National Library of Energy BETA

Sample records for resources solar wind

  1. Solar and Wind Energy Resource Assessment (SWERA)

    Open Energy Info (EERE)

    Wiki Page Solar and Wind Energy Resource Assessment A United Nations Environment Programme facilitated effort. Getting Started Data Sets Analysis Tools About SWERA Loading.....

  2. Solar and Wind Energy Resource Assessment (SWERA) | Open Energy...

    Open Energy Info (EERE)

    Web Application Link: en.openei.orgappsSWERA OpenEI Keyword(s): Featured Language: English The Solar and Wind Energy Resource Assessment (SWERA) initiative brings together...

  3. Solar and Wind Energy Resource Assessment (SWERA) | Open Energy...

    Open Energy Info (EERE)

    search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Interactive Web PortalPowered by OpenEI Getting Started Data Sets Analysis Tools About SWERA Tool...

  4. Potential for Development of Solar and Wind Resource in Bhutan

    SciTech Connect (OSTI)

    Gilman, P.; Cowlin, S.; Heimiller, D.

    2009-09-01

    With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

  5. Solar and Wind Resource Assessments for Afghanistan and Pakistan

    SciTech Connect (OSTI)

    Renne, D. S.; Kelly, M.; Elliott, D.; George, R.; Scott, G.; Haymes, S.; Heimiller, D.; Milbrandt, A.; Cowlin, S.; Gilman, P.; Perez, R.

    2007-01-01

    The U.S. National Renewable Energy Laboratory (NREL) has recently completed the production of high-resolution wind and solar energy resource maps and related data products for Afghanistan and Pakistan. The resource data have been incorporated into a geospatial toolkit (GsT), which allows the user to manipulate the resource information along with country-specific geospatial information such as highway networks, power facilities, transmission corridors, protected land areas, etc. The toolkit allows users to then transfer resource data for specific locations into NREL's micropower optimization model known as HOMER.

  6. Solar and Wind Energy Resource Assessment Programme's Renewable...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentsolar-and-wind-energy-resource-assess Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The...

  7. NREL: Renewable Resource Data Center - Wind Resource Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version RReDC Home Biomass Resource Information Geothermal Resource Information Solar Resource Information Wind Resource Information Wind Data Models & Tools Publications...

  8. Solar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Solar Wind Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind...

  9. NREL: Wind Research - International Wind Resource Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Wind Resource Maps NREL is helping to develop high-resolution projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has ...

  10. Wind Resource Assessment | Open Energy Information

    Open Energy Info (EERE)

    Databases Global Renewable Energy Database Power Technologies Energy Data Book Solar and Wind Energy Resource Assessment (SWERA) System Advisor Model (SAM) Transparent Cost...

  11. Solar resources

    SciTech Connect (OSTI)

    Hulstrom, R.L.

    1989-01-01

    Following the 1973 oil embargo, the US government initiated a program to develop and use solar energy. This led to individual programs devoted to developing various solar radiation energy conversion technologies: photovoltaic and solar-thermal conversion devices. Nearly concurrently, it was recognized that understanding the available insolation resources was required to develop and deploy solar energy devices and systems. It was also recognized that the insolation information available at that time (1973) was not adequate to meet the specific needs of the solar energy community. Federal efforts were initiated and conducted to produce new and more extensive information and data. The primary federal agencies that undertook such efforts were the Department of Energy (DOE) and the National Oceanic and Atmospheric Administration (NOAA). NOAA's efforts included activities performed by the National Weather Service (NWS) and the National Climatic Data Center (NCDC). This book has two man objectives: to report some of the insolation energy data, information, and products produced by the federal efforts and to describe how they were produced. Products include data bases, models and algorithms, monitoring networks, instrumentation, and scientific techniques. The scope of products and results does not include all those produced by past federal efforts. The book's scope and subject matter are oriented to support the intent and purpose of the other volumes in this series. In some cases, other pertinent material is presented to provide a more complete coverage of a given subject. 385 refs., 149 figs., 50 tabs.

  12. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  13. Solar Resource Assessment

    Broader source: Energy.gov [DOE]

    DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

  14. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m ...

  15. Wind Career Map: Resource List

    Broader source: Energy.gov [DOE]

    The following resources were used in the development of the Wind Career Map, associated job profile information, or are potential resources for interested Wind Career Map viewers.

  16. NREL: Wind Research - Site Wind Resource Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. ...

  17. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced

  18. Solar and Wind Rights | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Wind (All) Wind (Small) Program Info Sector Name State State...

  19. Atlantic Wind Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Atlantic Wind & Solar Inc. Place: Coconut Groove, Florida Zip: 33133 Sector: Solar, Wind energy Product: Florida-based installer of distributed wind and solar systems...

  20. Solar Resource Assessment

    SciTech Connect (OSTI)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  1. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  2. Solar and wind power advancing

    U.S. Energy Information Administration (EIA) Indexed Site

    Solar and wind power advancing U.S. electricity generation from wind and solar energy show no signs of slowing down. In its new monthly forecast, the U.S. Energy Information ...

  3. False Pass Wind Resource Report

    Energy Savers [EERE]

    False Pass Wind Resource Report False Pass meteorological tower, view to the east, D. ... Eagle River, Alaska D r a f t 1 False Pass Wind Resource Report P a g e | 2 Summary The ...

  4. Kansas/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Kansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  5. Idaho/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Idaho Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  6. Nevada/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Nevada Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  7. Iowa/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Iowa Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  8. Maine/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Maine Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  9. Hawaii/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Hawaii Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  10. Oregon/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Oregon Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  11. Alaska/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  12. SWERA/Solar Resource Information | Open Energy Information

    Open Energy Info (EERE)

    SWERASolar Resource Information < SWERA Jump to: navigation, search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Interactive Web PortalPowered by OpenEI...

  13. Community Wind Handbook/Conduct a Wind Resource Estimate | Open...

    Open Energy Info (EERE)

    "Windustry. Wind Resource Assessment" "AWS Scientific for the National Renewable Energy Laboratory. Wind Resource Assessment Handbook" Retrieved from "http:...

  14. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect (OSTI)

    Turtle Mountain Community College

    2003-12-30

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

  15. Edison Solar & Wind Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Ltd Jump to: navigation, search Name: Edison Solar & Wind Ltd Address: 11 E. Church St, 57 Place: Milan, Ohio Zip: 44846 Sector: Geothermal energy, Solar, Wind energy...

  16. Nebraska Wind and Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Logo: Nebraska Wind and Solar Name: Nebraska Wind and Solar Address: 2026 East 29th Street Place: Scottsbluff, Nebraska Zip: 69361 Region: Rockies...

  17. Nikolski, Alaska, Wind Resource Report

    Energy Savers [EERE]

    Nikolski, Alaska Wind Resource Report Report written by: Douglas Vaught, P.E., V3 Energy ... Roughness Class 1.77 (few trees) Power law exponent 0.174 (moderate wind shear) ...

  18. Georgia/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Georgia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  19. Minnesota/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Minnesota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  20. Delaware/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Delaware Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  1. Maryland/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Maryland Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  2. Indiana/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Indiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  3. Nebraska/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Nebraska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  4. Oklahoma/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Oklahoma Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  5. Connecticut/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Connecticut Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  6. Virginia/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Virginia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  7. Missouri/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Missouri Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  8. Louisiana/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Louisiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  9. Wyoming/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Wyoming Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  10. Tennessee/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Tennessee Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  11. Pennsylvania/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    >> Pennsylvania Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  12. Washington/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Washington Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  13. Colorado/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Colorado Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  14. Arkansas/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Arkansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  15. California/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> California Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  16. Massachusetts/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    >> Massachusetts Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  17. Alabama/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Alabama Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  18. Mississippi/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Mississippi Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  19. Michigan/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Michigan Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  20. Florida/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Florida Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  1. Vermont/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Vermont Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  2. Kentucky/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Kentucky Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  3. Texas/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    TexasWind Resources < Texas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook OpenEI Home >> Wind >> Small...

  4. Utah/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    UtahWind Resources < Utah Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook OpenEI Home >> Wind >>...

  5. Wind Energy Resource Basics | Department of Energy

    Energy Savers [EERE]

    Wind Wind Energy Resource Basics Wind Energy Resource Basics July 30, 2013 - 3:11pm Addthis Wind energy can be produced anywhere in the world where the wind blows with a strong ...

  6. Solar and Wind Energy Resource Assessment (SWERA) Data from the National Renewable Energy Library and the United Nations Environment Program (UNEP)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The SWERA Programme provides easy access to credible renewable energy data to stimulate investment in, and development of, renewable energy technologies. The Solar and Wind Energy Resource Assessment (SWERA) started in 2001 to advance the large-scale use of renewable energy technologies by increasing the availability and accessibility of high-quality solar and wind resource information. SWERA began as a pilot project with funding from the Global Environment Facility (GEF) and managed by the United Nations Environment Programme's (UNEP) Division of Technology, Industry and Economics (DTIE) in collaboration with more than 25 partners around the world. With the success of the project in 13 pilot countries SWERA expanded in 2006 into a full programme. Its expanded mission is to provide high quality information on renewable energy resources for countries and regions around the world, along with the tools needed to apply these data in ways that facilitate renewable energy policies and investments.[from the SWERA Guide at http://swera.unep.net/index.php?id=sweraguide_chp1] DOE and, in particular, the National Renewable Energy Laboratory, has been a functioning partner from the beginning. NREL was part of the original technical team involved in mapping, database, and GIS activities. Solar, wind, and meteorological data for selected countries can be accessed through a variety of different tools and interfaces.

  7. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    Wind Powering America (EERE)

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  8. Denver Solar and Wind | Open Energy Information

    Open Energy Info (EERE)

    Solar and Wind Jump to: navigation, search Logo: Denver Solar and Wind Name: Denver Solar and Wind Address: 12445 E. 39th Ave, Suite 310 Denver, Colorado 80239 Place: Denver,...

  9. Wind Energy Resource Atlas of the Philippines

    SciTech Connect (OSTI)

    Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; McCarthy, E.

    2001-03-06

    This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

  10. Supercomputers Capture Turbulence in the Solar Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbulence in the Solar Wind Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space weather December...

  11. SciTech Connect: "solar plasma wind"

    Office of Scientific and Technical Information (OSTI)

    solar plasma wind" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "solar plasma wind" Semantic Semantic Term Title: Full Text: Bibliographic...

  12. Solar, Wind, Hydropower: Home Renewable Energy Installations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations April 17, 2013 - 1:44pm Addthis This Lakewood, Colorado ...

  13. Arkansas/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Distributed Wind Energy Association Arkansas Wind Resources Arkansas Energy Office: Wind AWEA State Wind Energy Statistics: Arkansas Southeastern Wind Coalition...

  14. Solar Mapping Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Mapping Resources Solar Mapping Resources Solar Mapping Resources Choosing solar energy is a big investment. In order to help consumers quantify the potential benefits,...

  15. AWEA Wind Resource & Project Energy Assessment

    Broader source: Energy.gov [DOE]

    Join the wind industry's leading owners, project developers, and wind assessors as they share latest challenges facing the wind resource assessment community. During this technical event you will...

  16. Wind Energy Resource Atlas of Armenia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G. Scott, S. Haymes, D. Heimiller, R. George National Renewable Energy Laboratory Wind Energy Resource Atlas of Armenia July 2003 * NRELTP-500-33544 Wind Energy Resource...

  17. Solar and Wind Easements

    Broader source: Energy.gov [DOE]

    In April 2011, the provisions related to wind easements were repealed by House Bill 295 (2011) and replaced with more extensive wind easements provisions.  This legislation defines wind energy ri...

  18. Wind and Solar Curtailment: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Bird, L.; Milligan, M.; Speer, B.; Wang, X.; Carlini, E. M.; Estanqueiro, A.; Flynn, D.; Gomez-Lazaro, E.; Menemenlis, N.; Orths, A.; Pineda, I.; Smith, J. C.; Soder, L.; Sorensen, P.; Altiparmakis, A.; Yoh, Y.

    2013-09-01

    High penetrations of wind and solar generation on power systems are resulting in increasing curtailment. Wind and solar integration studies predict increased curtailment as penetration levels grow. This paper examines experiences with curtailment on bulk power systems internationally. It discusses how much curtailment is occurring, how it is occurring, why it is occurring, and what is being done to reduce curtailment. This summary is produced as part of the International Energy Agency Wind Task 25 on Design and Operation of Power Systems with Large Amounts of Wind Power.

  19. Philippines Wind Energy Resource Atlas Development

    SciTech Connect (OSTI)

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  20. STATIONARITY IN SOLAR WIND FLOWS

    SciTech Connect (OSTI)

    Perri, S.; Balogh, A. E-mail: a.balogh@imperial.ac.u

    2010-05-01

    By using single-point measurements in space physics it is possible to study a phenomenon only as a function of time. This means that we cannot have direct access to information about spatial variations of a measured quantity. However, the investigation of the properties of turbulence and of related phenomena in the solar wind widely makes use of an approximation frequently adopted in hydrodynamics under certain conditions, the so-called Taylor hypothesis; indeed, the solar wind flow has a bulk velocity along the radial direction which is much higher than the velocity of a single turbulent eddy embedded in the main flow. This implies that the time of evolution of the turbulent features is longer than the transit time of the flow through the spacecraft position, so that the turbulent field can be considered frozen into the solar wind flow. This assumption allows one to easily associate time variations with spatial variations and stationarity to homogeneity. We have investigated, applying criteria for weak stationarity to Ulysses magnetic field data in different solar wind regimes, at which timescale and under which conditions the hypothesis of stationarity, and then of homogeneity, of turbulence in the solar wind is well justified. We extend the conclusions of previous studies by Matthaeus and Goldstein to different parameter ranges in the solar wind. We conclude that the stationarity assumption in the inertial range of turbulence on timescales of 10 minutes to 1 day is reasonably satisfied in fast and uniform solar wind flows, but that in mixed, interacting fast, and slow solar wind streams the assumption is frequently only marginally valid.

  1. Wind Integration, Transmission, and Resource Assessment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization Projects | Department of Energy Integration, Transmission, and Resource Assessment and Characterization Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects This report covers the Wind and Water Power Technologies Office's Wind integration, transmission, and resource assessment and characterization projects from fiscal years 2006 to 2014. PDF icon Wind Integration, Transmission, and Resource Assessment and Characterization Projects

  2. NREL: Learning - Student Resources on Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Photo of a girl and a boy standing beneath a large wind turbine. Students can learn about wind energy by visiting a wind farm. The following resources can provide you with more information on wind energy. NREL National Wind Technology Center Wind Energy Basics U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy Small Wind Electric Systems U.S. Department of Energy's Energy Savers Program American Wind Energy Association NREL Wind Research: Publications

  3. Solar & Wind Equipment Certification

    Broader source: Energy.gov [DOE]

    With the exception of solar energy systems designed or installed by the final owner, systems sold or installed in Arizona must be installed by licensed solar contractors and must comply with any...

  4. Fact Sheet: Multilateral Solar and Wind Working Group | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multilateral Solar and Wind Working Group Fact Sheet: Multilateral Solar and Wind Working Group A fact sheet detailling the development of a Multilateral Solar and Wind Working ...

  5. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying & Making Electricity Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and solar systems occur at...

  6. Afghanistan Pakistan High Resolution Wind Resource - Datasets...

    Open Energy Info (EERE)

    Pakistan High Resolution Wind Resource This shapefile containing 50 meter height data has been validated by NREL and wind energy meteorological consultants. However, the data is...

  7. Solar and Wind Rights

    Broader source: Energy.gov [DOE]

    The law stipulates that associations must adopt an energy policy statement specifying details such as location, design, and architectural requirements of the solar energy systems within 120 days...

  8. Solar and Wind Contractor Licensing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility InstallersContractors Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Photovoltaics Wind (All) Wind (Small) Program Info Sector Name...

  9. ASYMMETRIC SOLAR WIND ELECTRON DISTRIBUTIONS

    SciTech Connect (OSTI)

    Yoon, Peter H.; Kim, Sunjung; Lee, Junggi; Lee, Junhyun; Park, Jongsun; Park, Kyungsun; Seough, Jungjoon [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Hong, Jinhy [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2012-08-20

    The present paper provides a possible explanation for the solar wind electron velocity distribution functions possessing asymmetric energetic tails. By numerically solving the electrostatic weak turbulence equations that involve nonlinear interactions among electrons, Langmuir waves, and ion-sound waves, it is shown that different ratios of ion-to-electron temperatures lead to the generation of varying degrees of asymmetric tails. The present finding may be applicable to observations in the solar wind near 1 AU and in other regions of the heliosphere and interplanetary space.

  10. Solar Wind Europe SL | Open Energy Information

    Open Energy Info (EERE)

    Europe SL Jump to: navigation, search Name: Solar Wind Europe SL Place: Madrid, Spain Zip: 28028 Product: Spain-based distributor of Russia-made PV modules. References: Solar Wind...

  11. Nevada/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Energy Association Nevada Wind Resources NV Energy Wind Projects Nevada Governor's Office of Energy AWEA State Wind Energy Statistics: Nevada Four Corners Wind Resource Center...

  12. Idaho/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Wind Working Group Boise State University Wind for Schools Program Idaho Governor's Office of Energy resources AWEA State Wind Energy Statistics: Idaho Northwest Wind Resource...

  13. Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    GE Energy

    2010-05-01

    This report provides a full description of the Western Wind and Solar Integration Study (WWSIS) and its findings.

  14. Solar and Wind Easements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Easements Solar and Wind Easements < Back Eligibility Commercial Construction Industrial Local Government Nonprofit Residential Schools State Government Federal Government...

  15. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  16. Wind Resource Assessment of Gujarat (India)

    SciTech Connect (OSTI)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  17. Category:State Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    State Wind Resources Jump to: navigation, search Category containing State Wind Resources Pages in category "State Wind Resources" The following 100 pages are in this category, out...

  18. WINDExchange: Wind Energy Regional Resource Centers

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers About Economic Development Siting Wind Energy Regional Resource Centers The U.S. Department of Energy's Regional Resource Centers provide unbiased wind energy information to communities and decision makers to help them evaluate wind energy potential and learn about wind power's benefits and impacts in their regions. During their first year of operations, the Regional Resource Centers impacted more than 12,000

  19. Solar Energy Resource Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resource Center Solar Energy Resource Center The SunShot Initiative's Solar Energy Resource Center contains work developed by DOE, national laboratories and SunShot awardees. The ...

  20. Solar Energy Resource Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resource Center Solar Energy Resource Center Solar Mapping Resources Featured Article There's a Map for That National laboratories and private companies have developed a number of ...

  1. Guidelines for Solar and Wind Local Ordinances | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaics Wind (All) Wind (Small) Program Info Sector Name State State Virginia Program Type SolarWind Permitting Standards Summary In March 2011, the Virginia...

  2. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Environmental Management (EM)

    Electricity & Fuel Buying & Making Electricity Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and...

  3. Solar, Wind, and Energy Efficiency Easements and Rights Laws...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar, Wind, and Energy Efficiency Easements and Rights Laws Solar, Wind, and Energy Efficiency Easements and Rights Laws < Back Eligibility Residential Savings Category Solar -...

  4. Power House Solar and Wind | Open Energy Information

    Open Energy Info (EERE)

    Solar and Wind Jump to: navigation, search Name: Power House Solar and Wind Address: 1504 Woodlawn Ave Place: Canon City, Colorado Zip: 81212 Region: Rockies Area Sector: Solar...

  5. Solar/Wind Access Policy | Open Energy Information

    Open Energy Info (EERE)

    SolarWind Access Policy < Solar Jump to: navigation, search Solar and wind access laws are designed to establish a right to install and operate a solar or wind energy system at a...

  6. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    Open Energy Info (EERE)

    * Engage with Neighbors * Conduct a Wind Resource Estimate * Research Interconnecting behind Your Meter * Research Project Economics & Financing * Select the Final Design &...

  7. Agua Caliente Wind/Solar Project at Whitewater Ranch

    SciTech Connect (OSTI)

    Hooks, Todd; Stewart, Royce

    2014-12-16

    Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly has excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.

  8. Wind Resource Atlas of Oaxaca | Open Energy Information

    Open Energy Info (EERE)

    characteristics and distribution of wind resources in Oaxaca, Mexico, at a wind power density of 50 meters above ground. The detailed wind resource maps contained in the atlas...

  9. Hawaii/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Distributed Wind Energy Association Hawaii Wind Resources Hawaii State Energy Office AWEA State Wind Energy Statistics: Hawaii Islanded Grid Resource Center References ...

  10. North Carolina/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    >> North Carolina Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  11. South Dakota/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    >> South Dakota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  12. New York/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> New York Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  13. North Dakota/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    >> North Dakota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  14. Rhode Island/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    >> Rhode Island Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  15. New Jersey/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> New Jersey Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  16. South Carolina/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    >> South Carolina Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  17. West Virginia/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    >> West Virginia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  18. New Hampshire/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    >> New Hampshire Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  19. Utah/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    info@distributedwind.org Distributed Wind Energy Association Utah Wind Resources Utah Office of Energy Development: Wind Energy Information AWEA State Wind Energy Statistics: Utah...

  20. Indiana/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Distributed Wind Energy Association Indiana Wind Resources Indiana Office of Energy Development Purdue Extension: Wind Energy AWEA State Wind Energy Statistics:...

  1. Solar Mapping Resources

    Broader source: Energy.gov [DOE]

    Choosing solar energy is a big investment. In order to help consumers quantify the potential benefits, national laboratories and private companies have developed a number of tools to forecast their solar futures. Satellite maps, irradiance data, and real-time bids from installers have been combined to assist customers in understanding the potential costs and benefits of solar with just the click of a button. The examples below help consumers start the process of choosing solar by demonstrating the solar potential of their homes or businesses.

  2. Supercomputers Capture Turbulence in the Solar Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture Turbulence in the Solar Wind Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space weather December 16, 2013 Linda Vu, +1 510 495 2402, lvu@lbl.gov eddies1.jpg This visualization zooms in on current sheets revealing the "cascade of turbulence" in the solar wind occurring down to electron scales. This is a phenomenon common in fluid dynamics-turbulent energy injected at large eddies is transported to

  3. Large Distributed Solar and Wind Grant Program

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) is offering grants for community-scale solar and wind projects located in Illinois.

  4. Calwind Resources Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Status In Service Developer CalWind Resources Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665, -118.25529 Show Map Loading map......

  5. MOWII Webinar: Wind Development Cultural Resource Management

    Broader source: Energy.gov [DOE]

    During the planning stages, wind energy development can be affected by the regulatory process relative to cultural resource management issues. Section 106 of the National Historic Preservation Act ...

  6. NREL: Renewable Resource Data Center - Solar Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data The following solar resource data collections can be found in the Renewable Resource Data Center (RReDC). Cooperative Networks for Renewable Resource Measurements (CONFRRM)...

  7. Gold SolarWind GmbH | Open Energy Information

    Open Energy Info (EERE)

    SolarWind GmbH Jump to: navigation, search Name: Gold SolarWind GmbH Place: Aiterhofen, Germany Zip: 94330 Sector: Wind energy Product: German project developer of PV and wind...

  8. Innovations in Wind and Solar PV Financing

    SciTech Connect (OSTI)

    Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

    2008-02-01

    There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

  9. NREL: Wind Research - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources Small wind turbine in a field at sunset with three buffalo in the foreground. Photo by Northwest Seed For more than 35 years, NREL researchers have spent countless hours building world-class research facilities and unparalleled expertise in renewable energy technologies while supporting the vision that wind and water can create clean, reliable, and cost-effective electricity. The National Wind Technology Center at NREL strives to be a central location for data and resources as

  10. Solar Energy Resource Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resource Center Solar Energy Resource Center Sub Program Topic Resource Search Results Title Date Author SubProgram Topic Description...

  11. Solar Energy Resource Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resource Center Solar Energy Resource Center Sub Program Topic Resource Search Results Title Date Author SubProgram Topic Description

  12. Biogas, Solar, and Wind Energy Equipment Exemption | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biogas, Solar, and Wind Energy Equipment Exemption Biogas, Solar, and Wind Energy Equipment Exemption < Back Eligibility Commercial Industrial Residential Agricultural Multifamily...

  13. Global Atlas for Solar and Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Atlas for Solar and Wind Energy Jump to: navigation, search Tool Summary Name: Global Atlas for Solar and Wind Energy AgencyCompany Organization: International Renewable Energy...

  14. Solar and Wind Permitting Standards | Open Energy Information

    Open Energy Info (EERE)

    Residential Residential Schools State Government Wind Yes City and County of Denver - Solar Panel Permitting (Colorado) SolarWind Permitting Standards Colorado Commercial...

  15. Solar/Wind Permitting Standards | Open Energy Information

    Open Energy Info (EERE)

    Residential Residential Schools State Government Wind Yes City and County of Denver - Solar Panel Permitting (Colorado) SolarWind Permitting Standards Colorado Commercial...

