Powered by Deep Web Technologies
Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Federal Energy Management Program: Technology Deployment Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Deployment Resources to someone by E-mail Share Federal Energy Management Program: Technology Deployment Resources on Facebook Tweet about Federal Energy Management...

2

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

3

Federal Energy Management Program: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

& Initiatives Solid State Lighting Working Group Distributed Energy ResourcesCombined Heat & Power Resources Renewable Energy Technology Deployment NEW Technology...

4

NREL: Technology Deployment - Updated Solar Resource Maps Available for  

NLE Websites -- All DOE Office Websites (Extended Search)

Updated Solar Resource Maps Available for India Updated Solar Resource Maps Available for India July 15, 2013 Through funding from the U.S. Department of Energy and U.S. Department of State, and in collaboration with India's Ministry of New and Renewable Energy, NREL has updated its 10-kilometer (km) solar resource maps for India. The new maps incorporate updated 10-km hourly solar resource data developed using weather satellite measurements combined with site-time specific solar modeling. Additionally, the maps expand the time of analysis by four years, from 2002-2007 to 2002-2011 and include enhanced aerosols information to improve estimates of direct normal irradiance. The data is available in both geographic information system and static map formats on NREL's website for both global horizontal irradiance and

5

Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies  

SciTech Connect

Utah is home to oil shale resources containing roughly 1.3 trillion barrels of oil equivalent and our nation’s richest oil sands resources. If economically feasible and environmentally responsible means of tapping these resources can be developed, these resources could provide a safe and stable domestic energy source for decades to come. In Utah, oil shale and oil sands resources underlay a patchwork of federal, state, private, and tribal lands that are subject to different regulatory schemes and conflicting management objectives. Evaluating the development potential of Utah’s oil shale and oil sands resources requires an understanding of jurisdictional issues and the challenges they present to deployment and efficient utilization of emerging technologies. The jurisdictional patchwork and divergent management requirements inhibit efficient, economic, and environmentally sustainable development. This report examines these barriers to resource development, methods of obtaining access to landlocked resources, and options for consolidating resource ownership. This report also examines recent legislative efforts to wrest control of western public lands from the federal government. If successful, these efforts could dramatically reshape resource control and access, though these efforts appear to fall far short of their stated goals. The unintended consequences of adversarial approaches to obtaining resource access may outweigh their benefits, hardening positions and increasing tensions to the detriment of overall coordination between resource managers. Federal land exchanges represent a more efficient and mutually beneficial means of consolidating management control and improving management efficiency. Independent of exchange proposals, resource managers must improve coordination, moving beyond mere consultation with neighboring landowners and sister agencies to coordinating actions with them.

Keiter, Robert; Ruple, John; Tanana, Heather; Kline, Michelle

2011-02-28T23:59:59.000Z

6

Federal Energy Management Program: Federal Technology Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Initiatives Solid State Lighting Working Group Distributed Energy ResourcesCombined Heat & Power Resources Renewable Energy Federal Technology Deployment Working Group Energy...

7

NREL: Technology Deployment - Integrated Deployment Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Deployment Model Integrated Deployment Model NREL's integrated deployment model provides a framework to focus on the national goal of accelerating market adoption of clean energy technologies through local efforts. With support from the U.S. Department of Energy (DOE), NREL developed and applies the integrated deployment model to select projects including disaster recovery, statewide activities, federal agency support, island activities, and community renewable energy deployment. How the Model Works To address the complex challenges of multi-technology, multi-stakeholder, and multi-fuel deployment, NREL created the integrated deployment model to support each technology area separately but also consider the integration points between the technologies. NREL also identifies the cross-cutting

8

Technology Deployment Matrix Improvements - Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory September 15, 2011 2 | Interagency Technology Deployment Working Group eere.energy.gov Technology Deployment Matrix Improvement Efforts 1. Develop criteria for...

9

Technology Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployment Deployment Technology Deployment October 8, 2013 - 2:43pm Addthis The Federal Energy Management Program's (FEMP) Technology Deployment program provides the Federal Government and commercial building sector with unbiased information and guidance about energy-efficient and renewable energy technologies available for deployment. Specifically, this program: Identifies technologies that have high potential energy savings and cost benefits and are ready for rapid deployment Develops and conducts deployment campaigns to raise awareness about energy technologies of the highest priority Educates Federal agencies and the commercial buildings sector about targeted energy-efficient technologies. Learn about: Technology Deployment List: Read about new and underutilized

10

Deployment of Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployment of Emerging Deployment of Emerging Technologies FUPWG November 1, 2006 Brad Gustafson Department of Energy Progress To Date: Federal Standard Buildings 80,000 85,000 90,000 95,000 100,000 105,000 110,000 115,000 120,000 125,000 130,000 135,000 140,000 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 FISCAL YEAR Btu per Gross Square Foot 10% Goal - 1995 (NECPA) 20% Goal - 2000 (EPACT 1992) 30% Goal - 2005 (EO 12902) 35% Goal - 2010 (EO 13123) 29.6% Reduction, 2005 (Preliminary Data) Actual Energy Use Annual Goals (EPACT 2005) Although the Federal Government narrowly missed the 2005 goal, it is on track to meet the 2010 goal * To identify promising emerging technologies and accelerate deployment in Federal sector - Meet the Federal Energy Goals - Lead by Example

11

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home and the situation is getting worse. Domestic oil production has been dropping steadily for over 20 years, and experts predict that by 2025, about 70% of our oil will be imported. The U.S. Department of Energy's (DOE's) Vehicle Technologies Office supports research and development (R&D) that will lead to new technologies that reduce our nation's dependence on imported oil, further decrease vehicle emissions, and serve as a bridge from today's conventional powertrains and fuels to tomorrow's hydrogen-powered hybrid fuel cell vehicles. The Vehicle Technologies Office also supports implementation programs that help to transition alternative fuels and vehicles into the marketplace, as well as collegiate educational activities to help encourage engineering and science students to pursue careers in the transportation sector. Following are some of the activities that complement the Vehicle Technologies Office's mission.

12

NREL: Technology Deployment - Deployment and Market Transformation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Search More Search Options Site Map Printable Version Deployment and Market Transformation Email Updates NREL's deployment and market transformation email updates...

13

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Deployment Centers Technology Deployment Centers CRF Many of Sandia's unique research centers are available for use by U.S. industry, universities, academia, other laboratories, state and local governments, and the scientific community in general. Technology deployment centers are a unique set of scientific research capabilities and resources. The primary function of technology deployment centers is to satisfy Department of Energy programmatic needs, while remaining accessible to outside users. Contact For more information about Sandia technology deployment centers or for help in selecting a center to meet your needs, contact Mary Monson at mamonso@sandia.gov, (505) 844-3289. Advanced Power Sources Laboratory Combustion Research Facility Design, Evaluation, and Test Technology Facility

14

Buildings Technologies Deployment | Clean energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment SHARE Building Technologies Deployment benchmarking commercial buildings Once building technologies emerge and become commercially available, only in...

15

Deploying Emerging Technologies in ESPC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deploying Emerging Technologies in Deploying Emerging Technologies in ESPC Charles Williams with Mike Holda and Anthony Radspieler Lawrence Berkeley National Laboratory For More Information * Would you like to know more about this presentation? * Charles Williams * Lawrence Berkeley National Laboratory * One Cyclotron Road, MS90R3111 Berkeley CA 94720 * CHWilliams@lbl.gov Deploying Emerging Technologies * Goals/Objective * Define emerging technologies * Examples of emerging technologies in ESPC projects - lessons learned * Describe actions taken to incorporate ET in ESPCs * Results to date * Feedback, suggestions Emerging Technologies in ESPCs Goal/Objective: -Tool to help reach Executive Order 13423, EPACT 2005 and EISA energy use reduction goals -Means to acquire energy savings otherwise not attainable, and build larger

16

Federal Energy Management Program: Technology Deployment Goals...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Deployment Goals and Initiatives to someone by E-mail Share Federal Energy Management Program: Technology Deployment Goals and Initiatives on Facebook Tweet about...

17

Federal Energy Management Program: Technology Deployment List  

NLE Websites -- All DOE Office Websites (Extended Search)

List to someone by E-mail List to someone by E-mail Share Federal Energy Management Program: Technology Deployment List on Facebook Tweet about Federal Energy Management Program: Technology Deployment List on Twitter Bookmark Federal Energy Management Program: Technology Deployment List on Google Bookmark Federal Energy Management Program: Technology Deployment List on Delicious Rank Federal Energy Management Program: Technology Deployment List on Digg Find More places to share Federal Energy Management Program: Technology Deployment List on AddThis.com... Energy-Efficient Products Technology Deployment Technology Deployment List Solid-State Lighting Working Group Renewable Energy Technology Deployment List Technology Ranking Criteria Technologies featured in the Technology Deployment List were ranked by:

18

Technology Deployment List | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployment » Technology Deployment List Deployment » Technology Deployment List Technology Deployment List October 8, 2013 - 2:44pm Addthis Technology Ranking Criteria Technologies featured in the Technology Deployment List were ranked by: Federal Impact: Combination of energy savings potential and applicability in the Federal market (50% weighting) Cost Effectiveness: Relative cost of the implementation and average expected return typically reported in case studies as simple payback period (30% weighting) Probability of Success: Combination of the qualitative characteristics scored separately and averaged to determine probability of success. Criteria include strength of supply chain, knowledge base, implementation difficulty, and customer acceptance (20% weighting). The Federal Energy Management Program's (FEMP) Technology Deployment List

19

Renewable Energy Technology Development, Deployment, and Education...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Powered Truck 68 Fork Lift Trucks Deployed in Industry Renewable Energy Technology Development, Deployment, and Education in South Carolina EDPSC-SRNL Install Advanced Offshore...

20

NREL: Technology Deployment - Clean Cities  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities Clean Cities NREL assists the U.S. Department of Energy's Clean Cities program in supporting local actions to reduce petroleum use in transportation by providing technical assistance, educational and outreach publications, and coordinator support. Clean Cities is a national network of nearly 100 coalitions that bring together stakeholders in the public and private sectors to deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, idle-reduction measures, and new transportation technologies as they emerge. Technical Assistance NREL engineers and researchers provide hands-on technical assistance to help Clean Cities coalitions, stakeholders, manufacturers, and fuel providers overcome obstacles to deploying alternative fuels and advanced

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

IEA Renewable Energy Technology Deployment | Open Energy Information  

Open Energy Info (EERE)

IEA Renewable Energy Technology Deployment IEA Renewable Energy Technology Deployment Jump to: navigation, search Name IEA Renewable Energy Technology Deployment Agency/Company /Organization International Energy Agency - Renewable Energy Technology Deployment Implementing Agreement Sector Energy Focus Area Renewable Energy Topics Policies/deployment programs Resource Type Publications Website http://www.iea-retd.org Country Canada, Norway, Denmark, Germany, Netherlands, France, United Kingdom, Ireland, Japan Northern America, Northern Europe, Northern Europe, Western Europe, Western Europe, Western Europe, Northern Europe, Northern Europe, Eastern Asia References RETD Homepage [1] This article is a stub. You can help OpenEI by expanding it. "RETD Implementing Agreement is one of the key outcomes from the

22

NREL: Technology Deployment - Solar Deployment and Market Transformation  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Deployment and Market Transformation Solar Deployment and Market Transformation NREL enables faster, easier, and less expensive solar installations by applying our expertise and knowledge to projects that addresses challenges, inefficiencies, and market barriers to solar technology deployment. Northeast Denver Housing Center Solarize Grassroots Movement Drives Down Solar Prices 30% in Portland, Oregon Solarize Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Our technical experts work with policymakers, program administrators, regulators, utilities, transmission organizations, technology developers, financial organizations, and insurance companies to help break down barriers to solar technology deployment by: Developing and delivering policy and market design trainings

23

Buildings Technologies Deployment | Clean energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Deployment Building Technologies Deployment SHARE Building Technologies Deployment benchmarking commercial buildings Once building technologies emerge and become commercially available, only in exceptional cases does robust market uptake automatically follow. Additional efforts remain to ensure that emerging and under-utilized technologies are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full use in residential, commercial, and industrial sectors through applications research, technical assistance, and a variety of deployment strategies. The team's comprehensive knowledge of buildings and energy use spans multi-building sites, whole-buildings, systems, components, and multi-level

24

NREL: Technology Deployment Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Decathlon 2013 Heading to California Solar Decathlon 2013 Heading to California U.S. Coast Guard Saves Energy, Money Training Results in Decreased Energy Use and Costs for Sector Guam Standard Work Specifications Tool Now Available Standard Work Specifications Tool Now Available Weatherization industry can save specifications online and streamline work NREL Federal Fueling Station Data Supports Sandy Recovery NREL Federal Fueling Station Data Supports Sandy Recovery Decision Makers Able to Coordinate Access to Fuel NREL works with federal, state, and local government and private industry and organizations to deploy commercially available energy efficiency and renewable energy technologies. Our experts help prepare the market for emerging technologies by removing barriers to adoption. Use our technology

25

Outdoor Solid-State Lighting Technology Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies » Technology Deployment » Outdoor Solid-State Technologies » Technology Deployment » Outdoor Solid-State Lighting Technology Deployment Outdoor Solid-State Lighting Technology Deployment October 7, 2013 - 9:10am Addthis Outdoor solid-state lighting (SSL) technology has the potential to reduce U.S. lighting energy usage by nearly one half and contribute significantly to our nation's climate change solutions. The U.S. Department of Energy's (DOE) Buildings Technologies Office offers a wealth of information on its Solid-State Lighting website. Visit the site to find: SSL Basics Studies and Reports CALiPER Summary Reports Tools SSL Webcasts. Also see: FEMP Outdoor SSL Initiative: Resources for Outdoor SSL Applications outlines resources available for outdoor solid-state lighting projects. Better Buildings Alliance: This DOE initiative is driven and managed

26

Regional Effort to Deploy Clean Coal Technologies -- Addressing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Resources Regional effoRt to Deploy Clean Coal teChnologies Addressing the Water-Energy Interface Background Recent water shortages in various parts of the United States have...

27

Technology Deployment List | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Technology Deployment List Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Deployment List Agency/Company /Organization: Federal Energy Management Program Sector: Energy Focus Area: Renewable Energy Phase: Create a Vision Topics: Implementation User Interface: Website Website: www1.eere.energy.gov/femp/technologies/newtechnologies_matrix.html#cat OpenEI Keyword(s): EERE tool, Technology Deployment List Language: English References: Technology Deployment List[1] Identify emerging-and underused-energy-saving technologies, including building envelope; heating, ventilation, and air conditioning; lighting; water heating; and refrigeration, computer power management, and vending

28

Technology Deployment Annual Report 2009  

SciTech Connect

Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties.

Keith Arterburn

2009-12-01T23:59:59.000Z

29

NREL: Technology Deployment - Climate Action Planning Tool -...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Deployment - Climate Action Planning Tool Step 1 of 4 Step 1: Gather Baseline Energy Consumption Data Download the sample data sheet below, gather your numbers, and...

30

Federal Energy Management Program: Technology Deployment List  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment List Deployment List Technology Ranking Criteria Technologies featured in the Technology Deployment List were ranked by: Federal Impact: Combination of energy savings potential and applicability in the Federal market (50% weighting) Cost Effectiveness: Relative cost of the implementation and average expected return typically reported in case studies as simple payback period (30% weighting) Probability of Success: Combination of the qualitative characteristics scored separately and averaged to determine probability of success. Criteria include strength of supply chain, knowledge base, implementation difficulty, and customer acceptance (20% weighting). The Federal Energy Management Program's (FEMP) Technology Deployment List features information about promising new and underutilized energy-saving technologies available for Federal and commercial building sector deployment. Common considerations and barriers are also outlined.

31

Technology Deployment Annual Report 2010  

SciTech Connect

This report is a catalog of selected INL technology transfer and commercialization transactions during FY-2010.

Keith Arterburn

2010-12-01T23:59:59.000Z

32

NREL: Technology Deployment - Wind Energy Deployment and Market...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Deployment and Market Transformation NREL experts have a broad range of wind energy deployment and market transformation capabilities spanning more than 20 years of...

33

Technology Development, Growth, and Deployment | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Development, Technology Development, Growth, and Deployment Technology Development, Growth, and Deployment A look at our resources: This map shows the location of our National Laboratories with links to their Technology Transfer programs; the locations of our i6 Green Challenge grant recipients; and the nation's Minority Serving Institutions. Our office works to engage the research and innovation at Minority Serving Institutions with the resources of our National Labs. Early stage energy technologies face a number of challenges in transitioning for basic research to market solutions. The Energy Department has created specific initiatives in order to address the commercialization challenges that energy efficient and renewable energy technologies must face. These initiatives are developed to launch emerging

34

Report on Synchrophasor Technologies and Their Deployment in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects...

35

Guidance for Deployment of Mobile Technologies for Nuclear Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This...

36

Synchrophasor Technologies and their Deployment in the Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid...

37

Federal Energy Management Program: Federal Technology Deployment Working  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Deployment Working Group Technology Deployment Working Group Energy Department Announces Interagency Committee to Increase Use of Clean Energy Technologies in Federal Facilities The Senior Executive Committee for Technology Deployment, a subcommittee of the Interagency Technology Deployment Working Group, brings together leaders of technology deployment programs from across the federal government to implement the Obama Administration's comprehensive strategy to reduce energy costs in agency facilities, while boosting American competitiveness in the global clean energy race. Learn more. Technology Briefs Boiler Combustion Control and Monitoring System Doing Time under the Sun Wireless Sensor Networks for Data Centers The Federal Technology Deployment Working Group helps Federal agencies evaluate and deploy new and underutilized technologies.

38

Integrated assessment of dispersed energy resources deployment  

SciTech Connect

The goal of this work is to create an integrated framework for forecasting the adoption of distributed energy resources (DER), both by electricity customers and by the various institutions within the industry itself, and for evaluating the effect of this adoption on the power system, particularly on the overall reliability and quality of electrical service to the end user. This effort and follow on contributions are intended to anticipate and explore possible patterns of DER deployment, thereby guiding technical work on microgrids towards the key technical problems. An early example of this process addressed is the question of possible DER adopting customer disconnection. A deployment scenario in which many customers disconnect from their distribution company (disco) entirely leads to a quite different set of technical problems than a scenario in which customers self generate a significant share or all of their on-site electricity requirements and additionally buy and sell energy and ancillary services (AS) locally and/or into wider markets. The exploratory work in this study suggests that the economics under which customers disconnect entirely are unlikely.

Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

2000-06-01T23:59:59.000Z

39

NREL: Technology Deployment - Microgrid Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Microgrid Design Microgrid Design Photo of a microgrid test site at the National Wind Technology Center. NREL designs independent electrical generation and distribution systems called microgrids, which deliver energy that is reliable, economical, and sustainable. NREL experts work with military, government, industry, and other organizations that cannot afford to lose power to develop reliable and cost-effective microgrid systems. Expertise and Knowledge NREL offers microgrid technical expertise and project support that includes engineering, energy analysis and modeling, financial analysis, and energy management. Our comprehensive and innovative approach to microgrid design is called Continuously Optimized Reliable Energy (CORE) Microgrids. The CORE microgrid approach includes advantages such as:

40

NREL: Technology Deployment - Alternative Fuels Data Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuels Data Center Alternative Fuels Data Center NREL developed and manages the Alternative Fuels Data Center (AFDC), the U.S. Department of Energy's comprehensive clearinghouse of information and data related to the deployment of alternative fuels, advanced vehicles, and energy efficiency in transportation for fleets, fuel providers, policymakers, and other stakeholders working to reduce petroleum use in transportation. Interactive Transportation Deployment Tools NREL's large suite of free online tools assist fleets and drivers in selecting and deploying the technologies and strategies that will best help them meet their environmental and energy goals. Fleets and drivers can use calculators, interactive maps, and data searches to evaluate, select, and deploy alternative fuels and advanced vehicles as

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Commercial Deployment Drivers for Biomass Gasification Technologies  

Science Conference Proceedings (OSTI)

Biomass gasification-based power and combined heat and power (CHP) technologies have still not met their full potential despite several decades of research, development, and deployment. This report examines the technical, economic, and policy problems that have hindered the development of these technologies and describes a detailed parametric study of key economic and environmental performance variables for various biomass technologies in order to identify which factors are most important in planning new...

2009-07-08T23:59:59.000Z

42

NREL: Technology Deployment - Solar Decathlon  

NLE Websites -- All DOE Office Websites (Extended Search)

Decathlon Decathlon Photo of a woman assembling the Team Alberta solar-powered house at the Solar Decathlon, with the U.S. Capitol Building in the background. Solar Decathlon is an international competition that challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. NREL has provided technical expertise for this U.S. Department of Energy (DOE) event since its conception in 1999. Considered one of DOE's most successful efforts, the Solar Decathlon helps remove multiple barriers to the adoption of solar energy technologies by: Educating students and the public about the money-saving opportunities and environmental benefits presented by clean-energy products and design solutions Demonstrating to the public the comfort and affordability of homes

43

Federal Technology Deployment Working Group | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies » Technology Deployment » Federal Technology Technologies » Technology Deployment » Federal Technology Deployment Working Group Federal Technology Deployment Working Group October 7, 2013 - 9:11am Addthis Energy Department Announces Interagency Committee to Increase Use of Clean Energy Technologies in Federal Facilities The Senior Executive Committee for Technology Deployment, a subcommittee of the Interagency Technology Deployment Working Group, brings together leaders of technology deployment programs from across the federal government to implement the Obama Administration's comprehensive strategy to reduce energy costs in agency facilities, while boosting American competitiveness in the global clean energy race. Learn more. The Federal Technology Deployment Working Group helps Federal agencies evaluate and deploy new and underutilized technologies.

44

NREL: Technology Deployment - State and Local Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Search More Search Options Site Map NREL helps states and local communities throughout the United States achieve their clean energy goals by supporting renewable energy and energy-saving projects through a variety of technical assistance and technology deployment programs. Analyze Energy Policy Impacts Analyze Energy Policy Impacts Find data to help your state, locality, or region establish beneficial clean energy policies. Learn more. Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player. Technical Assistance Webcast Experts present information on state and local energy projects, financing, policy and more... Renewable Energy Data Book NREL's Cean Energy Policy Analyses Project State of the States 2010 The role of policy in clean energy market transformation

45

Integrated assessment of dispersed energy resources deployment  

E-Print Network (OSTI)

54 Table 5: Summary of Net MeteringDER Deployment Table 5: Summary of Net Metering Laws Summaryof State Net Metering Programs ( Current) Limit Limit on

Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

2000-01-01T23:59:59.000Z

46

Deployment Effects of Marin Renewable Energy Technologies  

DOE Green Energy (OSTI)

This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nom

Brian Polagye; Mirko Previsic

2010-06-17T23:59:59.000Z

47

Regional Effort to Deploy Clean Coal Technologies  

SciTech Connect

The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

2009-01-31T23:59:59.000Z

48

Deployment Effects of Marin Renewable Energy Technologies  

Science Conference Proceedings (OSTI)

Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nom

Brian Polagye; Mirko Previsic

2010-06-17T23:59:59.000Z

49

PNNL Technology Planning and Deployment Group | Open Energy Information  

Open Energy Info (EERE)

Planning and Deployment Group Planning and Deployment Group (Redirected from Technology Planning and Deployment) Jump to: navigation, search Logo: Technology Planning and Deployment Name Technology Planning and Deployment Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://tpd.pnl.gov/ References Technology Planning and Development [1] "The Technology Planning & Deployment (TP&D) group is part of the Pacific Northwest National Laboratory's (PNNL's) Energy and Environment Directorate. TP&D staff provide customers with a unique combination of experience and expertise with capabilities in economics and regulatory analysis, systems engineering, marketing, technology adaptation and application, policy analysis, and project management."[1]

50

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Sciences Experimental Facilities (ESEF) Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Ion Beam Laboratory Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test Technology Facility Research Engineering Sciences Experimental Facilities (ESEF) The ESEF complex contains several independent laboratories for experiments and advanced diagnostics in the fields of thermodynamics, heat transfer,

51

NREL: Technology Deployment - Building Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Systems Building Energy Systems NREL experts develop comprehensive energy assessments, models, and tools to optimize building systems across energy efficiency and renewable energy while also improving occupant comfort, safety, and productivity. Northeast Denver Housing Center Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Boulder County Housing Authority Boulder County Housing Authority NREL Recommendations Lead to 153 Net Zero Energy Residences Expertise and Knowledge NREL offers technical assistance and project development support by working closely with industry partners to research, develop, and deploy advanced building technologies. Examples include: Building Energy Audits and Assessments NREL provides technical assistance, guidelines, checklists, and data

52

Building Technologies Office: Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

53

PNNL Technology Planning and Deployment Group | Open Energy Information  

Open Energy Info (EERE)

Deployment Group Deployment Group Jump to: navigation, search Logo: Technology Planning and Deployment Name Technology Planning and Deployment Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://tpd.pnl.gov/ References Technology Planning and Development [1] "The Technology Planning & Deployment (TP&D) group is part of the Pacific Northwest National Laboratory's (PNNL's) Energy and Environment Directorate. TP&D staff provide customers with a unique combination of experience and expertise with capabilities in economics and regulatory analysis, systems engineering, marketing, technology adaptation and application, policy analysis, and project management."[1] Primary Services Building and facilities energy utilization assessments, audits,

54

NREL: Technology Deployment - Project Success Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Success Stories Project Success Stories NREL's technology deployment best practices, project support, and technical assistance, and technology acceleration activities are resulting in successful renewable energy and energy efficiency implementation in numerous locations. View success stories highlighting NREL's work with: Cities and Communities Greensburg, Kansas Greensburg: Photo of wind turbines in a green field. An International Inspiration for Green Disaster Recovery For 3 years after a devastating tornado struck Greensburg, Kansas, NREL technical experts helped the town rebuild as a model green community completely powered by a 12.5 megawatt wind farm and surrounded by the highest per-capita concentration of LEED-certified buildings in the United States-13 of which are saving $200,000 annually. Learn more.

55

Vehicle Technologies Office: The eGallon Tool Advances Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

The eGallon Tool Advances Deployment of Electric Vehicles to someone by E-mail Share Vehicle Technologies Office: The eGallon Tool Advances Deployment of Electric Vehicles on...

56

NREL: Technology Deployment - Solar Technical Assistance Team  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Assistance Team Technical Assistance Team Strategic Sequencing for State Distributed PV Policies: A Quantitative Analysis of Policy Impacts and Interactions Recent NREL analysis of state policies revealed that the sequence of policy implementation can accelerate solar photovoltaic (PV) markets-and that policy change doesn't have to be costly. Download the full report or summary to learn more, or view the webinar. The Solar Technical Assistance Team (STAT) gathers NREL solar technology and deployment experts to provide information on solar policies, regulations, financing, and other issues for state and local government decision makers. The team provides a variety of technical assistance, including: Quick Response. For state and local governments that require a fast turnaround in response to a time-sensitive question or expert testimony on

57

Los Alamos National Laboratory Tritium Technology Deployments Large Scale Demonstration and Deployment Project  

Science Conference Proceedings (OSTI)

This paper describes the organization, planning and initial implementation of a DOE OST program to deploy proven, cost effective technologies into D&D programs throughout the complex. The primary intent is to accelerate closure of the projects thereby saving considerable funds and at the same time being protective of worker health and the environment. Most of the technologies in the ''toolkit'' for this program have been demonstrated at a DOE site as part of a Large Scale Demonstration and Deployment Project (LSDDP). The Mound Tritium D&D LSDDP served as the base program for the technologies being deployed in this project but other LSDDP demonstrated technologies or ready-for-use commercial technologies will also be considered. The project team will evaluate needs provided by site D&D project managers, match technologies against those needs and rank deployments using a criteria listing. After selecting deployments the project will purchase the equipment and provide a deployment engineer to facilitate the technology implementation. Other cost associated with the use of the technology will be borne by the site including operating staff, safety and health reviews etc. A cost and performance report will be prepared following the deployment to document the results.

McFee, J.; Blauvelt, D.; Stallings, E.; Willms, S.

2002-02-26T23:59:59.000Z

58

NREL: Technology Deployment - Biopower and Waste-to-Energy Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities, and Options for Advancing Bioenergy Waste-to-Energy Evaluation: U.S. Virgin Islands See all our publications Printable Version Technology Deployment Home...

59

Federal Energy Management Program: Photovoltaic Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaic Photovoltaic Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Photovoltaic Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Photovoltaic Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Photovoltaic Resources and Technologies on Google Bookmark Federal Energy Management Program: Photovoltaic Resources and Technologies on Delicious Rank Federal Energy Management Program: Photovoltaic Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Photovoltaic Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

60

Federal Energy Management Program: Wind Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Wind Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Wind Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Wind Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Wind Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Wind Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Federal Energy Management Program: Landfill Gas Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Landfill Gas Landfill Gas Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Landfill Gas Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Landfill Gas Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Google Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Delicious Rank Federal Energy Management Program: Landfill Gas Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Landfill Gas Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

62

Federal Energy Management Program: Geothermal Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Geothermal Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Geothermal Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Geothermal Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Google Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Delicious Rank Federal Energy Management Program: Geothermal Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Geothermal Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar Wind

63

Federal Energy Management Program: Solar Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Solar Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

64

Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)  

Science Conference Proceedings (OSTI)

The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

Not Available

2010-01-01T23:59:59.000Z

65

Report on Synchrophasor Technologies and Their Deployment in Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on Synchrophasor Technologies and Their Deployment in on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available August 15, 2013 - 10:48am Addthis The Office of Electricity Delivery and Energy Reliability has released a new report that explains synchrophasor technologies and how they can be used to improve the efficiency, reliability, and resiliency of grid operations. The report also includes an analysis of the costs and benefits of synchrophasors, based on data and initial results from Recovery Act-funded projects that are deploying the technologies. The report is available now for downloading. Addthis Related Articles Reports on the Impact of the Smart Grid Investment Grant Program Now

66

Synchrophasor Technologies and their Deployment in the Recovery Act Smart  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Synchrophasor Technologies and their Deployment in the Recovery Act Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) The American Recovery and Reinvestment Act of 2009 provided $4.5 billion for the Smart Grid Investment Grant (SGIG), Smart Grid Demonstration Program (SGDP), and other DOE smart grid programs. These programs provided grants to the electric utility industry to deploy smart grid technologies to modernize the nation's electric grid. As a part of these programs, independent system operators, regional transmission organizations, and electric utilities installed synchrophasor and supporting technologies and systems in their electric power transmission systems.

