiveness of these demand response programs. In this paper, an aggregated model is proposed for a class of Thermostatically Controlled Loads (TCLs). The model efficiently includes statistical information of the population, systematically deals with heterogeneity, and accounts for a second-order effect necessary to accurately capture the transient dynamics in the collective response. However, an accurate characterization of the collective dynamics however requires the aggregate model to have a high state space dimension. Most of the existing model reduction techniques require the stability of the underlying system which does not hold for the proposed aggregated model. In this work, a novel model reduction approach is developed for the proposed aggregated model, which can significantly reduce its complexity with small performance loss. The original and the reducedorder aggregated models are validated against simulations of thousands of detailed building models using GridLAB-D, which is a realistic open source distribution simulation software. Index Terms demand response, aggregated model, ancillary

  6. Development and evaluation of fully automated demand response in large facilities

    SciTech Connect (OSTI)

    Piette, Mary Ann; Sezgen, Osman; Watson, David S.; Motegi, Naoya; Shockman, Christine; ten Hope, Laurie

    2004-03-30

    This report describes the results of a research project to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve electric grid reliability, manage electricity costs, and ensure that customers receive signals that encourage load reduction during times when the electric grid is near its capacity. The two main drivers for widespread demand responsiveness are the prevention of future electricity crises and the reduction of electricity prices. Additional goals for price responsiveness include equity through cost of service pricing, and customer control of electricity usage and bills. The technology developed and evaluated in this report could be used to support numerous forms of DR programs and tariffs. For the purpose of this report, we have defined three levels of Demand Response automation. Manual Demand Response involves manually turning off lights or equipment; this can be a labor-intensive approach. Semi-Automated Response involves the use of building energy management control systems for load shedding, where a preprogrammed load shedding strategy is initiated by facilities staff. Fully-Automated Demand Response is initiated at a building or facility through receipt of an external communications signal--facility staff set up a pre-programmed load shedding strategy which is automatically initiated by the system without the need for human intervention. We have defined this approach to be Auto-DR. An important concept in Auto-DR is that a facility manager is able to ''opt out'' or ''override'' an individual DR event if it occurs at a time when the reduction in end-use services is not desirable. This project sought to improve the feasibility and nature of Auto-DR strategies in large facilities. The research focused on technology development, testing, characterization, and evaluation relating to Auto

  7. Aggregated Modeling and Control of Air Conditioning Loads for Demand Response

    SciTech Connect (OSTI)

    Zhang, Wei; Lian, Jianming; Chang, Chin-Yao; Kalsi, Karanjit

    2013-06-21

    Demand response is playing an increasingly important role in the efficient and reliable operation of the electric grid. Modeling the dynamic behavior of a large population of responsive loads is especially important to evaluate the effectiveness of various demand response strategies. In this paper, a highly-accurate aggregated model is developed for a population of air conditioning loads. The model effectively includes statistical information of the population, systematically deals with load heterogeneity, and accounts for second-order dynamics necessary to accurately capture the transient dynamics in the collective response. Based on the model, a novel aggregated control strategy is designed for the load population under realistic conditions. The proposed controller is fully responsive and achieves the control objective without sacrificing end-use performance. The proposed aggregated modeling and control strategies are validated through realistic simulations using GridLAB-D. Extensive simulation results indicate that the proposed approach can effectively manage a large number of air conditioning systems to provide various demand response services, such as frequency regulation and peak load reduction.

  8. Automated Price and Demand Response Demonstration for Large Customers in New York City using OpenADR

    SciTech Connect (OSTI)

    Kim, Joyce Jihyun; Yin, Rongxin; Kiliccote, Sila

    2013-10-01

    Open Automated Demand Response (OpenADR), an XML-based information exchange model, is used to facilitate continuous price-responsive operation and demand response participation for large commercial buildings in New York who are subject to the default day-ahead hourly pricing. We summarize the existing demand response programs in New York and discuss OpenADR communication, prioritization of demand response signals, and control methods. Building energy simulation models are developed and field tests are conducted to evaluate continuous energy management and demand response capabilities of two commercial buildings in New York City. Preliminary results reveal that providing machine-readable prices to commercial buildings can facilitate both demand response participation and continuous energy cost savings. Hence, efforts should be made to develop more sophisticated algorithms for building control systems to minimize customer's utility bill based on price and reliability information from the electricity grid.

  9. Automated Demand Response: The Missing Link in the Electricity Value Chain

    SciTech Connect (OSTI)

    McKane, Aimee; Rhyne, Ivin; Piette, Mary Ann; Thompson, Lisa; Lekov, Alex

    2008-08-01

    In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This 'electricity value chain' defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to 'demo' potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives. In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies

  10. Automated Demand Response: The Missing Link in the Electricity Value Chain

    SciTech Connect (OSTI)

    McKane, Aimee; Rhyne, Ivin; Lekov, Alex; Thompson, Lisa; Piette, MaryAnn

    2009-08-01

    In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This ?electricity value chain? defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to"demo" potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives.1 In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies

  11. Future Opportunities and Challenges with Using Demand Response as a Resource in Distribution System Operation and Planning Activities

    Office of Energy Efficiency and Renewable Energy (EERE)

    This scoping study focuses on identifying the ability for current and future demand response opportunities to contribute to distribution system management. To do so, this scoping study will...

  12. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    SciTech Connect (OSTI)

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

    2014-01-31

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

  13. Advanced Control Technologies and Strategies Linking DemandResponse and Energy Efficiency

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann

    2005-09-02

    This paper presents a preliminary framework to describe how advanced controls can support multiple modes of operations including both energy efficiency and demand response (DR). A general description of DR, its benefits, and nationwide status is outlined. The role of energy management and control systems for DR is described. Building systems such as HVAC and lighting that utilize control technologies and strategies for energy efficiency are mapped on to DR and demand shedding strategies are developed. Past research projects are presented to provide a context for the current projects. The economic case for implementing DR from a building owner perspective is also explored.

  14. Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2012-12-20

    This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities The average baseline demand at the Southeast facility was approximately 4 MW. During the rainy season (October-March) the facility treated 40% more wastewater than the dry season, but demand only increased by 4%. Submetering of the facility's lift pumps and centrifuges predicted load shifts capabilities of 154 kW and 86 kW, respectively, with large lift pump shifts in the rainy season. Analysis of demand data during maintenance events confirmed the magnitude of these possible load shifts, and indicated other areas of the facility with demand response potential. Load sheds were seen to be possible by shutting down a portion of the facility's aeration trains (average shed of 132 kW). Load shifts were seen to be possible by shifting operation of centrifuges, the gravity belt thickener, lift pumps, and external pump stations These load shifts were made possible by the storage capabilities of the facility and of the city's sewer system. Large load reductions (an average of 2,065 kW) were seen from operating the cogeneration unit, but normal practice is continuous operation, precluding its use for demand response. The study also identified potential demand response opportunities that warrant further study: modulating variable-demand aeration loads, shifting operation of sludge

  15. Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid

    SciTech Connect (OSTI)

    Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Kiliccote, Sila

    2010-06-02

    We present an Open Automated Demand Response Communications Specifications (OpenADR) data model capable of communicating real-time prices to electricity customers. We also show how the same data model could be used to for other types of dynamic pricing tariffs (including peak pricing tariffs, which are common throughout the United States). Customers participating in automated demand response programs with building control systems can respond to dynamic prices by using the actual prices as inputs to their control systems. Alternatively, prices can be mapped into"building operation modes," which can act as inputs to control systems. We present several different strategies customers could use to map prices to operation modes. Our results show that OpenADR can be used to communicate dynamic pricing within the Smart Grid and that OpenADR allows for interoperability with existing and future systems, technologies, and electricity markets.

  16. 2012 CERTS LAAR Program Peer Review - Frequency Response Demand - Jeff Dagle, PNNL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Responsive Demand Jeff Dagle, PE Chief Electrical Engineer Advanced Power & Energy Systems Pacific Northwest National Laboratory (509) 375-3629 jeff.dagle@pnl.gov CERTS Project Meeting Berkeley, CA September 20, 2012 Acknowledgements Montana Tech University MK Donnelly DJ Turdnowski S Mattix 2 Project Objective This project is evaluating the utilization of large numbers of small loads to provide spinning reserve The specific scope of this project is comparing the ability of load to provide

  17. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    SciTech Connect (OSTI)

    Cappers, Peter; Mills, Andrew; Goldman, Charles; Wiser, Ryan; Eto, Joseph H.

    2011-09-10

    This scoping study focuses on the policy issues inherent in the claims made by some Smart Grid proponents that the demand response potential of mass market customers which is enabled by widespread implementation of Advanced Metering Infrastructure (AMI) through the Smart Grid could be the “silver bullet” for mitigating variable generation integration issues. In terms of approach, we will: identify key issues associated with integrating large amounts of variable generation into the bulk power system; identify demand response opportunities made more readily available to mass market customers through widespread deployment of AMI systems and how they can affect the bulk power system; assess the extent to which these mass market Demand Response (DR) opportunities can mitigate Variable Generation (VG) integration issues in the near-term and what electricity market structures and regulatory practices could be changed to further expand the ability for DR to mitigate VG integration issues over the long term; and provide a qualitative comparison of DR and other approaches to mitigate VG integration issues.

  18. Analysis of Open Automated Demand Response Deployments in California and Guidelines to Transition to Industry Standards

    SciTech Connect (OSTI)

    Ghatikar, Girish; Riess, David; Piette, Mary Ann

    2014-01-02

    This report reviews the Open Automated Demand Response (OpenADR) deployments within the territories serviced by California?s investor-owned utilities (IOUs) and the transition from the OpenADR 1.0 specification to the formal standard?OpenADR 2.0. As demand response service providers and customers start adopting OpenADR 2.0, it is necessary to ensure that the existing Automated Demand Response (AutoDR) infrastructure investment continues to be useful and takes advantage of the formal standard and its many benefits. This study focused on OpenADR deployments and systems used by the California IOUs and included a summary of the OpenADR deployment from the U.S. Department of Energy-funded demonstration conducted by the Sacramento Municipal Utility District (SMUD). Lawrence Berkeley National Laboratory collected and analyzed data about OpenADR 1.0 deployments, categorized architectures, developed a data model mapping to understand the technical compatibility of each version, and compared the capabilities and features of the two specifications. The findings, for the first time, provided evidence of the total enabled load shed and average first cost for system enablement in the IOU and SMUD service territories. The OpenADR 2.0a profile specification semantically supports AutoDR system architectures and data propagation with a testing and certification program that promotes interoperability, scaled deployments by multiple vendors, and provides additional features that support future services.

  19. The Impact of Energy Efficiency and Demand Response Programs on the U.S. Electricity Market

    SciTech Connect (OSTI)

    Baek, Young Sun; Hadley, Stanton W

    2012-01-01

    This study analyzes the impact of the energy efficiency (EE) and demand response (DR) programs on the grid and the consequent level of production. Changes in demand caused by EE and DR programs affect not only the dispatch of existing plants and new generation technologies, the retirements of old plants, and the finances of the market. To find the new equilibrium in the market, we use the Oak Ridge Competitive Electricity Dispatch Model (ORCED) developed to simulate the operations and costs of regional power markets depending on various factors including fuel prices, initial mix of generation capacity, and customer response to electricity prices. In ORCED, over 19,000 plant units in the nation are aggregated into up to 200 plant groups per region. Then, ORCED dispatches the power plant groups in each region to meet the electricity demands for a given year up to 2035. In our analysis, we show various demand, supply, and dispatch patterns affected by EE and DR programs across regions.

  20. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    SciTech Connect (OSTI)

    Page, Janie; Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann; Chiu, Albert K.; Kellow, Bashar; Koch, Ed; Lipkin, Paul

    2011-07-01

    Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

  1. Final Scientific Technical Report: INTEGRATED PREDICTIVE DEMAND RESPONSE CONTROLLER FOR COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Wenzel, Mike

    2013-10-14

    This project provides algorithms to perform demand response using the thermal mass of a building. Using the thermal mass of the building is an attractive method for performing demand response because there is no need for capital expenditure. The algorithms rely on the thermal capacitance inherent in the building?s construction materials. A near-optimal ?day ahead? predictive approach is developed that is meant to keep the building?s electrical demand constant during the high cost periods. This type of approach is appropriate for both time-of-use and critical peak pricing utility rate structures. The approach uses the past days data in order to determine the best temperature setpoints for the building during the high price periods on the next day. A second ?model predictive approach? (MPC) uses a thermal model of the building to determine the best temperature for the next sample period. The approach uses constant feedback from the building and is capable of appropriately handling real time pricing. Both approaches are capable of using weather forecasts to improve performance.

  2. Field Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings in the Pacific Northwest

    SciTech Connect (OSTI)

    Piette, Mary Ann; Kiliccote, Sila; Dudley, Junqiao H.

    2011-11-11

    There are growing strains on the electric grid as cooling peaks grow and equipment ages. Increased penetration of renewables on the grid is also straining electricity supply systems and the need for flexible demand is growing. This paper summarizes results of a series of field test of automated demand response systems in large buildings in the Pacific Northwest. The objective of the research was two fold. One objective was to evaluate the use demand response automation technologies. A second objective was to evaluate control strategies that could change the electric load shape in both winter and summer conditions. Winter conditions focused on cold winter mornings, a time when the electric grid is often stressed. The summer test evaluated DR strategies in the afternoon. We found that we could automate both winter and summer control strategies with the open automated demand response communication standard. The buildings were able to provide significant demand response in both winter and summer events.

  3. Understanding the Effect of Baseline Modeling Implementation Choices on Analysis of Demand Response Performance

    SciTech Connect (OSTI)

    University of California, Berkeley; Addy, Nathan; Kiliccote, Sila; Mathieu, Johanna; Callaway, Duncan S.

    2012-06-13

    Accurate evaluation of the performance of buildings participating in Demand Response (DR) programs is critical to the adoption and improvement of these programs. Typically, we calculate load sheds during DR events by comparing observed electric demand against counterfactual predictions made using statistical baseline models. Many baseline models exist and these models can produce different shed calculations. Moreover, modelers implementing the same baseline model can make different modeling implementation choices, which may affect shed estimates. In this work, using real data, we analyze the effect of different modeling implementation choices on shed predictions. We focused on five issues: weather data source, resolution of data, methods for determining when buildings are occupied, methods for aligning building data with temperature data, and methods for power outage filtering. Results indicate sensitivity to the weather data source and data filtration methods as well as an immediate potential for automation of methods to choose building occupied modes.

  4. Effects of Granular Control on Customers’ Perspective and Behavior with Automated Demand Response Systems

    SciTech Connect (OSTI)

    Schetrit, Oren; Kim, Joyce; Yin, Rongxin; Kiliccote, Sila

    2014-08-01

    Automated demand response (Auto-DR) is expected to close the loop between buildings and the grid by providing machine-to-machine communications to curtail loads without the need for human intervention. Hence, it can offer more reliable and repeatable demand response results to the grid than the manual approach and make demand response participation a hassle-free experience for customers. However, many building operators misunderstand Auto-DR and are afraid of losing control over their building operation. To ease the transition from manual to Auto-DR, we designed and implemented granular control of Auto-DR systems so that building operators could modify or opt out of individual load-shed strategies whenever they wanted. This paper reports the research findings from this effort demonstrated through a field study in large commercial buildings located in New York City. We focused on (1) understanding how providing granular control affects building operators’ perspective on Auto-DR, and (2) evaluating the usefulness of granular control by examining their interaction with the Auto-DR user interface during test events. Through trend log analysis, interviews, and surveys, we found that: (1) the opt-out capability during Auto-DR events can remove the feeling of being forced into load curtailments and increase their willingness to adopt Auto-DR; (2) being able to modify individual load-shed strategies allows flexible Auto-DR participation that meets the building’s changing operational requirements; (3) a clear display of automation strategies helps building operators easily identify how Auto-DR is functioning and can build trust in Auto-DR systems.

  5. Small Business Demand Response with Communicating Thermostats: SMUD's Summer Solutions Research Pilot

    SciTech Connect (OSTI)

    Herter, Karen; Wayland, Seth; Rasin, Josh

    2009-09-25

    This report documents a field study of 78 small commercial customers in the Sacramento Municipal Utility District service territory who volunteered for an integrated energy-efficiency/demand-response (EE-DR) program in the summer of 2008. The original objective for the pilot was to provide a better understanding of demand response issues in the small commercial sector. Early findings justified a focus on offering small businesses (1) help with the energy efficiency of their buildings in exchange for occasional load shed, and (2) a portfolio of options to meet the needs of a diverse customer sector. To meet these expressed needs, the research pilot provided on-site energy efficiency advice and offered participants several program options, including the choice of either a dynamic rate or monthly payment for air-conditioning setpoint control. An analysis of hourly load data indicates that the offices and retail stores in our sample provided significant demand response, while the restaurants did not. Thermostat data provides further evidence that restaurants attempted to precool and reduce AC service during event hours, but were unable to because their air-conditioning units were undersized. On a 100 F reference day, load impacts of all participants during events averaged 14%, while load impacts of office and retail buildings (excluding restaurants) reached 20%. Overall, pilot participants including restaurants had 2007-2008 summer energy savings of 20% and bill savings of 30%. About 80% of participants said that the program met or surpassed their expectations, and three-quarters said they would probably or definitely participate again without the $120 participation incentive. These results provide evidence that energy efficiency programs, dynamic rates and load control programs can be used concurrently and effectively in the small business sector, and that communicating thermostats are a reliable tool for providing air-conditioning load shed and enhancing the ability

  6. A Successful Case Study of Small Business Energy Efficiency and Demand Response with Communicating Thermostats

    SciTech Connect (OSTI)

    Herter, Karen; Wayland, Seth; Rasin, Josh

    2009-08-12

    This report documents a field study of 78 small commercial customers in the Sacramento Municipal Utility District service territory who volunteered for an integrated energy-efficiency/demand-response (EE-DR) program in the summer of 2008. The original objective for the pilot was to provide a better understanding of demand response issues in the small commercial sector. Early findings justified a focus on offering small businesses (1) help with the energy efficiency of their buildings in exchange for occasional load shed, and (2) a portfolio of options to meet the needs of a diverse customer sector. To meet these expressed needs, the research pilot provided on-site energy efficiency advice and offered participants several program options, including the choice of either a dynamic rate or monthly payment for air-conditioning setpoint control. Overall results show that pilot participants had energy savings of 20%, and the potential for an additional 14% to 20% load drop during a 100 F demand response event. In addition to the efficiency-related bill savings, participants on the dynamic rate saved an estimated 5% on their energy costs compared to the standard rate. About 80% of participants said that the program met or surpassed their expectations, and three-quarters said they would probably or definitely participate again without the $120 participation incentive. These results provide evidence that energy efficiency programs, dynamic rates and load control programs can be used concurrently and effectively in the small business sector, and that communicating thermostats are a reliable tool for providing air-conditioning load shed and enhancing the ability of customers on dynamic rates to respond to intermittent price events.