  16. New England Breeze Solar and Wind Installers | Open Energy Information

    Open Energy Info (EERE)

    Greater Boston Area Sector: Renewable energy, Services, Solar, Wind energy Product: Solar Panel and Wind Turbine Installation Year Founded: 2006 Phone Number: 978-567-9463...

  17. Solar energy system with wind vane

    DOE Patents [OSTI]

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  18. Western Wind and Solar Integration Study Phase 2: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B.-M.; King, J.

    2012-09-01

    The Western Wind and Solar Integration Study (WWSIS) investigates the impacts of high penetrations of wind and solar power into the Western Interconnection of the United States. WWSIS2 builds on the Phase 1 study but with far greater refinement in the level of data inputs and production simulation. It considers the differences between wind and solar power on systems operations. It considers mitigation options to accommodate wind and solar when full costs of wear-and-tear and full impacts of emissions rates are taken into account. It determines wear-and-tear costs and emissions impacts. New data sets were created for WWSIS2, and WWSIS1 data sets were refined to improve realism of plant output and forecasts. Four scenarios were defined for WWSIS2 that examine the differences between wind and solar and penetration level. Transmission was built out to bring resources to load. Statistical analysis was conducted to investigate wind and solar impacts at timescales ranging from seasonal down to 5 minutes.

  19. Solar wind samples give insight into birth of solar system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar and wind power advancing U.S. electricity generation from wind and solar energy show no signs of slowing down. In its new monthly forecast, the U.S. Energy Information Administration expects wind-powered generation to grow by 19 percent this year and rise another 8 percent in 2014. Congress's extension in January of a tax credit for electricity producers that use renewables is behind the wind power boost. Solar generation in the electric power sector is expected to grow even more, rising

  20. How do Wind and Solar Power Affect Grid Operations: The Western Wind and Solar Integration Study; Preprint

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Freeman, L.; Miller, N.; Clark, K.; Piwko, R.

    2009-09-01

    This paper reviews the scope of the Western Wind and Solar Integration Study, the development of wind and solar datasets, and the results to date on three scenarios.

  1. Wind Resource Assessment and Characterization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Wind Resource Assessment and Characterization Wind Resource Assessment and Characterization A crucial factor in the development, siting, and operation of a wind farm is the ability to assess and characterize available wind resources. The Wind Program supports efforts to accurately define, measure, and forecast the nation's land-based and offshore wind resources. More accurate prediction and measurement of wind speed and direction allow wind farms to supply clean,

  2. Colorado/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Distributed Wind Energy Association Colorado Wind Resources Colorado Energy Office AWEA State Wind Energy Statistics: Colorado Colorado Center for Renewable Energy...

  3. Nebraska/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Distributed Wind Energy Association Nebraska Wind Resources Nebraska Energy Office AWEA State Wind Energy Statistics: Nebraska References "U.S. Census Bureau. 2010...

  4. Wind Integration, Transmission, and Resource Assessment andCharacteri...

    Office of Environmental Management (EM)

    Wind Integration, Transmission, and Resource Assessment and Characterization Projects This report covers the Wind and Water Power Technologies Office's Wind integration, ...

  5. Characterizing wind power resource reliability in southern Africa...

    Office of Scientific and Technical Information (OSTI)

    DOE PAGES Search Results Published Article: Characterizing wind power resource reliability in southern Africa Title: Characterizing wind power resource reliability in southern...

  6. China Resources Wind Power Development Co Ltd Hua Run | Open...

    Open Energy Info (EERE)

    Resources Wind Power Development Co Ltd Hua Run Jump to: navigation, search Name: China Resources Wind Power Development Co Ltd (Hua Run) Place: Shantou, Guangdong Province, China...

  7. Solar Resource and Meteorological Assessment Project (SOLRMAP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource and Meteorological Assessment Project (SOLRMAP) Solar and Meteorological Station Options: Configurations and Specifications July 1, 2009 (revised) Steve Wilcox and ...

  8. Wind Resource Assessment of St. George, Alaska

    Energy Savers [EERE]

    Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.aidea.orgwind.htm Wind Resource Assessment for ST GEORGE, ALASKA Site 2401 Date last modified: 11222005 Prepared ...

  9. WINDExchange: Wind Economic Development Resources and Tools

    Wind Powering America (EERE)

    Development Resources and Tools This page lists wind-related economic development resources and tools such as publications, Web resources, and news. Search the WINDExchange Database Choose a Type of Information All News Publications Web Resource Videos Start Search Clear Search Date State Type of Information Program Area Title 5/1/2016 News Econ. Dev. Energy and Commerce Departments Announce Lab Partnership Opportunities for U.S. Small Businesses and Manufacturers 4/18/2016 VA Publication Econ.

  10. Wind and Solar Energy Curtailment Practices (Presentation)

    SciTech Connect (OSTI)

    Bird, L.; Cochran, J.; Wang, X.

    2014-10-01

    This presentation to the fall 2014 technical meeting of the Utility Variable-Generation Integration Group summarizes experience with curtailment of wind and solar in the U.S.

  11. Solar and Wind Energy Rebate Program

    Broader source: Energy.gov [DOE]

    The Department is no longer accepting applications for the FY 2015 Solar and Wind Rebate Program. The anticipated opening of the FY 2016 program is late this Summer. See website for highlights of...

  12. Solar and Wind Easements & Rights Laws

    Broader source: Energy.gov [DOE]

    Solar and wind systems are also protected from siting restrictions that would "significantly decrease the efficiency or performance of the system and not allow for the use of an alternative system...

  13. Large Scale Wind and Solar Integration in Germany

    SciTech Connect (OSTI)

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank; Pease, John; Scholz, Cristian; Erbring, Hans-Peter; Schlunke, Stephan; Makarov, Yuri V.

    2010-02-28

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to compare and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.

  14. NREL: Concentrating Solar Power Research - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources For concentrating solar power technologies, NREL features the following online solar radiation resource data and solar resource maps, as well as data for ...

  15. NWTC Helps Chart the World's Wind Resource Potential

    SciTech Connect (OSTI)

    2015-09-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) provide the wind industry, policymakers, and other stakeholders with applied wind resource data, information, maps, and technical assistance. These tools, which emphasize wind resources at ever-increasing heights, help stakeholders evaluate the wind resource and development potential for a specific area.

  16. Solar and Wind Easements & Rights Laws & Local Option Solar Rights Law |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Wind Easements & Rights Laws & Local Option Solar Rights Law Solar and Wind Easements & Rights Laws & Local Option Solar Rights Law < Back Eligibility Commercial Industrial Local Government Nonprofit Residential Schools State Government Federal Government Agricultural Institutional Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Wind (All) Solar Pool Heating

  17. NREL: International Activities - Philippines Wind Resource Maps and Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A map depicting wind resources at 100 meters of the republic of the Philippines. Additional Resources Wind Prospector A web-based GIS applications designed to support resource assessment and data exploration associated with wind development. Philippines Wind Viewer Tutorial Learn how to navigate, display, query and download Philippines data in the Wind Prospector. Philippines Geospatial Toolkit EXE 926.5 MB Philippines Wind Resource Maps and Data In 2014, under the Enhancing Capacity for Low

  18. NANA Wind Resource Assessment Program Final Report

    SciTech Connect (OSTI)

    Jay Hermanson

    2010-09-23

    NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

  19. Wind energy resource atlas. Volume 10. Alaska region

    SciTech Connect (OSTI)

    Wise, J.L.; Wentink, T. Jr.; Becker, R. Jr.; Comiskey, A.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-12-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each subregion of Alaska. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a state scale is given. The results of the wind energy assessments for each subregion are assembled into an overview and summary of the various features of the Alaska wind energy resource. An outline to the descriptions of the wind resource given for each subregion is included. Assessments for individual subregions are presented as separate chapters. The subregion wind energy resources are described in greater detail than is the Alaska wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the subregion chapters.

  20. Wind energy resource atlas. Volume 9. The Southwest Region

    SciTech Connect (OSTI)

    Simon, R.L.; Norman, G.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-11-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in Nevada and California. Background on how the wind resource is assessed and on how the results of the assessment should be interpreted is presented. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. An introduction and outline to the descriptions of the wind resource given for each state are given. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed.

  1. Western Wind and Solar Integration Study: Executive Summary | Department of

    Energy Savers [EERE]

    Energy Western Wind and Solar Integration Study: Executive Summary Western Wind and Solar Integration Study: Executive Summary This study investigates the operational impact of up to 35% energy penetration of wind, photovoltaics (PVs), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming. PDF icon western_wind_solar_integration More Documents & Publications Eastern Wind Integration and

  2. Sustainable Energy Resources for Consumers (SERC) - Solar Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Solar Photovoltaics Sustainable Energy Resources for Consumers (SERC) - Solar Photovoltaics This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) ...

  3. Transport of transient solar wind particles in Earth's cusps (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Transport of transient solar wind particles in Earth's cusps Citation Details In-Document Search Title: Transport of transient solar wind particles in Earth's cusps An important problem in space physics still not understood well is how the solar wind enters the Earth's magnetosphere. Evidence is presented that transient solar wind particles produced by solar disturbances can appear in the Earth's mid-altitude ({approx}5 R{sub E} geocentric) cusps with densities

  4. Wind Issues in Solar Thermal Performance Ratings: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Casey, R.

    2009-04-01

    We suggest that wind bias against unglazed solar water heaters be mitigated by using a calibrated collector model to derive a wind correction to the measured efficiency curve.

  5. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications U.S. Virgin Islands Wind Resources Update 2014 The Wind Forecast Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term ...

  6. NREL GIS Data: Bhutan High Resolution Wind Resource - Datasets...

    Open Energy Info (EERE)

    NREL GIS Data: Bhutan High Resolution Wind Resource This shapefile containing 50 meter height data has been validated by NREL and wind energy meteorological consultants. However,...

  7. COLLOQUIUM: On Tracing the Origins of the Solar Wind | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the two suggest different sources for the fast and slow solar wind. Using state of the art models and observations I find that the solar wind observations used to distinguish...

  8. Excise Tax Exemption for Solar or Wind Powered Systems

    Broader source: Energy.gov [DOE]

    Massachusetts law exempts any "solar or wind powered climatic control unit and any solar or wind powered water heating unit or any other type unit or system powered thereby," that qualifies for the...

  9. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Fuel Cell Technologies Publication and Product Library (EERE)

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

  10. NREL: Renewable Resource Data Center - Solar Resource Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Information The Renewable Resource Data Center (RReDC) offers a collection of data and ... The proper siting of any renewable energy system is critical to its success. ...

  11. Solar and Wind Contractor Licensing

    Broader source: Energy.gov [DOE]

    In June of 2014, SB 447 mandated that the Louisiana State Licencsing Board for Contractors develop new rules for solar contractors no later than January 1, 2015. Licensed contractors must be in c...

  12. NREL: Transmission Grid Integration - Western Wind and Solar Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Western Wind and Solar Integration Study The Western Wind and Solar Integration Study, one of the largest regional solar and wind integration studies to date, explores the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? Released December 2014-Phase 3 Research Report Says Western Grid Can Weather Disturbances Under High Renewable Penetrations With good system planning, sound engineering practices, and commercially available

  13. Transmission Benefits of Co-Locating Concentrating Solar Power and Wind

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2012-03-01

    In some areas of the U.S. transmission constraints are a limiting factor in deploying new wind and concentrating solar power (CSP) plants. Texas is an example of one such location, where the best wind and solar resources are in the western part of the state, while major demand centers are in the east. The low capacity factor of wind is a compounding factor, increasing the relative cost of new transmission per unit of energy actually delivered. A possible method of increasing the utilization of new transmission is to co-locate both wind and concentrating solar power with thermal energy storage. In this work we examine the benefits and limits of using the dispatachability of thermal storage to increase the capacity factor of new transmission developed to access high quality solar and wind resources in remote locations.

  14. SWERA/Wind Resource Information | Open Energy Information

    Open Energy Info (EERE)

    wind resources are depicted as average wind speed (meters per second) or wind power density (watts per square meter) at a specified height above the ground (nominally 50 m)....

  15. Identifying Wind and Solar Ramping Events: Preprint

    SciTech Connect (OSTI)

    Florita, A.; Hodge, B. M.; Orwig, K.

    2013-01-01

    Wind and solar power are playing an increasing role in the electrical grid, but their inherent power variability can augment uncertainties in power system operations. One solution to help mitigate the impacts and provide more flexibility is enhanced wind and solar power forecasting; however, its relative utility is also uncertain. Within the variability of solar and wind power, repercussions from large ramping events are of primary concern. At the same time, there is no clear definition of what constitutes a ramping event, with various criteria used in different operational areas. Here the Swinging Door Algorithm, originally used for data compression in trend logging, is applied to identify variable generation ramping events from historic operational data. The identification of ramps in a simple and automated fashion is a critical task that feeds into a larger work of 1) defining novel metrics for wind and solar power forecasting that attempt to capture the true impact of forecast errors on system operations and economics, and 2) informing various power system models in a data-driven manner for superior exploratory simulation research. Both allow inference on sensitivities and meaningful correlations, as well as the ability to quantify the value of probabilistic approaches for future use in practice.

  16. Value of Geographic Diversity of Wind and Solar: Stochastic Geometry Approach; Preprint

    SciTech Connect (OSTI)

    Diakov, V.

    2012-08-01

    Based on the available geographically dispersed data for the continental U.S. (excluding Alaska), we analyze to what extent the geographic diversity of these resources can offset their variability. A geometric model provides a convenient measure for resource variability, shows the synergy between wind and solar resources.

  17. NREL: Learning - Student Resources on Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy The following resources can provide you with more information on solar energy. Solar Energy Technology Basics U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Sunshot Initiative U.S. Department of Energy Office of Energy Efficiency & Renewable Energy U.S. Department of Energy Solar Decathlon Photovoltaic Technology Basics U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Concentrating Solar Power U.S. Department of Energy

  18. Massachusetts/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Massachusetts Wind Resources Massachusetts Clean Energy Center Massachusetts Office of Energy and Environmental Affairs University of Massachusetts Clean Energy Center:...

  19. AWEA Wind Resource & Project Energy Assessment Seminar 2014

    Broader source: Energy.gov [DOE]

    Wind resource assessment from the outside looking in: How are we doing, what are we delivering, and is it working?

  20. Development of Regional Wind Resource and Wind Plant Output Datasets. Final Subcontract Report, 15 October 2007 - 15 March 2009

    SciTech Connect (OSTI)

    Lew, Debra

    2010-03-01

    This report describes the development of the necessary and needed wind and solar datasets used in the Western Wind and Solar Integration Study (WWSIS).

  1. The Genesis Mission: Solar Wind Conditions, and Implications for the FIP Fractionation of the Solar Wind.

    SciTech Connect (OSTI)

    Reisenfeld, D. B.; Wiens, R. C.; Barraclough, B. L.; Steinberg, J. T; Dekoning, C. A.; Zurbuchen, T. H.; Burnett, D. S.

    2005-01-01

    The NASA Genesis mission collected solar wind on ultrapure materials between November 30, 2001 and April 1, 2004. The samples were returned to Earth September 8, 2004. Despite the hard landing that resulted from a failure of the avionics to deploy the parachute, many samples were returned in a condition that will permit analyses. Sample analyses of these samples should give a far better understanding of the solar elemental and isotopic composition (Burnett et al. 2003). Further, the photospheric composition is thought to be representative of the solar nebula, so that the Genesis mission will provide a new baseline for the average solar nebula composition with which to compare present-day compositions of planets, meteorites, and asteroids. Sample analysis is currently underway. The Genesis samples must be placed in the context of the solar and solar wind conditions under which they were collected. Solar wind is fractionated from the photosphere by the forces that accelerate the ions off of the Sun. This fractionation appears to be ordered by the first ionization potential (FIP) of the elements, with the tendency for low-FIP elements to be over-abundant in the solar wind relative to the photosphere, and high-FIP elements to be under-abundant (e.g. Geiss, 1982; von Steiger et al., 2000). In addition, the extent of elemental fractionation differs across different solarwind regimes. Therefore, Genesis collected solar wind samples sorted into three regimes: 'fast wind' or 'coronal hole' (CH), 'slow wind' or 'interstream' (IS), and 'coronal mass ejection' (CME). To carry this out, plasma ion and electron spectrometers (Barraclough et al., 2003) continuously monitored the solar wind proton density, velocity, temperature, the alpha/proton ratio, and angular distribution of suprathermal electrons, and those parameters were in turn used in a rule-based algorithm that assigned the most probable solar wind regime (Neugebauer et al., 2003). At any given time, only one of three regime-specific collectors (CH, IS, or CME) was exposed to the solar wind. Here we report on the regime-specific solar wind conditions from in-situ instruments over the course of the collection period. Further, we use composition data from the SWICS (Solar Wind Ion Composition Spectrometer) instrument on ACE (McComas et al., 1998) to examine the FIP fractionation between solar wind regimes, and make a preliminary comparison of these to the FIP analysis of Ulysses/SWICS composition data (von Steiger et al. 2000). Our elemental fractionation study includes a reevaluation of the Ulysses FIP analysis in light of newly reported photospheric abundance data (Asplund, Grevesse & Sauval, 2005). The new abundance data indicate a metallicity (Z/X) for the Sun almost a factor of two lower than that reported in the widely used compilation of Anders & Grevesse (1989). The new photospheric abundances suggest a lower degree of solar wind fractionation than previously reported by von Steiger et al. (2000) for the first Ulysses polar orbit (1991-1998).

  2. Wind Energy Resource Assessment of the Caribbean and Central America

    SciTech Connect (OSTI)

    DL Elliott; CI Aspliden; GL Gower; CG Holladay, MN Schwartz

    1987-04-01

    A wind energy resource assessment of the Caribbean and Central America has identified many areas with good to outstanding wind resource potential for wind turbine applications. Annual average wind resource maps and summary tables have been developed for 35 island/country areas throughout the Caribbean and Central America region. The wind resource maps highlight the locations of major resource areas and provide estimates of the wind energy resource potential for typical well-exposed sites in these areas. The average energy in the wind flowing in the layer near the ground is expressed as a wind power class: the greater the average wind energy, the higher the wind power class. The summary tables that are included with each of the 35 island/country wind energy maps provide information on the frequency distribution of the wind speeds (expressed as estimates of the Weibull shape factor, k) and seasonal variations in the wind resource for the major wind resource areas identified on the maps. A new wind power class legend has been developed for relating the wind power classes to values of mean wind power density, mean wind speed, and Weibull k. Guidelines are presented on how to adjust these values to various heights above ground for different roughness and terrain characteristics. Information evaluated in preparing the assessment included existing meteorological data from airports and other weather stations, and from ships and buoys in offshore and coastal areas. In addition, new data from recent measurement sites established for wind energy siting studies were obtained for a few areas of the Caribbean. Other types of information evaluated in the assessment were climatological data and maps on winds aloft, surface pressure, air flow, and topography. The various data were screened and evaluated for their usefulness in preparing the wind resource assessment. Much of the surface data from airports and other land-based weather stations were determined to be from sheltered sites and were thus not very useful in assessing the wind resource at locations that are well exposed to the winds. Ship data were determined to be the most useful for estimating the large-scale wind flow and assessing the spatial distribution of the wind resource throughout the region. Techniques were developed for analyzing and correcting ship wind data and extrapolating these data to coastal and inland areas by considering terrain influences on the large-scale wind flow. In areas where extrapolation of ship wind data was not entirely feasible, such as interior areas of Central America, other techniques were developed for estimating the wind flow and distribution of the wind resource. Through the application of the various innovative techniques developed for assessing the wind resource throughout the Caribbean and Central America region, many areas with potentially good to outstanding wind resource were identified that had not been previously recognized. In areas where existing site data were available from exposed locations, the measured wind resource was compared with the estimated wind resource that was derived using the assessment techniques. In most cases, there was good agreement between the measured wind resource and the estimated wind resource. This assessment project supported activities being pursued by the U.S. Committee for Renewable Energy Commerce and Trade (CORECT), the U.S. government's interagency program to assist in overseas marketing and promote renewable energy exports. An overall goal of the program is to improve U.S. competitiveness in the world renewable energy market. The Caribbean and Central America assessment, which is the first of several possible follow-on international wind energy resource assessments, provides valuable information needed by the U.S. wind energy industry to identify suitable wind resource areas and concentrate their efforts on these areas.

  3. Foundational Solar Resource Research (Poster)

    SciTech Connect (OSTI)

    Orwig, K.; Wilcox, S.; Sengupta, M.; Habte, A.; Anderberg, M.; Stoffel, T.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  4. Energy Department Announces Funding to Access Higher Quality Wind Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Lower Costs | Department of Energy Funding to Access Higher Quality Wind Resources and Lower Costs Energy Department Announces Funding to Access Higher Quality Wind Resources and Lower Costs January 30, 2014 - 1:06pm Addthis The Energy Department today announced $2 million to help efficiently harness wind energy using taller towers. These projects will help strengthen U.S. wind turbine component manufacturing, reduce the cost of clean and renewable wind energy, and expand the geographic

  5. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    Broader source: Energy.gov [DOE]

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of...

  6. AWEA Wind Resource & Project Energy Assessment Conference | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resource & Project Energy Assessment Conference AWEA Wind Resource & Project Energy Assessment Conference September 27, 2016 8:00AM CDT to September 28, 2016 5:00PM CDT Minneapolis, MN Join the wind industry's leading owners, project developers, and wind assessors as they share latest challenges facing the wind resource assessment community. During this technical event you will explore the industry's needs, focus on state-of-the-art techniques and technologies, and provide

  7. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  8. Western Wind and Solar Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

  9. Voluntary Solar Resource Development Fund

    Broader source: Energy.gov [DOE]

    The fund will be used to provide loans for residential, commercial, or nonprofit solar energy projects. Qualifying solar energy projects cannot be acquired, installed or operating before July 1, ...

  10. Solar Energy Resources for Homebuilders

    Broader source: Energy.gov [DOE]

    Across the country more homebuilders are realizing that solar represents a good investment for their portfolios. Integrating solar photovoltaics (PV) into new construction has become a focus for many companies and municipalities, who are incorporating building integrated PV into their master plans. Cities like Tucson, AZ, Carbondale, CO and Chula Vista, CA have developed requirements or incentives for new homes to be “solar ready,” as installed costs of solar have decreased exponentially in recent years.

  11. Electric Cooperatives Channel Solar Resources to Rural American...

    Office of Environmental Management (EM)

    Electric Cooperatives Channel Solar Resources to Rural American Communities Electric Cooperatives Channel Solar Resources to Rural American Communities February 4, 2016 - 12:07pm ...

  12. Solar Resource Measurements at FPL Energy … Equipment Only:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Number: CRD-08-283 CRADA Title: Solar Resource Measurements at FPL Energy - Equipment Only Joint Work ... solar irradiance are important for developing renewable resource data. ...

  13. Solar Resource Measurements in 1400 JR Lynch Street, Jackson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Measurements in 1400 JR Lynch Street, Jackson, Mississippi Cooperative ... CRADA Number: CRD-07-254 CRADA Title: Solar Resource Measurements in 1400 JR Lynch Street, ...

  14. Turkey-Solar Energy Training Resources and Documents | Open Energy...

    Open Energy Info (EERE)

    Solar Energy Training Resources and Documents Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Turkey - Solar Energy Training Resources and Documents AgencyCompany...

  15. Solar Energy Resources for Homebuilders | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Energy Resources for Homebuilders Across the country more homebuilders are realizing that solar represents a good investment for their portfolios. Integrating solar...

  16. India Solar Resource Data: Enhanced Data for Accelerated Deployment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    India Solar Resource Data Enhanced Data for Accelerated Deployment Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires ...

  17. ISOTOPIC MASS FRACTIONATION OF SOLAR WIND: EVIDENCE FROM FAST AND SLOW SOLAR WIND COLLECTED BY THE GENESIS MISSION

    SciTech Connect (OSTI)

    Heber, Veronika S.; Baur, Heinrich; Wieler, Rainer; Bochsler, Peter; McKeegan, Kevin D.; Neugebauer, Marcia; Reisenfeld, Daniel B.; Wiens, Roger C.