67

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance for Deployment of Mobile Technologies for Nuclear Power Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making,

68

Report on Synchrophasor Technologies and Their Deployment in Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report on Synchrophasor Technologies and Their Deployment in Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available August 15, 2013 - 10:48am Addthis The Office of Electricity Delivery and Energy Reliability has released a new report that explains synchrophasor technologies and how they can be used to improve the efficiency, reliability, and resiliency of grid operations. The report also includes an analysis of the costs and benefits of synchrophasors, based on data and initial results from Recovery Act-funded projects that are deploying the technologies. The report is available now for downloading. Addthis Related Articles Reports on the Impact of the Smart Grid Investment Grant Program Now

69

Federal Technology Deployment Pilot: Exterior Solid State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Technology Deployment Federal Technology Deployment Pilot: Exterior Solid State Lighting Jeff McCullough, LC October 24, 2011 Pacific Northwest National Laboratory Richland, Washington 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * Overview of DOE's Solid-State Lighting Program * Federal Technology Deployment Pilot: Exterior Solid State Lighting * FEMP Technology Deployment Matrix This Morning's Topics 3 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov Energy Savings Potential of Solid-State Lighting SSL Multi-Year Program Plan, May 2011: http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_mypp2011_web.pdf 4 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov A Market in Motion * Tsunami of new products coming to market * Significant learning curve for

70

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the Combined Heat & Power Technology Overview and Federal Sector Deployment from Oakridge National Laboratory. The presentation is from the FUPWG Spring Meeting, held on May 22, 2013 in San Francisco, California.

71

Technology Development, Growth, and Deployment | Department of...  

NLE Websites -- All DOE Office Websites (Extended Search)

and prosperous U.S. economy. To accelerate high-growth entrepreneurship and job-creation by moving energy efficient and renewable energy technologies from university...

72

NREL: Technology Deployment - Technical Assistance for States  

NLE Websites -- All DOE Office Websites (Extended Search)

States NREL technical assistance helps states identify ways to reduce fossil fuel use and implement clean energy technology solutions, which can serve as a model for other...

73

NREL: Technology Deployment - Project Development Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Development Model Project Development Model NREL developed the Project Development Model to evaluate the risks and investment decisions required for successful renewable energy project development. The two-phase iterative model includes elements in project fundamentals and project development based off commercial project development practices supported by tools such as pro formas and checklists. Project Fundamentals or BEPTC(tm) Renewable Energy Project Development Tool For help with the BEPTC phase of your project, check out the Renewable Energy Project Development Tool, developed by NREL for U.S. Department of Energy's Community Renewable Energy Deployment effort. The tool helps you quickly establish the key motivators and feasibility of your project. Strong project fundamentals and an understanding of how a project fits

74

NREL: Technology Deployment - Climate Action Planning Tool -...  

NLE Websites -- All DOE Office Websites (Extended Search)

and technology options. Contact Us Complete the form below if you need help with the beta version of the tool. * Required field First name: Last name: Organization: *E-mail...

75

Federal Energy Management Program: Technology Deployment Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting PDF Lawrence Berkeley National Laboratory (LBNL): Lighting Controls FEMP: Hybrid Solar Lighting Illuminates Energy Savings for Government Facilities PDF Building...

76

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Beam Laboratory Ion Beam Laboratory Sandia's Ion Beam Analysis (IBA) program is recognized as one of the best in the world. It has the ability to examine a wide spectrum of materials, from semiconductors to metals and ceramics. Some of the accomplishments of the program include: Invented several new ion beam analysis techniques for the quantitative analysis of light elements (H through F), and heavy elements (C through Pu). Enhanced nuclear microprobe-based Single Event Upset (SEU) imaging system to supply submicron images of charge generation and collection in CMOS ICs. This new application of SEU-imaging is important for understanding and decreasing upset susceptibility. Capabilities and Resources The IBA is available to perform the following quantitative/standardless

77

NREL: Technology Deployment - Technical Assistance for Tribes  

NLE Websites -- All DOE Office Websites (Extended Search)

Tribes Tribes NREL provides technical assistance to help tribes build capacity to implement energy efficiency and renewable energy technology projects. We work with tribal communities across the continental United States and Alaska through two U.S. Department of Energy (DOE) programs: the Office of Energy Efficiency and Renewable Energy (EERE) Tribal Energy Program and the Office of Indian Energy Policy and Programs. Village of Venetie Village of Venetie NREL Technical Assistance Leads to Lower Electric Bills for Alaskans Forest County Potawatomi Tribe Renewable Energy Projects Help Tribe Reduce Carbon Footprint Technical Assistance and Capacity Building NREL technical assistance and capacity building on U.S. tribal lands includes: Providing unbiased technical expertise and analysis on potential

78

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

DOE Green Energy (OSTI)

(3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

79

Deployment of Demand Response as a Real-Time Resource in Organized Markets  

Open Energy Info (EERE)

Deployment of Demand Response as a Real-Time Resource in Organized Markets Deployment of Demand Response as a Real-Time Resource in Organized Markets Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Deployment of Demand Response as a Real-Time Resource in Organized Markets Focus Area: Crosscutting Topics: Potentials & Scenarios Website: www.sciencedirect.com/science/article/pii/S1040619008000973 Equivalent URI: cleanenergysolutions.org/content/deployment-demand-response-real-time- Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: Resource Integration Planning This article examines the use of demand response as a dispatchable resource

80

NREL: Geothermal Technologies - Data and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Data and...

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

SciTech Connect

Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

82

Summary of New Generation Technologies and Resources  

Science Conference Proceedings (OSTI)

This compendium includes a PG&E R&D program perspective on the Advanced Energy Systems Technology Information Module (TIM) project, a glossary, a summary of each TIM, updated information on the status and trends of each technology, and a bibliography. The objectives of the TIMs are to enhance and document the PG&E R&D Program's understanding of the technology status, resource potential, deployment hurdles, commercial timing, PG&E applications and impacts, and R&D issues of advanced technologies for electric utility applications in Northern California. [DJE-2005

None

1993-01-08T23:59:59.000Z

83

Scaling up: global technology deployment to stabilize emissions  

SciTech Connect

Climate change is becoming a defining fact of economic development. Three areas need to coalesce into a coherent vision in order to achieve adequate levels of emissions reductions: The technologies involved, including the physical and capacity-related constraints to deploying them; The investment required: who will provide it, the mechanisms they will use, and its cost; The policies that will offer the most effective incentives to providers of both technology and capital to implement lower-emission solutions. A paper by two Princeton researchers Pacala and Socolow provided a mental framework to discuss these solutions by breaking the required emission reductions down into manageable (though still large) 'wedges,' each provided by a different technology or set of technologies. Owing to its solution-oriented framework, the wedges approach has captured the imagination of those eager to tackle climate change. These include among the 15 options: replacing coal baseload power plants with gas plants, capturing CO{sub 2} at coal and gas power plants, capturing CO{sub 2} at coal-to-synfuels plant and increasing use of renewables. This paper presents an overview, using the wedges framework, on how technology, investment and policy interact. It is intended to engage actors in the policy and investment communities as the key enables of clean technology deployment worldwide. 30 refs., 5 figs., 2 tabs.

Fred Wellington; Rob Bradley; Britt Childs; Clay Rigdon; Jonathan Pershing

2007-04-13T23:59:59.000Z

84

Strategies for the Commercialization & Deployment of GHG Intensity-Reducing Technologies & Practices  

Energy.gov (U.S. Department of Energy (DOE))

This report looks at the best methods of commercializing and deploying energy technologies that reduce greenhouse gas intensity.

85

Technology Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Resources Technology Resources Technology Resources October 16, 2013 - 5:17pm Addthis Image of the Whole Building Design Guide logo. The Whole Building Design Guide is a program of the National Institute of Building Sciences The following resource pages are part of the Whole Building Design Guide. These pages are updated on an ongoing basis. To provide detailed information on renewable energy technology options, FEMP partnered with the Whole Building Design Guide to provide technology resource pages. Each of these technology-specific pages provides detailed information on system design and types, best uses, resource assessments, economics, operations and maintenance, and other key considerations. The pages describe the technologies in a context specific to Federal sector

86

Pacific Northwest Laboratory environmental technologies available for deployment  

SciTech Connect

The Department of Energy created the Office of Environmental Management (EM) to conduct a 30-year plus, multi-billion dollar program to manage the wastes and cleanup the legacy from over fifty years of nuclear material production. Across the DOE System there are thousands of sites containing millions of metric tons of buried wastes and contaminated soils and groundwater. Additionally, there are nearly 400,000 m{sup 3} of highly radioactive wastes in underground storage tanks, over 1,400 different mixed-waste streams, and thousands of contaminated surplus facilities, some exceeding 200,000 m{sup 2} in size. Costs to remediate all these problems have been estimated to be as much as several hundred billion dollars. The tremendous technical challenges with some of the problems and the high costs of using existing technologies has led the Department to create the Office of Technology Development (TD) to lead an aggressive, integrated national program to develop and deploy the needed advanced, cost-effective technologies. This program is developing technologies for all major cleanup steps: assessment, characterization, retrieval, treatment, final stabilization, and disposal. Work is focused on the Department`s five major problem areas: High-Level Waste Tank Remediation; Contaminant Plume Containment and Remediation; Mixed Waste Characterization, Treatment, and Disposal; Contaminated Soils and Buried Wastes Facility Transitioning, Decommissioning, and Final Disposal.

Slate, S.C.

1994-07-01T23:59:59.000Z

87

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview and Overview and Federal Sector Deployment Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company Bob Slattery Oak Ridge National Laboratory CHP is an integrated energy system that:  is located at or near a facility  generates electrical and/or mechanical power  recovers waste heat for ◦ heating ◦ cooling ◦ dehumidification  can utilize a variety of technologies and fuels  is also referred to as cogeneration The on-site simultaneous generation of two forms of energy (heat and electricity) from a single fuel/energy source Defining Combined Heat and Power (CHP) Steam Electricity Fuel Prime Mover & Generator Heat Recovery Steam Boiler Conventional CHP

88

Separations technologies supporting the development of a deployable ATW system  

Science Conference Proceedings (OSTI)

A program has been initiated for the purpose of developing the chemical separations technologies necessary to support a large Accelerator Transmutation of Waste (ATW) system capable of dealing with the projected inventory of spent fuel from the commercial nuclear power stations in the United States. The first several years of the program will be directed toward an elucidation of related technical issues and to the establishment, by means of comprehensive trade studies, of an optimum configuration of the elements of the chemical processing infrastructure required for support of the total ATW system. By adopting this sort of disciplined systems engineering approach, it is expected that development and demonstration costs can be minimized and that it will be possible to deploy an ATW system that is an environmentally sound and economically viable venture.

Laidler, J. J.

2000-01-07T23:59:59.000Z

89

Immediate Deployment of Waste Energy Recovery Technologies at Multi Sites  

SciTech Connect

Verso Paper Corp. implemented a portfolio of 13 commercially available proven industrial technologies each exceeding 30% minimum threshold efficiency and at least 25% efficiency increase. These sub-projects are a direct result of a grant received from the Department of Energy (DOE) through its FOA 0000044 (Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment), which was funded by the American Recovery Act. These were installed at 3 sites in 2 states and are helping to reduce Verso costs, making the facilities more competitive. This created approximately 100 construction jobs (FTE's) and reduced impacted Verso facilities' expense budgets. These sub-projects were deployed at Verso paper mills located in Jay, Maine, Bucksport, Maine, and Sartell, Minnesota. The paper mills are the economic engines of the rural communities in which these mills are located. Reinvestment in waste energy recovery capital improvements is providing a stimulus to help maintain domestic jobs and to competitively position the US pulp and paper industry with rising energy costs. Energy efficiency improvements are also providing a positive environmental impact by reducing greenhouse gas emissions, the quantity of wastewater treated and discharged, and fossil fuel demand. As a result of these projects, when fully operating, Verso realized a total of approximately 1.5 TBtu/Year reduction in overall energy consumption, which is 119% of the project objectives. Note that three paper machines have since been permanently curtailed. However even with these shutdowns, the company still met its energy objectives. Note also that the Sartell mill's paper machine is down due to a recent fire which damaged the mill's electrical infrastructure (the company has not decided on the mill's future).

Dennis Castonguay

2012-06-29T23:59:59.000Z

90

Vehicle Technologies Office: The eGallon Tool Advances Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

eGallon Tool Advances Deployment of Electric Vehicles The Department of Energy recently launched the eGallon to help consumers compare the cost of fueling electric vehicles (EVs)...

91

Regulatory Instruments for Deployment of Clean Energy Technologies  

E-Print Network (OSTI)

Answering to the formidable challenge of climate change calls for a quick transition to a future economy with a drastic reduction in GHG emissions. And this in turn requires the development and massive deployment of new ...

Pérez-Arriaga, Ignacio J.

92

Solar Ventilation Preheating Resources and Technologies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Preheating Resources and Technologies Solar Ventilation Preheating Resources and Technologies October 7, 2013 - 11:50am Addthis Photo of a dark brown perforated metal...

93

Wind Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Resources and Technologies Wind Energy Resources and Technologies Wind Energy Resources and Technologies October 7, 2013 - 9:23am Addthis Photo of two wind turbines standing on a mountain in front of a cloudy blue sky. The Department of Energy tests wind turbine technologies and deployment applications at the National Wind Technology Center. This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector. Overview Federal agencies can harvest wind energy to generate electricity or mechanical power (e.g., windmills for water pumping). To generate electricity, wind rotates large blades on a turbine, which spin an internal shaft connected to a generator. The generator produces electricity, the

94

Wind Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Resources and Technologies Wind Energy Resources and Technologies Wind Energy Resources and Technologies October 7, 2013 - 9:23am Addthis Photo of two wind turbines standing on a mountain in front of a cloudy blue sky. The Department of Energy tests wind turbine technologies and deployment applications at the National Wind Technology Center. This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector. Overview Federal agencies can harvest wind energy to generate electricity or mechanical power (e.g., windmills for water pumping). To generate electricity, wind rotates large blades on a turbine, which spin an internal shaft connected to a generator. The generator produces electricity, the

95

Unconventional Resources Technology Advisory Committee | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unconventional Resources Unconventional Resources Technology Advisory Committee Unconventional Resources Technology Advisory Committee The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. Mission The Secretary of Energy, in response to provisions of Subtitle J, Sec. 999 of the Energy Policy Act of 2005, must carry out a program of research, development, demonstration, and commercial application of technologies for ultra-deepwater and onshore unconventional natural gas and other petroleum resource exploration and production, as well as addressing the technology

96

Assessment of Distributed Resource Technologies  

Science Conference Proceedings (OSTI)

This report assesses the current status and prospects for future improvements of distributed resource (DR) technologies: microturbines, PEM fuel cells, solid oxide fuel cells, molten carbonate fuel cells, phosphoric acid fuel cells, reciprocating engines, combustion turbines, stirling engines, and energy storage devices. It also assesses the communications, interconnection, and control systems used by these devices.

1999-12-14T23:59:59.000Z

97

Discussion Paper Prepared for: Deploying Demand Side Energy Technologies workshop  

E-Print Network (OSTI)

The IEA study Energy Technology Perspectives 2006 (ETP 2006) demonstrates how energy technologies can contribute to a stabilization of CO2 emissions at today’s level by 2050. The results of the scenario analysis showed that no fundamental technology breakthroughs are needed. Technologies that are available today or that are under development today will

Cecilia Tam; Dolf Gielen

2007-01-01T23:59:59.000Z

98

Federal Technology Deployment Pilot: Exterior Solid State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Sector needs, and provide guidance on tools and materials to support those needs. LED RoadStar luminaire with Dynadimmer dimming technology NGL Recognized Winner 2010...

99

The Accelerated Site Technology Deployment Program/Segmented Gate System Project  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is working to accelerate the acceptance and application of innovative technologies that improve the way the nation manages its environmental remediation problems. The DOE Office of Science and Technology established the Accelerated Site Technology Deployment Program (ASTD) to help accelerate the acceptance and implementation of new and innovative soil and ground water remediation technologies. Coordinated by the Department of Energy's Idaho Office, the ASTD Program reduces many of the classic barriers to the deployment of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. Funding is provided through the ASTD Program to assist participating site managers in implementing innovative technologies. The program provides technical assistance to the participating DOE sites by coordinating DOE, industry, and regulatory participation in each project; providing finds for optimizing full-scale operating parameters; coordinating technology performance monitoring; and by developing cost and performance reports on the technology applications.

PATTESON,RAYMOND

2000-09-18T23:59:59.000Z

100

Property:Technology Resource | Open Energy Information  

Open Energy Info (EERE)

Resource Resource Jump to: navigation, search Property Name Technology Resource Property Type Text Pages using the property "Technology Resource" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Anaconda bulge tube drives turbine + Wave MHK Technologies/AquaBuoy + Wave MHK Technologies/Aquanator + Current/Tidal MHK Technologies/Aquantis + Current MHK Technologies/Archimedes Wave Swing + Wave MHK Technologies/Atlantis AN 150 + Current/Tidal MHK Technologies/Atlantis AR 1000 + Current/Tidal MHK Technologies/Atlantis AS 400 + Current/Tidal MHK Technologies/Atlantisstrom + Current MHK Technologies/Benkatina Turbine + Current MHK Technologies/Blue Motion Energy marine turbine + Current MHK Technologies/Bluetec + Current MHK Technologies/Brandl Generator + Wave

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Clean Energy Manufacturing Resources - Technology Maturation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Comply With Regulations and Standards DOE Building Technologies Office: Appliance and Equipment Standards - minimum energy conservation standards for more than 50 categories of appliances and equipment. Implementation, Certification and Enforcement - explains DOE

102

Clean Energy Manufacturing Resources - Technology Feasibility | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feasibility Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Learn About U.S. Department of Energy Priorities Advanced Manufacturing Office Plans - features information on analysis, plan implementations, and commercial outcomes. Bioenergy Technologies Office Plans - includes technology roadmaps, multiyear program plans, analysis, and more.

103

NREL: Technology Deployment - Standard Work Specifications for Home Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Standard Work Specifications for Home Energy Upgrades Standard Work Specifications for Home Energy Upgrades Online Tool Explore the Standard Work Specifications Online Tool now. The Standard Work Specifications (SWS) for Home Energy Upgrades is an industry resource developed under the U.S. Department of Energy's (DOE) Guidelines for Home Energy Professionals project. DOE chose NREL to drive the technical aspects of the project, along with the communication and outreach efforts. The SWS define the outcomes of quality work within the home energy upgrade industry, setting uniform expectations that can be leveraged in energy audits, scopes of work, quality control efforts, and training. The SWS reflect a whole-house approach to installing energy-efficiency measures and include ventilation, insulation, air sealing, and more. Safe work

104

The accelerated site technology deployment program presents the segmented gate system  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is working to accelerate the acceptance and application of innovative technologies that improve the way the nation manages its environmental remediation problems. The DOE Office of Science and Technology established the Accelerated Site Technology Deployment Program (ASTD) to help accelerate the acceptance and implementation of new and innovative soil and ground water remediation technologies. Coordinated by the Department of Energy's Idaho Office, the ASTD Program reduces many of the classic barriers to the deployment of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. The paper uses the example of the Segmented Gate System (SGS) to illustrate how the ASTD program works. The SGS was used to cost effectively separate clean and contaminated soil for four different radionuclides: plutonium, uranium, thorium, and cesium. Based on those results, it has been proposed to use the SGS at seven other DOE sites across the country.

PATTESON,RAYMOND; MAYNOR,DOUG; CALLAN,CONNIE

2000-02-24T23:59:59.000Z

105

NREL: Technology Deployment - City and Community Technical Assistance  

NLE Websites -- All DOE Office Websites (Extended Search)

City and Community Technical Assistance City and Community Technical Assistance NREL technical experts provide technical assistance to cities and communities to help identify and implement a variety of energy efficiency and renewable energy technology solutions. This includes: Greensburg, Kansas An International Inspiration for Green Disaster Recovery New Orleans, Louisiana Energy-Efficient Design Lessons Learned for K-12 Schools Project assistance Program, portfolio, and sustainable community design Request for proposals and performance contracting reviews State, local, federal, and financial policy analysis Strategic planning Trainings and workshops. Disaster Resiliency and Recovery NREL's comprehensive disaster resiliency and recovery program addresses the energy-related considerations of disaster prevention and planning, response

106

Optimal Deployment Plan of Emission Reduction Technologies for TxDOT's Construction Equipment  

E-Print Network (OSTI)

The purpose of this study was to develop and test an optimization model that will provide a deployment plan of emission reduction technologies to reduce emissions from non-road equipment. The focus of the study was on the counties of Texas that have nonattainment (NA) and near-nonattainment (NNA) status. The objective of this research was to develop methodologies that will help to deploy emission reduction technologies for non-road equipment of TxDOT to reduce emissions in a cost effective and optimal manner. Three technologies were considered for deployment in this research, (1) hydrogen enrichment (HE), (2) selective catalytic reduction (SCR) and (3) fuel additive (FA). Combinations of technologies were also considered in the study, i.e. HE with FA, and SCR with FA. Two approaches were investigated in this research. The first approach was "Method 1" in which all the technologies, i.e. FA, HE and SCR were deployed in the NA counties at the first stage. In the second stage the same technologies were deployed in the NNA counties with the remaining budget, if any. The second approach was called "Method 2" in which all the technologies, i.e. FA, HE and SCR were deployed in the NA counties along with deploying only FA in the NNA counties at the first stage. Then with the remaining budget, SCR and HE were deployed in the NNA counties in the second stage. In each of these methods, 2 options were considered, i.e. maximizing NOx reduction with and without fuel economy consideration in the objective function. Thus, the four options investigated each having different mixes of emission reduction technologies include Case 1A: Method 1 with fuel economy consideration; Case 1B: Method 1 without fuel economy consideration; Case 2A: Method 2 with fuel economy consideration; and Case 2B: Method 2 without fuel economy consideration and were programmed with Visual C++ and ILOG CPLEX. These four options were tested for budget amounts ranging from $500 to $1,183,000 and the results obtained show that for a given budget one option representing a mix of technologies often performed better than others. This is conceivable because for a given budget the optimization model selects an affordable option considering the cost of technologies involved while at the same time maximum emission reduction, with and without fuel economy consideration, is achieved. Thus the alternative options described in this study will assist the decision makers to decide about the deployment preference of technologies. For a given budget, the decision maker can obtain the results for total NOx reduction, combined diesel economy and total combined benefit using the four models mentioned above. Based on their requirements and priorities, they can select the desired model and subsequently obtain the required deployment plan for deploying the emission reduction technologies in the NA and NNA counties.

Bari, Muhammad Ehsanul

2009-08-01T23:59:59.000Z

107

Clean Energy Manufacturing Resources - Technology Prototyping | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guide Home » Clean Energy Manufacturing Resources - Technology Guide Home » Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Characterize Materials Shared Research Equipment User Facility - a facility at Oak Ridge National Laboratory that provides access to advanced instruments and scientists for the scale characterization of materials.

108

Impact Evaluation Framework for Technology Deployment Programs: An Overview and Example  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Overview and Example John H. Reed Innovologie LLC Gretchen Jordan Sandia National Laboratories Edward Vine Lawrence Berkeley National Laboratory July 2007 IMPACT EVALUATION FRAMEWORK FOR TECHNOLOGY DEPLOYMENT PROGRAMS An ap pro ach fo r q u anti fyi ng ret ro sp ect ive en erg y savin gs, cl ean en erg y ad van ces, an d m ark et eff ect s Introduction and Background The document briefly describes a framework for evaluating the "ret- rospective" impact of technology deployment programs and provides an example of its use. The framework was developed for the US Depart- ment of Energy's (US DOE) Office of Energy Efficiency and Renew- able Energy (EERE) but potentially can be applied to most deployment programs. 1 This walk through of the seven-step impact framework proc-

109

Unconventional Resources Technology Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advisory Committee (URTAC) Meeting Crowne Plaza Hotel, Houston, Texas July 25, 2007 Welcome Sally Zinke, Chair of the Unconventional Resources Technology Advisory Committee (Committee), convened the meeting at 8:30 a.m. on July 25 in Houston, Texas. She introduced Bill Hochheiser, the Committee Management Officer, who presented a "Safety Moment" focusing on the emergency procedures for exiting the conference room and reminding people of the importance of wearing seat belts. Appendix 1 contains the Committee sign-in sheet for the meeting. Jim Mosher's resignation from the Committee due to his recent appointment to the Department of Interior was announced. For the record, his resignation letter is included in these minutes as Appendix 2.

110

Lessons from Deploying NLG Technology for Marine Weather Forecast Text Generation  

E-Print Network (OSTI)

Lessons from Deploying NLG Technology for Marine Weather Forecast Text Generation Somayajulu G Language Generation (NLG) system that produces textual weather forecasts for offshore oilrigs from for producing 150 draft forecasts per day, which are then post-edited by forecasters before being released

Sripada, Yaji

111

Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment  

DOE Green Energy (OSTI)

This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

Jonkman, J.; Musial, W.

2010-12-01T23:59:59.000Z

112

Unconventional Resources Technology Advisory Committee | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for ultra-deepwater and onshore unconventional natural gas and other petroleum resource exploration and production, as well as addressing the technology challenges for small...

113

Geothermal Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources and Technologies Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

114

Strategies for the Commercialization and Deployment of Greenhouse Gas Intensity-Reducing Technologies and Practices  

Science Conference Proceedings (OSTI)

New technologies will be a critical component--perhaps the critical component--of our efforts to tackle the related challenges of energy security, climate change, and air pollution, all the while maintaining a strong economy. But just developing new technologies is not enough. Our ability to accelerate the market penetration of clean energy, enabling, and other climate-related technologies will have a determining impact on our ability to slow, stop, and reverse the growth in greenhouse gas (GHG) emissions. Title XVI, Subtitle A, of the Energy Policy Act of 2005 (EPAct 2005) directs the Administration to report on its strategy to promote the commercialization and deployment (C&D) of GHG intensity-reducing technologies and practices. The Act also requests the Administration to prepare an inventory of climate-friendly technologies suitable for deployment and to identify the barriers and commercial risks facing advanced technologies. Because these issues are related, they are integrated here within a single report that we, representing the Committee on Climate Change Science and Technology Integration (CCCSTI), are pleased to provide the President, the Congress, and the public. Over the past eight years, the Administration of President George W. Bush has pursued a series of policies and measures aimed at encouraging the development and deployment of advanced technologies to reduce GHG emissions. This report highlights these policies and measures, discusses the barriers to each, and integrates them within a larger body of other extant policy. Taken together, more than 300 policies and measures described in this document may be viewed in conjunction with the U.S. Climate Change Technology Program's (CCTP's) Strategic Plan, published in September 2006, which focuses primarily on the role of advanced technology and associated research and development (R&D) for mitigating GHG emissions. The CCTP, a multi-agency technology planning and coordination program, initiated by President Bush, and subsequently authorized in EPAct2005, is responsible for preparing this report on behalf CCCSTI. This report systematically examines the market readiness of key technologies important to meeting climate change mitigation goals. It assesses the barriers and business risks impeding their progress and greater market application. Importantly, by documenting the hundreds of Federal policies, programs, regulations, incentives, and other activities that are in effect and operating today to address these barriers, it provides a broad context for evaluating the adequacy of current policy and the potential need, if any, for additional measures that might be undertaken by government or industry. Finally, it draws conclusions about the current situation, identifies gaps and opportunities, and suggests analytical principles that should be applied to assess and formulate policies and measures to accelerate the commercialization and deployment of these technologies.

Committee on Climate Change Science and Technology Integration (CCCSTI)

2009-01-01T23:59:59.000Z

115

The Role of Instrumentation and Controls Technology in Enabling Deployment of Small Modular Reactors  

Science Conference Proceedings (OSTI)

The development of deployable small modular reactors (SMRs) will provide the United States with another economically viable energy option, diversify the available nuclear power alternatives for the country, and enhance U.S. economic competitiveness by ensuring a domestic capability to supply demonstrated reactor technology to a growing global market for clean and affordable energy sources. Smaller nuclear power plants match the needs of much of the world that lacks highly stable, densely interconnected electrical grids. SMRs can present lower capital and operating costs than large reactors, allow incremental additions to power generation capacity that closely match load growth and support multiple energy applications (i.e., electricity and process heat). Taking advantage of their smaller size and modern design methodology, safety, security, and proliferation resistance may also be increased. Achieving the benefits of SMR deployment requires a new paradigm for plant design and management to address multi-unit, multi-product-stream generating stations. Realizing the goals of SMR deployment also depends on the resolution of technical challenges related to the unique characteristics of these reactor concepts. This paper discusses the primary issues related to SMR deployment that can be addressed through crosscutting research, development, and demonstration involving instrumentation and controls (I&C) technologies.

Clayton, Dwight A [ORNL; Wood, Richard Thomas [ORNL

2010-01-01T23:59:59.000Z

116

The Role of Instrumentation and Control Technology in Enabling Deployment of Small Modular Reactors  

SciTech Connect

The development of deployable small modular reactors (SMRs) will provide the United States with another economically viable energy option, diversify the available nuclear power alternatives for the country, and enhance U.S. economic competitiveness by ensuring a domestic capability to supply demonstrated reactor technology to a growing global market for clean and affordable energy sources. Smaller nuclear power plants match the needs of much of the world that lacks highly stable, densely interconnected electrical grids. SMRs can present lower capital and operating costs than large reactors, allow incremental additions to power generation capacity that closely match load growth and support multiple energy applications (i.e., electricity and process heat). Taking advantage of their smaller size and modern design methodology, safety, security, and proliferation resistance may also be increased. Achieving the benefits of SMR deployment requires a new paradigm for plant design and management to address multi-unit, multi-product-stream generating stations. Realizing the goals of SMR deployment also depends on the resolution of technical challenges related to the unique characteristics of these reactor concepts. This paper discusses the primary issues related to SMR deployment that can be addressed through crosscutting research, development, and demonstration involving instrumentation and controls (I&C) technologies.

Clayton, Dwight A [ORNL; Wood, Richard Thomas [ORNL

2011-01-01T23:59:59.000Z

117

DEPLOYMENT OF THE GUBKA TECHNOLOGY TO STABILIZE RADIOACTIVE STANDARD SOLUTIONS AT THE FERNALD ENVIRONMENTAL MANAGEMENT PROJECT  

Science Conference Proceedings (OSTI)

This paper describes the deployment of the Gubka technology to stabilize liquid technical standards at the Fernald Environmental Management Project. Gubka, an open-cell glass crystalline porous material, was developed by a joint research program of Russian Institutes at St. Petersburg, Krasnoyarsk, and Zheleznogorsk and the Idaho National Engineering and Environmental Laboratory. Gubka technology can be applied in an active or a passive method to stabilize a solution. In both methods the result is the same, and the dried components of the solution are sorbed in the pores of the Gubka block while the liquid phase is evaporated. In this deployment Gubka blocks were passively floated in the solutions at ambient conditions. As the solutions evaporated, the non-volatile components were sorbed in the pores of the Gubka blocks. The waste-loaded Gubka blocks have been packaged for transportation and disposal at the Nevada Test site within an existing waste category.