  7. Market and policy barriers for demand response providing ancillary services in U.S. markets

    SciTech Connect (OSTI)

    Cappers, Peter; MacDonald, Jason; Goldman, Charles

    2013-03-01

    This study provides an examination of various market and policy barriers to demand response providing ancillary services in both ISO/RTO and non-ISO/RTO regions, especially at the program provider level. It is useful to classify barriers in order to create a holistic understanding and identify parties that could be responsible for their removal. This study develops a typology of barriers focusing on smaller customers that must rely on a program provider (i.e., electric investor owned utility or IOU, ARC) to create an aggregated DR resource in order to bring ancillary services to the balancing authority. The barriers were identified through examinations of regulatory structures, market environments, and product offerings; and discussions with industry stakeholders and regulators. In order to help illustrate the differences in barriers among various wholesale market designs and their constituent retail environments, four regions were chosen to use as case studies: Colorado, Texas, Wisconsin, and New Jersey.

  8. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    SciTech Connect (OSTI)

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

    2009-05-26

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case

  9. Demand Response Spinning Reserve Demonstration -- Phase 2 Findings from the Summer of 2008

    SciTech Connect (OSTI)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Parker, Eric; Bernier, Clark; Young, Paul; Sheehan, Dave; Kueck, John; Kirby, Brendan

    2009-04-30

    The Demand Response Spinning Reserve project is a pioneering demonstration showing that existing utility load-management assets can provide an important electricity system reliability resource known as spinning reserve. Using aggregated demand-side resources to provide spinning reserve as demonstrated in this project will give grid operators at the California Independent System Operator (CA ISO) and Southern California Edison (SCE) a powerful new tool to improve reliability, prevent rolling blackouts, and lower grid operating costs.In the first phase of this demonstration project, we target marketed SCE?s air-conditioning (AC) load-cycling program, called the Summer Discount Plan (SDP), to customers on a single SCE distribution feederand developed an external website with real-time telemetry for the aggregated loads on this feeder and conducted a large number of short-duration curtailments of participating customers? air-conditioning units to simulate provision of spinning reserve. In this second phase of the demonstration project, we explored four major elements that would be critical for this demonstration to make the transition to a commercial activity:1. We conducted load curtailments within four geographically distinct feeders to determine the transferability of target marketing approaches and better understand the performance of SCE?s load management dispatch system as well as variations in the AC use of SCE?s participating customers;2. We deployed specialized, near-real-time AC monitoring devices to improve our understanding of the aggregated load curtailments we observe on the feeders;3. We integrated information provided by the AC monitoring devices with information from SCE?s load management dispatch system to measure the time required for each step in the curtailment process; and4. We established connectivity with the CA ISO to explore the steps involved in responding to CA ISO-initiated requests for dispatch of spinning reserve.The major findings from

  10. A Methodology for Estimating Large-Customer Demand Response MarketPotential

    SciTech Connect (OSTI)

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan,Bernie; Cappers,Peter

    2007-08-01

    Demand response (DR) is increasingly recognized as an essential ingredient to well-functioning electricity markets. DR market potential studies can answer questions about the amount of DR available in a given area and from which market segments. Several recent DR market potential studies have been conducted, most adapting techniques used to estimate energy-efficiency (EE) potential. In this scoping study, we: reviewed and categorized seven recent DR market potential studies; recommended a methodology for estimating DR market potential for large, non-residential utility customers that uses price elasticities to account for behavior and prices; compiled participation rates and elasticity values from six DR options offered to large customers in recent years, and demonstrated our recommended methodology with large customer market potential scenarios at an illustrative Northeastern utility. We observe that EE and DR have several important differences that argue for an elasticity approach for large-customer DR options that rely on customer-initiated response to prices, rather than the engineering approaches typical of EE potential studies. Base-case estimates suggest that offering DR options to large, non-residential customers results in 1-3% reductions in their class peak demand in response to prices or incentive payments of $500/MWh. Participation rates (i.e., enrollment in voluntary DR programs or acceptance of default hourly pricing) have the greatest influence on DR impacts of all factors studied, yet are the least well understood. Elasticity refinements to reflect the impact of enabling technologies and response at high prices provide more accurate market potential estimates, particularly when arc elasticities (rather than substitution elasticities) are estimated.

  11. Development and Demonstration of the Open Automated Demand Response Standard for the Residential Sector

    SciTech Connect (OSTI)

    Herter, Karen; Rasin, Josh; Perry, Tim

    2009-11-30

    The goal of this study was to demonstrate a demand response system that can signal nearly every customer in all sectors through the integration of two widely available and non- proprietary communications technologies--Open Automated Demand Response (OpenADR) over lnternet protocol and Utility Messaging Channel (UMC) over FM radio. The outcomes of this project were as follows: (1) a software bridge to allow translation of pricing signals from OpenADR to UMC; and (2) a portable demonstration unit with an lnternet-connected notebook computer, a portfolio of DR-enabling technologies, and a model home. The demonstration unit provides visitors the opportunity to send electricity-pricing information over the lnternet (through OpenADR and UMC) and then watch as the model appliances and lighting respond to the signals. The integration of OpenADR and UMC completed and demonstrated in this study enables utilities to send hourly or sub-hourly electricity pricing information simultaneously to the residential, commercial and industrial sectors.

  12. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  13. DOE and FERC Jointly Submit Implementation Proposal for The National Action Plan on Demand Response to Congress

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy and the Federal Energy Regulatory Commission (FERC) jointly submitted to Congress a required “Implementation Proposal for The National Action Plan on Demand Response.”

  14. Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the Western Interconnection

    Office of Energy Efficiency and Renewable Energy (EERE)

    Demand response (DR) has the potential to improve electric grid reliability and reduce system operation costs. However, including DR in grid modeling can be difficult due to its variable and non-traditional response characteristics, compared to traditional generation. Therefore, efforts to value the participation of DR in procurement of grid services have been limited. In this report, we present methods and tools for predicting demand response availability profiles, representing their capability to participate in capacity, energy, and ancillary services. With the addition of response characteristics mimicking those of generation, the resulting profiles will help in the valuation of the participation of demand response through production cost modeling, which informs infrastructure and investment planning.

  15. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

    2009-04-01

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  16. Web-based energy information systems for energy management and demand response in commercial buildings

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS are

  17. Heat Pump Water Heaters: Controlled Field Research of Impact on Space Conditioning and Demand Response Characteristics

    SciTech Connect (OSTI)

    Parker, Graham B.; Widder, Sarah H.; Eklund, Ken; Petersen, Joseph M.; Sullivan, Greg

    2015-10-05

    A new generation of heat pump water heaters (HPWH) has been introduced into the U.S. market that promises to provide significant energy savings for water heating. Many electric utilities are promoting their widespread adoption as a key technology for meeting energy conservation goals and reducing greenhouse gas emissions. There is, however, considerable uncertainty regarding the space conditioning impact of an HPWH installed in a conditioned space. There is also uncertainty regarding the potential for deployment of HPWHs in demand response (DR) programs to help manage and balance peak utility loads in a similar manner as conventional electric resistance water heaters (ERWH). To help answer these uncertainties, controlled experiments have been undertaken over 30 months in a matched pair of unoccupied Lab Homes located on the campus of the Pacific Northwest National Laboratory (PNNL) in Richland, Washington.

  18. Modeling of Electric Water Heaters for Demand Response: A Baseline PDE Model

    SciTech Connect (OSTI)

    Xu, Zhijie; Diao, Ruisheng; Lu, Shuai; Lian, Jianming; Zhang, Yu

    2014-09-05

    Demand response (DR)control can effectively relieve balancing and frequency regulation burdens on conventional generators, facilitate integrating more renewable energy, and reduce generation and transmission investments needed to meet peak demands. Electric water heaters (EWHs) have a great potential in implementing DR control strategies because: (a) the EWH power consumption has a high correlation with daily load patterns; (b) they constitute a significant percentage of domestic electrical load; (c) the heating element is a resistor, without reactive power consumption; and (d) they can be used as energy storage devices when needed. Accurately modeling the dynamic behavior of EWHs is essential for designing DR controls. Various water heater models, simplified to different extents, were published in the literature; however, few of them were validated against field measurements, which may result in inaccuracy when implementing DR controls. In this paper, a partial differential equation physics-based model, developed to capture detailed temperature profiles at different tank locations, is validated against field test data for more than 10 days. The developed model shows very good performance in capturing water thermal dynamics for benchmark testing purposes

  19. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Stadler, Michael; Marnay, Chris; Lai, Judy

    2010-06-01

    We take the perspective of a microgrid that has installed distribution energy resources (DER) in the form of distributed generation with combined heat and power applications. Given uncertain electricity and fuel prices, the microgrid minimizes its expected annual energy bill for various capacity sizes. In almost all cases, there is an economic and environmental advantage to using DER in conjunction with demand response (DR): the expected annualized energy bill is reduced by 9percent while CO2 emissions decline by 25percent. Furthermore, the microgrid's risk is diminished as DER may be deployed depending on prevailing market conditions and local demand. In order to test a policy measure that would place a weight on CO2 emissions, we use a multi-criteria objective function that minimizes a weighted average of expected costs and emissions. We find that greater emphasis on CO2 emissions has a beneficial environmental impact only if DR is available and enough reserve generation capacity exists. Finally, greater uncertainty results in higher expected costs and risk exposure, the effects of which may be mitigated by selecting a larger capacity.

  20. A New Thermostat for Real-Time Price Demand Response: Cost, Comfort and Energy Impacts of Discrete-Time Control without Deadband

    SciTech Connect (OSTI)

    Chassin, David P.; Stoustrup, Jakob; Agathoklis, Pan; Djilali, Ned

    2015-10-01

    This paper presents a residential thermostat design that enables accurate aggregate load control systems for electricity demand response. The thermostat features a control strategy that can be modeled as a linear time-invariant system for short- term demand response signals from the utility. This control design maintains the same comfort and demand response characteristics of existing real-time price- responsive thermostats but gives rise to linear time-invariant models of aggregate load control and demand response, which facilitates the design of highly accurate load-based regulation services for electricity interconnections.

  1. China’s rare earth supply chain: Illegal production, and response to new cerium demand

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nguyen, Ruby Thuy; Imholte, D. Devin

    2016-03-29

    As the demand for personal electronic devices, wind turbines, and electric vehicles increases, the world becomes more dependent on rare earth elements. Given the volatile, Chinese-concentrated supply chain, global attempts have been made to diversify supply of these materials. However, the overall effect of supply diversification on the entire supply chain, including increasing low-value rare earth demand, is not fully understood. This paper is the first attempt to shed some light on China’s supply chain from both demand and supply perspectives, taking into account different Chinese policies such as mining quotas, separation quotas, export quotas, and resource taxes. We constructedmore » a simulation model using Powersim Studio that analyzes production (both legal and illegal), production costs, Chinese and rest-of-world demand, and market dynamics. We also simulated new demand of an automotive aluminum-cerium alloy in the U.S. market starting from 2018. Results showed that market share of the illegal sector has grown since 2007 to 2015, ranging between 22% and 25% of China’s rare earth supply, translating into 59–65% illegal heavy rare earths and 14–16% illegal light rare earths. There would be a shortage in certain light and heavy rare earths given three production quota scenarios and constant demand growth rate from 2015 to 2030. The new simulated Ce demand would require supply beyond that produced in China. Lastly, we illustrated revenue streams for different ore compositions in China in 2015.« less

  2. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    SciTech Connect (OSTI)

    Dudley, Junqiao Han; Black, Doug; Apte, Mike; Piette, Mary Ann; Berkeley, Pam

    2010-05-14

    We have studied a low energy building on a campus of the University of California. It has efficient heating, ventilation, and air conditioning (HVAC) systems, consisting of a dual-fan/dual-duct variable air volume (VAV) system. As a major building on the campus, it was included in two demand response (DR) events in the summers of 2008 and 2009. With chilled water supplied by thermal energy storage in the central plant, cooling fans played a critical role during DR events. In this paper, an EnergyPlus model of the building was developed and calibrated. We compared both whole-building and HVAC fan energy consumption with model predictions to understand why demand savings in 2009 were much lower than in 2008. We also used model simulations of the study building to assess pre-cooling, a strategy that has been shown to improve demand saving and thermal comfort in many types of building. This study indicates a properly calibrated EnergyPlus model can reasonably predict demand savings from DR events and can be useful for designing or optimizing DR strategies.

  3. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  4. Market transformation lessons learned from an automated demand response test in the Summer and Fall of 2003

    SciTech Connect (OSTI)

    Shockman, Christine; Piette, Mary Ann; ten Hope, Laurie

    2004-08-01

    A recent pilot test to enable an Automatic Demand Response system in California has revealed several lessons that are important to consider for a wider application of a regional or statewide Demand Response Program. The six facilities involved in the site testing were from diverse areas of our economy. The test subjects included a major retail food marketer and one of their retail grocery stores, financial services buildings for a major bank, a postal services facility, a federal government office building, a state university site, and ancillary buildings to a pharmaceutical research company. Although these organizations are all serving diverse purposes and customers, they share some underlying common characteristics that make their simultaneous study worthwhile from a market transformation perspective. These are large organizations. Energy efficiency is neither their core business nor are the decision makers who will enable this technology powerful players in their organizations. The management of buildings is perceived to be a small issue for top management and unless something goes wrong, little attention is paid to the building manager's problems. All of these organizations contract out a major part of their technical building operating systems. Control systems and energy management systems are proprietary. Their systems do not easily interact with one another. Management is, with the exception of one site, not electronically or computer literate enough to understand the full dimensions of the technology they have purchased. Despite the research team's development of a simple, straightforward method of informing them about the features of the demand response program, they had significant difficulty enabling their systems to meet the needs of the research. The research team had to step in and work directly with their vendors and contractors at all but one location. All of the participants have volunteered to participate in the study for altruistic reasons, that

  5. Dynamic Controls for Energy Efficiency and Demand Response:Framework Concepts and a New Construction Study Case in New York

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

    2006-06-20

    Many of today's advanced building control systems are designed to improve granularity of control for energy efficiency. Examples include direct digital controls for building heating, ventilation, and cooling systems (HVAC), and dimmable ballasts for continuous dimming for daylighting applications. This paper discusses recent research on the use of new and existing controls in commercial buildings for integrated energy efficiency and demand response (DR). The paper discusses the use of DR controls strategies in commercial buildings and provides specific details on DR control strategy design concepts for a new building in New York. We present preliminary results from EnergyPlus simulations of the DR strategies at the New York Times Headquarters building currently under construction. The DR strategies at the Times building involve unique state of the art systems with dimmable ballasts, movable shades on the glass facade, and underfloor air HVAC. The simulation efforts at this building are novel, with an innovative building owner considering DR and future DR program participation strategies during the design phase. This paper also discusses commissioning plans for the DR strategies. The trends in integration of various systems through the EMCS, master versus supervisory controls and dynamic operational modes concepts are presented and future research directions are outlined.

  6. On the Inclusion of Energy-Shifting Demand Response in Production Cost Models: Methodology and a Case Study

    SciTech Connect (OSTI)

    O'Connell, Niamh; Hale, Elaine; Doebber, Ian; Jorgenson, Jennie

    2015-07-20

    In the context of future power system requirements for additional flexibility, demand response (DR) is an attractive potential resource. Its proponents widely laud its prospective benefits, which include enabling higher penetrations of variable renewable generation at lower cost than alternative storage technologies, and improving economic efficiency. In practice, DR from the commercial and residential sectors is largely an emerging, not a mature, resource, and its actual costs and benefits need to be studied to determine promising combinations of physical DR resource, enabling controls and communications, power system characteristics, regulatory environments, market structures, and business models. The work described in this report focuses on the enablement of such analysis from the production cost modeling perspective. In particular, we contribute a bottom-up methodology for modeling load-shifting DR in production cost models. The resulting model is sufficiently detailed to reflect the physical characteristics and constraints of the underlying flexible load, and includes the possibility of capturing diurnal and seasonal variations in the resource. Nonetheless, the model is of low complexity and thus suitable for inclusion in conventional unit commitment and market clearing algorithms. The ability to simulate DR as an operational resource on a power system over a year facilitates an assessment of its time-varying value to the power system.

  7. Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study

    SciTech Connect (OSTI)

    Thompson, Lisa; Lekov, Alex; McKane, Aimee; Piette, Mary Ann

    2010-08-20

    This case study enhances the understanding of open automated demand response opportunities in municipal wastewater treatment facilities. The report summarizes the findings of a 100 day submetering project at the San Luis Rey Wastewater Treatment Plant, a municipal wastewater treatment facility in Oceanside, California. The report reveals that key energy-intensive equipment such as pumps and centrifuges can be targeted for large load reductions. Demand response tests on the effluent pumps resulted a 300 kW load reduction and tests on centrifuges resulted in a 40 kW load reduction. Although tests on the facility?s blowers resulted in peak period load reductions of 78 kW sharp, short-lived increases in the turbidity of the wastewater effluent were experienced within 24 hours of the test. The results of these tests, which were conducted on blowers without variable speed drive capability, would not be acceptable and warrant further study. This study finds that wastewater treatment facilities have significant open automated demand response potential. However, limiting factors to implementing demand response are the reaction of effluent turbidity to reduced aeration load, along with the cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities.

  8. Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world

    SciTech Connect (OSTI)

    Heffner, Grayson C.

    2002-09-01

    The restructuring of regional and national electricity markets in the U.S. and around the world has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created new opportunities for technologies and business approaches that allow load serving entities and other aggregators to control and manage the load patterns of wholesale and retail end-users they serve. Demand Response Programs, once called Load Management, have re-emerged as an important element in the fine-tuning of newly restructured electricity markets. During the summers of 1999 and 2001 they played a vital role in stabilizing wholesale markets and providing a hedge against generation shortfalls throughout the U.S.A. Demand Response Programs include ''traditional'' capacity reservation and interruptible/curtailable rates programs as well as voluntary demand bidding programs offered by either Load Serving Entities (LSEs) or regional Independent System Operators (ISOs). The Lawrence Berkeley National Lab (LBNL) has been monitoring the development of new types of Demand Response Programs both in the U.S. and around the world. This paper provides a survey and overview of the technologies and program designs that make up these emerging and important new programs.