    2012-11-10

    NASA's Genesis space mission returned samples of solar wind collected over {approx}2.3 years. We present elemental and isotopic compositions of He, Ne, and Ar analyzed in diamond-like carbon targets from the slow and fast solar wind collectors to investigate isotopic fractionation processes during solar wind formation. The solar wind provides information on the isotopic composition for most volatile elements for the solar atmosphere, the bulk Sun and hence, on the solar nebula from which it formed 4.6 Ga ago. Our data reveal a heavy isotope depletion in the slow solar wind compared to the fast wind composition by 63.1 {+-} 2.1 per mille for He, 4.2 {+-} 0.5 per mille amu{sup -1} for Ne and 2.6 {+-} 0.5 per mille amu{sup -1} for Ar. The three Ne isotopes suggest that isotopic fractionation processes between fast and slow solar wind are mass dependent. The He/H ratios of the collected slow and fast solar wind samples are 0.0344 and 0.0406, respectively. The inefficient Coulomb drag model reproduces the measured isotopic fractionation between fast and slow wind. Therefore, we apply this model to infer the photospheric isotopic composition of He, Ne, and Ar from our solar wind data. We also compare the isotopic composition of oxygen and nitrogen measured in the solar wind with values of early solar system condensates, probably representing solar nebula composition. We interpret the differences between these samples as being due to isotopic fractionation during solar wind formation. For both elements, the magnitude and sign of the observed differences are in good agreement with the values predicted by the inefficient Coulomb drag model.

  18. Development of Eastern Regional Wind Resource and Wind Plant Output Datasets: March 3, 2008 -- March 31, 2010

    SciTech Connect (OSTI)

    Brower, M.

    2009-12-01

    The objective of this project was to provide wind resource inputs to the Eastern Wind Integration and Transmission Study.

  19. Wind Resource and Feasibility Assessment Report for the Lummi Reservation

    SciTech Connect (OSTI)

    DNV Renewables Inc.; J.C. Brennan & Associates, Inc.; Hamer Environmental L.P.

    2012-08-31

    This report summarizes the wind resource on the Lummi Indian Reservation (Washington State) and presents the methodology, assumptions, and final results of the wind energy development feasibility assessment, which included an assessment of biological impacts and noise impacts.

  20. South Dakota Wind Resource Assessment Network (WRAN)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    WRAN is a network of instrument stations sited throughout South Dakota. As of 2010, there are eleven stations, and some have been collecting data since 2001. The purpose of the WRAN:

    There are several reasons why the WRAN was built. One of the most obvious is that it will allow verification of the existing resource assessments of our state. South Dakota has tremendous potential as an exporter of wind-generated electricity. There has recently been a great deal of publicity over a Pacific Northwest National Laboratories study conducted in the early 1990s that ranked the contiguous 48 states in terms of their potential to produce windpower. (Click here for the results of this study as given by the American Wind Energy Association.) South Dakota ranked fourth in that study. Also, more recently, detailed maps of the wind resource in South Dakota were produced by the National Renewable Energy Laboratory (NREL). Unfortunately, both of these studies had to rely heavily on computer-generated models and very sparse measured data, because very little appropriate measured data exists. The WRAN will provide valuable data that we anticipate will validate the NREL maps, and perhaps suggest minor adjustments.

    There are many other benefits the WRAN will provide. The data it will measure will be at heights above ground that are more appropriate for predicting the performance of large modern wind turbines, as opposed to data collected at National Weather Service stations whose anemometers are usually only about 9 m (30 feet) above ground. Also, we will collect some different types of data than most wind measurement networks, which will allow a series of important studies of the potential impact and value of South Dakota's windpower. In addition, all of the WRAN data will be made available to the public via this WWWeb site. This will hopefully enable extensive informed discussion among all South Dakotans on such important topics as rural economic development and transmission system expansion. [Copied from http://sdwind.com/about/

  1. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    SciTech Connect (OSTI)

    Lundquist, J. K.; Pukayastha, A.; St. Martin, C.; Newsom, R.

    2014-03-01

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of wind resource, the authors of this study employed a dynamic down scaling method with the Weather Research and Forecasting model, providing detailed estimates of winds at approximately 1 km resolution in the finest nested simulation.

  2. Solar wind conditions leading to efficient radiation belt electron

    Office of Scientific and Technical Information (OSTI)

    acceleration: A superposed epoch analysis (Journal Article) | SciTech Connect Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis Citation Details In-Document Search This content will become publicly available on September 7, 2016 Title: Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis In this study by determining preferential solar wind conditions leading to efficient

  3. NREL: Transmission Grid Integration - Western Wind and Solar Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Phase 1 Research 1 Research The first phase of the Western Wind and Solar Integration Study investigated the benefits and challenges of integrating up to 35% wind and solar energy in the WestConnect subregion and, more broadly, the Western Interconnection, in 2017. The study showed it is operationally possible to accommodate 30% wind and 5% solar energy if utilities substantially increase their coordination of operations over wider geographic areas and schedule their generation and

  4. REINTERPRETATION OF SLOWDOWN OF SOLAR WIND MEAN VELOCITY IN NONLINEAR

    Office of Scientific and Technical Information (OSTI)

    STRUCTURES OBSERVED UPSTREAM OF EARTH'S BOW SHOCK (Journal Article) | SciTech Connect REINTERPRETATION OF SLOWDOWN OF SOLAR WIND MEAN VELOCITY IN NONLINEAR STRUCTURES OBSERVED UPSTREAM OF EARTH'S BOW SHOCK Citation Details In-Document Search Title: REINTERPRETATION OF SLOWDOWN OF SOLAR WIND MEAN VELOCITY IN NONLINEAR STRUCTURES OBSERVED UPSTREAM OF EARTH'S BOW SHOCK Two of the many features associated with nonlinear upstream structures are (1) the solar wind (SW) mean flow slows down and

  5. Property Tax Exemption for Wind, Solar, and Geothermal Energy Producers

    Broader source: Energy.gov [DOE]

    Under these policies, commercial wind, solar, and geothermal energy producers, excluding those regulated by the Idaho Public Utilities Commission, are exempt from paying taxes on real estate,...

  6. Solar/Wind Construction Permitting Standards | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    to wind turbines in the code) 10 kilowatts or less: Licensing Requirements Any person bidding or contracting for the installation of a solar collector system must possess a...

  7. Nonlinear Development of Shocklike Structure in the Solar Wind...

    Office of Scientific and Technical Information (OSTI)

    steepening of compressional pulses in the solar wind upstream of Earth's bow shock. ... magnetic fields (currents) and ions are different in the early phase of shock development. ...

  8. REINTERPRETATION OF SLOWDOWN OF SOLAR WIND MEAN VELOCITY IN NONLINEAR...

    Office of Scientific and Technical Information (OSTI)

    BOW SHOCK Citation Details In-Document Search Title: REINTERPRETATION OF SLOWDOWN OF SOLAR WIND MEAN VELOCITY IN NONLINEAR STRUCTURES OBSERVED UPSTREAM OF EARTH'S BOW SHOCK Two ...

  9. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying & Making Electricity » Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. According to many renewable energy experts,

  10. Solar wind conditions leading to efficient radiation belt electron...

    Office of Scientific and Technical Information (OSTI)

    By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for ...

  11. Clark County- Solar and Wind Building Permit Guides

    Broader source: Energy.gov [DOE]

    Clark County, Nevada has established guides for obtaining building permits for wind and solar photovoltaic (PV) systems for both residential and commercial purposes. The guides outline applicable...

  12. WINDExchange: Resources and Tools for Siting Wind Turbines

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Resources & Tools Resources for Siting Wind Turbines This page lists information resources such as publications, websites, and news for siting wind turbines. Search the WINDExchange Database Choose a Type of Information All News Publications Web Resource Videos Start Search Clear Search Date State Type of Information Program Area Title 10/22/2015 Publication Siting Plains and

  13. BLM - Solar and Wind Energy Applications - Pre-Application and...

    Open Energy Info (EERE)

    Solar and Wind Energy Applications - Pre-Application and Screening Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: BLM - Solar and...

  14. Wind and Solar-Electric (PV) Systems Exemption | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    taxation, but the real property (i.e., the land on which the solar energy generating system is located) is still subject to property tax. Wind and solar energy production...

  15. Assessment of Offshore Wind Energy Resources for the United States |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Assessment of Offshore Wind Energy Resources for the United States Assessment of Offshore Wind Energy Resources for the United States This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is

  16. ELECTRON TRANSPORT IN THE FAST SOLAR WIND

    SciTech Connect (OSTI)

    Smith, H. M.; Marsch, E. [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau (Germany); Helander, P., E-mail: hakan.smith@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstrasse 1, 17491 Greifswald (Germany)

    2012-07-01

    The electron velocity distribution function is studied in the extended solar corona above coronal holes (i.e., the inner part of the fast solar wind) from the highly collisional corona close to the Sun to the weakly collisional regions farther out. The electron kinetic equation is solved with a finite-element method in velocity space using a linearized Fokker-Planck collision operator. The ion density and temperature profiles are assumed to be known and the electric field and electron temperature are determined self-consistently. The results show quantitatively how much lower the electron heat flux and the thermal force are than predicted by high-collisionality theory. The sensitivity of the particle and heat fluxes to the assumed ion temperature profile and the applied boundary condition at the boundary far from the Sun is also studied.

  17. Mexico-NREL Wind Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    NREL Wind Resource Assessments Jump to: navigation, search Logo: Mexico-NREL Initiatives Name Mexico-NREL Initiatives AgencyCompany Organization National Renewable Energy...

  18. Wind energy resources atlas. Volume 1. Northwest region

    SciTech Connect (OSTI)

    Elliott, D.L.; Barchet, W.R.

    1980-04-01

    Information is presented concering regional wind energy resource assessment; regional features; and state features for Idaho, Montana, Oregon, Washington, and Wyoming.

  19. Category:Wind for Schools Portal Other Resources | Open Energy...

    Open Energy Info (EERE)

    Community Login | Sign Up Search Category Edit History Category:Wind for Schools Portal Other Resources Jump to: navigation, search This category currently contains no pages...

  20. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  1. New Wind Technology Resource Center Launched | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis The U.S. Department of Energy (DOE) recently announced the launch of its new, user-friendly online information resources portal, the Wind Technology Resource Center (WTRC). ...

  2. Barlovento Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    Name: Barlovento Natural Resources Place: Logrono, Spain Zip: 26005 Sector: Solar, Wind energy Product: Technical consulting in the wind and solar energy sector. Coordinates:...

  3. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  4. Western Wind and Solar Integration Study Phase 3: Technical Overview

    SciTech Connect (OSTI)

    2015-11-01

    Technical fact sheet outlining the key findings of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3). NREL and GE find that with good system planning, sound engineering practices, and commercially available technologies, the Western grid can maintain reliability and stability during the crucial first minute after grid disturbances with high penetrations of wind and solar power.

  5. Solar and Wind Technologies for Hydrogen Production Report to Congress

    SciTech Connect (OSTI)

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  6. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B. M.; Hummon, M.; Florita, A.; Heaney, M.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West.

  7. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect (OSTI)

    Lew, Debra; Brinkman, Greg; Ibanez, E.; Florita, A.; Heaney, M.; Hodge, B. -M.; Hummon, M.; Stark, G.; King, J.; Lefton, S. A.; Kumar, N.; Agan, D.; Jordan, G.; Venkataraman, S.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  8. OBSERVATION OF FLUX-TUBE CROSSINGS IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Arnold, L.; Li, G.; Li, X.; Yan, Y.

    2013-03-20

    Current sheets are ubiquitous in the solar wind. They are a major source of the solar wind MHD turbulence intermittency. They may result from nonlinear interactions of the solar wind MHD turbulence or are the boundaries of flux tubes that originate from the solar surface. Some current sheets appear in pairs and are the boundaries of transient structures such as magnetic holes and reconnection exhausts or the edges of pulsed Alfven waves. For an individual current sheet, discerning whether it is a flux-tube boundary or due to nonlinear interactions or the boundary of a transient structure is difficult. In this work, using data from the Wind spacecraft, we identify two three-current-sheet events. Detailed examination of these two events suggests that they are best explained by the flux-tube-crossing scenario. Our study provides convincing evidence supporting the scenario that the solar wind consists of flux tubes where distinct plasmas reside.

  9. Wind Resource Estimation and Mapping at the National Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Estimation and Mapping at the National Renewable Energy Laboratory April 1999 * NRELCP-500-26245 M. Schwartz Presented at the ASES Solar '99 Conference Portland, Maine...

  10. Assessment of Wind/Solar Co-located Generation in Texas

    SciTech Connect (OSTI)

    Steven M. Wiese

    2009-07-20

    This paper evaluates the opportunity to load co-located wind and solar generation capacity onto a constrained transmission system while engendering only minimal losses. It quantifies the economic and energy opportunities and costs associated with pursuing this strategy in two Texas locations ?¢???? one in west Texas and the other in south Texas. The study builds upon previous work published by the American Solar Energy Society (ASES) which illuminated the potential benefits of negative correlation of wind and solar generation in some locations by quantifying the economic and energy losses which would arise from deployment of solar generation in areas with existing wind generation and constrained transmission capacity. Clean Energy Associates (CEA) obtained and incorporated wind and solar resource data and the Electric Reliability Council of Texas (ERCOT)) load and price data into a model which evaluates varying levels of solar thermal, solar photovoltaic (PV) and wind capacity against an assumed transmission capacity limit at each of the two locations.

  11. Solar energetic particle events in different types of solar wind

    SciTech Connect (OSTI)

    Kahler, S. W.; Vourlidas, A.

    2014-08-10

    We examine statistically some properties of 96 20 MeV gradual solar energetic proton (SEP) events as a function of three different types of solar wind (SW) as classified by Richardson and Cane. Gradual SEP (E > 10 MeV) events are produced in shocks driven by fast (V ≳ 900 km s{sup –1}) and wide (W > 60°) coronal mass ejections (CMEs). We find no differences among the transient, fast, and slow SW streams for SEP 20 MeV proton event timescales. It has recently been found that the peak intensities Ip of these SEP events scale with the ∼2 MeV proton background intensities, which may be a proxy for the near-Sun shock seed particles. Both the intensities Ip and their 2 MeV backgrounds are significantly enhanced in transient SW compared to those of fast and slow SW streams, and the values of Ip normalized to the 2 MeV backgrounds only weakly correlate with CME V for all SW types. This result implies that forecasts of SEP events could be improved by monitoring both the Sun and the local SW stream properties and that the well known power-law size distributions of Ip may differ between transient and long-lived SW streams. We interpret an observed correlation between CME V and the 2 MeV background for SEP events in transient SW as a manifestation of enhanced solar activity.

  12. RELAXATION PROCESSES IN SOLAR WIND TURBULENCE

    SciTech Connect (OSTI)

    Servidio, S.; Carbone, V.; Gurgiolo, C.; Goldstein, M. L.

    2014-07-10

    Based on global conservation principles, magnetohydrodynamic (MHD) relaxation theory predicts the existence of several equilibria, such as the Taylor state or global dynamic alignment. These states are generally viewed as very long-time and large-scale equilibria, which emerge only after the termination of the turbulent cascade. As suggested by hydrodynamics and by recent MHD numerical simulations, relaxation processes can occur during the turbulent cascade that will manifest themselves as local patches of equilibrium-like configurations. Using multi-spacecraft analysis techniques in conjunction with Cluster data, we compute the current density and flow vorticity and for the first time demonstrate that these localized relaxation events are observed in the solar wind. Such events have important consequences for the statistics of plasma turbulence.

  13. ASYMMETRIC ELECTRON DISTRIBUTIONS IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Rha, Kicheol; Ryu, Chang-Mo [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)] [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Yoon, Peter H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)] [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)

    2013-09-20

    A plausible mechanism responsible for producing asymmetric electron velocity distribution functions in the solar wind is investigated by means of one-dimensional electrostatic particle-in-cell (PIC) simulation. A recent paper suggests that the variation in the ion-to-electron temperature ratio influences the nonlinear wave-particle dynamics such that it results in the formation of asymmetric distributions. The present PIC code simulation largely confirms this finding, but quantitative differences between the weak turbulence formalism and the present PIC simulation are also found, suggesting the limitation of the analytical method. The inter-relationship between the asymmetric electron distribution and the ion-to-electron temperature ratio may be a new useful concept for the observation.

  14. Wind Resource Map: Mexico | Open Energy Information

    Open Energy Info (EERE)

    span two power densities. For example, Wind Power Class 3 represents the Wind Power Density range between 150 watt (W) per square meter (m2) and 200 Wm2. The offset cells in...

  15. COMPOSITION OF THE SOLAR CORONA, SOLAR WIND, AND SOLAR ENERGETIC PARTICLES

    SciTech Connect (OSTI)

    Schmelz, J. T.; Reames, D. V.; Von Steiger, R.; Basu, S.

    2012-08-10

    Along with temperature and density, the elemental abundance is a basic parameter required by astronomers to understand and model any physical system. The abundances of the solar corona are known to differ from those of the solar photosphere via a mechanism related to the first ionization potential of the element, but the normalization of these values with respect to hydrogen is challenging. Here, we show that the values used by solar physicists for over a decade and currently referred to as the 'coronal abundances' do not agree with the data themselves. As a result, recent analysis and interpretation of solar data involving coronal abundances may need to be revised. We use observations from coronal spectroscopy, the solar wind, and solar energetic particles as well as the latest abundances of the solar photosphere to establish a new set of abundances that reflect our current understanding of the coronal plasma.

  16. Wind energy resource atlas. Volume 2. The North Central Region

    SciTech Connect (OSTI)

    Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01

    The North Central atlas assimilates six collections of wind resource data: one for the region and one for each of the five states that compose the North Central region (Iowa, Minnesota, Nebraska, North Dakota, and South Dakota). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and that data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and international wind speed and power, and hourly average wind speed for each season. Other graphs present speed direction and duration frequencies of the wind at these locations.

  17. Wind energy resource atlas. Volume 7. The south central region

    SciTech Connect (OSTI)

    Edwards, R.L.; Graves, L.F.; Sprankle, A.C.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    This atlas of the south central region combines seven collections of wind resource data: one for the region, and one for each of the six states (Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas). At the state level, features of the climate, topography, and wind resource are discussed in greater detail than that provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  18. Sustainable Energy Resources for Consumers Webinar on Solar Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heating Transcript Sustainable Energy Resources for Consumers Webinar on Solar Water Heating Transcript Video recording transcript of a Webinar on Nov. 16, 2010 about ...

  19. Wind Resource Assessment Report: Mille Lacs Indian Reservation, Minnesota

    SciTech Connect (OSTI)

    Jimenez, A. C.

    2013-12-01

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy on potentially contaminated land and mine sites. EPA collaborated with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the Mille Lacs Band of Chippewa Indians to evaluate the wind resource and examine the feasibility of a wind project at a contaminated site located on the Mille Lacs Indian Reservation in Minnesota. The wind monitoring effort involved the installation of a 60-m met tower and the collection of 18 months of wind data at multiple heights above the ground. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and an assessment of the economic feasibility of a potential wind project sited this site.

  20. U.S. Department of Energy Workshop Report - Research Needs for Wind Resource Characterization

    SciTech Connect (OSTI)

    Schreck, S.; Lundquist, J.; Shaw, W.

    2008-06-01

    This workshop brought the different atmospheric and wind technology specialists together to evaluate research needs for wind resource characterization.

  1. NREL: Renewable Resource Data Center - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version RReDC Home Biomass Resource Information Geothermal Resource Information Solar Resource Information Wind Resource Information Did you find what you needed? Yes 1...

  2. Methodology for Clustering High-Resolution Spatiotemporal Solar Resource Data

    SciTech Connect (OSTI)

    Getman, Dan; Lopez, Anthony; Mai, Trieu; Dyson, Mark

    2015-09-01

    In this report, we introduce a methodology to achieve multiple levels of spatial resolution reduction of solar resource data, with minimal impact on data variability, for use in energy systems modeling. The selection of an appropriate clustering algorithm, parameter selection including cluster size, methods of temporal data segmentation, and methods of cluster evaluation are explored in the context of a repeatable process. In describing this process, we illustrate the steps in creating a reduced resolution, but still viable, dataset to support energy systems modeling, e.g. capacity expansion or production cost modeling. This process is demonstrated through the use of a solar resource dataset; however, the methods are applicable to other resource data represented through spatiotemporal grids, including wind data. In addition to energy modeling, the techniques demonstrated in this paper can be used in a novel top-down approach to assess renewable resources within many other contexts that leverage variability in resource data but require reduction in spatial resolution to accommodate modeling or computing constraints.

  3. Wind loading on solar concentrators: some general considerations

    SciTech Connect (OSTI)

    Roschke, E. J.

    1984-05-01

    A survey has been completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view; current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed; recent results on heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly. Wind loads, i.e., forces and moments, are proportional to the square of the mean wind velocity. Forces are proportional to the square of concentrator diameter, and moments are proportional to the cube of diameter. Thus, wind loads have an important bearing on size selection from both cost and performance standpoints. It is concluded that sufficient information exists so that reasonably accurate predictions of wind loading are possible for a given paraboloidal concentrator configuration, provided that reliable and relevant wind conditions are specified. Such predictions will be useful to the design engineer and to the systems engineer as well. Information is lacking, however, on wind effects in field arrays of paraboloidal concentrators. Wind tunnel tests have been performed on model heliostat arrays, but there are important aerodynamic differences between heliostats and paraboloidal dishes.

  4. Sustainable Energy Resources for Consumers Webinar on Solar Water Heating

    Energy Savers [EERE]

    Transcript | Department of Energy Solar Water Heating Transcript Sustainable Energy Resources for Consumers Webinar on Solar Water Heating Transcript Video recording transcript of a Webinar on Nov. 16, 2010 about residential solar water heating applications PDF icon solar_water_heating_webinar.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers Webinar on Residential Water Heaters Sustainable

  5. New Report: Integrating More Wind and Solar Reduces Utilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis The National Renewable Energy Laboratory (NREL) released Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2), a follow-up to the initial WWSIS released in May ...

  6. Western Wind and Solar Integration Study: Phase 2 (Presentation)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

    2013-09-01

    This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  7. Western Wind and Solar Integration Study Phase 2 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  8. Local Option- Solar, Wind & Biomass Energy Systems Exemption

    Broader source: Energy.gov [DOE]

    Section 487 of the New York State Real Property Tax Law provides a 15-year real property tax exemption for solar, wind energy, and farm-waste energy systems constructed in New York State. As curr...

  9. Wind and Solar Energy Curtailment: Experience and Practices in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind and Solar Energy Curtailment: Experience and Practices in the United States Lori Bird, Jaquelin Cochran, and Xi Wang Technical Report NRELTP-6A20-60983 March 2014 NREL is a...

  10. Solar and Wind Powering Wyoming Home | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    energy, but when faced with a 100,000 price tag to get connected to the grid, he had ... 12 solar panels on his front lawn and a wind turbine in the backyard."I had no involvement ...

  11. 10 Questions for a Wind & Solar Integration Analyst: Kirsten Orwig

    Broader source: Energy.gov [DOE]

    Kirsten Orwig shares how her experiences in storm chasing led her to this position at National Renewable Energy Laboratory (NREL) and why understanding meteorology is important for advancing reliable solar and wind energy.

  12. EECBG Success Story: Hybrid Solar-Wind Generates Savings for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Solar-Wind Generates Savings for South Dakota City EECBG Success Story: Hybrid ... Addthis Related Articles EECBG Success Story: Out with the Old, In with the New: New ...

  13. The Western Wind and Solar Integration Study Phase 2: Executive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... This study fnds that up to 33% wind and solar energy penetration in the United States' portion of the Western grid (which is equivalent to 24%-26% throughout the western grid) ...

  14. Excise Tax Deduction for Solar or Wind Powered Systems

    Broader source: Energy.gov [DOE]

    In Massachusetts, businesses may deduct from net income, for state excise tax purposes, expenditures paid or incurred from the installation of any "solar or wind powered climatic control unit and...

  15. The Western Wind and Solar Integration Study Phase 2

    Broader source: Energy.gov [DOE]

    Greg Brinkman will present the results of the Western Wind and Solar Integration Study (WWSIS), Phase 2. This study, which follows the first phase of WWSIS, focuses on potential emissions and wear...

  16. Western Wind and Solar Integration Study: Executive Summary,...

    Broader source: Energy.gov (indexed) [DOE]

    ... WWSIS was conducted over two and a half years by a team of researchers in wind power, solar power, and utility operations, with oversight from technical experts in these fields. ...

  17. Offshore Wind Resource Characterization Buoy “Open-Hatch” Exposition

    Broader source: Energy.gov [DOE]

    Please join the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy for an “Open-Hatch” as one of the nation’s most advanced offshore wind resource characterization buoys...

  18. Distributed Wind Resource Assessment Workshop | Open Energy Informatio...

    Open Energy Info (EERE)

    Wind Resource Assessment Workshop Jump to: navigation, search Contents 1 Introduction 1.1 Workshop Purpose 1.2 Workshop Goals 1.3 Workshop Objective 2 Panel Session 1:...

  19. Wind Energy Resource Atlas of the Dominican Republic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2001 * NRELTP-500-27602 Wind Energy Resource Atlas of the Dominican Republic D. Elliott M. Schwartz R. George S. Haymes D. Heimiller G. Scott National Renewable Energy...