Chipman, N.A.; Knecht, D.A.; Meyer, A.; Aloy, A.; Anshits, A.G.; Tretyakov, A.A.

2003-02-27T23:59:59.000Z

118

Geothermal Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

119

SHARING AND DEPLOYING INNOVATIVE INFORMATION TECHNOLOGY SOLUTIONS TO MANAGE WASTE ACROSS THE DOE COMPLEX  

SciTech Connect

There has been a need for a faster and cheaper deployment model for information technology (IT) solutions to address waste management needs at US Department of Energy (DOE) complex sites for years. Budget constraints, challenges in deploying new technologies, frequent travel, and increased job demands for existing employees have prevented IT organizations from staying abreast of new technologies or deploying them quickly. Despite such challenges, IT organizations have added significant value to waste management handling through better worker safety, tracking, characterization, and disposition at DOE complex sites. Systems developed for site-specific missions have broad applicability to waste management challenges and in many cases have been expanded to meet other waste missions. Radio frequency identification (RFID) and global positioning satellite (GPS)-enabled solutions have reduced the risk of radiation exposure and safety risks. New web-based and mobile applications have enabled precision characterization and control of nuclear materials. These solutions have also improved operational efficiencies and shortened schedules, reduced cost, and improved regulatory compliance. Collaboration between US Department of Energy (DOE) complex sites is improving time to delivery and cost efficiencies for waste management missions with new information technologies (IT) such as wireless computing, global positioning satellite (GPS), and radio frequency identification (RFID). Integrated solutions developed at separate DOE complex sites by new technology Centers of Excellence (CoE) have increased material control and accountability, worker safety, and environmental sustainability. CoEs offer other DOE sister sites significant cost and time savings by leveraging their technology expertise in project scoping, implementation, and ongoing operations.

Crolley, R.; Thompson, M.

2011-01-31T23:59:59.000Z

120

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers  

SciTech Connect

This report is a guidance document prepared for the benefit of commercial nuclear power plants’ (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

Heather D. Medema; Ronald K. Farris

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nuclear Deployment Scorecards | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiatives Nuclear Reactor Technologies Nuclear Deployment Scorecards Nuclear Deployment Scorecards January 1, 2014 Quarterly Nuclear Deployment Scorecard - January 2014 The...

122

Inventor Resources | Technology Commercialization and ...  

Search Technologies; Patents; Contacts. TCP Director Connie Cleary. Tech Commercialization Christine Brakel Cyrena Condemi Kimberley Elcess Poornima ...

123

New Small Hydropower Technology to be Deployed in the United States  

SciTech Connect

Earth By Design Inc, (EBD), in collaboration with Oak Ridge National Laboratory (ORNL), Knight Pi sold and Co., and CleanPower AS, has responded to a Funding Opportunity Announcement (FOA) published by the Department of Energy (DOE) in April 2011. EBD submitted a proposal to install an innovative, small hydropower technology, the Turbinator, a Norwegian technology from CleanPower. The Turbinator combines an axial flow, fixed-blade Kaplan turbine and generator in a compact and sealed machine. This makes it a very simple and easy technology to be deployed and installed. DOE has awarded funding for this two-year project that will be implemented in Culver, Oregon. ORNL with the collaboration of CleanPower, will assess and evaluate the technology before and during the manufacturing phase and produce a full report to DOE. The goal of this phase-one report is to provide DOE Head Quarters (HQ), water power program management, a report with findings about the performance, readiness, capability, strengths and weakness, limitation of the technology, and potential full-scale deployment and application in the United States. Because of the importance of this information to the conventional hydropower industry and regulators, preliminary results will rapidly be distributed in the form of conference presentations, ORNL/DOE technical reports (publically available online, and publications in the peer-reviewed, scientific literature. These reports will emphasize the relevance of the activities carried out over the two-year study (i.e., performance, robustness, capabilities, reliability, and cost of the Turbinator). A final report will be submitted to a peer-reviewed publication that conveys the experimental findings and discusses their implications for the Turbinator application and implementation. Phase-two of the project consists of deployment, construction, and project operations. A detailed report on assessment and the performance of the project will be presented and communicated to DOE and published by ORNL.

Hadjerioua, Boualem [ORNL; Opsahl, Egil [CleanPower AS; Gordon, Jim [Earth By Design Inc., EBD; Bishop, Norm [Knigth Piesold Co.

2012-01-01T23:59:59.000Z

124

Challenges and Opportunities of Unconventional Resources Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenges and Opportunities of Unconventional Resources Technology Challenges and Opportunities of Unconventional Resources Technology Challenges and Opportunities of Unconventional Resources Technology May 10, 2012 - 1:01pm Addthis Statement of Mr. Charles McConnell, Assistant Secretary for Fossil Energy, U.S. Department of Energy, before the Subcommittee on Energy and Environment, Committee on Science, Space and Technology, U.S. House of Representatives. Chairman Harris, Ranking Member Miller, and members of the Subcommittee, I appreciate the opportunity to discuss the role that the Department of Energy's Office of Fossil Energy continues to play in the safe and responsible development of the Nation's unconventional fossil resources. As you know, in March 2011, the President laid out a specific goal for our Nation: to reduce imports of oil by a third over the next 10 years. This is

125

Challenges and Opportunities of Unconventional Resources Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenges and Opportunities of Unconventional Resources Technology Challenges and Opportunities of Unconventional Resources Technology Challenges and Opportunities of Unconventional Resources Technology May 10, 2012 - 1:01pm Addthis Statement of Mr. Charles McConnell, Assistant Secretary for Fossil Energy, U.S. Department of Energy, before the Subcommittee on Energy and Environment, Committee on Science, Space and Technology, U.S. House of Representatives. Chairman Harris, Ranking Member Miller, and members of the Subcommittee, I appreciate the opportunity to discuss the role that the Department of Energy's Office of Fossil Energy continues to play in the safe and responsible development of the Nation's unconventional fossil resources. As you know, in March 2011, the President laid out a specific goal for our Nation: to reduce imports of oil by a third over the next 10 years. This is

126

Resourceful Kansas Puts Energy Efficient Technology on Display...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resourceful Kansas Puts Energy Efficient Technology on Display, Demonstrates Cost-Saving Benefits Resourceful Kansas Puts Energy Efficient Technology on Display, Demonstrates...

127

Photovoltaic Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Resources and Technologies Photovoltaic Resources and Technologies Photovoltaic Resources and Technologies October 7, 2013 - 9:22am Addthis Graphic of the eTraining logo Training Available Selecting, Implementing, and Funding Photovoltaic Systems in Federal Facilities: Learn how to select, implement, and fund a photovoltaic system by taking this FEMP eTraining course. This page provides a brief overview of photovoltaic (PV) technologies supplemented by specific information to apply PV within the Federal sector. Overview Photovoltaic cells convert sunlight into electricity. Systems typically include a PV module or array made of individual PV cells installed on or near a building or other structure. A power inverter converts the direct current (DC) electricity produced by the PV cells to alternative current

128

Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints  

SciTech Connect

Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Plotkin, S.; Stephens, T.; McManus, W.

2013-03-01T23:59:59.000Z

129

Nuclear Safety R&D in the Waste Processing Technology Development & Deployment Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R&D in the Waste Processing R&D in the Waste Processing Technology Development & Deployment Program Presentation to the DOE High Level Waste Corporate Board July 29, 2009 Al Baione Office of Waste Processing DOE-EM Office of Engineering & Technology 2 Outline Nuclear Safety Research & Development Overview Summary of EM- NSR&D Presentations from February 2009 Evaluating Performance of Nuclear Grade HEPA Filters under Fire/Smoke Challenge Conditions Structural Integrity Initiative for HLW Tanks Pipeline Plugging and Prevention Advanced Mixing Models Basic Science Opportunities in HLW Storage and Processing Safety Cementitious Barriers Partnership 3 Nuclear Safety Research & Development Overview DNFSB 2004-1 identified need for renewed DOE attention to nuclear safety R&D

130

Resource Center Workforce SBIR/STTR Technology Transfer ...  

Science Conference Proceedings (OSTI)

... Students in Today's Global Marketplace • Technology Transfer Benefits to Academia from Tech Transfer Partnerships RESOURCE CENTER ...

2013-08-21T23:59:59.000Z

131

DEPLOYMENT OF INNOVATIVE CHARACTERIZATION TECHNOLOGIES AND IMPLEMENTATION OF THE MARSSIM PROCESS AT RADIOLOGICALLY CONTAMINATED SITES.  

Science Conference Proceedings (OSTI)

The success of this Accelerated Site Technology Deployment (ASTD) project is measured on several levels. First, the deployment of this innovative approach using in situ characterization, portable field laboratory measurements, and implementation of MARSSIM was successfully established for all three phases of D and D characterization, i.e., pre-job scoping, on-going disposition of waste, and final status surveys upon completion of the activity. Unlike traditional D and D projects, since the Brookhaven Graphite Research Reactor Decommissioning Project (BGRR-DP) is operating on an accelerated schedule, much of the work is being carried out simultaneously. Rather than complete a full characterization of the facility before D and D work begins, specific removal actions require characterization as the activity progresses. Thus, the need for rapid and cost-effective techniques for characterization is heightened. Secondly, since the approach used for this ASTD project was not thoroughly proven prior to deployment, a large effort was devoted to demonstrating technical comparability to project managers, regulators and stakeholders. During the initial phases, large numbers of replicate samples were taken and analyzed by conventional baseline techniques to ensure that BGRR-DP quality assurance standards were met. ASTD project staff prepared comparisons of data gathered using ISOCS and BetaScint with traditional laboratory methods and presented this information to BGRR-DP staff and regulators from EPA Region II, NYS Department of Environmental Conservation, and the Suffolk County Board of Health. As the results of comparability evaluations became available, approval for these methods was received and the techniques associated with in situ characterization, portable field laboratory measurements, and implementation of MARSSIM were gradually integrated into BGRR-DP procedures.

KALB,P.D.; MILIAN,L.; LUCKETT,L.; WATTERS,D.; MILLER,K.M.; GOGOLAK,C.

2001-05-01T23:59:59.000Z

132

Biomass Resources, Technologies, and Environmental Benefits  

Science Conference Proceedings (OSTI)

Biomass, a renewable energy source, is essentially solar energy captured and stored in plants via photosynthesis. For electric power generation organizations that have expertise and assets in combustion or gasification, biomass can be the most appropriate renewable energy source. This report addresses the size and cost of the biomass resource, while describing the technologies and environmental issues involved.

2004-06-03T23:59:59.000Z

133

Unconventional gas outlook: resources, economics, and technologies  

Science Conference Proceedings (OSTI)

The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

Drazga, B. (ed.)

2006-08-15T23:59:59.000Z

134

Technology assessment of geothermal energy resource development  

DOE Green Energy (OSTI)

Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

Not Available

1975-04-15T23:59:59.000Z

135

Customer-Focused Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Customer-Focused Customer-Focused Deployment SAM RASHKIN Chief Architect Building Technologies Program February 29, 2012 Building America Meeting 2 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov 'Good Government' As-A-System IECC Code: Mandates technologies and practices proven reliable and cost- effective ENERGY STAR: Recognizes Builders Who Deliver Significantly Above Code Performance Builders Challenge: Recognizes Leading Builders Applying Proven Innovations and Best Practices Building America: Develops New Innovations and Best Practices 3 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov Disseminating Research Results: Building America Resource Tool 4 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market

136

Federal Energy Management Program: Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

resources. The FEMP Low Standby Product List is also available. Technology Deployment: Developing, measuring, and implementing new and underutilized technologies for energy...

137

Geothermal Resource Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Name Geothermal Resource Technologies Place Asheville, North Carolina Zip 28806 4229 Sector Services Product String representation "GRTI has evolve ... ign assistance." is too long. Coordinates 35.59846°, -82.553144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.59846,"lon":-82.553144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Workshop Proceedings on Financing the Development and Deployment of Renewable Energy Technologies  

SciTech Connect

The Working Party on Renewable Energy (REWP) of the International Energy Agency (IEA) organized a two-day seminar on the role of financing organizations in the development and deployment of renewable energy (RE). The World Bank (WB) and the US Department of Energy (USDOE) hosted the workshop. Delegates were mainly senior government representatives from the 23 IEA member countries, whose responsibilities are related to all or most of the renewable sources of energy. In addition, representatives of the European Union, United Nations, trade organizations, utilities and industries and the WB attended the meeting. The workshop was recognized as an important first step in a dialog required between the parties involved in the development of RE technology, project preparation and the financing of RE. It was also recognized that much more is required--particularly in terms of increased collaboration and coordination, and innovative financing--for RE to enter the market at an accelerated pace, and that other parties (for example from the private sector and recipient countries) need to have increased involvement in future initiatives.

None

1995-05-16T23:59:59.000Z

139

Specialized Technology Resources Inc STR Holding Inc | Open Energy  

Open Energy Info (EERE)

Technology Resources Inc STR Holding Inc Technology Resources Inc STR Holding Inc Jump to: navigation, search Name Specialized Technology Resources Inc (STR Holding Inc) Place Enfield, Connecticut Zip 6082 Product US-based manufacturer of EVA encapsulants for PV cells. References Specialized Technology Resources Inc (STR Holding Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Specialized Technology Resources Inc (STR Holding Inc) is a company located in Enfield, Connecticut . References ↑ "Specialized Technology Resources Inc (STR Holding Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Specialized_Technology_Resources_Inc_STR_Holding_Inc&oldid=351609" Categories:

140

Intrepid Technology and Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Intrepid Technology and Resources Inc Intrepid Technology and Resources Inc Jump to: navigation, search Name Intrepid Technology and Resources Inc Place Idaho Falls, Idaho Zip 83402 Sector Biomass Product The company specialises in development of biomass/biofuel plants, primarily biogas projects(methane from processing animal waste). References Intrepid Technology and Resources Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Intrepid Technology and Resources Inc is a company located in Idaho Falls, Idaho . References ↑ "Intrepid Technology and Resources Inc" Retrieved from "http://en.openei.org/w/index.php?title=Intrepid_Technology_and_Resources_Inc&oldid=347071" Categories:

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Modeling Resource, Infrastructure, and Policy Cost Layers for Optimizing Renewable Energy Investment and Deployment  

SciTech Connect

This paper presents a framework for creating a common spatial canvass that can bring together considerations of resource availability, infrastructure reliability, and development costs while strategizing renewable energy investment. We describe the underlying models and methodologies that annotate an investment plan for potential sites over a time-period with costs and constraints which may be imposed on distance from infrastructure, system impact on infrastructure, and policy incentives. The framework is intended as an enabler for visualization, optimization and decision making across diverse dimensions while searching for lucrative investment-plans.

Sukumar, Sreenivas R [ORNL; Olama, Mohammed M [ORNL; Shankar, Mallikarjun [ORNL; Hadley, Stanton W [ORNL; Nutaro, James J [ORNL; Protopopescu, Vladimir A [ORNL; Malinchik, Sergey [Lockheed Martin Corporation; Ives, Barry [Lockheed Martin Corporation

2010-01-01T23:59:59.000Z

142

Federal Energy Management Program: Solar Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Resources and Technologies Solar Energy Resources and Technologies Photo of a square, tracking, standalone photovoltaic array stands in front of a tree and body of water. The Environmental Protection Agency uses this photovoltaic array as part of its Manchester Laboratory Solar Project. Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies. The following pages provide a brief overview of each solar energy technology supplemented by specific information to apply solar energy within the Federal sector. Technologies for electricity production include: Photovoltaics Concentrating Solar Power Thermal energy technologies include:

143

Resource Extraction, Backstop Technologies, and Growth ? Preliminary Version  

E-Print Network (OSTI)

We incorporate a non-renewable resource in a standard framework of endogenous growth through expanding varieties. Moreover, we allow for a backstop technology that is able to produce a perfect substitute for the resource. Our model is used to analyze resource extraction and technological progress over time. Three consecutive regimes of energy use can emerge in the economy: only resource extraction, simultaneous use, and complete reliance on the backstop technology. The introduction of the backstop technology crucially affects the time paths of fossil fuel extraction and technological progress. We provide conditions under which either peak-oil emerges, or the extraction path is monotonically increasing or decreasing until exhaustion of the resource stock. The rate of technological progress is non-monotonic over time: it declines initially, starts increasing when the economy approaches the regime change and jumps down once the resource stock is exhausted.

Gerard Van Der Meijden; Sjak Smulders

2013-01-01T23:59:59.000Z

144

NETL: Natural Gas Resources, Enhanced Oil Recovery, Deepwater Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Projects and Natural Gas Projects Index of Research Project Summaries Use the links provided below to access detailed DOE/NETL project information, including project reports, contacts, and pertinent publications. Search Natural Gas and Oil Projects Current Projects Natural Gas Resources Shale Gas Environmental Other Natural Gas Resources Ehanced Oil Recovery CO2 EOR Environmental Other EOR & Oil Resources Deepwater Technology Offshore Architecture Safety & Environmental Other Deepwater Technology Methane Hydrates DOE/NETL Projects Completed Projects Completed Natural Gas Resources Completed Enhanced Oil Recovery Completed Deepwater Technology Completed E&P Technologies Completed Environmental Solutions Completed Methane Hydrates Completed Transmission & Distribution

145

Alternative Fuels and Advanced Vehicle Technologies: Information Resources (Brochure)  

DOE Green Energy (OSTI)

A Clean Cities brochure listing and describing Web sites and telephone numbers of resources for people interested in alternative fuels and advanced vehicle technologies.

Not Available

2004-02-01T23:59:59.000Z

146

Clean Energy Manufacturing Resources - Technology Full-Scale Production |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Full-Scale Production Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Find resources to help you design a production and manufacturing process for a new clean energy technology or product. For full-scale production, other areas to consider include workforce development; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Design Production and Manufacturing Process Advanced Research Projects Agency: Tech-to-Market Resources - general tech-to-market (T2M) resources. DOE Advanced Manufacturing Office: Manufacturing Demonstration Facility - a collaborative manufacturing community that works to provide real data to

147

Geothermal Technologies Office: Hydrothermal and Resource Confirmation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

148

Solar Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Resources and Technologies Solar Energy Resources and Technologies Solar Energy Resources and Technologies October 7, 2013 - 9:21am Addthis Photo of a square, tracking, standalone photovoltaic array stands in front of a tree and body of water. The Environmental Protection Agency uses this photovoltaic array as part of its Manchester Laboratory Solar Project. Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies. The following pages provide a brief overview of each solar energy technology supplemented by specific information to apply solar energy within the Federal sector. Technologies for electricity production include:

149

Householder experiences with resource monitoring technology in sustainable homes  

Science Conference Proceedings (OSTI)

The use of feedback technologies, in the form of products such as Smart Meters, is increasingly seen as the means by which 'consumers' can be made aware of their patterns of resource consumption, and to then use this enhanced awareness to change their ... Keywords: behaviour change, feedback, residential, resource monitoring, smart meters, technology interface

Wendy Miller; Laurie Buys

2010-11-01T23:59:59.000Z

150

Landfill Gas Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies October 7, 2013 - 9:27am Addthis Photo of a bulldozer on top of a large trash mound in a landfill with a cloudy sky in the backdrop. Methane and other gases produced from landfill decomposition can be leveraged for energy. This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector. Overview Landfill gases are a viable energy resource created during waste decomposition. Landfills are present in most communities. These resources can be tapped to generate heat and electricity. As organic waste decomposes, bio-gas is produced made up of roughly half methane, half carbon dioxide, and small amounts of non-methane organic

151

Distributed Energy Resources Program Technology Overview  

DOE Green Energy (OSTI)

New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

Not Available

2001-11-01T23:59:59.000Z

152

Fuel Cell Technologies Office: Information Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

153

Information Resources: LED Essentials - Technology, Applications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation for Philips Solid-State Lighting Solutions, presented a broad introduction to LED technology, and discussed the technology status, advantages and disadvantages, current...

154

Quarterly Nuclear Deployment Scorecard - October 2013 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quarterly Nuclear Deployment Scorecard - October 2013 Quarterly Nuclear Deployment Scorecard - October 2013 News Updates Dominion has filed an updated integrated resource plan with...

155

Wireless communications deployment in industry: a review of issues, options and technologies  

Science Conference Proceedings (OSTI)

Present basis of knowledge management is the efficient share of information. The challenges that modern industrial processes have to face are multimedia information gathering and system integration, through large investments and adopting new technologies. ... Keywords: Information and communication technology in industry, Wireless networking technologies and industrial application

Esteban Egea-Lopez; Alejandro Martinez-Sala; Javier Vales-Alonso; Joan Garcia-Haro; Josemaria Malgosa-Sanahuja

2005-01-01T23:59:59.000Z

156

Wireless communications deployment in industry: a review of issues, options and technologies  

Science Conference Proceedings (OSTI)

Present basis of knowledge management is the efficient share of information. The challenges that modern industrial processes have to face are multimedia information gathering and system integration, through large investments and adopting new technologies. ... Keywords: information and communication technology in industry, wireless networking technologies and industrial application

Esteban Egea-Lopez; Alejandro Martinez-Sala; Javier Vales-Alonso; Joan Garcia-Haro; Josemaria Malgosa-Sanahuja

2005-01-01T23:59:59.000Z

157

An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale  

SciTech Connect

This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

Matthew Bruff; Ned Godshall; Karen Evans

2011-04-30T23:59:59.000Z

158

Resource Consumption of Additive Manufacturing Technology.  

E-Print Network (OSTI)

??The degradation of natural resources as a result of consumption to support the economic growth of humans society represents one of the greatest sustainability challenges.… (more)

Nopparat, Nanond

2012-01-01T23:59:59.000Z

159

Center for Electric & Hydrogen Technologies & Systems: Resource...  

NLE Websites -- All DOE Office Websites (Extended Search)

* Primers on solar radiation data and its measurement. * Links to other useful solar radiation measurement and data sites. The Resource Integration Group's Renewable...

160

Vehicle Technologies Office: Workplace Charging Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

current public charging already exists across the country. Tools and Resources The AFDC offers a large collection of helpful tools. These calculators, interactive maps, and...

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Federal Energy Management Program: Geothermal Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Resources and Technologies Geothermal Resources and Technologies Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat from these locations where it can be used more efficiently for thermal or electrical energy applications. The three typical applications include:

162

Case study: Deploying information technologies for organizational innovation: Lessons from case studies  

Science Conference Proceedings (OSTI)

Organizations must innovate if they are to survive in today's fiercely competitive marketplace. In this paper, we explore how leading organizations are using emerging technologies to enable novel forms of ideation that can radically increase the sheer ... Keywords: Case study, Information technologies, Innovation, Innovation process

Jaka Lindi?; Peter Baloh; Vincent M. RibièRe; Kevin C. Desouza

2011-04-01T23:59:59.000Z

163

Codes and Standards Requirements for Deployment of Emerging Fuel Cell Technologies  

DOE Green Energy (OSTI)

The objective of this NREL report is to provide information on codes and standards (of two emerging hydrogen power fuel cell technology markets; forklift trucks and backup power units), that would ease the implementation of emerging fuel cell technologies. This information should help project developers, project engineers, code officials and other interested parties in developing and reviewing permit applications for regulatory compliance.

Burgess, R.; Buttner, W.; Riykin, C.

2011-12-01T23:59:59.000Z

164

Hydropower and Ocean Energy Resources and Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies October 7, 2013 - 9:29am Addthis Photo of water flowing from several openings in a hydropower dam. Hydropower produces 10% of the nation's energy, including power from the Ice Harbor Dam in Burbank, Washington. This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector. Overview Hydropower has been used for centuries to power machinery, but the application most commonly associated with hydropower is electricity production through dams. Ocean energy refers to various forms of renewable energy harnessed from the ocean. There are two primary types of ocean energy: mechanical and thermal.

165

Parabolic-Trough Technology Roadmap: A Pathway for Sustained Commercial Development and Deployment of Parabolic-Trough Technology  

DOE Green Energy (OSTI)

Technology roadmapping is a needs-driven technology planning process to help identify, select, and develop technology alternatives to satisfy a set of market needs. The DOE's Office of Power Technologies' Concentrating Solar Power (CSP) Program recently sponsored a technology roadmapping workshop for parabolic trough technology. The workshop was attended by an impressive cross section of industry and research experts. The goals of the workshop were to evaluate the market potential for trough power projects, develop a better understanding of the current state of the technology, and to develop a conceptual plan for advancing the state of parabolic trough technology. This report documents and extends the roadmap that was conceptually developed during the workshop.

Price, H.; Kearney, D.

1999-01-31T23:59:59.000Z

166

WEB RESOURCE: Nuclear Science and Technology  

Science Conference Proceedings (OSTI)

Feb 19, 2007 ... This page offers lecture notes and presentations from a course on nuclear science and technology. Presentation slides and audio files are also ...

167

Municipal Solid Waste Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies October 7, 2013 - 9:28am Addthis Black and white photo of a bulldozer pushing a large mound of trash in a landfill. The National Renewable Energy Laboratory's high-solids digester converts wastes to biogas and compost for energy production. This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector. Overview Municipal solid waste, also known as waste to energy, generates electricity by burning solid waste as fuel. This generates renewable electricity while also incinerating landfill and other municipal waste products such as trash, yard clippings and debris, furniture, food scraps, and other

168

Biomass Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies October 7, 2013 - 9:25am Addthis Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture and forest residues to create energy. This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector. Overview Biomass energy is fuel, heat, or electricity produced from organic materials such as plants, residues, and waste. These organic materials span several sources, including agriculture, forestry, primary and secondary mill residues, urban waste, landfill gases, wastewater treatment plants, and dedicated energy crops. Biomass energy takes many forms and can have a wide variety of applications

169

Municipal Solid Waste Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies October 7, 2013 - 9:28am Addthis Black and white photo of a bulldozer pushing a large mound of trash in a landfill. The National Renewable Energy Laboratory's high-solids digester converts wastes to biogas and compost for energy production. This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector. Overview Municipal solid waste, also known as waste to energy, generates electricity by burning solid waste as fuel. This generates renewable electricity while also incinerating landfill and other municipal waste products such as trash, yard clippings and debris, furniture, food scraps, and other

170

Renewable Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources and Resources and Technologies Renewable Energy Resources and Technologies October 7, 2013 - 9:18am Addthis Photo of multiple photovoltaic arrays stand tilted on a rooftop with the Boston skyline as a backdrop. The General Services Administration completed a roof-mounted, grid-connected photovoltaic system on the Metcalfe Federal Building. Explore the following renewable energy technology areas for resources and information focusing on Federal application opportunities. Solar Wind Geothermal Biomass Landfill Gas Municipal Solid Waste Hydropower and Ocean These technology areas align with the Energy Policy Act of 2005, which defines renewable energy as "electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, and thermal),

171

Vehicle Technologies Office: Graduate Automotive Technology Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) to someone by E-mail Share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Facebook Tweet about Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Twitter Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Google Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Delicious Rank Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Digg Find More places to share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on AddThis.com...

172

Coordinated Early Deployments of Efficient End-Use Technologies: Phase 1 Final Report  

Science Conference Proceedings (OSTI)

Many electric utilities in the U.S. are facing ever-increasing energy efficiency goals. While compact fluorescent lamps (CFLs) have produced a large share of many utility programs' energy savings, these technologies may no longer be allowed to count toward utility program goals because of the new standards for lighting efficiency set by the Energy Independence and Security Act of 2007. The change in CFL treatment is just one example of why utilities need a steady stream of new technologies for their ener...

2011-12-28T23:59:59.000Z

173

The [216:1 Ratio]: bridging the growing support gap through proactive deployment of emerging technologies  

Science Conference Proceedings (OSTI)

Philadelphia University has developed radically as an entity since 1992. In 2002-2003, the University technology infrastructure was forced to evolve in response to selective pressure from a series of catastrophic worm (Blaster, Nachi, Sasser) incidents ... Keywords: adaptive networking, adaptive support, antivirus, malware, network access standardization, network security, personal computer security, preventative computing, remediation, spyware, updates, virus

Johnathon A. Mohr

2006-11-01T23:59:59.000Z

174

Comparison of Energy Production and Performance from Flat-Plate Photovoltaic Module Technologies Deployed at Fixed Tilt: Preprint  

DOE Green Energy (OSTI)

This conference paper describes the performance data for 14 photovoltaic modules deployed at fixed-latitude tilt in the field are presented and compared. Module performance is monitored continuously for optimum power characteristics. Flat-plate module technologies representative of crystalline, amorphous, and polycrystalline silicon, and cadmium telluride and copper indium diselenide, are scrutinized for energy production, effective efficiency and performance ratio-ratio of effective to reference efficiency. Most performance ratios exhibit seasonal fluctuations largely correlated to air or module temperatures, varying between 80% and 100%. These ratios tend toward larger values during winter and vise versa, except for amorphous silicon and cadmium telluride modules. In a-Si cases, the situation appears reversed: better performance ratios are exhibited during late summer. The effective efficiency and average daily and yearly energy production are analyzed and quantified.

del Cueto, J. A.

2002-05-01T23:59:59.000Z

175

Concentrating Solar Power Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies October 7, 2013 - 11:47am Addthis Photo of a CSP dish glistening in the sun. Multiple solar mirrors reflect sunlight onto a collector. CSP systems concentrate solar heat onto a collector, which powers a turbine to generate electricity. This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector. Overview Concentrating solar power technologies produce electricity by concentrating the sun's energy using reflective devices, such as troughs or mirror panels, to reflect sunlight onto a receiver. The resulting high-temperature heat is used to power a conventional turbine to produce electricity.

176

Solar Hot Water Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies October 7, 2013 - 11:49am Addthis Photo of a standalone solar hot water system standing in front of a clothesline with a backdrop of evergreen trees. This solar hot water system tracks sunlight using a standalone, single-axis mount to optimize hot water production for residential applications. This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector. Overview Although a large variety of solar hot water systems exist, the basic technology is simple. A collector absorbs and transfers heat from the sun to water, which is stored in a tank until needed. Active solar heating systems use circulating pumps and controls. These are more expensive but

177

Integrated Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Deployment Integrated Deployment Integrated Deployment Integrated technology deployment uses a comprehensive approach to implement a variety of efficiency and renewable energy technology solutions in communities and cities, federal agencies, international locations, and states and territories. need_alt Community Renewable Energy Deployment Webinars Hear about successful community renewable energy projects, including the challenges and barriers faced during development. Learn more Integrated Deployment Projects The following projects provide examples of how the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory have used an integrated approach to address various location-specific energy challenges that is both scalable and replicable around the world:

178

Review of Water Resources and Desalination Technologies  

SciTech Connect

Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods to desalinate brackish water and sea water can help reverse this destabilizing trend. Desalination has now been practiced on a large scale for more than 50 years. During this time continual improvements have been made, and the major technologies are now remarkably efficient, reliable, and inexpensive. For many years, thermal technologies were the only viable option, and multi-stage flash (MSF) was established as the baseline technology. Multi-effect evaporation (MEE) is now the state-of-the-art thermal technology, but has not been widely implemented. With the growth of membrane science, reverse osmosis (RO) overtook MSF as the leading desalination technology, and should be considered the baseline technology. Presently, RO of seawater can be accomplished with an energy expenditure in the range of 11-60 kJ/kg at a cost of $2 to $4 per 1000 gallons. The theoretical minimum energy expenditure is 3-7 kJ/kg. Since RO is a fairly mature technology, further improvements are likely to be incremental in nature, unless design improvements allow major savings in capital costs. Therefore, the best hope to dramatically decrease desalination costs is to develop ''out of the box'' technologies. These ''out of the box'' approaches must offer a significant advantage over RO (or MEE, if waste heat is available) if they are to be viable. When making these comparisons, it is crucial that the specifics of the calculation are understood so that the comparison is made on a fair and equivalent basis.