  9. Estimating Demand Response Load Impacts: Evaluation of BaselineLoad Models for Non-Residential Buildings in California

    SciTech Connect (OSTI)

    Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote,Sila

    2008-01-01

    Both Federal and California state policymakers areincreasingly interested in developing more standardized and consistentapproaches to estimate and verify the load impacts of demand responseprograms and dynamic pricing tariffs. This study describes a statisticalanalysis of the performance of different models used to calculate thebaseline electric load for commercial buildings participating in ademand-response (DR) program, with emphasis onthe importance of weathereffects. During a DR event, a variety of adjustments may be made tobuilding operation, with the goal of reducing the building peak electricload. In order to determine the actual peak load reduction, an estimateof what the load would have been on the day of the event without any DRactions is needed. This baseline load profile (BLP) is key to accuratelyassessing the load impacts from event-based DR programs and may alsoimpact payment settlements for certain types of DR programs. We testedseven baseline models on a sample of 33 buildings located in California.These models can be loosely categorized into two groups: (1) averagingmethods, which use some linear combination of hourly load values fromprevious days to predict the load on the event, and (2) explicit weathermodels, which use a formula based on local hourly temperature to predictthe load. The models were tested both with and without morningadjustments, which use data from the day of the event to adjust theestimated BLP up or down.Key findings from this study are: - The accuracyof the BLP model currently used by California utilities to estimate loadreductions in several DR programs (i.e., hourly usage in highest 3 out of10 previous days) could be improved substantially if a morning adjustmentfactor were applied for weather-sensitive commercial and institutionalbuildings. - Applying a morning adjustment factor significantly reducesthe bias and improves the accuracy of all BLP models examined in oursample of buildings. - For buildings with low load

  10. A Test Bed for Self-regulating Distribution Systems: Modeling Intergrated Renewable Energy and Demand Response in the GridLAB-D/MATLAB Environment

    SciTech Connect (OSTI)

    Wang, Dan; de Wit, Braydon; Parkinson, Simon; Fuller, Jason C.; Chassin, David P.; Crawford, Curran; Djilali, Ned

    2012-01-16

    This paper discusses the development of a simulation test bed permitting the study of integrated renewable energy generators and controlled distributed heat pumps operating within distribution systems. The test bed is demonstrated in this paper by addressing the important issue of the self-regulating effect of consumer-owned air-source heat pumps on the variability induced by wind power integration, particularly when coupled with increased access to demand response realized through a centralized load control strategy.

  11. Review of current Southern California edison load management programs and proposal for a new market-driven, mass-market, demand-response program

    SciTech Connect (OSTI)

    Weller, G.H.

    2002-01-01

    Utility load management programs, including direct load control and interruptible load programs, constitute a large installed base of controllable loads that are employed by utilities as system reliability resources. In response to energy supply shortfalls expected during the summer of 2001, the California Public Utilities Commission in spring 2001 authorized new utility load management programs as well as revisions to existing programs. This report provides an independent review of the designs of these new programs for a large utility (Southern California Edison) and suggests possible improvements to enhance the price responsiveness of the customer actions influenced by these programs. The report also proposes a new program to elicit a mass-market demand response to utility price signals.

  12. Response Events

    Office of Energy Efficiency and Renewable Energy (EERE)

    Emergency preparedness and response activities help to facilitate recovery from disruptions to the energy supply, thereby reducing the impact of these events. As such, the ISER approach for emergency response is to leverage a coordinated integration of several DOE capabilities and resources to emergency response situations.

  13. Departmental Response:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Departmental Response: Assessment of the Report of the SEAB Task Force on National Laboratories Introduction The Department of Energy (DOE) and its network or national laboratories (labs) are responsible for advancing the national, economic. energy. and nuclear security of the U.S.: promoting innovative and transformative scientific and technological solutions in support or those missions: sponsoring basic research in the physical sciences: and ensuring environmental cleanup of the nation's

  14. BPA-2014-01685-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    no responsive records (the winning proposal). There has been no contract awarded for the Demand Response Program Demonstration Project RFP dated May 23,2014. This notification...

  15. BPA-2014-01901-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014, and the agreement between Bonneville Power Administration and Energy Northwest for Demand Response Pilot announced in September 2014." Response We conducted a search ofthe...

  16. Corporate Responsibility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab » Corporate Responsibility Corporate Responsibility Motivated to serve our nation and the world Contact LANS, LLC Office (505) 606-0105 The nation turns to us for solutions to the most complex national security technical challenges of our times, whether a threat may be nuclear, biological or chemical. At the heart of the Lab is a sense of service At the Lab, we are motivated by service to our nation and a desire to keep our nation and the world secure. That same sense of service compels us

  17. Demand Response Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 5 D E M A N D R E S P O N S E T E C H N O L O G Y R O A D M A P Development of this roadmap occurred in stages between May 2014 and February 2015. The Bonneville Power...

  18. Response Elements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11

    The Guide provides acceptable methods for meeting the requirement of DOE O 151.1C for response elements that respond or contribute to response as needed in an emergency. Supersedes DOE G 151.1-1, Volume 3-1, DOE G 151.1-1, Volume 3-2, DOE G 151.1-1, Volume 3-3, DOE G 151.1-1, Volume 3-4, DOE G 151.1-1, Volume 4-1, DOE G 151.1-1, Volume 4-2, DOE G 151.1-1, Volume 4-3, DOE G 151.1-1, Volume 4-4, DOE G 151.1-1, Volume 4-5, and DOE G 151.1-1, Volume 4-6.

  19. Departmental Response:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Departmental Response: Assessment of the Report of the SEAB Task Force on Nuclear Nonproliferation Introduction Despite many successful U.S. efforts in nuclear nonproliferation, daunting challenges remain. Some nations are pursuing nuclear weapons and others are expanding their nuclear arsenals; some stockpiles of nuclear weapons and nuclear-weapons-usable materials remain dangerously insecure; and rapidly changing technologies and greater availability of dual-use knowledge are increasing the

  20. Departmental Response:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Departmental Response: Assessment of the Report of the SEAB Task Force on Methane Hydrates 1. Introduction Recent research confirms that gas hydrates are abundant in nature and exist in a wide variety of forms with varying relevance to future energy, long-term global carbon cycling, near-term climate change, and both natural and operational geohazards. Further, recent assessments within the Department of the Interior suggest large potential resources in gas hydrate deposits onshore Alaska and

  1. Solar Energy Grid Integration Systems. Final Report of the Princeton Power Systems Development of the 100kW Demand Response Inverter.

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Heavener, Paul; Sena-Henderson, Lisa; Hammell, Darren; Holveck, Mark; David, Carolyn; Akhil, Abbas Ali; Gonzalez, Sigifredo

    2012-01-01

    Initiated in 2008, the Solar Energy Grid Integration (SEGIS) program is a partnership involving the U.S. Department of Energy, Sandia National Laboratories, electric utilities, academic institutions and the private sector. Recognizing the need to diversify the nation's energy portfolio, the SEGIS effort focuses on specific technologies needed to facilitate the integration of large-scale solar power generation into the nation's power grid Sandia National Laboratories (SNL) awarded a contract to Princeton Power Systems, Inc., (PPS) to develop a 100kW Advanced AC-link SEGIS inverter prototype under the Department of Energy Solar Energy Technologies Program for near-term commercial applications. This SEGIS initiative emphasizes the development of advanced inverters, controllers, communications and other balance-of-system components for photovoltaic (PV) distributed power applications. The SEGIS Stage 3 Contract was awarded to PPS on July 28, 2010. PPS developed and implemented a Demand Response Inverter (DRI) during this three-stage program. PPS prepared a 'Site Demonstration Conference' that was held on September 28, 2011, to showcase the cumulative advancements. This demo of the commercial product will be followed by Underwriters Laboratories, Inc., certification by the fourth quarter of 2011, and simultaneously the customer launch and commercial production sometime in late 2011 or early 2012. This final report provides an overview of all three stages and a full-length reporting of activities and accomplishments in Stage 3.

  2. Making the most of Responsive Electricity Customer. Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? Making the most of Responsive ...

  3. Response Resources Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interoperability of Demand Response Resources Demonstration in NY Final Technical Report Award Number: DE-FC26-08NT02869 Project Type: Regional Demonstration Principal Investigator: Andre Wellington, Project Manager, Smart Grid Implementation Group Recipient: Consolidated Edison Company of New York, Inc. Team members: Innoventive Power and Verizon Communications Consolidated Edison Company of New York, Inc. Taxpayer ID Number: 13-5009340 Organizational DUNS: 00-698-2359 4 Irving Place New York,

  4. BPA-2012-01628-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficiency, demand response, integration of renewables and preparing the grid for electric vehicle deployment. Third, he said, administrations should begin partnering with...

  5. Responses by CPower, Inc. to DOE RFI | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    We believe we are the largest non-utility aggregator of short-notice demand response (under ten-minutes) in the world, and we provide short-notice demand response services in the ...

  6. Making the most of Responsive Electricity Customer. Energy Efficiency and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response: How do we make the most out of using less energy? | Department of Energy Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of

  7. Emergency Response Synchronization Matrix

    Energy Science and Technology Software Center (OSTI)

    1999-06-01

    An emergency response to a disaster is complex, requiring the rapid integration, coordination, and synchronization of multiple levels of governmental and non-governmental organizations from numerous jurisdictions into a unified community response. For example, a community’s response actions to a fixed site hazardous materials incident could occur in an area extending from an on-site storage location to points 25 or more miles away. Response actions are directed and controlled by local governments and agencies situated withinmore » the response area, as well as by state and federal operaticns centers quite removed from the area of impact. Time is critical and the protective action decision-making process is greatly compressed. The response community must carefully plan and coordinate response operations in order to have confidence that they will be effectively implemented when faced with the potentially catastrophic nature of such releases. A graphical depiction of the entire response process via an emergency response synchronization matrix is an effective tool in optimizing the planning, exercising, and implementation of emergency plans. This system—based approach to emergency planning depicts how a community organizes its response tasks across space and time in relation to hazard actions. It provides the opportunity to make real—time adjustments as necessary for maximizing the often limited resources in protecting area residents. A response must involve the entire community and must not be limited by individual jurisdictions and organizations acting on their own without coordination, integration, and synchronization.« less

  8. NNMCAB Responses from DOE

    Broader source: Energy.gov [DOE]

    Provides a listing of responses from the U.S. Department of Energy (DOE) to the recommendations provided from the Northern New Mexico Citizens’ Advisory Board (NNMCAB).

  9. TECHNICAL STANDARDS PROGRAM RESPONSIBILITIES

    Broader source: Energy.gov [DOE]

    PurposeThis procedure describes the responsibilities of persons who are charged with implementing the DOE Technical Standards Program. 

  10. Biological response modifiers

    SciTech Connect (OSTI)

    Weller, R.E.

    1991-10-01

    Much of what used to be called immunotherapy is now included in the term biological response modifiers. Biological response modifiers (BRMs) are defined as those agents or approaches that modify the relationship between the tumor and host by modifying the host's biological response to tumor cells with resultant therapeutic effects.'' Most of the early work with BRMs centered around observations of spontaneous tumor regression and the association of tumor regression with concurrent bacterial infections. The BRM can modify the host response in the following ways: Increase the host's antitumor responses through augmentation and/or restoration of effector mechanisms or mediators of the host's defense or decrease the deleterious component by the host's reaction; Increase the host's defenses by the administration of natural biologics (or the synthetic derivatives thereof) as effectors or mediators of an antitumor response; Augment the host's response to modified tumor cells or vaccines, which might stimulate a greater response by the host or increase tumor-cell sensitivity to an existing response; Decrease the transformation and/or increase differentiation (maturation) of tumor cells; or Increase the ability of the host to tolerate damage by cytotoxic modalities of cancer treatment.

  11. GADRAS Detector Response Function.

    SciTech Connect (OSTI)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  12. CRA Comments & Responses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (51105) 11 Response to CRA Comments (92005) Enclosure 1 - Computer Code VerificationTesting (92005) Inventory and Performance Assessment Reports DOE - Performance...

  13. Barrier Immune Radio Communications for Demand Response

    SciTech Connect (OSTI)

    Rubinstein, Francis; Ghatikar, Girish; Granderson, Jessica; Haugen, Paul; Romero, Carlos; Watson, David

    2009-02-01

    Various wireless technologies were field-tested in a six-story laboratory building to identify wireless technologies that can scale for future DR applications through very low node density power consumption, and unit cost. Data analysis included analysis of the signal-to-noise ratio (SNR), packet loss, and link quality at varying power levels and node densities. The narrowband technologies performed well, penetrating the floors of the building with little loss and exhibiting better range than the wideband technology. 900 MHz provided full coverage at 1 watt and substantially complete coverage at 500 mW at the test site. 900 MHz was able to provide full coverage at 100 mW with only one additional relay transmitter, and was the highest-performing technology in the study. 2.4 GHz could not provide full coverage with only a single transmitter at the highest power level tested (63 mW). However, substantially complete coverage was provided at 2.4 GHz at 63 mW with the addition of one repeater node.

  14. NCEP_Demand_Response_Draft_111208.indd

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota ...

  15. Eastern Frequency Response Study

    SciTech Connect (OSTI)

    Miller, N.W.; Shao, M.; Pajic, S.; D'Aquila, R.

    2013-05-01

    This study was specifically designed to investigate the frequency response of the Eastern Interconnection that results from large loss-of-generation events of the type targeted by the North American Electric Reliability Corp. Standard BAL-003 Frequency Response and Frequency Bias Setting (NERC 2012a), under possible future system conditions with high levels of wind generation.

  16. Sensor response rate accelerator

    DOE Patents [OSTI]

    Vogt, Michael C.

    2002-01-01

    An apparatus and method for sensor signal prediction and for improving sensor signal response time, is disclosed. An adaptive filter or an artificial neural network is utilized to provide predictive sensor signal output and is further used to reduce sensor response time delay.

  17. ENERNOC Response to Request for Information from the Department...

    Office of Environmental Management (EM)

    EnerNOC is a leading provider of demand response and energy efficiency solutions to utilities, Independent System Operators ("ISOs") and customers in the commercial, industrial and ...

  18. Response to Request for Information from the Department of Energy...

    Broader source: Energy.gov (indexed) [DOE]

    EnerNOC is a provider of demand response and energy efficiency solutions to utilities, Independent System Operators ("ISOs") and customers in the commercial, industrial and ...

  19. Frequency Response Analysis Tool

    SciTech Connect (OSTI)

    Etingov, Pavel V.; Kosterev, Dmitry; Dai, T.

    2014-12-31

    Frequency response has received a lot of attention in recent years at the national level, which culminated in the development and approval of North American Electricity Reliability Corporation (NERC) BAL-003-1 Frequency Response and Frequency Bias Setting Reliability Standard. This report is prepared to describe the details of the work conducted by Pacific Northwest National Laboratory (PNNL) in collaboration with the Bonneville Power Administration and Western Electricity Coordinating Council (WECC) Joint Synchronized Information Subcommittee (JSIS) to develop a frequency response analysis tool (FRAT). The document provides the details on the methodology and main features of the FRAT. The tool manages the database of under-frequency events and calculates the frequency response baseline. Frequency response calculations are consistent with frequency response measure (FRM) in NERC BAL-003-1 for an interconnection and balancing authority. The FRAT can use both phasor measurement unit (PMU) data, where available, and supervisory control and data acquisition (SCADA) data. The tool is also capable of automatically generating NERC Frequency Response Survey (FRS) forms required by BAL-003-1 Standard.

  20. Frequency Response Tool

    Energy Science and Technology Software Center (OSTI)

    2014-03-13

    According to the North American Electric Reliability Corporation (NERC) definition: “Frequency response is a measure of an Interconnection’s ability to stabilize frequency immediately following the sudden loss of generation or load, and is a critical component of the reliable operation of the Bulk-Power System, particularly during disturbances and recoveries. Failure to maintain frequency can disrupt the operation of equipment and initiate disconnection of power plant equipment to prevent it from being damaged, which could leadmore » to wide-spread blackouts.” Frequency Response Tool automates the power system frequency response analysis process. The tool performs initial estimation of the system frequency parameters (initial frequency, minimum frequency, settling point). User can visually inspect and adjust these parameters. The tool also calculates the frequency response performance metrics of the system, archives the historic events and baselines the system performance. Frequency response performance characteristics of the system are calculated using phasor measurement unit (PMU) information. Methodology of the frequency response performance assessment implemented in the tool complies with the NERC Frequency response standard.« less

  1. COMMENTS AND RESPONSES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comments and Responses to the Tentative Agreement Regarding The Fast Flux Test Facility (Agreement Major Milestone Series M-81-00) August 1999 2 COMMENTS AND RESPONSES TO THE TENTATIVE AGREEMENT REGARDING THE FAST FLUX TEST FACILITY COMMENTS AND RESPONSES 1. Introduction In January 1997 the U.S. Department of Energy (DOE) changed the status of the Fast Flux Test Facility (FFTF) from deactivation to standby pending a decision, to be made by December 1998 on whether or not the facility will be

  2. Alternative Approaches for Incentivizing the Frequency Responsive Reserve Ancillary Service

    SciTech Connect (OSTI)

    Ela, E.; Tuohy, A.; Milligan, M.; Kirby, B.; Brooks, D.

    2012-05-01

    Frequency responsive reserve is the autonomous response of generators and demand response to deviations of system frequency, usually as a result of the instantaneous outage of a large supplier. This article discusses the issues that can occur without proper incentives and even disincentives, and proposes alternatives to introduce incentives for resources to provide frequency responsive reserve to ensure an efficient and reliable power system.