  20. Solar and Wind Equipment Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    To take advantage of these exemptions from tax, a solar energy retailer or a solar energy contractor must register with the Arizona Department of Revenue prior to selling or installing solar...

  1. DOE Announces Webinars on Solar Thermochemical Reaction Systems, Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine Recycling and Repowering, and More | Department of Energy Solar Thermochemical Reaction Systems, Wind Turbine Recycling and Repowering, and More DOE Announces Webinars on Solar Thermochemical Reaction Systems, Wind Turbine Recycling and Repowering, and More January 8, 2015 - 8:41am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are

  2. The dynamic character of the polar solar wind

    SciTech Connect (OSTI)

    Jackson, B. V.; Yu, H.-S.; Buffington, A.; Hick, P. P. E-mail: hsyu@ucsd.edu E-mail: pphick@ucsd.edu

    2014-09-20

    The Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph C2 and Solar Terrestrial Relations Observatory (STEREO) COR2A coronagraph images, when analyzed using correlation tracking techniques, show a surprising result in places ordinarily thought of as 'quiet' solar wind above the poles in coronal hole regions. Instead of the static well-ordered flow and gradual acceleration normally expected, coronagraph images show outflow in polar coronal holes consisting of a mixture of intermittent slow and fast patches of material. We compare measurements of this highly variable solar wind from C2 and COR2A images and show that both coronagraphs measure essentially the same structures. Measurements of the mean velocity as a function of height of these structures are compared with mass flux determinations of the solar wind outflow in the large polar coronal hole regions and give similar results.

  3. United States Wind Resource Map: Annual Average Wind Speed at 80 Meters

    Wind Powering America (EERE)

    80 m 01-APR-2011 2.1.1 Wind Speed m/s >10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 < 4.0 Source: Wind resource estimates developed by AWS Truepower, LLC for windNavigator . Web: http://www.windnavigator.com | http://www.awstruepower.com. Spatial resolution of wind resource data: 2.5 km. Projection: Albers Equal Area WGS84. ¶

  4. How Do High Levels of Wind and Solar Impact the Grid? The Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Lew, D.; Piwko, D.; Miller, N.; Jordan, G.; Clark, K.; Freeman, L.

    2010-12-01

    This paper is a brief introduction to the scope of the Western Wind and Solar Integration Study (WWSIS), inputs and scenario development, and the key findings of the study.

  5. NREL: International Activities - India Solar Resource Maps & Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Activities Printable Version A button that leads to NREL's National Solar Radiation Database (NSRDB) India Solar Resoource - Annual Average DNI Map Annual Average DNI Map JPG 12.5 MB India Annual Average GHI Map - Annual Average GHI Map Annual Average GHI Map JPG 13.3 MB The cover page of the India Solar Resource Data Fact Sheet India Solar Resource Data Fact Sheet PDF 395 KB India Solar Resource Maps & Data (updated March 2016) This page provides solar resource maps and data

  6. Dovetail Solar and Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Product: Consulting; Engineeringarchitecturaldesign;Installation; Maintenance and repair; Retail product sales and distribution;Trainining and education Phone...

  7. Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios

    SciTech Connect (OSTI)

    Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

    2012-10-01

    This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

  8. United States Wind Resource Map: Annual Average Wind Speed at 30 Meters

    Wind Powering America (EERE)

    30 m 21-FEB-2012 2.1.1 Wind Speed m/s >10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 < 4.0 Source: Wind resource estimates developed by AWS Truepower, LLC. Web: http://www.awstruepower.com. Map developed by NREL. Spatial resolution of wind resource data: 2.0 km. Projection: Albers Equal Area WGS84. The average wind speeds indicated on this map are model-derived estimates that may not represent the true wind resource at any given location. Small terrain features, vegetation,

  9. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource.

  10. Ohio/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * Web Resources * Publications * Case Studies * Podcasts * Webinars * Presentations Ohio...

  11. Wind Resource Assessment Overview | Open Energy Information

    Open Energy Info (EERE)

    characteristics of the resource are the largest factors in determining a potential site's economic and technical viability. There are three basic steps to identifying and...

  12. Development of Regional Wind Resource and Wind Plant Output Datasets for the Hawaiian Islands

    SciTech Connect (OSTI)

    Manobianco, J.; Alonge, C.; Frank, J.; Brower, M.

    2010-07-01

    In March 2009, AWS Truepower was engaged by the National Renewable Energy Laboratory (NREL) to develop a set of wind resource and plant output data for the Hawaiian Islands. The objective of this project was to expand the methods and techniques employed in the Eastern Wind Integration and Transmission Study (EWITS) to include the state of Hawaii.

  13. Wind resource assessment: San Nicolas Island, California

    SciTech Connect (OSTI)

    McKenna, E.; Olsen, T.L.

    1996-01-01

    San Nicolas Island (SNI) is the site of the Navy Range Instrumentation Test Site which relies on an isolated diesel-powered grid for its energy needs. The island is located in the Pacific Ocean 85 miles southwest of Los Angeles, California and 65 miles south of the Naval Air Weapons Station (NAWS), Point Mugu, California. SNI is situated on the continental shelf at latitude N33{degree}14` and longitude W119{degree}27`. It is approximately 9 miles long and 3.6 miles wide and encompasses an area of 13,370 acres of land owned by the Navy in fee title. Winds on San Nicolas are prevailingly northwest and are strong most of the year. The average wind speed is 7.2 m/s (14 knots) and seasonal variation is small. The windiest months, March through July, have wind speeds averaging 8.2 m/s (16 knots). The least windy months, August through February, have wind speeds averaging 6.2 m/s (12 knots).

  14. Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water |

    Energy Savers [EERE]

    Department of Energy This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Solar Hot Water. PDF icon solar_thermal_presentation.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) Success Story: Montana Sustainable Energy Resources for Consumers (SERC) - Geothermal/Ground-Source Heat

  15. Kaneohe, Hawaii Wind Resource Assessment Report

    SciTech Connect (OSTI)

    Robichaud, R.; Green, J.; Meadows, B.

    2011-11-01

    The Department of Energy (DOE) has an interagency agreement to assist the Department of Defense (DOD) in evaluating the potential to use wind energy for power at residential properties at DOD bases in Hawaii. DOE assigned the National Renewable Energy Laboratory (NREL) to facilitate this process by installing a 50-meter (m) meteorological (Met) tower on residential property associated with the Marine Corps Base Housing (MCBH) Kaneohe Bay in Hawaii.

  16. THE TURBULENT CASCADE AND PROTON HEATING IN THE SOLAR WIND DURING SOLAR MINIMUM

    SciTech Connect (OSTI)

    Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J.; Stawarz, Joshua E.; Forman, Miriam A. E-mail: Charles.Smith@unh.edu E-mail: Joshua.Stawarz@Colorado.edu

    2012-08-01

    The recently protracted solar minimum provided years of interplanetary data that were largely absent in any association with observed large-scale transient behavior on the Sun. With large-scale shear at 1 AU generally isolated to corotating interaction regions, it is reasonable to ask whether the solar wind is significantly turbulent at this time. We perform a series of third-moment analyses using data from the Advanced Composition Explorer. We show that the solar wind at 1 AU is just as turbulent as at any other time in the solar cycle. Specifically, the turbulent cascade of energy scales in the same manner proportional to the product of wind speed and temperature. Energy cascade rates during solar minimum average a factor of 2-4 higher than during solar maximum, but we contend that this is likely the result of having a different admixture of high-latitude sources.

  17. Weakest solar wind of the space age and the current 'MINI' solar maximum

    SciTech Connect (OSTI)

    McComas, D. J.; Angold, N.; Elliott, H. A.; Livadiotis, G.; Schwadron, N. A.; Smith, C. W.; Skoug, R. M.

    2013-12-10

    The last solar minimum, which extended into 2009, was especially deep and prolonged. Since then, sunspot activity has gone through a very small peak while the heliospheric current sheet achieved large tilt angles similar to prior solar maxima. The solar wind fluid properties and interplanetary magnetic field (IMF) have declined through the prolonged solar minimum and continued to be low through the current mini solar maximum. Compared to values typically observed from the mid-1970s through the mid-1990s, the following proton parameters are lower on average from 2009 through day 79 of 2013: solar wind speed and beta (?11%), temperature (?40%), thermal pressure (?55%), mass flux (?34%), momentum flux or dynamic pressure (?41%), energy flux (?48%), IMF magnitude (?31%), and radial component of the IMF (?38%). These results have important implications for the solar wind's interaction with planetary magnetospheres and the heliosphere's interaction with the local interstellar medium, with the proton dynamic pressure remaining near the lowest values observed in the space age: ?1.4 nPa, compared to ?2.4 nPa typically observed from the mid-1970s through the mid-1990s. The combination of lower magnetic flux emergence from the Sun (carried out in the solar wind as the IMF) and associated low power in the solar wind points to the causal relationship between them. Our results indicate that the low solar wind output is driven by an internal trend in the Sun that is longer than the ?11 yr solar cycle, and they suggest that this current weak solar maximum is driven by the same trend.

  18. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    SciTech Connect (OSTI)

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  19. Ethiopia-DLR Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    to 2004 the German Aerospace Center (DLR) worked with Ethiopia on solar resource and GIS analysis as part of UNEP's Solar and Wind Energy Resource Assessment (SWERA) Programme....

  20. Bangladesh-DLR Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    to 2004 the German Aerospace Center (DLR) worked with Bangladesh on solar resource and GIS analysis as part of UNEP's Solar and Wind Energy Resource Assessment (SWERA) Programme....

  1. THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION

    Office of Scientific and Technical Information (OSTI)

    FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA (Journal Article) | SciTech Connect THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA Citation Details In-Document Search Title: THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA The formation of the observed core-halo feature in the solar wind electron velocity distribution function is a

  2. Avian use of Norris Hill Wind Resource Area, Montana

    SciTech Connect (OSTI)

    Harmata, A.; Podruzny, K.; Zelenak, J.

    1998-07-01

    This document presents results of a study of avian use and mortality in and near a proposed wind resource area in southwestern Montana. Data collected in autumn 1995 through summer 1996 represented preconstruction condition; it was compiled, analyzed, and presented in a format such that comparison with post-construction data would be possible. The primary emphasis of the study was recording avian migration in and near the wind resource area using state-of-the-art marine surveillance radar. Avian use and mortality were investigated during the breeding season by employing traditional avian sampling methods, radiotelemetry, radar, and direct visual observation. 61 figs., 34 tabs.

  3. Solar and Wind Energy Credit (Corporate)

    Broader source: Energy.gov [DOE]

    Originally enacted in 1976, the Hawaii Energy Tax Credits allow individuals or corporations to claim an income tax credit of 20% of the cost of equipment and installation of a wind system and 35%...

  4. Solar and Wind Energy Credit (Personal)

    Broader source: Energy.gov [DOE]

    Originally enacted in 1976, the Hawaii Energy Tax Credits allow individuals or corporations to claim an income tax credit of 20% of the cost of equipment and installation of a wind system and 35%...

  5. The turbulent cascade and proton heating in the solar wind during solar minimum

    SciTech Connect (OSTI)

    Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J.; Stawarz, Joshua E.; Forman, Miriam A.

    2013-06-13

    Solar wind measurements at 1 AU during the recent solar minimum and previous studies of solar maximum provide an opportunity to study the effects of the changing solar cycle on in situ heating. Our interest is to compare the levels of activity associated with turbulence and proton heating. Large-scale shears in the flow caused by transient activity are a source that drives turbulence that heats the solar wind, but as the solar cycle progresses the dynamics that drive the turbulence and heat the medium are likely to change. The application of third-moment theory to Advanced Composition Explorer (ACE) data gives the turbulent energy cascade rate which is not seen to vary with the solar cycle. Likewise, an empirical heating rate shows no significan changes in proton heating over the cycle.

  6. Understanding of solar wind structure might be wrong

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar wind structure misunderstood Understanding of solar wind structure might be wrong The plasma particles flowing from the Sun and blasting past the Earth might be configured more as a network of tubes than a river-like stream. September 7, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  7. NREL: Transmission Grid Integration - Western Wind and Solar Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Phase 2 Research 2 Research Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) was initiated to determine the wear-and-tear costs and emissions impacts of cycling and to simulate grid operations to investigate the detailed impacts of wind and solar power on the fossil-fueled fleet in the West. Key Findings The negative impact of cycling on overall plant emissions is relatively small. The increase in plant emissions from cycling to accommodate variable renewables are more

  8. CORE ELECTRON HEATING IN SOLAR WIND RECONNECTION EXHAUSTS

    SciTech Connect (OSTI)

    Pulupa, M. P.; Salem, C.; Phan, T. D.; Bale, S. D.; Gosling, J. T.

    2014-08-10

    We present observational evidence of core electron heating in solar wind reconnection exhausts. We show two example events, one which shows clear heating of the core electrons within the exhaust, and one which demonstrates no heating. The event with heating occurred during a period of high inflow Alfvn speed (V {sub AL}), while the event with no heating had a low V {sub AL}. This agrees with the results of a recent study of magnetopause exhausts, and suggests that similar core electron heating can occur in both symmetric (solar wind) and asymmetric (magnetopause) exhausts.

  9. NREL Hosts Free Workshops on Solar and Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops on Solar and Wind Energy For more information contact: e:mail: Public Affairs Golden, Colo., Dec. 15, 1999 - Engineers from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) next month will host three workshops on "Solar and Wind Power for Farms and Ranches" at the National Western Stock Show in Denver. The workshops will feature hands-on displays of clean, renewable energy systems that farmers and ranchers can use today. The consumer-oriented

  10. CHARACTERIZATION OF TRANSITIONS IN THE SOLAR WIND PARAMETERS

    SciTech Connect (OSTI)

    Perri, S.; Balogh, A. E-mail: a.balogh@imperial.ac.u

    2010-02-20

    The distinction between fast and slow solar wind streams and the dynamically evolved interaction regions is reflected in the characteristic fluctuations of both the solar wind and the embedded magnetic field. High-resolution magnetic field data from the Ulysses spacecraft have been analyzed. The observations show rapid variations in the magnetic field components and in the magnetic field strength, suggesting a structured nature of the solar wind at small scales. The typical sizes of fluctuations cover a broad range. If translated to the solar surface, the scales span from the size of granules ({approx}10{sup 3} km) and supergranules ({approx}10{sup 4} km) on the Sun down to {approx}10{sup 2} km and less. The properties of the short time structures change in the different types of solar wind. While fluctuations in fast streams are more homogeneous, slow streams present a bursty behavior in the magnetic field variances, and the regions of transition are characterized by high levels of power in narrow structures around the transitions. The probability density functions of the magnetic field increments at several scales reveal a higher level of intermittency in the mixed streams, which is related to the presence of well localized features. It is concluded that, apart from the differences in the nature of fluctuations in flows of different coronal origin, there is a small-scale structuring that depends on the origin of streams themselves but it is also related to a bursty generation of the fluctuations.

  11. Wind Integration, Transmission, and Resource Assessment and Characterization Projects, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Wind Integration, Transmission, and Resource Assessment and Characterization Projects from 2006 to 2014.

  12. Solar Resources by Class and Country - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    Solar Resources by Class and Country These estimates are derived from the best available solar resource data available to NREL. Resources are organized by class and country....

  13. Western Wind and Solar Integration Study Phase 2: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Wind and Solar Integration Study Phase 2 Preprint D. Lew, G. Brinkman, E. Ibanez, and B.-M. Hodge National Renewable Energy Laboratory J. King RePPAE To be presented at the 11th Annual International Workshop on Large-Scale Integration of Wind Power into Power Systems as Well as on Transmission Networks for Offshore Wind Power Plants Conference Lisbon, Portugal November 13-15, 2012 Conference Paper NREL/CP-5500-56217 September 2012 NOTICE The submitted manuscript has been offered by an

  14. Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Kauai, Hawaii: ... This study looks at the technical feasibility of generating power with PV arrays. PDF icon ...

  15. Sustainable Energy Resources for Consumers (SERC)- Solar Photovoltaics

    Broader source: Energy.gov [DOE]

    This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Solar Photovoltaics.

  16. U.S. Virgin Islands- Solar and Wind Easements & Rights Laws

    Broader source: Energy.gov [DOE]

    In the U.S. Virgin Islands, the owner of a solar or wind-energy system is permitted to negotiate for assurance of continued access to the system’s energy source. "Solar or wind-energy system" is...

  17. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  18. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2011-02-11

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  19. Enabling Technologies for High Penetration of Wind and Solar Energy

    SciTech Connect (OSTI)

    Denholm, P.

    2011-01-01

    High penetration of variable wind and solar electricity generation will require modifications to the electric power system. This work examines the impacts of variable generation, including uncertainty, ramp rate, ramp range, and potentially excess generation. Time-series simulations were performed in the Texas (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power provide up to 80% of the electric demand. Different enabling technologies were examined, including conventional generator flexibility, demand response, load shifting, and energy storage. A variety of combinations of these technologies enabled low levels of surplus or curtailed wind and solar generation depending on the desired penetration of renewable sources. At lower levels of penetration (up to about 30% on an energy basis) increasing flexible generation, combined with demand response may be sufficient to accommodate variability and uncertainty. Introduction of load-shifting through real-time pricing or other market mechanisms further increases the penetration of variable generation. The limited time coincidence of wind and solar generation presents increasing challenges as these sources provide greater than 50% of total demand. System flexibility must be increased to the point of virtually eliminating must-run baseload generators during periods of high wind and solar generation. Energy storage also becomes increasingly important as lower cost flexibility options are exhausted. The study examines three classes of energy storage - electricity storage, including batteries and pumped hydro, hybrid storage (compressed-air energy storage), and thermal energy storage. Ignoring long-distance transmission options, a combination of load shifting and storage equal to about 12 hours of average demand may keep renewable energy curtailment below 10% in the simulated system.

  20. Western Wind and Solar Integration Study: Executive Summary, (WWSIS) May 2010

    SciTech Connect (OSTI)

    R. Piwko; K. Clark; L. Freeman; G. Jordan; N. Miller

    2010-05-01

    This report provides a summary of background, approach, and findings of the Western Wind and Solar Integration Study (WWSIS).

  1. Final Solar and Wind H2 Report EPAct 812.doc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar and Wind H2 Report EPAct 812.doc Final Solar and Wind H2 Report EPAct 812.doc Report to Congress (ESECS EE-3060) in response to section 812(e) of the Energy Policy Act of 2005 summarizing technology roadmaps for solar- and wind-based hydrogen production. PDF icon Solar and Wind Technologies for Hydrogen Production: Report to Congress More Documents & Publications Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production Analysis Activities at National Renewable

  2. Do You Wonder How Much Energy Your Home Could Get from Solar or Wind?

    Broader source: Energy.gov [DOE]

    Have you ever thought about installing wind or solar energy on your property? Learn more about it in this post.

  3. Grand Traverse Band Renewable Energy Feasibility Study in Wind, Biomass and Solar

    SciTech Connect (OSTI)

    Suzanne McSawby, Project Director Steve Smiley, Principle Investigator Grand Traverse Resort, Cost Sharing Partner

    2008-12-31

    Renewable Energy Feasibility Study for wind, biomass, solar on the Grand Traverse Band tribal lands from 2005 - 2008

  4. The genesis solar-wind sample return mission

    SciTech Connect (OSTI)

    Wiens, Roger C

    2009-01-01

    The compositions of the Earth's crust and mantle, and those of the Moon and Mars, are relatively well known both isotopically and elementally. The same is true of our knowledge of the asteroid belt composition, based on meteorite analyses. Remote measurements of Venus, the Jovian atmosphere, and the outer planet moons, have provided some estimates of their compositions. The Sun constitutes a large majority, > 99%, of all the matter in the solar system. The elemental composition of the photosphere, the visible 'surface' of the Sun, is constrained by absorption lines produced by particles above the surface. Abundances for many elements are reported to the {+-}10 or 20% accuracy level. However, the abundances of other important elements, such as neon, cannot be determined in this way due to a relative lack of atomic states at low excitation energies. Additionally and most importantly, the isotopic composition of the Sun cannot be determined astronomically except for a few species which form molecules above sunspots, and estimates derived from these sources lack the accuracy desired for comparison with meteoritic and planetary surface samples measured on the Earth. The solar wind spreads a sample of solar particles throughout the heliosphere, though the sample is very rarified: collecting a nanogram of oxygen, the third most abundant element, in a square centimeter cross section at the Earth's distance from the Sun takes five years. Nevertheless, foil collectors exposed to the solar wind for periods of hours on the surface of the Moon during the Apollo missions were used to determine the helium and neon solar-wind compositions sufficiently to show that the Earth's atmospheric neon was significantly evolved relative to the Sun. Spacecraft instruments developed subsequently have provided many insights into the composition of the solar wind, mostly in terms of elemental composition. These instruments have the advantage of observing a number of parameters simultaneously, including charge state distributions, velocities, and densities, all of which have been instrumental in characterizing the nature of the solar wind. However, these instruments have lacked the ability to make large dynamic range measurements of adjacent isotopes (i.e., {sup 17}O/{sup 16}O {approx} 2500) or provide the permil (tenths of percent) accuracy desirable for comparison with geochemical isotopic measurements. An accurate knowledge of the solar and solar-wind compositions helps to answer important questions across a number of disciplines. It aids in understanding the acceleration mechanisms of the solar wind, gives an improved picture of the charged particle environment near the photosphere, it constrains processes within the Sun over its history, and it provides a database by which to compare differences among planetary systems with the solar system's starting composition, providing key information on planetary evolution. For example, precise knowledge of solar isotopic and elemental compositions of volatile species in the Sun provides a baseline for models of atmospheric evolution over time for Earth, Venus, and Mars. Additionally, volatile and chemically active elements such as C, H, O, N, and S can tell us about processes active during the evolution of the solar nebula. A classic example of this is the oxygen isotope system. In the 1970s it was determined that the oxygen isotopic ratio in refractory inclusions in primitive meteorites was enriched {approx}4% in {sup 16}O relative to the average terrestrial, lunar, and thermally processed meteorite materials. In addition, all processed solar-system materials appeared to each have a unique oxygen isotopic composition (except the Moon and Earth, which are thought to be formed from the same materials), though differences are in the fraction of a percent range, much smaller than the refractory material {sup 16}O enrichment. Several theories were developed over the years to account for the oxygen isotope heterogeneity, each theory predicting a different solar isotopic composition and each invoking a differ

  5. NREL: Transmission Grid Integration - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources NREL offers the following transmission integration-related data and resources. Wind Integration Datasets The Wind Integration Datasets provide energy professionals with a consistent set of wind profiles for the United States. These include the Eastern Wind Dataset, Western Wind Dataset, and Wind Integration National Dataset (WIND) Toolkit. Solar Power Data for Integration Studies The Solar Power Data for Integration Studies consist of one year (2006) of 5-minute solar power

  6. Western Wind and Solar Integration Study: Executive Summary

    SciTech Connect (OSTI)

    none,

    2010-05-01

    This Study investigates the operational impact of up to 35% energy penetration of wind, photovoltaics (PVs), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming.

  7. NREL Confirms Large Potential for Grid Integration of Wind, Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    To fully harvest the nation's bountiful wind and solar resources, it is critical to know how much electrical power from these renewable resources could be integrated reliably into the grid. To inform the discussion about the potential of such variable sources, the National Renewable Energy Laboratory (NREL) launched two key regional studies, examining the east and west sections of the U.S. power grid. The studies show that it is technically possible for U.S. power systems to integrate 20%-35% renewable electricity if infrastructure and operational improvements can be made.

  8. Concentrating Solar Power (Fact Sheet), Electricity, Resources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optical concentrators. * NREL's High-Flux Solar Furnace consists of a tracking heliostat ... to determine if the materials meet the optical requirements of CSP solar field components. ...

  9. Four Corners Wind Resource Center Webinar: Building Utility-Scale Wind: Permitting and Regulation Lessons for County Decision-Makers

    Broader source: Energy.gov [DOE]

    The Four Corners Wind Resource Center will host this webinar exploring lessons learned in the permitting of utility-scale wind projects and the development of ordinances and regulations for...

  10. U.S. Virgin Islands Wind Resources Update 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Virgin Islands Wind Resources Update 2014 U.S. Virgin Islands Wind Resources Update 2014 Summarizes the data collected from two 60-meter meteorological towers and three sonic detection and ranging units on St. Thomas and St. Croix in 2012 and 2013. The report leverages previous feasibility studies conducted at NREL, including Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Analysis. PDF icon U.S. Virgin Islands Wind Resources Update 2014 More Documents & Publications Wind

  11. U.S. Virgin Islands Wind Resources Update 2014 (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    U.S. Virgin Islands Wind Resources Update 2014 Citation Details In-Document Search Title: U.S. Virgin Islands Wind Resources Update 2014 This report summarizes the data collected...