MILLER, JAMES E.

2003-03-01T23:59:59.000Z

179

NREL: Technology Deployment - Marine Corps Taps NREL to Help Replace Aging  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine Corps Taps NREL to Help Replace Aging Steam Plant with Efficient Marine Corps Taps NREL to Help Replace Aging Steam Plant with Efficient Biomass Cogeneration January 30, 2013 The 1940s central steam plant at the Marine Corps Recruiting Depot (MCRD) on Parris Island, seven miles south of Beaufort, South Carolina, has far exceeded its projected life and is no longer cost-effective to operate. MCRD staff tasked NREL to help replace this artifact with an efficient biomass cogeneration facility. NREL will assess needs and help develop a request for proposal for designing and constructing the new facility. After the initial site review, the NREL assessment team will: Verify existing resources and biomass costs Optimize facility size and location Model the entire system and generate a process flow diagram Estimate costs and create an economic evaluation

180

Distributed Energy Resources Emissions Survey and Technology Characterization  

Science Conference Proceedings (OSTI)

This report characterizes emissions of gaseous and particulate pollutants from distributed energy resources (DER) technologies. Emissions profiles are provided for currently available equipment as well as for equipment expected to be commercially available by the year 2030. These profiles can be used to compare and evaluate DER technologies and can be used to develop emissions inventories for air quality modeling.

2004-11-03T23:59:59.000Z

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Gas-Fired Distributed Energy Resource Technology Characterizations  

DOE Green Energy (OSTI)

The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

2003-11-01T23:59:59.000Z

182

Temporal and Spatial Deployment of Carbon Dioxide Capture and Storage Technologies across the Representative Concentration Pathways  

SciTech Connect

The Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment (to be published in 2013-2014) will to a significant degree be built around four Representative Concentration Pathways (RCPs) that are intended to represent four scenarios of future development of greenhouse gas emissions, land use, and concentrations that span the widest range of potential future atmospheric radiative forcing. Under the very stringent climate policy implied by the 2.6 W/m2 overshoot scenario, all electricity is eventually generated from low carbon sources. However, carbon dioxide capture and storage (CCS) technologies never comprise more than 50% of total electricity generation in that very stringent scenario or in any of the other cases examined here. There are significant differences among the cases studied here in terms of how CCS technologies are used, with the most prominent being is the significant expansion of biomass+CCS as the stringency of the implied climate policy increases. Cumulative CO2 storage across the three cases that imply binding greenhouse gas constraints ranges by nearly an order of magnitude from 170GtCO2 (radiative forcing of 6.0W/m2 in 2100) to 1600GtCO2 (2.6W/m2 in 2100) over the course of this century. This potential demand for deep geologic CO2 storage is well within published estimates of total global CO2 storage capacity.

Dooley, James J.; Calvin, Katherine V.

2011-04-18T23:59:59.000Z

183

Hawaii Energy Resource Technologies for Energy Security  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HNEI HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii at Manoa HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii at Manoa MAUI SMART GRID PROJECT Hawaii Natural Energy Institute University of Hawaii at Manoa Sentech, Inc. HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE

184

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

DOE Green Energy (OSTI)

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2011-02-11T23:59:59.000Z

185

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

DOE Data Explorer (OSTI)

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

186

Resourceful Kansas Puts Energy Efficient Technology on Display,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resourceful Kansas Puts Energy Efficient Technology on Display, Resourceful Kansas Puts Energy Efficient Technology on Display, Demonstrates Cost-Saving Benefits Resourceful Kansas Puts Energy Efficient Technology on Display, Demonstrates Cost-Saving Benefits June 2, 2011 - 3:45pm Addthis One of Riley County Public Works' new wind turbines. | Courtesy of: Riley County Public Works One of Riley County Public Works' new wind turbines. | Courtesy of: Riley County Public Works Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs It turns out there's more to harvest in Kansas than just the wheat and soybeans. As one of the windiest states in the country, it's a great place to harness wind and solar power. And through the Department of Energy's Energy Efficiency and Conservation Block Grant program, the

187

Resourceful Kansas Puts Energy Efficient Technology on Display,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resourceful Kansas Puts Energy Efficient Technology on Display, Resourceful Kansas Puts Energy Efficient Technology on Display, Demonstrates Cost-Saving Benefits Resourceful Kansas Puts Energy Efficient Technology on Display, Demonstrates Cost-Saving Benefits June 2, 2011 - 3:45pm Addthis One of Riley County Public Works' new wind turbines. | Courtesy of: Riley County Public Works One of Riley County Public Works' new wind turbines. | Courtesy of: Riley County Public Works Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs It turns out there's more to harvest in Kansas than just the wheat and soybeans. As one of the windiest states in the country, it's a great place to harness wind and solar power. And through the Department of Energy's Energy Efficiency and Conservation Block Grant program, the

188

STATEMENT OF CONSIDERATIONS REQUEST BY SPECIALIZED TECHNOLOGY RESOURCES, INC. (STR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SPECIALIZED TECHNOLOGY RESOURCES, INC. (STR) SPECIALIZED TECHNOLOGY RESOURCES, INC. (STR) FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER NREL SUBCONTRACT NO. NREL-ZDO-2-30628-10 UNDER DOE CONTRACT NO. DE-AC36-98GO10337; W(A)-02-050; CH-1122 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Specialized Technology Resources, Inc. (STR) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above- identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. The subcontract was awarded by the National Renewable Energy Laboratory (NREL) under DOE's Photovoltaic

189

Federal Energy Management Program: Biomass Energy Resources and  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy Biomass Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Biomass Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Biomass Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Biomass Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Biomass Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Biomass Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Biomass Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

190

Characterization Of Geothermal Resources Using New Geophysical Technology |  

Open Energy Info (EERE)

Using New Geophysical Technology Using New Geophysical Technology Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Characterization Of Geothermal Resources Using New Geophysical Technology Details Activities (2) Areas (2) Regions (0) Abstract: This paper presents a geothermal case history using a relatively new but proven technology that can accurately map groundwater at significant depths (up to 1,000 meters) over large areas (square kilometers) in short periods of time (weeks). Understanding the location and extent of groundwater resources is very important to the geothermal industry for obvious reasons. It is crucial to have a cost-effective method of understanding where concentrations of geothermal water are located as well as the preferential flow paths of the water in the subsurface. Such

191

The directory of US coal and technology export resources  

Science Conference Proceedings (OSTI)

The purpose of The Directory remains focused on offering a consolidated resource to potential buyers of US coal, coal technology, and expertise. This is consistent with the US policy on coal and coal technology trade, which continues to emphasize export market strategy implementation. Within this context, DOE will continue to support the teaming'' approach to marketing; i.e., vertically integrated large project teams to include multiple industry sectors, such as coal producers, engineering and construction firms, equipment manufacturers, financing and service organizations.

Not Available

1990-10-01T23:59:59.000Z

192

NREL: Technology Deployment - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis NREL...

193

NREL: Technology Deployment - News  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine Corps Taps NREL to Help Replace Aging Steam Plant with Efficient Biomass Cogeneration The Marine Corps Recruiting Depot (MCRD) on Parris Island, seven miles south of...

194

NREL: Technology Deployment - Events  

NLE Websites -- All DOE Office Websites (Extended Search)

solar, among other topics. This webinar provides an overview of the Scenario Solar PV Jobs and Economic Development Impact (JEDI) Model work. The Scenario JEDI Model can...

195

FEMP Technology Deployment Matrix  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Other 58 11 Condensing Water Heaters - gas Water Heating 58 12 Water Cooled Oil Free Magnetic Bearing Compressor HVAC 54 13 Integrated Daylighting Systems Lighting 53...

196

Technology Assessment of Interconnection Products for Distributed Resources: 2001 Update  

Science Conference Proceedings (OSTI)

This interim technology assessment for distributed resources (DR), including generation and storage, is intended to assist system engineers in understanding the availability and application of interconnection products. The report provides a frame of reference to assess these products by defining a set of interconnection functions, descriptive elements, and applications and documenting the state of the art of interconnection products.

2001-11-30T23:59:59.000Z

197

DEPARTMENT OF ENERGY CHARTER UNCONVENTIONAL RESOURCES TECHNOLOGY ADVISORY COMMITTEE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHARTER CHARTER UNCONVENTIONAL RESOURCES TECHNOLOGY ADVISORY COMMITTEE Committee's Official Designation: Unconventional Resources Technology Advisory Committee (URTAC) 2. Committee's Objectives and Scope of Activities and Duties: I The Advisory Committee is to (A) advise the Secretary on the development and implementation of programs under Section 999 of the Energy Policy Act of 2005, Publi / I No. 109-58, related to unconventional natural gas and other petroleum resources and (B) provide to the Secretary written comments regarding the draf't annual plan that is required by Section 999B(e) of the Energy Policy Act of 2005. Further, the Committee will not make recommendations on funding awards to particular consortia or other entities, or for specific

198

Deployable structures  

E-Print Network (OSTI)

This thesis has the purpose of describing the meaning and applications of deployable structures (making emphasis in the scissor-hinged and sliding mechanisms.) and the development of new geometries, details, and mechanisms ...

Hernández Merchan, Carlos Henrique

1987-01-01T23:59:59.000Z

199

Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources / Related Web Sites Resources / Related Web Sites Buildings-Related Resources Windows & Glazing Resources Energy-Related Resources International Resources Telephone Directories Buildings-Related Resources California Institute for Energy Efficiency (CIEE) Center for Building Science (CBS) at LBNL Department of Energy (DOE) DOE Energy Efficiency home page Energy Efficiency and Renewable Energy Clearinghouse Fact sheets in both HTML for standard web browsers and PDF format using Adobe Acrobat Reader (free). National Fenestration Rating Council home page Office of Energy Efficiency and Renewable Energy (EREN) back to top... Windows & Glazing Resources National Glass Association (NGA) LBNL Building Technologies Fenestration R&D news LBNL Center for Building Science (CBS) Newsletter

200

Resources for Information on New and Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources for Information on Resources for Information on New and Emerging Technologies Steven Parker, PE, CEM Chief Engineer Building Energy Systems & Technologies Energy and Environment Directorate Pacific Northwest National Laboratory 1 Objective Provide list of programs that research and provide useful, technical, information on new and emerging energy- efficient technologies State supported energy-efficiency programs Utility supported energy-efficiency and research programs Other organizations Feds too (if you know where to look) Caveat emptor Call to action 2 First Note A lot of people do a lot of good work and have a lot of good information but do not publicize well Talk to utility representatives Talk to state energy office Talk to state university energy programs I prefer public reports, but other sources can be beneficial

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Department Accelerates the Deployment of Advanced Vehicle...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerates the Deployment of Advanced Vehicle Technologies with Private Industry Partnerships Energy Department Accelerates the Deployment of Advanced Vehicle Technologies with...

202

NREL: Technology Deployment - Technology Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Fuels, Vehicles, & Transportation Fuels, Vehicles, and Transportation Microgrid Design Microgrid Design Solar Solar Wind Wind Contact Us For more information on...

203

Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources  

DOE Green Energy (OSTI)

Technology transfer to the industrial sector for geopressured-geothermal technology has included diverse strategies, with successes and obstacles or roadblocks. Numerical data are tabulated in terms of response to the various strategies. Strategy categories include the following: feasibility studies and reports, consortium activities and proceedings, the Geothermal Resource Council, national and international meetings of the American Association of Petroleum Geologists, other societal and organizational meetings, and conferences, Department of Energy solicitation of interest in the Commerce Business Daily, industry peer review panels, and the Secretary's Technology Initiative. Additionally, the potential of a 12-page color brochure on the geopressured-geothermal resource, workshops, and cooperative research and development agreement (CRADA) is discussed. In conclusion, what is the best way to reach the market and what is the winning combination? All of the above strategies contribute to technology transfer and are needed in some combination for the desired success. The most successful strategy activities for bringing in the interest of the largest number of industries and the independents are the consortium meetings, one-on-one telephone calling, and consortium proceedings with information service followup. the most successful strategy activities for bringing in the interest and participation of ''majors'' are national and international peer reviewed papers at internationally recognized industry-related society meetings, and on-call presentations to specific companies. Why? Because quality is insured, major filtering has already taken place, and the integrity of the showcase is established. Thus, the focused strategy is reduced to a target of numbers (general public/minors/independents) versus quality (majors). The numerical results of the activities reflecting four years of technology transfer following the 15 year lead in the early phases of geopressured-geothermal program under the leadership of Dr. Myron Dorfman, reflect a dynamic surveying of what works in technology transfer with industry in the area of geopressured-geothermal resources. The identified obstacles can be removed and future efforts can benefit by this cataloging and discussion of results.

Wys, J. Negus-de

1992-03-24T23:59:59.000Z

204

Assessment of Emission Control Technologies for Distributed Resource Options  

Science Conference Proceedings (OSTI)

Distributed resources (DR) are projected to be an expanding part of the power generation mix in the future as the market shifts from a strong reliance on large, central power plants to greater use of smaller, more dispersed power generation sources located closer to load centers. This report assesses the current environmental regulatory situation for DR technologies and describes a range of combustion and post-combustion strategies to address environmental requirements. Such information will benefit ener...

1999-12-23T23:59:59.000Z

205

Identifying the Value Proposition for Residential Distributed Resources Technologies  

Science Conference Proceedings (OSTI)

While virtually all participants in today's energy markets are intrigued by the potential of distributed resources (DR) and small-scale generation technologies, ongoing questions remain as to the market for such devices given current economic realities. This project focused on selected market opportunities to test the attractiveness of conceptual DR products, determine the relative importance of product features, and explore strategies for improving the success of DR product entry into the residential ma...

2001-11-26T23:59:59.000Z

206

Technology Review and Assessment of Distributed Energy Resources  

Science Conference Proceedings (OSTI)

The investigators reviewed and assessed the current status of distributed generation (DG) in the U.S. as it applies to smaller-scale installations (residential, commercial, and light-industrial buildings—generally under 1,000 kW capacity), and benchmarked the prospects for significant market impacts over the next 5–7 years. This study serves as an update to EPRI's Assessment of Distributed Resource Technologies, completed in 1999 [EPRI 1999].

2005-01-23T23:59:59.000Z

207

Fusion Power Deployment  

DOE Green Energy (OSTI)

Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment.

J.A. Schmidt; J.M. Ogden

2002-02-06T23:59:59.000Z

208

Deployment & Market Transformation (Brochure)  

SciTech Connect

NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

Not Available

2012-04-01T23:59:59.000Z

209

Deployment & Market Transformation (Brochure)  

SciTech Connect

NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

2012-04-01T23:59:59.000Z

210

Modeling EERE Deployment Programs  

Science Conference Proceedings (OSTI)

The purpose of this report is to compile information and conclusions gathered as part of three separate tasks undertaken as part of the overall project, “Modeling EERE Deployment Programs,” sponsored by the Planning, Analysis, and Evaluation office within the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE). The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address improvements to modeling in the near term, and note gaps in knowledge where future research is needed.

Cort, Katherine A.; Hostick, Donna J.; Belzer, David B.; Livingston, Olga V.

2007-11-08T23:59:59.000Z

211

TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN  

SciTech Connect

In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is scheduled for deployment in 2012. The prototype facility also was used to develop technology for systems to retrieve remote-handled transuranic sludge smaller than 6350 {mu}m being stored in underwater containers. After retrieving the sludge, the system will be used to load and transport the sludge for interim storage. During 2011, full-scale prototype systems were developed and tested to a Technology Readiness Level 6 as defined by U.S. Department of Energy standards. This system is scheduled for deployment in 2013. Operations also are scheduled for completion in 2014.

RAYMOND RE

2011-12-27T23:59:59.000Z

212

Nuclear Deployment Scorecards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Scorecards Nuclear Deployment Scorecards October 31, 2013 Quarterly Nuclear Deployment Scorecard - October 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, new plant construction progress, and expected operation dates. August 8, 2013 Quarterly Nuclear Deployment Scorecard - July 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, new plant construction progress, and expected operation dates. May 1, 2013 Quarterly Nuclear Power Deployment Scorecard - April 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, and new plant construction progress.

213

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Energy Production Incentive .. 84 4.1.11 Additional Resources .. 84 4.2 State andof State Incentives for Renewables & Efficiency Energyincentives available to support the increased deployment of solar energy technologies. State and

Price, S.

2010-01-01T23:59:59.000Z

214

NREL: Research Participant Program - Research and Deployment Disciplines  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Deployment Disciplines Research and Deployment Disciplines Participants in NREL programs are able to study a variety of disciplines within the Lab's research centers: National Bioenergy Center Biochemical engineering, microbiology, molecular biology, chemistry, and chemical engineering related to biomass and derived products. Energy Sciences Bioscience, chemical and materials science, computational science, physics, chemistry, and biological sciences. Electricity, Resources, and Building Systems Integration Physics, mechanical engineering (heat transfer emphasis), and architectural engineering. Hydrogen and Fuel Cells Research Hydrogen technologies and analysis. Materials and Computational Sciences Center Physics, materials science, chemistry, electrical engineering, and basic and applied research using high-performance computing and applied

215

Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)  

Science Conference Proceedings (OSTI)

This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

Not Available

2010-05-01T23:59:59.000Z

216

Resource allocation in applications research : challenges and strategies of small technology developing companies  

E-Print Network (OSTI)

This is a study into the allocation of resources in the early stages of research in a small commercial entity that develops innovative technologies. The premise is that resource allocation must focus on the implementation ...

Pretorius, Jacob v. R., 1969-

2004-01-01T23:59:59.000Z

217

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

Science Conference Proceedings (OSTI)

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

218

Resources for Technology-Based Small Businesses in the Midwest ...  

resources, Internet research and other business information resources. Moraine Valley Community College 10900 S. 88th Avenue Palos Hills, IL 60465-9556

219

THE NOCHAR{reg_sign} TECHNOLOGY DEPLOYMENT PROGRAM, PROVIDING A PROVEN METHOD WORLDWIDE FOR WASTE SOLIDIFICATION AND STABILIZATION  

SciTech Connect

With the recent fall of the Soviet government and the decommissioning of defense plants in the U.S. DOE Complex, and the increasing worldwide emphasis on environmental restoration and controls, a critical need has developed for a proven ''off the shelf'' technology to deal with these enormous hazardous waste issues. While many new technologies are on the horizon and under development to handle complex waste streams, few of these offer immediate solutions. High technology polymers are an answer to present day needs that will allow immediate burial site disposal, above ground depository use for ''safe store'' applications, and stabilization and immobilization plans for safe transport or incineration at a later date.

Brunkow, W. G.; Govers, R.; Pietsch, C.; Kelley, D.; Krause, D.

2002-02-25T23:59:59.000Z

220

OVERVIEW OF IMPACTS OF TECHNOLOGY DEPLOYMENT ON THE MISSION OF THE DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT  

Science Conference Proceedings (OSTI)

The Environmental Management (EM) mission is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. The EM program has embraced a mission completion philosophy based on reducing risk and environmental liability over a 40-50 year lifecycle. The Department has made great progress toward safely disposing of its legacy nuclear waste. EM Research and Development (R&D) program management strategies have driven numerous technology and engineering innovations to reduce risk, minimize cleanup costs, and reduce schedules. Engineering and technology investments have provided the engineering foundation, technical assistance, approaches, and technologies that have contributed to moving the cleanup effort forward. These successes include start-up and operation of several waste treatment facilities and processes at the sites.

McCabe, D.; Chamberlain, G.; Looney, B.; Gladden, J.

2010-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Federal and State Incentives for Early Commercial Deployment  

E-Print Network (OSTI)

supported research and development (R&D) on coal gasification, Integrated Gasification Combined Cycle (IGCC) technology, and associated carbon capture and storage (CCS) methods. As a result of these joint efforts, the application of IGCC and CCS to electric power generation and related energy markets is at the beginning of commercial deployment. Due to technological successes already achieved and unique capabilities relative to competitive technologies, there is currently a very high level of interest in IGCC, CCS, and associated gasification-based technologies. This interest is, in part, a result of evolving Federal and state strategic energy policy goals that encourage the commercial deployment of advanced fossil energy supply technologies to enhance fuel diversity, domestic energy security, environmental footprint and climate change mitigation, while sustaining efficient utilization of domestic resources. This is the second of two Technical Forum discussions on IGCC/CCS and focuses primarily on the Federal and State incentives offered to encourage technology deployment. Federal energy policy towards IGCC is most recently and clearly established in the Energy Policy Act of 2005, which authorizes continued RD&D support and strengthens financial incentives to enhance the competitiveness of early commercial IGCC/CCS projects and encourage use of a broad range of coal types, project locations, and plant designs. State policies supporting IGCC/CCS come in the form of legislation and regulations that provide technology development

I. Background

2006-01-01T23:59:59.000Z

222

Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Technologies Technologies October 7, 2013 - 10:20am Addthis The Federal Energy Management Program (FEMP) offers information about energy-efficient and renewable energy technologies through the following areas. Energy-Efficient Product Procurement: Find energy-efficient product requirements and technology, purchasing specifications, energy cost savings calculators, model contract language, and resources. Technology Deployment: Look up information about developing, measuring, and implementing new and underutilized technologies for energy management in the Federal Government. Renewable Energy: Read about renewable energy requirements, resources and technologies, project planning, purchasing renewable power, and more. See FEMP's other program areas. Addthis FEMP Home

223

QUARTERLY NUCLEAR DEPLOYMENT SCORECARD - JULY 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

QUARTERLY NUCLEAR DEPLOYMENT SCORECARD - JULY 2013 QUARTERLY NUCLEAR DEPLOYMENT SCORECARD - JULY 2013 QUARTERLY NUCLEAR DEPLOYMENT SCORECARD - JULY 2013 News Updates Dominion Resources, Inc. has informed the NRC that Dominion Virginia Power will amend its COL application (COLA) to reflect the ESBWR technology by the end of 2013. In 2009 Dominion dropped the ESBWR from its COLA after failing to reach a commercial agreement with General Electric-Hitachi (GEH). A COL is expected no earlier than late 2015. Dominion Virginia Power has not yet committed to building a new nuclear unit at North Anna. NRC has determined that the latest revision to the South Texas Project COLA does not alleviate foreign interest concerns; the staff found that despite having only a 10% ownership stake in Nuclear Innovation North America LLC (NINA), Toshiba American Nuclear Energy Corporation's

224

Vehicle Technologies Office: Vehicle Technologies Office Organization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization and Contacts Organization Chart for the Vehicle Technologies Program Fuel Technologies and Deployment, Technology Managers Advanced Combustion Engines, Technology...

225

A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Roadmap to Deploy New Nuclear Power Plants in the United States A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report The objective of this document is to provide the Department of Energy (DOE) and the nuclear industry with the basis for a plan to ensure the availability of near-term nuclear energy options that can be in operation in the U.S. by 2010. This document identifies the technological, regulatory, and institutional gaps and issues that need to be addressed for new nuclear plants to be deployed in the U.S. in this timeframe. It also identifies specific designs that could be deployed by 2010, along with the actions and resource requirements that are needed to ensure their

226

A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Roadmap to Deploy New Nuclear Power Plants in the United States A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report The objective of this document is to provide the Department of Energy (DOE) and the nuclear industry with the basis for a plan to ensure the availability of near-term nuclear energy options that can be in operation in the U.S. by 2010. This document identifies the technological, regulatory, and institutional gaps and issues that need to be addressed for new nuclear plants to be deployed in the U.S. in this timeframe. It also identifies specific designs that could be deployed by 2010, along with the actions and resource requirements that are needed to ensure their

227

Technology assessment of solar energy systems. Socioeconomic impacts of solar deployment and conventional energy use. Volume III  

DOE Green Energy (OSTI)

This study presents an analysis of socio-economic impacts of conventional energy prices and solar technology use in the residential sector. Patterns of household energy use are explored as a function of income class. Impacts on household disposable income of use of conventional fuels and technologies as compared to solar alternatives are then assessed. This analysis is conducted for 1978 and 1990 by income class and region. Profiles of residential-solar-system purchases are presented and trends in the adoption of solar systems in this sector are discussed. Because income levels and certain demographic characteristics tend to be correlated, insights regarding the distribution of impacts among population groups can be obtained by examining the demographic composition of US households. Accordingly, socio-economic profiles of the US population are developed to help identify the demographic characteristics of households most severely affected by high energy prices, as well as of those households best able to reduce energy costs through the purchase of solar energy and conservation.

Gordon, J.J.; Tahami, J.E.

1981-08-01T23:59:59.000Z

228

AMF Deployment, Manacapuru, Brazil  

NLE Websites -- All DOE Office Websites (Extended Search)

Manacapuru, Brazil Manacapuru Deployment AMF Home Manacapuru Home GOAMAZON Home Experiment Planning Abstract and Related Campaigns Science Plan (PDF, 1.4MB) Deployment Operations...

229

Regional Energy Deployment System (ReEDS)  

SciTech Connect

The Regional Energy Deployment System (ReEDS) is a deterministic optimization model of the deployment of electric power generation technologies and transmission infrastructure throughout the contiguous United States into the future. The model, developed by the National Renewable Energy Laboratory's Strategic Energy Analysis Center, is designed to analyze the critical energy issues in the electric sector, especially with respect to potential energy policies, such as clean energy and renewable energy standards or carbon restrictions. ReEDS provides a detailed treatment of electricity-generating and electrical storage technologies and specifically addresses a variety of issues related to renewable energy technologies, including accessibility and cost of transmission, regional quality of renewable resources, seasonal and diurnal generation profiles, variability of wind and solar power, and the influence of variability on the reliability of the electrical grid. ReEDS addresses these issues through a highly discretized regional structure, explicit statistical treatment of the variability in wind and solar output over time, and consideration of ancillary services' requirements and costs.

Short, W.; Sullivan, P.; Mai, T.; Mowers, M.; Uriarte, C.; Blair, N.; Heimiller, D.; Martinez, A.

2011-12-01T23:59:59.000Z

230

NREL: Energy Systems Integration - Integrated Deployment Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Deployment Workshop Integrated Deployment Workshop The Energy Systems Integration Facility workshop, Integrated Deployment, was held August 21 - 23, 2012 at the National Renewable Energy Laboratory in Golden, Colorado. Each day of the workshop, which included a tour of the Energy Systems Integration Facility, focused on a different topic: Day 1: Utility-Scale Renewable Integration Day 2: Distribution-Level Integration Day 3: Isolated and Islanded Grid Systems The agenda and presentations from the workshop are below. Agenda Energy Systems Integration Facility Overview ESIF Technology Partnerships Integrated Deployment Model Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings Printable Version Energy Systems Integration Home Research & Development

231

NREL: TroughNet - Parabolic Trough Technology Solar Resource Data and Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Resource Data and Tools Solar Resource Data and Tools Here you'll find resources on solar radiation data and tools for siting parabolic trough power plants. This includes solar radiation data for power plants in the United States and worldwide. You'll also find resources for direct solar radiation instrumentation. For an overview on solar resource terms and direct beam radiation used for concentrating solar power technologies, see NREL's Shining On Web site. U.S. Solar Radiation Resource Data The following resources include maps, and hourly metrological and solar resource data for parabolic trough power plants sites in the United States. NREL Concentrating Solar Power Resource Maps Features direct normal solar radiation maps of the southwestern United States, including state maps for Arizona, California, Colorado, New Mexico,

232

Unidata: A Virtual Community Sharing Resources via Technological Infrastructure  

Science Conference Proceedings (OSTI)

In initiating the Unidata Program, scientists hoped to meet common needs for accessing and using atmospheric data in education and research using state-of-the-art technology. As communications technologies have advanced, Unidata has increasingly ...

David Fulker; Sally Bates; Clifford Jacobs

1997-03-01T23:59:59.000Z

233

A National Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

National Resource National Resource for Industry Manufacturing DeMonstration facility As the nation's premier research laboratory, Oak Ridge National Laboratory is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization, and process technology to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing processes and materials targeting products of the future. The Department of Energy's first Manufacturing Demonstration Facility (MDF), established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy and

234

Aerodyne Develops an Aircraft-Deployable Precision Aerosol Analyzer | U.S.  

Office of Science (SC) Website

Aerodyne Develops an Aircraft-Deployable Precision Aerosol Aerodyne Develops an Aircraft-Deployable Precision Aerosol Analyzer Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR/STTR Home About Funding Opportunity Announcements (FOAs) Applicant and Awardee Resources Commercialization Assistance Other Resources Awards SBIR/STTR Highlights Reporting Fraud Contact Information Small Business Innovation Research and Small Business Technology Transfer U.S. Department of Energy SC-29/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-5707 F: (301) 903-5488 E: sbir-sttr@science.doe.gov More Information » January 2013 Aerodyne Develops an Aircraft-Deployable Precision Aerosol Analyzer Aerodyne Research Inc. develops an aerosol mass spectrometer (AMS) that fills a critical need for size-resolved, quantitative chemical composition

235

Federal Energy Management Program: Solar Hot Water Resources and  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Hot Water Solar Hot Water Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Hot Water Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Hot Water Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Hot Water Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Hot Water Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

236

Strategies for the Commercialization & Deployment of GHG Intensity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies & Practices This report examines strategies of commercializing and deploying energy technologies that reduce greenhouse gas intensity. CDStratCompleteReport116092.pd...

237

Community Renewable Energy Deployment: Sacramento Municipal Utility  

Open Energy Info (EERE)

Deployment: Sacramento Municipal Utility Deployment: Sacramento Municipal Utility District Projects Jump to: navigation, search Name Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects Agency/Company /Organization US Department of Energy Focus Area Agriculture, Economic Development, Greenhouse Gas, Renewable Energy, Biomass - Anaerobic Digestion, Solar - Concentrating Solar Power, Solar, - Solar Pv, Biomass - Waste To Energy Phase Bring the Right People Together, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2/2/2011 Website http://www1.eere.energy.gov/co Locality Sacramento Municipal Utility District, CA References Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects[1]

238

Biomass power: An old resource for a new technology  

DOE Green Energy (OSTI)

As many as 50,000 MW of electricity could be generated by biomass power plants in the year 2010 with advanced technologies and improved feedstock supplies. This pamphlet describes the current status and capacity of biomass power plants in the US, advanced technologies under development, a way to guarantee a dedicated fuel supply, and sources for further information.