  3. Your Records Management Responsibilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Your Records Management Responsibilities Table of Contents INTRODUCTION RECORDS MANAGEMENT IN THE FEDERAL GOVERNMENT RECORDS MANAGEMENT IN THE DEPARTMENT OF ENERGY IMPORTANCE OF RECORDS MANAGEMENT YOUR RECORDS MANAGEMENT RESPONSIBILITIES RECORDS MANAGEMENT LIFE CYCLE ELECTRONIC RECORDS & RECORDKEEPING LAW, REGULATION, AND POLICY ASSISTANCE RECORDS MANAGEMENT TERMS 2 INTRODUCTION If you are a government employee or contractor working for a federal agency, records management is part of your

  4. CRA Comments & Responses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CRA Comments & Responses Home CRA - 2004 Final Recertification Decision CRA Comments & Responses CCA - 1996 CRA CARDs & TSDs CCA CARDs & TSDs Regulatory Tools Completeness Determination-Related Correspondence All EPA & DOE correspondence related to the determination of completeness and the CRA are provided below. Letter Transmitting EPA's CRA Completeness Determination (9/29/05) Notification of Completeness Determination EPA Letter # Subject 1 CRA Comments (5/20/04)

  5. Questions and Responses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Responses: Question 1: Would the Government consider accepting either CMMI-DEV or CMMI-SVC Level 3 or higher since there is majority of process areas are shared between the two constellations and repeatability of processes will not be reduced since both will require Level 3 or higher? Government Response: The Government has determined that CMMI-SVC is a relatively new methodology and is in agreement that there is a considerable overlap of process areas shared between the two constellations. The

  6. Spinning Reserve from Responsive Load

    SciTech Connect (OSTI)

    Kueck, John D; Kirby, Brendan J; Laughner, T; Morris, K

    2009-01-01

    As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host a spinning reserve test. The Tennessee Valley Authority (TVA) supplied real-time metering and monitoring expertise to record total hotel load during both normal operations and testing. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. The load drop was very rapid, essentially as fast as the 2 second metering could detect.

  7. DemandDirect | Open Energy Information

    Open Energy Info (EERE)

    DemandDirect Place: Woodbury, Connecticut Zip: 6798 Sector: Efficiency, Renewable Energy, Services Product: DemandDirect provides demand response, energy efficiency, load...

  8. Spinning Reserve From Responsive Loads

    SciTech Connect (OSTI)

    Kirby, B.J.

    2003-04-08

    Responsive load is the most underutilized reliability resource available to the power system today. It is currently not used at all to provide spinning reserve. Historically there were good reasons for this, but recent technological advances in communications and controls have provided new capabilities and eliminated many of the old obstacles. North American Electric Reliability Council (NERC), Federal Energy Regulatory Commission (FERC), Northeast Power Coordinating Council (NPCC), New York State Reliability Council (NYSRC), and New York Independent System Operator (NYISO) rules are beginning to recognize these changes and are starting to encourage responsive load provision of reliability services. The Carrier ComfortChoice responsive thermostats provide an example of these technological advances. This is a technology aimed at reducing summer peak demand through central control of residential and small commercial air-conditioning loads. It is being utilized by Long Island Power Authority (LIPA), Consolidated Edison (ConEd), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E). The technology is capable of delivering even greater response in the faster spinning reserve time frame (while still providing peak reduction). Analysis of demand reduction testing results from LIPA during the summer of 2002 provides evidence to back up this claim. It also demonstrates that loads are different from generators and that the conventional wisdom, which advocates for starting with large loads as better ancillary service providers, is flawed. The tempting approach of incrementally adapting ancillary service requirements, which were established when generators were the only available resources, will not work. While it is easier for most generators to provide replacement power and non-spinning reserve (the slower response services) than it is to supply spinning reserve (the fastest service), the opposite is true for many loads. Also, there is more financial

  9. Roles & Responsibilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roles & Responsibilities PDF icon Roles & Responsibilities.pdf Responsible Contacts Donna Friend HUMAN RESOURCES SPECIALIST E-mail donna.friend@hq.doe.dov Phone 202-586-5880 More ...

  10. Supervisor Responsibilities at Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supervisor Responsibilities at Berkeley Lab This online course will help both new and experienced supervisors better understand key knowledge and responsibilities needed to be an...

  11. Senescence responsive transcriptional element

    DOE Patents [OSTI]

    Campisi, Judith; Testori, Alessandro

    1999-01-01

    Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.

  12. General Responsibilities and Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The material presented in this guide provides suggestions and acceptable ways of implementing DOE M 435.1-1 and should not be viewed as additional or mandatory requirements. The objective of the guide is to ensure that responsible individuals understand what is necessary and acceptable for implementing the requirements of DOE M 435.1-1.

  13. Climate Change Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Interior Climate Change Response "From the Everglades to the Great Lakes to Alaska and everywhere in between, climate change is a leading threat to natural and cultural resources across America, and tribal communities are often the hardest hit by severe weather events such as droughts, floods and wildfires" - Secretary of the Interior Sally Jewell "Impacts of climate change are increasingly evident for American Indian and Alaska Native communities and, in some cases, threaten

  14. Structural response synthesis

    SciTech Connect (OSTI)

    Ozisik, H.; Keltie, R.F.

    1988-12-01

    The open loop control technique of predicting a conditioned input signal based on a specified output response for a second order system has been analyzed both analytically and numerically to gain a firm understanding of the method. Differences between this method of control and digital closed loop control using pole cancellation were investigated as a follow up to previous experimental work. Application of the technique to diamond turning using a fast tool is also discussed.

  15. ACCELERATION RESPONSIVE SWITCH

    DOE Patents [OSTI]

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  16. Load responsive hydrodynamic bearing

    DOE Patents [OSTI]

    Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  17. LPG emergency response training

    SciTech Connect (OSTI)

    Dix, R.B.; Newton, B.

    1995-12-31

    ROVER (Roll Over Vehicle for Emergency Response) is a specially designed and constructed unit built to allow emergency response personnel and LPG industry employees to get ``up close and personal`` with the type of equipment used for the highway transportation of liquefied petroleum gas (LPG). This trailer was constructed to simulate an MC 331 LPG trailer. It has all the valves, piping and emergency fittings found on highway tankers. What makes this unit different is that it rolls over and opens up to allow program attendees to climb inside the trailer and see it in a way they have never seen one before. The half-day training session is composed of a classroom portion during which attendees will participate in a discussion of hazardous material safety, cargo tank identification and construction. The specific properties of LPG, and the correct procedures for dealing with an LPG emergency. Attendees will then move outside to ROVER, where they will participate in a walkaround inspection of the rolled over unit. All fittings and piping will be representative of both modern and older equipment. Participants will also be able to climb inside the unit through a specially constructed hatch to view cutaway valves and interior construction. While the possibility of an LPG emergency remains remote, ROVER represents Amoco`s continuing commitment to community, education, and safety.

  18. Response to several FOIA requests - Renewable Energy. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Response to several FOIA requests - Renewable Energy. Response to several FOIA requests - Renewable Energy. Response to several FOIA requests - Renewable Energy. Excess Capacity from LADWP Control Area (LADWP, Glendale, Burbank),Summer 2001 nepdg_751_1000.pdf Total Load (CEC Draft Demand Forecast 10/16/2000 Response to several FOIA requests - Renewable Energy. (9.83 MB) More Documents & Publications An Assessment of Heating Fuels And Electricity Markets During the Winters of

  19. Implementation Proposal for the National Action Plan on Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation Proposal for the National Action Plan on DemandResponse - July 2011 Implementation Proposal for the National Action Plan on Demand Response - July 2011 Report to ...

  20. Technology Partnership Ombudsman - Roles, Responsibilities, Authoritie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Partnership Ombudsman - Roles, Responsibilities, Authorities and Accountabilities Technology Partnership Ombudsman - Roles, Responsibilities, Authorities and ...

  1. Impacts of Demand-Side Resources on Electric Transmission Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Demand-Side Resources on Electric Transmission Planning Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have ...

  2. Temporal Scattering And Response

    Energy Science and Technology Software Center (OSTI)

    1992-12-15

    TSAR2.3 (Temporal Scattering and Response) is a finite-difference time-domain electromagnetics code suite. TSAR2.3 is a software package for simulating the interactions of electromagnetic waves with linear materials through the use of the finite-difference time-domain method. The code suite contains grid generation, grid verification, input-file creation and post-processing utilities. The physics package, written in Fortran 77, can be pre-processed to run on many different architectures including Cray, Vax and many Unix workstations. Tools are provided tomore » easily port the code to new computers. The physics package is an efficient, flexible electromagnetic simulator. A body under study can be represented as a three-dimensional grid of materials with arbitrary linear properties. This grid can be simulated in a number of ways including incident plane waves, dipoles, and arbitrary incident fields. The grid can be terminated with numerous boundary conditions including free-space radiation, electric conductor, or magnetic conductor. Projection to the far-field in both the time and frequency domains is possible. This distribution includes make files for installing and maintaining the entire code suite.« less

  3. Emergency Response Health Physics

    SciTech Connect (OSTI)

    Mena, RaJah; Pemberton, Wendy; Beal, William

    2012-05-01

    Health physics is an important discipline with regard to understanding the effects of radiation on human health; however, there are major differences between health physics for research or occupational safety and health physics during a large-scale radiological emergency. The deployment of a U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) monitoring and assessment team to Japan in the wake of the March 2011 accident at Fukushima Daiichi Nuclear Power Plant yielded a wealth of lessons on these difference. Critical teams (CMOC (Consequence Management Outside the Continental U.S.) and CMHT (Consequence Management Home Team) ) worked together to collect, compile, review, and analyze radiological data from Japan to support the response needs of and answer questions from the Government of Japan, the U.S. military in Japan, the U.S. Embassy and U.S. citizens in Japan, and U.S. citizens in America. This paper addresses the unique challenges presented to the health physicist or analyst of radiological data in a large-scale emergency. A key lesson learned was that public perception and the availability of technology with social media requires a diligent effort to keep the public informed of the science behind the decisions in a manner that is meaningful to them.

  4. Gamma Detector Response and Analysis Software - Detector Response Function

    Energy Science and Technology Software Center (OSTI)

    2014-05-13

    GADRAS-DRF uses a Detector Response Function (DRF) to compute the response of gamma-ray detectors incident radiation. The application includes provision for plotting measured and computed spectra and for characterizing detector response parameters based on measurements of a series of calibration sources (e.g., Ba-133, Cs-137, Co-60, and Th-228). An application program interface enables other programs to access the dynamic-link library that is used to compute spectra.

  5. Emergency Response Exercise | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preparedness Emergency Preparedness ISER is responsible for coordinating the protection of critical energy assets and assisting Federal, State, and local governments with disruption preparation, response, and mitigation in support of Presidential Policy Directive 8. DOE (through ISER) is the lead office for executing the Emergency Support Function 12 Energy (ESF-12) mission. This mission is outlined in the National Response Framework (NRF), and it facilitates the assessment, reporting, and

  6. Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them. A report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005 (February 2006)

    Broader source: Energy.gov [DOE]

    Most electricity customers see electricity rates that are based on average electricity costs and bear little relation to the true production costs of electricity as they vary over time. Demand...

  7. Advice and Responses - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advice Letters Response to Advice Description Date Adopted 289 Master Acquisition Plan ... Engineering EvaluationCost Analysis for 105-KE Reactor Decommissioning November 5, 2010 ...

  8. BPA-2013-01679-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    following: "BPA's response to the Redman Report, which was provided to Public Power Council (PPC) in February of 2008." Response: BPA is releasing the enclosed responsive...

  9. Departmental Radiological Emergency Response Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-06-27

    The order establishes requirements and responsibilities for the DOE/NNSA national radiological emergency response assets and capabilities and Nuclear Emergency Support Team assets. Supersedes DOE O 5530.1A, DOE O 5530.2, DOE O 5530.3, DOE O 5530.4, and DOE O 5530.5.

  10. Hazardous Materials Incident Response Procedure

    Broader source: Energy.gov [DOE]

    The purpose of this procedure is to provide guidance for developing an emergency response plan, as outlined in OSHA’s 29 CFR 1910.120(q), for facility response.  This model has been adopted and...

  11. NNSA Conducts International Radiological Response Training in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NNSA Conducts International Radiological Response Training in Vienna August 01, 2013 ... Radiological Assistance Program Training for Emergency Response Advanced ...

  12. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers ...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast Photovoltaic Response in Ferroelectric Nanolayers Citation Details In-Document Search Title: Ultrafast Photovoltaic Response in Ferroelectric Nanolayers Authors:...

  13. Microsoft Word - NAP Coalition Response to DOE RFI DRAFT 10.11...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    consumer decision-making be incorporated into federal-state collaborative efforts such as the Federal Energy Regulatory Commission's (FERC) National Action Plan on Demand Response? ...

  14. Prepared by the leadership of TCIPG in response to formal guidance...

    Energy Savers [EERE]

    Research addresses multiple issues in cyber-physical resiliency in generation-transmission, distribution, vehicle-to-grid integration, demand response, synchronization of wide area ...

  15. Freedom of Information Act Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    information because it does not shed any light on how BPA has performed its statutory duties. Due to the size of the responsive documents they cannot be posted. To obtain a...

  16. Comment and Response Management System

    Energy Science and Technology Software Center (OSTI)

    1998-06-09

    CRMS is a Web-based client/server application that helps manage, track, and report on institutional responses to public comments on published documents such as environmental impact statements.

  17. Freedom of Information Act Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You will have to assume risk of loss, or injury result from. your use of BPA's prop , -for such loss, or injury for which BPA may be responsible under the pmAom of the...

  18. PinBus Interface for Interoperable, Grid-Responsive Devices

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.

    2009-12-02

    A very simple appliance interface was suggested by this author and his co-authors during Grid-Interop 2007. The approach was based on a successful collaboration between utilities, a major appliance manufacture, and the manufacturer of a load control module during the U.S. Department of Energys Grid Friendly Appliance project. The suggested approach was based on the assumption that demand-response objectives could be effectively communicated to and from many small electrical loads like appliances by simply agreeing on the meaning of the binary states of several shared connector pins. It was argued that this approach could pave the way for a wave of demand-response-ready appliances and greatly reduced expenses for utilities future demand-response programs. The approach could be supported by any of the many competing serial communication protocols and would be generally applicable to most end-use devices.

  19. Responsibility

    Energy Savers [EERE]

    involved. Can we have our cake and eat it too? RE THINK NEW STORE 9 Challenges and Lessons Being Learned 1. Project Evaluation and Approval a) Communicating the total value...

  20. Response

    Office of Environmental Management (EM)

    of New Funding Constructs for Energy R&D in the Department of Energy Introduction ... Typical awards are 2-5 millionyear, for an initial five-year project period. Forty-six ...

  1. ATVM Response to MEMA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ATVM Response to MEMA ATVM Response to MEMA ATVM Response to MEMA.pdf (282.75 KB) More Documents & Publications Interested Parties - MEMA MEMA: Letter MEMA: Appendix to Comments

  2. Deepwater_Response.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepwater_Response.pdf Deepwater_Response.pdf (22.56 KB) More Documents & Publications UDAC Meeting - September 2012 UDAC Meeting - January 2012 DOE_Gulf_Response.pdf

  3. bpa-2013-01407-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or DOE Human Capital, or any inquiries, reviews and investigations into BPA hiring and promotion practices." Response: We have located 26 pages of material responsive to your...

  4. BPA-2012-01842-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the transfer of land at Craig Mountain from BPA to Idaho Department of Fish and Game. Response: BPA's Congressional Correspondence Office has no records responsive to your...

  5. BPA-2013-01310-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (OPM) or DOE Human Capital, or any inquiries, reviews and investigations into BPA hiring and promotion practices." Response We have located 471 pages of material responsive...

  6. Section 2.2 (Roles and Responsibilities)

    Broader source: Energy.gov [DOE]

    Describes responsibilities of program managers, office directors, and the peer review leader, as well as corporate responsibilities, for conducting peer reviews.

  7. WIPP Receives New Emergency Response Vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 19, 2015 WIPP Receives New Emergency Response Vehicle WIPP recently placed a new emergency response vehicle into service. The new fire engine "Engine 24" will enhance...

  8. Hanford Contractor Assumes Responsibility of Three Wastewater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contractor Assumes Responsibility of Three Wastewater Facilities Hanford Contractor Assumes Responsibility of Three Wastewater Facilities April 29, 2015 - 12:00pm Addthis The ...

  9. radiological response | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home radiological response radiological response Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, ...

  10. BPA-2013-00334-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    but not limited to, the use of existing access roads and tower locations on wetlands. Response: BPA has no documents responsive to your request. Pursuant to 10 CFR...

  11. Digital Data Management Roles and Responsibilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Digital Data Management Roles and Responsibilities The roles and responsibilities associated with Office of Energy Efficiency and Renewable Energy (EERE) data management plans ...

  12. BPA-2011-00384-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    damaged due to gunfire, on or around January 2010, in the Tiger Mountain Summit area of King County Washington. Response: BPA has provided a responsive document with the...

  13. Mechanical Response of Thermoelectric Materials

    SciTech Connect (OSTI)

    Wereszczak, Andrew A.; Case, Eldon D.

    2015-05-01

    A sufficient mechanical response of thermoelectric materials (TEMats) to structural loadings is a prerequisite to the exploitation of any candidate TEMat's thermoelectric efficiency. If a TEMat is mechanically damaged or cracks from service-induced stresses, then its thermal and electrical functions can be compromised or even cease. Semiconductor TEMats tend to be quite brittle and have a high coefficient of thermal expansion; therefore, they can be quite susceptible to mechanical failure when subjected to operational thermal gradients. Because of this, sufficient mechanical response (vis-a-vis, mechanical properties) of any candidate TEMat must be achieved and sustained in the context of the service-induced stress state to which it is subjected. This report provides an overview of the mechanical responses of state-of-the-art TEMats; discusses the relevant properties that are associated with those responses and their measurement; and describes important, nonequilibrium phenomena that further complicate their use in thermoelectric devices. For reference purposes, the report also includes several appendixes that list published data on elastic properties and strengths of a variety of TEMats.

  14. Roles and Responsibilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Responsibilities Roles and Responsibilities Roles & Responsibilities.pdf (174.93 KB) More Documents & Publications Roles & Responsibilities Operational Plan and Desktop Reference for the Disability Employment Program Operational Plan and Desktop Reference for the Veterans Employment Program

  15. Terrain-Responsive Atmospheric Code

    Energy Science and Technology Software Center (OSTI)

    1991-11-20

    The Terrain-Responsive Atmospheric Code (TRAC) is a real-time emergency response modeling capability designed to advise Emergency Managers of the path, timing, and projected impacts from an atmospheric release. TRAC evaluates the effects of both radiological and non-radiological hazardous substances, gases and particulates. Using available surface and upper air meteorological information, TRAC realistically treats complex sources and atmospheric conditions, such as those found in mountainous terrain. TRAC calculates atmospheric concentration, deposition, and dose for more thanmore » 25,000 receptor locations within 80 km of the release point. Human-engineered output products support critical decisions on the type, location, and timing of protective actions for workers and the public during an emergency.« less

  16. Method for improving instrument response

    DOE Patents [OSTI]

    Hahn, David W.; Hencken, Kenneth R.; Johnsen, Howard A.; Flower, William L.