  12. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less

  13. Comprehensive Solutions for Integration of Solar Resources into Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations | Department of Energy Comprehensive Solutions for Integration of Solar Resources into Grid Operations Comprehensive Solutions for Integration of Solar Resources into Grid Operations AWS truepower logo.png -- This project is inactive -- This project primarily looks at the benefits from more cost-effective unit commitment and dispatch, and reduction in balancing reserves due to reducing uncertainty in solar forecasting. This project will improve the Pacific Northwest National

  14. New Wind Energy Resource Potential Estimates for the United States (Presentation)

    SciTech Connect (OSTI)

    Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Brower, M.; Hale, E.; Phelps, B.

    2011-01-01

    This presentation provides an overview of the wind energy resource mapping efforts conducted at NREL and by Truepower.

  15. Small solar wind transients: Stereo-A observations in 2009

    SciTech Connect (OSTI)

    Yu, W.; Farrugia, C. J.; Galvin, A. B.; Simunac, K. D. C.; Popecki, M. A.; Lugaz, N.; Kilpua, E. K. J.; Moestl, C.; Luhmann, J. G.; Opitz, A.; Sauvaud, J.-A.

    2013-06-13

    Year 2009 was the last year of a long and pronounced solar activity minimum. In this year the solar wind in the inner heliosphere was for 90% of the time slow (< 450 km s{sup -1}) and with a weaker magnetic field strength compared to the previous solar minimum 1995-1996. We choose this year to present the results of a systematic search for small solar wind transients (STs) observed by the STEREO-Ahead (ST-A) probe. The data are from the PLASTIC and IMPACT instrument suites. By 'small' we mean a duration from {approx}1 to 12 hours. The parameters we search for to identify STs are (i) the total field strength, (ii) the rotation of the magnetic field vector, (iii) its smoothness, (iv) proton temperature, (v) proton beta, and (vi) Alfven Mach number. We find 45 examples. The STs have an average duration of {approx}4 hours. Ensemble averages of key quantities are: (i) maximum B = 7.01 nT; (ii) proton {beta}= 0.18; (iii) proton thermal speed = 20.8 km s{sup -1}; and (iv) Alfven Mach number = 6.13. No distinctive feature is found in the pitch angle distributions of suprathermal electrons. Our statistical results are compared with those of STs observed near Earth by Wind during 2009.

  16. Western Wind and Solar Integration Study: Hydropower Analysis

    SciTech Connect (OSTI)

    Acker, T.; Pete, C.

    2012-03-01

    The U.S. Department of Energy's (DOE) study of 20% Wind Energy by 2030 was conducted to consider the benefits, challenges, and costs associated with sourcing 20% of U.S. energy consumption from wind power by 2030. This study found that with proactive measures, no insurmountable barriers were identified to meet the 20% goal. Following this study, DOE and the National Renewable Energy Laboratory (NREL) conducted two more studies: the Eastern Wind Integration and Transmission Study (EWITS) covering the eastern portion of the U.S., and the Western Wind and Solar Integration Study (WWSIS) covering the western portion of the United States. The WWSIS was conducted by NREL and research partner General Electric (GE) in order to provide insight into the costs, technical or physical barriers, and operational impacts caused by the variability and uncertainty of wind, photovoltaic, and concentrated solar power when employed to serve up to 35% of the load energy in the WestConnect region (Arizona, Colorado, Nevada, New Mexico, and Wyoming). WestConnect is composed of several utility companies working collaboratively to assess stakeholder and market needs to and develop cost-effective improvements to the western wholesale electricity market. Participants include the Arizona Public Service, El Paso Electric Company, NV Energy, Public Service of New Mexico, Salt River Project, Tri-State Generation and Transmission Cooperative, Tucson Electric Power, Xcel Energy and the Western Area Power Administration.

  17. Assessment of Offshore Wind Energy Resources for the United States

    SciTech Connect (OSTI)

    Schwartz, M.; Heimiller, D.; Haymes, S.; Musial, W.

    2010-06-01

    This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is expected that further updates to the current assessment will be made in future reports.

  18. WINDExchange: Wind Energy Market Sectors

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  19. NREL-International Wind Resource Maps | Open Energy Information

    Open Energy Info (EERE)

    Shenyang 50m Wind Power China Tianjin 50m Wind Power China Yinchuan 50m Wind Power East China Map Reference Eastern Visayas Philippines Wind Speed 100m-01 NREL-30m-US-Wind...

  20. NWTC Helps Chart the World's Wind Resource Potential (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chart the World's Wind Resource Potential The potential wind capacity of the United States at a hub height of 140 meters. This resource map represents near-future technology options. It shows land area with a gross capacity factor of 35% and higher, which may be suitable for wind energy development. The darker the color, the larger the potentially developable area. Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) provide the wind industry,

  1. Renewable Resource Standard

    Broader source: Energy.gov [DOE]

    Eligible Technologies Eligible renewable resources include wind; solar; geothermal; existing hydroelectric projects (10 megawatts or less); certain new hydroelectric projects (up to 15 megawatts...

  2. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications M. Sengupta, 1 A. Habte, 1 S. Kurtz, 1 A. Dobos, 1 S. Wilbert, 2 E. Lorenz, 3 T. Stoffel, 4 D. Renné, 5 C. Gueymard, 6 D. Myers, 7 S. Wilcox, 4 P. Blanc, 8 and R. Perez 9 1 National Renewable Energy Laboratory 2 German Aerospace Center 3 University of Oldenburg 4 Solar Resource Solutions, LLC 5 International Energy Agency Solar Heating and Cooling Programme 6 Solar Consulting Services 7

  3. WINDExchange: Puerto Rico and U.S. Virgin Islands 50-Meter Wind Resource

    Wind Powering America (EERE)

    Map Maps & Data Printable Version Bookmark and Share Land-Based Utility-Scale Maps Potential Capacity Maps Offshore Wind Maps Community-Scale Maps Residential-Scale Maps Installed Capacity Maps Puerto Rico and U.S. Virgin Islands 50-Meter Wind Resource Map Puerto Rico and U.S. Virgin Islands wind resource map. Click on the image to view a larger version. Enlarge image This Puerto Rico wind map and the U.S. Virgin Islands wind map shows the wind resource at 50 meters. Download a printable

  4. EPRI conference proceedings: solar and wind power - 1982 status and outlook

    SciTech Connect (OSTI)

    DeMeo, E.A.

    1983-02-01

    Separate abstracts were prepared for 18 papers in this proceedings. Not separately abstracted are speeches and presentations covering: past progress and future directions in solar and wind power research and development, new directions in Federal solar electric programs, Solar Energy Research Institute status and outlook, ARCO Solar Industries' involvement in the production of potential solar electric technologies, wind power status and outlook, utility requirements, roles and rewards, and a panel discussion on solar and wind power status and outlook as viewed from industrial, utility, financial, and government perspectives. (LEW)

  5. Treatment of Solar Generation in Electric Utility Resource Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment of Solar Generation in Electric Utility Resource Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor Solar Electric Power Association Karlynn Cory National Renewable Energy Laboratory Technical Report NREL/TP-6A20-60047 October 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is

  6. Rhode Island High Resolution Wind Resource - Datasets - OpenEI...

    Open Energy Info (EERE)

    Detailed license and usage information for this dataset Preview Download 50m GIS NREL Rhode Island energy high resoltuion renewable shapefile wind wind data wind...

  7. Treatment of Solar Generation in Electric Utility Resource Planning

    SciTech Connect (OSTI)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  8. Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water |

    Energy Savers [EERE]

    Department of Energy PDF icon solar_thermal_transcript.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Geothermal/Ground-Source Heat Pumps SERC Photovoltaics for Residential Buildings Webinar Transcript Recording of SERC Monitoring Technologies - Solar Photovoltaics

  9. Wind Energy Resource Assessment on Alaska Native Lands in Cordova Region of Prince William Sound

    SciTech Connect (OSTI)

    Whissel, John C.; Piche, Matthew

    2015-06-29

    The Native Village of Eyak (NVE) has been monitoring wind resources around Cordova, Alaska in order to determine whether there is a role for wind energy to play in the city’s energy scheme, which is now supplies entirely by two run-of-the-river hydro plants and diesel generators. These data are reported in Appendices A and B. Because the hydro resources decline during winter months, and wind resources increase, wind is perhaps an ideal counterpart to round out Cordova’s renewable energy supply. The results of this effort suggests that this is the case, and that developing wind resources makes sense for our small, isolated community.

  10. Wind and Solar on the Power Grid: Myths and Misperceptions, Greening the Grid

    SciTech Connect (OSTI)

    Katz, Jessica; Denholm, Paul; Pless, Jacquelyn

    2015-05-01

    Wind and solar are inherently more variable and uncertain than the traditional dispatchable thermal and hydro generators that have historically provided a majority of grid-supplied electricity. The unique characteristics of variable renewable energy (VRE) resources have resulted in many misperceptions regarding their contribution to a low-cost and reliable power grid. Common areas of concern include: 1) The potential need for increased operating reserves, 2) The impact of variability and uncertainty on operating costs and pollutant emissions of thermal plants, and 3) The technical limits of VRE penetration rates to maintain grid stability and reliability. This fact sheet corrects misperceptions in these areas.

  11. Assessment of Offshore Wind Energy Resources for the United States

    Wind Powering America (EERE)

    Technical Report NREL/TP-500-45889 June 2010 Assessment of Offshore Wind Energy Resources for the United States Marc Schwartz, Donna Heimiller, Steve Haymes, and Walt Musial National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical

  12. Assessment of Offshore Wind Energy Resources for the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Report NREL/TP-500-45889 June 2010 Assessment of Offshore Wind Energy Resources for the United States Marc Schwartz, Donna Heimiller, Steve Haymes, and Walt Musial National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical

  13. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    SciTech Connect (OSTI)

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  14. Utility-Scale Wind & Solar Power in the U.S.: Where it stands...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility-Scale Wind & Solar Power in the U.S.: Where it stands in 2014 and its future going ... renewable generation - Over 10,000 MW of wind capacity * Nearly 20,000 MW in operation ...

  15. Using Solar Business Models to Expand the Distributed Wind Market (Presentation)

    SciTech Connect (OSTI)

    Savage, S.

    2013-05-01

    This presentation to attendees at Wind Powering America's All-States Summit in Chicago describes business models that were responsible for rapid growth in the solar industry and that may be applicable to the distributed wind industry as well.

  16. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... comprehensively recording solar irradiance data to accompany its outdoor PV testing. ...

  17. Solar and Wind Easements, Local Options, and Severability | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Nonprofit Residential Schools State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal...

  18. Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-05-01

    Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

  19. TWISTED MAGNETIC FLUX TUBES IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Zaqarashvili, Teimuraz V.; Vörös, Zoltán; Narita, Yasuhito; Bruno, Roberto

    2014-03-01

    Magnetic flux tubes in the solar wind can be twisted as they are transported from the solar surface, where the tubes are twisted due to photospheric motions. It is suggested that the twisted magnetic tubes can be detected as the variation of total (thermal+magnetic) pressure during their passage through the observing satellite. We show that the total pressure of several observed twisted tubes resembles the theoretically expected profile. The twist of the isolated magnetic tube may explain the observed abrupt changes of magnetic field direction at tube walls. We have also found some evidence that the flux tube walls can be associated with local heating of the plasma and elevated proton and electron temperatures. For the tubes aligned with the Parker spiral, the twist angle can be estimated from the change of magnetic field direction. Stability analysis of twisted tubes shows that the critical twist angle of the tube with a homogeneous twist is 70°, but the angle can further decrease due to the motion of the tube with respect to the solar wind stream. The tubes with a stronger twist are unstable to the kink instability, therefore they probably cannot reach 1 AU.

  20. Modelling renewable electric resources: A case study of wind

    SciTech Connect (OSTI)

    Bernow, S.; Biewald, B.; Hall, J.; Singh, D.

    1994-07-01

    The central issue facing renewables in the integrated resource planning process is the appropriate assessment of the value of renewables to utility systems. This includes their impact on both energy and capacity costs (avoided costs), and on emissions and environmental impacts, taking account of the reliability, system characteristics, interactions (in dispatch), seasonality, and other characteristics and costs of the technologies. These are system-specific considerations whose relationships may have some generic implications. In this report, we focus on the reliability contribution of wind electric generating systems, measured as the amount of fossil capacity they can displace while meeting the system reliability criterion. We examine this issue for a case study system at different wind characteristics and penetration, for different years, with different system characteristics, and with different modelling techniques. In an accompanying analysis we also examine the economics of wind electric generation, as well as its emissions and social costs, for the case study system. This report was undertaken for the {open_quotes}Innovative IRP{close_quotes} program of the U.S. Department of Energy, and is based on work by both Union of Concerned Scientists (UCS) and Tellus Institute, including America`s Energy Choices and the UCS Midwest Renewables Project.

  1. Look to the Right, Kids: Five Solar/Wind Hybrids | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Look to the Right, Kids: Five Solar/Wind Hybrids Look to the Right, Kids: Five Solar/Wind Hybrids September 1, 2010 - 2:16pm Addthis Genoa Township, Mich., installed five wind/solar hybrid units that will supply up to 20 percent of the township hall’s electrical needs. | Photo Courtesy of Genoa Township Genoa Township, Mich., installed five wind/solar hybrid units that will supply up to 20 percent of the township hall's electrical needs. | Photo Courtesy of Genoa Township Stephen Graff

  2. Wind and Solar Data Projections from the U.S. Energy Information...

    U.S. Energy Information Administration (EIA) Indexed Site

    Full report Wind and Solar Data Projections from the U.S. Energy Information Administration: Past Performance and Planned Enhancements Release date: March 22, 2016 Summary EIA's ...

  3. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study

    SciTech Connect (OSTI)

    Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

    2014-05-01

    The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

  4. U.S. Virgin Islands Wind Resources Update 2014 Roberts, J. O...

    Office of Scientific and Technical Information (OSTI)

    Virgin Islands Wind Resources Update 2014 Roberts, J. O.; Warren, A. 17 WIND ENERGY; 29 ENERGY PLANNING, POLICY AND ECONOMY; 24 POWER TRANSMISSION AND DISTRIBUTION U.S. VIRGIN...

  5. Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)

    SciTech Connect (OSTI)

    Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

    2014-01-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  6. A study of density modulation index in the inner heliospheric solar wind during solar cycle 23

    SciTech Connect (OSTI)

    Bisoi, Susanta Kumar; Janardhan, P.; Ingale, M.; Subramanian, P.; Ananthakrishnan, S.; Tokumaru, M.; Fujiki, K. E-mail: jerry@prl.res.in E-mail: p.subramanian@iiserpune.ac.in E-mail: tokumaru@stelab.nagoya-u.ac.jp

    2014-11-01

    The ratio of the rms electron density fluctuations to the background density in the solar wind (density modulation index, ? {sub N} ? ?N/N) is of vital importance for understanding several problems in heliospheric physics related to solar wind turbulence. In this paper, we have investigated the behavior of ? {sub N} in the inner heliosphere from 0.26 to 0.82 AU. The density fluctuations ?N have been deduced using extensive ground-based observations of interplanetary scintillation at 327 MHz, which probe spatial scales of a few hundred kilometers. The background densities (N) have been derived using near-Earth observations from the Advanced Composition Explorer. Our analysis reveals that 0.001 ? ? {sub N} ? 0.02 and does not vary appreciably with heliocentric distance. We also find that ? {sub N} declines by 8% from 1998 to 2008. We discuss the impact of these findings on problems ranging from our understanding of Forbush decreases to the behavior of the solar wind dynamic pressure over the recent peculiar solar minimum at the end of cycle 23.

  7. SCALE DEPENDENCE OF MAGNETIC HELICITY IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Brandenburg, Axel; Subramanian, Kandaswamy; Balogh, Andre; Goldstein, Melvyn L. E-mail: kandu@iucaa.ernet.in E-mail: melvyn.l.goldstein@nasa.gov

    2011-06-10

    We determine the magnetic helicity, along with the magnetic energy, at high latitudes using data from the Ulysses mission. The data set spans the time period from 1993 to 1996. The basic assumption of the analysis is that the solar wind is homogeneous. Because the solar wind speed is high, we follow the approach first pioneered by Matthaeus et al. by which, under the assumption of spatial homogeneity, one can use Fourier transforms of the magnetic field time series to construct one-dimensional spectra of the magnetic energy and magnetic helicity under the assumption that the Taylor frozen-in-flow hypothesis is valid. That is a well-satisfied assumption for the data used in this study. The magnetic helicity derives from the skew-symmetric terms of the three-dimensional magnetic correlation tensor, while the symmetric terms of the tensor are used to determine the magnetic energy spectrum. Our results show a sign change of magnetic helicity at wavenumber k {approx} 2 AU{sup -1} (or frequency {nu} {approx} 2 {mu}Hz) at distances below 2.8 AU and at k {approx} 30 AU{sup -1} (or {nu} {approx} 25 {mu}Hz) at larger distances. At small scales the magnetic helicity is positive at northern heliographic latitudes and negative at southern latitudes. The positive magnetic helicity at small scales is argued to be the result of turbulent diffusion reversing the sign relative to what is seen at small scales at the solar surface. Furthermore, the magnetic helicity declines toward solar minimum in 1996. The magnetic helicity flux integrated separately over one hemisphere amounts to about 10{sup 45} Mx{sup 2} cycle{sup -1} at large scales and to a three times lower value at smaller scales.

  8. Energy Department Releases New Land-Based/Offshore Wind Resource Map |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Releases New Land-Based/Offshore Wind Resource Map Energy Department Releases New Land-Based/Offshore Wind Resource Map May 1, 2012 - 2:23pm Addthis This is an excerpt from the Second Quarter 2012 edition of the Wind Program R&D Newsletter. The Energy Department recently released a new wind resource map compiled by the National Renewable Energy Laboratory (NREL) and AWS Truepower that combines land-based with offshore resources. The new combined map, posted on the

  9. Wind Resources by Class and Country At 50m - Datasets - OpenEI...

    Open Energy Info (EERE)

    high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States)...

  10. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  11. Integrating High Penetrations of Solar in the Western United States: Results of the Western Wind and Solar Integration Study Phase 2 (Poster)

    SciTech Connect (OSTI)

    Bird, L.; Lew, D.

    2013-10-01

    This poster presents a summary of the results of the Western Wind and Solar Integration Study Phase 2.

  12. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; Burnett, Donald S.; Sakaguchi, Isao; Suzuki, Taku; Itose, Satoru; Ishihara, Morio; Uchino, Kiichiro; Wieler, Rainer; et al

    2015-10-01

    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile ismore » consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.« less

  13. Wind Resource Assessment Handbook: Fundamentals for Conducting a Successful Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Program Eagles are Making Wind Turbines Safer for Birds Eagles are Making Wind Turbines Safer for Birds The National Renewable Energy Laboratory, one of the Energy Department's 17 national laboratories, partnered with industry to gather data about bird flight patterns, which will help the companies develop technology to reduce bird collisions with turbines. Read more Wind Vision Report Turns One Wind Vision Report Turns One March marks the one-year anniversary of the Wind Vision Report

  14. Strategies to Mitigate Declines in the Economic Value of Wind and Solar at High Penetration in California

    Broader source: Energy.gov [DOE]

    This resource evaluates several options to reduce and eliminate the decline in the value of wind and solar PV technology, as a previous study had quantified the decline as penetration levels increased. Researchers found that largest increase in the value of PV at high penetration levels comes from assuming that low-cost bulk power storage is an investment option. Other attractive options, particularly at more modest penetration levels, include real-time pricing and technology diversity.

  15. Wind Energy Resources for Teachers | Open Energy Information

    Open Energy Info (EERE)

    educational materials called "Energy Quest" that includes Energy Story: Wind Energy, Science Project: Building a Wind Gauge, and Science Project: Make an Anemometer (a device to...

  16. Wind for Schools Portal Developer Resources | Open Energy Information

    Open Energy Info (EERE)

    Support Software & Downloads Wind Industry Careers Data, APIs, and Visualizations: Introduction for Aspiring Developers Are you looking to get raw data from Wind for Schools...

  17. Small Wind Guidebook/Web Resources | Open Energy Information

    Open Energy Info (EERE)

    and policies that promote renewable energy and energy efficiency. Distributed Wind Energy Association DWEA provides info about distributed and community wind, including a...

  18. The solar wind neon abundance observed with ACE/SWICS and ULYSSES/SWICS

    SciTech Connect (OSTI)

    Shearer, Paul; Raines, Jim M.; Lepri, Susan T.; Thomas, Jonathan W.; Gilbert, Jason A.; Landi, Enrico; Zurbuchen, Thomas H.; Von Steiger, Rudolf

    2014-07-01

    Using in situ ion spectrometry data from ACE/SWICS, we determine the solar wind Ne/O elemental abundance ratio and examine its dependence on wind speed and evolution with the solar cycle. We find that Ne/O is inversely correlated with wind speed, is nearly constant in the fast wind, and correlates strongly with solar activity in the slow wind. In fast wind streams with speeds above 600 km s{sup 1}, we find Ne/O = 0.10 0.02, in good agreement with the extensive polar observations by Ulysses/SWICS. In slow wind streams with speeds below 400 km s{sup 1}, Ne/O ranges from a low of 0.12 0.02 at solar maximum to a high of 0.17 0.03 at solar minimum. These measurements place new and significant empirical constraints on the fractionation mechanisms governing solar wind composition and have implications for the coronal and photospheric abundances of neon and oxygen. The results are made possible by a new data analysis method that robustly identifies rare elements in the measured ion spectra. The method is also applied to Ulysses/SWICS data, which confirms the ACE observations and extends our view of solar wind neon into the three-dimensional heliosphere.

  19. New Report: Integrating More Wind and Solar Reduces Utilities' Carbon Emissions and Fuel Costs

    Office of Energy Efficiency and Renewable Energy (EERE)

    The National Renewable Energy Laboratory (NREL) released Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2), a follow-up to the initial WWSIS released in May 2010, which examined the viability, benefits, and challenges of integrating as much as 33% wind and solar power into the electricity grid of the western United States.

  20. The Western Wind and Solar Integration Study Phase 2 (Executive Summary)

    SciTech Connect (OSTI)

    Lew, Debra; Brinkman, Greg

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  1. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity

    SciTech Connect (OSTI)

    Usmanov, Arcadi V.; Matthaeus, William H.; Goldstein, Melvyn L.

    2014-06-10

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are compared with plasma and magnetic field observations on WIND, Ulysses, and Voyager 2 spacecraft.

  2. Solar Resource & Meteorological Assessment Project (SOLRMAP): Observed Atmospheric and Solar Information System (OASIS); Tucson, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  3. Solar Resource & Meteorological Assessment Project (SOLRMAP): Observed Atmospheric and Solar Information System (OASIS); Tucson, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-11-03

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  4. RECONNECTION OUTFLOW GENERATED TURBULENCE IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Vrs, Z.; Sasunov, Y. L.; Zaqarashvili, T. V.; Khodachenko, M.; Semenov, V. S.; Bruno, R.

    2014-12-10

    Petschek-type time-dependent reconnection (TDR) and quasi-stationary reconnection (QSR) models are considered to understand reconnection outflow structures and the generation of local turbulence in the solar wind. Comparing TDR/QSR model predictions of the outflow structures with actual measurements shows that both models can explain the data equally well. It is demonstrated that the outflows can often generate more or less spatially extended turbulent boundary layers. The structure of a unique extended reconnection outflow is investigated in detail. The analysis of spectral scalings and spectral break locations shows that reconnection can change the local field and plasma conditions which may support different local turbulent dissipation mechanisms at their characteristic wavenumbers.

  5. Western Wind and Solar Integration Study Phase 2 (Presentation)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Kumar, N.; Lefton, S.; Jordan, G.; Venkataraman, S.; King, J.

    2013-06-01

    This presentation accompanies Phase 2 of the Western Wind and Solar Integration Study, a follow-on to Phase 1, which examined the operational impacts of high penetrations of variable renewable generation on the electric power system in the West and was one of the largest variable generation studies to date. High penetrations of variable generation can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 calculated these costs and emissions, and simulated grid operations for a year to investigate the detailed impact of variable generation on the fossil-fueled fleet. The presentation highlights the scope of the study and results.