NONE

1995-05-01T23:59:59.000Z

239

Designing Technology as an Embedded Resource for Troubleshooting  

Science Conference Proceedings (OSTI)

In this paper we describe a number of technologies which we designed to provide support for customers troubleshooting problems with their office devices. The technologies aim to support both self-conducted and expert-supported troubleshooting and to ... Keywords: device troubleshooting, diagnostics, embedded systems, ethnography, ethnomethodology, help systems, immediate and remote help-giving, situated action, socio-technical assemblies, work practice studies

Stefania Castellani; Antonietta Grasso; Jacki O'Neill; Frederic Roulland

2009-06-01T23:59:59.000Z

240

NREL: Technology Deployment - Project Development  

NLE Websites -- All DOE Office Websites (Extended Search)

policies and making recommendations on federal fleet mandates, local electric vehicle incentives, solar permitting standards, and more. Project Financing Alternatives We can...

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NREL: Technology Deployment - Tool Development  

NLE Websites -- All DOE Office Websites (Extended Search)

renewable energy projects. NREL develops geographic tools, interactive calculators, market and metrics databases, and mobile applications to help inform sustainable energy...

242

Economics of ALMR deployment  

SciTech Connect

The Advanced Liquid Metal Reactor (ALMR) has the potential to extend the economic life of the nuclear option and of reducing the number of high level waste repositories which will eventually be needed in an expanding nuclear economy. This paper reports on an analysis which models and evaluates the economics of the use of ALMRs as a component of this country`s future electricity generation mix. The ALMR concept has the ability to utilize as fuel the fissile material contained in previously irradiated nuclear fuel (i.e., spent fuel) or from surplus weapons grade material. While not a requirement for the successful deployment of ALMR power plant technology, the reprocessing of spent fuel from light water reactors (LWR) is necessary for any rapid introduction of ALMR power plants. In addition, the reprocessing of LWR spent fuel may reduce the number of high level waste repositories needed in the future by burning the long-lived actinides produced in the fission process. With this study, the relative economics of a number of potential scenarios related to these issues are evaluated. While not encompassing the full range of all possibilities, the cases reported here provide an indication of the potential costs, timings, and relative economic attractiveness of ALMR deployment.

Delene, J.G.; Fuller, L.C.; Hudson, C.R.

1994-12-31T23:59:59.000Z

243

NATURAL HERITAGE RESOURCES OF THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE  

E-Print Network (OSTI)

.S. Department of Energy's Rocky Flats Field Office for making this report possible. In particular, Dr. John.S. Department of Energy's Rocky Flats Field Office to inventory and rank the natural heritage resources at its Divide. The RFETS is part of the U.S. Department of Energy nuclear weapons manufacturing complex

244

Comparison of Storage Technologies for Distributed Resource Applications  

Science Conference Proceedings (OSTI)

This report summarizes six electricity storage technologies by describing operating principles, technical characteristics, field experience, and capital and operating costs: o sodium sulfur (NaS) battery o polysulfide-bromine (PSB) battery ("Regensys") o vanadium redox battery (VRB) o compressed air energy storage (CAES) o flywheels electrochemical capacitors In addition, the data is used to compare storage technologies in four applications: (1) peak shaving on the customer side of the meter; (2) peak sh...

2003-03-05T23:59:59.000Z

245

National-Scale Wind Resource Assessment for Power Generation (Presentation)  

SciTech Connect

This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

Baring-Gould, E. I.

2013-08-01T23:59:59.000Z

246

Program review: resource evaluation, reservoir confirmation, and exploration technology  

DOE Green Energy (OSTI)

The details of the program review are reported. A summary of the recommendations, means for their implementation, and a six year program of expenditures which would accomplish the objectives of the recommendations are presented. Included in appendices are the following: DOE/DGE consortia participants; program managers contacted for opinion; communications received from program managers; participants, program review panel; and program strategy for resource evaluation and reservoir confirmation. (MHR)

Ward, S.H.

1978-05-01T23:59:59.000Z

247

Deployment Partnerships (Presentation)  

SciTech Connect

This presentation, Deployment Partnerships, was given by Mike Pacheco at the Industry Growth Forum in Golden, Colorado, November 5, 2009.

Pacheco, M.

2009-11-05T23:59:59.000Z

248

NREL: Technology Transfer - Technology Partnership Agreements  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Partnership Agreements Technology Partnership Agreements Through technology partnership agreements, NREL provides partners with technical support to help commercialize and deploy energy technologies and products. We do not fund any projects under a technology partnership agreement. The partner provides the necessary resources and covers our costs of providing technical services. NREL does provide funding opportunities through competitively placed contracts. For more information, see our business opportunities. Process The technology partnership agreement process basically includes 11 steps. See the NREL Technology Partnership Agreement Process flowchart. We are committed to working through these steps in a timely manner. Experience suggests that the fastest means to reach an agreement is through

249

Technology Review and Assessment of Distributed Energy Resources  

Science Conference Proceedings (OSTI)

The investigators reviewed, benchmarked and assessed the current status of emerging battery technologies for distributed energy storage (DES) as it applies to market applications addressing residential, commercial, and light-industrial buildings, and the prospects for significant market impacts with in the electric utility sector over the next 5-7 years.

2006-02-06T23:59:59.000Z

250

Renewable energy resource and technology assessment: Southern Tier Central Region, New York, New York. Renewable Energy Resource Inventory; renewable energy technology handbook; technology assessment workbook  

DOE Green Energy (OSTI)

The Renewable Energy Resource Inventory contains regional maps that record the location of renewable energy resources such as insolation, wind, biomass, and hydropower in the Southern Tier Central Region of New York State. It contains an outline of a process by which communities can prepare local renewable energy resource inventories using maps and overlays. The process starts with the mapping of the resources at a regional scale and telescopes to an analysis of resources at a site-specific scale. The resource inventory presents a site analysis of Sullivan Street Industrial Park, Elmira, New York.

Not Available

1978-12-01T23:59:59.000Z

251

The potential impact of renewable energy deployment on natural gas prices in New England  

E-Print Network (OSTI)

Potential Impact of Renewable Energy Deployment on Naturaland in New England. Renewable energy (RE) technologies canof studies show that renewable energy deployment can also

Wiser, Ryan; Bolinger, Mark

2004-01-01T23:59:59.000Z

252

Federal Energy Management Program: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies The Federal Energy Management Program (FEMP) offers information about energy-efficient and renewable energy technologies through the following areas. Energy-Efficient Product Procurement: Find energy-efficient product requirements and technology, purchasing specifications, energy cost savings calculators, model contract language, and resources. Technology Deployment: Look up information about developing, measuring, and implementing new and underutilized technologies for energy management in the Federal Government. Renewable Energy: Read about renewable energy requirements, resources and technologies, project planning, purchasing renewable power, and more. See FEMP's other program areas. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov

253

Program on Technology Innovation: Water Resources for Thermoelectric Power Generation  

Science Conference Proceedings (OSTI)

Due to severe drought conditions in the Southwest in recent years, EPRI and the U.S. Department of Energys National Energy Technology Laboratory have sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. Two of the studies assess the use of saline waters in power plants. The third describes the adaptation of a deterministic watershed model to forecast the impact of climate change on river hydrology in t...

2006-11-06T23:59:59.000Z

254

DOE Office of Indian Energy Foundational Course on Renewable Energy Technologies: Assessing Energy Resources Text Version  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Renewable Energy Technologies: Assessing Energy Resources Webinar (text version) Below is the text version of the webinar titled "DOE Office of Indian Energy Foundational Courses Renewable Energy Technologies: Assessing Energy Resources". Amy Hollander: Hello. I'm Amy Hollander with the National Renewable Energy Laboratory. Welcome to today's Webinar on assessing energy needs and resources sponsored by the U.S. Department of Energy, Office of Indian Energy, Policy and Programs. This Webinar is being recorded from DOE's National Renewable Energy Laboratory's brand new state of the art net zero energy research support facility in Golden, Colorado. Our energy needs and resources presentation today is one of nine foundational Webinars in a series from

255

Accelerating Electric Vehicle Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment More Documents &...

256

Assessment of Emerging Low-Emissions Technologies for Combustion-Based Distributed Resource Generators  

Science Conference Proceedings (OSTI)

This report analyzes the performance and cost of conventional and emerging emission control technologies for combustion-based distributed resource generators (combustion turbines, microturbines, and reciprocating engines). The performance is measured against the proposed California Air Resources Board (CARB) small generator certification standards for 2007. The costs are provided as capital cost and cost of electricity for emission control. The report also provides information on alternative fuel conside...

2005-03-23T23:59:59.000Z

257

Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System April 12, 2013 - 12:00pm Addthis WASHINGTON -- As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today recognized the nation's first commercial enhanced geothermal system (EGS) project to supply electricity to the grid. Based in Churchill County, Nevada, Ormat Technologies' Desert Peak 2 EGS project has increased power output of its nearby operating geothermal field by nearly 38 percent - providing an additional 1.7 megawatts of power to the grid and validating this emerging clean energy technology. "Developing America's vast renewable energy resources sustainably is an

258

Geopressured geothermal resource of the Texas and Louisiana Gulf Coast: a technology characterization and environmental assessment  

DOE Green Energy (OSTI)

Two aspects of the Texas and Louisiana Gulf Coast geopressured geothermal resource: (1) the technological requirements for well drilling, completion, and energy conversion, and, (2) the environmental impacts of resource exploitation are examined. The information comes from the literature on geopressured geothermal research and from interviews and discussions with experts. The technology characterization section emphasizes those areas in which uncertainty exists and in which further research and development is needed. The environmental assessment section discusses all anticipated environmental impacts and focuses on the two largest potential problems: (a) subsidence and (b) brine disposal.

Usibelli, A.; Deibler, P.; Sathaye, J.

1980-12-01T23:59:59.000Z

259

AMF Deployment, Shouxian, China  

NLE Websites -- All DOE Office Websites (Extended Search)

China Shouxian Deployment AMF Home Shouxian Home Data Plots and Baseline Instruments Experiment Planning Proposal Science Plan, (PDF, 1,257K) Outreach Fact Sheets English Version...

260

SMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology, and Policy  

Science Conference Proceedings (OSTI)

We address the problem of modeling energy resource allocation, including dispatch, storage, and the long-term investments in new technologies, capturing different sources of uncertainty such as energy from wind, demands, prices, and rainfall. We also ... Keywords: analysis of algorithms, artificial intelligence, queues, simulation, statistical analysis

Warren B. Powell; Abraham George; Hugo Simão; Warren Scott; Alan Lamont; Jeffrey Stewart

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

FY 1991--FY 1995 Information Technology Resources Long-Range Plan  

SciTech Connect

The Department of Energy has consolidated its plans for Information Systems, Computing Resources, and Telecommunications into a single document, the Information Technology Resources Long-Range Plan. The consolidation was done as a joint effort by the Office of ADP Management and the Office of Computer Services and Telecommunications Management under the Deputy Assistant Secretary for Administration, Information, and Facilities Management. This Plan is the product of a long-range planning process used to project both future information technology requirements and the resources necessary to meet those requirements. It encompasses the plans of the various organizational components within the Department and its management and operating contractors over the next 5 fiscal years, 1991 through 1995.

Not Available

1989-12-01T23:59:59.000Z

262

An analytical framework for long term policy for commercial deployment and innovation in carbon capture and sequestration technology in the United States  

E-Print Network (OSTI)

Carbon capture and sequestration (CCS) technology has the potential to be a key CO2 emissions mitigation technology for the United States. Several CCS technology options are ready for immediate commercial-scale demonstration, ...

Hamilton, Michael Roberts

2010-01-01T23:59:59.000Z

263

Regional Energy Deployment System (ReEDS) | Open Energy Information  

Open Energy Info (EERE)

Regional Energy Deployment System (ReEDS) Regional Energy Deployment System (ReEDS) (Redirected from Regional Energy Deployment System) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Regional Energy Deployment System Agency/Company /Organization: NREL Sector: Energy Topics: Pathways analysis, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.nrel.gov/analysis/reeds/ OpenEI Keyword(s): EERE tool, Regional Energy Deployment System, ReEDS References: Regional Energy Deployment System (ReEDS) Web site[1] Regional Energy Deployment System (ReEDS) is a multiregional, multitimeperiod, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. The model, developed by NREL's Strategic Energy Analysis

264

Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)  

SciTech Connect

This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

2013-10-01T23:59:59.000Z

265

Strategies for the Commercialization & Deployment of GHG Intensity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

examines strategies of commercializing and deploying energy technologies that reduce greenhouse gas intensity. CDStratCompleteReport116092.pdf More Documents & Publications...

266

An Analytical Framework for Long Term Policy for Commercial Deployment...  

Open Energy Info (EERE)

An Analytical Framework for Long Term Policy for Commercial Deployment and Innovation in Carbon Capture and Sequestration Technology in the United States Jump to: navigation,...

267

NETL: News Release - DOE, Industry Consortium Project Deploys...  

NLE Websites -- All DOE Office Websites (Extended Search)

4 , 2006 DOE, Industry Consortium Project Deploys New Stripper Well Tool Novel Technology Boosts Oil and Gas Production and Efficiency at 200 Sites Nationwide WASHINGTON, DC - A...

268

RENEWABLE ENERGY RESOURCES AND TECHNOLOGIES IN NIGERIA: PRESENT SITUATION, FUTURE PROSPECTS AND POLICY FRAMEWORK  

E-Print Network (OSTI)

Abstract. Nigeria is endowed with abundant energy resources, both conventional and renewable, which provide her with immense capacity to develop an effective national energy plan. However, introduction of renewable energy resources into the nation’s energy mix have implications on its energy budget. The national energy supply system has been projected into the future using MARKAL, a large scale linear optimization model. However, this model may not be absolutely representative of the highly non-linear future of renewable energy. Results of the model reveal that under only a least cost constraint, only large hydro power technology is the prominent commercial renewable energy technology in the electricity supply mix of the country. Despite the immense solar energy potentials available, solar electricity generation is attractive only under severe CO2 emissions mitigation of the nation’s energy supply system. Similarly, the penetration of small-scale hydro power technology in the electricity supply mix is favoured only under CO2 emissions constraints. Due to economy of scale, large hydro power technology takes the lion share of all the commercial renewable energy resources share for electricity generation under any CO 2 emissions constraint. These analyses reveal that some barriers exist to the development and penetration of renewable energy resources for electricity production in Nigeria’s energy supply system. Barriers and possible strategies to overcome them are discussed. Intensive efforts and realistic approach towards energy supply system in the country will have to be adopted in order to adequately exploit renewable energy resources and technologies for economic growth and development.

John-felix K. Akinbami

2001-01-01T23:59:59.000Z

269

Property:DeploymentPrograms | Open Energy Information  

Open Energy Info (EERE)

DeploymentPrograms DeploymentPrograms Jump to: navigation, search Property Name DeploymentPrograms Property Type String Description Depolyment programs as listed in cleanenergysolutions.org Allows the following values: Audit Programs Demonstration & Implementation Green Power/Voluntary RE Purchase High Performance Buildings Industry Codes & Standards Project Development Public Tenders, Procurement, & Lead Examples Public-Private Partnerships Retrofits Ride Share, Bike Share, etc. Technical Assistance Training & Education Voluntary Appliance & Equipment Labeling Voluntary Industry Agreements Subproperties This property has the following 2 subproperties: G Greenhouse Gas Regional Inventory Protocol (GRIP) Website M Methods for Climate Change Technology Transfer Needs Assessments and

270

Intelligent Transportation Systems Deployment Analysis System | Open Energy  

Open Energy Info (EERE)

Intelligent Transportation Systems Deployment Analysis System Intelligent Transportation Systems Deployment Analysis System Jump to: navigation, search Tool Summary Name: Intelligent Transportation Systems Deployment Analysis System Agency/Company /Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software/modeling tools Website: idas.camsys.com/ Country: United States Northern America References: http://idas.camsys.com/ The ITS Deployment Analysis System (IDAS) is software developed by the Federal Highway Administration that can be used in planning for Intelligent Transportation System (ITS) deployments. State, regional, and local planners can use IDAS to estimate the benefits and costs of ITS investments - which are either alternatives to or enhancements of traditional highway

271

Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation  

Science Conference Proceedings (OSTI)

This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

Singh, Ruchi; Vyakaranam, Bharat GNVSR

2012-02-14T23:59:59.000Z

272

Review of the potential for biomass resources and conversion technology. Final report, Jan-Jul 83  

SciTech Connect

Biomass resources include dedicated energy crops, forestry/agricultural residues, and certain organic fractions of wastes. The magnitude of the resource base, the extent to which it can be devoted to methane production, the quantity of methane that can be produced, and the cost of the methane are issues that are addressed in this study. Research needs include improvement of agricultural production methods, especially regarding problems caused by the seasonal nature of biomass production. Reduction of capital investment per unit of methane could be achieved by development of membrane gas clean up systems or combination biomass storage/fermentation systems, are examples of advanced technologies.

Lipinsky, E.S.; Jenkins, D.M.; Young, B.A.; Sheppard, W.J.

1983-07-01T23:59:59.000Z

273

Cost of Renewable Energy Technology Options | Open Energy Information  

Open Energy Info (EERE)

Cost of Renewable Energy Technology Options Cost of Renewable Energy Technology Options Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Cost of Renewable Energy Technology Options Focus Area: Solar Topics: Opportunity Assessment & Screening Website: www1.eere.energy.gov/tribalenergy/guide/renewable_technologies_costs.h Equivalent URI: cleanenergysolutions.org/content/cost-renewable-energy-technology-opti Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This resource has been extracted and reformatted from the U.S. National Renewable Energy Laboratory's Power Technologies Energy Data Book. The data book is an excellent source of consistent information on renewable energy technology status and future expectations. Cost information is available

274

Market and policy barriers to energy storage deployment : a study for the energy storage systems program.  

Science Conference Proceedings (OSTI)

Electric energy storage technologies have recently been in the spotlight, discussed as essential grid assets that can provide services to increase the reliability and resiliency of the grid, including furthering the integration of variable renewable energy resources. Though they can provide numerous grid services, there are a number of factors that restrict their current deployment. The most significant barrier to deployment is high capital costs, though several recent deployments indicate that capital costs are decreasing and energy storage may be the preferred economic alternative in certain situations. However, a number of other market and regulatory barriers persist, limiting further deployment. These barriers can be categorized into regulatory barriers, market (economic) barriers, utility and developer business model barriers, crosscutting barriers and technology barriers. This report, through interviews with stakeholders and review of regulatory filings in four regions roughly representative of the United States, identifies the key barriers restricting further energy storage development in the country. The report also includes a discussion of possible solutions to address these barriers and a review of initiatives around the country at the federal, regional and state levels that are addressing some of these issues. Energy storage could have a key role to play in the future grid, but market and regulatory issues have to be addressed to allow storage resources open market access and compensation for the services they are capable of providing. Progress has been made in this effort, but much remains to be done and will require continued engagement from regulators, policy makers, market operators, utilities, developers and manufacturers.

Bhatnagar, Dhruv; Currier, Aileen B.; Hernandez, Jacquelynne; Ma, Ookie [U.S. Department of Energy, Washington, D.C.; Kirby, Brendan [U.S. Department of Energy, Washington, D.C.

2013-09-01T23:59:59.000Z

275

Resource-technology combinations for domestic lighting in rural India: A comparative financial evaluation  

Science Conference Proceedings (OSTI)

Financial analysis and evaluation of various resource-technology combinations for rural domestic lighting is undertaken. The options include kerosene lamps, liquefied petroleum gas (LPG) and biogas lamps, solar photovoltaic lighting systems, and electric lamps. The figures of merit considered for financial comparison are the cost per hour of lighting and the cost per unit of useful energy for lighting. Sensitivity of these figures of merit to the uncertainties in the values of some of the input variables has also been studied.

Rubab, S.; Kandpal, T.C. [Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies

1997-10-01T23:59:59.000Z

276

Regional Energy Deployment System (ReEDS) | Open Energy Information  

Open Energy Info (EERE)

Regional Energy Deployment System (ReEDS) Regional Energy Deployment System (ReEDS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Regional Energy Deployment System Agency/Company /Organization: NREL Sector: Energy Topics: Pathways analysis, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.nrel.gov/analysis/reeds/ OpenEI Keyword(s): EERE tool, Regional Energy Deployment System, ReEDS References: Regional Energy Deployment System (ReEDS) Web site[1] Regional Energy Deployment System (ReEDS) is a multiregional, multitimeperiod, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. The model, developed by NREL's Strategic Energy Analysis Center (SEAC), is designed to conduct analysis of the critical energy

277

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

278

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

279

Related Links on Community Renewable Energy Deployment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Deployment Community Renewable Energy Deployment Related Links on Community Renewable Energy Deployment The following publications and websites provide helpful information for communities planning or implementing renewable energy and energy efficiency projects. Publications The U.S. Department of Energy (DOE) and its National Renewable Energy Laboratory (NREL) publish numerous community guides, resources, and examples, as well as publications geared toward organizations that provide technical assistance to communities. Community Guides, Resources, and Examples These documents provide how-to information, steps, and resources for community-wide projects, as well as lessons learned from other communities. A Guide to Community Solar: Utility, Private, and Non-Profit Project

280

A Strategic Framework for SMR Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Strategic Framework for SMR Deployment February 24, 2012 Introduction A strategy for the successful deployment of small modular reactors (SMRs) must consider what the goals of deployment would entail, the challenges to achieving these goals and the approach to overcome those challenges. This paper will attempt to offer a framework for addressing these important issues at the outset of the program. The deployment of SMRs will be realized by private power companies making the decision to purchase and operate SMRs from private vendors. The government role is to set national priorities for clean energy and national security and create incentives to achieve them. The policy tools the government may choose to use to advance this technology in support of these national objectives will evolve as SMRs advance

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

AMF Deployment, Oliktok, Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska Alaska Oliktok Deployment AMF Home Oliktok Home Deployment Operations Baseline Instruments and Data Plots at the Archive Outreach News & Press New Sites Fact Sheet (PDF, 1.6MB) Images Contacts Fred Helsel, AMF Operations Lynne Roeder, Media Contact Hans Verlinde, Principal Investigator AMF Deployment, Oliktok Point, Alaska This view shows the location of the Oliktok, Alaska, ARM Mobile Facility. Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARM's third and newest ARM Mobile Facility, or AMF3.

282

Remote Systems Design & Deployment  

Science Conference Proceedings (OSTI)

The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

2009-08-28T23:59:59.000Z

283

NREL: Geothermal Technologies - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Projects The NREL...

284

NREL: Geothermal Technologies - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Capabilities The...

285

NREL: Geothermal Technologies - News  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Geothermal News...

286

Integrated assessment of dispersed energy resources deployment  

E-Print Network (OSTI)

MAISY (Market Analysis and Information System) is an energymarket, the spatial component revealed new information regarding the patterns of hot water and energy

Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

2000-01-01T23:59:59.000Z

287

Integrated assessment of dispersed energy resources deployment  

E-Print Network (OSTI)

technical work on microgrids towards the key technicalelectrically isolated microgrids will pose. The approachthe grid to operate as microgrids become a real possibility.

Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

2000-01-01T23:59:59.000Z

288

Integrated assessment of dispersed energy resources deployment  

E-Print Network (OSTI)

also overlaid with maps of transmission lines (obtained fromMap of Maryland's Major Power Plants and Transmission Lines. ..Map of Maryland's Major Power Plants and Transmission Lines.

Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

2000-01-01T23:59:59.000Z

289

Integrated assessment of dispersed energy resources deployment  

E-Print Network (OSTI)

Electricity Bill ..the customer's total electricity bill, with the customera large part of the electricity bill, around 30% (California

Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

2000-01-01T23:59:59.000Z

290

Integrated assessment of dispersed energy resources deployment  

E-Print Network (OSTI)

electricity prices must be forecast, and the potential forPrices. 112 Figure 37: Residenial Population Density - Single Family Detached Homes . 113 Figure 38: Adoption Forecast

Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

2000-01-01T23:59:59.000Z

291

Vehicle Technologies Office: Educational Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Educational Activities to someone by E-mail Share Vehicle Technologies Office: Educational Activities on Facebook Tweet about Vehicle Technologies Office: Educational Activities on Twitter Bookmark Vehicle Technologies Office: Educational Activities on Google Bookmark Vehicle Technologies Office: Educational Activities on Delicious Rank Vehicle Technologies Office: Educational Activities on Digg Find More places to share Vehicle Technologies Office: Educational Activities on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Graduate Automotive Technology Education (GATE) Educational Activities EcoCAR 2: Plugging In to the Future EcoCAR 2: Plugging In to the Future is the successor to EcoCAR: The NeXt

292

Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources The DOE Information Center's current collection has more than 40,000 documents consisting of technical reports and historical materials that relate to DOE operations....

293

A technology strategy analysis for the deployment of broadband connectivity for economic development in emerging economies : studying the case of Kenya using the CLIOS process  

E-Print Network (OSTI)

The role of Information Communication Technology (ICT) in economic development is increasingly moving to the core of national competitiveness strategies around the world thanks to its revolutionary power as a critical ...

Omwenga, Brian Gichana

2009-01-01T23:59:59.000Z

294

DTE Energy Technologies With Detroit Edison Co. and Kinectrics Inc.: Distributed Resources Aggregation Modeling and Field Configuration Testing  

Science Conference Proceedings (OSTI)

Summarizes the work of DTE Energy Technologies, Detroit Edison, and Kinectrics, under contract to DOE's Distribution and Interconnection R&D, to develop distributed resources aggregation modeling and field configuration testing.

Not Available

2003-10-01T23:59:59.000Z

295

Automatic service deployment using virtualisation  

E-Print Network (OSTI)

Manual deployment of the application usually requires expertise both about the underlying system and the application. Automatic service deployment can improve deployment significantly by using on-demand deployment and selfhealing services. To support these features this paper describes an extension the Globus Workspace Service [10]. This extension includes creating virtual appliances for Grid services, service deployment from a repository, and influencing the service schedules by altering execution planning services, candidate set generators or information systems. 1 2 1.

Gabor Kecskemeti; Peter Kacsuk; Gabor Terstyanszky; Tamas Kiss; Thierry Delaitre

2008-01-01T23:59:59.000Z

296

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

2003. Hatziargyriou, N. et al. , “Microgrids, An Overview ofand Operation of Microgrids in Commercial Buildings”, IEEEsuccessful deployment of microgrids will depend heavily on

Stadler, Michael

2008-01-01T23:59:59.000Z

297

Technologies for Distributed Energy Resources. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet  

DOE Green Energy (OSTI)

This four-page fact sheet describes distributed energy resources for Federal facilities, which are being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels.

Pitchford, P.; Brown, T.

2001-07-16T23:59:59.000Z

298

A Joint Workshop on Promoting the Development and Deployment of IGCC/Co-Production/CCS Technologies in China and the United States. Workshop report  

SciTech Connect

With both China and the United States relying heavily on coal for electricity, senior government officials from both countries have urged immediate action to push forward technology that would reduce carbon dioxide emissions from coal-fired plants. They discussed possible actions at a high-level workshop in April 2009 at the Harvard Kennedy School jointly sponsored by the Belfer Center's Energy Technology Innovation Policy (ETIP) research group, China's Ministry of Science and Technology, and the Chinese Academy of Sciences. The workshop examined issues surrounding Integrated Gasification Combined Cycle (IGCC) coal plants, which turn coal into gas and remove impurities before the coal is combusted, and the related carbon capture and sequestration, in which the carbon dioxide emissions are captured and stored underground to avoid releasing carbon dioxide into the atmosphere. Though promising, advanced coal technologies face steep financial and legal hurdles, and almost certainly will need sustained support from governments to develop the technology and move it to a point where its costs are low enough for widespread use.

Zhao, Lifeng; Ziao, Yunhan; Gallagher, Kelly Sims

2009-06-03T23:59:59.000Z

299

A Joint Workshop on Promoting the Development and Deployment of IGCC/Co-Production/CCS Technologies in China and the United States. Workshop report  

SciTech Connect

With both China and the United States relying heavily on coal for electricity, senior government officials from both countries have urged immediate action to push forward technology that would reduce carbon dioxide emissions from coal-fired plants. They discussed possible actions at a high-level workshop in April 2009 at the Harvard Kennedy School jointly sponsored by the Belfer Center's Energy Technology Innovation Policy (ETIP) research group, China's Ministry of Science and Technology, and the Chinese Academy of Sciences. The workshop examined issues surrounding Integrated Gasification Combined Cycle (IGCC) coal plants, which turn coal into gas and remove impurities before the coal is combusted, and the related carbon capture and sequestration, in which the carbon dioxide emissions are captured and stored underground to avoid releasing carbon dioxide into the atmosphere. Though promising, advanced coal technologies face steep financial and legal hurdles, and almost certainly will need sustained support from governments to develop the technology and move it to a point where its costs are low enough for widespread use.

Zhao, Lifeng; Ziao, Yunhan; Gallagher, Kelly Sims

2009-06-03T23:59:59.000Z

300

Wind Resource Atlas of Oaxaca | Open Energy Information  

Open Energy Info (EERE)

Resource Atlas of Oaxaca Resource Atlas of Oaxaca Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Atlas of Oaxaca Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.nrel.gov/wind/pdfs/34519.pdf Equivalent URI: cleanenergysolutions.org/content/wind-resource-atlas-oaxaca,http://cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This wind resource atlas identifies wind characteristics and distribution of wind resources in Oaxaca, Mexico, at a wind power density of 50 meters above ground. The detailed wind resource maps contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation, village power, and off-grid wind energy applications. The wind maps were created using a

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electric Vehicle Charging Infrastructure Deployment Guidelines: British  

Open Energy Info (EERE)

Electric Vehicle Charging Infrastructure Deployment Guidelines: British Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia Agency/Company /Organization: Natural Resources Canada, British Columbia Hydro and Power Authority Focus Area: Vehicles Topics: Best Practices Website: www.bchydro.com/etc/medialib/internet/documents/environment/EVcharging A major component of winning public acceptance for plug-in vehicles is the streamlining of the private electric vehicle charging or supply equipment permitting and installation process as well as the public and commercial availability of charging locations. These guidelines are intended to anticipate the questions and requirements to ensure customer satisfaction.