    2000-01-01

    This invention pertains generally to a method for improving the accuracy of particle analysis under conditions of discrete particle loading and particularly to a method for improving signal-to-noise ratio and instrument response in laser spark spectroscopic analysis of particulate emissions. Under conditions of low particle density loading (particles/m.sup.3) resulting from low overall metal concentrations and/or large particle size uniform sampling can not be guaranteed. The present invention discloses a technique for separating laser sparks that arise from sample particles from those that do not; that is, a process for systematically "gating" the instrument response arising from "sampled" particles from those responses which do not, is dislosed as a solution to his problem. The disclosed approach is based on random sampling combined with a conditional analysis of each pulse. A threshold value is determined for the ratio of the intensity of a spectral line for a given element to a baseline region. If the threshold value is exceeded, the pulse is classified as a "hit" and that data is collected and an average spectrum is generated from an arithmetic average of "hits". The true metal concentration is determined from the averaged spectrum.

  17. Report: Impacts of Demand-Side Resources on Electric Transmission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report assesses the relationship between high levels of demand-side resources (including end-use efficiency, demand response, and distributed generation) and investment in new ...

  18. Evaluation of the Demand Response Performance of Electric Water Heaters

    SciTech Connect (OSTI)

    Mayhorn, Ebony T.; Widder, Sarah H.; Parker, Steven A.; Pratt, Richard M.; Chassin, Forrest S.

    2015-03-17

    The purpose of this project is to verify or refute many of the concerns raised by utilities regarding the ability of large tank HPWHs to perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. This project was divided into three phases. Phase 1 consisted of week-long laboratory experiments designed to demonstrate technical feasibility of individual large-tank HPWHs in providing DR services compared to large-tank ERWHs. In Phase 2, the individual behaviors of the water heaters were then extrapolated to a population by first calibrating readily available water heater models developed in GridLAB-D simulation software to experimental results obtained in Phase 1. These models were used to simulate a population of water heaters and generate annual load profiles to assess the impacts on system-level power and residential load curves. Such population modeling allows for the inherent and permanent load reduction accomplished by the more efficient HPWHs to be considered, in addition to the temporal DR services the water heater can provide by switching ON or OFF as needed by utilities. The economic and emissions impacts of using large-tank water heaters in DR programs are then analyzed from the utility and consumer perspective, based on National Impacts Analysis in Phase 3. Phase 1 is discussed in this report. Details on Phases 2 and 3 can be found in the companion report (Cooke et al. 2014).

  19. Alternative Approaches for Incentivizing the Frequency Responsive Reserve Ancillary Service

    SciTech Connect (OSTI)

    Ela, E.; Milligan, M.; Kirby, B.; Tuohy, A.; Brooks, D.

    2012-03-01

    Frequency responsive reserve is the autonomous response of generators and demand response to deviations of system frequency, usually as a result of the instantaneous outage of a large supplier. Frequency responsive reserve arrests the frequency decline resulting in the stabilization of system frequency, and avoids the triggering of under-frequency load-shedding or the reaching of unstable frequencies that could ultimately lead to system blackouts. It is a crucial service required to maintain a reliable and secure power system. Regions with restructured electricity markets have historically had a lack of incentives for frequency responsive reserve because generators inherently provided the response and on large interconnected systems, more than sufficient response has been available. This may not be the case in future systems due to new technologies and declining response. This paper discusses the issues that can occur without proper incentives and even disincentives, and proposes alternatives to introduce incentives for resources to provide frequency responsive reserve to ensure an efficient and reliable power system.

  20. Response Predicting LTCC Firing Shrinkage: A Response Surface Analysis Study

    SciTech Connect (OSTI)

    Girardi, Michael; Barner, Gregg; Lopez, Cristie; Duncan, Brent; Zawicki, Larry

    2009-02-25

    The Low Temperature Cofired Ceramic (LTCC) technology is used in a variety of applications including military/space electronics, wireless communication, MEMS, medical and automotive electronics. The use of LTCC is growing due to the low cost of investment, short development time, good electrical and mechanical properties, high reliability, and flexibility in design integration (3 dimensional (3D) microstructures with cavities are possible)). The dimensional accuracy of the resulting x/y shrinkage of LTCC substrates is responsible for component assembly problems with the tolerance effect that increases in relation to the substrate size. Response Surface Analysis was used to predict product shrinkage based on specific process inputs (metal loading, layer count, lamination pressure, and tape thickness) with the ultimate goal to optimize manufacturing outputs (NC files, stencils, and screens) in achieving the final product design the first time. Three (3) regression models were developed for the DuPont 951 tape system with DuPont 5734 gold metallization based on green tape thickness.

  1. Clean Cities Technical Response Service

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Response Service 800-254-6735 * technicalresponse@icfi.com To view this and other Clean Cities publications online, visit cleancities.energy. gov/publications. DOE/GO-102016-4867 * July 2016 Prepared by the National Renewable Energy Laboratory (NREL), a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; NREL is operated by the Alliance for Sustainable Energy, LLC. At A Glance: Electric-Drive Vehicles Electric-drive vehicles can offer several

  2. Balancing oil and environment... responsibly.

    SciTech Connect (OSTI)

    Weimer, Walter C.; Teske, Lisa

    2007-01-25

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  3. Thermoplastic Response in Anisotr Rock

    Energy Science and Technology Software Center (OSTI)

    1998-10-14

    UTAH-2 is a two-dimensional, thermomechanical finite element program designed to analyze elastic, elastic-plastic, and elastic brittle response in anisotropic geologic media. Both constant strain triangles and quadrilateral elements composed of four constant strain trangles are used. The yield function for either elastic-plastic or elastic-brittle response is an extended von Mises criteria for the yield function considers the effects of confining pressure. UTAH-2 is able to consider temperature dependence of material properties. The elastic and plasticmore » moduli as well as the thermal expansion coefficients can vary with temperature based on a polynomial fit of experimental data. UTAH-2 is intended for use in analyzing stress and displacement fields associated with repository excavation, canister emplacement, salt over short time periods and in other geological media for any time scale; for evaluating room stability and generating boundary conditions (stress fields) used in canister sleeve studies; for analyzing bedded sedimentary regions; and for sensitivity and stability studies where temperature dependence of material properties may be a factor.« less

  4. Table of QTR comments in response to Federal Register RFI | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy response

  5. BPA-2010-00494 FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Act (FOIA), 5 U.S.C. 552. Response: In response to your request for copies of any Hydro Optimization Team (HOT) meeting scheduling, agendas, minutes andor notes from...

  6. BPA-2014-01172-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31, 2011." Response: We conducted a search of the paper and electronic records of the Fish and Wildlife Department. We have located 9 pages of material responsive to your...

  7. BPA-2014-00207-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charles Johnson Physicians for Social Responsibility 812 SW Washington St, Suite 1050 Portland, OR 97205 FOIA BPA-2014-00207-F Dear Mr. Johnson: This is a final response to your...

  8. BPA-2014-00615-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charles Johnson Physicians for Social Responsibility 812 SW Washington St, Suite 1050 Portland, OR 97205 FOIA BPA-2014-00615-F Dear Mr. Johnson: This is the final response to your...

  9. Site Data System Engineering Roles and Responsibilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data System Engineering Roles and Responsibilities Version: 1.2 July 2014 DOE... DOESC-ARM-14-022 Site Data System Engineering Roles and Responsibilities Version: 1.2 ...

  10. BPA-2011-01724-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the following: 1. An e-mail dated April 5, 2011 from Scott Bettin, BPA biologist, to Philip Key, BPA attorney. Response: BPA has provided the responsive record in the attached....

  11. Safety Management Functions, Responsibilities, and Authorities Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-10-08

    This Manual defines safety management functions, responsibilities, and authorities for DOE senior management with responsibilities for line, support, oversight, and enforcement actions. Canceled by DOE M 411.1-1A. Does not cancel other directives.

  12. BPA-2014-00388-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power, Caithness Development, LLC, representatives and BPA employees, Ken Johnson, Eric Taylor and Angela DeClerck on August 5, 2010." Response: Ms. DeClerck found no responsive...

  13. BPA-2014-00538-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    archaeological survey done for the BPA line east of Missoula, in the area of Beavertail Hill to Bearmouth stretch." Response: BPA has found no responsive records. There are no fees...

  14. Safety Management Functions, Responsibilities, and Authorities Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-12-31

    This Manual defines safety management functions, responsibilities, and authorities for DOE senior management with responsibilities for line, support, oversight, and enforcement actions. Cancels DOE M 411.1-1B. Canceled by DOE O 450.2.

  15. OPOWER RFI Response | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OPOWER RFI Response OPOWER RFI Response OPOWER submits these comments to the Department of Energy in response to the recently issued Request for Information on smart grid implementation challenges. In particular, OPOWER writes to comment on the importance of effective customer engagement in smart grid policy making. OPOWER RFI Response (51.98 KB) More Documents & Publications Insights from Smart Meters: The Potential for Peak Hour Savings from Behavior-Based Programs Voices of Experience:

  16. NREL: Measurements and Characterization - Spectral Responsivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectral Responsivity Spectral responsivity (SR) measurement is an important part of the National Renewable Energy Laboratory (NREL) photovoltaic (PV) device performance assessment process. Spectral responsivity systems measure how a device responds to selected narrow (spectral) bands of irradiance. Responsivity is measured in units of amps per watt versus wavelength and reported in terms of quantum efficiency (QE) - a measure of how efficiently a device converts incoming photons to charge

  17. Predicting Stimulation Response Relationships For Engineered...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Predicting Stimulation Response Relationships For Engineered Geothermal Reservoirs Project objectives: Using existing LLNL computer programs, develop realistic models of EGS ...

  18. Your Records Management Responsibilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Your Records Management Responsibilities Your Records Management Responsibilities This pamphlet explains the objectives and requirements of DOE O 243.1 and the responsibilities of Federal and contractor employees If you are a government employee or contractor working for a federal agency, records management is part of your job. This pamphlet explains your responsibilities for federal records and provides the context for understanding records management in the federal government and in the

  19. BPA-2014-01715-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compensation Employee Records Employee Rights & Responsibilities Employee Safety, Health & Wellbeing Employee Separation Labor Relations Leave, Absence & Hours of Work ...

  20. Comprehensive Environmental Response, Compensation, and Liability Act |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Services » Environment » Environmental Policy and Assistance » Comprehensive Environmental Response, Compensation, and Liability Act Comprehensive Environmental Response, Compensation, and Liability Act Congress passed the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or commonly known as Superfund) in response to a growing national concern about the release of hazardous substances from abandoned waste sites. Under CERCLA Congress gave

  1. TEPP Training - Modular Emergency Response Radiological Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training (MERRTT) | Department of Energy Training - Modular Emergency Response Radiological Transportation Training (MERRTT) TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) Once the jurisdiction has completed an evaluation of their plans and procedures, they will need to address any gaps in training. To assist, TEPP has developed the Modular Emergency Response Radiological Transportation Training (MERRTT) program. MERRTT provides fundamental knowledge

  2. Transient Response in LMFBR System.

    Energy Science and Technology Software Center (OSTI)

    1999-04-26

    SSC-L (the Super System Code) calculates the thermohydraulic response of loop-type liquid metal fast breeder reactor (LMFBR) systems during operational, incidental, and accidental transients, especially natural circulation events. Modules simulated and parameters calculated include: core flow rates and temperatures, loop flow rates and temperatures, pump performance, and heat exchanger operation. Additionally, SSC-L accounts for all plant protection and plant control systems. Although the primary emphasis is on transients for safety analysis, SSC-L can be usedmore » for many other applications, such as scoping analysis for plant design and specification of various components. Any number of user-specified loops, pipes, and nodes are permitted. Both single- and two-phase thermal-hydraulics are used in a multi-channel core representation. Inter-assembly flow redistribution is accounted for using a detailed fuel pin model. The heat transport system geometry is user-specified. SSC-L provides steady-state and transient options and a restart capability. Input is free format in a modular structure that makes use of abstract data management techniques.« less

  3. Characterizing the Response of Commercial and Industrial Facilities to Dynamic Pricing Signals from the Utility

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Callaway, Duncan S.; Price, Phillip N.; Kiliccote, Sila

    2010-07-01

    We describe a method to generate statistical models of electricity demand from Commercial and Industrial (C&I) facilities including their response to dynamic pricing signals. Models are built with historical electricity demand data. A facility model is the sum of a baseline demand model and a residual demand model; the latter quantifies deviations from the baseline model due to dynamic pricing signals from the utility. Three regression-based baseline computation methods were developed and analyzed. All methods performed similarly. To understand the diversity of facility responses to dynamic pricing signals, we have characterized the response of 44 C&I facilities participating in a Demand Response (DR) program using dynamic pricing in California (Pacific Gas and Electric's Critical Peak Pricing Program). In most cases, facilities shed load during DR events but there is significant heterogeneity in facility responses. Modeling facility response to dynamic price signals is beneficial to the Independent System Operator for scheduling supply to meet demand, to the utility for improving dynamic pricing programs, and to the customer for minimizing energy costs.

  4. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of pilot programs and case studies, with links to those...

  5. Price Responsiveness in the AEO2003 NEMS Residential and Commercial Buildings Sector Models

    Reports and Publications (EIA)

    2003-01-01

    This paper describes the demand responses to changes in energy prices in the Annual Energy Outlook 2003 versions of the Residential and Commercial Demand Modules of the National Energy Modeling System (NEMS). It updates a similar paper completed for the Annual Energy Outlook 1999 version of the NEMS.

  6. Your Records Management Responsibilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Employee Orientation » Your Records Management Responsibilities Your Records Management Responsibilities As a DOE federal or contractor employee, you will create or receive official records, and you are responsible for managing those records as part of accomplishing the Department's mission and ensuring compliance with laws and regulations. Records are any recorded information relating to the work of your office -- regardless of who created it or how the information was recorded. "Your

  7. Safety Management Functions, Responsibilities, and Authorities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-05-22

    This Manual provides the responsibilities of Headquarters and field element offices required by DOE P 411.1, Safety Management Functions, Responsibilities and Authorities Policy, dated 1-28-97. It also contains detailed requirements to supplement the policy's direction for each DOE organization having safety management functions to establish and maintain separate documentation of their responsibilities and authorities. Cancels DOE M 411.1-1A. Canceled by DOE M 411.1-1C.

  8. Cellular responses to environmental DNA damage

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  9. 3510T1 Emergency Response Protocol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    510 Appendix T1 Emergency Response Protocol 1.0 Purpose This emergency response procedure is used by everyone at Jefferson Lab as the basis for response during an emergency situation in the absence of management direction. By their very nature, emergencies pose unique challenges, Jefferson Lab recognizes that listing the requirements for every possible emergency is prohibitive, but has used identified plausible situations to produce this guidance. For general lab-wide emergency procedures: 2.0

  10. About Emergency Response | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Emergency Response About Emergency Response NNSA's Office of Emergency Operations is the United States government's primary capability for radiological and nuclear emergency response and for providing security to the nation from the threat of nuclear terrorism. The Office of Emergency Operations maintains a high level of readiness for protecting and serving the U.S. and its allies through the development, implementation and coordination of programs and systems designed to serve as a

  11. Predicting Stimulation Response Relationships For Engineered Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoirs | Department of Energy Predicting Stimulation Response Relationships For Engineered Geothermal Reservoirs Predicting Stimulation Response Relationships For Engineered Geothermal Reservoirs Project objectives: Using existing LLNL computer programs, develop realistic models of EGS stimulation-response scenarios involving hydraulic and explosive propagation of tensile/shear fracture systems in hard rock formations where a pre-existing fracture network may be present along with

  12. BPA-2014-01847-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (and 2014 once it becomes available this fall). I am particularly interested in the Digital Elevation Models ofthe topographic surveys." Response: We conducted a search of the...

  13. ESPC Risk, Responsibility and Performance Matrix

    Broader source: Energy.gov [DOE]

    Document helps determine the risk, responsibility, and performance of a contractor's proposed approach under a Federal energy savings performance contract (ESPC).

  14. BPA-2015-01485-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the final response regarding documents transferred from the Department of the Interior, Fish and Wildlife Service (FWS-2015-00279) for Bonneville Power Administration's (BPA)...

  15. BPA-2011-01632-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coordination Committee's Response to BPA Regarding the Proposed Transmission Line Hello, Thank you for your visit to the Lewis River Terrestrial Coordination Committee (TCC)...

  16. Climate Responsive Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... could serve as precedents across these zones Evaluate the thermal environments produced by climate-responsive design strategies in India and the US, with a focus on strategies ...

  17. Dynamically Responsive Infrared Window Coatings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamically Responsive Infrared Window Coatings Addthis 1 of 5 An oxygen plasma etcher is ... Kyle Alvine checks on the progress of the plasma etch. Image: Pacific Northwest National ...

  18. BPA-2014-00013-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Coordinator's duties, the System shall, to the extent not inconsistent with other duties, cooperate with the Coordinato in the discharge of the foregoing responsibilities....

  19. Search Response Team | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    General response procedures include: Coordinate with law enforcement agencies to select particular target areas. Map the areas in a Geographical Information System (GIS) formatted ...

  20. Introducing a More Responsive Energy.gov

    Broader source: Energy.gov [DOE]

    Energy.gov now features a responsive design that automatically optimizes the browsing experience for smartphones and tablets, and makes it easier to find consumer energy saving information.

  1. BPA-2013-01311-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (OPM), or DOE Human Capital, or any inquiries, reviews and investigations into BPA hiring and promotion practices." Response: FOIA generally requires the release of all...

  2. BPA-2011-02052-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the rate pressure is still negative Cons: Not as transparent, may seem disingenuous Pros: Most responsive and considerate which is consistent with transparent NOS process...

  3. BPA-2015-01157-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that there are no records responsive to your request. In accordance with the Bonneville Purchasing Instructions (BPI) (see the following website for more information: http:...

  4. BPA Response to Customer Comments-EBBA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration Team Responses to Customer Comments Received on BPA's Proposed Enhanced BPA Balancing Authority (EBBA) - 61212 Table of Contents 1. Market-based Mechanisms...