  6. CHARGE STATE EVOLUTION IN THE SOLAR WIND. II. PLASMA CHARGE STATE COMPOSITION IN THE INNER CORONA AND ACCELERATING FAST SOLAR WIND

    SciTech Connect (OSTI)

    Landi, E.; Gruesbeck, J. R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2012-12-10

    In the present work, we calculate the evolution of the charge state distribution within the fast solar wind. We use the temperature, density, and velocity profiles predicted by Cranmer et al. to calculate the ionization history of the most important heavy elements in the solar corona and solar wind: C, N, O, Ne, Mg, Si, S, and Fe. The evolution of each charge state is calculated from the source region in the lower chromosphere to the final freeze-in point. We show that the solar wind velocity causes the plasma to experience significant departures from equilibrium at very low heights, well inside the field of view (within 0.6 R{sub sun} from the solar limb) of nearly all the available remote-sensing instrumentation, significantly affecting observed spectral line intensities. We also study the evolution of charge state ratios with distance from the source region, and the temperature they indicate if ionization equilibrium is assumed. We find that virtually every charge state from every element freezes in at a different height, so that the definition of freeze-in height is ambiguous. We also find that calculated freeze-in temperatures indicated by charge state ratios from in situ measurements have little relation to the local coronal temperature of the wind source region, and stop evolving much earlier than their correspondent charge state ratio. We discuss the implication of our results on plasma diagnostics of coronal holes from spectroscopic measurements as well as on theoretical solar wind models relying on coronal temperatures.

  7. Model Solar Guidelines: A Resource for North Carolina Homeowners Associations to Facilitate Solar Projects

    Broader source: Energy.gov [DOE]

    As North Carolina's residential solar market grows, more homeowners associations are facing uncertainties about how to deal with solar installations in their communities. As part of an effort between the State Energy Program, NC Department of Environment and Natural Resources, and members of the U.S. Department of Energy's SunShot Solar Outreach Partnership (The Solar Foundation and the NC Clean Energy Technology Center), two new resources have been developed to help North Carolina homeowners associations (HOAs) and their architectural review committees work through these issues. The first is a short brochure detailing the benefits of solar energy, with particular emphasis on benefits to HOAs and homeowners, as well as the role that HOAs can play in facilities solar installations in their communities. The second is Model HOA solar design guidelines, developed specifically for North Carolina communities, which allow for solar installations to occur in a way that balances a homeowner's ability to install a solar energy system and legitimate community concerns about these systems.

  8. Solar/Wind Contractor Licensing | Open Energy Information

    Open Energy Info (EERE)

    Licensing Louisiana InstallerContractor Photovoltaics Solar Water Heat Yes Tennessee Solar Panel Installation Specialty and Solar Thermal-Geothermal Licensing (Tennessee)...

  9. Residential Solar and Wind Energy Systems Tax Credit

    Broader source: Energy.gov [DOE]

    Qualifying technologies include solar domestic water heating systems, solar swimming pool and spa heating systems, photovoltaic systems, photovoltaic phones and street lights, passive solar...

  10. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  11. New Mexico/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Small Wind Turbine? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the...

  12. U.S. Virgin Islands Wind Resources Update 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ......... ii Executive Summary ......completed 95-MW Finca de Viento Santa Isabel wind project that is just 100 miles away ...

  13. Wind Resources on Tribal Land. Iowa Tribe of Oklahoma

    SciTech Connect (OSTI)

    Holiday, Michelle

    2015-03-27

    Final project report submitted by the Iowa Tribe of Oklahoma for the Department of Energy Wind Energy Grant

  14. Correlation studies between solar wind parameters and the decimetric radio emission from Jupiter

    SciTech Connect (OSTI)

    Bolton, S.J.; Gulkis, S.; Klein, M.J.; De Pater, I.; Thompson, T.J.

    1989-01-01

    Results of a study comparing long-term time variations (years) in Jupiter's synchrotron radio emission with a variety of solar wind parameters and the 10.7-cm solar flux are reported. Data from 1963 through 1985 were analyzed, and the results suggest that many solar wind parameters are correlated with the intensity of the synchrotron emission produced by the relativistic electrons in the Jovian Van Allen radiation belts. Significant nonzero correlation coefficients appear to be associated with solar wind ion density, ram pressure, thermal pressure, flow velocity, momentum, and ion temperature. The highest correlation coefficients are obtained for solar wind ram pressure (NV/sup 2/) and thermal pressure (NT). The correlation analysis suggests that the delay time between fluctuations in the solar wind and changes in the Jovian synchrotron emission is typically about 2 years. The delay time of the correlation places important constraints on the theoretical models describing the radiation belts. The implication of these results, if the correlations are real, is that the solar wind is influencing the supply and/or loss of electrons to Jupiter's inner magnetosphere. We note that the data for this work spans only about two periods of the solar activity cycle, and because of the long time scales of the observed variations, it is important to confirm these results with additional observations. copyright American Geophysical Union 1989

  15. Wind energy resource atlas. Volume 8. The southern Rocky Mountain region

    SciTech Connect (OSTI)

    Andersen, S.R.; Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    The Southern Rocky Mountain atlas assimilates five collections of wind resource data: one for the region and one for each of the four states that compose the Southern Rocky Mountain region (Arizona, Colorado, New Mexico, and Utah). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  16. New Battery Design Could Help Solar and Wind Power the Grid | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Battery Design Could Help Solar and Wind Power the Grid New Battery Design Could Help Solar and Wind Power the Grid April 24, 2013 - 4:20pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Researchers from the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life "flow" battery that could enable solar and wind energy to become major suppliers to the electrical grid. The research, led by Yi

  17. New Study Reveals Multiple Pathways to 30% Penetration of Wind and Solar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy New Study Reveals Multiple Pathways to 30% Penetration of Wind and Solar New Study Reveals Multiple Pathways to 30% Penetration of Wind and Solar September 16, 2015 - 6:36pm Addthis A new study published by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) found that the U.S. Eastern Interconnection-one of the largest power systems in the world-can reliably support up to a 30% penetration of wind and solar power. Using high-performance

  18. The Impact of Wind and Solar on the Value of Energy Storage

    Broader source: Energy.gov [DOE]

    The purpose of this analysis is to examine how the value proposition for energy storage changes as a function of wind and solar power penetration. It uses a grid modeling approach comparing the operational costs of an electric power system both with and without added storage. It creates a series of scenarios with increasing wind and solar power penetration and examines how the value of storage changes. It also explores the mechanisms behind this change in value, including the change in on-peak and off-peak price differentials and the cost of operating reserves created by increased penetration of wind and solar energy.

  19. Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential

    SciTech Connect (OSTI)

    Helm, C.; Burman, K.

    2010-04-01

    Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

  20. NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning

    Broader source: Energy.gov [DOE]

    In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes.

  1. Summary of Time Period-Based and Other Approximation Methods for Determining the Capacity Value of Wind and Solar in the United States: September 2010 - February 2012

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2012-03-01

    This paper updates previous work that describes time period-based and other approximation methods for estimating the capacity value of wind power and extends it to include solar power. The paper summarizes various methods presented in utility integrated resource plans, regional transmission organization methodologies, regional stakeholder initiatives, regulatory proceedings, and academic and industry studies. Time period-based approximation methods typically measure the contribution of a wind or solar plant at the time of system peak - sometimes over a period of months or the average of multiple years.

  2. Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (CSP)

    SciTech Connect (OSTI)

    Stoffel, T.; Renne, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C.

    2010-09-01

    As the world looks for low-carbon sources of energy, solar power stands out as the most abundant energy resource. Harnessing this energy is the challenge for this century. Photovoltaics and concentrating solar power (CSP) are two primary forms of electricity generation using sunlight. These use different technologies, collect different fractions of the solar resource, and have different siting and production capabilities. Although PV systems are most often deployed as distributed generation sources, CSP systems favor large, centrally located systems. Accordingly, large CSP systems require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations to predict the daily and annual performance of a proposed CSP plant. Without these data, no financial analysis is possible. This handbook presents detailed information about solar resource data and the resulting data products needed for each stage of the project.

  3. Wind resource characterization results to support the Sandia Wind Farm Feasibility Study : August 2008 through March 2009.

    SciTech Connect (OSTI)

    Deola, Regina Anne

    2010-01-01

    Sandia National Laboratories Wind Technology Department is investigating the feasibility of using local wind resources to meet the requirements of Executive Order 13423 and DOE Order 430.2B. These Orders, along with the DOE TEAM initiative, identify the use of on-site renewable energy projects to meet specified renewable energy goals over the next 3 to 5 years. A temporary 30-meter meteorological tower was used to perform interim monitoring while the National Environmental Policy Act (NEPA) process for the larger Wind Feasibility Project ensued. This report presents the analysis of the data collected from the 30-meter meteorological tower.

  4. The impact of climate change on the U.S. wind energy resource

    SciTech Connect (OSTI)

    Daniel Kirk-Davidoff; Daniel Barrie

    2013-03-19

    The growing need for low-carbon emitting electricity sources has resulted in rapid growth in the wind power industry. The size and steadiness of the offshore wind resource has attracted growing investment in the planning of offshore wind turbine installations. Decisions about the location and character of wind farms should be made with an eye not only to present but also future wind resource, which may change as increasing carbon dioxide forces reductions in the poleward temperature gradient, and thus potentially in the mean tropospheric westerly winds. I propose to use the new North American Regional Climate Change Assessment Program climate projections to estimate the change of the wind power resource under various carbon dioxide loading scenarios and for a range of climate models. We will compare our assessment with both our assessment based on the IPCC AR4 model runs, to explore the extent to which improved model resolution changes the prediction for the wind power resource, and with present day estimates from reanalysis and scatterometer winds.

  5. Particle acceleration via reconnection processes in the supersonic solar wind

    SciTech Connect (OSTI)

    Zank, G. P.; Le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.

    2014-12-10

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = –(3 + M{sub A} )/2, where M{sub A} is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + τ {sub c}/(8τ{sub diff})), where τ {sub c}/τ{sub diff} is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τ{sub diff}/τ {sub c}. Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c {sup –5} (c particle speed) spectra observed by Fisk and Gloeckler and Mewaldt et al.

  6. Wind for Schools Portal Educational Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    WINDExchange website provides a page dedicated to links to Wind Energy Curricula and Teaching Materials. Retrieved from "http:en.openei.orgwindex.php?titleWindforSchoolsPo...

  7. The Western Wind and Solar Integration Study Phase 2 (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  8. THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION...

    Office of Scientific and Technical Information (OSTI)

    CORONA The formation of the observed core-halo feature in the solar wind electron ... We further show that the core-halo feature produced during the origin of kinetic ...

  9. New Report Says Western Grid Can Weather Disturbances with High Wind, Solar Penetrations

    Broader source: Energy.gov [DOE]

    A new report finds that with high penetrations of wind and solar on the grid, together with good system planning, sound engineering practices, and commercially available technologies, the Western Interconnection can withstand the crucial first minute after large grid disturbances.

  10. Methodology for Clustering High-Resolution Spatiotemporal Solar Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methodology for Clustering High-Resolution Spatiotemporal Solar Resource Data Dan Getman, Anthony Lopez, Trieu Mai, and Mark Dyson National Renewable Energy Laboratory Technical Report NREL/TP-6A20-63148 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  11. Wind and Solar Data Projections from the Energy Information Administration: Past Performance and Planned Enhancements

    U.S. Energy Information Administration (EIA) Indexed Site

    Wind and Solar Data and Projections from the U.S. Energy Information Administration: Past Performance and Ongoing Enhancements March 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Wind and Solar Projections from the U.S. Energy Information Administration: Past Performance and Planned Enhancements 1 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and

  12. The Western Wind and Solar Integration Study Phase 2 (Fact Sheet)

    SciTech Connect (OSTI)

    2013-09-01

    This fact sheet is a basic overview of the Western Wind and Solar Integration Study, Phase 2. The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions.

  13. THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA

    SciTech Connect (OSTI)

    Che, H.; Goldstein, M. L.

    2014-11-10

    The formation of the observed core-halo feature in the solar wind electron velocity distribution function is a long-time puzzle. In this Letter, based on the current knowledge of nanoflares, we show that the nanoflare-accelerated electron beams are likely to trigger a strong electron two-stream instability that generates kinetic Alfvn wave and whistler wave turbulence, as we demonstrated in a previous paper. We further show that the core-halo feature produced during the origin of kinetic turbulence is likely to originate in the inner corona and can be preserved as the solar wind escapes to space along open field lines. We formulate a set of equations to describe the heating processes observed in the simulation and show that the core-halo temperature ratio of the solar wind is insensitive to the initial conditions in the corona and is related to the core-halo density ratio of the solar wind and to the quasi-saturation property of the two-stream instability at the time when the exponential decay ends. This relation can be extended to the more general core-halo-strahl feature in the solar wind. The temperature ratio between the core and hot components is nearly independent of the heliospheric distance to the Sun. We show that the core-halo relative drift previously reported is a relic of the fully saturated two-stream instability. Our theoretical results are consistent with the observations while new tests for this model are provided.

  14. Coherent structures and turbulent spectrum in solar wind plasmas

    SciTech Connect (OSTI)

    Sharma, R. P.; Yadav, N.; Kumari, Anju

    2013-08-15

    The present paper investigates the localization of a uniform plane kinetic Alfvn wave (KAW) due to the coupling with the density/magnetic field fluctuations associated with a magnetosonic wave propagating in the transverse direction, i.e., perpendicular to the background magnetic field. To gain the physical insight into this evolution, a simplified analytical model based on the Mathieu equation has also been studied. Numerical method has also been used to analyse the evolution of KAW. The magnetic fluctuation spectrum follows Kolmogorovian scaling above the proton gyroradius scalelength, which is regarded as the inertial range. Below this scale, a steepened spectrum has been obtained in the dispersive range with power law index ??2.5, which continues up to the dissipation range. Our results reveal that the proposed mechanism may be an interesting physical mechanism for transferring the energy from larger lengthscales to smaller lengthscales in the solar wind plasmas. Relevance of the present study with Cluster spacecraft observations has also been discussed.

  15. NREL's Wind Powering America Team Helps Indiana Develop Wind Resources (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    How does a state advance, in just five years, from having no installed wind capacity to having more than 1000 megawatts (MW) of installed capacity? The Wind Powering America (WPA) initiative, based at the National Renewable Energy Laboratory (NREL), employs a state-focused approach that has helped accelerate wind energy deployment in many states. One such state is Indiana, which is now home to the largest wind plant east of the Mississippi.

  16. Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind

    SciTech Connect (OSTI)

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-06-01

    Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvn waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.

  17. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As a pre-existing structure in a location with excellent offshore wind resources, the Chesapeake Light Tower provides a cost-effective alternative to building a new platform large...

  18. Wind Energy Resource Atlas. Volume 11. Hawaii and Pacific Islands Region

    SciTech Connect (OSTI)

    Schroeder, T.A.; Hori, A.M.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01

    This atlas of the wind energy resource is composed of introductory and background information, and assessments of the wind resource in each division of the region. Background on how the wind resource is assessed and on how the results of the assessment should be inerpreted is presented. An introduction and outline to the descriptions of the wind resource for each division are provided. Assessments for individual divisions are presented as separate chapters. Much of the information in the division chapters is given in graphic or tabular form. The sequences for each chapter are similar, but some presentations used for Hawaii are inappropriate or impractical for presentation with the Pacific Islands. Hawaii chapter figure and tables are cited below and appropriate Pacific Islands figure and table numbers are included in brackets ().

  19. Training and Learning Resources | Open Energy Information

    Open Energy Info (EERE)

    homeowners and small businesses. Educational resources for students on wind, solar, hydrogen, geothermal and biomass energy are also featured. Reegle Search Engine for...

  20. Namibia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Unexpected > operator. SWERA logo.png SWERA View the Solar and Wind Energy Resource Atlas for Namibia. 5 Programs Namibia-UNEP Green Economy Advisory Services National Action...

  1. Belarus: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    photovoltaic modules) Reegle logo.png Policy and Regulatory Overview 3 Expression error: Unexpected > operator. SWERA logo.png SWERA View the Solar and Wind Energy Resource...

  2. Renewable Energy Resources Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Renewable Energy Resources, Inc. Place: Las Vegas, Nevada Sector: Hydro, Renewable Energy, Solar, Wind energy Product: Renewable Energy is a...

  3. U.S. Department of Energy Workshop Report: Solar Resources and Forecasting

    SciTech Connect (OSTI)

    Stoffel, T.

    2012-06-01

    This report summarizes the technical presentations, outlines the core research recommendations, and augments the information of the Solar Resources and Forecasting Workshop held June 20-22, 2011, in Golden, Colorado. The workshop brought together notable specialists in atmospheric science, solar resource assessment, solar energy conversion, and various stakeholders from industry and academia to review recent developments and provide input for planning future research in solar resource characterization, including measurement, modeling, and forecasting.

  4. Wind and solar power electric generation to see strong growth...

    U.S. Energy Information Administration (EIA) Indexed Site

    Outlook says the increase in wind power will be due to the new wind turbines coming online thanks to the federal production tax credit that was recently extended by Congress. ...

  5. India Solar Resource Data: Enhanced Data for Accelerated Deployment (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    India Solar Resource Data Enhanced Data for Accelerated Deployment Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires detailed understanding of the solar resource available at various locations. Under a bilateral partnership between the United States and India- the U.S.-India Energy Dialogue-the National Renewable Energy Laboratory (NREL) has developed solar maps and data for India to provide 15 years of hourly information by

  6. Offshore Wind Resource Characterization Buoy "Open-Hatch" Exposition...

    Broader source: Energy.gov (indexed) [DOE]

    the nuts and bolts of the WindSentinel, open its hatch, and learn more about its advanced research equipment. Throughout the Day Energy Department Staff Will be Available to Answer...

  7. Energy Department Releases New Land-Based/Offshore Wind Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It shows the predicted mean annual wind speeds at 80-m height produced from AWS Truepower's data at a spatial resolution of 2.5 km and interpolated to a finer scale. Read more ...

  8. Oklahoma/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    City, OK 73104-3234 Phone: 800-879-6552 E-mail: info@okcommerce.gov State Energy Office Jennifer Jenkins Distributed Wind Energy Association PO Box 1861 Flagstaff, AZ 86002...

  9. Recent Wind Resource Characterization Activities at the National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREUCP-440-23095 * UC Category: 1210 Recent Wind Reso Characterization A at the National Ren Energy Labora Dennis L. Elliott Marc N. Schwartz Presented at Windpower '97 Austin,...

  10. Ghana-DLR Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    2001 to 2004 the German Aerospace Center (DLR) worked with Ghana on solar resource and GIS analysis as part of UNEP's Solar and Wind Energy Resource Assessment (SWERA) Programme....

  11. Puerto Rico and U.S. Virgin Islands Wind Resource Map at 50 meters

    Wind Powering America (EERE)

    % % % % % % % % % % % % % % % % % % % % % 19-JUN-2007 1.1.1 U.S. Department of Energy National Renewable Energy Laboratory Puerto Rico and U.S. Virgin Islands - 50 m Wind Power Mayaguez 20 0 20 40 60 80 100 Kilometers 20 0 20 40 60 Miles Ponce San Juan Charlotte Amalie Cruz Bay PUERTO RICO VIRGIN ISLANDS Wind Power Class 1 2 3 4 5 Resource Potential Poor Marginal Fair Good Excellent Wind Power Density at 50 m W/m 0 - 200 200 - 300 300 - 400 400 - 500 500 - 600 2 Wind Speed at 50 m m/s 0.0 - 5.9

  12. Hybrid Solar-Wind Generates Savings for South Dakota City | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hybrid Solar-Wind Generates Savings for South Dakota City Hybrid Solar-Wind Generates Savings for South Dakota City July 19, 2010 - 4:05pm Addthis What does this project do? The projects will reduce the city's natural gas and electric bills by an estimated $2,700. An array of six solar panels, similar to the ones shown, will be installed at Colton, S.D.'s city hall. | Photo courtesy of Colton. The city of Colton, South Dakota. is a small, agriculturally-based community. So small that

  13. Charge state evolution in the solar wind. III. Model comparison with observations

    SciTech Connect (OSTI)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; Van der Holst, B.

    2014-08-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  14. Drivers for the Value of Demand Response under Increased Levels of Wind and Solar Power; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Hale, Elaine

    2015-07-30

    Demand response may be a valuable flexible resource for low-carbon electric power grids. However, there are as many types of possible demand response as there are ways to use electricity, making demand response difficult to study at scale in realistic settings. This talk reviews our state of knowledge regarding the potential value of demand response in several example systems as a function of increasing levels of wind and solar power, sometimes drawing on the analogy between demand response and storage. Overall, we find demand response to be promising, but its potential value is very system dependent. Furthermore, demand response, like storage, can easily saturate ancillary service markets.

  15. Solar/Wind Feasibility Study at Whitewater Ranch

    Energy Savers [EERE]

    and Energy Efficiency Justice Solar and Energy Efficiency Justice June 24, 2010 - 3:00pm Addthis The roof of the justice center where a solar panel array will be installed to power a solar thermal water-heating system | Photo courtesy of Blount County, Tenn. The roof of the justice center where a solar panel array will be installed to power a solar thermal water-heating system | Photo courtesy of Blount County, Tenn. A solar thermal water-heating system at the justice center in Maryville, Tenn.,

  16. VAR Support from Distributed Wind Energy Resources: Preprint

    SciTech Connect (OSTI)

    Romanowitz, H.; Muljadi, E.; Butterfield, C. P.; Yinger, R.

    2004-07-01

    As the size and quantity of wind farms and other distributed generation facilities increase, especially in relation to local grids, the importance of a reactive power compensator or VAR support from these facilities becomes more significant. Poorly done, it can result in cycling or inadequate VAR support, and the local grid could experience excessive voltage regulation and, ultimately, instability. Improved wind turbine and distributed generation power control technologies are creating VAR support capabilities that can be used to enhance the voltage regulation and stability of local grids. Locating VAR support near the point of consumption, reducing step size, and making the control active all improve the performance of the grid. This paper presents and discusses alternatives for improving the integration of VAR support from distributed generation facilities such as wind farms. We also examine the relative effectiveness of distributed VAR support on the local grid and how it can b e integrated with the VAR support of the grid operator.

  17. Feasibility Study for Photovoltaics, Wind, solar Hot Water and Hybrid Systems

    SciTech Connect (OSTI)

    Hooks, Ronald; Montoya, Valerie

    2008-03-26

    Southwestern Indian Polytechnic Institute (SIPI) located in Albuquerque New Mexico is a community college that serves American Indians and Alaska Natives. SIPIs student body represents over 100 Native American Tribes. SIPI completed a renewable energy feasibility study program and established renewable energy hardware on the SIPI campus, which supplements and creates an educational resource to teach renewable energy courses. The SIPI campus is located, and has as student origins, areas, in which power is an issue in remote reservations. The following hardware was installed and integrated into the campus facilities: small wind turbine, large photovoltaic array that is grid-connected, two photovoltaic arrays, one thin film type, and one polycrystalline type, one dual-axis active tracker and one passive tracker, a hot air system for heating a small building, a portable hybrid photovoltaic system for remote power, and a hot water system to preheat water used in the SIPI Child Care facility. Educational curriculum has been developed for two renewable energy courses one being the study of energy production and use, and especially the roles renewable energy forms like solar, wind, geothermal, hydro, and biomass plays, and the second course being a more advanced in-depth study of renewable energy system design, maintenance, installation, and applications. Both courses rely heavily on experiential learning techniques so that installed renewable energy hardware is continuously utilized in hand-on laboratory activities and are part of the Electronics program of studies. Renewable energy technologies and science has also been included in other SIPI programs of study such as Environmental Science, Natural Resources, Agriculture, Engineering, Network Management, and Geospatial Technology.

  18. Missing Money--Will the Current Electricity Market Structure Support High (~50%) Wind/Solar?; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Milligan, Michael

    2015-05-15

    This presentation summarizes the missing money problem and whether the current electricity market structure will support high penetration levels of wind and solar.

  19. EVIDENCE FOR POLAR X-RAY JETS AS SOURCES OF MICROSTREAM PEAKS IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Neugebauer, Marcia

    2012-05-01

    It is proposed that the interplanetary manifestations of X-ray jets observed in solar polar coronal holes during periods of low solar activity are the peaks of the so-called microstreams observed in the fast polar solar wind. These microstreams exhibit velocity fluctuations of {+-}35 km s{sup -1}, higher kinetic temperatures, slightly higher proton fluxes, and slightly higher abundances of the low-first-ionization-potential element iron relative to oxygen ions than the average polar wind. Those properties can all be explained if the fast microstreams result from the magnetic reconnection of bright-point loops, which leads to X-ray jets which, in turn, result in solar polar plumes. Because most of the microstream peaks are bounded by discontinuities of solar origin, jets are favored over plumes for the majority of the microstream peaks.

  20. U.S. Virgin Islands Wind Resources Update 2014

    SciTech Connect (OSTI)

    Roberts, J. O.; Warren, A.

    2014-12-01

    This report summarizes the data collected from two 60-meter meteorological towers and three sonic detection and ranging units on St. Thomas and St. Croix in 2012 and 2013. These results are an update to the previous feasibility study; the collected data are critical to the successful development of a wind project at either site.