302

SRNL Deploys Innovative Radiation Mapping Device | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRNL Deploys Innovative Radiation Mapping Device SRNL Deploys Innovative Radiation Mapping Device SRNL Deploys Innovative Radiation Mapping Device November 3, 2011 - 12:00pm Addthis The Savannah River National Laboratory completed successful deployments of the RadBall, a gamma radiation-mapping device. The Savannah River National Laboratory completed successful deployments of the RadBall, a gamma radiation-mapping device. AIKEN, S.C. - The Savannah River National Laboratory (SRNL), EM's national lab, has made strides with remote technology designed to reduce worker exposure while measuring radiation in contaminated areas. uilding on a successful collaboration with the United Kingdom's National Nuclear Laboratory, SRNL completed successful deployments of RadBall, a gamma radiation-mapping device, after testing the technology. The device

303

Tunable non-Gaussian resources for continuous-variable quantum technologies  

E-Print Network (OSTI)

We introduce and discuss a set of tunable two-mode states of continuous-variable systems, as well as an efficient scheme for their experimental generation. This novel class of tunable entangled resources is defined by a general ansatz depending on two experimentally adjustable parameters. It is very ample and flexible as it encompasses Gaussian as well as non-Gaussian states. The latter include, among others, known states such as squeezed number states and de-Gaussified photon-added and photon-subtracted squeezed states, the latter being the most efficient non-Gaussian resources currently available in the laboratory. Moreover, it contains the classes of squeezed Bell states and even more general non-Gaussian resources that can be optimized according to the specific quantum technological task that needs to be realized. The proposed experimental scheme exploits linear optical operations and photon detections performed on a pair of uncorrelated two--mode Gaussian squeezed states. The desired non-Gaussian state is then realized via ancillary squeezing and conditioning. Two independent, freely tunable experimental parameters can be exploited to generate different states and to optimize the performance in implementing a given quantum protocol. As a concrete instance, we analyze in detail the performance of different states considered as resources for the realization of quantum teleportation in realistic conditions. For the fidelity of teleportation of an unknown coherent state, we show that the resources associated to the optimized parameters outperform, in a significant range of experimental values, both Gaussian twin beams and photon-subtracted squeezed states.

F. Dell'Anno; D. Buono; G. Nocerino; A. Porzio; S. Solimeno; S. De Siena; F. Illuminati

2013-08-11T23:59:59.000Z

304

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

Gas-Fired Distributed Energy Resource Characterizations”,and J.L. Edwards, “Distributed Energy Resources CustomerN ATIONAL L ABORATORY Distributed Energy Resources On-Site

Stadler, Michael

2008-01-01T23:59:59.000Z

305

High Technology and Biotechnology Customers and Distributed Energy Resources: Can Energy Parks and Other Distributed Energy Resource s Services Meet Their Needs?  

Science Conference Proceedings (OSTI)

How to attract customers in the growth sectors of the economy? That's a question nearly all utilities face. This report examines how two sectors -- high technology and biotechnology (HBT) -- view energy, specifically distributed energy resources (DER) and the concept of energy parks.

2004-01-30T23:59:59.000Z

306

Renewable sources of energy and the related technologies are considered clean resources as the optimal use of these resources minimizes the environmental  

E-Print Network (OSTI)

ABSTRACT Renewable sources of energy and the related technologies are considered clean resources interest in the scientific exploration of renewable energy sources. Energy available from the sun and fabricated selected renewable energy devices viz. animal feed solar cooker, solar tunnel dryer, improved

Kumar, M. Jagadesh

307

Geothermal Electricity Technology Evaluation Model (GETEM) | Open Energy  

Open Energy Info (EERE)

Electricity Technology Evaluation Model (GETEM) Electricity Technology Evaluation Model (GETEM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Electricity Technology Evaluation Model (GETEM) Agency/Company /Organization: National Renewable Energy Laboratory Sector: Climate Focus Area: Geothermal Phase: Evaluate Options Topics: Opportunity Assessment & Screening Resource Type: Software/modeling tools User Interface: Desktop Application Website: www1.eere.energy.gov/geothermal/getem.html OpenEI Keyword(s): EERE tool Equivalent URI: cleanenergysolutions.org/content/geothermal-electricity-technology-eva Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance References: Geothermal Electricity Technology Evaluation Model[1] Model the estimated performance and costs of available U.S. geothermal

308

Deployment of CCS Technologies across the Load Curve for a Competitive Electricity Market as a Function of CO2 Emissions Permit Prices  

Science Conference Proceedings (OSTI)

Consistent with other published studies, the modelling presented here reveals that baseload power plants are the first aspects of the electricity sector to decarbonize and are essentially decarbonized once CO2 permit prices exceed a certain threshold ($90/ton CO2 in this study). The decarbonization of baseload electricity is met by significant expansions of nuclear power and renewable energy generation technologies as well as the application of carbon dioxide capture and storage (CCS) technologies applied to both coal and natural gas fired power plants. Relatively little attention has been paid thus far to whether intermediate and peaking units would respond the same way to a climate policy given the very different operational and economic context that these kinds of electricity generation units operate under. In this paper, the authors discuss key aspects of the load segmentation methodology used to imbed a varying electricity demand within the GCAM (a state-of-the-art Integrated Assessment Model) energy and economic modelling framework and present key results on the role CCS technologies could play in decarbonizng subpeak and peak generation (encompassing only the top 10% of the load) and under what conditions. To do this, the authors have modelled two hypothetical climate policies that require 50% and 80% reductions in US emissions from business as usual by the middle of this century. Intermediate electricity generation is virtually decarbonized once carbon prices exceed approximately $150/tonCO2. When CO2 permit prices exceed $160/tonCO2, natural gas power plants with CCS have roughly the same marketshare as conventional gas plants in serving subpeak loads. The penetration of CCS into peak load (upper 6% here) is minimal under the scenarios modeled here suggesting that CO2 emissions from this aspect of the U.S. electricity sector would persist well into the future even with stringent CO2 emission control policies in place.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.

2011-04-18T23:59:59.000Z

309

Methodology for Fleet Deployment Decisions  

Science Conference Proceedings (OSTI)

Utilities can apply a rigorous, optimized methodology for creating deployment plans for their fossil power plants. These deployment plans maximize corporate-wide value under various business environments. Case studies at Consolidated Edison of New York and Central Illinois Public Service Company (CIPS) refined the approach and confirmed its merit for evaluating fleet deployment decisions.

1995-04-14T23:59:59.000Z

310

China-International Industrial Energy Efficiency Deployment Project | Open  

Open Energy Info (EERE)

China-International Industrial Energy Efficiency Deployment Project China-International Industrial Energy Efficiency Deployment Project Jump to: navigation, search Name China-International Industrial Energy Efficiency Deployment Project Agency/Company /Organization United States Department of Energy (USDOE), Institute for Sustainable Communities (ISC), Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus Area Industry Topics Implementation, Low emission development planning, Technology characterizations Program Start 2011 Program End 2013 Country China Eastern Asia References International Industrial Energy Efficiency Deployment Project[1] Overview China "China is prioritizing a low carbon, energy efficient economy and has

311

Community Renewable Energy Deployment Webinars | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Deployment Webinars Community Renewable Energy Deployment Webinars Community Renewable Energy Deployment Webinars Community Renewable Energy Deployment (CommRE) Webinars provide information on successful community renewable energy projects, including the challenges and barriers faced during development. Find past webinars, and download presentations and supporting materials below. Past Webinars April 16, 2013: Community-Scale Anaerobic Digesters This webinar provided information on San Jose, California's, commercial-scale, high solids dry fermentation anaerobic digestion system, and the Forest County Potawatomi Community's anaerobic digester project. March 19, 2013: Renewable Energy Parks This webinar provided information on how two cities in Washington and New York integrated multiple renewable energy technologies to create renewable

312

International Industrial Energy Efficiency Deployment Project | Open Energy  

Open Energy Info (EERE)

Industrial Energy Efficiency Deployment Project Industrial Energy Efficiency Deployment Project Jump to: navigation, search Name International Industrial Energy Efficiency Deployment Project Agency/Company /Organization United States Department of Energy (USDOE), Institute for Sustainable Communities (ISC), Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus Area Industry Topics Implementation, Low emission development planning, Technology characterizations Program Start 2011 Program End 2013 Country China, India Eastern Asia, Southern Asia References International Industrial Energy Efficiency Deployment Project[1] Overview China "China is prioritizing a low carbon, energy efficient economy and has

313

Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions  

SciTech Connect

The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The ReEDS model was used to simulate utility PV and CSP deployment for this present study, based on several market and performance assumptions - electricity demand, natural gas prices, coal retirements, cost and performance of non-solar renewable technologies, PV resource variability, distributed PV deployment, and solar market supply growth - in addition to the SunShot solar price projections. This study finds that utility-scale solar deployment is highly sensitive to solar prices. Other factors can have significant impacts, particularly electricity demand and natural gas prices.

Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M.

2013-04-01T23:59:59.000Z

314

Development of Methodologies for Technology Deployment for Advanced Outage Control Centers that Improve Outage Coordination, Problem Resolution and Outage Risk Management  

SciTech Connect

This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The long term viability of existing nuclear power plants in the U.S. will depend upon maintaining high capacity factors, avoiding nuclear safety issues and reducing operating costs. The slow progress in the construction on new nuclear power plants has placed in increased importance on maintaining the output of the current fleet of nuclear power plants. Recently expanded natural gas production has placed increased economic pressure on nuclear power plants due to lower cost competition. Until recently, power uprate projects had steadily increased the total output of the U.S. nuclear fleet. Errors made during power plant upgrade projects have now removed three nuclear power plants from the U.S. fleet and economic considerations have caused the permanent shutdown of a fourth plant. Additionally, several utilities have cancelled power uprate projects citing economic concerns. For the past several years net electrical generation from U.S. nuclear power plants has been declining. One of few remaining areas where significant improvements in plant capacity factors can be made is in minimizing the duration of refueling outages. Managing nuclear power plant outages is a complex and difficult task. Due to the large number of complex tasks and the uncertainty that accompanies them, outage durations routinely exceed the planned duration. The ability to complete an outage on or near schedule depends upon the performance of the outage management organization. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status and periodic briefings in the OCC. Much of the information displayed in OCCs is static and out of date requiring an evaluation to determine if it is still valid. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across and out of the OCC. Additionally, advances in the areas of mobile worker technologies, computer based procedures and electronic work packages can be leveraged to improve the availability of real time status to outage managers.

Shawn St. Germain; Ronald Farris; Heather Medeman

2013-09-01T23:59:59.000Z

315

Conducting Private R&D at PNNL Tapping valuable government resources with a unique Use Permit  

E-Print Network (OSTI)

Conducting Private R&D at PNNL Tapping valuable government resources with a unique Use Permit What, Battelle has built a rich history of technology deployment at PNNL that reaches even beyond American. Unique to PNNL is a powerful technology development and transfer mechanism known as the Use Permit

316

Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leading the Nation in Clean Energy Deployment (Fact Sheet), Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID) Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID) This document summarizes key efforts and projects that are part of the DOE/NREL Integrated Deployment effort to integrated energy efficiency and renewable energy technologies in cities, states, island locations, and communities around the world. id_overview.pdf More Documents & Publications A Tale of Two Cities: Greensburg Rebuilds as a National Model for Green Communities (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita (Fact

317

A Strategic Framework for SMR Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Strategic Framework for SMR Deployment A Strategic Framework for SMR Deployment A Strategic Framework for SMR Deployment A strategy for the successful deployment of small modular reactors (SMRs) must consider what the goals of deployment would entail, the challenges to achieving these goals and the approach to overcome those challenges. This paper will attempt to offer a framework for addressing these important issues at the outset of the program. The deployment of SMRs will be realized by private power companies making the decision to purchase and operate SMRs from private vendors. The government role is to set national priorities for clean energy and national security and create incentives to achieve them. The policy tools the government may choose to use to advance this technology in support of these national objectives will evolve as SMRs

318

Resource Letter: Bio-molecular Nano-machines: where Physics, Chemistry, Biology and Technology meet  

E-Print Network (OSTI)

Cell is the structural and functional unit of life. This Resource Letter serves as a guide to the literature on nano-machines which drive not only intracellular movements, but also motility of the cell. These machines are usually proteins or macromolecular assemblies which require appropriate fuel for their operations. Although, traditionally, these machines were subjects of investigation in biology and biochemistry, increasing use of the concepts and techniques of physics in recent years have contributed to the quantitative understanding of the fundamental principles underlying their operational mechanisms. The possibility of exploiting these principles for the design and control of artificial nano-machines has opened up a new frontier in the bottom-up approach to nano-technology.

Debashish Chowdhury

2008-07-17T23:59:59.000Z

319

Resource Guide for Technology Transfer to the Pulp and Paper Industry: Part 4: Power Plant Maintenance and Repair  

Science Conference Proceedings (OSTI)

In response to requests from EPRI's member utilities, EPRI's Pulp, Paper and Forest Products Office has developed a Resource Guide for technology products related to that industry. The Resource Guide contains an initial listing of technical reports, software, and products associated with power plant maintenance and repair as found in the EPRIWeb electronic database. These products are arranged to provide the reader with a quick evaluation of each item for applicability to the reader's specific needs.

2000-03-19T23:59:59.000Z

320

Data warehousing and mining technologies for adaptability in turbulent resources business environments  

Science Conference Proceedings (OSTI)

Resources businesses often undergo turbulent and volatile periods, due to rapid increase of resource demand and poorly organised resources data volumes. This volatile industry operates multifaceted business units that manage heterogeneous data sources. ...

Shastri L. Nimmagadda; Heinz Dreher

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NREL: Geothermal Technologies - Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Research Staff...

322

EERE: Commercialization & Deployment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

marketplace. Commercialization Commercialization initiatives help bridge the gap between technology R&D and venture capital funding and marketing. Energy Innovation Portal...

323

Final Report USPS Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

ECRV program, the Postal Service has been able to assess the degree of maturity of Battery Electric Vehicle (BEV) technology and its suitability for mail delivery and...

324

State Support for Clean Energy Deployment: Lessons Learned for Potential Future Policy  

Science Conference Proceedings (OSTI)

Proposed federal clean energy initiatives and climate legislation have suggested significant increases to federal funding for clean energy deployment and investment. Many states and utilities have over a decade of experience and spend billions of public dollars every year to support EE/RE deployment through programs that reduce the cost of technologies, provide financing for EE/RE projects, offer technical assistance, and educate market participants. Meanwhile, constraints on public expenditures at all levels of government continue to call upon such programs to demonstrate their value. This report reviews the results of these programs and the specific financial incentives and financing tools used to encourage clean energy investment. Lessons from such programs could be used to inform the future application of EE/RE incentives and financing tools. These lessons learned apply to use of distributed resources and the historical focus of these EE/RE programs.

Kubert, C.; Sinclair, M.

2011-04-01T23:59:59.000Z

325

Evaluation Framework and Tools for Distributed Energy Resources  

E-Print Network (OSTI)

of Customer Adoption of Distributed Energy Resources." LBNL-Strategic Plan for Distributed Energy Resources." U.S.3. Effects of Distributed Energy Resources Deployment

Gumerman, Etan Z.; Bharvirkar, Ranjit R.; LaCommare, Kristina Hamachi; Marnay, Chris

2003-01-01T23:59:59.000Z

326

Utility-Scale Smart Meter Deployments, Plans & Proposals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

edisonfoundation.net/IEE edisonfoundation.net/IEE Utility-Scale Smart Meter Deployments, Plans & Proposals April 2010 Utility State Target Number of Meters Notes Resources AEP 1 IN, KY, MI, OH, OK, TX, VA, WV 5,000,000 AEP plans on deploying smart meters to all customers within their service territory and have deployed 10,000 meters to customers in South Bend, IN, and are presently deploying another 700,000 to AEP-Texas customers. Timing for the remaining deployments will depend on specific conditions in each of the seven operating company subsidiaries. AEP Corporate Sustainability Report 2009 2 Allegheny Power MD, PA, WV 700,000 Allegheny launched pilots in Morgantown, WV and Urbana, MD to test smart meters and thermostats (1,140 meters installed). In PA, Act 129 (2008)

327

FTT:Power : A global model of the power sector with induced technological change and natural resource depletion  

E-Print Network (OSTI)

. The decarbonisation of the global power system depends first and foremost on the rate at which highly emitting technologies based on fossil fuels can be substituted for cleaner ones. While fossil fueled electricity generation technologies are mature and well... determine the 90% confidence level, and the blue curve corresponds to the most probable set of values. Uncertainty in the determination of natural resource avail- ability is notable in the case of fossil fuel reserves and re- sources. Rogner (1997) paints a...

Mercure, Jean-Francois

2011-08-25T23:59:59.000Z

328

Fuel Cell Technologies Office: Technology Validation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Technology Validation Search Search Help Technology Validation EERE Fuel Cell Technologies Office Technology Validation Printable Version Share this resource...

329

Building Technologies Program Website | Open Energy Information  

Open Energy Info (EERE)

Building Technologies Program Website Building Technologies Program Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building Technologies Program Website Focus Area: Energy Efficiency Topics: Best Practices Website: www1.eere.energy.gov/buildings/index.html Equivalent URI: cleanenergysolutions.org/content/building-technologies-program-website Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: "Building Codes,Appliance & Equipment Standards and Required Labeling" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

330

Market and policy barriers to energy storage deployment : a study for the energy storage systems program.  

SciTech Connect

Electric energy storage technologies have recently been in the spotlight, discussed as essential grid assets that can provide services to increase the reliability and resiliency of the grid, including furthering the integration of variable renewable energy resources. Though they can provide numerous grid services, there are a number of factors that restrict their current deployment. The most significant barrier to deployment is high capital costs, though several recent deployments indicate that capital costs are decreasing and energy storage may be the preferred economic alternative in certain situations. However, a number of other market and regulatory barriers persist, limiting further deployment. These barriers can be categorized into regulatory barriers, market (economic) barriers, utility and developer business model barriers, crosscutting barriers and technology barriers. This report, through interviews with stakeholders and review of regulatory filings in four regions roughly representative of the United States, identifies the key barriers restricting further energy storage development in the country. The report also includes a discussion of possible solutions to address these barriers and a review of initiatives around the country at the federal, regional and state levels that are addressing some of these issues. Energy storage could have a key role to play in the future grid, but market and regulatory issues have to be addressed to allow storage resources open market access and compensation for the services they are capable of providing. Progress has been made in this effort, but much remains to be done and will require continued engagement from regulators, policy makers, market operators, utilities, developers and manufacturers.

Bhatnagar, Dhruv; Currier, Aileen B.; Hernandez, Jacquelynne; Ma, Ookie [U.S. Department of Energy, Washington, D.C.; Kirby, Brendan [U.S. Department of Energy, Washington, D.C.

2013-09-01T23:59:59.000Z

331

Community Renewable Energy Deployment Success Stories: Financing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Deployment Success Stories: Financing Renewable Energy Projects Webinar Community Renewable Energy Deployment Success Stories: Financing Renewable Energy...

332

Energy from the west: a progress report of a technology assessment of western energy resource development. Executive summary  

SciTech Connect

This report covers a three year technology assessment of the development of six energy resources (coal, geothermal, natural gas, oil, oil shale, and uranium) in eight western states (Arizona, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming) during the period from the present to the year 2000.

White, I.L.; Chartock, M.A.; Leonard, R.L.; LaGrone, F.S.; Bartosh, C.P.

1977-10-01T23:59:59.000Z

333

Energy Technology Cost and Performance Data | Open Energy Information  

Open Energy Info (EERE)

Energy Technology Cost and Performance Data Energy Technology Cost and Performance Data (Redirected from US Department of Energy - Energy Technology Cost and Performance Data) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Technology Cost and Performance Data Agency/Company /Organization: United States Department of Energy Sector: Energy Topics: Resource assessment Resource Type: Dataset Website: www.nrel.gov/analysis/tech_cost_data.html Equivalent URI: cleanenergysolutions.org/content/energy-technology-cost-and-performanc Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation References: Energy Technology Cost and Performance Data: Homepage[1] Logo: Energy Technology Cost and Performance Data This data indicates the range of recent cost estimates for renewable energy

334

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Explosive Components Facility Explosive Components Facility The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis capabilities for energetic materials and explosive components: advanced design of energetic devices and subsystems optical ordnance energetic materials testing of explosives and explosive components and subsystems advanced explosives diagnostics reliability analyses failure modes evaluation safety evaluation The ECF has the full-range of capabilities necessary to support the understanding of energetic materials and components: Optical and Semiconductor Bridge (SCB) Initiation Laboratories Characterization Laboratories thermal properties gas analyses powder characterization

335

NREL: Technology Deployment - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 November 27, 2007 NREL Sponsors Energy Analysis Forum on Carbon Policy Design The National Renewable Energy Laboratory (NREL) held its fifth Energy Analysis Forum, "Analytic Insights into Carbon Policy Design and the Implications for Energy Efficiency and Renewable Energy," in Golden, Colorado, on November 27-28. September 14, 2007 NREL Receives Presidential Award for Federal Energy Management SEAAC staff members Nancy Carlisle and Otto Van Geet have been selected to receive one of the 2007 Presidential Awards for Leadership in Federal Energy Management. September 1, 2007 NREL, LBNL Sponsor Workshop on Renewable Energy Certificates (RECs) NREL and Lawrence Berkeley National Laboratory (LBNL) cosponsored a "Workshop on Renewable Energy Certificate Markets and Challenges." The

336

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Shock Thermodynamic Applied Research Facility (STAR) Shock Thermodynamic Applied Research Facility (STAR) The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only experimental test facility in the world that can cover the full range of pressure (bars to multi-Mbar) for material property study utilizing gas/propellant launchers, ramp-loading pulsers, and ballistic applications. Material Characterization Shock wave experiments are an established technique to determine the equation of state at high pressures and temperature, which can be applied to virtually all materials. This technique allows the probing of the internal structure of the material as it undergoes deformation. This provides a better understanding of the material properties for development

337

FEMP Designated Products - Technology Deployment Synergies  

NLE Websites -- All DOE Office Websites (Extended Search)

That Overlap Geothermal Heat Pumps Commercial ground source heat pumps Commercial Boilers Condensing Boilers Commercial Gas Water Heaters Tankless Water Heater - Gas Water...

338

NREL: Technology Deployment - Models and Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

use energy data via Web services, including renewable energy and alternative fuel data OpenEI Open data platform that provides energy information and links data together RE Atlas...

339

NREL: Technology Deployment - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

its annual Web application contest. May 21, 2012 Kaupuni Village: The First Net-Zero Affordable Housing Community in Hawaii Kaupuni Village is located on land provided by...

340

NREL: Technology Deployment - Climate Neutral Research Campuses  

NLE Websites -- All DOE Office Websites (Extended Search)

in a row across the top of the page. The first photo shows the profile of a wind turbine at dusk; the second of two women in white laboratory coats and glasses observing a...

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Federal Energy Management Program: Technology Deployment Goals...  

NLE Websites -- All DOE Office Websites (Extended Search)

Order (E.O.) 13514, E.O. 13423, Energy Independence and Security Act (EISA) of 2007, Energy Policy Act (EPAct) of 2005, EPAct 1992, and others. Accelerating advanced and...

342

NREL: Technology Deployment - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL. December 30, 2011 St. Thomas Airport Installs Largest Solar Project in U.S. Virgin Islands Solar energy is making its mark in the U.S. Virgin Islands (USVI), as evidenced by...

343

NREL: Technology Deployment - Renewable Energy Optimization Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL worked with the U.S. Navy to prioritize their 70 worldwide installations for renewable energy projects opportunities. At high priority sites, the NREL team continues...

344

NREL: Technology Deployment - Disaster Resiliency and Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

government, non-profits, and communities to address the energy-related considerations of disaster prevention and planning, response and recovery, and rebuilding. a woman leads a...

345

NREL: Technology Deployment - Technical Assistance for Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

for Islands NREL provides technical assistance to help islands reduce dependence on fossil fuels and increase energy security by implementing energy efficiency measures and...

346

Federal Energy Management Program: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Envelope Heating, Ventilation, and Air Conditioning Lighting Water Heating Combined Heat and Power Refrigeration, Computer Power Management, and Vending Machine Goals and...

347

Transportation Energy Futures Series: Vehicle Technology Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

as well as the full series of reports, can be found at http:www.eere.energy.govanalysistransportationenergyfutures. Contract Nos. DC-A36-08GO28308 and DE-AC02-06CH11357 v...

348

NREL: Technology Deployment - Federal Agency Technical Assistance  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Energy Management Program Solar Decathlon Sustainable Federal Fleets Wind Powering America. U.S. Department of Defense NREL actively supports the U.S. Army Net Zero...

349

NREL: Technology Deployment - Fuels, Vehicles, and Transportation...  

NLE Websites -- All DOE Office Websites (Extended Search)

in-depth information about biodiesel, electricity, ethanol, hydrogen, natural gas, and propane, as well as the vehicles that use these fuels and the infrastructure used to deliver...

350

NREL: Technology Deployment - National Collegiate Wind Competition  

NLE Websites -- All DOE Office Websites (Extended Search)

Acceleration Biopower & Waste-to-Energy Buildings Fuels, Vehicles, & Transportation Microgrid Design Solar Wind Success Stories Publications Models & Tools News Did you find what...

351

Optical Sensor Technology Development and Deployment  

Science Conference Proceedings (OSTI)

The objectives of this ESP (Enhanced Surveillance) project are to evaluate sensor performance for future aging studies of materials, components and weapon systems. The goal of this project is to provide analysis capability to experimentally identify and characterize the aging mechanisms and kinetics of Core Stack Assembly (CSA) materials. The work on fiber optic light sources, hermetic sealing of fiber optics, fiber optic hydrogen sensors, and detection systems will be discussed.

B. G. Parker

2005-01-24T23:59:59.000Z

352

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Detection Materials Characterization Laboratory Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas: (1) testing and characterizing radiation detector materials and devices; and (2) determining the relationships between the physical properties of the detector materials and the device response. Systems of interest include scintillators and room-temperature semiconductors for detection arrays of x-rays, gamma rays and neutrons. User Support The facility's special capabilities include: low-noise environment to test solid-state detectors for x-ray, gamma-ray, and neutron response mass spectrometry to quantify contaminants in detectors and detector-grade materials photoluminescence and thermally-stimulated current to measure

353

NREL: Technology Deployment - Other Federal Agency Support  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Federal Agency Support Other Federal Agency Support Photo of a man and a woman standing behind a ground-mounted solar panel installation. Merry Edwards Winery in California is almost 100% solar powered and just one example of the more than 77,511 project applications reviewed by NREL prior to receiving funding through the U.S. Department of Treasury Recovery Act Section 1603 Treasury Grant Program. Courtesy of Ben Miller, Merry Edwards Winery Through work-for-others agreements, NREL supports other federal agencies in finding ways to meet energy savings goals through energy assessments, analysis, project guidance, and other activities. General Services Administration Since 2007, NREL has worked with the General Services Administration (GSA) to conduct energy assessments and identify opportunities for distributed

354

Audit Report on "The Office of Science's Management of Information Technology Resources"  

SciTech Connect

The Department of Energy's Office of Science (Science) and its facility contractors are aggressive users of information technology (IT) to support fundamental research in areas such as energy, environmental remediation and computational sciences. Of its $4 billion Fiscal Year 2008 budget, Science spent about $287 million to manage its IT program. This included cyber security activities, acquisition of hardware and software, and support service costs used to maintain the operating environments necessary to support the missions of the program. Prior Office of Inspector General reports have identified various issues with Science's management of its IT programs and resources. For instance, our report on Facility Contractor Acquisition and Management of Information Technology Hardware (DOE/IG-0768, June 2007) noted that the Science sites reviewed spent more than necessary when acquiring IT hardware. In another example, our review of The Department's Efforts to Implement Common Information Technology Services at Headquarters (DOE/IG-0763, March 2007) disclosed that Science's reluctance to adopt the Department of Energy Common Operating Environment (DOE-COE) at Headquarters contributed to the Department's inability to fully realize potential cost savings through consolidation and economies of scale. In light of the magnitude of the Office of Science IT program and previously identified program weaknesses, we initiated this audit to determine whether Science adequately managed its IT resources. Science had taken a number of actions to improve its cyber security posture and align its program to Federal requirements. Yet, our review disclosed that it had not taken some basic steps to enhance security and reduce costs. In particular, we found that: (1) For their non-scientific computing environments, all seven of the field sites reviewed (two Federal, five contractor) had implemented security configurations that were less stringent than those included in the Federal Desktop Core Configuration. This configuration was designed by the National Institute of Standards and Technology and its use was mandated by the Office of Management and Budget; (2) Although we previously highlighted weaknesses and recommended corrective actions, Science still had not fully established or enforced IT hardware standards for acquiring hardware such as desktop and laptop computers or related peripherals, contributing to significant unnecessary expenditures; and (3) While we have noted in a series of past reports that significant savings could be realized from aggregating demand for IT services and products across the enterprise, Science had not implemented a common infrastructure for users at its Federal sites and continued to maintain an IT environment independent of the Department's Common IT Operating Environment. The weaknesses identified were attributable, at least in part, to a lack of adequate policies and procedures for ensuring effective cyber security and hardware acquisition practices. In addition, Science had not effectively monitored the performance of its field sites to ensure that previously reported internal control weaknesses were addressed and had not implemented an appropriate mechanism to track its IT-related costs. Without improvements, Science may be unable to realize the benefits of improved security over its information systems, reduce costs associated with hardware acquisition, and lower IT support costs through consolidation of services. In particular, we determined that Science could potentially realize savings of more than $3.3 million over the next three years by better controlling hardware costs and implementing standards for certain equipment. Furthermore, Science could continue to pay for duplicative IT support services and fail to take advantage of opportunities to lower costs and apply potential savings to mission-related work. During the course of our audit work, we learned from Science officials that they had initiated the process of revising the Program Cyber Security Plan to better clarify its policy for implementing

None

2009-11-01T23:59:59.000Z

355

Audit Report on "The Office of Science's Management of Information Technology Resources"  

SciTech Connect

The Department of Energy's Office of Science (Science) and its facility contractors are aggressive users of information technology (IT) to support fundamental research in areas such as energy, environmental remediation and computational sciences. Of its $4 billion Fiscal Year 2008 budget, Science spent about $287 million to manage its IT program. This included cyber security activities, acquisition of hardware and software, and support service costs used to maintain the operating environments necessary to support the missions of the program. Prior Office of Inspector General reports have identified various issues with Science's management of its IT programs and resources. For instance, our report on Facility Contractor Acquisition and Management of Information Technology Hardware (DOE/IG-0768, June 2007) noted that the Science sites reviewed spent more than necessary when acquiring IT hardware. In another example, our review of The Department's Efforts to Implement Common Information Technology Services at Headquarters (DOE/IG-0763, March 2007) disclosed that Science's reluctance to adopt the Department of Energy Common Operating Environment (DOE-COE) at Headquarters contributed to the Department's inability to fully realize potential cost savings through consolidation and economies of scale. In light of the magnitude of the Office of Science IT program and previously identified program weaknesses, we initiated this audit to determine whether Science adequately managed its IT resources. Science had taken a number of actions to improve its cyber security posture and align its program to Federal requirements. Yet, our review disclosed that it had not taken some basic steps to enhance security and reduce costs. In particular, we found that: (1) For their non-scientific computing environments, all seven of the field sites reviewed (two Federal, five contractor) had implemented security configurations that were less stringent than those included in the Federal Desktop Core Configuration. This configuration was designed by the National Institute of Standards and Technology and its use was mandated by the Office of Management and Budget; (2) Although we previously highlighted weaknesses and recommended corrective actions, Science still had not fully established or enforced IT hardware standards for acquiring hardware such as desktop and laptop computers or related peripherals, contributing to significant unnecessary expenditures; and (3) While we have noted in a series of past reports that significant savings could be realized from aggregating demand for IT services and products across the enterprise, Science had not implemented a common infrastructure for users at its Federal sites and continued to maintain an IT environment independent of the Department's Common IT Operating Environment. The weaknesses identified were attributable, at least in part, to a lack of adequate policies and procedures for ensuring effective cyber security and hardware acquisition practices. In addition, Science had not effectively monitored the performance of its field sites to ensure that previously reported internal control weaknesses were addressed and had not implemented an appropriate mechanism to track its IT-related costs. Without improvements, Science may be unable to realize the benefits of improved security over its information systems, reduce costs associated with hardware acquisition, and lower IT support costs through consolidation of services. In particular, we determined that Science could potentially realize savings of more than $3.3 million over the next three years by better controlling hardware costs and implementing standards for certain equipment. Furthermore, Science could continue to pay for duplicative IT support services and fail to take advantage of opportunities to lower costs and apply potential savings to mission-related work. During the course of our audit work, we learned from Science officials that they had initiated the process of revising the Program Cyber Security Plan to better clarif

2009-11-01T23:59:59.000Z

356

Deployment of Infrastructure and Services in the Open Grid Services Architecture (OGSA)*  

E-Print Network (OSTI)

for automated remote deployment of Grid infrastructure and services across organizations in the Globus middleware stack we trialled Smart- Frog (a 3rd party component deployment technology [14]) for Grid the collection of components developed in the laboratory (a version of Smart- Frog, Grid specific deployment

Emmerich, Wolfgang

357

Long-range assessment of R and D policy for gas-related conversion technologies and unconventional natural gas resources  

Science Conference Proceedings (OSTI)

This study analyzes the energy impacts on the US energy-economy system on a set of successful R and D programs. These programs are presumed to have led to the commercialization of innovative technologies that increase the US gaseous fuels resource base and promote the development of advanced natural gas conversion technologies for residential/commercial uses. The GRI and its principal subcontractor, TRW Incorporated, provided the detailed specifications of the energy conditions for both a Base Case and an R and D Policy Case. These conditions can be broadly categorized in terms of key energy resource price assumptions, energy resource availabilities, technology characterizations and market penetration guidelines for all energy technologies. Dale W. Jorgenson Associates (DJA) developed a set of demographic and economic projections including population, employment, and real GNP growth rates. The GRI and TRW staff provided the technology characterizations for most of the gas-related technologies and a number of other technologies. The data for the remaining technology characterizations were taken, for the most part, from Bhagat et al. This report presents the energy results from the BNL/DJA energy-economy system as executed under GRI specifications. It is intended to serve as a complement to the DJA report on the macro-economic consequences of these specifications. Certain assumption incorporated in the R and D and Base scenarios relating to market penetration were identified as particularly sensitive. In light of the uncertainty inherent in them, an additional set of sensitivity runs were requested by GRI and are presented in Appendix B.