  5. BPA-2015-00646-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydroelectric dams during the time period 111940 - 123111979. Name of Hydroelectric Dam: John Day The Dalles Bonneville" Response: After conducting a thorough search of paper...

  6. IEA Response System for Oil Supply Emergencies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decision making...

  7. BPA-20110-00524-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marked "Freedom of Information Act Appeal." Sincerely, sChristina J. Munro Christina J. Munro Freedom of Information ActPrivacy Act Officer Enclosure: Responsive document 1k...

  8. ORISE: Helping Strengthen Emergency Response Capabilities for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ridge Institute for Science and Education (ORISE) helps strengthen government agencies' emergency response capabilities through a variety of exercises, from tabletop training to...

  9. Advice and Response 100 - 1 - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advice Letters Response to Advice Description Date Adopted 100 100 100a TPA Agency ... EPA-060 DOE-060 ECY-060 100 Area Decontamination Decommissioning December 5, 1996 59 ...

  10. BPA-2012-01829-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You have requested the following: 4. Electromagnetic Transients Program (EMTP) Workbook Response: BPA has provided this document in its entirety on the enclosed CD. You have...

  11. INL Equipment to Aid Regional Response Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INL Equipment to Aid Regional Response Team DOE-ID is transferring equipment to the Idaho Falls Police Department's Hazardous Materials Response Team for their use in responding to suspected hazardous devices. The new IFPD Team will be the Regional Response Team covering the I-15 corridor from Utah/Idaho border to the Montana/Idaho border. The IFPD Team will respond to the INL if/when we need them. Helping to outfit the IFPD Team will allow much more timely response on this side of the state.

  12. BPA-2011-01316-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the following: Information or records detailing the bid responses for RFP: 1928, Ross Complex Hazardous and Non-Hazardous Disposal. Specifically, you request the pricing...

  13. START Program: Alaska Strategic Technical Assistance Response...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistance Response Team (START) Program is a U.S. Department of Energy Offce of Indian Energy Policy and ... and helps tribal communities strategically plan their energy future. ...

  14. BPA-2014-01335-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including overtime for Garry Brower and Ian Ogilvie for 2009 while employed at the Port Angeles, WA substation for BPA as maintenance electricians." Response We conducted a...

  15. BPA-2010-01009-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the plans for routing new 500 KVA power lines from Castle Rock, Washington, to Gresham, Oregon. BPA has completed the search for responsive documents. The search found...

  16. BPA-2013-01131-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    following: The contact information for the Director of Contracting and the Director of Human Resources. Response: We have reviewed your request and have determined that it does...

  17. Response to several FOIA requests - Renewable Energy. | Department...

    Energy Savers [EERE]

    Response to several FOIA requests - Renewable Energy. Response to several FOIA requests - Renewable Energy. Response to several FOIA requests - Renewable Energy....

  18. IEA Response System for Oil Supply Emergencies 2012 | Department...

    Office of Environmental Management (EM)

    Emergencies 2012 IEA Response System for Oil Supply Emergencies 2012 IEA Response System for Oil Supply Emergencies 2012.pdf (3.86 MB) More Documents & Publications IEA Response ...

  19. Recognizing and Assigning ESPC Risks and Responsibilities Using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using the Risk, Responsibility, and Performance Matrix Recognizing and Assigning ESPC Risks and Responsibilities Using the Risk, Responsibility, and Performance Matrix ...

  20. DOE_Gulf_Response.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GulfResponse.pdf DOEGulfResponse.pdf (98.71 KB) More Documents & Publications DeepwaterResponse.pdf UDAC Meeting - September 2012 April 30, 2010 Situation Report

  1. PoliResponse to several FOIA requests - Renewable Energy. | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PoliResponse to several FOIA requests - Renewable Energy. PoliResponse to several FOIA requests - Renewable Energy. Response to several FOIA requests - Renewable Energy,...

  2. Commercial Building Motor Protection Response Report

    SciTech Connect (OSTI)

    James, Daniel P.; Kueck, John

    2015-06-17

    When voltages recover, motors may immediately reenergize and reaccelerate, or delay for a few minutes, or stay stalled. The estimated motor response is given for both the voltage sag magnitude and voltage sag duration. These response estimates are based on experience and available test data. Good data is available for voltage sag response for many components such as relays and contactors, but little data is available for both voltage sag and recovery response. The tables in Appendix A include data from recent voltage sag and recovery tests performed by SCE and BPA on air conditioners and energy management systems. The response of the motor can vary greatly depending on the type of protection and control. The time duration for the voltage sag consists of those times that are of interest for bulk power system modelers.

  3. Model Recovery Procedure for Response to a Radiological Transportation...

    Office of Environmental Management (EM)

    for Response to a Radiological Transportation Incident Model Recovery Procedure for Response to a Radiological Transportation Incident This Transportation Emergency...

  4. Ambient Corporation's response to NBP RFI: Communications Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ambient Corporation's response to NBP RFI: Communications Requirements Ambient Corporation's response to NBP RFI: Communications Requirements Ambient Corporation's comments on ...

  5. G2 Checkpoint Responses in Arabidopsis

    SciTech Connect (OSTI)

    Britt, Anne

    2013-03-18

    This project focused on the mechanism and biological significance of the G2 arrest response to replication stress in plants. We employed both forward and reverse genetic approaches to identify genes required for this response. A total of 3 different postdocs, 5 undergraduates, and 2 graduate students participated in the project. We identified several genes required for damage response in plants, including homologs of genes previously identified in animals (ATM and ATR), novel, a plant-specific genes (SOG1) and a gene known in animals but previously thought to be missing from the Arabidopsis genome (ATRIP). We characterized the transcriptome of gamma-irradiated plants, and found that plants, unlike animals, express a robust transcriptional response to damage, involving genes that regulate the cell cycle and DNA metabolism. This response requires both ATM and the transcription factor SOG1. We found that both ATM and ATR play a role in meiosis in plants. We also found that plants have a cell-type-specific programmed cell death response to ionizing radiation and UV light, and that this response requires ATR, ATM, and SOG1. These results were published in a series of 5 papers.

  6. BPA-2014-01869-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    records of BP A Fish & Wildlife Department. We have located one page of material in an Excel spreadsheet format responsive to your request. We are releasing these records in...

  7. NNSA emergency response assets highlighted | National Nuclear...

    National Nuclear Security Administration (NNSA)

    disasters using real-time response management system DC Survey 2013 NNSA displays helicopter in Baltimore NNSA to Conduct Aerial Radiation Monitoring Survey over Boston April 17-20

  8. BPA-2010-01237-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George Porter Lake Oswego Consulting Group 16193 Matthew Court Lake Oswego, OR 97034 RE: BPA-2010-01237-F Dear Mr. Porter: This is your final response to your request for...

  9. BPA-2011-00506-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2011 In reply refer to: DK-7 Penny Thomas Ex 6 FOIA BPA-2011-00506-F Dear Ms. Thomas: This is a final response to your request for information that you made to the Bonneville...

  10. BPA-2010-02000-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 In reply refer to: DK-7 Lance Zifka Business Representative IBEW Local 280 32969 Hwy 99E Tangent, OR 97389 RE: BPA-2010-02000-F Dear Mr. Zifka: This letter is your final response...

  11. BPA-2010-01891-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joseph M. Williams Ex 6 RE: BPA-2010-01891-F Dear Mr. Williams: This is the final response to your request for information that you made to the Bonneville Power Administration...

  12. BPA-2015-01544-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dec 9, 2014 at 9:15 AM, DeClerck,Angela (BPA) - TSE-TPP-2 wrote: Hello Jason, We are putting together responses to a comment letter we received in July from...

  13. BPA-2014-00312-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Appeals (OHA) received your appeal of BPA's May 27 , 20I4, final response to your Freedom of Information Act (FOIA) request. Your appeal challenged BPA's detennination to...

  14. BPA-2014-00358-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Information Act (FOIA), 5 U.S.C. 552. You requested: "All communications between David Clark and Elliot Mainzer since June 1, 2013 to present." Response: BPA conducted a...

  15. BPA-2011-01795-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and departments. You also ask that the chart contain the names of the next level of management, their business addresses, phone numbers and business e-mails. Response: BPA...

  16. BPA-2011-01104-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    257-F Dear Mr. Seligman: This is a final response to your request for records that you made to the Bonneville Power Administration (BPA) under the Freedom of Information Act...

  17. BPA-2014-01155-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charles Johnson Physicians for Social Responsibility 812 SW Washington St., Suite 1050 Portland, OR 97205 FOIA BPA-2014-01155-F Dear Mr. Johnson: Thank you for your request for...

  18. BPA-2013-00058-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2012 In reply refer to: DK-7 Michaelyn Sanders 185 South Fairview Lane Sonora, CA 95370 FOIA BPA-2013-00058-F Dear Ms. Sanders: This is the final response to your request for...

  19. BPA-2010-01925-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2010 In reply refer to: DK-7 John Provencal Ex 6 BPA-2010-01925-F Dear Mr. Provencal: This letter is a final response to the request for information that you made to the...

  20. BPA-2012-00235-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    information because it does not shed any light on how BPA has performed its statutory duties. Due to the size of the responsive documents they cannot be posted. To obtain a...

  1. BPA-2013-01739-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2013 In reply refer to: NN-1 Charles Johnson Physicians for Social Responsibility 812 SW Washington St, Suite 1050 Portland, OR 97205 FOIA BPA-2013-01739-F Dear Mr. Johnson:...

  2. BPA-2015-00158-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17,2014 In reply refer to: FOIA BPA 2015-00158-F Chuck Johnson Oregon Physicians for Social Responsibility 812 SW Washington Street, Suite 1050 Portland, OR 97202 Mr. Johnson:...

  3. BPA-2010-01715-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2010 In reply refer to: DK-7 Tara Kelly 700 Louisiana Houston, TX 77008 RE: FOIA BPA-2010-01715-F Dear Ms. Kelly: This is a final response to your Freedom of Information...

  4. Dynamically Responsive Infrared Window Coatings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamically Responsive Infrared Window Coatings 1 of 5 An oxygen plasma etcher is used to ... Kyle Alvine checks on the progress of the plasma etch. Image: Pacific Northwest National ...

  5. BPA-2011-01051-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You have requested the following: A copy of the United States Department of Energy Corona and Field Effects Program Version 3.0 computer program. Response: This software was...

  6. BPA-2011-2011-00697-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You have requested the following: A copy of the United States Department of Energy Corona and Field Effects Program Version 3.0 computer program. Response: BPA has provided the...

  7. BPA-2010-01306-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lon Peters Northwest Economic Research, Inc. 607 SE Manchester Place Portland, OR 97202 RE: BPA-2010-01306-F Dear Mr. Peters: This is a final response to your request for...

  8. BPA-2010-1462-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2010 In reply refer to: DK-7 Leslie Stewart-Bell Ex 6 RE: BPA-2010-01462-F Dear Ms. Stewart-Bell: This is a final response to your request for information that you made to the...

  9. BPA-2010-01020-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kim L. Smith RE: FOIA BPA-2010-01020-F Dear Mr. Smith: This is the final response to your request for information that you made to the Bonneville Power Administration (BPA), under...

  10. BPA-2014-00555-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Log Book should be archived at Bonneville Powerhouse." BPA has no responsive records. The Bonneville Dam is owned and operated by the U. S. Army Corps of Engineers. We are...

  11. BPA-2011-00940-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Information Act (FOIA), 5 U.S.C. 552, on March 21, 2011, was transferred to the Bonneville Power Administration (BPA) on April 6, 2011, for response. You have requested...

  12. BPA-2012-01355-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17s O N PUBLIC AFFAIRS July 23, 2012 In reply refer to: DK-7 Christine Kim Ex 6 FOIA 131"A-2012-0 1355-F Dear Ms. Kim: This is a partial response to your request for information...

  13. BPA-2010-01855-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Keith Benjamin Schwabe, Williamson & Wyatt LLC 1211 SW 5 th Avenue, Suite 1900 Portland, OR 97204 RE: BPA-2010-01855-F Dear Mr. Benjamin: This is a final response to your request...

  14. ORISE: REAC/TS Emergency Response Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    management of radiation incidents. Our response teams are equipped with state-of-the-art medical equipment that can be transported to a site or used in our unique facility in...

  15. BPA-2011-00987-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the times the Castle Rock - Lexington line have been cleared or trimmed by BPA brushtree trimming crews for the past 20 years." Response: BPA has performed a reasonable search...

  16. BPA-2011-02053-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    955 Hazel Dell Road, Castle Rock, WA 98611 in 2005 or 2006 notifying homeowners on the Ross-Lexington Row of vegetation control crews entering private property. Response: BPA has...

  17. BPA-2012-00089-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Findley Smith Lewis LLP PO Box 918 Columbia, MO 65205-0918 FOIA BPA-2012-00089-F Dear Ms. Findley: This is a final response to your request for records that you made to the...

  18. BPA-2014-01241-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a final response to your request for records under the Freedom of Information Act (5 U.S.C. 552). You requested: The hourly average MID-Columbia Day Ahead Market Clearing Price,...

  19. BPA-2011-00123-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-F Dear Mr. van Dijk: This is a final response to your request for information that you made from Bonneville Power Administration (BPA) under the Freedom of Information Act...

  20. BPA-2012-00009-Consult Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 In reply refer to: DK-7 Mr. Richard van Dijk Ex 6 RE: FOIA BPA-2012-00009-C Dear Mr. van Dijk: This is a final response to your Freedom of Information Act (FOIA) request to...

  1. BPA-2011-00124-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-F Dear Mr. van Dijk: This is a final response to your request for information that you made from Bonneville Power Administration (BPA) under the Freedom of Information Act...

  2. BPA-2011-01630-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oregon 97208-3621 PUBLIC AFFAIRS October 8, 2011 In reply refer to: DK-7 Richard van Dijk FOIA BPA-2011-01630-F Dear Mr. van Dijk: This is a partial response to your request...

  3. BPA-2011-00358-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2011 In reply refer to: DK-7 Richard van Dijk Another Way BPA Ex 6 RE: BPA-2011-00358-F Dear Mr. van Dijk: This is a final response to your request for information that you made...

  4. BPA-2011-01631-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2011 In reply refer to: DK-7 Richard van Dijk Ex 6 FOIA BPA-2011-01631-F Dear Mr. van Dijk: This is a final response to your request for records that you made to the Bonneville...

  5. BPA-2011-00121 FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 In reply refer to: DK-7 Mr. Richard van Dijk Another Way BPA Ex 6 RE: FOIA BPA-2011-00121-F Dear Mr. van Dijk: This is a final response to your request for information that you...

  6. BPA-2010-00122-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mr. Richard van Dijk Another Way BPA P.O. Box 820152 Vancouver, WA 98682 RE: FOIA BPA-2011-00122-F Dear Mr. van Dijk: This is a final response to your request for information...

  7. BPA-2011-01634-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oregon 97208-3621 PUBLIC AFFAIRS August 30, 2011 In reply refer to: DK-7 Richard van Dijk FOIA BPA-2011-01634-F Dear Mr. van Dijk: This is a final response to your request for...

  8. BPA-2011-01636-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    97208-3621 P PUBLIC AFFAIRS August 23, 2011 In reply refer to: DK-7 Richard van Dijk FOIA BPA-2011-01636-F Dear Mr. van Dijk: This is a final response to your request for...

  9. BPA-2011-00125-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-F Dear Mr. van Dijk: This is a final response to your request for information that you made from Bonneville Power Administration (BPA) under the Freedom of Information Act...

  10. BPA 2011-00359-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2011 In reply refer to: DK-7 Mr. Richard van Dijk Another Way BPA P.O. Box 820152 Vancouver, WA 98682 RE: FOIA BPA-2011-00359-F Dear Mr. van Dijk: This is a final response to...

  11. BPA-2012-01336-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    refer to: DK-7 Ryan Neale Wester Public Agencies Group 16504 9th Ave, SE, Suite 203 Mill Creek, WA 98012 FOIA BPA-2012-0 1336-F Dear Mr. Neale: This is a partial response to...

  12. BPA-2011-00973-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Myrtle June Chapman Ex 6 RE: FOIA BPA-2011-00973-F Dear Ms. Chapman: This is a final response to your request for records that you made to the Bonneville Power Administration...

  13. BPA-2013-01286-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laura Beane Iberdrola Renewables, LLC 1125 NW Couch Street, Suite 700 Portland, OR 97205 FOIA BPA-2013-01286-F Dear Ms. Beane: This is a final response to your request for...

  14. BPA-2012-00189-C Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2012 In reply refer to: DK-7 Richard van Dijk Ex 6 FOIA Consult BPA-2012-00189-C Dear Mr. van Dijk: This is the final response to the request for documents you made through the...

  15. BPA-2015-01645-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FREEDOM OF INFORMATION ACT PROGRAM In reply refer to: FOIA BPA-2015-01645-F Michael Hom Art eric 475 Springfield Avenue Summit, NJ 08816 Mr. Hom: This is a final response to your...

  16. Radiological Emergency Response Health and Safety Manual

    SciTech Connect (OSTI)

    D. R. Bowman

    2001-05-01

    This manual was created to provide health and safety (H&S) guidance for emergency response operations. The manual is organized in sections that define each aspect of H and S Management for emergency responses. The sections are as follows: Responsibilities; Health Physics; Industrial Hygiene; Safety; Environmental Compliance; Medical; and Record Maintenance. Each section gives guidance on the types of training expected for managers and responders, safety processes and procedures to be followed when performing work, and what is expected of managers and participants. Also included are generic forms that will be used to facilitate or document activities during an emergency response. These ensure consistency in creating useful real-time and archival records and help to prevent the loss or omission of information.

  17. BPA-2010-01696-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eric Hansen Spectron Group 500 Broadway Street, Suite 260 Vancouver, WA 98660 RE: BPA-2010-01696-F Dear Mr. Hansen: This is the final response to your request for information that...