  1. THE SOLAR WIND AS A POSSIBLE SOURCE OF FAST TEMPORAL VARIATIONS OF THE HELIOSPHERIC RIBBON

    SciTech Connect (OSTI)

    Kucharek, H.; Lee, M. A.; Moebius, E.; Schwadron, N.; Fuselier, S. A.; McComas, D.; Wurz, P.; Pogorelov, N.; Borovikov, S.; Reisenfeld, D.; Funsten, H.

    2013-10-20

    We present a possible source of pickup ions (PUIs) the ribbon observed by the Interstellar Boundary EXplorer (IBEX). We suggest that a gyrating solar wind and PUIs in the ramp and in the near downstream region of the termination shock (TS) could provide a significant source of energetic neutral atoms (ENAs) in the ribbon. A fraction of the solar wind and PUIs are reflected and energized during the first contact with the TS. Some of the solar wind may be reflected propagating toward the Sun but most of the solar wind ions form a gyrating beam-like distribution that persists until it is fully thermalized further downstream. Depending on the strength of the shock, these gyrating distributions can exist for many gyration periods until they are scattered/thermalized due to wave-particle interactions at the TS and downstream in the heliosheath. During this time, ENAs can be produced by charge exchange of interstellar neutral atoms with the gyrating ions. In order to determine the flux of energetic ions, we estimate the solar wind flux at the TS using pressure estimates inferred from in situ measurements. Assuming an average path length in the radial direction of the order of a few AU before the distribution of gyrating ions is thermalized, one can explain a significant fraction of the intensity of ENAs in the ribbon observed by IBEX. With a localized source and such a short integration path, this model would also allow fast time variations of the ENA flux.

  2. GroSolar formerly Global Resource Options Inc | Open Energy Informatio...

    Open Energy Info (EERE)

    that designs, distributes, and installs solar electric, hot water and air systems in the USA. References: groSolar (formerly Global Resource Options Inc)1 This article is a stub....

  3. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    SciTech Connect (OSTI)

    Miller, Nicholas W.; Leonardi, Bruno; D'Aquila, Robert; Clark, Kara

    2015-11-17

    The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar and wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable generation (e.g., wind and solar) and low synchronous generation (e.g., significant coal power plant decommitment or retirement); and 2) Analyzing both the large-scale stability of the Western Interconnection and regional stability issues driven by more geographically dispersed renewable generation interacting with a transmission grid that evolved with large, central station plants at key nodes. As noted above, the work reported here is an extension of the research performed in WWSIS-3.

  4. Wind Energy Resource Atlas of Armenia (CD-ROM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Atlas of Armenia (CD-ROM) http:www.nrel.govdocsfy03osti33877CD.zip (ZIP 31.9 MB) NRELCD-500-33877 July 2003 Instructions: The URL above links to a zipped archive...

  5. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    SciTech Connect (OSTI)

    Li, W.; Thorne, R. M.; Bortnik, J.; Baker, D. N.; Reeves, G. D.; Kanekal, S. G.; Spence, H. E.; Green, J. C.

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outer radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.

  6. Nonlinear interaction of proton whistler with kinetic Alfvn wave to study solar wind turbulence

    SciTech Connect (OSTI)

    Goyal, R.; Sharma, R. P.; Goldstein, M. L.; Dwivedi, N. K.

    2013-12-15

    This paper presents the nonlinear interaction between small but finite amplitude kinetic Alfvn wave (KAW) and proton whistler wave using two-fluid model in intermediate beta plasma, applicable to solar wind. The nonlinearity is introduced by modification in the background density. This change in density is attributed to the nonlinear ponderomotive force due to KAW. The solutions of the model equations, governing the nonlinear interaction (and its effect on the formation of localized structures), have been obtained using semi-analytical method in solar wind at 1AU. It is concluded that the KAW properties significantly affect the threshold field required for the filament formation and their critical size (for proton whistler). The magnetic and electric field power spectra have been obtained and their relevance with the recent observations of solar wind turbulence by Cluster spacecraft has been pointed out.

  7. THIRD MOMENTS AND THE ROLE OF ANISOTROPY FROM VELOCITY SHEAR IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Stawarz, Joshua E.; Vasquez, Bernard J.; Smith, Charles W.; Forman, Miriam A.; Klewicki, Joseph E-mail: Bernie.Vasquez@unh.edu E-mail: Miriam.Forman@sunysb.edu

    2011-07-20

    We have extended the recent analyses of magnetohydrodynamic third moments as they relate to the turbulent energy cascade in the solar wind to consider the effects of large-scale shear flows. Moments from a large set of Advanced Composition Explorer data have been taken, and chosen data intervals are characterized by the rate of change in the solar wind speed. Mean dissipation rates are obtained in accordance with the predictions of homogeneous shear-driven turbulence. Agreement with predictions is best made for rarefaction intervals where the solar wind speed is decreasing with time. For decreasing speed intervals, we find that the dissipation rates increase with increasing shear magnitude and that the shear-induced fluctuation anisotropy is consistent with a relatively small amount.

  8. Iowa Tribe of Oklahoma's Assessment of Wind Resources on Tribal Land

    Energy Savers [EERE]

    Oklahoma's Assessment of Wind Resources on Tribal Land DOE's Tribal Energy Program Review March 24-27, 2014 - Denver, CO Overview  Iowa Tribe of Oklahoma  Iowa Tribe Long Term Energy Vision  Historical Renewable Energy Timeline  Project Objectives  Wind Study Reports  New Location Update  Changes and Challenges  Next Steps and Final Report Iowa Tribe of Oklahoma  Tribal enrollment is over 780  Organized under the Oklahoma Indian Welfare Act, which authorized the

  9. Chapter 1.12: Solar Radiation Resource Assessment for Renewable Energy Conversion

    SciTech Connect (OSTI)

    Myers, D. R.

    2012-01-01

    This chapter addresses measurements, modeling, and databases of solar energy potential that may serve as fuel for solar energy conversion systems. Developing innovative designs for capturing and converting solar radiation is only one part of the equation for solar system deployment. Identifying, locating, and prospecting for the appropriate quantity and quality of solar resources to fuel these systems is critical to system designers, investors, financial backers, utilities, governments, and owner/operators. This chapter addresses the fundamentals and state of the art for measuring, modeling, and applying solar radiation resource data to meet decision-making needs.

  10. Property Tax Exemption for Solar and Wind Energy Systems

    Broader source: Energy.gov [DOE]

    In May 2009 the exemption was amended yet again by H.B. 1171 to add "residential wind energy equipment" as an eligible technology. In order to qualify, equipment must be sited on residential...

  11. Bird Mortaility at the Altamont Pass Wind Resource Area: March 1998--September 2001

    SciTech Connect (OSTI)

    Smallwood, K. S.; Thelander, C. G.

    2005-09-01

    Over the past 15 years, research has shown that wind turbines in the Altamont Pass Wind Resource Area (APWRA) kill many birds, including raptors, which are protected by the Migratory Bird Treaty Act (MBTA), the Bald and Golden Eagle Protection Act, and/or state and federal Endangered Species Acts. Early research in the APWRA on avian mortality mainly attempted to identify the extent of the problem. In 1998, however, the National Renewable Energy Laboratory (NREL) initiated research to address the causal relationships between wind turbines and bird mortality. NREL funded a project by BioResource Consultants to perform this research directed at identifying and addressing the causes of mortality of various bird species from wind turbines in the APWRA.With 580 megawatts (MW) of installed wind turbine generating capacity in the APWRA, wind turbines there provide up to 1 billion kilowatt-hours (kWh) of emissions-free electricity annually. By identifying and implementing new methods and technologies to reduce or resolve bird mortality in the APWRA, power producers may be able to increase wind turbine electricity production at the site and apply similar mortality-reduction methods at other sites around the state and country.

  12. Jasper Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Jasper Wind Place: Athens, Greece Sector: Solar, Wind energy Product: Athens-based wind and solar project developer. Coordinates: 37.97615,...

  13. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    SciTech Connect (OSTI)

    Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; Burnett, Donald S.; Sakaguchi, Isao; Suzuki, Taku; Itose, Satoru; Ishihara, Morio; Uchino, Kiichiro; Wieler, Rainer; Yurimoto, Hisayoshi

    2015-10-01

    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile is consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.

  14. INTERMITTENCY OF SOLAR WIND DENSITY FLUCTUATIONS FROM ION TO ELECTRON SCALES

    SciTech Connect (OSTI)

    Chen, C. H. K.; Sorriso-Valvo, L.; afrnkov, J.; N?me?ek, Z.

    2014-07-01

    The intermittency of density fluctuations in the solar wind at kinetic scales has been examined using high time resolution Faraday cup measurements from the Spektr-R spacecraft. It was found that the probability density functions (PDFs) of the fluctuations are highly non-Gaussian over this range, but do not show large changes in shape with scale. These properties are statistically similar to those of the magnetic fluctuations and are important to understanding the dynamics of small scale turbulence in the solar wind. Possible explanations for the behavior of the density and magnetic fluctuations are discussed.

  15. Fluidic: Grid-Scale Batteries for Wind and Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluidic: Grid-Scale Batteries for Wind and Solar Fluidic: Grid-Scale Batteries for Wind and Solar February 27, 2013 - 5:42pm Addthis Andrew Gumbiner Contractor, Advanced Research Projects Agency-Energy. FLUIDIC: Metal Air Recharged from DOE ARPA-E on Vimeo. Our nation's modern electric grid is limited in its ability to store excess energy for on-demand power. As a result, electricity must be generated on a constant basis to perfectly match demand. Grid-scale storage technologies have the

  16. NREL: Resource Assessment and Forecasting - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources National Solar Radiation Database NREL resource assessment and forecasting research information is available from the following sources. Renewable Resource Data Center (RReDC) Provides information about biomass, geothermal, solar, and wind energy resources. Measurement and Instrumentation Data Center Provides irradiance and meteorological data from stations throughout the United States. Baseline Measurement System (BMS) Provides live solar radiation data from approximately 70

  17. Western Wind and Solar Integration Study Phase 3 -- Frequency Response and Transient Stability (Report and Executive Summary)

    SciTech Connect (OSTI)

    Miller, N. W.; Shao, M.; Pajic, S.; D'Aquila, R.

    2014-12-01

    The primary objectives of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) were to examine the large-scale transient stability and frequency response of the Western Interconnection with high wind and solar penetration, and to identify means to mitigate any adverse performance impacts via transmission reinforcements, storage, advanced control capabilities, or other alternatives.

  18. United States Offshore Wind Resource Map at 90 Meters

    Wind Powering America (EERE)

    Offshore Wind Speed at 90 m 10-JAN-2011 1.1.1 Wind Speed at 90 m m/s 11.5 - 12.0 11.0 - 11.5 10.5 - 11.0 10.0 - 10.5 9.5 - 10.0 9.0 - 9.5 8.5 - 9.0 8.0 - 8.5 7.5 - 8.0 7.0 - 7.5 6.5 - 7.0 6.0 - 6.5 0.0 - 6.0 mph 25.7 - 26.8 24.6 - 25.7 23.5 - 24.6 22.4 - 23.5 21.3 - 22.4 20.1 - 21.3 19.0 - 20.1 17.9 - 19.0 16.8 - 17.9 15.7 - 16.8 14.5 - 15.7 13.4 - 14.5 0.0 - 13.4

  19. Integration Costs: Are They Unique to Wind and Solar Energy? Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Hodge, B.; Kirby, B.; Clark, C.

    2012-05-01

    Over the past several years, there has been considerable interest in assessing wind integration costs. This is understandable because wind energy does increase the variability and uncertainty that must be managed on a power system. However, there are other sources of variability and uncertainty that also must be managed in the power system. This paper describes some of these sources and shows that even the introduction of base-load generation can cause additional ramping and cycling. The paper concludes by demonstrating that integration costs are not unique to wind and solar, and should perhaps instead be assessed by power plant and load performance instead of technology type.

  20. From Tragedy to Triumph - Resources for Rebuilding Green after Disaster

    SciTech Connect (OSTI)

    2009-10-01

    Fact sheet offering resources for builders and architects to rebuild homes, businesses, and public buildings with energy efficiency and renewable energy such as wind, solar, and geothermal.

  1. Afghanistan-NREL Resource Maps and Toolkits | Open Energy Information

    Open Energy Info (EERE)

    partnered with Afghanistan to develop high-resolution wind and solar resource maps and data products for Afghanistan. The data were output in Geographic Information Systems (GIS)...

  2. India Solar Resource Data: Enhanced Data for Accelerated Deployment (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires an understanding of the underlying solar resource. Under a bilateral partnership between the United States and India - the U.S.-India Energy Dialogue - the National Renewable Energy Laboratory has updated Indian solar data and maps using data provided by the Ministry of New and Renewable Energy (MNRE) and the National Institute for Solar Energy (NISE). This fact sheet overviews the updated maps and data, which help identify high-quality solar energy projects. This can help accelerate the deployment of solar energy in India.

  3. Observation and modeling of geocoronal charge exchange X-ray emission during solar wind gusts

    SciTech Connect (OSTI)

    Wargelin, B. J.; Kornbleuth, M.; Juda, M.; Martin, P. L.

    2014-11-20

    Solar wind charge exchange (SWCX) X-rays are emitted when highly charged solar wind ions such as O{sup 7{sup +}} collide with neutral gas, including the Earth's tenuous outer atmosphere (exosphere or geocorona) and hydrogen and helium from the local interstellar medium drifting through the heliosphere. This geocoronal and heliospheric emission comprises a significant and varying fraction of the soft X-ray background (SXRB) and is seen in every X-ray observation, with the intensity dependent on solar wind conditions and observation geometry. Under the right conditions, geocoronal emission can increase the apparent SXRB by roughly an order of magnitude for an hour or more. In this work, we study a dozen occasions when the near-Earth solar wind flux was exceptionally high. These gusts of wind lead to abrupt changes in SWCX X-ray emission around Earth, which may or may not be seen by X-ray observatories depending on their line of sight. Using detailed three-dimensional magnetohydrodynamical simulations of the solar wind's interaction with the Earth's magnetosphere, and element abundances and ionization states measured by ACE, we model the time-dependent brightness of major geocoronal SWCX emission lines during those gusts and compare with changes in the X-ray background measured by the Chandra X-ray Observatory. We find reasonably good agreement between model and observation, with measured geocoronal line brightnesses averaged over 1 hr of up to 136 photons s{sup 1} cm{sup 2} sr{sup 1} in the O VII K? triplet around 564 eV.

  4. Non-Residential Solar & Wind Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    The tax credit, which may be applied against corporate or personal taxes, is equal to 10% of the installed cost of qualified “solar energy devices” and applies to systems installed between Januar...

  5. Solar and Wind Energy Business Franchise Tax Exemption

    Broader source: Energy.gov [DOE]

    For the purposes of this exemption, a solar energy device means "a system or series of mechanisms designed primarily to provide heating or cooling or to produce electrical or mechanical power by...

  6. Non-Residential Solar & Wind Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The tax credit, which may be applied against corporate or personal taxes, is equal to 10% of the installed cost of qualified “solar energy devices” and applies to taxable years beginning January 1...

  7. Uganda-Demonstrating Wind and Solar Energy on Lake Victoria ...

    Open Energy Info (EERE)

    programs, Background analysis, Technology characterizations Resource Type Guidemanual, Lessons learnedbest practices Website http:sgp.undp.orgdownloadS Country Uganda UN...

  8. Whistler mode waves and the electron heat flux in the solar wind: cluster observations

    SciTech Connect (OSTI)

    Lacombe, C.; Alexandrova, O.; Cornilleau-Wehrlin, N.; Mangeney, A.; De Conchy, Y.; Maksimovic, M.; Matteini, L.; Santolík, O.

    2014-11-20

    The nature of the magnetic field fluctuations in the solar wind between the ion and electron scales is still under debate. Using the Cluster/STAFF instrument, we make a survey of the power spectral density and of the polarization of these fluctuations at frequencies f in [1, 400] Hz, during five years (2001-2005), when Cluster was in the free solar wind. In ∼10% of the selected data, we observe narrowband, right-handed, circularly polarized fluctuations, with wave vectors quasi-parallel to the mean magnetic field, superimposed on the spectrum of the permanent background turbulence. We interpret these coherent fluctuations as whistler mode waves. The lifetime of these waves varies between a few seconds and several hours. Here, we present, for the first time, an analysis of long-lived whistler waves, i.e., lasting more than five minutes. We find several necessary (but not sufficient) conditions for the observation of whistler waves, mainly a low level of background turbulence, a slow wind, a relatively large electron heat flux, and a low electron collision frequency. When the electron parallel beta factor β {sub e∥} is larger than 3, the whistler waves are seen along the heat flux threshold of the whistler heat flux instability. The presence of such whistler waves confirms that the whistler heat flux instability contributes to the regulation of the solar wind heat flux, at least for β {sub e∥} ≥ 3, in slow wind at 1 AU.

  9. New Battery Design Could Help Solar and Wind Power the Grid

    Broader source: Energy.gov [DOE]

    Researchers from the U.S. Department of Energy’s (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life “flow” battery that could enable solar and wind energy to become major suppliers to the electrical grid.

  10. Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Kumar, N.; Besuner, P.; Agan, D.; Lefton, S.

    2012-08-01

    High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-state operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.

  11. NREL Energy Models Examine the Potential for Wind and Solar Grid Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    As renewable energy generating sources, such as wind turbines and solar power systems, reach high levels of penetration in parts of the United States, the National Renewable Energy Laboratory (NREL) is helping the utility industry to peer into the future. Using software modeling tools that the lab developed, NREL is examining the future operation of the electrical grid as renewable energy continues to grow.

  12. Geek-Up[3.25.2011]: Idaho Wind and Chlorosome-Inspired Solar

    Broader source: Energy.gov [DOE]

    Idaho National Laboratory wind power researchers watch the weather in order to improve high-voltage transmission lines and Oak Ridge National Laboratory researches study how chlorosomes function in nature – with hopes to mimic chlorosomes’ efficiency to create biohybrid and bio-inspired solar cells -- all in this week's Geek-Up.

  13. Pierre’s Prototype for Wind and Solar- Capitol Lake Plaza

    Broader source: Energy.gov [DOE]

    Capitol Lake Plaza sits centrally on Pierre, S.D.’s government plaza. Originally built in 1974, the building has been undergoing major energy renovations since being purchased by the state two years ago. Two major components of the renovation are about to appear at the building’s highest point: solar panels and wind turbines are being installed on the roof.

  14. Validation of Updated State Wind Resource Maps for the United States: Preprint

    SciTech Connect (OSTI)

    Schwartz, M.; Elliott, D.

    2004-07-01

    The National Renewable Energy Laboratory (NREL) has coordinated the validation of updated state wind resource maps for multiple regions of the United States. The purpose of the validation effort is to produce the best map possible within fairly stringent time constraints.

  15. Control Strategies for Distributed Energy Resources to Maximize the Use of Wind Power in Rural Microgrids

    SciTech Connect (OSTI)

    Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.; Kalsi, Karanjit; Mayhorn, Ebony T.; Diao, Ruisheng; Jin, Chunlian; Zhang, Yu

    2011-10-10

    The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conduct simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.

  16. Concentrating Solar Resource of the Southwest United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Concentrating Solar Power The SunShot Initiative supports research and development of concentrating solar power (CSP) technologies that reduce the cost of solar energy. CSP helps to achieve the SunShot Initiative cost targets with systems that can supply solar power on demand, even when there is no sunlight, through the use of thermal storage. Since SunShot's inception, the levelized cost of electricity for CSP has decreased about 36 percent, from $0.21 cents per

  17. Satellite-Based Solar Resource Data Sets for India 2002-2012

    SciTech Connect (OSTI)

    Sengupta, M.; Perez, R.; Gueymard, C.; Anderberg, M.; Gotseff, P.

    2014-02-01

    A new 10-km hourly solar resource product was created for India. This product was created using satellite radiances from the Meteosat series of satellites. The product contains global horizontal irradiances (GHI) and direct normal irradiances (DNI) for the period from 2002 to 2011. An additional solar resource data set covering the period from January 2012 to June 2012 was created solely for validation because this period overlaps ground measurements that were made available from the Indian Ministry of New and Renewable Energy's (MNRE's) National Institute for Solar Energy for five stations that are part of MNRE's solar resource network. These measurements were quality checked using the SERI QC software and used to validate the satellite product. A comparison of the satellite product to the ground measurements for the five stations shows good agreement. This report also presents a comparison of the new version of solar resource data to the previous version, which covered the period from 2002 to 2008.

  18. U.S. Solar Resource Maps and Tools from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Solar maps provide monthly average daily total solar resource information on grid cells. The insolation values represent the resource available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal to equal to the latitude of the collector location. [Copied from http://www.nrel.gov/gis/solar.html] Several types of solar maps are made available. The U.S. Solar resource maps show the resource potential for energy from photovoltaics and from concentrating solar power (CSP). Both sets of maps are available in low or high resolution. A dynamic map based on version 2 of PVWATTS calculates electrical energy performance estimates for a grid-connected photovoltaic system. The map of U.S. Solar Measurement Station Locations is also dynamic, showing the spatial distribution of measurement stations across the U.S. that are monitored by programs and agencies such as DOE's Atmospheric Radiation Measurement (ARM) Program or NREL's Cooperative Network for Renewable Resource Measurements (CONFRRM). Clicking on a station location will take the user to the website of that station. Finally, static map images providing solar resource information averaged by month are also available.

  19. THE INFLUENCE OF INTERMITTENCY ON THE SPECTRAL ANISOTROPY OF SOLAR WIND TURBULENCE

    SciTech Connect (OSTI)

    Wang, Xin; Tu, Chuanyi; He, Jiansen; Wang, Linghua; Marsch, Eckart

    2014-03-01

    The relation between the intermittency and the anisotropy of the power spectrum in the solar wind turbulence is studied by applying the wavelet technique to the magnetic field and flow velocity data measured by the WIND spacecraft. It is found that when the intermittency is removed from the turbulence, the spectral indices of the power spectra of the field and velocity turn out to be independent of the angle ?{sub RB} between the direction of the local scale-dependent background magnetic field and the heliocentric direction. The spectral index becomes 1.63 0.02 for magnetic field fluctuations and 1.56 0.02 for velocity fluctuations. These results may suggest that the recently found spectral anisotropy of solar wind power spectra in the inertial range could result from turbulence intermittency. As a consequence, a new concept is here proposed of an intermittency-associated sub-range of the inertial domain adjacent to the dissipation range. Since spectral anisotropy was previously explained as evidence for the presence of a ''critical balance'' type turbulent cascade, and also for the existence of kinetic Alfvn waves, this new finding may stimulate fresh thoughts on how to analyze and interpret solar wind turbulence and the associated heating.

  20. Solar wind suprathermal electron Stahl widths across high-speed stream structures

    SciTech Connect (OSTI)

    Skoug, Ruth M [Los Alamos National Laboratory; Steinberg, John T [Los Alamos National Laboratory; Goodrich, Katherine A [Los Alamos National Laboratory; Anderson, Brett R [DARTMUTH UNIV.

    2011-01-03

    Suprathermal electrons (100-1500 eV) observed in the solar wind typically show a strahl distribution, that is, a beam directed away from the Sun along the magnetic field direction. The strahl width observed at 1 AU is highly variable, ranging from 10-70 degrees. The obsenred finite width of the strahl results from the competition between beam focusing as the interplanetary magnetic field strength drops with distance from the Sun, and pitch-angle scattering as the beam interacts with the solar wind plasma in transit from the sun. Here we examine strahl width, observed with ACE SWEPAM across high-speed stream structures to investigate variations in electron scattering as a function of local plasma characteristics. We find that narrow strahls (less than 20 degrees wide), indicating reduced scattering, are observed within high-speed streams. Narrow strahls are also observed in both very low temperature solar wind, in association with ICMEs. Case studies of high-speed streams typically show the strahl narrowing at the leading edge of the stream. In some cases, the strahl narrows at the reverse shock or pressure wave, in other cases at the stream interface. The narrowing can either occur discontinuously or gradually over a period of hours. Within the high-speed wind, the strahl remains narrow for a period of hours to days, and then gradually broadens. The strahl width is roughly constant at all energies across these structures. For some fraction of high-speed streams, counterstreaming is associated with passage of the corotating interaction region. In these cases, we find the widths of the two counterstreaming beams frequently differ by more than 40 degrees. This dramatic difference in strahl width contrasts with observations in the solar wind as a whole, in which counterstreaming strahls typically differ in width by less than 20 degrees.

  1. Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind

    SciTech Connect (OSTI)

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.

    2014-07-10

    The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesisthat temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frameis often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft or to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfvn waves is not.