Kydes, A.S.; Rabinowitz, J.

1980-04-25T23:59:59.000Z

358

Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Nation in Clean Energy Deployment the Nation in Clean Energy Deployment The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agen- cies, and territories to identify and implement a variety of efficiency and renewable energy technology solutions. Disaster Recovery DOE and NREL technical experts have helped communities like Greensburg, Kansas, and New Orleans, Louisiana, successfully rebuild following disaster by providing assistance with sustainable community planning, forward-thinking policy development, and

359

Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID)  

NLE Websites -- All DOE Office Websites (Extended Search)

Leading the Nation in Clean Energy Deployment Leading the Nation in Clean Energy Deployment The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agen- cies, and territories to identify and implement a variety of efficiency and renewable energy technology solutions. Disaster Recovery DOE and NREL technical experts have helped communities like Greensburg, Kansas, and New Orleans, Louisiana, successfully rebuild following disaster by providing assistance with sustainable community planning, forward-thinking policy development, and

360

The value of adding regional to local stakeholder involvement in evaluating the acceptability of innovative technologies  

SciTech Connect

Technology is urgently needed to clean up contamination by volatile organic compounds at United States Department of Energy (DOE) sites. In many cases, however, existing technology is too slow, inefficient, or expensive. The record of technology development is, in some cases, similarly disappointing. Remediation technologies developed at great expense and evaluated piecemeal over long periods have not been deployed because, in the end, the public judged them ineffective or unacceptable. The need for successful methods of remediation is too great and resources too limited to continue with ineffective technology evaluation. In order to make good decisions about which technologies to deploy, remedial project managers need to know stakeholders` requirements for the performance of proposed technologies. Expanding stakeholder involvement regionally identifies the concerns of a broad range of stakeholders at and DOE sites throughout the West -- issues that must be taken into account if technologies are to be accepted for wide deployment.

Peterson, T.S.; McCabe, G. [Pacific Northwest Lab., Richland, WA (United States); Niesen, K.; Serie, P. [Environmental Issues Management, Inc., Seattle, WA (United States)

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The potential impact of renewable energy deployment on natural gas prices in New England  

E-Print Network (OSTI)

The Potential Impact of Renewable Energy Deployment onand in New England. Renewable energy (RE) technologies cangeneration with fixed-price renewable electricity supply. In

Wiser, Ryan; Bolinger, Mark

2004-01-01T23:59:59.000Z

362

Deployment Barriers to Distributed Wind Energy: Workshop Report -- October 28, 2010  

DOE Green Energy (OSTI)

This report presents key findings from the Department of Energy's Deployment Barriers to Distributed Wind Technology Workshop, held October 28, 2010 in Denver, Colorado.

Not Available

2011-07-01T23:59:59.000Z

363

Cooperative Research and Development Agreement between the California Air Resources Board and Lockheed Martin Idaho Technologies Company. Final report  

DOE Green Energy (OSTI)

This report summarizes the activities under a Cooperative Research and Development Agreement (CRADA) between Lockheed-Martin Idaho Technologies Company (LMITCO) and the California Air Resources Board (CARB). The activities were performed at the Idaho National Engineering and Environmental Laboratory (INEEL) between June 1995 and December 1997. Work under this agreement was concentrated in two task areas as defined in the California Air Resources Board`s contract number 94-908 having an approval date of June 9, 1995: Task 1--EV and HEV Vehicle Testing and Assessment and Task 4--Advanced Battery Testing.

Cole, G.H.

1998-04-01T23:59:59.000Z

364

DOE, Invensys Operations Management to Develop, Deploy Operator Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, Invensys Operations Management to Develop, Deploy Operator DOE, Invensys Operations Management to Develop, Deploy Operator Training System for Supercritical Coal Power Plants DOE, Invensys Operations Management to Develop, Deploy Operator Training System for Supercritical Coal Power Plants December 10, 2012 - 12:00pm Addthis Washington, DC - A new U.S. Department of Energy (DOE) cooperative research and development agreement to develop, test, and deploy a dynamic simulator and operator training system (OTS) could eventually help commercialize important carbon capture technologies at the nation's power plants. The high-fidelity, real-time OTS for a generic supercritical once-through (SCOT) pulverized-coal power plant will be installed at the National Energy Technology Laboratory's (NETL's) Advanced Virtual Energy Simulation

365

MHK Projects/US Navy Wave Energy Technology WET Program at Marine...  

Open Energy Info (EERE)

of Devices Deployed 6 Number of Build Out Units Deployed 7 Main Overseeing Organization Ocean Power Technologies Project Technology *MHK TechnologiesPowerBuoy Project Timeline and...

366

DNC / CRONOS Deployment 703040  

SciTech Connect

KCP tested a classified DNC / CRONOS as a pilot project in FY06 in the Reservoir Machining area. The pilot proved as a successful way to distribute classified NC Programs to machines that run both classified and unclassified programs securely. This also allows for elimination of CREM for machines which had to swap out classified and unclassified hard drives previously. This project’s purpose is to rollout this technology to the remaining machining areas, predominately Department B, Department C and Department A. Associated with this activity is the modification of business practices in the Tool Room / Model Shop areas and to address licensing issues for MASTERCAM to incorporate DNC CRONOS.

Kanies, Tim

2009-03-13T23:59:59.000Z

367

Geothermal resources and technology in the United States. Supporting Paper No. 4  

DOE Green Energy (OSTI)

The types of geothermal resources and their energy contents and producibility are reviewed. The production method and costs, production rates, and prerequisites of development are discussed. (MHR)

Not Available

1979-01-01T23:59:59.000Z

368

ITS Deployment Tracking.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Deployment Statistics Database Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research...

369

NREL: Regional Energy Deployment System (ReEDS) Model - Unique Value of  

NLE Websites -- All DOE Office Websites (Extended Search)

Unique Value of ReEDS Unique Value of ReEDS Spatial Resolution and Variability Consideration The Regional Energy Deployment System (ReEDS) model has singular capabilities that differentiate it from other models and that make it uniquely suitable for certain types of analyses. While ReEDS can model all types of power generators and fuels-coal, gas, nuclear, renewables-it was designed primarily to address considerations for integrating renewable electric technologies into the power grid. In particular, it was designed to address the variable resource issues associated with solar and wind power as well as the remote nature of many of the best wind resources and their need for transmission. These capabilities require the two primary structural elements of ReEDS-a multiplicity of regions and a

370

Building Technology and Urban Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building exterior and infrared thermograph Office building exterior and infrared thermograph Building Technology and Urban Systems Building Technology and Urban Systems application/pdf icon btus-org-chart-03-2013.pdf In the areas of Building Technology and Urban Systems, EETD researchers conduct R&D and develop physical and information technologies to make buildings and urban areas more energy- and resource-efficient. These technologies create jobs and products for the marketplace in clean technology industries. They improve quality of life, and reduce the emissions of pollutants, including climate-altering greenhouse gases. BTUSD's goal is to provide the technologies needed to operate buildings at 50 to 70 percent less energy use than average today. BTUS develops, demonstrates and deploys: Information technologies for the real-time monitoring and control of

371

NREL: Geothermal Technologies - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version News Archives -...

372

Building Technologies Office: Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities DOE financial opportunities for solid-state lighting (SSL) include competitive solicitations, grants, and other federal funding mechanisms to advance innovative, energy-saving SSL technologies. Related Incentives and Funding Opportunities DOE has created this resource to help researchers, manufacturers, and distributors of SSL products locate funding opportunities to advance and deploy innovative, energy-saving technologies. Learn more. Illustration of a microscope, a person holding a large key in front of a factory building, a price tag with a dollar sign on it, and tax forms. DOE SSL Program The DOE SSL program supports research and development of promising SSL technologies through annual competitive solicitations in three areas:

373

Toward a Systematic Framework for Deploying Synchrophasors  

E-Print Network (OSTI)

Toward a Systematic Framework for Deploying Synchrophasors and their Utilization for Improving for Deploying Synchrophasors and their Utilization for Improving Performance of Future Electric Energy Systems a Systematic Framework for Deploying Synchrophasors and their Utilization for Improving Performance of Future

374

International Low-Carbon Energy Technology Platform | Open Energy  

Open Energy Info (EERE)

International Low-Carbon Energy Technology Platform International Low-Carbon Energy Technology Platform Jump to: navigation, search Tool Summary LAUNCH TOOL Name: International Low-Carbon Energy Technology Platform Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Low emission development planning, Policies/deployment programs Resource Type: Lessons learned/best practices Website: www.iea.org/platform.asp International Low-Carbon Energy Technology Platform Screenshot References: International Low-Carbon Energy Technology Platform[1] Logo: International Low-Carbon Energy Technology Platform "The Technology Platform's central aim is to accelerate and scale-up action for the development and deployment of clean energy technologies. It will do this by creating a forum that:

375

Experiences with eucalyptus: deploying an open source cloud  

Science Conference Proceedings (OSTI)

With the recent trend of exploiting resources of the cloud, we have embarked on a journey to deploy an open source cloud using Eucalyptus. During the past year we have learned many lessons about the use of Eucalyptus and clouds in general. The area of ...

Rick Bradshaw; Piotr T. Zbiegiel

2010-11-01T23:59:59.000Z

376

ARM - News : AMF Deployment, Shouxian, China  

NLE Websites -- All DOE Office Websites (Extended Search)

ChinaNews : AMF Deployment, Shouxian, China Shouxian Deployment AMF Home Shouxian Home Data Plots and Baseline Instruments Experiment Planning Proposal Science Plan, (PDF, 1,257K)...

377

Deploying Systems Interoperability and Customer Choice within...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deploying Systems Interoperability and Customer Choice within Smart Grid Title Deploying Systems Interoperability and Customer Choice within Smart Grid Publication Type Conference...

378

Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development  

Science Conference Proceedings (OSTI)

Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

2002-09-01T23:59:59.000Z

379

Energy Department Awards $45 Million to Deploy Advanced Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards $45 Million to Deploy Advanced Awards $45 Million to Deploy Advanced Transportation Technologies Energy Department Awards $45 Million to Deploy Advanced Transportation Technologies September 4, 2013 - 10:06am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Building on President Obama's Climate Action Plan to build a 21st century transportation sector and reduce greenhouse gas emissions, the Energy Department announced today more than $45 million for thirty-eight new projects that accelerate the research and development of vehicle technologies to improve fuel efficiency, lower transportation costs and protect the environment in communities nationwide. "By partnering with universities, private industry and our national labs, the Energy Department is helping to build a strong 21st century

380

Market-based resource allocation for distributed data processing in wireless sensor networks  

Science Conference Proceedings (OSTI)

In recent years, improved wireless technologies have enabled the low-cost deployment of large numbers of sensors for a wide range of monitoring applications. Because of the computational resources (processing capability, storage capacity, etc.) collocated ... Keywords: Wireless sensor networks, distributed algorithms, optimization, pricing

Andrew T. Zimmerman; Jerome P. Lynch; Frank T. Ferrese

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation  

SciTech Connect

Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology; and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.

1980-11-01T23:59:59.000Z

382

Newberry Seismic Deployment Fieldwork Report  

DOE Green Energy (OSTI)

This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquake detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.

Wang, J; Templeton, D C

2012-03-21T23:59:59.000Z

383

Large resource development projects as markets for passive solar technologies. Final report  

DOE Green Energy (OSTI)

A basic premise of this study is that large resource development projects provide a major market opportunity for passive solar manufactured buildings. The primary objectives of the work are to document selected resource development projects and identify their potential housing needs and development schedules, to contact resource industry representatives and assess some of the processes and motivations behind their involvement in housing decisions, and to provide passive solar manufactured buildings producers with results of these steps as early initial market intelligence. The intent is to identify not only the industries, location of their planned projects, and their likely worker housing needs, but also the individuals involved in making housing-related decisions. The 56 identified projects are located within 18 states and cover 11 types of resources. The report documents individual projects, provides protections of total worker-related housing needs, and presents overviews of resource development company involvement in the new construction market. In addition, the report profiles three organizations that expressed a strong interest in implementing the use of low-cost passive solar manufactured buildings in resource-development-related activities.

Roze-Benson, R V

1980-12-01T23:59:59.000Z

384

Energy Department Launches Public-Private Partnership to Deploy Hydrogen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public-Private Partnership to Deploy Public-Private Partnership to Deploy Hydrogen Infrastructure Energy Department Launches Public-Private Partnership to Deploy Hydrogen Infrastructure May 13, 2013 - 1:37pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The Energy Department today launched H2USA -- a new public-private partnership focused on advancing hydrogen infrastructure to support more transportation energy options for U.S. consumers, including fuel cell electric vehicles (FCEVs). The new partnership brings together automakers, government agencies, gas suppliers, and the hydrogen and fuel cell industries to coordinate research and identify cost-effective solutions to deploy infrastructure that can deliver affordable, clean hydrogen fuel in the United States. "Fuel cell technologies are an important part of an all-of-the-above

385

Sysco Deploys Hydrogen Powered Pallet Trucks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks July 12, 2010 - 2:50pm Addthis Food service distribution company Sysco celebrated the grand opening of its highly efficient distribution center in June in Houston. As part of Sysco's efforts to reduce its carbon footprint, the company deployed almost 100 pallet trucks powered by fuel cells that create only water and heat as by-products. The hydrogen fuel cell project's cost was partially covered by funding from a $1.2 million grant provided by the American Recovery and Reinvestment Act through the U.S. Department of Energy's Fuel Cell Technologies Program. The total project cost was $3.3 million. The 98 new Raymond Corporation pallet lifts are powered by Plug Power

386

Leading the Nation in Clean Energy Deployment (Fact Sheet)  

SciTech Connect

This document summarizes key efforts and projects that are part of the DOE/NREL Integrated Deployment effort to integrated energy efficiency and renewable energy technologies in cities, states, island locations, and communities around the world. The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agencies, and territories to identify and implement a variety of efficiency and renewable energy technology solutions.

Not Available

2012-07-01T23:59:59.000Z

387

AMF Deployment, Black Forest, Germany  

NLE Websites -- All DOE Office Websites (Extended Search)

Germany Germany Black Forest Deployment AMF Home Black Forest Home Data Plots and Baseline Instruments CERA COPS Data University of Hohenheim COPS Website COPS Update, April 2009 Experiment Planning COPS Proposal Abstract and Related Campaigns Science Plan (PDF, 12.4M) Outreach COPS Backgrounder (PDF, 306K) Posters AMF Poster, German Vesion Researching Raindrops in the Black Forest News Campaign Images AMF Deployment, Black Forest, Germany Main Site: 48° 32' 24.18" N, 08° 23' 48.72" E Altitude: 511.43 meters In March 2007, the third deployment of the ARM Mobile Facility (AMF) will take place in the Black Forest region of Germany, where scientists will study rainfall resulting from atmospheric uplift (convection) in mountainous terrain, otherwise known as orographic precipitation. ARM

388

Rational Deployment of CSP Heuristics  

E-Print Network (OSTI)

Heuristics are crucial tools in decreasing search effort in varied fields of AI. In order to be effective, a heuristic must be efficient to compute, as well as provide useful information to the search algorithm. However, some well-known heuristics which do well in reducing backtracking are so heavy that the gain of deploying them in a search algorithm might be outweighed by their overhead. We propose a rational metareasoning approach to decide when to deploy heuristics, using CSP backtracking search as a case study. In particular, a value of information approach is taken to adaptive deployment of solution-count estimation heuristics for value ordering. Empirical results show that indeed the proposed mechanism successfully balances the tradeoff between decreasing backtracking and heuristic computational overhead, resulting in a significant overall search time reduction.

Tolpin, David

2011-01-01T23:59:59.000Z

389

High Performance Commercial Buildings Technology Roadmap | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » High Performance Commercial Buildings Technology Roadmap Jump to: navigation, search Tool Summary Name: High Performance Commercial Buildings Technology Roadmap Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Technology characterizations Resource Type: Dataset Website: www.nrel.gov/docs/fy01osti/30171.pdf References: High Performance Commercial Buildings Technology Roadmap[1] Overview "This technology roadmap describes the vision and strategies for addressing these challenges developed by representatives of the buildings industry. Collaborative research, development, and deployment of new technologies, coupled with an integrated "whole-buildings" approach, can shape future

390

Lockheed Martin Idaho Technologies Company information management technology architecture  

Science Conference Proceedings (OSTI)

The Information Management Technology Architecture (TA) is being driven by the business objectives of reducing costs and improving effectiveness. The strategy is to reduce the cost of computing through standardization. The Lockheed Martin Idaho Technologies Company (LMITCO) TA is a set of standards and products for use at the Idaho National Engineering Laboratory (INEL). The TA will provide direction for information management resource acquisitions, development of information systems, formulation of plans, and resolution of issues involving LMITCO computing resources. Exceptions to the preferred products may be granted by the Information Management Executive Council (IMEC). Certain implementation and deployment strategies are inherent in the design and structure of LMITCO TA. These include: migration from centralized toward distributed computing; deployment of the networks, servers, and other information technology infrastructure components necessary for a more integrated information technology support environment; increased emphasis on standards to make it easier to link systems and to share information; and improved use of the company`s investment in desktop computing resources. The intent is for the LMITCO TA to be a living document constantly being reviewed to take advantage of industry directions to reduce costs while balancing technological diversity with business flexibility.

Hughes, M.J.; Lau, P.K.S.

1996-05-01T23:59:59.000Z

391

The technology roadmap for plant/crop-based renewable resources 2020  

DOE Green Energy (OSTI)

The long-term well-being of the nation and maintenance of a sustainable leadership position in agriculture, forestry, and manufacturing, clearly depend on current and near-term support of multidisciplinary research for the development of a reliable renewable resource base. This document sets a roadmap and priorities for that research. America needs leadership that will continue to recognize, support, and move rapidly to meet the need to expand the use of sustainable renewable resources. This roadmap has highlighted potential ways for progress and has identified goals in specific components of the system. Achieving success with these goals will provide the opportunity to hit the vision target of a fivefold increase in renewable resource use by 2020.

McLaren, J.

1999-02-22T23:59:59.000Z

392

The implementation and deployment of an ERP system: an industrial case study  

Science Conference Proceedings (OSTI)

This article concerns the integration and deployment of the ERP project at Alcatel, a telecommunications company. After a short presentation of the main activities managed by the ERP system, we propose a five-stage deployment model (selection of the ... Keywords: enterprise resource planning (ERP) system, firm performance, firm processes, information system (IS), material requirements planning (MRP) activity, planning process

Claire Berchet; Georges Habchi

2005-08-01T23:59:59.000Z

393

The implementation and deployment of an ERP system: An industrial case study  

Science Conference Proceedings (OSTI)

This article concerns the integration and deployment of the ERP project at Alcatel, a telecommunications company. After a short presentation of the main activities managed by the ERP system, we propose a five-stage deployment model (selection of the ... Keywords: Enterprise resource planning (ERP) system, Firm performance, Firm processes, Information system (IS), Material requirements planning (MRP) activity, Planning process

Claire Berchet; Georges Habchi

2005-08-01T23:59:59.000Z

394

Community Renewable Energy Deployment: City of Montpelier Project | Open  

Open Energy Info (EERE)

Montpelier Project Montpelier Project Jump to: navigation, search Name Community Renewable Energy Deployment: City of Montpelier Project Agency/Company /Organization Department of Energy Focus Area Buildings, Energy Efficiency - Central Plant, Energy Efficiency - Utility, Energy Efficiency, Greenhouse Gas, Renewable Energy, Biomass Phase Evaluate Options, Get Feedback, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly Available Publication Date 1/1/2011 Website http://www1.eere.energy.gov/co Locality Montpelier, Vermont References Community Renewable Energy Deployment: City of Montpelier Project[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 References Overview This case study describes Montpelier, Vermont's efforts under the

395

Community Renewable Energy Deployment: Forest County Potawatomi Tribe |  

Open Energy Info (EERE)

Potawatomi Tribe Potawatomi Tribe Jump to: navigation, search Name Community Renewable Energy Deployment: Forest County Potawatomi Tribe Agency/Company /Organization US Department of Energy Sector Energy Focus Area Energy Efficiency - Central Plant, Economic Development, Forestry, Greenhouse Gas, Renewable Energy, Biomass - Anaerobic Digestion, Biomass, Solar, - Solar Pv, Biomass - Waste To Energy Phase Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available -- Free Publication Date 11/29/2010 Website http://www1.eere.energy.gov/co Locality Forest County Potawatomi Tribe References Community Renewable Energy Deployment: Forest County Potawatomi Tribe[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 References

396

Energy Technologies for the West: possible effects of energy technology on land, water, and air resources. Workshop held in San Francisco, California, 21 September 1976  

DOE Green Energy (OSTI)

John Fraser, Association of California Water Agencies, spoke on the effect of energy technology on California's water resources. He pointed out that by the year 2000, a water deficiency of about 2,250,000 acre-feet will exist in California; therefore, many agencies will not indefinitely commit supplies of fresh water for power plant cooling. Legislation for siting power plants along the coastline is summarized. Dr. James Liverman, ERDA, noted a remark by Mr. Fraser that, in its national plan, ERDA ''does not appear to pay much attention to the water issue''; he agrees, but says ERDA is committed to working with the Water Resources Council, with establishments in each state. Professor Robert Hagan, Univ. of California, reports on a program to investigate the energy required to develop water, or, in short, to move water to where it is to be used; water which may be associated with the use and conservation of water; the energy associated with waste-water treatment; and waste-water reuse. Speaker Zock Willey, Environmental Defense Fund, briefly evaluated the environmental impact of an energy technology by saying that the public has a right to know and say what the risks are in terms of the trade-offs. Russ Freeman, EIA, says he doesn't believe it possible to have an energy program in the traditional concept of a government program. EPA has learned that energy is an input to every societal process and pollution is an output from virtually everything that society does. The final speaker, Fayne L. Tucker, Lake County Air Pollution Control District, reviewed the potential of geothermal resources, saying that it is believed the Lake County government can, with the state and Federal government, plan geothermal development. It is also believed the Geysers should be considered as a payoff area. An extensive question and answer session completed the workshop. (MCW)

Not Available

1976-01-01T23:59:59.000Z

397

Optimal deployment of solar index  

SciTech Connect

There is a growing trend, generally caused by state-specific renewable portfolio standards, to increase the importance of renewable electricity generation within generation portfolios. While RPS assist with determining the composition of generation they do not, for the most part, dictate the location of generation. Using data from various public sources, the authors create an optimal index for solar deployment. (author)

Croucher, Matt

2010-11-15T23:59:59.000Z

398

Technology Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Development Technology Development Technology Development Hydroelectric power is the largest source of renewable electricity in the United States, producing about 7% of the nation's total electricity throughout the last decade. Even after a century of proven experience with this reliable renewable resource, significant opportunities still exist to expand the nation's hydropower resources through non-powered dams, water conveyance systems, pumped storage hydropower, and new site development. The Water Power Program supports the hydropower industry and complements existing investments through the development and deployment of new technologies and key components, and by identifying key opportunity areas through which hydropower generation can be enhanced. The Water Power Program aims to provide 15% of the nation's electricity

399

Energy Department Accelerates the Deployment of Advanced Vehicle  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerates the Deployment of Advanced Vehicle Accelerates the Deployment of Advanced Vehicle Technologies with Private Industry Partnerships Energy Department Accelerates the Deployment of Advanced Vehicle Technologies with Private Industry Partnerships March 5, 2013 - 2:15pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to speeding the transition to more sustainable energy sources that will help drive economic growth, the Energy Department today announced 16 major U.S. employers and two stakeholder groups have joined the Workplace Charging Challenge to give more American workers access to new transportation options, while another three U.S. corporations have joined the National Clean Fleets Partnership. These steps support President Obama's goal to

400

New DOE-NASCAR Partnership Revs Deployment of Pollution Reducing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-NASCAR Partnership Revs Deployment of Pollution Reducing DOE-NASCAR Partnership Revs Deployment of Pollution Reducing Technologies New DOE-NASCAR Partnership Revs Deployment of Pollution Reducing Technologies September 11, 2013 - 4:44pm Addthis Dr. Michael Knotek, Deputy Undersecretary for Science and Energy at the Energy Department, delivers remarks at the NASCAR Green Summit in Chicago, where the DOE-NASCAR MOU was announced. | Photo courtesy of NASCAR. Dr. Michael Knotek, Deputy Undersecretary for Science and Energy at the Energy Department, delivers remarks at the NASCAR Green Summit in Chicago, where the DOE-NASCAR MOU was announced. | Photo courtesy of NASCAR. Dr. Michael Knotek Dr. Michael Knotek Deputy Under Secretary for Science and Energy What are the key facts? A new Memorandum of Understanding (MOU) between the Energy

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned, 1st edition  

Science Conference Proceedings (OSTI)

Global threats of terrorism, drug-smuggling, and other crimes have led to a significant increase in research on game theory for security. Game theory provides a sound mathematical approach to deploy limited security resources to maximize their effectiveness. ...

Milind Tambe

2011-12-01T23:59:59.000Z

402

Technology selection and architecture optimization of in-situ resource utilization systems  

E-Print Network (OSTI)

This paper discusses an approach to exploring the conceptual design space of large-scale, complex electromechanical systems that are technologically immature. A modeling framework that addresses the fluctuating architectural ...

Chepko, Ariane (Ariane Brooke)

2009-01-01T23:59:59.000Z

403

Deploying  

NLE Websites -- All DOE Office Websites (Extended Search)

and a Topology Service (TS), but those systems overlap significantly in some cases. The query syntax of the two is essentially the same, and the infrastructure used to support...

404

Energy Technology Cost and Performance Data | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Energy Technology Cost and Performance Data Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Technology Cost and Performance Data Agency/Company /Organization: United States Department of Energy Sector: Energy Topics: Resource assessment Resource Type: Dataset Website: www.nrel.gov/analysis/tech_cost_data.html Equivalent URI: cleanenergysolutions.org/content/energy-technology-cost-and-performanc Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation References: Energy Technology Cost and Performance Data: Homepage[1]

405

ARPA-E Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » ARPA-E Resources Services » ARPA-E Resources ARPA-E Resources ARPA-E Resources The Advanced Projects Research Agency-Energy (ARPA-E) was established in 2007 to fund the development and deployment of transformational energy technologies in the United States. ARPA-E's mission is to decrease our nation's dependence on foreign energy sources, reduce greenhouse gas emissions, improve energy efficiency across the board, and maintain or reestablish U.S. scientific leadership in the energy sector. The Office of the Chief Counsel works with the Office of General Counsel to help ARPA-E accomplish its mission. The Office of Chief Counsel advises on every aspect of ARPA-E's operations, including the hiring of scientific and other personnel, the drafting of funding opportunity announcements, and the

406

Smart Grid Resources | Open Energy Information  

Open Energy Info (EERE)

Smart Grid Resources Smart Grid Resources Jump to: navigation, search Us.jpg US Resources The Smart Grid: An Introduction US Department of Energy Smart Grid Information Clearinghouse EIA Smartgrid.gov Energy.gov Smart Grid Smart Grid News http://www.smartgrid.gov/ SmartGrid.gov is a resource for information about the Smart Grid and government-sponsored Smart Grid projects. The information on SmartGrid.gov helps consumers and stakeholders understand the basics of a Smart Grid and the range of Smart Grid technologies, practices and benefits. What is the Smart Grid? Recovery Act Smart Grid Programs Project Reporting Project Information Tracking Deployment Title XIII of the Energy Independence and Security Act of 2007 sets forth the policy of the U.S: "to support the modernization of the nation's

407

Bristol Tennessee Essential Services (BTES) / Tennessee Valley Authority (TVA) Smart Water Heater Project - Technology Description a nd Installation Lessons Learned  

Science Conference Proceedings (OSTI)

As the smart grid evolves through advances in technology, the benefits of deploying and leveraging "smart" systems are becoming more and more significant relative to the costs. EPRI's Smart Grid Demonstration project is conducting research focused on integration of distributed energy resources to help advance widespread deployment of these systems. This report provides a technical description of the hardware, software, and communication infrastructure in one such system. Specifically, it documents an ong...