  18. Emergency Response | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Emergency Response Department of Energy's chief risk officer visits Nevada National Security Site Earlier this month, Associate Deputy Secretary John MacWilliams visited the Nevada National Security Site (NNSS) in his role as Chief Risk Officer for the Department of Energy. He reviewed the various ways the NNSS contributes to the department's and NNSA's missions, including radiological... NNSA sites prepared for disasters using real-time response management system Pantex Emergency Services now

  19. Response to Weatherization Questions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Response to Weatherization Questions Response to Weatherization Questions August 30, 2010 - 4:53pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Last week as part of Vice President Biden's announcement of 200,000 homes weatherized under the Recovery act, we asked you to send us your questions and comments about the weatherization process. Today, we're following up with answers experts from the Department's Weatherization and Intergovernmental Program: 1) From

  20. SCE Responses to Customer Data Questions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SCE Responses to Customer Data Questions 1. Who owns energy consumption data? SCE Response: Customer-specific data gathered or developed by a utility in the course of providing utility services is owned by the utility. Such data is subject to confidentiality and privacy requirements. In California, customers have the right to access their customer- specific information and can authorize third-party access to their information. 2. Who should be entitled to privacy protections relating to energy

  1. Advice and Response 200 - 101 - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    200 - 101 Hanford Advisory Board Convening Report SSAB Guidance Memorandum of Understanding Membership Nomination and Appointment Process Operating Ground Rules Calendars Advice and Responses Full Board Meeting Information Committee Meeting Information Outgoing Board Correspondence Key Board Products and Special Reports HAB Annual Report HAB and Committee Lists Points of Contact Related Links Advice and Response 200 - 101 Email Email Page | Print Print Page | Text Increase Font Size Decrease

  2. ORSSAB Recommendations & Responses | Department of Energy

    Office of Environmental Management (EM)

    Services » Community Engagement » ORSSAB » ORSSAB Recommendations & Responses ORSSAB Recommendations & Responses Documents Available for Download May 18, 2016 Recommendation 232: Recommendations on the FY 2018 DOE Oak Ridge Environmental Management Budget Request ORSSAB provides recommendations on the DOE Oak Ridge Environmental Management budget request for FY 2018. January 14, 2016 Recommendation 230: Recommendation on the Final Proposed Plan for Soils in Zone 1 at East Tennessee

  3. Emergency Response | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Programs Emergency Response NNSA's Office of Emergency Operations is the United States government's primary capability for radiological and nuclear emergency response and for providing security to the nation from the threat of nuclear terrorism. The Office of Emergency Operations maintains a high level of readiness for protecting and serving the U.S. and its allies through the development, implementation and coordination of programs and systems designed to serve as a last line of defense in the

  4. Establishing and operating an incident response team

    SciTech Connect (OSTI)

    Padgett, K.M.

    1992-01-01

    Occurrences of improprieties dealing with computer usage are on the increase. They range all the way from misuse by employees to international computer telecommunications hacking. In addition, natural disasters and other disasters such as catastrophic fires may also fall into the same category. These incidents, like any other breach of acceptable behavior, may or may not involve actual law breaking. A computer incident response team should be created as a first priority. This report discusses the establishment and operation of a response team.

  5. Establishing and operating an incident response team

    SciTech Connect (OSTI)

    Padgett, K.M.

    1992-09-01

    Occurrences of improprieties dealing with computer usage are on the increase. They range all the way from misuse by employees to international computer telecommunications hacking. In addition, natural disasters and other disasters such as catastrophic fires may also fall into the same category. These incidents, like any other breach of acceptable behavior, may or may not involve actual law breaking. A computer incident response team should be created as a first priority. This report discusses the establishment and operation of a response team.

  6. Impact of Nuclear Medicine on Emergency Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February » Impact of Nuclear Medicine on Emergency Response Impact of Nuclear Medicine on Emergency Response WHEN: Feb 26, 2016 6:00 PM - 8:00 PM WHERE: Courtyard Marriott, Santa Fe CONTACT: Evelyn Mullen (505) 665-7576 CATEGORY: Community TYPE: Meeting INTERNAL: Calendar Login Event Description A number of novel isotopes and associated drug compounds are being developed, both in the US and elsewhere, for diagnosis and therapy in the field of nuclear medicine. The accelerator at Los Alamos is

  7. CBERD: Climate Responsive Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Responsive Buildings CBERD: Climate Responsive Buildings Figure 1: Chamber experiment to study impact of air movement on thermal comfort using personally controlled fans and eight different thermal conditions. Preliminary results show that air movement allowed people to stay thermally neutral up to 32°C (89.6°F), 60% RH. Source: UC-Berkeley. Figure 1: Chamber experiment to study impact of air movement on thermal comfort using personally controlled fans and eight different thermal

  8. Modeling and simulation of consumer response to dynamic pricing.

    SciTech Connect (OSTI)

    Valenzuela, J.; Thimmapuram, P.; Kim, J

    2012-08-01

    Assessing the impacts of dynamic-pricing under the smart grid concept is becoming extremely important for deciding its full deployment. In this paper, we develop a model that represents the response of consumers to dynamic pricing. In the model, consumers use forecasted day-ahead prices to shift daily energy consumption from hours when the price is expected to be high to hours when the price is expected to be low while maintaining the total energy consumption as unchanged. We integrate the consumer response model into the Electricity Market Complex Adaptive System (EMCAS). EMCAS is an agent-based model that simulates restructured electricity markets. We explore the impacts of dynamic-pricing on price spikes, peak demand, consumer energy bills, power supplier profits, and congestion costs. A simulation of an 11-node test network that includes eight generation companies and five aggregated consumers is performed for a period of 1 month. In addition, we simulate the Korean power system.

  9. Recognizing and Assigning ESPC Risks and Responsibilities Using the Risk,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Responsibility, and Performance Matrix | Department of Energy Recognizing and Assigning ESPC Risks and Responsibilities Using the Risk, Responsibility, and Performance Matrix Recognizing and Assigning ESPC Risks and Responsibilities Using the Risk, Responsibility, and Performance Matrix Document offers guidance on how to recognize and assign energy savings performance contract (ESPC) risks and responsibilities using the risk, responsibility, and performance matrix, also known as RRPM.

  10. Response to several FOIA requests - Renewable Energy. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Response to several FOIA requests - Renewable Energy. SCHEDULE FOR CHIEF OF STAFF Wednesday, July 11, 2001 nepdg_10751_11000.pdf Response to several FOIA requests - Renewable Energy. (5.74 MB) More Documents & Publications Response to several FOIA requests - Renewable Energy. Response to several FOIA requests - Renewable Energy. Response to several FOIA requests - Renewable Energy.

  11. Ozone response relationships in healthy nonsmokers

    SciTech Connect (OSTI)

    Kulle, T.J.; Sauder, L.R.; Hebel, J.R.; Chatham, M.D.

    1985-07-01

    Significant concentration responses were observed in FVC, FEV1, FEF25-75, SGaw, IC, and TLC in 20 healthy, nonsmoking volunteers exposed randomly to 0.00, 0.10, 0.15, 0.20, and 0.25 ppm O/sub 3/. In addition, significant response changes for FVC, FEV1, and FEF25-75 were shown with time over the 2-h exposure. Intermittent, heavy exercise (VE, 68 L/min) lasting 14 min was employed every 30 min during exposure. Inspection of the concentration and time response curves suggests that the threshold for the group response is at or below 0.15 ppm O/sub 3/. Six subjects experienced decreases greater than 5% in FEV1 or greater than 15% in SGaw at 0.15 ppm. This concentration is only slightly higher than the 1-h O/sub 3/ National Ambient Air Quality Standard. A dose-related response was also seen for cough, nose and throat irritation, and chest discomfort. The work load, length of exposure, and individual sensitivity must be considered for establishing a safe O/sub 3/ exposure level.

  12. Ozone-response relationships in healthy nonsmokers

    SciTech Connect (OSTI)

    Kulle, T.J.; Sauder, L.R.; Hebel, J.R.; Chatham, M.D.

    1985-01-01

    Significant concentration responses were observed in FVC1 FEV1, FEF 25-75, SGaw, IC, and TLC in 20 healthy, nonsmoking volunteers exposed randomly to 0.00, 0.10, 0.15, 0.20, and 0.25 ppm O3. In addition, significant response changes for FVC1 FEV1, FEF25-75 were shown with time over the 2-h exposure. Intermittent, heavy exercise (VE1 68L/min) lasting 14 min was employed every 30 min during exposure. Inspection of the concentration and time-response curves suggests that the threshold for the group response is at or below 0.15 ppm O/sub 3/. Six subjects experienced decreases > 5% in SGaw at 0.15 ppm. The concentration is only slightly higher than the 1-h O/sub 3/ National Ambient Air Quality Standard. A dose-related response was also seen for cough, nose and throat irritation, and chest discomfort. The work load, length of exposure, and individual sensitivity must be considered for establishing a safe O/sub 3/ exposure level.

  13. Modeling the mechanical response of PBX 9501

    SciTech Connect (OSTI)

    Ragaswamy, Partha; Lewis, Matthew W; Liu, Cheng; Thompson, Darla G

    2010-01-01

    An engineering overview of the mechanical response of Plastic-Bonded eXplosives (PBXs), specifically PBX 9501, will be provided with emphasis on observed mechanisms associated with different types of mechanical testing. Mechanical tests in the form of uniaxial tension, compression, cyclic loading, creep (compression and tension), and Hopkinson bar show strain rate and temperature dependence. A range of mechanical behavior is observed which includes small strain recoverable response in the form of viscoelasticity; change in stiffness and softening beyond peak strength due to damage in the form microcracks, debonding, void formation and the growth of existing voids; inelastic response in the form of irrecoverable strain as shown in cyclic tests, and viscoelastic creep combined with plastic response as demonstrated in creep and recovery tests. The main focus of this paper is to elucidate the challenges and issues involved in modeling the mechanical behavior of PBXs for simulating thermo-mechanical responses in engineering components. Examples of validation of a constitutive material model based on a few of the observed mechanisms will be demonstrated against three point bending, split Hopkinson pressure bar and Brazilian disk geometry.

  14. Spinning Reserve From Hotel Load Response: Initial Progress

    SciTech Connect (OSTI)

    Kueck, John D; Kirby, Brendan J

    2008-11-01

    This project was motivated by the fundamental match between hotel space conditioning load response capability and power system contingency response needs. As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. At ORNL s suggestion, Digital Solutions Inc. adapted its hotel air conditioning control technology to supply power system spinning reserve. This energy saving technology is primarily designed to provide the hotel operator with the ability to control individual room temperature set-points based upon occupancy (25% to 50% energy savings based on an earlier study [Kirby and Ally, 2002]). DSI added instantaneous local load shedding capability in response to power system frequency and centrally dispatched load shedding capability in response to power system operator command. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host the spinning reserve test. The Tennessee Valley Authority supplied real-time metering equipment in the form of an internet connected Dranetz-BMI power quality meter and monitoring expertise to record total hotel load during both normal operations and test results. The Sevier County Electric System installed the metering. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. These results are prior to implementing control over the common area air conditioning loads. Testing was also not at times of highest system or hotel loading. Full response occurred in 12 to 60 seconds from when the system operator s command to shed load was issued. The load drop was very rapid, essentially as fast as the 2 second metering could detect, with all units responding essentially simultaneously. Load restoration was ramped back in over several minutes. The restoration ramp can be adjusted to the power system needs. Frequency response testing was not completed. Initial

  15. Coastal ocean current response to storm winds

    SciTech Connect (OSTI)

    Gordon, R.L.

    1982-03-20

    Design of offshore structures requires knowledge of the appropriate current profile to be used in conjunction with the design wave. Accurate determination of the current profile will depend on reliable current models. Vertical transfer of momentum in storm-driven current models is commonly treated either by using eddy viscosity or by assuming 'slab-like' mixed layer flow. These two fundamentally different approaches predict different current speeds and profiles during severe storms. The existing data base is inadequate to determine which approach is better, but most existing data sets are subject to one or more of four limitations that can lead one improperly to interpret the data as supporting the existence of current velocity shear in otherwise uniform mixed layers. One-dimensional slab models are found to compare favorably with observed wind-driven currents at the Ocean Test Structure in the Gulf of Mexico (deployed in 20 m deep water). By using some reasonably simple assumptions, these slab models are able to replicate many of the significantly features of the wide range of different responses. The character of the response appears to depend on an interaction of stratification and topography. Barotropic responses are characteristic of typical coastal responses; current oriented longshore and are in phase with the wind. Baroclinic responses are dominantly inertial as might be expected in the deep sea, but with an additional near-bottom cross-shore counter flow. The structure of one observed barotropic response is compared to detail to predictions of both slab and eddy viscosity models and found consistent with a slab model and inconsistent with eddy viscosity models. Shear observed during this event was not significantly different from zero, but was significantly below estimated shear predictions of four eddy viscosity models given the peak 0.4 N/m/sup 2/ wind stress.

  16. FOIA May 2009 Responses (000362 - 000369)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mr. Phillip Manske 195 W. Puetz Road H-114 Oak Creek, WI 53154 RE: FOIA Request No. 2009-00362 Dear Mr. Manske: This is in response to the request for information that you made to the Department of Energy (DOE) under the Freedom of Information Act (FOIA), 5 U.S.C. 552. l h s office is considered to be the office most likely to contain documents responsive to the request. You requested documentation that was submitted by the applicant that was hired for the Associate Chief Financial Officer

  17. Incident Prevention, Warning, and Response (IPWAR) Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-09-30

    This Manual defines a structured, cohesive, and consistent process for performing incident prevention, warning, and response for DOE's Federal information systems and is consistent with the requirements of Federal laws, Executive orders, national security directives, and other regulations. The Manual also provides requirements and implementation instructions for the Department's Incident Prevention, Warning and Response process, and supplements DOE O 205.1, Department of Energy Cyber Security Management Program, dated 3-21-03. DOE N 205.17 cancels this manual. This manual cancels DOE N 205.4, Handling Cyber Security Alerts and Advisories and Reporting Cyber Security Incidents, dated 3/18/2002.

  18. Side-welded fast response sheathed thermocouple

    DOE Patents [OSTI]

    Carr, Kenneth R.

    1981-01-01

    A method of fabricating the measuring junction of a grounded-junction sheathed thermocouple to obtain fast time response and good thermal cycling performance is provided. Slots are tooled or machined into the sheath wall at the measuring junction, the thermocouple wires are laser-welded into the slots. A thin metal closure cap is then laser-welded over the end of the sheath. Compared to a conventional grounded-junction thermocouple, the response time is 4-5 times faster and the thermal shock and cycling capabilities are substantially improved.

  19. Nonequilibrium volumetric response of shocked polymers

    SciTech Connect (OSTI)

    Clements, B E

    2009-01-01

    Polymers are well known for their non-equilibrium deviatoric behavior. However, investigations involving both high rate shock experiments and equilibrium measured thermodynamic quantities remind us that the volumetric behavior also exhibits a non-equilibrium response. Experiments supporting the notion of a non-equilibrium volumetric behavior will be summarized. Following that discussion, a continuum-level theory is proposed that will account for both the equilibrium and non-equilibrium response. Upon finding agreement with experiment, the theory is used to study the relaxation of a shocked polymer back towards its shocked equilibrium state.

  20. NAHB_RequestandResponse.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAHB_RequestandResponse.pdf NAHB_RequestandResponse.pdf (1.05 MB) More Documents & Publications PCA_RequestandResponse.pdf CSS Letter - Final.tif CSS Letter - Final.tif

  1. Response ¬タモ Acquisition and Project Management (11/1/2010)

    Office of Environmental Management (EM)

    Energy Energy. Excess Capacity from LADWP Control Area (LADWP, Glendale, Burbank),Summer 2001 nepdg_751_1000.pdf Total Load (CEC Draft Demand Forecast 10/16/2000 Response to several FOIA requests - Renewable Energy. (9.83 MB) More Documents & Publications An Assessment of Heating Fuels And Electricity Markets During the Winters of 2013-2014 and 2014-2015 Response to several FOIA requests - Renewable Energy FE DOCKET NO. 11-59-LNG

  2. Response to several FOIA requests - Renewable Energy. | Department of

    Office of Environmental Management (EM)

    Response Events Response Events Emergency preparedness and response activities help to facilitate recovery from disruptions to the energy supply, thereby reducing the impact of these events. As such, the ISER approach for emergency response is to leverage a coordinated integration of several DOE capabilities and resources to emergency response situations. These capabilities and resources include personnel with emergency response and/or energy systems operations experience, leading-edge

  3. Evaluating Radiometric Measurements Using a Fixed 45 Degrees Responsivity and Zenith Angle Dependent Responsivities (Poster)

    SciTech Connect (OSTI)

    Dooraghi, M.; Habte, A.; Reda, I.; Sengupta, M.; Gotseff, P.; Andreas, A.; Anderberg, M.

    2014-03-01

    This poster seeks to demonstrate the importance and application of an existing but unused approach that ultimately reduces the uncertainty of radiometric measurements. Current radiometric data is based on a single responsivity value that introduces significant uncertainty to the data, however, through using responsivity as a function of solar zenith angle, the uncertainty could be decreased by 50%.

  4. PowerChoice Residential Customer Response to TOU Rates

    SciTech Connect (OSTI)

    Peters, Jane S.; Moezzi, Mithra; Lutzenhiser, Susan; Woods, James; Dethman, Linda; Kunkle, Rick

    2009-10-01

    Research Into Action, Inc. and the Sacramento Municipal Utility District (SMUD) worked together to conduct research on the behaviors and energy use patterns of SMUD residential customers who voluntarily signed on to a Time-of-Use rate pilot launched under the PowerChoice label. The project was designed to consider the how and why of residential customers ability and willingness to engage in demand reduction behaviors, and to link social and behavioral factors to observed changes in demand. The research drew on a combination of load interval data and three successive surveys of participating households. Two experimental treatments were applied to test the effects of increased information on households ability to respond to the Time-of-Use rates. Survey results indicated that participants understood the purpose of the Time-of-Use rate and undertook substantial appropriate actions to shift load and conserve. Statistical tests revealed minor initial price effects and more marked, but still modest, adjustments to seasonal rate changes. Tests of the two information interventions indicated that neither made much difference to consumption patterns. Despite the lackluster statistical evidence for load shifting, the analysis points to key issues for critical analysis and development of residential Time-of-Use rates, especially pertinent as California sets the stage for demand response in more California residences.

  5. Response to several FOIA requests - Renewable Energy. | Department...

    Office of Environmental Management (EM)

    Response to several FOIA requests - Renewable Energy. PROPOSED MEEETING WITH GENERAL ATOMICS, nepdg65016750.pdf PDF icon Response to several FOIA requests - Renewable Energy....

  6. Response to several FOIA requests - Renewable Energy. | Department...

    Office of Environmental Management (EM)

    4141-4142 nepdg1500115250.pdf PDF icon Response to several FOIA requests - Renewable Energy. More Documents & Publications Response to several FOIA requests - Renewable...