  2. Online Analysis of Wind and Solar Part II: Transmission Tool

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian; Subbarao, Krishnappa

    2012-01-31

    To facilitate wider penetration of renewable resources without compromising system reliability concerns arising from the lack of predictability of intermittent renewable resources, a tool for use by California Independent System Operator (CAISO) power grid operators was developed by Pacific Northwest National Laboratory (PNNL) in conjunction with CAISO with funding from California Energy Commission. The tool analyzes and displays the impacts of uncertainties in forecasts of loads and renewable generation on: (1) congestion, (2)voltage and transient stability margins, and (3)voltage reductions and reactive power margins. The impacts are analyzed in the base case and under user-specified contingencies.A prototype of the tool has been developed and implemented in software.

  3. Online Analysis of Wind and Solar Part I: Ramping Tool

    SciTech Connect (OSTI)

    Etingov, Pavel V.; Ma, Jian; Makarov, Yuri V.; Subbarao, Krishnappa

    2012-01-31

    To facilitate wider penetration of renewable resources without compromising system reliability concerns arising from the lack of predictability of intermittent renewable resources, a tool for use by California Independent System Operator (CAISO) power grid operators was developed by Pacific Northwest National Laboratory (PNNL) in conjunction with CAISO with funding from California Energy Commission. This tool predicts and displays additional capacity and ramping requirements caused by uncertainties in forecasts of loads and renewable generation. The tool is currently operational in the CAISO operations center. This is one of two final reports on the project.

  4. EERE Success Story-Electric Cooperatives Channel Solar Resources to Rural

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Communities | Department of Energy Electric Cooperatives Channel Solar Resources to Rural American Communities EERE Success Story-Electric Cooperatives Channel Solar Resources to Rural American Communities February 4, 2016 - 12:07pm Addthis The CoServ Solar Station in Krugerville, Texas. Photo: KEN OLTMANN/CoServ The CoServ Solar Station in Krugerville, Texas. Photo: KEN OLTMANN/CoServ Some of the most remote areas in the United States were also some of the last places to get access

  5. ION HEATING IN INHOMOGENEOUS EXPANDING SOLAR WIND PLASMA: THE ROLE OF PARALLEL AND OBLIQUE ION-CYCLOTRON WAVES

    SciTech Connect (OSTI)

    Ozak, N.; Ofman, L.; Viñas, A.-F.

    2015-01-20

    Remote sensing observations of coronal holes show that heavy ions are hotter than protons and their temperature is anisotropic. In-situ observations of fast solar wind streams provide direct evidence for turbulent Alfvén wave spectrum, left-hand polarized ion-cyclotron waves, and He{sup ++} - proton drift in the solar wind plasma, which can produce temperature anisotropies by resonant absorption and perpendicular heating of the ions. Furthermore, the solar wind is expected to be inhomogeneous on decreasing scales approaching the Sun. We study the heating of solar wind ions in inhomogeneous plasma with a 2.5D hybrid code. We include the expansion of the solar wind in an inhomogeneous plasma background, combined with the effects of a turbulent wave spectrum of Alfvénic fluctuations and initial ion-proton drifts. We study the influence of these effects on the perpendicular ion heating and cooling and on the spectrum of the magnetic fluctuations in the inhomogeneous background wind. We find that inhomogeneities in the plasma lead to enhanced heating compared to the homogenous solar wind, and the generation of significant power of oblique waves in the solar wind plasma. The cooling effect due to the expansion is not significant for super-Alfvénic drifts, and is diminished further when we include an inhomogeneous background density. We reproduce the ion temperature anisotropy seen in observations and previous models, which is present regardless of the perpendicular cooling due to solar wind expansion. We conclude that small scale inhomogeneities in the inner heliosphere can significantly affect resonant wave ion heating.

  6. wind turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  7. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  8. Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  9. Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  10. Free Consumer Workshops On Solar & Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frederick Reines and the Detection of the Neutrino Resources with Additional Information '[Frederick] Reines - known among scientists as the "father of neutrino physics" - won the Nobel Prize for physics in 1995 ["for the detection of the neutrino"], nearly 40 years after his neutrino experiments changed the world of physics and set in motion a new way of looking at the universe. ... Frederick Reines Courtesy University of California Irvine Until Reines's discovery,

  11. Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West

    Broader source: Energy.gov [DOE]

    A new report released today by the Energy Department’s National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West.

  12. Transient Stability and Frequency Response of the US Western Interconnection under conditions of High Wind and Solar Generation

    SciTech Connect (OSTI)

    Clark, Kara; Miller, Nicholas W.; Shao, Miaolei; Pajic, Slobodan; D'Aquila, Robert

    2015-04-15

    Adding large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient stability and frequency response limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. Our paper reports the results of a study that investigated the transient stability and frequency response of the WI with high penetrations of wind and solar generation. Moreover, the main goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability and frequency events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.

  13. Wind resource assessment handbook: Fundamentals for conducting a successful monitoring program

    SciTech Connect (OSTI)

    Bailey, B.H.; McDonald, S.L.; Bernadett, D.W.; Markus, M.J.; Elsholz, K.V.

    1997-04-01

    This handbook presents industry-accepted guidelines for planning and conducting a wind resource measurement program to support a wind energy feasibility initiative. These guidelines, which are detailed and highly technical, emphasize the tasks of selecting, installing, and operating wind measurement equipment, as well as collecting and analyzing the associated data, once one or more measurement sites are located. The handbook's scope encompasses state-of-the-art measurement and analysis techniques at multiple heights on tall towers (e.g., 40 m) for a measurement duration of at least one year. These guidelines do not represent every possible method of conducting a quality wind measurement program, but they address the most important elements based on field-proven experience. The intended audience for this handbook is any organization or individual who desires the planning framework and detailed procedures for conducting a formally structured wind measurement program. Personnel from the management level to field technicians will find this material applicable. The organizational aspects of a measurement program, including the setting of clear program objectives and designing commensurate measurement and quality assurance plans, all of which are essential to ensuring the program's successful outcome, are emphasized. Considerable attention is also given to the details of actually conducting the measurement program in its many aspects, from selecting instrumentation that meets minimum performance standards to analyzing and reporting on the collected data. 5 figs., 15 tabs.

  14. Final Technical Report Advanced Solar Resource Modeling and Analysis.

    SciTech Connect (OSTI)

    Hansen, Clifford

    2015-12-01

    The SunShot Initiative coordinates research, development, demonstration, and deployment activities aimed at dramatically reducing the total installed cost of solar power. The SunShot Initiative focuses on removing critical technical and non-technical barriers to installing and integrating solar energy into the electricity grid. Uncertainty in projected power and energy production from solar power systems contributes to these barriers by increasing financial risks to photovoltaic (PV) deployment and by exacerbating the technical challenges to integration of solar power on the electricity grid.

  15. Sustainable Energy Resources for Consumers (SERC) - Solar Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Future www.oregon.govENERGYRENEWSolardocsSunChart.pdf Sun Chart Solar Access Shading analysis prior to installation (remember - small trees grow into tall trees) ...

  16. THE GENESIS SOLAR WIND CONCENTRATOR TARGET: MASS FRACTIONATION CHARACTERISED BY NE ISOTOPES

    SciTech Connect (OSTI)

    WIENS, ROGER C.; OLINGER, C.; HEBER, V.S.; REISENFELD, D.B.; BURNETT, D.S.; ALLTON, J.H.; BAUR, H.; WIECHERT, U.; WIELER, R.

    2007-01-02

    The concentrator on Genesis provides samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition of the solar wind. The concentration process caused mass fractionation as function of the radial target position. They measured the fractionation using Ne released by UV laser ablation along two arms of the gold cross from the concentrator target to compare measured Ne with modeled Ne. The latter is based on simulations using actual conditions of the solar wind during Genesis operation. Measured Ne abundances and isotopic composition of both arms agree within uncertainties indicating a radial symmetric concentration process. Ne data reveal a maximum concentration factor of {approx} 30% at the target center and a target-wide fractionation of Ne isotopes of 3.8%/amu with monotonously decreasing {sup 20}Ne/{sup 22}Ne ratios towards the center. The experimentally determined data, in particular the isotopic fractionation, differ from the modeled data. They discuss potential reasons and propose future attempts to overcome these disagreements.

  17. The global morphology of the solar wind interaction with comet Churyumov-Gerasimenko

    SciTech Connect (OSTI)

    Mendis, D. A.; Hornyi, M.

    2014-10-10

    The forthcoming Rosetta-Philae mission to comet 67P/Churyumov-Gerasimenko provides a novel opportunity to observe the variable nature of the solar wind interaction with a comet over an extended range of heliocentric distance. We use a simple analytical one-dimensional MHD model to estimate the sizes of the two most prominent features in the global structure of the solar wind interaction with a comet. When the heliocentric distance of the comet reaches d ? 1.51 AU, we expect a sharp shock to be observed, whose size would increase monotonically as the comet approaches the Sun, reaching a value ? 15, 000 km at perihelion (d ? 1.29 AU). Upstream of the shock, we expect the velocity-space distribution of the picked up cometary ions to be essentially gyrotropic. A well-defined ionopause is predicted when d ?1.61 AU, though its size is expected to be only ?25 km at perihelion, and it is expected to be susceptible to the 'flute' instability due to its small size. Consequently, we expect the magnetic field to penetrate all the way to the surface of the nucleus. We conclude with a brief discussion of the response of the comet's plasma environment to fast temporal variations in the solar wind.

  18. THE NONLINEAR AND NONLOCAL LINK BETWEEN MACROSCOPIC ALFVNIC AND MICROSCOPIC ELECTROSTATIC SCALES IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Valentini, F.; Vecchio, A.; Donato, S.; Carbone, V.; Veltri, P.; Briand, C.; Bougeret, J.

    2014-06-10

    The local heating of the solar-wind gas during its expansion represents one of the most intriguing problems in space plasma physics and is at present the subject of a relevant scientific effort. The possible mechanisms that could account for local heat production in the interplanetary medium are most likely related to the turbulent character of the solar-wind plasma. Nowadays, many observational and numerical analyses are devoted to the identification of fluctuation channels along which energy is carried from large to short wavelengths during the development of the turbulent cascade; these fluctuation channels establish the link between macroscopic and microscopic scales. In this Letter, by means of a quantitative comparison between in situ measurements in the solar wind from the STEREO spacecraft and numerical results from kinetic simulations, we identify an electrostatic channel of fluctuations that develops along the turbulent cascade in a direction parallel to the ambient magnetic field. This channel appears to be efficient in transferring the energy from large Alfvnic to short electrostatic acoustic-like scales up to a range of wavelengths where it can finally be turned into heat, even when the electron to proton temperature ratio is of the order of unity.

  19. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, W.; Thorne, R. M.; Bortnik, J.; Baker, D. N.; Reeves, G. D.; Kanekal, S. G.; Spence, H. E.; Green, J. C.

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outermore » radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.« less

  20. KINETIC PLASMA TURBULENCE IN THE FAST SOLAR WIND MEASURED BY CLUSTER

    SciTech Connect (OSTI)

    Roberts, O. W.; Li, X.; Li, B.

    2013-05-20

    The k-filtering technique and wave polarization analysis are applied to Cluster magnetic field data to study plasma turbulence at the scale of the ion gyroradius in the fast solar wind. Waves are found propagating in directions nearly perpendicular to the background magnetic field at such scales. The frequencies of these waves in the solar wind frame are much smaller than the proton gyrofrequency. After the wavevector k is determined at each spacecraft frequency f{sub sc}, wave polarization property is analyzed in the plane perpendicular to k. Magnetic fluctuations have {delta}B > {delta}B{sub Parallel-To} (here the Parallel-To and refer to the background magnetic field B{sub 0}). The wave magnetic field has right-handed polarization at propagation angles {theta}{sub kB} < 90 Degree-Sign and >90 Degree-Sign . The magnetic field in the plane perpendicular to B{sub 0}, however, has no clear sense of a dominant polarization but local rotations. We discuss the merits and limitations of linear kinetic Alfven waves (KAWs) and coherent Alfven vortices in the interpretation of the data. We suggest that the fast solar wind turbulence may be populated with KAWs, small-scale current sheets, and Alfven vortices at ion kinetic scales.

  1. Solar wind-magnetosphere coupling during intense magnetic storms (1978--1979)

    SciTech Connect (OSTI)

    Gonzalez, W.D. ); Tsurutani, B.T.; Gonzalez, A.L.C.; Smith, E.J.; Tang, F.; Akasofu, S.

    1989-07-01

    The solar wind-magnetosphere coupling problem is investigated for the ten intense magnetic storms (Dst {lt}{minus}100 nT) that occurred during the 500 days (August 16, 1978 to December 28, 1979) studied by Gonzalez and Tsurutani (1987). This investigation concentrates on the ring current energization in terms of solar wind parameters, in order to explain the {vert bar} {minus}Dst {vert bar} growth observed during these storms. Thus several coupling functions are tested as energy input and several sets of the ring current decay time-constant {tau} are searched to find best correlations with the Dst response. From the fairly large correlation coefficients found in this study, there is strong evidence that large scale magnetopause reconnection operates during such intense storm events and that the solar wind ram pressure plays an important role in the ring current energization. Thus a ram pressure correction factor is suggested for expressions concerning the reconnection power during time intervals with large ram pressure variations.

  2. SELF-CONSISTENT ION CYCLOTRON ANISOTROPY-BETA RELATION FOR SOLAR WIND PROTONS

    SciTech Connect (OSTI)

    Isenberg, Philip A.; Maruca, Bennett A.; Kasper, Justin C. E-mail: bmaruca@ssl.berkeley.edu

    2013-08-20

    We derive a set of self-consistent marginally stable states for a system of ion-cyclotron waves propagating parallel to the large-scale magnetic field through a homogeneous proton-electron plasma. The proton distributions and the wave dispersions are related through the condition that no further ion-cyclotron resonant particle scattering or wave growth/damping may take place. The thermal anisotropy of the protons in these states therefore defines the threshold value for triggering the proton-cyclotron anisotropy instability. A number of recent papers have noted that the anisotropy of solar wind protons at 1 AU does not seem to be limited by the proton-cyclotron anisotropy threshold, even at low plasma beta. However, this puzzle seems to be due solely to the estimation of this anisotropy threshold under the assumption that the protons have a bi-Maxwellian distribution. We note that bi-Maxwellian distributions are never marginally stable to the resonant cyclotron interaction, so these estimates do not represent physically valid thresholds. The threshold anisotropies obtained from our marginally stable states are much larger, as a function of proton parallel beta, than the bi-Maxwellian estimates, and we show that the measured data remains below these more rigorous thresholds. Thus, the results of this paper resolve the apparent contradiction presented by the solar wind anisotropy observations at 1 AU: the bi-Maxwellian anisotropies are not rigorous thresholds, and so do not limit the proton distributions in the solar wind.

  3. Variable cascade dynamics and intermittency in the solar wind at 1 AU

    SciTech Connect (OSTI)

    Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J.; Forman, Miriam A.; Stawarz, Julia E. E-mail: Charles.Smith@unh.edu E-mail: Miriam.Forman@sunysb.edu

    2014-05-01

    In recent studies by ourselves and others of third-moment expressions for the rate of energy cascade in the solar wind, it has been shown that relatively large volumes of data are needed to produce convergent averages. These averages are in good agreement with independently obtained estimates for the average heating rate for a solar wind plasma under those conditions. The unanswered question has been whether the convergence issue is the result of intermittent dynamics or simple measurement uncertainties. In other words, is the difficulty in obtaining a single result that characterizes many similarly prepared samples due to in situ dynamics that create physically real variations or simple statistics? There have been publications showing evidence of intermittent dynamics in the solar wind. Here we show that the third-moment expressions and the computed energy cascade for relatively small samples of data comparable to the correlation length are generally well-formed estimates of the local dynamics. This leads us to conclude that intermittency and not simple measurement uncertainties are responsible for the slow convergence to expected heating rates. We partially characterize the scale size of the intermittency to be comparable to or smaller than the correlation length of the turbulence and we attempt to rephrase the discussion of third moments in terms of intermittent dynamics.

  4. ON THE LOW-FREQUENCY BOUNDARY OF SUN-GENERATED MAGNETOHYDRODYNAMIC TURBULENCE IN THE SLOW SOLAR WIND

    SciTech Connect (OSTI)

    Shergelashvili, Bidzina M.; Fichtner, Horst

    2012-06-20

    New aspects of the slow solar wind turbulent heating and acceleration are investigated. A physical meaning of the lower boundary of the Alfven wave turbulent spectra in the solar atmosphere and the solar wind is studied and the significance of this natural parameter is demonstrated. Via an analytical and quantitative treatment of the problem we show that a truncation of the wave spectra from the lower frequency side, which is a consequence of the solar magnetic field structure and its cyclic changes, results in a significant reduction of the heat production and acceleration rates. An appropriate analysis is presented regarding the link of the considered problem with existing observational data and slow solar wind initiation scenarios.

  5. Statistical study of reconnection exhausts in the solar wind

    SciTech Connect (OSTI)

    Enl, J.; P?ech, L.; afrnkov, J.; N?me?ek, Z.

    2014-11-20

    Magnetic reconnection is a fundamental process that changes magnetic field configuration and converts a magnetic energy to flow energy and plasma heating. This paper presents a survey of the plasma and magnetic field parameters inside 418 reconnection exhausts identified in the WIND data from 1995-2012. The statistical analysis is oriented on the re-distribution of the magnetic energy released due to reconnection between a plasma acceleration and its heating. The results show that both the portion of the energy deposited into heat as well as the energy spent on the acceleration of the exhaust plasma rise with the magnetic shear angle in accord with the increase of the magnetic flux available for reconnection. The decrease of the normalized exhaust speed with the increasing magnetic shear suggests a decreasing efficiency of the acceleration and/or the increasing efficiency of heating in high-shear events. However, we have found that the already suggested relation between the exhaust speed and temperature enhancement would be rather considered as an upper limit of the plasma heating during reconnection regardless of the shear angle.

  6. From Tragedy to Triumph - Resources for Rebuilding Green after Disaster, EERE (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet offering resources for builders and architects to rebuild homes, businesses, and public buildings with energy efficiency and renewable energy such as wind, solar, and geothermal.

  7. NextEra Energy Resources formerly FPL Energy LLC | Open Energy...

    Open Energy Info (EERE)

    Independent Power Producer active in wind, solar, hydroelectric, natural gas and nuclear References: NextEra Energy Resources (formerly FPL Energy LLC)1 This article is a...

  8. Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential This study looks at the technical feasibility of generating power with PV arrays. PDF icon 47956.pdf More Documents & Publications Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island

  9. Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  10. Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-09-27

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  11. Tribal Solar Energy Partnerships

    Energy Savers [EERE]

    SOLAR ENERGY PARTNERSHIPS Chairman Timothy Williams - Fort Mojave Indian Tribe Perry Fontana - First Solar Fort Mojave Indian Reservation Fort Mojave Project Site Mohave Generating Station (MGS) RESERVATION FARM LAND HISTORY * DOE funded renewable energy Feasibility Study found wind resource on Fort Mojave reservation marginal, but solar resource significant * Project was to be developed on 640 acres of Fort Mojave land in Arizona * Other parties included Tax and Equity financing entities, and

  12. The evolution of 1 AU equatorial solar wind and its association with the morphology of the heliospheric current sheet from solar cycles 23 to 24

    SciTech Connect (OSTI)

    Zhao, L.; Landi, E.; Zurbuchen, T. H.; Fisk, L. A.; Lepri, S. T.

    2014-09-20

    The solar wind can be categorized into three types based on its 'freeze-in' temperature (T {sub freeze-in}) in the coronal source: low T {sub freeze-in} wind mostly from coronal holes, high T {sub freeze-in} wind mostly from regions outside of coronal holes, including streamers (helmet streamer and pseudostreamer), active regions, etc., and transient interplanetary coronal mass ejections (ICMEs) usually possessing the hottest T {sub freeze-in}. The global distribution of these three types of wind has been investigated by examining the most effective T {sub freeze-in} indicator, the O{sup 7+}/O{sup 6+} ratio, as measured by the Solar Wind Ion Composition Spectrometer on board the Advanced Composition Explorer (ACE) during 1998-2008 by Zhao et al. In this study, we extend the previous investigation to 2011 June, covering the unusual solar minimum between solar cycles 23 and 24 (2007-2010) and the beginning of solar cycle 24. We find that during the entire solar cycle, from the ascending phase of cycle 23 in 1998 to the ascending phase of cycle 24 in 2011, the average fractions of the low O{sup 7+}/O{sup 6+} ratio (LOR) wind, the high O{sup 7+}/O{sup 6+} ratio (HOR) wind, and ICMEs at 1 AU are 50.3%, 39.4%, and 10.3%, respectively; the contributions of the three types of wind evolve with time in very different ways. In addition, we compare the evolution of the HOR wind with two heliospheric current sheet (HCS) parameters, which indicate the latitudinal standard deviation (SD) and the slope (SL) of the HCS on the synoptic Carrington maps at 2.5 solar radii surface. We find that the fraction of HOR wind correlates with SD and SL very well (slightly better with SL than with SD), especially after 2005. This result verifies the link between the production of HOR wind and the morphology of the HCS, implying that at least one of the major sources of the HOR wind must be associated with the HCS.

  13. Corotating solar wind structures and recurrent trains of enhanced diurnal variation in galactic cosmic rays

    SciTech Connect (OSTI)

    Yeeram, T.; Ruffolo, D.; Siz, A.; Kamyan, N.; Nutaro, T. E-mail: david.ruf@mahidol.ac.th E-mail: p_chang24@hotmail.com

    2014-04-01

    Data from the Princess Sirindhorn Neutron Monitor at Doi Inthanon, Thailand, with a vertical cutoff rigidity of 16.8 GV, were utilized to determine the diurnal anisotropy (DA) of Galactic cosmic rays (GCRs) near Earth during solar minimum conditions between 2007 November and 2010 November. We identified trains of enhanced DA over several days, which often recur after a solar rotation period (?27 days). By investigating solar coronal holes as identified from synoptic maps and solar wind parameters, we found that the intensity and anisotropy of cosmic rays are associated with the high-speed streams (HSSs) in the solar wind, which are in turn related to the structure and evolution of coronal holes. An enhanced DA was observed after the onset of some, but not all, HSSs. During time periods of recurrent trains, the DA was often enhanced or suppressed according to the sign of the interplanetary magnetic field B, which suggests a contribution from a mechanism involving a southward gradient in the GCR density, n, and a gradient anisotropy along B ?n. In one non-recurrent and one recurrent sequence, an HSS from an equatorial coronal hole was merged with that from a trailing mid-latitude extension of a polar coronal hole, and the slanted HSS structure in space with suppressed GCR density can account for the southward GCR gradient. We conclude that the gradient anisotropy is a source of temporary changes in the GCR DA under solar minimum conditions, and that the latitudinal GCR gradient can sometimes be explained by the coronal hole morphology.

  14. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  15. Evolution of turbulence in the expanding solar wind, a numerical study

    SciTech Connect (OSTI)

    Dong, Yue; Grappin, Roland; Verdini, Andrea E-mail: verdini@arcetri.astro.it

    2014-10-01

    We study the evolution of turbulence in the solar wind by solving numerically the full three-dimensional (3D) magnetohydrodynamic (MHD) equations embedded in a radial mean wind. The corresponding equations (expanding box model or EBM) have been considered earlier but never integrated in 3D simulations. Here, we follow the development of turbulence from 0.2 AU up to about 1.5 AU. Starting with isotropic spectra scaling as k {sup –1}, we observe a steepening toward a k {sup –5/3} scaling in the middle of the wave number range and formation of spectral anisotropies. The advection of a plasma volume by the expanding solar wind causes a non-trivial stretching of the volume in directions transverse to radial and the selective decay of the components of velocity and magnetic fluctuations. These two effects combine to yield the following results. (1) Spectral anisotropy: gyrotropy is broken, and the radial wave vectors have most of the power. (2) Coherent structures: radial streams emerge that resemble the observed microjets. (3) Energy spectra per component: they show an ordering in good agreement with the one observed in the solar wind at 1 AU. The latter point includes a global dominance of the magnetic energy over kinetic energy in the inertial and f {sup –1} range and a dominance of the perpendicular-to-the-radial components over the radial components in the inertial range. We conclude that many of the above properties are the result of evolution during transport in the heliosphere, and not just the remnant of the initial turbulence close to the Sun.

  16. Solar Cells Light Up Prison Cells on 'The Rock' - News Feature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and changes in operation to reduce energy consumption. ... fuel to the island (maintenance costs and the price of the fuel ... geothermal, solar, wind, and hydropower resources. ...

  17. EERE Success Story-Electric Cooperatives Channel Solar Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The CoServ Solar Station in Krugerville, Texas. Photo: KEN OLTMANNCoServ Some of the most remote areas in the United States were also some of the last places to get access to ...

  18. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  19. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  20. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.