2009-09-21T23:59:59.000Z

408

Quarterly Nuclear Power Deployment Scorecard - January 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Deployment Scorecard - January 2013 Power Deployment Scorecard - January 2013 Quarterly Nuclear Power Deployment Scorecard - January 2013 News Updates On October 22, 2012, Dominion Resources Inc. announced that it would close and decommission its Kewaunee Power Station located in Carlton, Wis. after failing to find a buyer for the plant. The company said that the plant closure was a purely economic decision resulting from low projected wholesale electricity prices. Power production will cease in the second quarter of 2013. On November 20, the Department of Energy announced that it had selected the Generation mPower team as a recipient for Government cost-shared funding as part of its Small Modular Reactor Licensing Technical Support program. The Department also announced plans to issue a follow-on solicitation open to other companies and manufacturers, focused

409

Quarterly Nuclear Deployment Scorecard - January 2014 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quarterly Nuclear Deployment Scorecard - January 2014 Quarterly Nuclear Deployment Scorecard - January 2014 Quarterly Nuclear Deployment Scorecard - January 2014 News Updates Luminant has requested a suspension of the NRC's review of its Comanche Peak Combined Construction and Operating License (COL) application. The company cited impacts to the review schedule of the Mitsubishi Heavy Industries US Advanced Pressurized Water Reactor (US-APWR) due to the vendor's desire to refocus its resources to reactor restarts in Japan as well as low electricity prices driven by low natural gas prices as reasons for the suspension. Unistar Nuclear Operating Co. has formally withdrawn its COL application from the Nuclear Regulatory Commission (NRC) to build and operate Areva's U.S. EPR at its Nine Mile Point site in Oswego, NY. In

410

Quarterly Nuclear Power Deployment Scorecard - January 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Deployment Scorecard - January 2013 Power Deployment Scorecard - January 2013 Quarterly Nuclear Power Deployment Scorecard - January 2013 News Updates On October 22, 2012, Dominion Resources Inc. announced that it would close and decommission its Kewaunee Power Station located in Carlton, Wis. after failing to find a buyer for the plant. The company said that the plant closure was a purely economic decision resulting from low projected wholesale electricity prices. Power production will cease in the second quarter of 2013. On November 20, the Department of Energy announced that it had selected the Generation mPower team as a recipient for Government cost-shared funding as part of its Small Modular Reactor Licensing Technical Support program. The Department also announced plans to issue a follow-on solicitation open to other companies and manufacturers, focused

411

Quarterly Nuclear Deployment Summary, January 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployment Summary, January 2013 Deployment Summary, January 2013 Quarterly Nuclear Deployment Summary, January 2013 January 30, 2013 - 5:59pm Addthis Quarterly Updates On October 22 Dominion Resources Inc. announced that it would close and decommission its Kewaunee Power Station located in Carlton, Wis. after failing to find a buyer for the plant. The company said that the plant closure was a purely economic decision resulting from low projected wholesale electricity prices. Power production will cease in the second quarter of 2013. On November 20, 2012, the Department of Energy announced that it had selected the Generation mPower team as a recipient for Government cost-shared funding as part of its Small Modular Reactor Licensing Technical Support program. The Department also announced plans to issue a

412

EA-1890: Reedsport PB150 Deployment and Ocean Test Project, Oregon |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Reedsport PB150 Deployment and Ocean Test Project, Oregon 0: Reedsport PB150 Deployment and Ocean Test Project, Oregon EA-1890: Reedsport PB150 Deployment and Ocean Test Project, Oregon Overview The U.S. Department of Energy has selected Ocean Power Technologies (OPT) for approximately $2.4 million in financial assistance and proposes to authorize the expenditure of federal funding to OPT for the construction, deployment, and ocean testing of a single, full scale 150kW PB150 PowerBuoy. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download August 24, 2011 EA-1890: Finding of No Significant Impact Reedsport PB150 Deployment and Ocean Test Project, Oregon August 24, 2011 EA-1890: DOE Notice of Availability of the Finding of No Significant Impact Ocean Power Technologies, Inc. (OPT), Reedsport PB150 Deployment and Ocean

413

An Analytical Framework for Long Term Policy for Commercial Deployment and  

Open Energy Info (EERE)

An Analytical Framework for Long Term Policy for Commercial Deployment and An Analytical Framework for Long Term Policy for Commercial Deployment and Innovation in Carbon Capture and Sequestration Technology in the United States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: An Analytical Framework for Long Term Policy for Commercial Deployment and Innovation in Carbon Capture and Sequestration Technology in the United States Focus Area: Clean Fossil Energy Website: sequestration.mit.edu/pdf/MichaelHamilton_thesis_dec2009.pdf Equivalent URI: cleanenergysolutions.org/content/analytical-framework-long-term-policy Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This report addresses obstacles to commercial deployment of carbon capture and sequestration (CCS) and provides policy recommendations for successful

414

Marine & Hydrokinetic Technologies (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

Not Available

2010-04-01T23:59:59.000Z

415

Program on Technology Innovation: Distributed Photovoltaic Power Applications for Utilities  

Science Conference Proceedings (OSTI)

Emerging PV technology brings significant opportunities for many stakeholders including electric utilities, electric customers, energy-service providers and PV equipment vendors. The opportunities for utilities range from owning and deploying various PV generation resources and related products to incentivizing other owners to install PV systems and technology that provide benefits to the power system. This technical update describes PV power system concepts that utilities may want to consider as they pl...

2009-12-30T23:59:59.000Z

416

Architecture Reference Design for Distributed Energy Resource Integration  

Science Conference Proceedings (OSTI)

The integration of significant distributed energy resources (DER) highlights the complexities of the smart grid. A DER system encapsulates most of the operational issues of the larger grid but often with smaller timelines for action. In addition, as the level of DER grows in a system, opportunities for localized problems to escalate into larger system issues also increase. This effort develops guidelines for deploying technology and systems that meet emerging requirements for DER communication and contro...

2010-04-30T23:59:59.000Z

417

Information Resources - EERE Commercialization Office  

Information Resources. Here you will find various informational resources related to the commercialization of clean energy technologies. Hawaiian ...

418

Information Resources - EERE Commercialization Office  

Information Resources. Here you will find various informational resources related to the commercialization of clean energy technologies. Hawaiian Renewable Energy ...

419

R&D and deployment valuation of intelligent transportation systems : a case example of the intersection collision avoidance systems  

E-Print Network (OSTI)

Compared with investments in the conventional infrastructure, those in Intelligent Transportation Technology (ITS) include various uncertainties. Because deployment of ITS requires close public-private partnership, projects ...

Hodota, Kenichi

2006-01-01T23:59:59.000Z

420

AMF Deployment, Steamboat Springs, Colorado  

NLE Websites -- All DOE Office Websites (Extended Search)

Colorado Colorado Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and Related Campaigns Science Plan NWS Forecasting Plots STORMVEX Website Outreach STORMVEX Backgrounder (PDF, 1.6MB) News AMF2 STORMVEX Blog Images Contacts Gerald Mace AMF Deployment, Steamboat Springs, Colorado This view shows the instrument locations for the STORMVEX campaign. At the westernmost site is the Valley Floor. Heading east up the mountain is Christy Peak, Thunderhead, and Storm Peak Laboratory at the far east. Valley Floor: 40° 39' 43.92" N, 106° 49' 0.84" W Thunderhead: 40° 39' 15.12" N, 106° 46' 23.16" W Storm Peak: 40° 27' 18.36" N, 106° 44' 40.20" W

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Rapidly deployable emergency communication system  

DOE Patents (OSTI)

A highly versatile, highly portable emergency communication system which permits deployment in a very short time to cover both wide areas and distant isolated areas depending upon mission requirements. The system employs a plurality of lightweight, fully self-contained repeaters which are deployed within the mission area to provide communication between field teams, and between each field team and a mobile communication control center. Each repeater contains a microcomputer controller, the program for which may be changed from the control center by the transmission of digital data within the audible range (300-3,000 Hz). Repeaters are accessed by portable/mobile transceivers, other repeaters, and the control center through the transmission and recognition of digital data code words in the subaudible range.

Gladden, Charles A. (Las Vegas, NV); Parelman, Martin H. (Las Vegas, NV)

1979-01-01T23:59:59.000Z

422

Climate Technology Initiative Training Courses | Open Energy Information  

Open Energy Info (EERE)

Climate Technology Initiative Training Courses Climate Technology Initiative Training Courses Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Technology Initiative Training Courses Agency/Company /Organization: Climate Technology Initiative Sector: Energy, Land Focus Area: Renewable Energy Topics: Finance, Low emission development planning, Market analysis, Policies/deployment programs Resource Type: Training materials Website: www.climatetech.net/about/training.cfm References: CTI Training Courses[1] "Training courses are organised in collaboration with relevant international organisations, with a focus on the special requirements and circumstances of the target countries/regions. Specific activities include: Capacity building for technology needs assessment, project planning

423

Technology in Motion Vehicle (TMV)  

NLE Websites -- All DOE Office Websites (Extended Search)

at multiple venues Demonstrate proven and emerging safety technologies to state and motor carrier stakeholders Promote deployment of safety technologies by fleets and state...

424

Strategies to Finance Large-Scale Deployment of Renewable Energy Projects:  

Open Energy Info (EERE)

Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Agency/Company /Organization: International Energy Agency (IEA) Sector: Energy Focus Area: Renewable Energy Topics: Finance, Implementation, Policies/deployment programs Resource Type: Publications Website: iea-retd.org/archives/publications/finance-re Cost: Free Language: English Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Screenshot References: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach[1]

425

Standardization of transportation classes for object-oriented deployment simulations.  

SciTech Connect

Many recent efforts to integrate transportation and deployment simulations, although beneficial, have lacked a feature vital for seamless integration: a common data class representation. It is an objective of the Department of Defense (DoD) to standardize all classes used in object-oriented deployment simulations by developing a standard class attribute representation and behavior for all deployment simulations that rely on an underlying class representation. The Extensive Hierarchy and Object Representation for Transportation Simulations (EXHORT) is a collection of three hierarchies that together will constitute a standard and consistent class attribute representation and behavior that could be used directly by a large set of deployment simulations. The first hierarchy is the Transportation Class Hierarchy (TCH), which describes a significant portion of the defense transportation system; the other two deal with infrastructure and resource classes. EXHORT will allow deployment simulations to use the same set of underlying class data, ensure transparent exchanges, reduce the effort needed to integrate simulations, and permit a detailed analysis of the defense transportation system. This paper describes EXHORT's first hierarchy, the TCH, and provides a rationale for why it is a helpful tool for modeling major portions of the defense transportation system.

Burke, J. F., Jr.; Howard, D. L.; Jackson, J.; Macal, C. M.; Nevins, M. R.; Van Groningen, C. N.

1999-07-30T23:59:59.000Z

426

MHK Technologies/Atlantis AS 400 | Open Energy Information  

Open Energy Info (EERE)

AS 400 AS 400 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Atlantis AS 400.jpg Technology Profile Primary Organization Atlantis Resources Corporation Project(s) where this technology is utilized *MHK Projects/Gujarat Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description AS series turbines are ducted Horizontal Axis Turbines HAT suitable for deployment with mono directional blades in river environments and bi directional blades in diurnal tidal locations AS turbines feature a unique swept back blade design and control system to optimize turbine efficiency across flow velocity distributions The AS 400 the first of the AS series has been designed from first principles using extensive computer modelling and following tow testing in August 2008 is recognized as the world s most efficient water to wire turbine as verified by Black Veatch

427

Technology Assessment of Interconnection Products for Distributed Resources: Research and Development Recommendations  

Science Conference Proceedings (OSTI)

A compatible and economical connection with the resident electrical power system is a key to realizing the full value of distributed generation and storage. This technology assessment looks at the status of interconnection equipment used for interconnecting distributed generation and storage with electric power systems. The assessment is intended to identify business opportunities and to provide specific research and development recommendations based on a manufacturer survey and technical assessment desc...

2000-12-11T23:59:59.000Z

428

MHK Technologies/SPERBOY | Open Energy Information  

Open Energy Info (EERE)

SPERBOY SPERBOY < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SPERBOY.jpg Technology Profile Primary Organization Embley Energy Project(s) where this technology is utilized *MHK Projects/Plymouth Sound Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description SPERBOY is a floating buoy Oscillating Water Column (OWC) device consisting of a buoyant structure with a submerged, enclosed column. Housed above the OWC on top of the buoy is the plant: turbines, generators and associated system facilities. The principle of operation is similar to that of fixed OWCs designed for shoreline and fixed installations, except that the device is capable of deployment in deep water to maximize greatest energy source; and the entire body floats and maintains optimum hydrodynamic interactions for the prevailing wave spectrum, producing high energy capture at minimal cost.

429

Energy Basics: Ocean Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Resources Although the potential for ocean energy technologies is believed to be very large, no comprehensive studies have been conducted to date to determine an accurate resource...

430

Real-Time Deployment of Mesh Networks  

Science Conference Proceedings (OSTI)

... Related Efforts. DARPA LANdroids program. Publications. MR Souryal, A. Wapf, N. Moayeri, Rapidly-Deployable Mesh Network Testbed; ...

2013-07-08T23:59:59.000Z

431

A deployed multi-agent framework for distributed energy applications  

Science Conference Proceedings (OSTI)

In this paper, we describe the adaptation of an open-source multi-agent platform for distributed energy applications and the trial deployment of resource-controller agents. The platform provides real-time, two-way communication and decision making between ... Keywords: applications of autonomous agents and multi-agent systems, collective and emergent agent behavior, frameworks, infrastructures and environments for agent systems

Geoff James; Dave Cohen; Robert Dodier; Glenn Platt; Doug Palmer

2006-05-01T23:59:59.000Z

432

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

DOE Awards $45 Million to Deploy Advanced Transportation Technologies · Novel Electrode Material Offers Alternative for Li-ion Batteries · New Materials Make ...

433

Vehicle Technologies Office: Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Event June 2013 The eGallon Tool Advances Deployment of Electric Vehicles May 2013 Vehicle Technologies Office Recognizes Outstanding Researchers December 2012 Apps for...

434

DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Simulator Training to Brazil's Petrobas Advances Goal of DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying Clean Coal Technology at Home and Abroad DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying Clean Coal Technology at Home and Abroad September 25, 2012 - 1:00pm Addthis Washington, DC - A recently-completed comprehensive Department of Energy (DOE) training initiative using an innovative high-fidelity combined-cycle dynamic simulator has provided employees of a Brazilian multi-national company the opportunity to learn to operate and control the near-zero-emission power plants critical to a cleaner energy future. The 8-day course for power plant operators from Petrobras used a simulator from the National Energy Technology Laboratory (NETL)-sponsored AVESTAR™ (Advanced Virtual Energy Simulation Training and Research) Center.

435

Disposable telemetry cable deployment system  

DOE Patents (OSTI)

A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

Holcomb, David Joseph (Sandia Park, NM)

2000-01-01T23:59:59.000Z

436

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential  

SciTech Connect

Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

2008-02-12T23:59:59.000Z

437

THE ROLE OF GOVERNMENT IN ENERGY TECHNOLOGY INNOVATION: INSIGHTS FOR GOVERNMENT POLICY IN THE ENERGY SECTOR  

E-Print Network (OSTI)

Energy and Natural Resources Program. Our focus is on crafting and catalyzing a set of policies and institutions that can stimulate the research, development, and deployment of energy technologies that can address the full range energy-related challenges of the 21 st century, including environment, development and security issues. ETIP has ongoing research in two areas: (1) Energy Technology Policy for a Greenhouse-Gas Constrained World and (2) Technology Innovation Studies. In the first area, we are currently focused on the U.S., China, and India, with a strong emphasis on the role of international cooperation in the development and deployment of cleaner energy systems. In the second area, we examine how government policy and programs can play an effective role in stimulating private sector investments in the development and deployment of cleaner energy technologies.

Vicki Norberg-bohm

2002-01-01T23:59:59.000Z

438

Clean Cities: Natural Gas Vehicle Technology Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

Forum Forum Natural Gas Vehicle Technology Form (NGVTF) logo The Natural Gas Vehicle Technology Forum (NGVTF) supports development and deployment of commercially competitive natural gas engines, vehicles, and infrastructure. Learn about NGVTF's purpose, activities, meetings, stakeholders, steering committee, and webinars. Purpose Led by the National Renewable Energy Laboratory in partnership with the U.S. Department of Energy and the California Energy Commission, NGVTF unites a diverse group of stakeholders to: Share information and resources Identify natural gas engine, vehicle, and infrastructure technology targets Facilitate government-industry research, development, demonstration, and deployment (RDD&D) to achieve targets Communicate high-priority needs of natural gas vehicle end users to natural gas equipment and vehicle manufacturers

439

Audit Report "Department of Energy Efforts to Manage Information Technology Resources in an Energy-Efficient and Environmentally Responsible Manner"  

Science Conference Proceedings (OSTI)

The American Recovery and Reinvestment Act of 2009 emphasizes energy efficiency and conservation as critical to the Nation's economic vitality; its goal of reducing dependence on foreign energy sources; and, related efforts to improve the environment. The Act highlights the significant use of various forms of energy in the Federal sector and promotes efforts to improve the energy efficiency of Federal operations. One specific area of interest is the increasing demand for Federal sector computing resources and the corresponding increase in energy use, with both cost and environmental implications. The U.S. Environmental Protection Agency reported that, without aggressive conservation measures, data center energy consumption alone is expected to double over the next five years. In our report on Management of the Department's Data Centers at Contractor Sites (DOE/IG-0803, October 2008) we concluded that the Department of Energy had not always improved the efficiency of its contractor data centers even when such modifications were possible and practical. Despite its recognized energy conservation leadership role, the Department had not always taken advantage of opportunities to reduce energy consumption associated with its information technology resources. Nor, had it ensured that resources were managed in a way that minimized impact on the environment. In particular: (1) The seven Federal and contractor sites included in our review had not fully reduced energy consumption through implementation of power management settings on their desktop and laptop computers; and, as a consequence, spent $1.6 million more on energy costs than necessary in Fiscal Year 2008; (2) None of the sites reviewed had taken advantage of opportunities to reduce energy consumption, enhance cyber security, and reduce costs available through the use of techniques, such as 'thin-client computing' in their unclassified environments; and, (3) Sites had not always taken the necessary steps to reduce energy consumption and resource usage of their data centers, such as identifying and monitoring the amount of energy used at their facilities. We concluded that Headquarters programs offices (which are part of the Department of Energy's Common Operating Environment) as well as field sites had not developed and/or implemented policies and procedures necessary to ensure that information technology equipment and supporting infrastructure was operated in an energy-efficient manner and in a way that minimized impact on the environment. For example, although required by the Department, sites had not enabled computer equipment power management features designed to reduce energy consumption. In addition, officials within Headquarters programs and at the sites reviewed had not effectively monitored performance or taken steps to fully evaluate available reductions in energy usage at their facilities. Without improvements, the Department will not be able to take advantage of opportunities to reduce energy consumption and realize cost savings of nearly $23 million over the next five years at just the seven sites reviewed. We noted that the potential for reduced energy consumption at these sites alone was equivalent to the annual power requirements of over 2,400 homes or, alternatively, removing about 3,000 cars from the road each year. Many of the available energy reduction strategies, such as fully utilizing energy-efficient settings on the many computers used by the Department and its contractors, are 'low hanging fruit' in that they will provide immediate tangible energy savings at little or no cost. Others, such as a shift to thin-client computing, an environment that transfers the processing capabilities from an individual's desk to a shared server environment, will require some level of investment which can, based on available literature, be successfully recovered through reduced acquisition and support costs. In our judgment, given its highly visible leadership in energy issues, aggressive action should be taken to make the Department's information technology operati

None

2009-05-01T23:59:59.000Z

440

Building Technologies Office: Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

An assessment of the economic, regulatory and technical implications of large-scale solar power deployment  

E-Print Network (OSTI)

Electricity from solar energy has many favorable attributes. Despite its current high cost relative to other technology options, a combination of cost reductions and policy support measures could lead to increasing deployment ...

Merrick, James Hubert

2010-01-01T23:59:59.000Z

442

Landslide monitoring with sensor networks: experiences and lessons learnt from a real-world deployment  

Science Conference Proceedings (OSTI)

Wireless sensor networks have the potentials to be a very useful technology for fine-grained monitoring in remote and hostile environments. This paper reports on the implementation and deployment of a system for landslide monitoring in the Northern ...

Alberto Rosi; Matteo Berti; Nicola Bicocchi; Gabriella Castelli; Alessandro Corsini; Marco Mamei; Franco Zambonelli

2011-08-01T23:59:59.000Z

443

Sandia National Laboratories: Working with Sandia: Technology ...  

R&D 100 Awards; International Programs; Laboratory Directed Research & Development; Technology Deployment Centers; Working With Sandia. PROCUREMENT; Opportunities;

444

Fuel Cell & Hydrogen Technologies | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Fuel Cell Technologies SHARE Fuel Cell and Hydrogen Technologies Oak Ridge National Laboratory pursues activities that address the barriers facing the development and deployment of hydrogen and fuel cells, with the ultimate goals of decreasing our dependence on oil, reducing carbon emissions, and enabling clean, reliable power generation. Through collaborative research and development, ORNL is developing materials and processes for fuel cell systems and for the practical generation, storage, and delivery of hydrogen as an energy carrier. The lab's Fuel Cell Technologies Program conducts its research and development activities in seven interrelated areas: Hydrogen Production and Delivery - Production of hydrogen from domestic resources and minimizing environmental impacts and distribution of

445

Rapid Deployment of Rich Catalytic Combustion  

SciTech Connect

The overall objective of this research under the Turbines Program is the deployment of fuel flexible rich catalytic combustion technology into high-pressure ratio industrial gas turbines. The resulting combustion systems will provide fuel flexibility for gas turbines to burn coal derived synthesis gas or natural gas and achieve NO{sub x} emissions of 2 ppmvd or less (at 15 percent O{sub 2}), cost effectively. This advance will signify a major step towards environmentally friendly electric power generation and coal-based energy independence for the United States. Under Phase 1 of the Program, Pratt & Whitney (P&W) performed a system integration study of rich catalytic combustion in a small high-pressure ratio industrial gas turbine with a silo combustion system that is easily scalable to a larger multi-chamber gas turbine system. An implementation plan for this technology also was studied. The principal achievement of the Phase 1 effort was the sizing of the catalytic module in a manner which allowed a single reactor (rather than multiple reactors) to be used by the combustion system, a conclusion regarding the amount of air that should be allocated to the reaction zone to achieve low emissions, definition of a combustion staging strategy to achieve low emissions, and mechanical integration of a Ceramic Matrix Composite (CMC) combustor liner with the catalytic module.

Richard S. Tuthill

2004-06-10T23:59:59.000Z

446

Distributed Resource Integration Framework  

Science Conference Proceedings (OSTI)

This report defines a framework for assessing current issues and considerations associated with the deployment and operation of distributed resources. The framework is a guide that can assist utility personnel, distributed resource owners, and other stakeholders in planning integration projects and in relating different integration projects to one another. The framework provides a structured organization of the various elements associated with distributed resource integration, including regulatory, busin...

2009-12-23T23:59:59.000Z

447

EERE: Vehicle Technologies Office Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home Events Fact of the Week Features News About the Program Budget Mission, Vision, and Goals National Laboratories Organization and Contacts Partnerships U.S. DRIVE Partnership Roadmap and Other Documents 21st Century Truck Partners Technical Goals and Teams Plans, Implementation, and Results Deployment Clean Cities Educational Activities Graduate Automotive Technology Education (GATE) Energy Policy Act (EPAct) EV Everywhere Grand Challenge Goals Research & Development Testing and Analysis Workplace Charging Benefits of Joining Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Financial Opportunities Information Resources Analysis Annual Progress Reports Awards and Patents Conferences Directions in Engine-Efficiency and Emissions Research (DEER) Conference

448

DOE Report Describes Progress in the Deployment of Synchrophasor  

Open Energy Info (EERE)

DOE Report Describes Progress in the Deployment of Synchrophasor DOE Report Describes Progress in the Deployment of Synchrophasor Technologies for Improved Grid Operations Home > Blogs > Graham7781's blog Graham7781's picture Submitted by Graham7781(1992) Super contributor 15 August, 2013 - 09:09 OpenEI PMU recovery act SGIG Smart Grid The U.S. Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) is pleased to announce the publication of a new report from the Smart Grid Investment Grant (SGIG) and Smart Grid Demonstration programs (SGDP), which are grid modernization activities funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act). Twelve projects are installing synchrophasor technologies and systems across the country and beginning to use various on-line and off-line

449

Review department programs related to intellectual property and technology transfer to ensure department resources are leveraged to the economic benefit of the US  

SciTech Connect

Review domestic and international policy, US Intellectual Property (IP) and Technology Transfer (TT) legislation, and related Department of Energy (DOE) programs to ensure Department resources are leveraged to the benefit of the US economy. Mapping such processes should determine if/how foreign governments and/or foreign owned or controlled enterprises, specifically Japanese and to a lessor extent other Pacific Rim nations, are able to access and at times leverage US technology to their benefit. This process will also generate lessons learned that should be useful to government and industry alike in the area of TT. The review will concentrate on technology innovations developed or funded by the Department.

Martin, S.W.

1995-02-01T23:59:59.000Z

450

Estimating IPv6 & DNSSEC Deployment Status  

Science Conference Proceedings (OSTI)

Estimating IPv6 & DNSSEC External Service Deployment Status Background and Methodology. ... gov.two. Agency Two, (errors & islands). gov.three. ...

2013-11-07T23:59:59.000Z

451

Community Renewable Energy Deployment: Haxtun Wind Project | Open Energy  

Open Energy Info (EERE)

Haxtun Wind Project Haxtun Wind Project Jump to: navigation, search Name Community Renewable Energy Deployment: Haxtun Wind Project Agency/Company /Organization US Department of Energy Focus Area Economic Development, Renewable Energy, Wind Phase Evaluate Options, Get Feedback, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly Available--Free Publication Date 2/7/2011 Website http://www1.eere.energy.gov/co Locality Phillips County, Colorado References Community Renewable Energy Deployment: Haxtun Wind Project[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 Related Tools 5 References Overview This short case study describes Phillips County's Haxtun Wind Project efforts through the Department of Energy's Community Renewable Energy

452

Community Renewable Energy Deployment: University of California at at Davis  

Open Energy Info (EERE)

at at Davis at at Davis Project Jump to: navigation, search Name Community Renewable Energy Deployment: University of California at at Davis Project Agency/Company /Organization US Department of Energy Focus Area Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Other, Renewable Energy, Biomass - Anaerobic Digestion, Solar - Concentrating Solar Power, Hydrogen and Fuel Cells, - Solar Pv, Biomass - Waste To Energy Phase Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2/2/2011 Website http://www1.eere.energy.gov/co Locality University of California at Davis References Community Renewable Energy Deployment: University of California at at Davis Project[1] Contents

453

MHK Technologies/Aquantis | Open Energy Information  

Open Energy Info (EERE)

Aquantis Aquantis < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Aquantis.jpg Technology Profile Primary Organization Ecomerit Technologies LLC see Dehlsen Associates LLC Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Proprietary Mooring Configuration Proprietary Optimum Marine/Riverline Conditions The Aquantis Current Plane C Plane technology is a marine current turbine designed to extract the kinetic energy from the flow and is capable of achieving reliable competitively priced base load power generation The technology is suitable for both steady marine currents and tidal currents although there are system differences and specific arraying and deployment requirements for each Aquantis is designed to harness the energy from the Gulf Stream and other steady marine currents around the world Aquantis deployment is projected to be cost competitive with thermal power generation when CO2 emissions and other environmental costs are accounted for

454

Buried waste integrated demonstration FY 94 deployment plan  

SciTech Connect

The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document.

Hyde, R.A.; Walker, S.; Garcia, M.M.

1994-05-01T23:59:59.000Z

455

An early deployment strategy for carbon capture, utilisation, and storage  

SciTech Connect

This report describes the current use of CO2 for EOR, and discusses potential expansion of EOR using CO2 from power plants. Analysis of potential EOR development in the USA, where most current CO2-based EOR production takes place, indicates that relatively low cost, traditional sources of CO2 for EOR (CO2 domes and CO2 from natural gas processing plants) are insufficient to exploit the full potential of EOR. To achieve that full potential will require use of CO2 from combustion and gasification systems, such as fossil fuel power plants, where capture of CO2 is more costly. The cost of current CCUS systems, even with the revenue stream for sale of the CO2 for EOR, is too high to result in broad deployment of the technology in the near term. In the longer term, research and development may be sufficient to reduce CO2 capture costs to a point where CCUS would be broadly deployed. This report describes a case study of conditions in the USA to explore a financial incentive to promote early deployment of CCUS, providing a range of immediate benefits to society, greater likelihood of reducing the long-term cost of CCUS, and greater likelihood of broad deployment of CCUS and CCS in the long term. Additionally, it may be possible to craft such an incentive in a manner that its cost is more than offset by taxes flowing from increased domestic oil production. An example of such an incentive is included in this report.

Carter, L.D.

2012-11-01T23:59:59.000Z

456

New and Underutilitized Technologies Website Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Website Update September 15, 2011 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * Updated Technology Deployment Matrix - Phase 1: Moved from Excel to HTML *...

457

EA-1939: Reese Technology Center Wind and Battery Integration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to...

458

Industrial Technologies Program Research Plan for Energy-Intensive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and deployment in 2009 and beyond. Technology investments fall under one of four technology platforms: * Industrial Reactions and Separations-New technologies with...

459

Relay placement problem in smart grid deployment  

Science Conference Proceedings (OSTI)

In this paper, we give an overview of power grid, smart grid, Advanced Metering Infrastructure (AMI), and the deployment cost analysis step by step. The importance between Relay Placement Problem (RPP) and the deployment cost in an AMI system is highlighted. ...

Wei-Lun Wang; Quincy Wu

2010-10-01T23:59:59.000Z

460

Technologies  

Technologies Materials. Aggregate Spray for Air Particulate; Actuators Made From Nanoporous Materials; Ceramic Filters; Energy Absorbing Material; Diode Arrays for ...

Note: This page contains sample records for the topic "resources technology deployment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a r