  7. Response to several FOIA requests - Renewable Energy. | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Response to several FOIA requests - Renewable Energy. Subject: Chapter 2 Energy Impacts, nepdg82518500.pdf Response to several FOIA requests - Renewable Energy. More Documents &...

  8. NETL Gas Migration Study to Advance Understanding of Responsible...

    Energy Savers [EERE]

    Gas Migration Study to Advance Understanding of Responsible Oil and Natural Gas Development NETL Gas Migration Study to Advance Understanding of Responsible Oil and Natural Gas ...

  9. Model Annex for Preparedness and Response to Radiological Transportati...

    Office of Environmental Management (EM)

    Annex for Preparedness and Response to Radiological Transportation Incidents Model Annex for Preparedness and Response to Radiological Transportation Incidents This part should...

  10. Public Health Security and Bioterrorism Preparedness and Response...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Health Security and Bioterrorism Preparedness and Response Act of 2002 Public Health Security and Bioterrorism Preparedness and Response Act of 2002 July 3, 2002 Public ...

  11. Components Responsible for the Health Effects of Inhaled Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Responsible for the Health Effects of Inhaled Engine Emissions Components Responsible for the Health Effects of Inhaled Engine Emissions Presentation given at the 2007 Diesel ...

  12. Fifth Anniversary of Radiological Alarm Response Training for...

    National Nuclear Security Administration (NNSA)

    Fifth Anniversary of Radiological Alarm Response Training for Local Law Enforcement and ... Administration's (NNSA) Alarm Response Training (ART) program for local law enforcement ...

  13. Fifth Anniversary of Radiological Alarm Response Training for...

    National Nuclear Security Administration (NNSA)

    Fifth Anniversary of Radiological Alarm Response Training for Local Law Enforcement and ... This week marks the fifth anniversary of NNSA's Alarm Response Training (ART) program for ...

  14. NNSA, NATO Conduct Emergency Response Training in the Czech Republic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NNSA, NATO Conduct Emergency Response Training in the Czech Republic June 04, 2014 ... Radiological Assistance Program Training for Emergency Response (I-RAPTER) course ...

  15. Atomic Energy Commission Takes Over Responsibility for all Atomic...

    National Nuclear Security Administration (NNSA)

    Takes Over Responsibility for all Atomic Energy Programs Atomic Energy Commission Takes Over Responsibility for all Atomic Energy Program Washington, DC In accordance with the ...

  16. Predictive Models for Target Response During Penetration (Technical...

    Office of Scientific and Technical Information (OSTI)

    Predictive Models for Target Response During Penetration Citation Details In-Document Search Title: Predictive Models for Target Response During Penetration You are accessing a...

  17. Software Quality: A Guide to Responsibilities and Resources,...

    Energy Savers [EERE]

    Software Quality: A Guide to Responsibilities and Resources, SQAS Software Quality: A Guide to Responsibilities and Resources, SQAS This Guide provides guidance to the software...

  18. Response of Human Lung Epithelial Cells to Engineered Nanoparticles...

    Office of Scientific and Technical Information (OSTI)

    Response of Human Lung Epithelial Cells to Engineered Nanoparticles. Citation Details In-Document Search Title: Response of Human Lung Epithelial Cells to Engineered Nanoparticles. ...

  19. V-220: Juniper Security Threat Response Manager Lets Remote Authentica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Threat Response Manager Lets Remote Authenticated Users Execute Arbitrary Commands V-220: Juniper Security Threat Response Manager Lets Remote Authenticated Users Execute...

  20. Department of Energy Response to Hurricane Katrina | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Department of Energy Response to Hurricane Katrina More Documents & Publications Fact Sheet Department of Energy Response to Hurricane Katrina PRICE GOUGING PRICE GOUGING

  1. Terrestrial Climate Change and Ecosystem Response Recorded in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Terrestrial Climate Change and Ecosystem Response Recorded in Lake Sediments and Related Deposits Reconstruction of past terrestrial climate and ecosystem response relies on ...

  2. Community Response to Concentrating Solar Power in the San Luis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010 Community Response to Concentrating Solar Power in the San Luis Valley October 9, ... 2010 Community Response to Concentrating Solar Power in the San Luis Valley October 9, ...

  3. Global health response more accurate with automated influenza...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global health response more accurate with automated influenza surveillance Global health response more accurate with automated influenza surveillance Public health officials will...

  4. Transition of Long-Term Response Action Management Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transition of Long-Term Response Action Management Requirements Transition of Long-Term Response Action Management Requirements The purpose of this memorandum is to provide you ...

  5. Response to several FOIA requests - Renewable Energy | Department...

    Office of Environmental Management (EM)

    More Documents & Publications Response to several FOIA requests - Renewable Energy. 2013 Wind Technologies Market Report Data Response to several FOIA requests - Renewable Energy.

  6. Experimental and Statistical Comparison of Engine Response as...

    Office of Scientific and Technical Information (OSTI)

    Experimental and Statistical Comparison of Engine Response as a Function of Fuel Chemistry ... Engine Response as a Function of Fuel Chemistry and Properties in CI and HCCI Engines ...

  7. Closed orbit response to quadrupole strength variation (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Closed orbit response to quadrupole strength variation Citation Details In-Document Search Title: Closed orbit response to quadrupole strength variation We derive ...

  8. Source term estimation during incident response to severe nuclear...

    Office of Scientific and Technical Information (OSTI)

    response to severe nuclear power plant accidents Citation Details In-Document Search Title: Source term estimation during incident response to severe nuclear power plant ...

  9. POINT OF CONTACT RESPONSIBILITIES FOR RECORDS MANAGEMENT | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POINT OF CONTACT RESPONSIBILITIES FOR RECORDS MANAGEMENT POINT OF CONTACT RESPONSIBILITIES FOR RECORDS MANAGEMENT A list of point of contact responsibilites for Records Management...

  10. Booz Allen Hamilton Response to Department of Energy Request...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Booz Allen Hamilton Response to Department of Energy Request for Information on ... Booz Allen Hamilton Response to Department of Energy Request for Information on ...

  11. Giant Nonhysteretic Responses of Two-Phase Nanostructured Alloys...

    Office of Scientific and Technical Information (OSTI)

    Giant Nonhysteretic Responses of Two-Phase Nanostructured Alloys Citation Details In-Document Search Title: Giant Nonhysteretic Responses of Two-Phase Nanostructured Alloys ...

  12. Response to IG Recommendation to Create a Formal Lessons Learned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Response to IG Recommendation to Create a Formal Lessons Learned Process Response to IG Recommendation to Create a Formal Lessons Learned Process Attachment 1: Recommendations ...

  13. Household Response To Dynamic Pricing Of Electricity: A Survey...

    Open Energy Info (EERE)

    Household Response To Dynamic Pricing Of Electricity: A Survey Of The Experimental Evidence Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Household Response To Dynamic...

  14. DOE Efforts in Preparing and Improving First Response Capabilities...

    Office of Environmental Management (EM)

    Efforts in Preparing and Improving First Response Capabilities and Performance through Drills and Exercises DOE Efforts in Preparing and Improving First Response Capabilities and...

  15. Organizations' Assignment of Responsibility - DOE Directives,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delegations, and Requirements Organizations' Assignment of Responsibility Current By Functional Area By Position Designations Assignments Rescinded by Diane Johnson More filters Less filters Filters applied Δ Hide filters ∇ Show filters (0) [X] Remove all Issue Date Start date End date ffe8aa65e5ad705f837fe439ace37780

  16. Responsive Copolymers for Enhanced Petroleum Recovery

    SciTech Connect (OSTI)

    McCormick, Charles; Hester, Roger

    2002-02-27

    The objectives of this work was to: (1) synthesize responsive, amphiphilic systems; (2) characterize molecular structure and solution behavior; (3) measure rheological properties of the aqueous fluids including behavior in fixed geometry flow profiles and beds; and (4) to tailor polymer compositions for in situ rheology control under simulated reservoir conditions.

  17. 09-008 FOIA Response.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2008 In reply refer to: DK-7 Mr. Wei Xu UWO 33-463 Platts Ln London, Ontario CANADA N6G3H2 RE: FOIA 09-008 Dear Mr. Xu: This letter is a final response to your request for...

  18. BPA-2010-01867-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-5 EXPOSURES are provided on the enclosed DVDs. Response BPA-2010-01876-F: Aerial Photography: 11-02-1977 BPA-BIA Roll 4 Frames 6 through 9; 09-12-1977 BPA-BIA Frame 8 plus...

  19. Special Access Program Policies, Responsibilities, and Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-07-11

    Special Access Program Policies, Responsibilities, and Procedures This Manual is for OFFICIAL USE ONLY and will not be distributed on the Directives Portal. For distribution, please contact the Director, Office of Security, at 202-586-6775. Cancels: DOE M 471.2-3

  20. Silicon Timing Response to Particles and Light

    SciTech Connect (OSTI)

    Ronzhin, Anatoly; Spiropulu, Maria

    2015-01-01

    It is observed growing interest to fast timing detectors in high energy physics, related, for example, with collider luminosity increase (LHC) [1]. The options of CMS [2] calorimeter upgrade based on silicon detectors renewed interest to the timing study of this type of detectors. The article is devoted to study of silicon timing response to particles and light.

  1. BPA-2014-00720-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2014 In reply refer to: D-B1 Richard van Dijk Another Way BPA Ex 6 FOIA BPA-2014-00720-F Dear Mr. van Dijk: This is the final response to your request for records that you made...

  2. BPA-2010-00902-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 In reply refer to: DK-7 Mr. John Parr P.O. Box 603 Lyle, WA 98635 RE: FOIA BPA-2010-00902-F Dear Mr. Parr: This is a final response to your request for information that you made...

  3. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Broader source: Energy.gov (indexed) [DOE]

    To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid ...

  4. Chapter 3 Demand-Side Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Typically, these resources result from one of two methods of reducing load: energy efficiency or demand response load management. The energy efficiency method designs and deploys ...

  5. Process for Transition of Responsibilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Responsibilities Process for Transition of Responsibilities Process for Transition of Responsibilities (Waste Management Conference 2006) Process for Transition of Responsibilities (323.56 KB) More Documents & Publications FUSRAP Overview Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites Assessing and Implementing LTS&M Requirements for Remediation Sites Under the FUSRAP Program

  6. Shortcuts to adiabaticity from linear response theory

    SciTech Connect (OSTI)

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.

  7. Errors in response calculations for beams

    SciTech Connect (OSTI)

    Wada, H.; Wurburton, G.B.

    1985-05-01

    When the finite element method is used to idealize a structure, its dynamic response can be determined from the governing matrix equation by the normal mode method or by one of the many approximate direct integration methods. In either method the approximate data of the finite element idealization are used, but further assumptions are introduced by the direct integration scheme. It is the purpose of this paper to study these errors for a simple structure. The transient flexural vibrations of a uniform cantilever beam, which is subjected to a transverse force at the free end, are determined by the Laplace transform method. Comparable responses are obtained for a finite element idealization of the beam, using the normal mode and Newmark average acceleration methods; the errors associated with the approximate methods are studied. If accuracy has priority and the quantity of data is small, the normal mode method is recommended; however, if the quantity of data is large, the Newmark method is useful.

  8. Shortcuts to adiabaticity from linear response theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less

  9. OTEC plant response and control analysis

    SciTech Connect (OSTI)

    Owens, W.L.

    1982-08-01

    An analysis is presented which allows prediction of closed-cycle OTEC power plant system response and control. Two basic operational control schemes are presented, which are primarily related to the type of seawater pumps employed. Variable flow seawater pumps allow optimization of the OTEC thermal-cycle state points for maximization of net generated power. Constant flow pumps are cheaper and simpler, but do not allow direct control over the evaporator and condenser operating temperatures. A system of nonlinear differential equations representing the basic elements of a constant seawater flow OTEC plant with turbine bypass flow control has been formulated for computer solution. Typical normalized response curves are presented for pressures, temperatures, mass flow rates, and generator speed for a small-scale, 50-kW OTEC plant design.

  10. Method and apparatus for measuring response time

    DOE Patents [OSTI]

    Johanson, E.W.; August, C.

    1983-08-11

    A method of measuring the response time of an electrical instrument which generates an output signal in response to the application of a specified input, wherein the output signal varies as a function of time and when subjected to a step input approaches a steady-state value, comprises the steps of: (a) applying a step input of predetermined value to the electrical instrument to generate an output signal; (b) simultaneously starting a timer; (c) comparing the output signal to a reference signal to generate a stop signal when the output signal is substantially equal to the reference signal, the reference signal being a specified percentage of the steady-state value of the output signal corresponding to the predetermined value of the step input; and (d) applying the stop signal when generated to stop the timer.

  11. Method and apparatus for measuring response time

    DOE Patents [OSTI]

    Johanson, Edward W.; August, Charles

    1985-01-01

    A method of measuring the response time of an electrical instrument which generates an output signal in response to the application of a specified input, wherein the output signal varies as a function of time and when subjected to a step input approaches a steady-state value, comprises the steps of: (a) applying a step input of predetermined value to the electrical instrument to generate an output signal; (b) simultaneously starting a timer; (c) comparing the output signal to a reference signal to generate a stop signal when the output signal is substantially equal to the reference signal, the reference signal being a specified percentage of the steady-state value of the output signal corresponding to the predetermined value of the step input; and (d) applying the stop signal when generated to stop the timer.

  12. Sandia National Laboratories: About Sandia: Environmental Responsibility:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Environment, Safety & Health Policy Environment, Safety & Health Policy Policy Statement It is the policy of Sandia National Laboratories to perform work in a safe and environmentally responsible manner by committing to: Maintain a safe workplace, prevent incidents, and protect the public. Protect the environment, conserve resources, and prevent pollution. Maintain compliance with legal and other requirements. Strive for continual improvement. DOE's Integrated Safety

  13. Operational Guidelines/Radiological Emergency Response

    Broader source: Energy.gov [DOE]

    Operational Guidelines/Radiological Emergency Response. Provides information and resources concerning the development of Operational Guidelines as part of planning guidance for protection and recovery following Radiological Dispersal Device (RDD) and/or Improvised Nuclear Device (IND) incidents. Operational Guidelines Technical (OGT) Manual, 2009 RESRAD-RDD Complementing Software to OGT Manual EPA Protective Action Guidelines (2013), Interim Final Federal Radiological Monitoring and Assessment Center (FRMAC) Federal Radiological Preparedness Coordinating Committee (FRPCC)

  14. emergency response assets | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    emergency response assets Federal Radiological Monitoring and Assessment Center The Federal Radiological Monitoring and Assessment Center (FRMAC) is a federal asset available on request by the Department of Homeland Security (DHS) and state and local agencies to respond to a nuclear or radiological incident. The FRMAC is an interagency organization with representation... Radiation Emergency Assistance Center / Training Site NNSA's Radiation Emergency Assistance Center / Training Site (REAC/TS)

  15. Regulatory Burden RFI - Hussmann Corporation Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulatory Burden RFI - Hussmann Corporation Response January 3, 2012 Below are the list of questions with answers from the December 5 RFI: (1) How can the Department best promote meaningful periodic reviews of its existing rules and how can it best identify those rules that might be modified, streamlined, expanded, or repealed? DOE should maintain a list of all manufacturers impacted by legislation/rules and make sure these manufacturers are notified of all rule changes. A full review cycle

  16. DOE - NNSA/NFO -- FRMAC Response Phases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phases NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Federal Radiological Monitoring and Assessment Center Response Phases Consequence Management Home Team (CMHT) PDF icon CMHT Brochure (pdf, 2 MB) The Consequence Management Home Team (CMHT) functions as a virtual extension of the FRMAC when a full FRMAC has not yet been, or will not be, deployed. The same products and assistance are available in CMHT as with a full FRMAC with the exception of field monitoring capabilities.

  17. Microsoft Word - OPower RFI Response_110510.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OPOWER submits these comments to the Department of Energy in response to the recently issued Request for Information on smart grid implementation challenges. In particular, OPOWER writes to comment on the importance of effective customer engagement in smart grid policy making. OPOWER is an energy efficiency software company that uses behavioral science and data analytics to help utilities better engage their customers and motivate them to use less energy. OPOWER is partnering with 43 utilities

  18. Microsoft Word - RFI_Response.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concise, High-Level Response to DOE RFI on Smart Grid Policy Santiago Grijalva, Ph.D. Associate Professor Director, Advanced Computational Electricity Systems (ACES) Laboratory School of Electrical and Computer Engineering Georgia Institute of Technology November 1, 2010 Abstract This document responds to DOE questions regarding smart grid policy. The approach followed herein is to write concise comments addressing the overall RFI document at a higher level. This is necessary because: a) Smart

  19. Departmental Response: SEAB Task Force Recommendations on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Departmental Response: SEAB Task Force Recommendations on Technology Development for Environmental Management Introduction In May 2014, Energy Secretary Ernest Moniz charged the Secretary of Energy Advisory Board (SEAB) to provide advice as to how the United States (U.S.) Department of Energy (DOE) could more effectively ensure the development of technology necessary for the Office of Environmental Management (EM) to complete its mission, cleanup of legacy waste sites. The SEAB formed a Task

  20. Stimuli responsive magnetic nanogels for biomedical application

    SciTech Connect (OSTI)

    Craciunescu, I.; Petran, A.; Turcu, R.; Daia, C.; Marinica, O.; Vekas, L.

    2013-11-13

    We report the synthesis and characterization of magnetic nanogels based on magnetite nanoparticles sterically stabilized by double layer oleic acid in water carrier and chemically cross linked poly (N-isopropylacril amide) (pNIPA) and poly (acrylic acid) (pAAc). In this structure the magnetite nanoparticles are attached to the flexible network chain by adhesive forces, resulting in a direct coupling between magnetic and elastic properties. Stable water suspensions of dual responsive magnetic nanogels based on temperature-responsive N-isopropyl acryl amide, pH responsive acrylic acid were obtained. The FTIR spectra of p(NIPA-AAc) ferrogel samples, showed the absorption region of the specific chemical groups associated with pNIPA, pAAc and the Fe{sub 3}O{sub 4} magnetic nanoparticles. The morphology and the structure of the as prepared materials were confirmed by transmission electron microscopy (TEM) and the size distribution was determined by dynamic light scattering (DLS). The magnetic microgels have high magnetization and superparamagnetic behaviour being suitable materials for biomedical application.